Science.gov

Sample records for loddigesii suppresses tumor

  1. Exosomes and tumor-mediated immune suppression

    PubMed Central

    2016-01-01

    Tumor-derived exosomes (TEX) are harbingers of tumor-induced immune suppression: they carry immunosuppressive molecules and factors known to interfere with immune cell functions. By delivering suppressive cargos consisting of proteins similar to those in parent tumor cells to immune cells, TEX directly or indirectly influence the development, maturation, and antitumor activities of immune cells. TEX also deliver genomic DNA, mRNA, and microRNAs to immune cells, thereby reprogramming functions of responder cells to promote tumor progression. TEX carrying tumor-associated antigens can interfere with antitumor immunotherapies. TEX also have the potential to serve as noninvasive biomarkers of tumor progression. In the tumor microenvironment, TEX may be involved in operating numerous signaling pathways responsible for the downregulation of antitumor immunity. PMID:26927673

  2. Immune suppressive mechanisms in the tumor microenvironment.

    PubMed

    Munn, David H; Bronte, Vincenzo

    2016-04-01

    Effective immunotherapy, whether by checkpoint blockade or adoptive cell therapy, is limited in most patients by a key barrier: the immunosuppressive tumor microenvironment. Suppression of tumor-specific T cells is orchestrated by the activity of a variety of stromal myeloid and lymphoid cells. These often display inducible suppressive mechanisms that are triggered by the same anti-tumor inflammatory response that the immunotherapy intends to create. Therefore, a more comprehensive understanding of how the immunosuppressive milieu develops and persists is critical in order to harness the full power of immunotherapy of cancer.

  3. Comparison of photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii

    PubMed Central

    Sun, Zhi-Rong; Zhu, Nan-Nan; Cheng, Li-Li; Yang, Chun-Ning

    2015-01-01

    Objective: To investigate the photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii, based on which to provide helpful information for the artificial cultivation of these cultivars. Methods: Seeds were placed on the MS medium supplemented with 0.2 mg/L NAA, 2% (w/v) sucrose, 15% (v/v) potato extracts and powered agar (pH 5.8). Two months after germination, seedlings (n = 10) were transferred onto rooting medium containing MS medium supplemented with 0.5 mg/L NAA, 3% (w/v) sucrose, 20% (v/v) potato extracts and 1‰ (w/v) activated carbon (pH 5.8) in a glass bottle (6.5 cm in diameter and 9.5 cm in height) with a white transparent plastic cap. Chlorophyll content was determined using the UV-Vis spectrophotometric method. In addition, rates of oxygen evolution and uptake were measured. The chlorophyll fluorescence was determined at room temperature using PAM 2000 chlorophyll fluorometer (Heinz Walz GmbH, Germany). Results: From month 5 to month 10, the overall contents of both chlorophyll a and chlorophyll b were higher in D. loddigesii compared with those in D. officinale. No statistical differences were observed in the apparent photosynthetic rate (APR) between D. loddigesii and D. officinale. No statistical difference was noticed in the Fo, Fm and Fv between D. loddigesii and D. officinale (P > 0.05). Significant increase was noticed in the oxygen consuming in PSI in month-8 and month-10 compared with that of month-6 in D. loddigesii. Nevertheless, in the D. officinale, the oxygen consuming in PSI in month-6 was remarkably increased with those of month-8 and month-10, respectively. Conclusions: The photosynthesis and fluorescence parameters varied in the seedling of D. loddigesii and D. officinale. Such information could contribute to the artificial cultivation of these cultivars. PMID:26550239

  4. Wnt5a Suppresses Tumor Formation and Redirects Tumor Phenotype in MMTV-Wnt1 Tumors

    PubMed Central

    Easter, Stephanie L.; Mitchell, Elizabeth H.; Baxley, Sarah E.; Desmond, Renee; Frost, Andra R.; Serra, Rosa

    2014-01-01

    Wnt5a is a non-canonical signaling Wnt that has been implicated in tumor suppression. We previously showed that loss of Wnt5a in MMTV-PyVmT tumors resulted in a switch in tumor phenotype resulting in tumors with increased basal phenotype and high Wnt/β-catenin signaling. The object of this study was to test the hypothesis that Wnt5a can act to inhibit tumors formed by activation of Wnt/β-catenin signaling. To this end, we characterized tumor and non-tumor mammary tissue from MMTV-Wnt1 and double transgenic MMTV-Wnt1;MMTV-Wnt5a mice. Wnt5a containing mice demonstrated fewer tumors with increased latency when compared to MMTV-Wnt1 controls. Expression of markers for basal-like tumors was down-regulated in the tumors that formed in the presence of Wnt5a indicating a phenotypic switch. Reduced canonical Wnt signaling was detected in double transgenic tumors as a decrease in active β-catenin protein and a decrease in Axin2 mRNA transcript levels. In non-tumor tissues, over-expression of Wnt5a in MMTV-Wnt1 mammary glands resulted in attenuation of phenotypes normally observed in MMTV-Wnt1 glands including hyperbranching and increased progenitor and basal cell populations. Even though Wnt5a could antagonize Wnt/β-catenin signaling in primary mammary epithelial cells in culture, reduced Wnt/β-catenin signaling was not detected in non-tumor MMTV-Wnt1;Wnt5a tissue in vivo. The data demonstrate that Wnt5a suppresses tumor formation and promotes a phenotypic shift in MMTV-Wnt1 tumors. PMID:25401739

  5. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors.

    PubMed

    Easter, Stephanie L; Mitchell, Elizabeth H; Baxley, Sarah E; Desmond, Renee; Frost, Andra R; Serra, Rosa

    2014-01-01

    Wnt5a is a non-canonical signaling Wnt that has been implicated in tumor suppression. We previously showed that loss of Wnt5a in MMTV-PyVmT tumors resulted in a switch in tumor phenotype resulting in tumors with increased basal phenotype and high Wnt/β-catenin signaling. The object of this study was to test the hypothesis that Wnt5a can act to inhibit tumors formed by activation of Wnt/β-catenin signaling. To this end, we characterized tumor and non-tumor mammary tissue from MMTV-Wnt1 and double transgenic MMTV-Wnt1;MMTV-Wnt5a mice. Wnt5a containing mice demonstrated fewer tumors with increased latency when compared to MMTV-Wnt1 controls. Expression of markers for basal-like tumors was down-regulated in the tumors that formed in the presence of Wnt5a indicating a phenotypic switch. Reduced canonical Wnt signaling was detected in double transgenic tumors as a decrease in active β-catenin protein and a decrease in Axin2 mRNA transcript levels. In non-tumor tissues, over-expression of Wnt5a in MMTV-Wnt1 mammary glands resulted in attenuation of phenotypes normally observed in MMTV-Wnt1 glands including hyperbranching and increased progenitor and basal cell populations. Even though Wnt5a could antagonize Wnt/β-catenin signaling in primary mammary epithelial cells in culture, reduced Wnt/β-catenin signaling was not detected in non-tumor MMTV-Wnt1;Wnt5a tissue in vivo. The data demonstrate that Wnt5a suppresses tumor formation and promotes a phenotypic shift in MMTV-Wnt1 tumors.

  6. Deconstructing p53 transcriptional networks in tumor suppression.

    PubMed

    Bieging, Kathryn T; Attardi, Laura D

    2012-02-01

    p53 is a pivotal tumor suppressor that induces apoptosis, cell-cycle arrest and senescence in response to stress signals. Although p53 transcriptional activation is important for these responses, the mechanisms underlying tumor suppression have been elusive. To date, no single or compound mouse knockout of specific p53 target genes has recapitulated the dramatic tumor predisposition that characterizes p53-null mice. Recently, however, analysis of knock-in mice expressing p53 transactivation domain mutants has revealed a group of primarily novel direct p53 target genes that may mediate tumor suppression in vivo. We present here an overview of well-known p53 target genes and the tumor phenotypes of the cognate knockout mice, and address the recent identification of new p53 transcriptional targets and how they enhance our understanding of p53 transcriptional networks central for tumor suppression.

  7. Tumor Suppression and Promotion by Autophagy

    PubMed Central

    Ávalos, Yenniffer; Canales, Jimena; Criollo, Alfredo; Quest, Andrew F. G.

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer. PMID:25328887

  8. Tumor suppression and promotion by autophagy.

    PubMed

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  9. Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth.

    PubMed

    Sharma, Shweta; Kotamraju, Venkata Ramana; Mölder, Tarmo; Tobi, Allan; Teesalu, Tambet; Ruoslahti, Erkki

    2017-03-08

    Antiangiogenic and vascular disrupting compounds have shown promise in cancer therapy, but tend to be only partially effective. We previously reported a potent theranostic nanosystem that was highly effective in glioblastoma and breast cancer mouse models, retarding tumor growth and producing some cures [ Agemy , L. et al. Proc. Natl. Acad. Sci. U.S.A. 2011 , 108 , 17450 - 17455 . Agemy , L. et al. Mol. Ther. 2013 , 21 , 2195 - 2204 .]. The nanosystem consists of iron oxide NPs ("nanoworms") coated with a composite peptide with tumor-homing and pro-apoptotic domains. The homing component targets tumor vessels by binding to p32/gC1qR at the surface or tumor endothelial cells. We sought to further improve the efficacy nanosystem by searching for an optimally effective homing peptide that would also incorporate a tumor-penetrating function. To this effect, we tested a panel of candidate p32 binding peptides with a sequence motif that conveys tumor-penetrating activity (CendR motif). We identified a peptide designated as Linear TT1 (Lin TT1) (sequence: AKRGARSTA) as most effective in causing tumor homing and penetration of the nanosystem. This peptide had the lowest affinity for p32 among the peptides tested. The low affinity may have moderated the avidity effect from the multivalent presentation on nanoparticles (NPs), such that the NPs avoid getting trapped by the so-called "binding-site barrier", which can hinder tissue penetration of compounds with a high affinity for their receptors. Treatment of breast cancer mice with the LinTT1 nanosystem showed greatly improved efficacy compared to the original system. These results identify a promising treatment modality and underscore the value of tumor penetration effect in improving the efficacy tumor treatment.

  10. Tumor suppression by resistant maltodextrin, Fibersol-2.

    PubMed

    So, Eui Young; Ouchi, Mutsuko; Cuesta-Sancho, Sara; Olson, Susan Losee; Reif, Dirk; Shimomura, Kazuhiro; Ouchi, Toru

    2015-01-01

    Resistant maltodextrin Fibersol-2 is a soluble and fermentable dietary fiber that is Generally Recognized As Safe (GRAS) in the United States. We tested whether Fibersol-2 contains anti-tumor activity. Human colorectal cancer cell line, HCT116, and its isogenic cells were treated with FIbersol-2. Tumor growth and tumorigenesis were studied in vitro and in vivo. Apoptotic pathway and generation of reactive oxygen species (ROS) were investigated. We discovered that Fibersol-2 significantly inhibits tumor growth of HCT116 cells by inducing apoptosis. Fibersol-2 strongly induces mitochondrial ROS and Bax-dependent cleavage of caspase 3 and 9, which is shown by isogenic HCT116 variants. Fibersol-2 induces phosphorylation of Akt, mTOR in parental HCT116 cells, but not in HCT116 deficient for Bax or p53. It prevents growth of tumor xenograft without any apparent signs of toxicity in vivo. These results identify Fibersol-2 as a mechanism-based dietary supplement agent that could prevent colorectal cancer development.

  11. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    PubMed

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  12. Importance of DNA repair in tumor suppression

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-12-01

    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.

  13. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  14. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation

    PubMed Central

    Janowski, Ann M.; Colegio, Oscar R.; Hornick, Emma E.; McNiff, Jennifer M.; Martin, Matthew D.; Badovinac, Vladimir P.; Norian, Lyse A.; Zhang, Weizhou; Cassel, Suzanne L.

    2016-01-01

    Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression. We found that NLRC4-deficient mice exhibited enhanced tumor growth that was independent of the inflammasome components ASC and caspase-1. Nlrc4 expression was critical for cytokine and chemokine production in tumor-associated macrophages and was necessary for the generation of protective IFN-γ–producing CD4+ and CD8+ T cells. Tumor progression was diminished when WT or caspase-1–deficient, but not NLRC4-deficient, macrophages were coinjected with B16F10 tumor cells in NLRC4-deficient mice. Finally, examination of human primary melanomas revealed the extensive presence of NLRC4+ tumor-associated macrophages. In contrast, there was a paucity of NLRC4+ tumor-associated macrophages observed in human metastatic melanoma, supporting the concept that NLRC4 expression controls tumor growth. These results reveal a critical role for NLRC4 in suppressing tumor growth in an inflammasome-independent manner. PMID:27617861

  15. Reversible Smad-dependent signaling between tumor suppression and oncogenesis.

    PubMed

    Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2007-06-01

    Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.

  16. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    PubMed

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Choi, Jeong Uk; Kim, Seong Who; Kim, Sang Yoon; Ahsan, Fakhrul; Kim, In-San

    2016-01-01

    Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis. PMID:26950422

  18. A model for tumor suppression using H-1 parvovirus.

    PubMed Central

    Telerman, A; Tuynder, M; Dupressoir, T; Robaye, B; Sigaux, F; Shaulian, E; Oren, M; Rommelaere, J; Amson, R

    1993-01-01

    A model system is proposed to investigate, at the molecular level, the pathways of tumor suppression. As a tool for the selection of cells with a suppressed phenotype, we used the H-1 parvovirus that preferentially kills various neoplastic cells. From the human K562 leukemia cells, we isolated a clone, KS, that is resistant to the cytopathic effect of the H-1 virus and displays a suppressed malignant phenotype. The suppressed malignancy and the cellular resistance to H-1 killing appear to depend on the activity of wild-type p53. Whereas the KS cells express wild-type p53, the protein is undetectable in the parental K562 cells. Experiments with p53 mutants suggest that wild-type p53, in its functionally intact state, contributes to the resistance against the cytopathic effect of H-1 parvovirus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8378352

  19. Global microRNA depletion suppresses tumor angiogenesis

    PubMed Central

    Chen, Sidi; Xue, Yuan; Wu, Xuebing; Le, Cong; Bhutkar, Arjun; Bell, Eric L.; Zhang, Feng; Langer, Robert; Sharp, Phillip A.

    2014-01-01

    MicroRNAs delicately regulate the balance of angiogenesis. Here we show that depletion of all microRNAs suppresses tumor angiogenesis. We generated microRNA-deficient tumors by knocking out Dicer1. These tumors are highly hypoxic but poorly vascularized, suggestive of deficient angiogenesis signaling. Expression profiling revealed that angiogenesis genes were significantly down-regulated as a result of the microRNA deficiency. Factor inhibiting hypoxia-inducible factor 1 (HIF-1), FIH1, is derepressed under these conditions and suppresses HIF transcription. Knocking out FIH1 using CRISPR/Cas9-mediated genome engineering reversed the phenotypes of microRNA-deficient cells in HIF transcriptional activity, VEGF production, tumor hypoxia, and tumor angiogenesis. Using multiplexed CRISPR/Cas9, we deleted regions in FIH1 3′ untranslated regions (UTRs) that contain microRNA-binding sites, which derepresses FIH1 protein and represses hypoxia response. These data suggest that microRNAs promote tumor responses to hypoxia and angiogenesis by repressing FIH1. PMID:24788094

  20. Optimal Treatment Strategy for a Tumor Model under Immune Suppression

    PubMed Central

    Kim, Kwang Su; Cho, Giphil; Jung, Il Hyo

    2014-01-01

    We propose a mathematical model describing tumor-immune interactions under immune suppression. These days evidences indicate that the immune suppression related to cancer contributes to its progression. The mathematical model for tumor-immune interactions would provide a new methodology for more sophisticated treatment options of cancer. To do this we have developed a system of 11 ordinary differential equations including the movement, interaction, and activation of NK cells, CD8+T-cells, CD4+T cells, regulatory T cells, and dendritic cells under the presence of tumor and cytokines and the immune interactions. In addition, we apply two control therapies, immunotherapy and chemotherapy to the model in order to control growth of tumor. Using optimal control theory and numerical simulations, we obtain appropriate treatment strategies according to the ratio of the cost for two therapies, which suggest an optimal timing of each administration for the two types of models, without and with immunosuppressive effects. These results mean that the immune suppression can have an influence on treatment strategies for cancer. PMID:25140193

  1. Tumor Suppression by MEG3 lncRNA in a Human Pituitary Tumor Derived Cell Line

    PubMed Central

    Chunharojrith, Paweena; Nakayama, Yuki; Jiang, Xiaobing; Kery, Rachel E.; Ma, Jun; De La Hoz Ulloa, Cristine S.; Zhang, Xun; Zhou, Yunli; Klibanski, Anne

    2015-01-01

    Human clinically non-functioning pituitary adenomas (NFAs) account for approximately 40% of diagnosed pituitary tumors. Epigenetic mutations in tumor suppressive genes play an important role in NFA development. Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) and we hypothesized that it is a candidate tumor suppressor whose epigenetic silencing is specifically linked to NFA development. In this study, we introduced MEG3 expression into PDFS cells, derived from a human NFA, using both inducible and constitutively active expression systems. MEG3 expression significantly suppressed xenograft tumor growth in vivo in nude mice. When induced in culture, MEG3 caused cell cycle arrest at the G1 phase. In addition, inactivation of p53 completely abolished tumor suppression by MEG3, indicating that MEG3 tumor suppression is mediated by p53. In conclusion, our data support the hypothesis that MEG3 is a lncRNA tumor suppressor in the pituitary and its inactivation contributes to NFA development. PMID:26284494

  2. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma

    PubMed Central

    Mackiewicz, Katarzyna; Katlinskaya, Yuliya V.; Staschke, Kirk A.; Paredes, Maria C. G.; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S.; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y.; Diehl, J. Alan

    2016-01-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK. PMID:27977682

  3. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma.

    PubMed

    Pytel, Dariusz; Gao, Yan; Mackiewicz, Katarzyna; Katlinskaya, Yuliya V; Staschke, Kirk A; Paredes, Maria C G; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S; Wu, Lawrence; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y; Diehl, J Alan

    2016-12-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK.

  4. Suppression of colorectal tumor growth by regulated survivin targeting.

    PubMed

    Li, Binghua; Fan, Junkai; Liu, Xinran; Qi, Rong; Bo, Linan; Gu, Jinfa; Qian, Cheng; Liu, Xinyuan

    2006-12-01

    A major goal in cancer gene therapy is to develop efficient gene transfer protocols that allow tissue-specific and tightly regulated expression of therapeutic genes. The ideal vector should efficiently transduce cancer cells with minimal toxicity on normal tissues and persistently express foreign genes. One of the most promising regulatory systems is the mifepristone/RU486-regulated system, which has much lower basal transcriptional activity and high inducibility. In this work, we modified this system by incorporating a cancer-specific promoter, the human telomerase reverse transcriptase (hTERT) promoter. By utilizing hTERT promoter to control the regulator, RU486 could specifically induce the expression of foreign genes in cancer cells but not in normal cells. In the context of this system, a dominant negative mutant of survivin (surDN) was controllably expressed in colorectal tumor cells. The surDN expression induced by RU486 showed a dosage- and time-dependent pattern. Regulated expression of surDN caused caspase-dependent apoptosis in colorectal tumor cells but had little effect on normal cells. Analysis of cell viability showed that RU486-induced expression of surDN suppressed colorectal tumor cell growth and had synergic effect in combination with chemotherapeutic agents. The potential of this system in cancer therapy was evaluated in experimental animals. Tumor xenograft models were established in nude mice with colorectal tumor cells, and RU486 was intraperitoneally administered. The results showed that conditional expression of surDN efficiently inhibited tumor growth in vivo and prolonged the life of tumor-burdened mice. Synergized with the chemotherapeutic drug cisplatin, regulated surDN expression completely suppressed tumor growth. These results indicated that this modified RU486-regulated system could be useful in cancer-targeting therapy.

  5. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation

    PubMed Central

    Zasadil, Lauren M.; Britigan, Eric M. C.; Ryan, Sean D.; Kaur, Charanjeet; Guckenberger, David J.; Beebe, David J.; Moser, Amy R.; Weaver, Beth A.

    2016-01-01

    Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the ApcMin/+ mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. ApcMin/+ cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E+/−;ApcMin/+ doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with ApcMin/+ animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy. PMID:27146113

  6. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression

    PubMed Central

    Rhee, Ki-Jong; Lee, Jong In; Eom, Young Woo

    2015-01-01

    Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors. PMID:26694366

  7. Exosomes as Tools to Suppress Primary Brain Tumor.

    PubMed

    Katakowski, Mark; Chopp, Michael

    2016-04-01

    Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood-brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.

  8. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    PubMed Central

    Whiteside, Theresa L.

    2016-01-01

    Tumor-derived exosomes (TEX) are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation. PMID:27775593

  9. AIP1 expression in tumor niche suppresses tumor progression and metastasis

    PubMed Central

    Ji, Weidong; Li, Yonghao; He, Yun; Yin, Mingzhu; Zhou, Huanjiao Jenny; Boggon, Titus J.; Zhang, Haifeng; Min, Wang

    2015-01-01

    Studies from tumor cells suggest that tumor suppressor AIP1 inhibits epithelial-mesenchymal transition (EMT). However, the role of AIP1 in the tumor microenvironment has not been examined. We show that a global or vascular endothelial cell (EC)-specific deletion of the AIP1 gene in mice augments tumor growth and metastasis in melanoma and breast cancer models. AIP1-deficient vascular environment not only enhances tumor neovascularization and increases pre-metastatic niche formation, but also secrets tumor EMT-promoting factors. These effects from AIP1 loss are associated with increased VEGFR2 signaling in the vascular EC and could be abrogated by systemic administration of VEGFR2 kinase inhibitors. Mechanistically, AIP1 blocks VEGFR2-dependent signaling by directly binding to the phosphotyrosine residues within the activation loop of VEGFR2. Our data reveal that AIP1, by inhibiting VEGFR2-dependent signaling in tumor niche, suppresses tumor EMT switch, tumor angiogenesis and tumor pre-metastatic niche formation to limit tumor growth and metastasis. PMID:26139244

  10. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  11. Suppression of tumor growth by novel peptides homing to tumor-derived new blood vessels.

    PubMed

    Asai, Tomohiro; Nagatsuka, Mayumi; Kuromi, Koichi; Yamakawa, Satoru; Kurohane, Kohta; Ogino, Koichi; Tanaka, Michinori; Taki, Takao; Oku, Naoto

    2002-01-16

    Novel peptides homing to angiogenic vessels were recently isolated from a phage-displayed random pentadecapeptide library. One of the isolated peptides, ASSSYPLIHWRPWAR, significantly suppressed the migration of VEGF-stimulated human umbilical vein endothelial cells. Dendoric ASSSYPLIHWRPWAR-peptide suppressed the formation of new blood vessels in dorsal air sac model mice. Furthermore, ASSSYPLIHWRPWAR-peptide and the fragment peptides containing WRP, which is revealed to be an epitope sequence, significantly suppressed the tumor growth, although 15-mer shuffled peptide derived from ASSSYPLIHWRPWAR and pentapeptides with alanine substitution of each residue of WRP did not. Taken together, ASSSYPLIHWRPWAR-peptide may cause tumor dormancy through inhibition of angiogenesis, and the WRP sequence may be the minimal and essential sequence for this activity.

  12. Transdifferentiation mediated tumor suppression by the endoplasmic reticulum stress sensor IRE-1 in C. elegans

    PubMed Central

    Levi-Ferber, Mor; Gian, Hai; Dudkevich, Reut; Henis-Korenblit, Sivan

    2015-01-01

    Deciphering effective ways to suppress tumor progression and to overcome acquired apoptosis resistance of tumor cells are major challenges in the tumor therapy field. We propose a new concept by which tumor progression can be suppressed by manipulating tumor cell identity. In this study, we examined the effect of ER stress on apoptosis resistant tumorous cells in a Caenorhabditis elegans germline tumor model. We discovered that ER stress suppressed the progression of the lethal germline tumor by activating the ER stress sensor IRE-1. This suppression was associated with the induction of germ cell transdifferentiation into ectopic somatic cells. Strikingly, transdifferentiation of the tumorous germ cells restored their ability to execute apoptosis and enabled their subsequent removal from the gonad. Our results indicate that tumor cell transdifferentiation has the potential to combat cancer and overcome the escape of tumor cells from the cell death machinery. DOI: http://dx.doi.org/10.7554/eLife.08005.001 PMID:26192965

  13. Suppression of tumor angiogenesis by targeting the protein neddylation pathway.

    PubMed

    Yao, W-T; Wu, J-F; Yu, G-Y; Wang, R; Wang, K; Li, L-H; Chen, P; Jiang, Y-N; Cheng, H; Lee, H W; Yu, J; Qi, H; Yu, X-J; Wang, P; Chu, Y-W; Yang, M; Hua, Z-C; Ying, H-Q; Hoffman, R M; Jeong, L S; Jia, L-J

    2014-02-13

    Inhibition of protein neddylation, particularly cullin neddylation, has emerged as a promising anticancer strategy, as evidenced by the antitumor activity in preclinical studies of the Nedd8-activating enzyme (NAE) inhibitor MLN4924. This small molecule can block the protein neddylation pathway and is now in clinical trials. We and others have previously shown that the antitumor activity of MLN4924 is mediated by its ability to induce apoptosis, autophagy and senescence in a cell context-dependent manner. However, whether MLN4924 has any effect on tumor angiogenesis remains unexplored. Here we report that MLN4924 inhibits angiogenesis in various in vitro and in vivo models, leading to the suppression of tumor growth and metastasis in highly malignant pancreatic cancer, indicating that blockage of angiogenesis is yet another mechanism contributing to its antitumor activity. At the molecular level, MLN4924 inhibits Cullin-RING E3 ligases (CRLs) by cullin deneddylation, causing accumulation of RhoA at an early stage to impair angiogenic activity of vascular endothelial cells and subsequently DNA damage response, cell cycle arrest and apoptosis due to accumulation of other tumor-suppressive substrates of CRLs. Furthermore, we showed that inactivation of CRLs, via small interfering RNA (siRNA) silencing of its essential subunit ROC1/RBX1, recapitulates the antiangiogenic effect of MLN4924. Taken together, our study demonstrates a previously unrecognized role of neddylation in the regulation of tumor angiogenesis using both pharmaceutical and genetic approaches, and provides proof of concept evidence for future development of neddylation inhibitors (such as MLN4924) as a novel class of antiangiogenic agents.

  14. PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth.

    PubMed

    Gupta, Parul; Wright, Stephen E; Srivastava, Sanjay K

    2015-02-01

    Breast tumors are heterogeneous with a complex etiology. The immune system plays a crucial role in the development of tumors and can facilitate tumor growth pleiotropically. Myeloid derived suppressor cells (MDSCs) generate reactive oxygen species (ROS) and cytokines to suppress T cells, dendritic cells and natural killer (NK) cells. Hence, the inhibition of MDSCs could be an important strategy for anticancer therapeutics. Phenethyl isothiocyanate (PEITC), a bioactive compound present in cruciferous vegetables, is known to have anticancer properties. However, the effects of PEITC administration on the immune system have not been previously reported. In the current study, we evaluated the effects of administering PEITC to immunocompromised NOD-SCID IL2Rγ(-/-) (SCID/NSG) host mice bearing MDA-MB-231 xenografts on MDSCs in the peripheral blood. Our results reveal that oral administration of 12 μmol PEITC attenuated tumor growth by 76%. This was marked tumor-inhibitory phenotype was associated with a significant reduction in the levels of MDSCs bearing the surface markers CD33, CD34 and CD11b in PEITC treated mice, indicating that overall tumor growth suppression by PEITC correlates with inhibition of MDSCs. To the best of our knowledge, this is the first study showing effects of PEITC on MDSCs.

  15. TGF-β Tumor Suppression Through A Lethal EMT

    PubMed Central

    David, Charles J.; Huang, Yun-Han; Chen, Mo; Su, Jie; Zou, Yilong; Bardeesy, Nabeel; Iacobuzio-Donahue, Christine A.; Massagué, Joan

    2016-01-01

    TGF-β signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-β mediator Smad4. We show that TGF-β induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-β sensitive PDA cells, EMT becomes lethal by converting TGF-β-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-β. TGF-β-induced Sox4 is thus geared to bolster progenitor identity, while simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-β tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network. PMID:26898331

  16. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    PubMed Central

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-01-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials. PMID:27485515

  17. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    NASA Astrophysics Data System (ADS)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  18. Two faces of p53: aging and tumor suppression

    PubMed Central

    Rodier, Francis; Campisi, Judith; Bhaumik, Dipa

    2007-01-01

    The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity. PMID:17942417

  19. RB tumor suppressive function in response to xenobiotic hepatocarcinogens.

    PubMed

    Reed, Christopher; Hutcheson, Jack; Mayhew, Christopher N; Witkiewicz, Agnieszka K; Knudsen, Erik S

    2014-06-01

    Diverse etiologic events are associated with the development of hepatocellular carcinoma. During hepatocarcinogenesis, genetic events likely occur that subsequently cooperate with long-term exposures to further drive the progression of hepatocellular carcinoma. In this study, the frequent loss of the retinoblastoma (RB) tumor suppressor in hepatocellular carcinoma was modeled in response to diverse hepatic stresses. Loss of RB did not significantly affect the response to a steatotic stress as driven by a methionine- and choline-deficient diet. In addition, RB status did not significantly influence the response to peroxisome proliferators that can drive hepatomegaly and tumor development in rodents. However, RB loss exhibited a highly significant effect on the response to the xenobiotic1,4-Bis-[2-(3,5-dichloropyridyloxy)] benzene. Loss of RB yielded a unique proliferative response to this agent, which was distinct from both regenerative stresses and genotoxic carcinogens. Long-term exposure to 1,4-Bis-[2-(3,5-dichloropyridyloxy)] benzene yielded profound tumor development in RB-deficient livers that was principally absent in RB-sufficient tissue. These data demonstrate the context specificity of RB and the key role RB plays in the suppression of hepatocellular carcinoma driven by xenobiotic stress.

  20. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  1. An Essential Role of Maspin in Embryogenesis and Tumor Suppression.

    PubMed

    Dzinic, Sijana H; Bernardo, M Margarida; Li, Xiaohua; Fernandez-Valdivia, Rodrigo; Ho, Ye-Shih; Mi, Qing-Sheng; Bandyopadhyay, Sudeshna; Lonardo, Fulvio; Vranic, Semir; Oliveira, Daniel S M; Bonfil, R Daniel; Dyson, Gregory; Chen, Kang; Omerovic, Almasa; Sheng, Xiujie; Han, Xiang; Wu, Dinghong; Bi, Xinling; Cabaravdic, Dzenana; Jakupovic, Una; Wahba, Marian; Pang, Aaron; Harajli, Deanna; Sakr, Wael A; Sheng, Shijie

    2017-02-15

    Maspin (SerpinB5) is an epithelial-specific tumor suppressor gene product that displays context-dependent cellular functions. Maspin-deficient mouse models created to date have not definitively established maspin functions critical for cancer suppression. In this study, we generated a mouse strain in which exon 4 of the Maspin gene was deleted, confirming its essential role in development but also enabling a breeding scheme to bypass embryonic lethality. Phenotypic characterization of this viable strain established that maspin deficiency was associated with a reduction in maximum body weight and a variety of context-dependent epithelial abnormalities. Specifically, maspin-deficient mice exhibited pulmonary adenocarcinoma, myoepithelial hyperplasia of the mammary gland, hyperplasia of luminal cells of dorsolateral and anterior prostate, and atrophy of luminal cells of ventral prostate and stratum spinosum of epidermis. These cancer phenotypes were accompanied by increased inflammatory stroma. These mice also displayed the autoimmune disorder alopecia aerate. Overall, our findings defined context-specific tumor suppressor roles for maspin in a clinically relevant model to study maspin functions in cancer and other pathologies. Cancer Res; 77(4); 886-96. ©2017 AACR.

  2. Ku80-deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response

    PubMed Central

    Holcomb, Valerie B.; Rodier, Francis; Choi, Yong Jun; Busuttil, Rita A.; Vogel, Hannes; Vijg, Jan; Campisi, Judith; Hasty, Paul

    2014-01-01

    Ku80 facilitates DNA repair and therefore should suppress cancer. However, ku80−/− mice exhibit reduced cancer, although they age prematurely and have a shortened life span. We tested the hypothesis that Ku80 deletion suppresses cancer by enhancing cellular tumor suppressive responses to inefficiently repaired DNA damage. In support of this hypothesis, Ku80 deletion ameliorated tumor burden in APCMIN mice, and increased a p53-mediated DNA damage response, DNA lesions, and chromosomal rearrangements. Thus, contrary to its assumed role as a caretaker tumor suppressor, Ku80 facilitates tumor growth most likely by dampening baseline cellular DNA damage responses. PMID:19010925

  3. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.

    PubMed

    Mello, Stephano S; Valente, Liz J; Raj, Nitin; Seoane, Jose A; Flowers, Brittany M; McClendon, Jacob; Bieging-Rolett, Kathryn T; Lee, Jonghyeob; Ivanochko, Danton; Kozak, Margaret M; Chang, Daniel T; Longacre, Teri A; Koong, Albert C; Arrowsmith, Cheryl H; Kim, Seung K; Vogel, Hannes; Wood, Laura D; Hruban, Ralph H; Curtis, Christina; Attardi, Laura D

    2017-10-09

    The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p53(53,54) TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy.

  5. Comparison of tamoxifen with edible seaweed (Eucheuma cottonii L.) extract in suppressing breast tumor.

    PubMed

    Shamsabadi, Fatemeh T; Khoddami, Ali; Fard, Samaneh Ghasemi; Abdullah, Rasedee; Othman, Hemn Hassan; Mohamed, Suhaila

    2013-01-01

    The tropical edible red seaweed (Eucheuma cottonii L.) is rich in nutrients and polyphenolic compounds that may suppress cancer through its antioxidant and antiproliferative properties. The study reports on rat mammary tumor suppression and tissue antioxidant status modulation by E. cottonii ethanol extract (ECE). The effect of orally administered ECE (100 mg/kg body-weight) was compared with that of tamoxifen (10 mg/kg body-weight). Rat was induced to develop mammary tumor with subcutaneous injection of LA-7 cells (6 × 10(6) cells/rat). The ECE was more effective than tamoxifen in suppressing tumor growth (27%), improving tissues (plasma, liver, and kidney) malondialdehyde concentrations, superoxide dismutase activity and erythrocyte glutathione concentrations (P < 0.05). Unlike tamoxifen, the ECE displayed little toxicity to the liver and kidneys. The ECE exhibited strong anticancer effect with enzyme modulating properties, suggesting its potential as a suppressing agent for mammary gland tumor.

  6. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

  7. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses

    PubMed Central

    Joshi, Nikhil S.; Akama-Garren, Elliot H.; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P.; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R.; Farago, Anna F.; Robbins, Rebecca; Crowley, Denise M.; Bronson, Roderick T.; Jacks, Tyler

    2016-01-01

    SUMMARY Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically-engineered mouse lung adenocarcinoma model and found Treg cells suppress anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLS). TA-TLS have been described in human lung cancers, but their function remains to be determined. TLS in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLS upon Treg cell depletion, leading to tumor destruction. Thus, we propose Treg cells in TA-TLS can inhibit endogenous immune responses against tumors, and targeting these cells may provide therapeutic benefit for cancer patients. PMID:26341400

  8. The Role of BRCA1 Domains and Motifs in Tumor Suppression

    DTIC Science & Technology

    2010-08-01

    poorly characterized but conserved domains in BRCA1 directly participate in its tumor suppression function. To test this hypothesis we choose a global ...after ionizing radiation than HCC1937 e xpressing lacZ, delta 12/13, C61G or M1775 R mutants. This suggests that the RING, coiled-coil and BRCT...conserved domains in BRCA1 dire ctly participate in its tumor suppression fun ction. To te st this hypothesis we choose a global ap proach

  9. 1p36 tumor suppression--a matter of dosage?

    PubMed

    Henrich, Kai-Oliver; Schwab, Manfred; Westermann, Frank

    2012-12-01

    A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic "two-hit" manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes.

  10. C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation.

    PubMed

    Zhang, Pu; Fu, Changliang; Hu, Yijuan; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-20

    Nanoliposomal formulation of C6-ceramide, a proapoptotic sphingolipid metabolite, presents an effective way to treat malignant tumor. Here, we provide evidence that acute treatment (30 min) of melanoma and breast cancer cells with nanoliposomal C6-ceramide (NaL-C6) may suppress cell migration without inducing cell death. By employing a novel flow migration assay, we demonstrated that NaL-C6 decreased tumor extravasation under shear conditions. Compared with ghost nanoliposome, NaL-C6 triggered phosphorylation of PI3K and PKCζ and dephosphorylation of PKCα. Concomitantly, activated PKCζ translocated into cell membrane. siRNA knockdown or pharmacological inhibition of PKCζ or PI3K rescued NaL-C6-mediated suppression of tumor migration. By inducing dephosphorylation of paxillin, PKCζ was responsible for NaL-C6-mediated stress fiber depolymerization and focal adhesion disassembly in the metastatic tumor cells. PKCζ and PI3K regulated cell shear-resistant adhesion in a way that required integrin αvβ3 affinity modulation. In conclusion, we identified a novel role of acute nanoliposomal ceramide treatment in reducing integrin affinity and inhibiting melanoma metastasis by conferring PI3K and PKCζ tumor-suppressive activities.

  11. Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages

    PubMed Central

    Allavena, P.; Chieppa, M.; Bianchi, G.; Solinas, G.; Fabbri, M.; Laskarin, G.; Mantovani, A.

    2010-01-01

    Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype. PMID:21331365

  12. Epigenetic modulation of endogenous tumor suppressor expression in lung cancer xenografts suppresses tumorigenicity.

    PubMed

    Cantor, Joshua P; Iliopoulos, Dimitrios; Rao, Atul S; Druck, Teresa; Semba, Shuho; Han, Shuang-Yin; McCorkell, Kelly A; Lakshman, Thiru V; Collins, Joshua E; Wachsberger, Phyllis; Friedberg, Joseph S; Huebner, Kay

    2007-01-01

    Epigenetic changes involved in cancer development, unlike genetic changes, are reversible. DNA methyltransferase and histone deacetylase inhibitors show antiproliferative effects in vitro, through tumor suppressor reactivation and induction of apoptosis. Such inhibitors have shown activity in the treatment of hematologic disorders but there is little data concerning their effectiveness in treatment of solid tumors. FHIT, WWOX and other tumor suppressor genes are frequently epigenetically inactivated in lung cancers. Lung cancer cell clones carrying conditional FHIT or WWOX transgenes showed significant suppression of xenograft tumor growth after induction of expression of the FHIT or WWOX transgene, suggesting that treatments to restore endogenous Fhit and Wwox expression in lung cancers would result in decreased tumorigenicity. H1299 lung cancer cells, lacking Fhit, Wwox, p16(INK4a) and Rassf1a expression due to epigenetic modifications, were used to assess efficacy of epigenetically targeted protocols in suppressing growth of lung tumors, by injection of 5-aza-2-deoxycytidine (AZA) and trichostatin A (TSA) in nude mice with established H1299 tumors. High doses of intraperitoneal AZA/TSA suppressed growth of small tumors but did not affect large tumors (200 mm(3)); lower AZA doses, administered intraperitoneally or intratumorally, suppressed growth of small tumors without apparent toxicity. Responding tumors showed restoration of Fhit, Wwox, p16(INKa), Rassf1a expression, low mitotic activity, high apoptotic fraction and activation of caspase 3. These preclinical studies show the therapeutic potential of restoration of tumor suppressor expression through epigenetic modulation and the promise of re-expressed tumor suppressors as markers and effectors of the responses.

  13. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells

    PubMed Central

    2011-01-01

    Introduction Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells. Methods Using various in vitro and in vivo assays, we tested the effect of roscovitine on three hormonal therapy-resistant model cells: (a) MCF-7-TamR (acquired tamoxifen resistance model); (b) MCF-7-LTLTca (acquired letrozole resistance model); and (c) MCF-7-HER2 that exhibit tamoxifen resistance (ER-growth factor signaling cross talk model). Results Hormonal therapy-resistant cells exhibited aberrant activation of the CDK2 pathway. Roscovitine at a dose of 20 μM significantly inhibited the cell proliferation rate and foci formation potential of all three therapy-resistant cells. The drug treatment substantially increased the proportion of cells in G2/M cell cycle phase with decreased CDK2 activity and promoted low cyclin D1 levels. Interestingly, roscovitine also preferentially down regulated the ERα isoform and ER-coregulators including AIB1 and PELP1. Results from xenograft studies further showed that roscovitine can attenuate growth of therapy-resistant tumors in vivo. Conclusions Roscovitine can reduce cell proliferation and survival of hormone therapy-resistant breast cancer cells. Our results support the emerging concept that inhibition

  14. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells.

    PubMed

    Nair, Binoj C; Vallabhaneni, Sreeram; Tekmal, Rajeshwar R; Vadlamudi, Ratna K

    2011-08-11

    Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells. Using various in vitro and in vivo assays, we tested the effect of roscovitine on three hormonal therapy-resistant model cells: (a) MCF-7-TamR (acquired tamoxifen resistance model); (b) MCF-7-LTLTca (acquired letrozole resistance model); and (c) MCF-7-HER2 that exhibit tamoxifen resistance (ER-growth factor signaling cross talk model). Hormonal therapy-resistant cells exhibited aberrant activation of the CDK2 pathway. Roscovitine at a dose of 20 μM significantly inhibited the cell proliferation rate and foci formation potential of all three therapy-resistant cells. The drug treatment substantially increased the proportion of cells in G2/M cell cycle phase with decreased CDK2 activity and promoted low cyclin D1 levels. Interestingly, roscovitine also preferentially down regulated the ERα isoform and ER-coregulators including AIB1 and PELP1. Results from xenograft studies further showed that roscovitine can attenuate growth of therapy-resistant tumors in vivo. Roscovitine can reduce cell proliferation and survival of hormone therapy-resistant breast cancer cells. Our results support the emerging concept that inhibition of CDK2 activity has the potential to

  15. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    DTIC Science & Technology

    2005-03-01

    migration to DLNs. A B A 1.2- : .0 4000 rmDC 0., 3000 mDC+TGF-p S. . 0.- 2000 S 0.4m S0.2 Hi n 10000 0.0 CCR1 CCR4 CCR5 CCR6 CCR7 SLC MIP-3p Figure 4...containing tumor microenvironment. Mice bearing established mock transfected (4T1-N) or anti-sense TGF-p-expressing (4T1-asT) tumors received i.t...day Figure 9. Treatment of established 4T1 tumors with Smad7-overexpressing DC. Mice bearing established 4T1-N or 4T1-asT primary tumors received

  16. Developing genetically engineered mouse models to study tumor suppression

    PubMed Central

    Xiong, Shunbin; Parker-Thornburg, Jan; Lozano, Guillermina

    2012-01-01

    Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors. PMID:22582146

  17. Immunotherapeutic modulation of the suppressive liver and tumor microenvironments

    PubMed Central

    Chan, Tim; Wiltrout, Robert H.; Weiss, Jonathan M.

    2011-01-01

    The liver is an immunologically unique organ, consisting of resident hematopoietic and parenchymal cells which often contribute to a relatively tolerant microenvironment. It is also becoming increasingly clear that tumor-induced immunosuppression occurs via many of the same cellular mechanisms which contribute to the tolerogenic liver microenvironment. Myeloid cells, consisting of dendritic cells (DC), macrophages and myeloid-derived suppressor cells (MDSC), have been implicated in providing a tolerogenic liver environment and immune dysfunction within the tumor microenvironment which can favor tumor progression. As we increase our understanding of the biological mechanisms involved for each phenotypic and/or functionally distinct leukocyte subset, immunotherapeutic strategies can be developed to overcome the inherent barriers to the development of improved strategies for the treatment of liver disease and tumors. In this review, we discuss the principal myeloid cell-based contributions to immunosuppression that are shared between the liver and tumor microenvironments. We further highlight immune-based strategies shown to modulate immunoregulatory cells within each microenvironment and enhance anti-tumor responses. PMID:21241810

  18. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.

    PubMed

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille

    2016-03-08

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth.

  19. Mechanisms of tumor-induced T cell immune suppression and therapeutics to counter those effects.

    PubMed

    Hwang, Inkyu; Nguyen, Nguyet

    2015-08-01

    The theory of tumor immune surveillance states that the host immune system has means to recognize transformed cells and kills them to prevent growth and spreading of those cells. Nevertheless, cancer cells often survive and outgrow to form a tumor mass and metastasize to other tissues or organs. During the stage of immune evasion of tumor, various changes takes place both in the tumor cells and the tumor microenvironment to divert the anti-tumor immune responses by T cells and natural killer cells. Advances in the basic science in tumor immunology have led to development of many creative strategies to overcome the immune suppression imposed during tumor progression, a few of which have been approved for the treatment of cancer patients in the clinic. In the first part of this review, mechanisms of tumor-induced T cell immune suppression resulting in immune evasion of tumors will be discussed. In the second part, emerging methods to harness the immune responses against tumors will be introduced.

  20. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment

    PubMed Central

    Sharma, Madhav D.; Shinde, Rahul; McGaha, Tracy L.; Huang, Lei; Holmgaard, Rikke B.; Wolchok, Jedd D.; Mautino, Mario R.; Celis, Esteban; Sharpe, Arlene H.; Francisco, Loise M.; Powell, Jonathan D.; Yagita, Hideo; Mellor, Andrew L.; Blazar, Bruce R.; Munn, David H.

    2015-01-01

    The tumor microenvironment is profoundly immunosuppressive. We show that multiple tumor types create intratumoral immune suppression driven by a specialized form of regulatory T cell (Treg) activation dependent on the PTEN (phosphatase and tensin homolog) lipid phosphatase. PTEN acted to stabilize Tregs in tumors, preventing them from reprogramming into inflammatory effector cells. In mice with a Treg-specific deletion of PTEN, tumors grew slowly, were inflamed, and could not create an immunosuppressive tumor microenvironment. In normal mice, exposure to apoptotic tumor cells rapidly elicited PTEN-expressing Tregs, and PTEN-deficient mice were unable to maintain tolerance to apoptotic cells. In wild-type mice with large established tumors, pharmacologic inhibition of PTEN after chemotherapy or immunotherapy profoundly reconfigured the tumor microenvironment, changing it from a suppressive to an inflammatory milieu, and tumors underwent rapid regression. Thus, the immunosuppressive milieu in tumors must be actively maintained, and tumors become susceptible to immune attack if the PTEN pathway in Tregs is disrupted. PMID:26601142

  1. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    SciTech Connect

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-07-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver.

  2. Targeting macrophage anti-tumor activity to suppress melanoma progression

    PubMed Central

    Yang, Luhong; Liu, Chengfang; Zhang, Qi; Zhang, Linjing

    2017-01-01

    By phagocytosing cancer cells and their cellular debris, macrophages play a critical role in nonspecific defense (innate immunity) and, as antigen presenters, they help initiate specific defense mechanisms (adaptive immunity). Malignant melanoma is a lethal disease due to its aggressive capacity for metastasis and resistance to therapy. For decades, considerable effort has gone into development of an effective immunotherapy for treatment of metastatic melanoma. In this review, we focus on the anti-tumor activities of macrophages in melanoma and their potential as therapeutic targets in melanoma. Although macrophages can be re-educated through intercellular signaling to promote tumor survival owing to their plasticity, we expect that targeting the anti-tumor activity of macrophages remains a promising strategy for melanoma inhibition. The combination of tumoricidal macrophage activation and other treatments such as surgery, chemotherapy, and radiotherapy, may provide an effective and comprehensive anti-melanoma strategy. PMID:28060744

  3. State of the art address oncogenes and tumor-suppressing genes

    SciTech Connect

    Frazier, M.E.

    1989-05-01

    Cancer has a myriad of causes but, whatever the cause, the changes that result in neoplasia are usually genetic. Although not all DNA damage results in cancer, evidence implicates two broad classes of genes in carcinogenesis. The first class, oncogenes are genes that cause cancer. An oncogene results when there is increased and/or changed expression of the proto-oncogene. Oncogenes are dominant: when activated, they predominate over the activity of any normal alleles in the cell. Thus oncogenes act directly to cause cancer. The second class of genes associated with cancer are tumor-suppressing genes, which either code directly for, or control expression of a wide spectrum of tissue-specific differentiation antigens. Malignancy occurs in a specific cell type when expression of an appropriate tumor-suppressing gene is, homozygously, seriously distorted or completely lacking. Tumor suppressing genes also appear to regulate expression of a third, uncharacterized group of cancer-related genes that act in a recessive manner and are not expressed in the presence of the tumor-suppressing genes. We will first discuss oncogenes, then the tumor-suppressing genes. Experimental data will be used to illustrate key features of the carcinogenic process.

  4. CDC42 inhibition suppresses progression of incipient intestinal tumors

    USDA-ARS?s Scientific Manuscript database

    Mutations in the APC or Beta-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer x...

  5. Mechanism of tumor Metastasis Suppression by the KAI1 Gene

    DTIC Science & Technology

    2005-02-01

    significantly reduced in breast tumor cells, particularly in cysteine, Ni2 +, N-Myc and PTEN ( Kokame et al., 1996; patients with lymph node or bone metastasis...SC, Hirota S, Hosobe S, Kokame K, Kato H and Miyata T. (1996). J. Biol. Chem., 271, Miura K, Saito K, Commes T, Hayashi S, Watabe M and 29659-29665

  6. Systemic elevation of PTEN induces a tumor suppressive metabolic state

    PubMed Central

    Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C.J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo

    2012-01-01

    SUMMARY Decremental loss of PTEN results in cancer susceptibility and tumor progression. In turn this raises the possibility that PTEN elevation might be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with variably elevated PTEN expression levels, taking advantage of BAC (Bacterial Artificial Chromosome)-mediated transgenesis. Super-PTEN mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake, increased mitochondrial oxidative phosphorylation, and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and independent pathways, and negatively impacts two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect. PMID:22401813

  7. New insights into IL-12-mediated tumor suppression

    PubMed Central

    Tugues, S; Burkhard, S H; Ohs, I; Vrohlings, M; Nussbaum, K; vom Berg, J; Kulig, P; Becher, B

    2015-01-01

    During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects. PMID:25190142

  8. New insights into IL-12-mediated tumor suppression.

    PubMed

    Tugues, S; Burkhard, S H; Ohs, I; Vrohlings, M; Nussbaum, K; Vom Berg, J; Kulig, P; Becher, B

    2015-02-01

    During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.

  9. Geminin overexpression induces mammary tumors via suppressing cytokinesis.

    PubMed

    Blanchard, Zannel; Malik, Rohit; Mullins, Nicole; Maric, Christine; Luk, Hugh; Horio, David; Hernandez, Brenda; Killeen, Jeffrey; Elshamy, Wael M

    2011-12-01

    Aneuploidy plays an important role in the development of cancer. Here, we uncovered an oncogenic role for geminin in mitotic cells. In addition to chromatin, tyrosine phosphorylated geminin also localizes to centrosome, spindle, cleavage furrow and midbody during mitosis. Geminin binding to Aurora B prevents its binding to INCENP, and thus activation leading to lack of histone H3-(serine 10) phosphorylation, chromosome condensation failure, aborted cytokinesis and the formation of aneuploid, drug resistance cells. Geminin overexpressing human mammary epithelial cells form aneuploid, aggressive tumors in SCID mice. Geminin is overexpressed in more than half of all breast cancers analyzed. The current study reveals that geminin is a genuine oncogene that promotes cytokinesis failure and production of aneuploid, aggressive breast tumors when overexpressed and thus a worthy therapeutic target (oncotarget) for aggressive breast cancer.

  10. Adaptive immunity does not strongly suppress spontaneous tumors in a Sleeping Beauty model of cancer

    PubMed Central

    Rogers, Laura M.; Olivier, Alicia K.; Meyerholz, David K.; Dupuy, Adam J.

    2013-01-01

    The tumor immunosurveillance hypothesis describes a process by which the immune system recognizes and suppresses the growth of transformed cancer cells. A variety of epidemiological and experimental evidence supports this hypothesis. Nevertheless, there are a number of conflicting reports regarding the degree of immune protection conferred, the immune cell types responsible for protection, and the potential contributions of immunosuppressive therapies to tumor induction. The purpose of this study was to determine whether the adaptive immune system actively suppresses tumorigenesis in a Sleeping Beauty (SB) mouse model of cancer. SB transposon mutagenesis was performed in either a wild-type or immunocompromised (Rag2-null) background. Tumor latency and multiplicity were remarkably similar in both immune cohorts, suggesting that the adaptive immune system is not efficiently suppressing tumor formation in our model. Exceptions included skin tumors, which displayed increased multiplicity in wild-type animals, and leukemias, which developed with shorter latency in immune-deficient mice. Overall tumor distribution was also altered such that tumors affecting the gastrointestinal tract were more frequent and hemangiosarcomas were less frequent in immune-deficient mice compared to wild-type mice. Finally, genetic profiling of transposon-induced mutations identified significant differences in mutation prevalence for a number of genes, including Uba1. Taken together, these results indicate that B- and T-cells function to shape the genetic profile of tumors in various tumor types, despite being ineffective at clearing SB-induced tumors. This study represents the first forward genetic screen designed to examine tumor immunosurveillance mechanisms. PMID:23475219

  11. Adaptive immunity does not strongly suppress spontaneous tumors in a Sleeping Beauty model of cancer.

    PubMed

    Rogers, Laura M; Olivier, Alicia K; Meyerholz, David K; Dupuy, Adam J

    2013-04-15

    The tumor immunosurveillance hypothesis describes a process by which the immune system recognizes and suppresses the growth of transformed cancer cells. A variety of epidemiological and experimental evidence supports this hypothesis. Nevertheless, there are a number of conflicting reports regarding the degree of immune protection conferred, the immune cell types responsible for protection, and the potential contributions of immunosuppressive therapies to tumor induction. The purpose of this study was to determine whether the adaptive immune system actively suppresses tumorigenesis in a Sleeping Beauty (SB) mouse model of cancer. SB transposon mutagenesis was performed in either a wild-type or immunocompromised (Rag2-null) background. Tumor latency and multiplicity were remarkably similar in both immune cohorts, suggesting that the adaptive immune system is not efficiently suppressing tumor formation in our model. Exceptions included skin tumors, which displayed increased multiplicity in wild-type animals, and leukemias, which developed with shorter latency in immune-deficient mice. Overall tumor distribution was also altered such that tumors affecting the gastrointestinal tract were more frequent and hemangiosarcomas were less frequent in immune-deficient mice compared with wild-type mice. Finally, genetic profiling of transposon-induced mutations identified significant differences in mutation prevalence for a number of genes, including Uba1. Taken together, these results indicate that B and T cells function to shape the genetic profile of tumors in various tumor types, despite being ineffective at clearing SB-induced tumors. To our knowledge, this study represents the first forward genetic screen designed to examine tumor immunosurveillance mechanisms.

  12. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumor metastasis by suppressing neuropilin 1

    PubMed Central

    Li, Xin; Fan, Shengjun; Pan, Xueyang; Xiaokaiti, Yilixiati; Duan, Jianhui; Shi, Yundi; Pan, Yan; Tie, Lu; Wang, Xin; Li, Yuhua; Li, Xuejun

    2016-01-01

    Tumor metastasis is a major cause leading to the deaths of cancer patients. Nordihydroguaiaretic acid (NDGA) is a natural product that has been demonstrated to show therapeutic values in multiple diseases. In this study, we report that NDGA can inhibit cell migration and tumor metastasis via a novel mechanism. NDGA suppresses NRP1 function by downregulating its expression, which leads to attenuated cell motility, cell adhesion to ECM and FAK signaling in cancer cells. Moreover, due to its cross-cell type activity on NRP1 suppression, NDGA also impairs angiogenesis function of endothelial cells and fibronectin assembly by fibroblasts, both of which are critical to promote metastasis. Based on these comprehensive effects, NDGA effectively suppresses tumor metastasis in nude mice model. Our findings reveal a novel mechanism underlying the anti-metastasis function of NDGA and indicate the potential value of NDGA in NRP1 targeting therapy for selected subtypes of cancer. PMID:27863391

  13. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumor metastasis by suppressing neuropilin 1.

    PubMed

    Li, Xin; Fan, Shengjun; Pan, Xueyang; Xiaokaiti, Yilixiati; Duan, Jianhui; Shi, Yundi; Pan, Yan; Tie, Lu; Wang, Xin; Li, Yuhua; Li, Xuejun

    2016-12-27

    Tumor metastasis is a major cause leading to the deaths of cancer patients. Nordihydroguaiaretic acid (NDGA) is a natural product that has been demonstrated to show therapeutic values in multiple diseases. In this study, we report that NDGA can inhibit cell migration and tumor metastasis via a novel mechanism. NDGA suppresses NRP1 function by downregulating its expression, which leads to attenuated cell motility, cell adhesion to ECM and FAK signaling in cancer cells. Moreover, due to its cross-cell type activity on NRP1 suppression, NDGA also impairs angiogenesis function of endothelial cells and fibronectin assembly by fibroblasts, both of which are critical to promote metastasis. Based on these comprehensive effects, NDGA effectively suppresses tumor metastasis in nude mice model. Our findings reveal a novel mechanism underlying the anti-metastasis function of NDGA and indicate the potential value of NDGA in NRP1 targeting therapy for selected subtypes of cancer.

  14. Phloroglucinol Inhibits the Bioactivities of Endothelial Progenitor Cells and Suppresses Tumor Angiogenesis in LLC-Tumor-Bearing Mice

    PubMed Central

    Kwon, Yi-Hong; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Jun-Hee; Lee, Boo-Yong; Kwon, Sang-Mo

    2012-01-01

    Background There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45−/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. Conclusions/Significance These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis. PMID:22496756

  15. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β.

    PubMed

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy.

  16. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β

    PubMed Central

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E.; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy. PMID:26516371

  17. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity

    PubMed Central

    Zhang, Huang-Ge; Kim, Helen; Liu, Cunren; Yu, Shaohua; Wang, Jianhua; Grizzle, William E.; Kimberly, Robert P.; Barnes, Stephen

    2007-01-01

    An important characteristic of tumors is that they at some point in their development overcome the surveillance of the immune system. Tumors secrete exosomes, multivesicular bodies containing a distinct set of proteins that can fuse with cells of the circulating immune system. Purified exosomes from TS/A breast cancer cells, but not non-exosomal fractions, inhibit (at concentrations of nanograms per ml protein) IL-2-induced natural killer (NK) cell cytotoxicity. The dietary polyphenol, curcumin (diferuloylmethane), partially reverses tumor exosome-mediated inhibition of natural killer cell activation, which is mediated through the impairment of the ubiquitin-proteasome system. Exposure of mouse breast tumor cells to curcumin causes a dose-dependent increase in ubiquitinated exosomal proteins compared to those in untreated TS/A breast tumor cells. Furthermore, exosomes isolated from tumor cells pretreated with curcumin have a much attenuated inhibition of IL-2 stimulated NK cell activation. Jak3-mediated activation of Stat5 is required for tumor cytotoxicity of IL-2 stimulated NK cells. TS/A tumor exosomes strongly inhibit activation of Stat5, whereas the tumor exosomes isolated from curcumin-pretreated tumor cells have a lowered potency for inhibition of IL-2 stimulated NK cell cytotoxicity. These data suggest that partial reversal of tumor exosome-mediated inhibition of NK cell tumor cytotoxicity may account for the anti-cancer properties curcumin. PMID:17555831

  18. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1

    PubMed Central

    Tang, Zijian; Dai, Siyuan; He, Yishu; Doty, Rosalinda A.; Shultz, Leonard D.; Sampson, Stephen B.; Dai, Chengkai

    2015-01-01

    SUMMARY Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Herein we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor-suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state and, disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy. PMID:25679764

  19. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  20. ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila.

    PubMed

    Tognon, Emiliana; Wollscheid, Nadine; Cortese, Katia; Tacchetti, Carlo; Vaccari, Thomas

    2014-01-01

    Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.

  1. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression.

    PubMed

    Ostrand-Rosenberg, Suzanne; Sinha, Pratima; Beury, Daniel W; Clements, Virginia K

    2012-08-01

    The tumor microenvironment is a complex milieu of tumor and host cells. Host cells can include tumor-reactive T cells capable of killing tumor cells. However, more frequently the tumor and host components interact to generate a highly immune suppressive environment that frustrates T cell cytotoxicity and promotes tumor progression through a variety of immune and non-immune mechanisms. Myeloid-derived suppressor cells (MDSC) are a major host component contributing to the immune suppressive environment. In addition to their inherent immune suppressive function, MDSC amplify the immune suppressive activity of macrophages and dendritic cells via cross-talk. This article will review the cell-cell interactions used by MDSC to inhibit anti-tumor immunity and promote progression, and the role of inflammation in promoting cross-talk between MDSC and other cells in the tumor microenvironment.

  2. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells.

    PubMed

    Marigo, Ilaria; Dolcetti, Luigi; Serafini, Paolo; Zanovello, Paola; Bronte, Vincenzo

    2008-04-01

    Emerging evidence indicates that the Achilles' heel of cancer immunotherapies is often the complex interplay of tumor-derived factors and deviant host properties, which involve a wide range of immune elements in the lymphoid and myeloid compartments. Regulatory lymphocytes, tumor-conditioned myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, and dysfunctional and immature dendritic cells take part in a complex immunoregulatory network. Despite the fact that some mechanisms governing tumor-induced immune tolerance and suppression are starting to be better understood and their complexity dissected, little is known about the diachronic picture of immune tolerance. Based on observations of MDSCs, we present a time-structured and topologically consistent idea of tumor-dependent tolerance progression in tumor-bearing hosts.

  3. Triparanol suppresses human tumor growth in vitro and in vivo

    SciTech Connect

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  4. BRCA1 tumor suppression occurs via heterochromatin mediated silencing

    PubMed Central

    Zhu, Quan; Pao, Gerald M.; Huynh, Alexis M.; Suh, Hoonkyo; Tonnu, Nina; Nederlof, Petra; Gage, Fred H.; Verma, Inder M.

    2011-01-01

    Mutations in tumor suppressor BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of BRCA1 in mice results in transcriptional derepression of the tandemly repeated satellite DNA. BRCA1 deficiency is accompanied by reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions in vivo and ubiquitylates H2A in vitro. Ectopic expression of an H2A fused to ubiquitin reverses the effects of BRCA1 loss, suggesting that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA derepression was also observed mouse and human BRCA1 deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumor suppressor functions. PMID:21901007

  5. CDC42 inhibition suppresses progression of incipient intestinal tumors

    PubMed Central

    Sakamori, Ryotaro; Yu, Shiyan; Zhang, Xiao; Hoffman, Andrew; Sun, Jiaxin; Das, Soumyashree; Vedula, Pavan; Li, Guangxun; Fu, Jiang; Walker, Francesca; Yang, Chung S.; Yi, Zheng; Hsu, Wei; Yu, Da-Hai; Shen, Lanlan; Rodriguez, Alexis J.; Taketo, Makoto M.; Bonder, Edward M.; Verzi, Michael P.; Gao, Nan

    2014-01-01

    Mutations in the APC or β-catenin genes are well established initiators of colorectal cancer (CRC), yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacological approaches in mouse CRC and human CRC xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or β-catenin mutations. Similarly, human CRC with relatively higher levels of CDC42 activity were particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem-cell-enriched Rho family exchange factor Arhgef4. Our results suggest that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective CRC intervention. PMID:25113996

  6. Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells.

    PubMed

    Henrich, Frederik C; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D; Limm, Katharina; Ritter, Axel P; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J; Bosserhoff, Anja-Katrin; Kreutz, Marina P; Aigner, Michael; Mackensen, Andreas

    2016-08-01

    The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting.

  7. Folliculin Contributes to VHL Tumor Suppressing Activity in Renal Cancer through Regulation of Autophagy

    PubMed Central

    Kellner, Emily; Mikhaylova, Olga; Yi, Ying; Sartor, Maureen A.; Medvedovic, Mario; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2013-01-01

    Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy. PMID:23922894

  8. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    PubMed

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  9. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression.

    PubMed

    Funk, Laura C; Zasadil, Lauren M; Weaver, Beth A

    2016-12-19

    Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.

  10. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors.

    PubMed

    Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat

    2011-05-01

    Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.

  11. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    PubMed

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  12. DDA suppresses angiogenesis and tumor growth of colorectal cancer in vivo through decreasing VEGFR2 signaling

    PubMed Central

    Huang, Shiu-Wen; Lien, Jin-Cherng; Kuo, Sheng-Chu; Huang, Tur-Fu

    2016-01-01

    As angiogenesis is required for tumor growth and metastasis, suppressing angiogenesis is a promising strategy in limiting tumor progression. Vascular endothelial growth factor (VEGF)-A, a critical pro-angiogenic factor, has thus become an attractive target for therapeutic interventions in cancer. In this study, we explored the underlying mechanisms of a novel anthraquinone derivative DDA in suppressing angiogenesis. DDA inhibited VEGF-A-induced proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs). DDA also reduced VEGF-A-induced microvessel sprouting from aortic rings ex vivo and suppressed neovascularization in vivo. VEGF-A-induced VEGFR1, VEGFR2, FAK, Akt, ERK1/2 or STAT3 phosphorylation was reduced in the presence of DDA. In addition, NRP-1 siRNA reduced VEGF-A's enhancing effects in VEGFR2, FAK and Akt phosphorylation and cell proliferation in HUVECs. DDA disrupted VEGF-A-induced complex formation between NRP-1 and VEGFR2. Furthermore, systemic administration of DDA was shown to suppress tumor angiogenesis and growth in in vivo mouse xenograft models. Taken together, we demonstrated in this study that DDA exhibits anti-angiogenic properties through suppressing VEGF-A signaling. These observations also suggest that DDA might be a potential drug candidate for developing anti-angiogenic agent in the field of cancer and angiogenesis-related diseases. PMID:27517319

  13. Patrinia scabiosaefolia inhibits colorectal cancer growth through suppression of tumor angiogenesis.

    PubMed

    Chen, Liwu; Liu, Liya; Ye, Ling; Shen, Aling; Chen, Youqin; Sferra, Thomas J; Peng, Jun

    2013-09-01

    Angiogenesis is an essential process for tumor development and metastasis, therefore inhibition of tumor angiogenesis has become a promising strategy for anticancer treatments. Patrinia scabiosaefolia, a well-known Oriental folk medicine, has been shown to be effective in the clinical treatment of gastrointestinal cancers. However, the precise mechanism of its tumoricidal activity remains largely unknown. Using a colorectal cancer (CRC) mouse xenograft model, the human colon carcinoma cell line HT-29 and human umbilical vein endothelial cells (HUVECs), in the present study we evaluated the effects of an ethanol extract of Patrinia scabiosaefolia (EEPS) on tumor angiogenesis in vivo and in vitro, and investigated the underlying molecular mechanisms. We found that EEPS treatment significantly reduced the tumor volume in CRC mice and decreased the intratumoral microvessel density in tumor tissues. In addition, EEPS inhibited several key processes of angiogenesis, including the proliferation, migration and tube formation of HUVECs. Moreover, EEPS treatment suppressed the expression of VEGF-A in CRC tumors and HT-29 cells. Collectively, our data suggest that Patrinia scabiosaefolia inhibits CRC growth likely via suppression of tumor angiogenesis.

  14. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice.

    PubMed

    Aharinejad, Seyedhossein; Abraham, Dietmar; Paulus, Patrick; Abri, Hojatollah; Hofmann, Michael; Grossschmidt, Karl; Schäfer, Romana; Stanley, E Richard; Hofbauer, Reinhold

    2002-09-15

    Matrix metalloproteinases (MMPs) foster cellular invasion by disrupting extracellular matrix barriers and thereby facilitate tumor development. MMPs are synthesized by both cancer cells and adjacent stromal cells, primarily macrophages. The production of macrophages is regulated by colony-stimulating factor-1 (CSF-1). Tissue CSF-1 expression increased significantly in embryonic and colon cancer xenografts. We, therefore, hypothesized that blocking CSF-1 may suppress tumor growth by decelerating macrophage-mediated extracellular matrix breakdown. Cells expressing CSF-1 and mice xenografted with CSF-1 receptor (c-fms)- and CSF-1-negative malignant human embryonic or colon cancer cells were treated with mouse CSF-1 antisense oligonucleotides. Two weeks of CSF-1 antisense treatment selectively down-regulated CSF-1 mRNA and protein tissue expression in tumor lysates. CSF-1 blockade suppressed the growth of embryonic tumors to dormant levels and the growth of the colon carcinoma by 50%. In addition, tumor vascularity and the expression of MMP-2 and angiogenic factors were reduced. Six-month survival was observed in colon carcinoma mice only after CSF-1 blockade, whereas controls were all dead at day 65. These results suggest that human embryonic and colon cancer cells up-regulate host CSF-1 and MMP-2 expression. Because the cancer cells used were CSF-1 negative, CSF-1 antisense targeted tumor stromal cell CSF-1 production. CSF-1 blockade could be a novel strategy in treatment of solid tumors.

  15. Aging, tumor suppression and cancer: High-wire act!

    SciTech Connect

    Campisi, Judith

    2004-08-15

    Evolutionary theory holds that aging is a consequence of the declining force of natural selection with age. We discuss here the evidence that among the causes of aging in complex multicellular organisms, such as mammals, is the antagonistically pleiotropic effects of the cellular responses that protect the organism from cancer. Cancer is relatively rare in young mammals, owing in large measure to the activity of tumor suppressor mechanisms. These mechanisms either protect the genome from damage and/or mutations, or they elicit cellular responses--apoptosis or senescence--that eliminate or prevent the proliferation of somatic cells at risk for neoplastic transformation.We focus here on the senescence response, reviewing its causes, regulation and effects. In addition, we describe recent data that support the idea that both senescence and apoptosis may indeed be the double-edged swords predicted by the evolutionary hypothesis of antagonistic pleiotropy--protecting organisms from cancer early in life, but promoting aging phenotypes, including late life cancer, in older organisms.

  16. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway

    PubMed Central

    Menéndez, Javier; Pérez-Garijo, Ainhoa; Calleja, Manuel; Morata, Ginés

    2010-01-01

    Mutant larvae for the Drosophila gene lethal giant larva (lgl) develop neoplastic tumors in imaginal discs. However, lgl mutant clones do not form tumors when surrounded by wild-type tissue, suggesting the existence of a tumor-suppressing mechanism. We have investigated the tumorigenic potential of lgl mutant cells by generating wing compartments that are entirely mutant for lgl and also inducing clones of various genetic combinations of lgl− cells. We find that lgl− compartments can grow indefinitely but lgl− clones are eliminated by cell competition. lgl mutant cells may form tumors if they acquire constitutive activity of the Ras pathway (lgl− UAS-rasV12), which confers proliferation advantage through inhibition of the Hippo pathway. Yet, the majority of lgl− UAS-rasV12 clones are eliminated in spite of their high proliferation rate. The formation of a tumor requires in addition the formation of a microenvironment that allows mutant cells to evade cell competition. PMID:20679206

  17. IκB-α: At the crossroad between oncogenic and tumor-suppressive signals

    PubMed Central

    Morotti, Alessandro; Crivellaro, Sabrina; Panuzzo, Cristina; Carrà, Giovanna; Guerrasio, Angelo; Saglio, Giuseppe

    2017-01-01

    Nuclear factor κB (NF-κB) is an essential component of tumorigenesis and resistance to cancer treatments. NFKB inhibitor α (IκB-α) acts as a negative regulator of the classical NF-κB pathway through its ability to maintain the presence of NF-κB in the cytoplasm. However, IκB-α is also able to form a complex with tumor protein p53, promoting its inactivation. Recently, we demonstrated that IκB-α is able to mediate p53 nuclear exclusion and inactivation in chronic myeloid leukemia, indicating that IκB-α can modulate either oncogenic or tumor-suppressive functions, with important implications for cancer treatment. The present review describes the role of IκB-α in cancer pathogenesis, with particular attention to hematological cancers, and highlights the involvement of IκB-α in the regulation of p53 tumor-suppressive functions. PMID:28356925

  18. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. © 2013 John Wiley & Sons A/S.

  19. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells.

    PubMed

    Zheng, Yisheng; Xu, Meng; Li, Xiao; Jia, Jinpeng; Fan, Kexing; Lai, Guoxiang

    2013-05-01

    Cimetidine, a histamine type-2 receptor antagonist, is known to inhibit the growth of several tumors in human and animals, however the mechanism of action underlying this effect remains largely unknown. Here, in the mice model of 3LL lung tumor, cimetidine showed significant inhibition of tumor growth. However, an in vitro study demonstrated that cimetidine showed no effect on proliferation, survival, migration and invasion of 3LL cells. We found that cimetidine reduced CD11b(+)Gr-1(+) myeloid derived-suppressive cell (MDSC) accumulation in spleen, blood and tumor tissue of tumor-bearing mice. In vitro coculture assay showed that cimetidine reversed MDSC-mediated T-cell suppression, and improved IFN-γ production. Further investigation demonstrated that the NO production and arginase I expression of MDSCs were reduced, and MDSCs prone to apoptosis by cimetidine treatment. However, MDSC differentiation was not affect by cimetidine. Importantly, although histamine H2 receptor was expressed in MDSC surface, histamine could not reverse the proapoptosis of cimetidine. Moreover, famotidine also did not have this capacity. We found that cimetidine could induce Fas and FasL expression in MDSC surface, and sequentially regulate caspase-dependent apoptosis pathway. Thus, these findings revealed a novel mechanism for cimetidine to inhibit tumor via modulation of MDSC apoptosis.

  20. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  1. Inhibition of mouse B16 melanoma by sodium butyrate correlated to tumor associated macrophages differentiation suppression

    PubMed Central

    Xiong, Fen; Mou, Yun-Zhu; Xiang, Xiao-Yan

    2015-01-01

    Objective: As one member of the histone deacetylase inhibitor (HDACi) family, Sodium butyrate (NaB) was found out that could be used as a differentiation inducer of much cancer cell. But its effects on tumor microenvironment cells are not well recognized. The goal of this research is to investigate the effect of NaB on B16 melanoma and analysis its relevant mechanism. Methods: We observed the effect of sodium butyrate on B16 melanoma in vivo and in vitro. MTT method was performed to detect cell apoptosis rate after treatment. Tumor associated macrophage infiltration condition was detected by flow cytometry. Western-blotting and immunohistochemical method were used to detect the expression of tumor associated macrophage cytokines. Results: A certain concentration of sodium butyrate could effectively inhibit B16 melanoma growth in vivo and in vitro, and this inhibition effects related to the suppression of tumor associated macrophage differentiation. At the same time we observed the relevant macrophage factors were down-regulated compared to the control. Conclusion: Sodium butyrate could effectively inhibit B16 melanoma growth through suppressing tumor associated macrophage proliferation and reduce relevant pro-tumor macrophage factors expression, which may help to promote the clinical study of melanoma epigenetic therapy. PMID:26064327

  2. Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression.

    PubMed

    Perri, Sabrina R; Nalbantoglu, Josephine; Annabi, Borhane; Koty, Zafiro; Lejeune, Laurence; François, Moïra; Di Falco, Marcos R; Béliveau, Richard; Galipeau, Jacques

    2005-09-15

    Angiostatin, a well-characterized angiostatic agent, is a proteolytic cleavage product of human plasminogen encompassing the first four kringle structures. The fifth kringle domain (K5) of human plasminogen is distinct from angiostatin and has been shown, on its own, to act as a potent endothelial cell inhibitor. We propose that tumor-targeted K5 cDNA expression may act as an effective therapeutic intervention as part of a cancer gene therapy strategy. In this study, we provide evidence that eukaryotically expressed His-tagged human K5 cDNA (hK5His) is exported extracellularly and maintains predicted disulfide bridging conformation in solution. Functionally, hK5His protein produced by retrovirally engineered human U87MG glioma cells suppresses in vitro migration of both human umbilical vein endothelial cells and human macrophages. Subcutaneous implantation of Matrigel-embedded hK5His-producing glioma cells in nonobese diabetic/severe combined immunodeficient mice reveals that hK5His induces a marked reduction in blood vessel formation and significantly suppresses the recruitment of tumor-infiltrating CD45+ Mac3+ Gr1- macrophages. Therapeutically, we show in a nude mouse orthotopic brain cancer model that tumor-targeted K5 expression is capable of effectively suppressing glioma growth and promotes significant long-term survival (>120 days) of test animals. These data suggest that plasminogen K5 acts as a novel two-pronged anticancer agent, mediating its inhibitory effect via its action on host-derived endothelial cells and tumor-associated macrophages, resulting in a potent, clinically relevant antitumor effect.

  3. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  4. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  5. Combined epigenetic and differentiation-based treatment inhibits neuroblastoma tumor growth and links HIF2α to tumor suppression.

    PubMed

    Westerlund, Isabelle; Shi, Yao; Toskas, Konstantinos; Fell, Stuart M; Li, Shuijie; Surova, Olga; Södersten, Erik; Kogner, Per; Nyman, Ulrika; Schlisio, Susanne; Holmberg, Johan

    2017-07-25

    Neuroblastoma is a pediatric cancer characterized by variable outcomes ranging from spontaneous regression to life-threatening progression. High-risk neuroblastoma patients receive myeloablative chemotherapy with hematopoietic stem-cell transplant followed by adjuvant retinoid differentiation treatment. However, the overall survival remains low; hence, there is an urgent need for alternative therapeutic approaches. One feature of high-risk neuroblastoma is the high level of DNA methylation of putative tumor suppressors. Combining the reversibility of DNA methylation with the differentiation-promoting activity of retinoic acid (RA) could provide an alternative strategy to treat high-risk neuroblastoma. Here we show that treatment with the DNA-demethylating drug 5-Aza-deoxycytidine (AZA) restores high-risk neuroblastoma sensitivity to RA. Combined systemic distribution of AZA and RA impedes tumor growth and prolongs survival. Genome-wide analysis of treated tumors reveals that this combined treatment rapidly induces a HIF2α-associated hypoxia-like transcriptional response followed by an increase in neuronal gene expression and a decrease in cell-cycle gene expression. A small-molecule inhibitor of HIF2α activity diminishes the tumor response to AZA+RA treatment, indicating that the increase in HIF2α levels is a key component in tumor response to AZA+RA. The link between increased HIF2α levels and inhibited tumor growth is reflected in large neuroblastoma patient datasets. Therein, high levels of HIF2α, but not HIF1α, significantly correlate with expression of neuronal differentiation genes and better prognosis but negatively correlate with key features of high-risk tumors, such as MYCN amplification. Thus, contrary to previous studies, our findings indicate an unanticipated tumor-suppressive role for HIF2α in neuroblastoma.

  6. Inhibition of Phosphatidylinositol 3-Kinase/Akt Signaling Suppresses Tumor Cell Proliferation and Neuroendocrine Marker Expression in GI Carcinoid Tumors

    PubMed Central

    Pitt, Susan C.; Chen, Herbert; Kunnimalaiyaan, Muthusamy

    2010-01-01

    Background Over-activation of PI3K/Akt signaling facilitates tumor proliferation in several cancers. We have shown that various signal transduction pathways promote tumorigenesis in carcinoid tumors, which exhibit endogenously high levels of active, phosphorylated Akt. Therefore, we hypothesized that inhibition of the PI3K/Akt pathway would suppress carcinoid tumor cell growth and neuroendocrine (NE) marker production. Methods Human carcinoid BON cells were treated in vitro with LY294002, a PI3 kinase inhibitor, or transfected with Akt1 siRNA. Tumor cell proliferation was measured by MTT for six days. The effect of LY294002 or Akt1 siRNA treatment was assessed by western analysis. We examined the levels of phosphorylated Akt, total Akt, Akt1, and the NE markers human achaete-scute homolog1 (ASCL1) and chromogranin A (CgA). Results Treatment of BON cells with LY294002 reduced tumor cell proliferation (76%) in a dose-dependent manner. Growth also decreased in Akt1 siRNA transfected cells (29%). Levels of active, phosphorylated Akt and the NE tumor markers, ASCL1 and CgA, were diminished with both LY294002 and Akt1 siRNA treatments proportional to the degree of Akt inhibition. Total Akt, Akt2, and Akt3 levels were unaffected by these experiments. Conclusions These data indicate that PI3K/Akt signaling performs a critical role in human carcinoid tumor cell survival and NE hormone generation. Furthermore, the development of novel therapeutics targeting Akt1 or components of the PI3K/Akt pathway may enhance the management of carcinoid disease. Synopsis Carcinoid tumor cells were treated with a PI3K inhibitor, LY294002, and Akt1 siRNA to delineate the role of PI3K/Akt signaling in carcinoids. The effects of treatment on cellular proliferation and neuroendocrine marker expression were observed. PMID:19588205

  7. Thyroid hormone suppresses expression of stathmin and associated tumor growth in hepatocellular carcinoma

    PubMed Central

    Tseng, Yi-Hsin; Huang, Ya-Hui; Lin, Tzu-Kang; Wu, Sheng-Ming; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Chang, Wei-Chun; Chang, Ya-Ting; Chen, Wei-Jan; Lin, Kwang-Huei

    2016-01-01

    Stathmin (STMN1), a recognized oncoprotein upregulated in various solid tumors, promotes microtubule disassembly and modulates tumor growth and migration activity. However, the mechanisms underlying the genetic regulation of STMN1 have yet to be elucidated. In the current study, we report that thyroid hormone receptor (THR) expression is negatively correlated with STMN1 expression in a subset of clinical hepatocellular carcinoma (HCC) specimens. We further identified the STMN1 gene as a target of thyroid hormone (T3) in the HepG2 hepatoma cell line. An analysis of STMN1 expression profile and mechanism of transcriptional regulation revealed that T3 significantly suppressed STMN1 mRNA and protein expression, and further showed that THR directly targeted the STMN1 upstream element to regulate STMN1 transcriptional activity. Specific knockdown of STMN1 suppressed cell proliferation and xenograft tumor growth in mice. In addition, T3 regulation of cell growth arrest and cell cycle distribution were attenuated by overexpression of STMN1. Our results suggest that the oncogene STMN1 is transcriptionally downregulated by T3 in the liver. This T3-mediated suppression of STMN1 supports the theory that T3 plays an inhibitory role in HCC tumor growth, and suggests that the lack of normal THR function leads to elevated STMN1 expression and malignant growth. PMID:27934948

  8. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis

    PubMed Central

    Yang, M; Liu, J; Piao, C; Shao, J; Du, J

    2015-01-01

    Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell–cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1−/−) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1−/− macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression. PMID:26068788

  9. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1

    SciTech Connect

    Zhou, Xin; Wei, Min; Wang, Wei

    2013-08-09

    Highlights: •miR-340 is downregulated in OS cell lines and tissues. •miR-340 suppresses OS cell proliferation, migration and invasion. •miR-340 suppresses tumor growth and metastasis of OS cells in nude mice. •ROCK1 is a target gene of miR-340. •ROCK1 is involved in miR-340-induced suppression of OS cell proliferation, migration and invasion. -- Abstract: MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.

  10. Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor-stromal cross-talk.

    PubMed

    Averett, Courey; Bhardwaj, Arun; Arora, Sumit; Srivastava, Sanjeev K; Khan, Mohammad Aslam; Ahmad, Aamir; Singh, Seema; Carter, James E; Khushman, Moh'd; Singh, Ajay P

    2016-11-01

    The poor clinical outcome of pancreatic cancer (PC) is largely attributed to its aggressive nature and refractoriness to currently available therapeutic modalities. We previously reported antitumor efficacy of honokiol (HNK), a phytochemical isolated from various parts of Magnolia plant, against PC cells in short-term in vitro growth assays. Here, we report that HNK reduces plating efficiency and anchorage-independent growth of PC cells and suppresses their migration and invasiveness. Furthermore, significant inhibition of pancreatic tumor growth by HNK is observed in orthotopic mouse model along with complete-blockage of distant metastases. Histological examination suggests reduced desmoplasia in tumors from HNK-treated mice, later confirmed by immunohistochemical analyses of myofibroblast and extracellular matrix marker proteins (α-SMA and collagen I, respectively). At the molecular level, HNK treatment leads to decreased expression of sonic hedgehog (SHH) and CXCR4, two established mediators of bidirectional tumor-stromal cross-talk, both in vitro and in vivo . We also show that the conditioned media (CM) from HNK-treated PC cells have little growth-inducing effect on pancreatic stellate cells (PSCs) that could be regained by the addition of exogenous recombinant SHH. Moreover, pretreatment of CM of vehicle-treated PC cells with SHH-neutralizing antibody abolishes their growth-inducing potential on PSCs. Likewise, HNK-treated PC cells respond poorly to CM from PSCs due to decreased CXCR4 expression. Lastly, we show that the transfection of PC cells with constitutively active IKKβ mutant reverses the suppressive effect of HNK on nuclear factor-kappaB activation and partially restores CXCR4 and SHH expression. Taken together, these findings suggest that HNK interferes with tumor-stromal cross-talk via downregulation of CXCR4 and SHH and decreases pancreatic tumor growth and metastasis. © The Author 2016. Published by Oxford University Press. All rights reserved

  11. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    SciTech Connect

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-09-19

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth.

  12. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  13. Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB

    PubMed Central

    Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.

    2016-01-01

    We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639

  14. Intratumoral injection of attenuated Salmonella vaccine can induce tumor microenvironmental shift from immune suppressive to immunogenic.

    PubMed

    Hong, Eun-Hye; Chang, Sun-Young; Lee, Bo-Ra; Pyun, A-Rim; Kim, Ji-Won; Kweon, Mi-Na; Ko, Hyun-Jeong

    2013-02-27

    Attenuated Salmonella vaccines show therapeutic anti-cancer effects, but the underlying mechanism has not been well investigated. In the current study, intratumoral (i.t.) injection of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine (RASV) significantly inhibited Her-2/neu-expressing tumor growth. Although depletion of CD8(+) cells in RASV-treated mice significantly restored tumor growth, the induction of Her-2/neu-specific cytotoxic T lymphocytes (CTLs) was not well correlated with the generation of the anti-tumor effect. Therefore, we hypothesized that RASV might induce a tumor microenvironmental shift, from immune suppressive to immunogenic, to reduce the suppressive force and finally elicit a successful anti-tumor response. We found that i.t. injection of RASV significantly increased the level of CD11b(+)Gr-1(+) myeloid cells identified as myeloid-derived suppressor cell (MDSC), but a significant portion of these cells were TNF-α-secreting Ly6-G(high) subsets, which can function as antitumor effector cells. We further investigated whether RASV can modulate immunosuppressive Treg cells, and CD4(+)CD25(+) Foxp3(+) Tregs was significantly reduced in RASV-treated mice. Thus, i.t. injection of RASV may offer a novel anti-cancer approach by eliciting transformation of immunosuppressive MDSCs into TNF-α-secreting neutrophils and reducing the generation of Treg cells, especially in the presence of tumor-specific CTLs. Collectively, these data will provide us an insight for the development of new anti-tumor approaches to overcome the immunosuppressive environment generated by tumors.

  15. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    PubMed

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  16. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    SciTech Connect

    Morison, W.L.; Kelley, S.P.

    1985-02-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans.

  17. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    SciTech Connect

    Gao, Xuemei; Wu, Xinchao; Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing; Maimaiti, Yusufu; Gao, Zairong; Zhang, Yongxue

    2016-01-15

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  19. Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for Therapeutic Applications

    DTIC Science & Technology

    2015-01-01

    released by many cell types, exosomes serve as vehicles for long range intercellular communications, with the bioactive contents of exosomes as the...vehicles for long range intercellular communications, with the bioactive contents of exosomes as the messengers. It is hypothesized that normal prostate...alternative approach is to extract exosomes from normal prostate tissues and then evaluate their potential tumor suppressive activities as proposed. The use of

  20. Role of GCNS in Estrogen Response, Tumor Suppression, and Breast Development in Mice

    DTIC Science & Technology

    2003-06-01

    SUBJECT TERMS 15. NUMBER OF PAGES Cancer biology, tumor suppression, chromatin, histone acetylation 9 1 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...Completed. We found that GCN5 can acetylate p53 in vitro. " Goal 3: Perform co-transfection experiments to determine if GCN5 augments p53...can acetylate p53 in vitro. "* Creation of mice that carry null alleles of p53 and Gcn5 in cis on chromosome 11, and characterization of double mutant

  1. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    PubMed Central

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  2. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  3. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression.

    PubMed

    Wang, Shang-Jui; Li, Dawei; Ou, Yang; Jiang, Le; Chen, Yue; Zhao, Yingming; Gu, Wei

    2016-10-04

    Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53). Whereas the loss of K98 acetylation (p53(K98R)) alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p53(4KR): K98R+ 3KR[K117R+K161R+K162R]) completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p53(3KR), p53(4KR) is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p53(4KR) is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  4. Osteopontin Deficiency Suppresses Intestinal Tumor Development in Apc-Deficient Min Mice.

    PubMed

    Ishigamori, Rikako; Komiya, Masami; Takasu, Shinji; Mutoh, Michihiro; Imai, Toshio; Takahashi, Mami

    2017-05-14

    Osteopontin (OPN) is a secreted phosphoglycoprotein, and is a transcriptional target of aberrant Wnt signaling. OPN is upregulated in human colon cancers, and is suggested to enhance cancer progression. In this study, the effect of deficiency of OPN on intestinal tumor development in Apc-deficient Min mice was investigated. At 16 weeks of age, the number of small intestinal polyps in Min/OPN(+/-) and Min/OPN(-/-) mice was lower than that of Min/OPN(+/+) mice. Colorectal tumor incidences and multiplicities in Min/OPN(+/-) and Min/OPN(-/-) mice were significantly lower than those in Min/OPN(+/+) mice, being 48% and 0.6 ± 0.8, 50% and 0.8 ± 0.9 vs. 80% and 1.6 ± 1.7, respectively. OPN expression in colorectal tumors was strongly upregulated in Min/OPN(+/+) compared to adjacent non-tumor parts, but was decreased in Min/OPN(+/-) and not detected in Min/OPN(-/-). Targets of OPN, matrix metalloproteinases (MMPs)-3, -9, and -13 were lowered by OPN deficiency. Macrophage marker F4/80 in colorectal tumors was also lowered by OPN deficiency. MMP-9 expression was observed in tumor cells and tumor-infiltrating neutrophils. These results indicate that induction of OPN by aberrant Wnt signaling could enhance colorectal tumor development in part by upregulation of MMP-3, -9, and -13 and infiltration of macrophage and neutrophils. Suppression of OPN expression could contribute to tumor prevention, but complete deficiency of OPN may cause some adverse effects.

  5. Garlic oil suppressed the hematological disorders induced by chemotherapy and radiotherapy in tumor-bearing mice.

    PubMed

    Zeng, Tao; Li, Yang; Zhang, Cui-Li; Yu, Li-Hua; Zhu, Zhen-Ping; Zhao, Xiu-Lan; Xie, Ke-Qin

    2013-06-01

    Although the anticancer effects of garlic and its products have been demonstrated by a variety of studies; however, few studies were conducted to investigate the effects of garlic on the adverse effects of chemo/radiotherapy. In order to clarify the above question and make a more comprehensive understanding of the anticancer effects of garlic, tumor xenograft mice model was established by subcutaneous injection of H22 tumor cells, and was used for the investigation of effects of garlic oil (GO) on the chemo/radiotherapy. In the chemotherapy test, tumor-bearing mice were treated with cyclophosphamide (CTX) or CTX plus GO (25 or 50 mg/kg bw) for 14 d, while the mice received a single 5 Gy total body radiation or radiation plus GO (25 or 50 mg/kg bw) in radiotherapy test. The results showed that GO did not increase the tumor inhibitory rate of CTX/radiation, which indicated that GO could not enhance the chemo/radiosensitivity of cancer cells. However, the decrease of the peripheral total white blood cells (WBCs) count induced by CTX/radiation was significantly suppressed by GO cotreatment. Furthermore, GO cotreatment significantly inhibited the decrease of the DNA contents and the micronuclei ratio of the bone marrow. Lastly, the reduction of the endogenous spleen colonies induced by CTX/radiation was significantly suppressed by GO cotreatment. These findings support the idea that GO consumption may benefit for the cancer patients receiving chemotherapy or radiotherapy. © 2013 Institute of Food Technologists®

  6. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer.

    PubMed

    Shen, W; Chang, A; Wang, J; Zhou, W; Gao, R; Li, J; Xu, Y; Luo, X; Xiang, R; Luo, N; Stupack, D G

    2015-10-26

    TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53.

  7. BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression.

    PubMed

    Zhu, Hengrui; Bengsch, Fee; Svoronos, Nikolaos; Rutkowski, Melanie R; Bitler, Benjamin G; Allegrezza, Michael J; Yokoyama, Yuhki; Kossenkov, Andrew V; Bradner, James E; Conejo-Garcia, Jose R; Zhang, Rugang

    2016-09-13

    Restoration of anti-tumor immunity by blocking PD-L1 signaling through the use of antibodies has proven to be beneficial in cancer therapy. Here, we show that BET bromodomain inhibition suppresses PD-L1 expression and limits tumor progression in ovarian cancer. CD274 (encoding PD-L1) is a direct target of BRD4-mediated gene transcription. In mouse models, treatment with the BET inhibitor JQ1 significantly reduced PD-L1 expression on tumor cells and tumor-associated dendritic cells and macrophages, which correlated with an increase in the activity of anti-tumor cytotoxic T cells. The BET inhibitor limited tumor progression in a cytotoxic T-cell-dependent manner. Together, these data demonstrate a small-molecule approach to block PD-L1 signaling. Given the fact that BET inhibitors have been proven to be safe with manageable reversible toxicity in clinical trials, our findings indicate that pharmacological BET inhibitors represent a treatment strategy for targeting PD-L1 expression. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Inhibition of DNA Methylation Suppresses Intestinal Tumor Organoids by Inducing an Anti-Viral Response.

    PubMed

    Saito, Yoshimasa; Nakaoka, Toshiaki; Sakai, Kasumi; Muramatsu, Toshihide; Toshimitsu, Kohta; Kimura, Masaki; Kanai, Takanori; Sato, Toshiro; Saito, Hidetsugu

    2016-05-04

    Recent studies have proposed that the major anti-tumor effect of DNA methylation inhibitors is induction of interferon-responsive genes via dsRNAs-containing endogenous retroviruses. Recently, a 3D culture system for stem cells known as organoid culture has been developed. Lgr5-positive stem cells form organoids that closely recapitulate the properties of original tissues. To investigate the effect of DNA demethylation on tumor organoids, we have established organoids from intestinal tumors of Apc(Min/+) (Min) mice and subjected them to 5-aza-2'-deoxycytidine (5-Aza-CdR) treatment and Dnmt1 knockdown. DNA demethylation induced by 5-Aza-CdR treatment and Dnmt1 knockdown significantly reduced the cell proliferation of the tumor organoids. Microarray analyses of the tumor organoids after 5-Aza-CdR treatment and Dnmt1 knockdown revealed that interferon-responsive genes were activated by DNA demethylation. Gene ontology and pathway analyses clearly demonstrated that these genes activated by DNA demethylation are involved in the anti-viral response. These findings indicate that DNA demethylation suppresses the proliferation of intestinal tumor organoids by inducing an anti-viral response including activation of interferon-responsive genes. Treatment with DNA methylation inhibitors to activate a growth-inhibiting immune response may be an effective therapeutic approach for colon cancers.

  9. Myc suppresses tumor invasion and cell migration by inhibiting JNK signaling.

    PubMed

    Ma, X; Huang, J; Tian, Y; Chen, Y; Yang, Y; Zhang, X; Zhang, F; Xue, L

    2017-06-01

    Tumor metastasis, but not primary overgrowth, is the leading cause of mortality for cancer patients. During the past decade, Drosophila melanogaster has been well-accepted as an excellent model to address the intrinsic mechanism of different aspects of cancer progression, ranging from tumor initiation to metastasis. In a genetic screen performed in Drosophila, aiming to find novel modulators of tumor invasion, we identified the oncoprotein Myc as a negative regulator. While expression of Myc dramatically blocks tumor invasion and cell migration, loss of Myc promotes cell migration in vivo. The activity of Myc is further enhanced by the co-expression of its transcription partner Max. Mechanistically, we found Myc/Max directly upregulates the transcription of puc, which encodes an inhibitor of JNK signaling crucial for tumor invasion and cell migration. Furthermore, we demonstrated that human cMyc potently suppresses JNK-dependent cell invasion and migration in both Drosophila and lung adenocarcinoma cell lines. These findings provide novel molecular insights into Myc-mediated cancer progression and raise the noteworthy problem in therapeutic strategies as inhibiting Myc might conversely accelerate tumor metastasis.

  10. Long Noncoding RNA-LET Suppresses Tumor Growth and EMT in Lung Adenocarcinoma.

    PubMed

    Liu, Bin; Pan, Chun-Feng; He, Zhi-Cheng; Wang, Jun; Wang, Peng-Li; Ma, Teng; Xia, Yang; Chen, Yi-Jiang

    2016-01-01

    Recently, many studies showed that long noncoding RNAs (lncRNAs) are involved in tumor progression. It is reported that lncRNA-LET is downregulated and has antitumor effect on several types of cancer. This study focuses on the role of lncRNA-LET on lung adenocarcinoma (LAC) progression. RT-PCR results indicated that frequent downregulation of lncRNA-LET in LAC tissues was related to clinicopathologic factors. lncRNA-LET knockdown significantly promoted LAC cell proliferation, invasion, and migration while lncRNA-LET overexpression obviously inhibited LAC cell proliferation, invasion, and migration, indicating a tumor inhibition of lncRNA-LET in LAC progression. Besides, lncRNA-LET inhibited EMT and negatively regulated Wnt/β-catenin pathway in part. Our study suggests that lncRNA-LET exhibits an important tumor-suppressive effect on LAC progression by inhibiting EMT and Wnt/β-catenin pathway, which provides potential therapeutic targets for LAC.

  11. Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer.

    PubMed

    Pollard, Harvey B; Levine, Mark A; Eidelman, Ofer; Pollard, Morris

    2010-01-01

    The aim of this study was to test for the influence of ascorbic acid on tumorigenicity and metastases of implanted PAIII prostate cancer adenocarcinoma cells in syngeneic LW rats. Hormone-refractory prostate cancer PAIII cells were implanted subcutaneously into immunologically intact, Lobund-Wistar (LW) rats. Intraperitoneal pharmacological doses of ascorbic acid were administered each day for the ensuing 30 days. On the 40th day, animals were sacrificed. Local tumor weights were measured, and metastases were counted. At the end of the 40 day experimental period, the primary tumors were found to be significantly reduced in weight (p=0.026). In addition, sub-pleural lung metastases were even more profoundly reduced in number and size (p=0.009). Grossly enlarged ipsilateral lymph node metastases declined from 7 of 15 rats to 1 of 15 rats. Pharmacological doses of ascorbic acid suppress tumor growth and metastases in hormone-refractory prostate cancer.

  12. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells.

    PubMed

    Yoshii, J; Yoshiji, H; Kuriyama, S; Ikenaka, Y; Noguchi, R; Okuda, H; Tsujinoue, H; Nakatani, T; Kishida, H; Nakae, D; Gomez, D E; De Lorenzo, M S; Tejera, A M; Fukui, H

    2001-12-15

    Angiogenesis is now recognized as a crucial process in tumor development, including hepatocellular carcinoma (HCC). Since HCC is known as a hypervascular tumor, anti-angiogenesis is a promising approach to inhibit the HCC development. Trientine dihydrochloride (trientine) is used in clinical practice as an alternative copper (Cu)-chelating agent for patients with Wilson's disease of penicillamine intolerance. In our study, we examined the effect of Cu-chelating agents on tumor development and angiogenesis in the murine HCC xenograft model. Although both trientine and penicillamine in the drinking water suppressed the tumor development, trientine exerted a more potent inhibitory effect than penicillamine. In combination with a Cu-deficient diet, both trientine and penicillamine almost abolished the HCC development. Trientine treatment resulted in a marked suppression of neovascularization and increase of apoptosis in the tumor, whereas tumor cell proliferation itself was not altered. In vitro studies also exhibited that trientine is not cytotoxic for the tumor cells. On the other hand, it significantly suppressed the endothelial cell proliferation. These results suggested that Cu plays a pivotal role in tumor development and angiogenesis in the murine HCC cells, and Cu-chelators, especially trientine, could inhibit angiogenesis and enhance apoptosis in the tumor with consequent suppression of the tumor growth in vivo. Since trientine is already used in clinical practice without any serious side effects as compared to penicillamine, it may be an effective new strategy for future HCC therapy. Copyright 2001 Wiley-Liss, Inc.

  13. 2DG suppresses the in vivo anti-tumor efficacy of erlotinib in HNSCC cells

    PubMed Central

    Sobhakumari, Arya; Orcutt, Kevin; Love-Homan, Laurie; Kowalski, Christopher; Parsons, Arlene; Knudson, C. Michael; Simons, Andrean L.

    2017-01-01

    Poor tumor response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a significant challenge for effective treatment of head and neck squamous cell carcinoma (HNSCC). Therefore, strategies that may increase tumor response to EGFR TKIs are warranted in order to improve HNSCC patient treatment and overall survival. HNSCC tumors are highly glycolytic and increased EGFR signaling has been found to promote glucose metabolism through various mechanisms. We have previously shown that inhibition of glycolysis with 2-deoxy-D-glucose (2DG) significantly enhanced the antitumor effects of cisplatin and radiation which are commonly used to treat HNSCC. The goal of the current studies is to determine if 2DG will enhance the anti-tumor activity of the EGFR TKI erlotinib in HNSCC. Erlotinib transiently suppressed glucose consumption accompanied by alterations in pyruvate kinase M2 (PKM2) expression. 2DG enhanced the cytotoxic effect of erlotinib in vitro but reversed the anti-tumor effect of erlotinib in vivo. 2DG altered the N-glycosylation status of EGFR and induced the endoplasmic reticulum (ER) stress markers CHOP and BiP in vitro. Additionally, the effects of 2DG+erlotinib on cytotoxicity and ER stress in vitro were reversed by mannose but not glucose or antioxidant enzymes. Lastly, the protective effect of 2DG on erlotinib-induced cytotoxicity in vivo was reversed by chloroquine. Altogether, 2DG suppressed the anti-tumor efficacy of erlotinib in a HNSCC xenograft mouse model which may be due to increased cytoprotective autophagy mediated by ER stress activation. PMID:27178822

  14. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases.

    PubMed

    Chow, Melvyn T; Sceneay, Jaclyn; Paget, Christophe; Wong, Christina S F; Duret, Helene; Tschopp, Jürg; Möller, Andreas; Smyth, Mark J

    2012-11-15

    The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.

  15. miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A

    SciTech Connect

    Chang, Xiao; Zhang, Haiping; Lian, Shi; Zhu, Wei

    2016-07-01

    As an oncogene, aurora kinase A (AURKA) is overexpressed in various types of human cancers. However, the expression and roles of AURKA in malignant melanoma are largely unknown. In this study, a miR-137-AURKA axis was revealed to regulate melanoma growth. We found a significant increase in levels of AURKA in melanoma. Both genetic knockdown and pharmacologic inhibition of AURKA decreased tumor cell growth in vitro and in vivo. Further found that miR-137 reduced AURKA expression through interaction with its 3′ untranslated region (3′UTR) and that miR-137 was negatively correlated with AURKA expression in melanoma specimens. Overexpression of miR-137 decreased cell proliferation and colony formation in vitro. Notably, re-expression of AURKA significantly rescued miR-137-mediated suppression of cell growth and clonality. In summary, these results reveal that miR-137 functions as a tumor suppressor by targeting AURKA, providing new insights into investigation of therapeutic strategies against malignant melanoma. -- Highlights: •First reported overexpression of AURKA in melanoma. •Targeting AURKA inhibits melanoma growth in vitro and in vivo. •Further found miR-137 suppressed cell growth by binding to AURKA 3′UTR. •Re-expression of AURKA rescued miR-137-mediated suppression. •miR-137-AURKA axis may be potential therapeutic targets of melanoma.

  16. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis

    PubMed Central

    Lebrun, Jean-Jacques

    2012-01-01

    The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects. PMID:27340590

  17. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo.

    PubMed

    Adkins, Heather B; Bianco, Caterina; Schiffer, Susan G; Rayhorn, Paul; Zafari, Mohammad; Cheung, Anne E; Orozco, Olivia; Olson, Dian; De Luca, Antonella; Chen, Ling Ling; Miatkowski, Konrad; Benjamin, Chris; Normanno, Nicola; Williams, Kevin P; Jarpe, Matthew; LePage, Doreen; Salomon, David; Sanicola, Michele

    2003-08-01

    Cripto, a cell surface-associated protein belonging to the EGF-CFC family of growth factor-like molecules, is overexpressed in many human solid tumors, including 70-80% of breast and colon tumors, yet how it promotes cell transformation is unclear. During embryogenesis, Cripto complexes with Alk4 via its unique cysteine-rich CFC domain to facilitate signaling by the TGF-beta ligand Nodal. We report, for the first time to our knowledge, that Cripto can directly bind to another TGF-beta ligand, Activin B, and that Cripto overexpression blocks Activin B growth inhibition of breast cancer cells. This result suggests a novel mechanism for antagonizing Activin signaling that could promote tumorigenesis by deregulating growth homeostasis. We show that an anti-CFC domain antibody, A8.G3.5, both disrupts Cripto-Nodal signaling and reverses Cripto blockade of Activin B-induced growth suppression by blocking Cripto's association with either Alk4 or Activin B. In two xenograft models, testicular and colon cancer, A8.G3.5 inhibited tumor cell growth by up to 70%. Both Nodal and Activin B expression was found in the xenograft tumor, suggesting that either ligand could be promoting tumorigenesis. These data validate that functional blockade of Cripto inhibits tumor growth and highlight antibodies that block Cripto signaling mediated through its CFC domain as an important class of antibodies for further therapeutic development.

  18. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo

    PubMed Central

    Adkins, Heather B.; Bianco, Caterina; Schiffer, Susan G.; Rayhorn, Paul; Zafari, Mohammad; Cheung, Anne E.; Orozco, Olivia; Olson, Dian; De Luca, Antonella; Chen, Ling Ling; Miatkowski, Konrad; Benjamin, Chris; Normanno, Nicola; Williams, Kevin P.; Jarpe, Matthew; LePage, Doreen; Salomon, David; Sanicola, Michele

    2003-01-01

    Cripto, a cell surface–associated protein belonging to the EGF-CFC family of growth factor–like molecules, is overexpressed in many human solid tumors, including 70–80% of breast and colon tumors, yet how it promotes cell transformation is unclear. During embryogenesis, Cripto complexes with Alk4 via its unique cysteine-rich CFC domain to facilitate signaling by the TGF-β ligand Nodal. We report, for the first time to our knowledge, that Cripto can directly bind to another TGF-β ligand, Activin B, and that Cripto overexpression blocks Activin B growth inhibition of breast cancer cells. This result suggests a novel mechanism for antagonizing Activin signaling that could promote tumorigenesis by deregulating growth homeostasis. We show that an anti–CFC domain antibody, A8.G3.5, both disrupts Cripto-Nodal signaling and reverses Cripto blockade of Activin B–induced growth suppression by blocking Cripto’s association with either Alk4 or Activin B. In two xenograft models, testicular and colon cancer, A8.G3.5 inhibited tumor cell growth by up to 70%. Both Nodal and Activin B expression was found in the xenograft tumor, suggesting that either ligand could be promoting tumorigenesis. These data validate that functional blockade of Cripto inhibits tumor growth and highlight antibodies that block Cripto signaling mediated through its CFC domain as an important class of antibodies for further therapeutic development. PMID:12925698

  19. An uncleavable form of pro–scatter factor suppresses tumor growth and dissemination in mice

    PubMed Central

    Mazzone, Massimiliano; Basilico, Cristina; Cavassa, Silvia; Pennacchietti, Selma; Risio, Mauro; Naldini, Luigi; Comoglio, Paolo M.; Michieli, Paolo

    2004-01-01

    Scatter factor (SF), also known as hepatocyte growth factor, is ubiquitously present in the extracellular matrix of tissues in the form of an inactive precursor (pro-SF). In order to acquire biological activity, pro-SF must be cleaved by specific proteases present on the cell surface. The mature form of SF controls invasive cues in both physiological and pathological processes through activation of its receptor, the Met tyrosine kinase. By substituting a single amino acid in the proteolytic site, we engineered an unprocessable form of pro-SF (uncleavable SF). Using lentivirus vector technology, we achieved local or systemic delivery of uncleavable SF in mice. We provide evidence that (a) uncleavable SF inhibits both protease-mediated pro-SF conversion and active SF–induced Met activation; (b) local expression of uncleavable SF in tumors suppresses tumor growth, impairs tumor angiogenesis, and prevents metastatic dissemination; and (c) systemic expression of uncleavable SF dramatically inhibits the growth of transplanted tumors and abolishes the formation of spontaneous metastases without perturbing vital physiological functions. These data show that proteolytic activation of pro-SF is a limiting step in tumor progression, thus suggesting a new strategy for the treatment or prevention of the malignant conversion of neoplastic lesions. PMID:15545993

  20. An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice.

    PubMed

    Mazzone, Massimiliano; Basilico, Cristina; Cavassa, Silvia; Pennacchietti, Selma; Risio, Mauro; Naldini, Luigi; Comoglio, Paolo M; Michieli, Paolo

    2004-11-01

    Scatter factor (SF), also known as hepatocyte growth factor, is ubiquitously present in the extracellular matrix of tissues in the form of an inactive precursor (pro-SF). In order to acquire biological activity, pro-SF must be cleaved by specific proteases present on the cell surface. The mature form of SF controls invasive cues in both physiological and pathological processes through activation of its receptor, the Met tyrosine kinase. By substituting a single amino acid in the proteolytic site, we engineered an unprocessable form of pro-SF (uncleavable SF). Using lentivirus vector technology, we achieved local or systemic delivery of uncleavable SF in mice. We provide evidence that (a) uncleavable SF inhibits both protease-mediated pro-SF conversion and active SF-induced Met activation; (b) local expression of uncleavable SF in tumors suppresses tumor growth, impairs tumor angiogenesis, and prevents metastatic dissemination; and (c) systemic expression of uncleavable SF dramatically inhibits the growth of transplanted tumors and abolishes the formation of spontaneous metastases without perturbing vital physiological functions. These data show that proteolytic activation of pro-SF is a limiting step in tumor progression, thus suggesting a new strategy for the treatment or prevention of the malignant conversion of neoplastic lesions.

  1. Huaier extract suppresses breast cancer via regulating tumor-associated macrophages

    PubMed Central

    Li, Yaming; Qi, Wenwen; Song, Xiaojin; Lv, Shangge; Zhang, Hanwen; Yang, Qifeng

    2016-01-01

    Macrophages in tumor microenvironment are mostly M2-polarized - and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). Here, we examined the regulatory effects of Huaier extract on TAMs using RAW264.7 murine macrophage cell line. Our data demonstrated that Huaier extract could inhibit the infiltration of macrophages into tumor microenvironment in a dose-dependent manner. By performing RT-PCR, immunofluorescence and phagocytosis assay, we were able to find that Huaier extract could regulate the polarization of macrophages, with decreased M2-polarization and increased phagocytosis of RAW264.7 cells. Moreover, we identified that Huaier extract could suppress macrophages-induced angiogenesis by using HUVEC migration assay, tube formation and chorioallantoic membrane assay. Additionally, western blotting showed decreased expression of MMP2, MMP9 and VEGF with the use of Huaier extract. Finally, we found that Huaier extract could inhibit M2-macrophages infiltration and angiogenesis through treating 4T1 tumor bearing mice with Huaier extract. Our study revealed a novel mechanism of the anti-tumor effect of Huaier extract which inhibited angiogenesis by targeting TAMs. These findings provided that Huaier was a promising drug for clinical treatment of breast cancer. PMID:26831282

  2. Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis.

    PubMed

    Zhao, Helong; Ahirwar, Dinesh K; Oghumu, Steve; Wilkie, Tasha; Powell, Catherine A; Nasser, Mohd W; Satoskar, Abhay R; Li, Dean Y; Ganju, Ramesh K

    2016-02-01

    Targeting tumor angiogenesis is a promising alternative strategy for improvement of breast cancer therapy. Robo4 (roundabout homolog 4) signaling has been shown to protect endothelial integrity during sepsis shock and arthritis, and inhibit Vascular Endothelial Growth Factor (VEGF) signaling during pathological angiogenesis of retinopathy, which indicates that Robo4 might be a potential target for angiogenesis in breast cancer. In this study, we used immune competent Robo4 knockout mouse model to show that endothelial Robo4 is important for suppressing breast cancer growth and metastasis. And this effect does not involve the function of Robo4 on hematopoietic stem cells. Robo4 inhibits breast cancer growth and metastasis by regulating tumor angiogenesis, endothelial leakage and tight junction protein zonula occludens protein-1 (ZO-1) downregulation. Treatment with SecinH3, a small molecule drug which deactivates ARF6 downstream of Robo4, can enhance Robo4 signaling and thus inhibit breast cancer growth and metastasis. SecinH3 mediated its effect by reducing tumor angiogenesis rather than directly affecting cancer cell proliferation. In conclusion, endothelial Robo4 signaling is important for suppressing breast cancer growth and metastasis, and it can be targeted (enhanced) by administrating a small molecular drug.

  3. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    PubMed

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21.

  4. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells.

    PubMed

    Sun, Rui; Luo, Jing; Li, Dong; Shu, Yu; Luo, Chao; Wang, Shan-Shan; Qin, Jian; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-30

    In tumor-bearing state, the function of neutrophils is converted from tumor-suppressing to tumor-promoting. Here we report that priming with IFN-γ and TNF-α could convert the potential of neutrophils from tumor-promoting to tumor-suppressing. The neutrophils with protumor potential have not lost their responsiveness to IFN-γ and TNF-α. After priming with IFN-γ and TNF-α, the potential of the neutrophils to express Bv8 and Mmp9 genes was reduced. Conversely, the tumor-promotional neutrophils recovered the expression of Rab27a and Trail, resumed the activation levels of PI3K and p38 MAPK pathways in response to stimuli, and expressed higher levels of IL-18 and NK-activating ligands such as RAE-1, MULT-1, and H60. Therefore, the anti-tumor function of the neutrophils was augmented, including the cytotoxicity to tumor cells, the capability of degranulation, and the capacity to activate NK cells. Since the function of NK cells is impaired in tumor-bearing state, the administration of normal NK cells could significantly augment the efficiency of tumor therapy based on neutrophil priming. These findings highlight the reversibility of neutrophil function in tumor-bearing state, and suggest that neutrophil priming by IFN-γ/TNF-α might be a potential approach to eliminate residual tumor cells in comprehensive strategy for tumor therapy.

  5. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer

    PubMed Central

    2014-01-01

    Introduction Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. Methods Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. Results TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. Conclusions Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists. PMID:24890385

  6. Complete Suppression of Tumor Formation by High Levels of Basement Membrane Collagen

    PubMed Central

    Harris, Ann; Harris, Henry; Hollingsworth, Michael A.

    2009-01-01

    Suppression of tumorigenicity was first shown in hybrids produced by the fusion of a range of different highly malignant tumor cells with diploid fibroblasts. Cytogenetic analysis of these hybrids revealed that suppression involved a genetic region located in one specific chromosome donated to the hybrid cell by the fibroblast parent. The identity of the gene responsible for this dramatic effect has remained obscure. We now present strong evidence that the primary determinant is the gene specifying collagen XV, a proteoglycan closely associated with the basement membrane. We transfected a line of highly tumorigenic human cervical carcinoma cells with an expression vector carrying the full-length cDNA of the human collagen XV gene. We selected clones making various amounts of collagen XV, examined their growth in vitro, and tested their tumorigenicity in nude mice. High levels of collagen XV altered the growth properties of the cells in three-dimensional cultures. Moreover, we found that, in a dose-dependent manner, the production of collagen XV completely suppressed tumorigenicity in clones that synthesized this molecule at high levels. Immunohistologic studies suggest that suppression is associated with extracellular deposition of the proteoglycan at the cell periphery. PMID:18171981

  7. Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition

    PubMed Central

    Cai, Wen-Ke; Yang, Yong-Xiang; Sun, Chao; Zhang, Zhuo; Xu, Yu-Qiao; Chang, Ting; Li, Zhu-Yi

    2015-01-01

    Histamine receptor 3 (H3R) is expressed in various tumors and correlated with malignancy and tumor proliferation. However, the role of H3R in tumor invasion and epithelial to mesenchymal transition (EMT) remains unknown. Here, we explored the H3R in the highly invasive glioblastoma (GBM) and U87MG cells. We found that H3R mRNA and protein levels were up-regulated in the GBM and glioma cell lines compared to normal brain tissue and astrocytes. In U87MG cell line, inhibition of H3R by siRNA or the antagonist ciproxifan (CPX) suppressed proliferation, invasiveness, and the expression of EMT activators (Snail, Slug and Twist). In addition, expression of epithelial markers (E-cadherin and ZO-1) was up-regulated and expression of mesenchymal markers (vimentin and N-cadherin) was down-regulated in vitro and in vivo in a xenograft model. In addition, we also showed that inhibition of H3R by siRNA or CPX inactivated the PI3K/Akt and MEK/ERK signaling pathways, while inhibition of Akt or ERK activity with antagonists or siRNAs suppressed H3R agonist (R)-(α)-(−)- methylhistamine dihydrobromide (RAMH) mediated invasion and reorganization of cadherin-household. In conclusion, overexpression of H3R is associated with glioma progression. Inhibition of H3R leads to suppressed invasion and EMT of GBM by inactivating the PI3K/Akt and MEK/ERK pathways in gliomas. PMID:25940798

  8. Antioxidant and Tumor Cell Suppression Potential of Premna Serratifolia Linn Leaf

    PubMed Central

    Selvam, Thamizh N.; Venkatakrishnan, V.; Damodar, Kumar S.; Elumalai, Preetham

    2012-01-01

    Herbal and natural products have been used in folk medicine for centuries throughout the world. There has been renewed interest in screening higher plants for novel biologically active compounds, particularly those that effectively intervene in human ailments in the field of chronic diseases. The present study has been taken up to evaluate the free radical scavenging activity and tumor cell suppression potential of Premna serratifolia leaf in various in vitro model systems. The methanolic extract of P. serratifolia leaf was obtained by soxhlet extraction method. The superoxide radical scavenging activity, nitric oxide radical, hydroxyl radical, DPPH radical and ABTS radical scavenging activity and lipid peroxidation were determined. The tumor cell suppression cell potential was determined in three different cancer cell lines MCF7 (breast cancer), HepG2 (liver cancer) and A549 (lung cancer) by SRB assay. The study showed that the methanolic extract of P. serratifolia was having free radical scavenging activity against superoxide radical, nitric oxide radical, hydroxyl radical, DPPH radical, ABTS radical and inhibition of lipid peroxidation. The IC50 value showed the efficacy was dose dependent. The test extract showed cytotoxic activity against MCF7, HepG2 and A549 cells. The GI50, TGI and LC50 values were determined against each cell line and compared with standard drug Adriamycin. The present study proved the free radical scavenging activity and tumor cell suppression potential of P. serratifolia leaf in the selective in vitro model systems. The further study has to be carried out in the aspects of isolation of functional molecules of the extract. PMID:22736900

  9. Antioxidant and tumor cell suppression potential of premna serratifolia linn leaf.

    PubMed

    Selvam, Thamizh N; Venkatakrishnan, V; Damodar, Kumar S; Elumalai, Preetham

    2012-01-01

    Herbal and natural products have been used in folk medicine for centuries throughout the world. There has been renewed interest in screening higher plants for novel biologically active compounds, particularly those that effectively intervene in human ailments in the field of chronic diseases. The present study has been taken up to evaluate the free radical scavenging activity and tumor cell suppression potential of Premna serratifolia leaf in various in vitro model systems. The methanolic extract of P. serratifolia leaf was obtained by soxhlet extraction method. The superoxide radical scavenging activity, nitric oxide radical, hydroxyl radical, DPPH radical and ABTS radical scavenging activity and lipid peroxidation were determined. The tumor cell suppression cell potential was determined in three different cancer cell lines MCF7 (breast cancer), HepG2 (liver cancer) and A549 (lung cancer) by SRB assay. The study showed that the methanolic extract of P. serratifolia was having free radical scavenging activity against superoxide radical, nitric oxide radical, hydroxyl radical, DPPH radical, ABTS radical and inhibition of lipid peroxidation. The IC50 value showed the efficacy was dose dependent. The test extract showed cytotoxic activity against MCF7, HepG2 and A549 cells. The GI50, TGI and LC50 values were determined against each cell line and compared with standard drug Adriamycin. The present study proved the free radical scavenging activity and tumor cell suppression potential of P. serratifolia leaf in the selective in vitro model systems. The further study has to be carried out in the aspects of isolation of functional molecules of the extract.

  10. Suppression of Breast Tumor Growth and Metastasis by an Engineered Transcription Factor

    PubMed Central

    Lara, Haydee; Fan, Cheng; Lizardi, Paul M.; Blancafort, Pilar

    2011-01-01

    Maspin is a tumor and metastasis suppressor playing an essential role as gatekeeper of tumor progression. It is highly expressed in epithelial cells but is silenced in the onset of metastatic disease by epigenetic mechanisms. Reprogramming of Maspin epigenetic silencing offers a therapeutic potential to lock metastatic progression. Herein we have investigated the ability of the Artificial Transcription Factor 126 (ATF-126) designed to upregulate the Maspin promoter to inhibit tumor progression in pre-established breast tumors in immunodeficient mice. ATF-126 was transduced in the aggressive, mesenchymal-like and triple negative breast cancer line, MDA-MB-231. Induction of ATF expression in vivo by Doxycycline resulted in 50% reduction in tumor growth and totally abolished tumor cell colonization. Genome-wide transcriptional profiles of ATF-induced cells revealed a gene signature that was found over-represented in estrogen receptor positive (ER+) “Normal-like” intrinsic subtype of breast cancer and in poorly aggressive, ER+ luminal A breast cancer cell lines. The comparison transcriptional profiles of ATF-126 and Maspin cDNA defined an overlapping 19-gene signature, comprising novel targets downstream the Maspin signaling cascade. Our data suggest that Maspin up-regulates downstream tumor and metastasis suppressor genes that are silenced in breast cancers, and are normally expressed in the neural system, including CARNS1, SLC8A2 and DACT3. In addition, ATF-126 and Maspin cDNA induction led to the re-activation of tumor suppressive miRNAs also expressed in neural cells, such as miR-1 and miR-34, and to the down-regulation of potential oncogenic miRNAs, such as miR-10b, miR-124, and miR-363. As expected from its over-representation in ER+ tumors, the ATF-126-gene signature predicted favorable prognosis for breast cancer patients. Our results describe for the first time an ATF able to reduce tumor growth and metastatic colonization by epigenetic reactivation of a

  11. Drugs Which Inhibit Osteoclast Function Suppress Tumor Growth through Calcium Reduction in Bone

    PubMed Central

    Li, Xin; Liao, Jinhui; Park, Serk In; Koh, Amy J; Sadler, William D; Pienta, Kenneth J; Rosol, Thomas J; McCauley, Laurie K

    2011-01-01

    Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1luc) prostate cancer cells were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1luc cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5μg/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors

  12. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    SciTech Connect

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-03-20

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity. Using p53{sup -/-} MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21{sup Cip1} accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  13. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy.

    PubMed

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun

    2016-01-01

    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  14. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer

    PubMed Central

    Shen, W; Chang, A; Wang, J; Zhou, W; Gao, R; Li, J; Xu, Y; Luo, X; Xiang, R; Luo, N; Stupack, D G

    2015-01-01

    TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53. PMID:26501855

  15. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways.

    PubMed

    Rathod, Sachin S; Rani, Sandhya B; Khan, Mohsina; Muzumdar, Dattatraya; Shiras, Anjali

    2014-01-01

    MiRNA-34a is considered as a potential prognostic marker for glioma, as studies suggest that its expression negatively correlates with patient survival in grade III and IV glial tumors. Here, we show that expression of miR-34a was decreased in a graded manner in glioma and glioma stem cell-lines as compared to normal brain tissues. Ectopic expression of miR-34a in glioma stem cell-lines HNGC-2 and NSG-K16 decreased the proliferative and migratory potential of these cells, induced cell cycle arrest and caused apoptosis. Notably, the miR-34a glioma cells formed significantly smaller xenografts in immuno-deficient mice as compared with control glioma stem cell-lines. Here, using a bioinformatics approach and various biological assays, we identify Rictor, as a novel target for miR-34a in glioma stem cells. Rictor, a defining component of mTORC2 complex, is involved in cell survival signaling. mTORC2 lays downstream of Akt, and thus is a direct activator of Akt. Our earlier studies have elaborated on role of Rictor in glioma invasion (Das et al., 2011). Here, we demonstrate that miR34a over-expression in glioma stem cells profoundly decreased levels of p-AKT (Ser473), increased GSK-3β levels and targeted for degradation β-catenin, an important mediator of Wnt signaling pathway. This led to diminished levels of the Wnt effectors cyclin D1 and c-myc. Collectively, we show that the tumor suppressive function of miR-34a in glioblastoma is mediated via Rictor, which through its effects on AKT/mTOR pathway and Wnt signaling causes pronounced effects on glioma malignancy.

  16. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways

    PubMed Central

    Rathod, Sachin S.; Rani, Sandhya B.; Khan, Mohsina; Muzumdar, Dattatraya; Shiras, Anjali

    2014-01-01

    MiRNA-34a is considered as a potential prognostic marker for glioma, as studies suggest that its expression negatively correlates with patient survival in grade III and IV glial tumors. Here, we show that expression of miR-34a was decreased in a graded manner in glioma and glioma stem cell-lines as compared to normal brain tissues. Ectopic expression of miR-34a in glioma stem cell-lines HNGC-2 and NSG-K16 decreased the proliferative and migratory potential of these cells, induced cell cycle arrest and caused apoptosis. Notably, the miR-34a glioma cells formed significantly smaller xenografts in immuno-deficient mice as compared with control glioma stem cell-lines. Here, using a bioinformatics approach and various biological assays, we identify Rictor, as a novel target for miR-34a in glioma stem cells. Rictor, a defining component of mTORC2 complex, is involved in cell survival signaling. mTORC2 lays downstream of Akt, and thus is a direct activator of Akt. Our earlier studies have elaborated on role of Rictor in glioma invasion (Das et al., 2011). Here, we demonstrate that miR34a over-expression in glioma stem cells profoundly decreased levels of p-AKT (Ser473), increased GSK-3β levels and targeted for degradation β-catenin, an important mediator of Wnt signaling pathway. This led to diminished levels of the Wnt effectors cyclin D1 and c-myc. Collectively, we show that the tumor suppressive function of miR-34a in glioblastoma is mediated via Rictor, which through its effects on AKT/mTOR pathway and Wnt signaling causes pronounced effects on glioma malignancy. PMID:24944883

  17. Genetic Interaction between Rb and K-ras in the Control of Differentiation and Tumor Suppression

    PubMed Central

    Takahashi, Chiaki; Contreras, Bernardo; Bronson, Roderick T.; Loda, Massimo; Ewen, Mark E.

    2004-01-01

    Although the retinoblastoma protein (pRb) has been implicated in the processes of cellular differentiation, there is no compelling genetic or in vivo evidence that such activities contribute to pRb-mediated tumor suppression. Motivated by cell culture studies suggesting that Ras is a downstream effector of pRb in the control of differentiation, we have examined the tumor and developmental phenotypes of Rb and K-ras double-knockout mice. We find that heterozygosity for K-ras (i) rescued a unique subset of developmental defects that characterize Rb-deficient embryos by affecting differentiation but not proliferation and (ii) significantly enhanced the degree of differentiation of pituitary adenocarcinomas arising in Rb heterozygotes, leading to their prolonged survival. These observations suggest that Rb and K-ras function together in vivo, in the contexts of both embryonic and tumor development, and that the ability to affect differentiation is a major facet of the tumor suppressor function of pRb. PMID:15542848

  18. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth

    PubMed Central

    Yang, Ming; Yu, Tao; Wang, Ying-Ying; Lai, Samuel K.; Zeng, Qi; Miao, Bolong; Tang, Benjamin C.; Simons, Brian W.; Ensign, Laura; Liu, Guanshu; Chan, Kannie W. Y.; Juang, Chih-Yin; Mert, Olcay; Wood, Joseph; Fu, Jie; McMahon, Michael T.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early stage cervical cancer. We hypothesize drug-loaded nanoparticles must rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract to effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner. We develop paclitaxel-loaded nanoparticles, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. We further employ a mouse model with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles , or CP) and similar particles coated with Pluronic® F127 (mucus-penetrating particles , or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared to free paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate for the first time the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface. PMID:24339398

  19. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC.

    PubMed

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.

  20. Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis.

    PubMed

    Zhang, Qing; Zhao, Wei; Ye, Changxiao; Zhuang, Junlong; Chang, Cunjie; Li, Yuying; Huang, Xiaojing; Shen, Lan; Li, Yan; Cui, Yangyan; Song, Jiannan; Shen, Bing; Eliaz, Isaac; Huang, Ruimin; Ying, Hao; Guo, Hongqian; Yan, Jun

    2015-11-10

    The oncoprotein EZH2, as a histone H3K27 methyltransferase, is frequently overexpressed in various cancer types. However, the mechanisms underlying its role in urinary bladder cancer (UBC) cells have not yet fully understood. Herein, we reported that honokiol, a biologically active biphenolic compound isolated from the Magnolia officinalis inhibited human UBC cell proliferation, survival, cancer stemness, migration, and invasion, through downregulation of EZH2 expression level, along with the reductions of MMP9, CD44, Sox2 and the induction of tumor suppressor miR-143. Either EZH2 overexpression or miR-143 inhibition could partially reverse honokiol-induced cell growth arrest and impaired clonogenicity. Importantly, it was first revealed that EZH2 could directly bind to the transcriptional regulatory region of miR-143 and repress its expression. Furthermore, honokiol treatment on T24 tumor xenografts confirmed its anticancer effects in vivo, including suppression tumor growth and tumor stemness, accompanied by the dysregulation of EZH2 and miR-143 expressions. Our data suggest a promising therapeutic option to develop drugs targeting EZH2/miR-143 axis, such as honokiol, for bladder cancer treatment.

  1. Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis

    PubMed Central

    Chang, Cunjie; Li, Yuying; Huang, Xiaojing; Shen, Lan; Li, Yan; Cui, Yangyan; Song, Jiannan; Shen, Bing; Eliaz, Isaac; Huang, Ruimin; Ying, Hao; Guo, Hongqian; Yan, Jun

    2015-01-01

    The oncoprotein EZH2, as a histone H3K27 methyltransferase, is frequently overexpressed in various cancer types. However, the mechanisms underlying its role in urinary bladder cancer (UBC) cells have not yet fully understood. Herein, we reported that honokiol, a biologically active biphenolic compound isolated from the Magnolia officinalis inhibited human UBC cell proliferation, survival, cancer stemness, migration, and invasion, through downregulation of EZH2 expression level, along with the reductions of MMP9, CD44, Sox2 and the induction of tumor suppressor miR-143. Either EZH2 overexpression or miR-143 inhibition could partially reverse honokiol-induced cell growth arrest and impaired clonogenicity. Importantly, it was first revealed that EZH2 could directly bind to the transcriptional regulatory region of miR-143 and repress its expression. Furthermore, honokiol treatment on T24 tumor xenografts confirmed its anticancer effects in vivo, including suppression tumor growth and tumor stemness, accompanied by the dysregulation of EZH2 and miR-143 expressions. Our data suggest a promising therapeutic option to develop drugs targeting EZH2/miR-143 axis, such as honokiol, for bladder cancer treatment. PMID:26484567

  2. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    PubMed Central

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC. PMID:27824900

  3. Epigenetic inactivation of EFEMP1 is associated with tumor suppressive function in endometrial carcinoma.

    PubMed

    Yang, Tingting; Qiu, Haifeng; Bao, Wei; Li, Bilan; Lu, Cong; Du, Guiqiang; Luo, Xin; Wang, Lihua; Wan, Xiaoping

    2013-01-01

    EFEMP1, the epidermal growth factor-containing fibulin-like extracellular matrix protein 1, functions as an oncogene or a tumor suppressor depending on the cancer types. In this study, we aim to determine whether EFEMP1 affects the tumorigenesis and progression of endometrial carcinoma. The expression of EFEMP1 was investigated using immunohistochemistry in a panel of normal endometrium (n = 40), atypical hyperplasia (n = 10) and endometrial carcinoma tissues (n = 84). Methylation status of the EFEMP1 promoter was detected by methylation-specific PCR (MSP) and bisulphite genomic sequencing. Up- or down-regulation of EFEMP1 were achieved by stable or transient transfection with pCMV6/GFP/Neo-EFEMP1 or pGPU6/GFP/Neo-shEFEMP1 respectively. Effects of EFEMP1 on tumor proliferation, invasion and migration were evaluated by MTT, plate colony formation, Transwell and wound healing assay. The nude mouse tumor xenograft assay was used to investigate function of EFEMP1 in vivo. Compared with normal endometrium (32/40) and atypical hyperplasia (7/10), EFEMP1 expression was much lower in endometrial carcinoma tissues (16/84) (P<0.001 and P = 0.02). EFEMP1 promoter was hypermethylated in endometrial carcinoma tissues (67%) as compared to normal tissue (10%) and down-regulation of EFEMP1 was associated with promoter hypermethylation. Treatment with 5-aza-2'-deoxycytidine (5-aza-dC) and/or trichostatin A (TSA) altered EFEMP1 methylation status, and restored EFEMP1 expression. Moreover, EFEMP1 decreased secretion of MMPs and inhibited tumor cell proliferation, metastasis and invasion in vitro and suppressed tumorigenesis in nude mice. Besides, EFEMP1 increased expression of E-cadherin and suppressed expression of vimentin in endometrial carcinoma. EFEMP1 is a new candidate tumor suppressor gene in endometrial carcinoma, and is frequently silenced by promoter hypermethylation. It could inhibit tumor growth and invasion both in vitro and in vivo. Our findings propose that targeting

  4. Epigenetic Inactivation of EFEMP1 Is Associated with Tumor Suppressive Function in Endometrial Carcinoma

    PubMed Central

    Yang, Tingting; Qiu, Haifeng; Bao, Wei; Li, Bilan; Lu, Cong; Du, Guiqiang; Luo, Xin; Wang, Lihua; Wan, Xiaoping

    2013-01-01

    Objective EFEMP1, the epidermal growth factor–containing fibulin-like extracellular matrix protein 1, functions as an oncogene or a tumor suppressor depending on the cancer types. In this study, we aim to determine whether EFEMP1 affects the tumorigenesis and progression of endometrial carcinoma. Methods The expression of EFEMP1 was investigated using immunohistochemistry in a panel of normal endometrium (n = 40), atypical hyperplasia (n = 10) and endometrial carcinoma tissues (n = 84). Methylation status of the EFEMP1 promoter was detected by methylation-specific PCR (MSP) and bisulphite genomic sequencing. Up- or down-regulation of EFEMP1 were achieved by stable or transient transfection with pCMV6/GFP/Neo-EFEMP1 or pGPU6/GFP/Neo-shEFEMP1 respectively. Effects of EFEMP1 on tumor proliferation, invasion and migration were evaluated by MTT, plate colony formation, Transwell and wound healing assay. The nude mouse tumor xenograft assay was used to investigate function of EFEMP1 in vivo. Results Compared with normal endometrium (32/40) and atypical hyperplasia (7/10), EFEMP1 expression was much lower in endometrial carcinoma tissues (16/84) (P<0.001 and P = 0.02). EFEMP1 promoter was hypermethylated in endometrial carcinoma tissues (67%) as compared to normal tissue (10%) and down-regulation of EFEMP1 was associated with promoter hypermethylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) and/or trichostatin A (TSA) altered EFEMP1 methylation status, and restored EFEMP1 expression. Moreover, EFEMP1 decreased secretion of MMPs and inhibited tumor cell proliferation, metastasis and invasion in vitro and suppressed tumorigenesis in nude mice. Besides, EFEMP1 increased expression of E-cadherin and suppressed expression of vimentin in endometrial carcinoma. Conclusion EFEMP1 is a new candidate tumor suppressor gene in endometrial carcinoma, and is frequently silenced by promoter hypermethylation. It could inhibit tumor growth and invasion both

  5. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression.

    PubMed

    Haile, Samuel T; Dalal, Sonia P; Clements, Virginia; Tamada, Koji; Ostrand-Rosenberg, Suzanne

    2013-09-01

    Many tumor cells escape anti-tumor immunity through their expression of programmed death ligand-1 (PDL1 or B7-H1), which interacts with T cell-expressed PD1 and results in T cell apoptosis. We previously reported that transfection of human tumor cells with a membrane-bound form of the human costimulatory molecule CD80 prevented PD1 binding and restored T cell activation. We now report that a membrane-bound form of murine CD80 similarly reduces PDL1-PD1-mediated suppression by mouse tumor cells and that a soluble protein consisting of the extracellular domains of human or mouse CD80 fused to the Fc domain of IgG1 (CD80-Fc) overcomes PDL1-mediated suppression by human and mouse tumor cells, respectively. T cell activation experiments with human and mouse tumor cells indicate that CD80-Fc facilitates T cell activation by binding to PDL1 to inhibit PDL1-PD1 interactions and by costimulating through CD28. CD80-Fc is more effective in preventing PD1-PDL1-mediated suppression and restoring T cell activation compared with treatment with mAb to either PD1 or PDL1. These studies identify CD80-Fc as an alternative and potentially more efficacious therapeutic agent for overcoming PDL1-induced immune suppression and facilitating tumor-specific immunity.

  6. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree.

    PubMed Central

    Pascoe, L; Jeunemaitre, X; Lebrethon, M C; Curnow, K M; Gomez-Sanchez, C E; Gasc, J M; Saez, J M; Corvol, P

    1995-01-01

    Glucocorticoid-suppressible hyperaldosteronism is a dominantly inherited form of hypertension believed to be caused by the presence of a hybrid CYP11B1/CYP11B2 gene which has arisen from an unequal crossing over between the two CYP11B genes in a previous meiosis. We have studied a French pedigree with seven affected individuals in which two affected individuals also have adrenal tumors and two others have micronodular adrenal hyperplasia. One of the adrenal tumors and the surrounding adrenal tissue has been removed, giving a rare opportunity to study the regulation and action of the hybrid gene causing the disease. The hybrid CYP11B gene was demonstrated to be expressed at higher levels than either CYP11B1 or CYP11B2 in the cortex of the adrenal by RT-PCR and Northern blot analysis. In situ hybridization showed that both CYP11B1 and the hybrid gene were expressed in all three zones of the cortex. In cell culture experiments hybrid gene expression was stimulated by ACTH leading to increased production of aldosterone and the hybrid steroids characteristic of glucocorticoid-suppressible hyperaldosteronism. The genetic basis of the adrenal pathologies in this family is not known but may be related to the duplication causing the hyperaldosteronism. Images PMID:7593610

  7. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity.

    PubMed

    Zhang, S; Qi, Q; Chan, C B; Zhou, W; Chen, J; Luo, H R; Appin, C; Brat, D J; Ye, K

    2016-01-01

    The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.

  8. PKK suppresses tumor growth and is decreased in squamous cell carcinoma of the skin.

    PubMed

    Poligone, Brian; Gilmore, Elaine S; Alexander, Carolina V; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif F; Pentland, Alice P; Brown, Marc D; Chen, Luojing

    2015-03-01

    Non-melanoma skin cancer represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a subtype of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the protein kinase C-associated kinase (PKK), which is also known as the receptor-interacting protein kinase 4, as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared with normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. The use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a marked increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of inhibitor of NF-κB kinase function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments.

  9. PKK Suppresses Tumor Growth and is Decreased in Squamous Cell Carcinoma of the Skin

    PubMed Central

    Poligone, Brian; Gilmore, Elaine S.; Alexander, Carolina; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif; Pentland, Alice P.; Brown, Marc; Chen, Luojing

    2014-01-01

    Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also known as the Receptor-Interacting Protein Kinase 4 (RIPK4), as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared to normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. Use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a dramatic increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of IKK function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments. PMID:25285922

  10. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    PubMed Central

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  11. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells.

    PubMed

    Suhail, Mahmoud M; Wu, Weijuan; Cao, Amy; Mondalek, Fadee G; Fung, Kar-Ming; Shih, Pin-Tsen; Fang, Yu-Ting; Woolley, Cole; Young, Gary; Lin, Hsueh-Kung

    2011-12-15

    Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 °C for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 °C hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra essential oil

  12. Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats.

    PubMed

    Morita, Reiko; Shimamoto, Keisuke; Ishii, Yuji; Kuwata, Kazunori; Ogawa, Bun-ichiro; Imaoka, Masako; Hayashi, Shim-mo; Suzuki, Kazuhiko; Shibutani, Makoto; Mitsumori, Kunitoshi

    2011-11-01

    To investigate the effect of enzymatically modified isoquercitrin (EMIQ) on hepatocellular tumor promotion induced by phenobarbital (PB), male rats were administered a single intraperitoneal injection of 200 mg/kg N-diethylnitrosamine (DEN) and then fed with a diet containing PB (500 ppm) for 8 weeks, with or without EMIQ (2,000 ppm) in the drinking water. One week after PB administration, rats underwent a two-thirds partial hepatectomy. The PB-induced increase in the number and area of glutathione S-transferase placental form-positive foci and the proliferating cell nuclear antigen-positive ratio was significantly suppressed by EMIQ. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in mRNA expression levels of Cyp2b2 and Mrp2 in the DEN-PB and DEN-PB-EMIQ groups compared with the DEN-alone group, while the level of Mrp2 decreased in the DEN-PB-EMIQ group compared with the DEN-PB group. There were no significant changes in microsomal reactive oxygen species (ROS) production and oxidative stress markers between the DEN-PB and DEN-PB-EMIQ groups. Immunohistochemically, the constitutive active/androstane receptor (CAR) in the DEN-PB group was clearly localized in the nuclei, but its immunoreactive intensity was decreased in the DEN-PB-EMIQ group. These results indicate that EMIQ suppressed the liver tumor-promoting activity of PB by inhibiting nuclear translocation of CAR, and not by suppression of oxidative stress.

  13. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression.

    PubMed

    Simon, Priscilla S; Bardhan, Kankana; Chen, May R; Paschall, Amy V; Lu, Chunwan; Bollag, Roni J; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L; Pollock, Raphael E; Liu, Kebin

    2016-04-26

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression.

  14. Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80.

    PubMed

    Haile, Samuel T; Bosch, Jacobus J; Agu, Nnenna I; Zeender, Annette M; Somasundaram, Preethi; Srivastava, Minu K; Britting, Sabine; Wolf, Julie B; Ksander, Bruce R; Ostrand-Rosenberg, Suzanne

    2011-06-15

    Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.

  15. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    PubMed

    Yao, Xin; Jennings, Scott; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Davis, Mya; Chen, Renwei; Davenport, Ian; Biliran, Hector

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

  16. DAC can restore expression of NALP1 to suppress tumor growth in colon cancer.

    PubMed

    Chen, C; Wang, B; Sun, J; Na, H; Chen, Z; Zhu, Z; Yan, L; Ren, S; Zuo, Y

    2015-01-22

    Despite recent progress in the identification of genetic and molecular alternations in colorectal carcinoma, the precise molecular pathogenesis remains unclear. NALP1 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 1) is a member of the nucleotide-binding oligomerization domain-like receptor family of proteins that are key organization proteins in the inflammasome. It is reported that NALP1 plays a central role in cell apoptosis, pyroptosis, inflammatory reactions and autoimmune diseases. DAC (5-aza-2-deoxycytidine) is an antitumor drug useful to lung cancer, myelodysplastic disorders, myelodysplasia and acute myeloid leukemia. In this study, we examined the expression of NALP1 in human normal and cancerous colon tissues using tissue microarray, western blot and quantitative real-time PCR and we measured the expression of NALP1 in three kinds of colon cancer cell lines and animal models before and after treatment with DAC. Furthermore, we examined the treatment effects of DAC on colon cancer in our animal model. Our data indicate that NALP1 is expressed low in human colorectal tumoral tissues relative to paratumoral tissues and was associated with the survival and tumor metastasis of patients. The expression of NALP1 increased after treatment with DAC both in vitro and in vivo. Furthermore, DAC suppressed the growth of colon cancer and increased lifespan in mouse model. Therefore, we conclude that NALP1 is expressed low in colon cancer and associated with the survival and tumor metastasis of patients, and treatment with DAC can restore NALP1 levels to suppress the growth of colon cancer.

  17. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  18. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  19. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth.

    PubMed

    Tiraby, Claire; Hazen, Bethany C; Gantner, Marin L; Kralli, Anastasia

    2011-04-01

    Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.

  20. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    PubMed Central

    2012-01-01

    Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME), inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE) cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE) cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P < 0.01). Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK pathway

  1. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer

    PubMed Central

    Kusmartsev, Sergei; Gabrilovich, Dmitry I.

    2006-01-01

    It is well established that cancers affect differentiation of dendritic cells and promote systemic expansion of immune suppressive immature myeloid cells. This phenomenon may represent a mechanism of tumor escape from immune attack and could have significant impact on tumor progression. In this review we discuss the role of different tumor-derived factors, which were implicated in abnormal myeloid cell differentiation. The role of reactive oxygen species as well as JAK/STAT signaling in mechanisms of the effects of tumor-derived factors on myeloid cells is also discussed. PMID:16983515

  2. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer.

    PubMed

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2006-09-01

    It is well established that cancers affect differentiation of dendritic cells and promote systemic expansion of immune suppressive immature myeloid cells. This phenomenon may represent a mechanism of tumor escape from immune attack and could have significant impact on tumor progression. In this review we discuss the role of different tumor-derived factors, which were implicated in abnormal myeloid cell differentiation. The role of reactive oxygen species as well as JAK/STAT signaling in mechanisms of the effects of tumor-derived factors on myeloid cells is also discussed.

  3. Atypical appearance of lipomatous tumors on MR images: high signal intensity with fat-suppression STIR sequences.

    PubMed

    Murphy, W D; Hurst, G C; Duerk, J L; Feiglin, D H; Christopher, M; Bellon, E M

    1991-01-01

    Lipomatous tumors generally have signal characteristics that allow them to be diagnosed with great accuracy by means of magnetic resonance imaging. These tumors usually have signal intensities similar to those of subcutaneous fat on both T1- and T2-weighted spin-echo images. Previous reports have not, to the authors' knowledge, described the appearance of lipomatous tumors on images obtained with a short-inversion-time inversion-recovery (STIR) sequence, which can be used to suppress signal from fat. Three lipomatous tumors (two liposarcomas and one lipoma) with signal characteristics unlike those of normal subcutaneous fat at all pulse sequences are presented.

  4. Mammary-tumor-educated B cells acquire LAP/TGF-β and PD-L1 expression and suppress anti-tumor immune responses.

    PubMed

    Zhang, Yu; Morgan, Richard; Chen, Chuan; Cai, Yancheng; Clark, Emily; Khan, Wasif Noor; Shin, Seung-Uon; Cho, Hyun-Mi; Al Bayati, Ahmed; Pimentel, Augustin; Rosenblatt, Joseph D

    2016-09-01

    B lymphocytes play a role in inhibiting the immune response against certain tumors, but the underlying mechanisms are poorly understood. EMT-6 mammary tumors grow well in wild-type (WT) mice but show reduced growth in B-cell-deficient μ(-/-) BALB/c mice (BCDM). WT mice demonstrate extensive B-cell infiltration into the tumor bed, reduced CD8(+) T cell and CD49(+) NK cell infiltration, and markedly reduced cytolytic T-cell response relative to BCDM. Expression of LAP/TGF-β1, CD80, CD86 and PD-L1 is significantly increased in tumor-infiltrating B cells (TIL-B) relative to splenic B cells. LAP/TGF-β1 expression on TIL-B progressively increased from 5.4±1.7% on day 8 to 43.1±6.1% by day 21 post tumor implantation. Co-culture of EMT-6 tumor cells with Naive-B cells ex vivo generated B cells (EMT6-B) with a similar immunophenotype to TIL-B. Purified TIL-B, or in-vitro-generated EMT6-B suppressed CD4(+), CD8(+) and CD4(+)CD25(-) T-cell proliferation, and Th1 cytokine secretion, and also suppressed purified NK-cell proliferation in response to IL-15, compared to naive splenic B cells. Acquired B regulatory function required direct tumor cell: B-cell contact, and was partially reversed by antibody to TGF-β or PD-L1, leading to tumor rejection in vivo B-cell acquisition of a suppressive phenotype following tumor infiltration may result in profound inhibition of T-cell anti-tumor responses. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Suppression of deacetylase SIRT1 mediates tumor-suppressive NOTCH response and offers a novel treatment option in metastatic Ewing sarcoma.

    PubMed

    Ban, Jozef; Aryee, Dave N T; Fourtouna, Argyro; van der Ent, Wietske; Kauer, Max; Niedan, Stephan; Machado, Isidro; Rodriguez-Galindo, Carlos; Tirado, Oscar M; Schwentner, Raphaela; Picci, Piero; Flanagan, Adrienne M; Berg, Verena; Strauss, Sandra J; Scotlandi, Katia; Lawlor, Elizabeth R; Snaar-Jagalska, Ewa; Llombart-Bosch, Antonio; Kovar, Heinrich

    2014-11-15

    The developmental receptor NOTCH plays an important role in various human cancers as a consequence of oncogenic mutations. Here we describe a novel mechanism of NOTCH-induced tumor suppression involving modulation of the deacetylase SIRT1, providing a rationale for the use of SIRT1 inhibitors to treat cancers where this mechanism is inactivated because of SIRT1 overexpression. In Ewing sarcoma cells, NOTCH signaling is abrogated by the driver oncogene EWS-FLI1. Restoration of NOTCH signaling caused growth arrest due to activation of the NOTCH effector HEY1, directly suppressing SIRT1 and thereby activating p53. This mechanism of tumor suppression was validated in Ewing sarcoma cells, B-cell tumors, and human keratinocytes where NOTCH dysregulation has been implicated pathogenically. Notably, the SIRT1/2 inhibitor Tenovin-6 killed Ewing sarcoma cells in vitro and prohibited tumor growth and spread in an established xenograft model in zebrafish. Using immunohistochemistry to analyze primary tissue specimens, we found that high SIRT1 expression was associated with Ewing sarcoma metastasis and poor prognosis. Our findings suggest a mechanistic rationale for the use of SIRT1 inhibitors being developed to treat metastatic disease in patients with Ewing sarcoma. ©2014 American Association for Cancer Research.

  6. The Tumor Suppressive Effects of HPP1 Are Mediated Through JAK-STAT-Interferon Signaling Pathways

    PubMed Central

    Hernandez, Jonathan M.; Elahi, Abul; Clark, Whalen; Humphries, Leigh Ann; Wang, Jian; Achille, Alex; Seto, Ed

    2015-01-01

    HPP1, a novel tumor suppressive epidermal growth factor (EGF)-like ligand, mediates its effects through signal transducer and activators of transcription (STAT) activation. We previously demonstrated the importance of STAT1 activation for HPP1 function; however the contribution of STAT2 remains unclear. We sought to delineate the components of JAK-STAT-interferon (IFN) signaling specifically associated with HPP1s biological effects. Using stable HPP1-HCT116 transfectants, expression analyses were performed by polymerase chain reaction (PCR)/western blotting while expression knockdowns were achieved using siRNA. Growth parameters evaluated included proliferation, cell cycle distribution, and anchorage-independent growth. STAT dimerization, translocation, and DNA binding were examined by reporter assays, fluorescent microscopy, and chromatin immunoprecipitation (ChIP), respectively. Forced expression of HPP1 in colon cancer cell lines results in the upregulation of total and activated levels of STAT2. We have also determined that JAK1 and JAK2 are activated in response to HPP1 overexpression, and are necessary for subsequent STAT activation. Overexpression of HPP1 was associated with significant increases in STAT1:STAT1 (p=0.007) and STAT1:STAT2 (p=0.036) dimer formation, as well as subsequent nuclear translocation. By ChIP, binding of activated STAT1 and STAT2 to the interferon-signaling regulatory element promoter sites of the selected genes, protein kinase RNA-activated (PKR), IFI44, and OAS1 was demonstrated. STAT2 knockdown resulted in partial abrogation of HPP1s growth suppressive activity with increased proliferation (p<0.0001), reduced G1/G0 phase cell cycle fraction, and a restoration of growth potential in soft agar (p<0.01). Presumably as a consequence of upregulation of IFN signaling elements, HPP1 overexpression resulted in an acquisition of exogenous IFN sensitivity. Physiologic doses of IFN-α resulted in a significant reduction in proliferation (p<0

  7. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity.

    PubMed

    Faraji, Farhoud; Pang, Yanli; Walker, Renard C; Nieves Borges, Rosan; Yang, Li; Hunter, Kent W

    2012-09-01

    Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell-mediated immunity, which was partially phenocopied by depleting CD8(+) T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors.

  8. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression.

    PubMed

    Kong, Ruirui; Yi, Fengshuang; Wen, Pushuai; Liu, Jianghong; Chen, Xiaoping; Ren, Jinqi; Li, Xiaofei; Shang, Yulong; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Zhu, Li; Feng, Wei; Wu, Jane Y

    2015-11-03

    Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.

  9. MicroRNA-187 exerts tumor-suppressing functions in osteosarcoma by targeting ZEB2

    PubMed Central

    Fei, Dan; Zhao, Kunchi; Yuan, Hongping; Xing, Jie; Zhao, Dongxu

    2016-01-01

    MicroRNA-187 (miR-187) has been reported to be involved in the occurrence and development of several types of cancers; however, a role for miR-187 in osteosarcoma (OS) has not yet been reported. Here, miR-187 was found to be significantly downregulated in OS cell lines and tissue samples, and decreased miR-187 expression was shown to be correlated closely with the TNM stage and lymph node metastasis. miR-187 overexpression suppressed OS cell proliferation, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT). Mechanically, zinc finger E-box binding homeobox 2 (ZEB2) was shown to serve as a direct target of miR-187 in OS cells and the overexpression of ZEB2 rescued the miR-187-induced suppression of proliferation, colony formation, migration, and invasion in OS cells. In clinical OS specimens, ZEB2 expression levels were elevated and were inversely correlated with miR-187 expression. These results suggest that miR-187 functions as a tumor suppressor in OS, partially by targeting ZEB2, and that miR-187 can serve as a promising candidate for OS. PMID:28042505

  10. Brain tumor regulates neuromuscular synapse growth and endocytosis in Drosophila by suppressing mad expression.

    PubMed

    Shi, Wenwen; Chen, Yan; Gan, Guangming; Wang, Dan; Ren, Jinqi; Wang, Qifu; Xu, Zhiheng; Xie, Wei; Zhang, Yong Q

    2013-07-24

    The precise regulation of synaptic growth is critical for the proper formation and plasticity of functional neural circuits. Identification and characterization of factors that regulate synaptic growth and function have been under intensive investigation. Here we report that brain tumor (brat), which was identified as a translational repressor in multiple biological processes, plays a crucial role at Drosophila neuromuscular junction (NMJ) synapses. Immunohistochemical analysis demonstrated that brat mutants exhibited synaptic overgrowth characterized by excess satellite boutons at NMJ terminals, whereas electron microscopy revealed increased synaptic vesicle size but reduced density at active zones compared with wild-types. Spontaneous miniature excitatory junctional potential amplitudes were larger and evoked quantal content was lower at brat mutant NMJs. In agreement with the morphological and physiological phenotypes, loss of Brat resulted in reduced FM1-43 uptake at the NMJ terminals, indicating that brat regulates synaptic endocytosis. Genetic analysis revealed that the actions of Brat at synapses are mediated through mothers against decapentaplegic (Mad), the signal transduction effector of the bone morphogenetic protein (BMP) signaling pathway. Furthermore, biochemical analyses showed upregulated levels of Mad protein but normal mRNA levels in the larval brains of brat mutants, suggesting that Brat suppresses Mad translation. Consistently, knockdown of brat by RNA interference in Drosophila S2 cells also increased Mad protein level. These results together reveal an important and previously unidentified role for Brat in synaptic development and endocytosis mediated by suppression of BMP signaling.

  11. Kisspeptins (KiSS-1): essential players in suppressing tumor metastasis.

    PubMed

    Prabhu, Venugopal Vinod; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekharan

    2013-01-01

    Kisspeptins (KPs) encoded by the KiSS-1 gene are C-terminally amidated peptide products, including KP- 10, KP-13, KP-14 and KP-54, which are endogenous agonists for the G-protein coupled receptor-54 (GPR54). Functional analyses have demonstrated fundamental roles of KiSS-1 in whole body homeostasis including sexual differentiation of brain, action on sex steroids and metabolic regulation of fertility essential for human puberty and maintenance of adult reproduction. In addition, intensive recent investigations have provided substantial evidence suggesting roles of Kisspeptin signalling via its receptor GPR54 in the suppression of metastasis with a variety of cancers. The present review highlights the latest studies regarding the role of Kisspeptins and the KiSS-1 gene in tumor progression and also suggests targeting the KiSS-1/GPR54 system may represent a novel therapeutic approach for cancers. Further investigations are essential to elucidate the complex pathways regulated by the Kisspeptins and how these pathways might be involved in the suppression of metastasis across a range of cancers.

  12. Suppressive effects of tumor cell-derived 5′-deoxy-5′-methylthioadenosine on human T cells

    PubMed Central

    Henrich, Frederik C.; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D.; Limm, Katharina; Ritter, Axel P.; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Kreutz, Marina P.; Aigner, Michael; Mackensen, Andreas

    2016-01-01

    ABSTRACT The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5′-deoxy-5′-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting. PMID:27622058

  13. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  14. A widespread peroxiredoxin-like domain present in tumor suppression- and progression-implicated proteins.

    PubMed

    Pawłowski, Krzysztof; Muszewska, Anna; Lenart, Anna; Szczepińska, Teresa; Godzik, Adam; Grynberg, Marcin

    2010-10-21

    Peroxide turnover and signalling are involved in many biological phenomena relevant to human diseases. Yet, all the players and mechanisms involved in peroxide perception are not known. Elucidating very remote evolutionary relationships between proteins is an approach that allows the discovery of novel protein functions. Here, we start with three human proteins, SRPX, SRPX2 and CCDC80, involved in tumor suppression and progression, which possess a conserved region of similarity. Structure and function prediction allowed the definition of P-DUDES, a phylogenetically widespread, possibly ancient protein structural domain, common to vertebrates and many bacterial species. We show, using bioinformatics approaches, that the P-DUDES domain, surprisingly, adopts the thioredoxin-like (Thx-like) fold. A tentative, more detailed prediction of function is made, namely, that of a 2-Cys peroxiredoxin. Incidentally, consistent overexpression of all three human P-DUDES genes in two public glioblastoma microarray gene expression datasets was discovered. This finding is discussed in the context of the tumor suppressor role that has been ascribed to P-DUDES proteins in several studies. Majority of non-redundant P-DUDES proteins are found in marine metagenome, and among the bacterial species possessing this domain a trend for a higher proportion of aquatic species is observed. The new protein structural domain, now with a broad enzymatic function predicted, may become a drug target once its detailed molecular mechanism of action is understood in detail.

  15. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    PubMed

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  16. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis

    PubMed Central

    Ro, Seung-Hyun; Xue, Xiang; Ramakrishnan, Sadeesh K; Cho, Chun-Seok; Namkoong, Sim; Jang, Insook; Semple, Ian A; Ho, Allison; Park, Hwan-Woo; Shah, Yatrik M; Lee, Jun Hee

    2016-01-01

    The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53’s control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis. DOI: http://dx.doi.org/10.7554/eLife.12204.001 PMID:26913956

  17. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis.

    PubMed

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang

    2004-11-01

    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  18. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response.

    PubMed

    Kim, Oh Youn; Park, Hyun Taek; Dinh, Nhung Thi Hong; Choi, Seng Jin; Lee, Jaewook; Kim, Ji Hyun; Lee, Seung-Woo; Gho, Yong Song

    2017-09-20

    Gram-negative bacteria actively secrete outer membrane vesicles, spherical nano-meter-sized proteolipids enriched with outer membrane proteins, to the surroundings. Outer membrane vesicles have gained wide interests as non-living complex vaccines or delivery vehicles. However, no study has used outer membrane vesicles in treating cancer thus far. Here we investigate the potential of bacterial outer membrane vesicles as therapeutic agents to treat cancer via immunotherapy. Our results show remarkable capability of bacterial outer membrane vesicles to effectively induce long-term antitumor immune responses that can fully eradicate established tumors without notable adverse effects. Moreover, systematically administered bacterial outer membrane vesicles specifically target and accumulate in the tumor tissue, and subsequently induce the production of antitumor cytokines CXCL10 and interferon-γ. This antitumor effect is interferon-γ dependent, as interferon-γ-deficient mice could not induce such outer membrane vesicle-mediated immune response. Together, our results herein demonstrate the potential of bacterial outer membrane vesicles as effective immunotherapeutic agent that can treat various cancers without apparent adverse effects.Bacterial outer membrane vesicles (OMVs) contain immunogens but no study has yet examined their potential in treating cancer. Here, the authors demonstrate that OMVs can suppress established tumours and prevent tumour metastasis by an interferon-γ mediated antitumor response.

  19. A widespread peroxiredoxin-like domain present in tumor suppression- and progression-implicated proteins

    PubMed Central

    2010-01-01

    Background Peroxide turnover and signalling are involved in many biological phenomena relevant to human diseases. Yet, all the players and mechanisms involved in peroxide perception are not known. Elucidating very remote evolutionary relationships between proteins is an approach that allows the discovery of novel protein functions. Here, we start with three human proteins, SRPX, SRPX2 and CCDC80, involved in tumor suppression and progression, which possess a conserved region of similarity. Structure and function prediction allowed the definition of P-DUDES, a phylogenetically widespread, possibly ancient protein structural domain, common to vertebrates and many bacterial species. Results We show, using bioinformatics approaches, that the P-DUDES domain, surprisingly, adopts the thioredoxin-like (Thx-like) fold. A tentative, more detailed prediction of function is made, namely, that of a 2-Cys peroxiredoxin. Incidentally, consistent overexpression of all three human P-DUDES genes in two public glioblastoma microarray gene expression datasets was discovered. This finding is discussed in the context of the tumor suppressor role that has been ascribed to P-DUDES proteins in several studies. Majority of non-redundant P-DUDES proteins are found in marine metagenome, and among the bacterial species possessing this domain a trend for a higher proportion of aquatic species is observed. Conclusions The new protein structural domain, now with a broad enzymatic function predicted, may become a drug target once its detailed molecular mechanism of action is understood in detail. PMID:20964819

  20. HPV/E7 induces chemotherapy-mediated tumor suppression by ceramide-dependent mitophagy.

    PubMed

    Thomas, Raquela J; Oleinik, Natalia; Panneer Selvam, Shanmugam; Vaena, Silvia G; Dany, Mohammed; Nganga, Rose N; Depalma, Ryan; Baron, Kyla D; Kim, Jisun; Szulc, Zdzislaw M; Ogretmen, Besim

    2017-08-01

    Human papillomavirus (HPV) infection is linked to improved survival in response to chemo-radiotherapy for patients with oropharynx head and neck squamous cell carcinoma (HNSCC). However, mechanisms involved in increased HNSCC cell death by HPV signaling in response to therapy are largely unknown. Here, using molecular, pharmacologic and genetic tools, we show that HPV early protein 7 (E7) enhances ceramide-mediated lethal mitophagy in response to chemotherapy-induced cellular stress in HPV-positive HNSCC cells by selectively targeting retinoblastoma protein (RB). Inhibition of RB by HPV-E7 relieves E2F5, which then associates with DRP1, providing a scaffolding platform for Drp1 activation and mitochondrial translocation, leading to mitochondrial fission and increased lethal mitophagy. Ectopic expression of a constitutively active mutant RB, which is not inhibited by HPV-E7, attenuated ceramide-dependent mitophagy and cell death in HPV(+) HNSCC cells. Moreover, mutation of E2F5 to prevent Drp1 activation inhibited mitophagy in HPV(+) cells. Activation of Drp1 with E2F5-mimetic peptide for inducing Drp1 mitochondrial localization enhanced ceramide-mediated mitophagy and led to tumor suppression in HPV-negative HNSCC-derived xenograft tumors in response to cisplatin in SCID mice. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. A Multikinase and DNA-PK Inhibitor Combination Immunomodulates Melanomas, Suppresses Tumor Progression, and Enhances Immunotherapies.

    PubMed

    Tsai, Alexander K; Khan, Asra Y; Worgo, Christina E; Wang, Lucy L; Liang, Yuanyuan; Davila, Eduardo

    2017-09-01

    Combination therapies have the potential to improve outcomes in melanoma patients but have not yet been clinically efficacious. Here, we used high-throughput flow cytometry-based screening to identify and characterize candidate therapies that might synergize with and augment T-cell immunotherapy efficacy. Two lead therapies, regorafenib (Reg) and NU7441, were selected based on their ability to alter a variety of immunomodulatory proteins, including CD55, CD73, CD155, programmed death-ligand 1 (PD-L1), nerve growth factor receptor (NGFR), and HLA class I in a heterogeneous panel of melanomas. The therapies also upregulated several melanoma antigens, inhibited proliferation, and perturbed activation of oncogenic signaling pathways in melanomas. T cells treated with the therapies proliferated normally and exhibited a favorably altered phenotype, including increased CD25, CD28, inducible T-cell costimulator (ICOS), and reduced expression of coinhibitory receptors. Cytokine production was also increased in treated T cells. When administered in mice, REg suppressed melanoma progression in a CD8(+) T cell-dependent manner when used alone and with various immunotherapies. Additionally, Reg altered the number, phenotype, and function of various T-cell subsets in the tumor microenvironment. These studies reveal that Reg and NU7441 influence the immunobiology of both tumor cells and T cells and enhance the efficacy of various immunotherapies. Cancer Immunol Res; 5(9); 790-803. ©2017 AACR. ©2017 American Association for Cancer Research.

  2. NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma.

    PubMed

    Zhai, Z; Liu, W; Kaur, M; Luo, Y; Domenico, J; Samson, J M; Shellman, Y G; Norris, D A; Dinarello, C A; Spritz, R A; Fujita, M

    2017-03-06

    Inflammasomes are mediators of inflammation, and constitutively activated NLRP3 inflammasomes have been linked to interleukin-1β (IL-1β)-mediated tumorigenesis in human melanoma. Whereas NLRP3 regulation of caspase-1 activation requires the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), caspase-1 activation by another danger-signaling sensor NLRP1 does not require ASC because NLRP1 contains a C-terminal CARD domain that facilitates direct caspase-1 activation via CARD-CARD interaction. We hypothesized that NLRP1 has additional biological activities besides IL-1β maturation and investigated its role in melanoma tumorigenesis. NLRP1 expression in melanoma was confirmed by analysis of 216 melanoma tumors and 13 human melanoma cell lines. Unlike monocytic THP-1 cells with prominent nuclear localization of NLRP1, melanoma cells expressed NLRP1 mainly in the cytoplasm. Knocking down NLRP1 revealed a tumor-promoting property of NLRP1 both in vitro and in vivo. Mechanistic studies showed that caspase-1 activity, IL-1β production, IL-1β secretion and nuclear factor-kB activity were reduced by knocking down of NLRP1 in human metastatic melanoma cell lines 1205Lu and HS294T, indicating that NLRP1 inflammasomes are active in metastatic melanoma. However, unlike previous reports showing that NLRP1 enhances pyroptosis in macrophages, NLRP1 in melanoma behaved differently in the context of cell death. Knocking down NLRP1 increased caspase-2, -9 and -3/7 activities and promoted apoptosis in human melanoma cells. Immunoprecipitation revealed interaction of NLRP1 with CARD-containing caspase-2 and -9, whereas NLRP3 lacking a CARD motif did not interact with the caspases. Consistent with these findings, NLRP1 activation but not NLRP3 activation reduced caspase-2, -9 and -3/7 activities and provided protection against apoptosis in human melanoma cells, suggesting a suppressive role of NLRP1 in caspase-3/7 activation

  3. 5α-Reductase Inhibition Suppresses Testosterone-Induced Initial Regrowth of Regressed Xenograft Prostate Tumors in Animal Models

    PubMed Central

    Masoodi, Khalid Z.; Ramos Garcia, Raquel; Pascal, Laura E.; Wang, Yujuan; Ma, Hei M.; O'Malley, Katherine; Eisermann, Kurtis; Shevrin, Daniel H.; Nguyen, Holly M.; Vessella, Robert L.; Nelson, Joel B.; Parikh, Rahul A.

    2013-01-01

    Androgen deprivation therapy (ADT) is the standard treatment for patients with prostate-specific antigen progression after treatment for localized prostate cancer. An alternative to continuous ADT is intermittent ADT (IADT), which allows recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor. IADT offers patients a reduction in side effects associated with ADT, improved quality of life, and reduced cost with no difference in overall survival. Our previous studies showed that IADT coupled with 5α-reductase inhibitor (5ARI), which blocks testosterone conversion to DHT could prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was fixed. To further investigate this clinically relevant observation, we measured the time course of testosterone-induced regrowth of regressed LuCaP35 and LNCaP xenograft tumors in the presence or absence of a 5ARI. 5α-Reductase inhibitors suppressed the initial regrowth of regressed prostate tumors. However, tumors resumed growth and were no longer responsive to 5α-reductase inhibition several days after testosterone replacement. This finding was substantiated by bromodeoxyuridine and Ki67 staining of LuCaP35 tumors, which showed inhibition of prostate tumor cell proliferation by 5ARI on day 2, but not day 14, after testosterone replacement. 5α-Reductase inhibitors also suppressed testosterone-stimulated proliferation of LNCaP cells precultured in androgen-free media, suggesting that blocking testosterone conversion to DHT can inhibit prostate tumor cell proliferation via an intracrine mechanism. These results suggest that short off-cycle coupled with 5α-reductase inhibition could maximize suppression of prostate tumor growth and, thus, improve potential survival benefit achieved in combination with IADT. PMID:23671262

  4. Tumor-suppressive effects of natural-type interferon-β through CXCL10 in melanoma

    SciTech Connect

    Kobayashi, Hikaru; Nobeyama, Yoshimasa Nakagawa, Hidemi

    2015-08-21

    Introduction: Type 1 interferon is in widespread use as adjuvant therapy to inhibit melanoma progression. Considering the tumor-suppressive effects of local administration of interferon-β (IFN-β) on lymphatic metastasis, the present study was conducted to identify melanoma-suppressive molecules that are up-regulated by IFN-β treatment of lymphatic endothelial cells. Materials and methods: Lymphatic endothelial cells, fibroblasts, and melanoma cells were treated with natural-type IFN-β, and melanoma cells were treated with CXCL10. Genome-wide oligonucleotide microarray analysis was performed using lymphatic endothelial cells with or without IFN-β treatment. Quantitative real-time reverse transcription-PCR and an enzyme-linked immunosorbent assay were performed to examine CXCL10 expression. A proliferation assay was performed to examine the effects of IFN-β and CXCL10 in melanoma cells. Results: Genome-wide microarray analyses detected CXCL10 as a gene encoding a secretory protein that was up-regulated by IFN-β in lymphatic endothelial cells. IFN-β treatment significantly induced CXCL10 in dermal lymphatic endothelial cells and melanoma cells that are highly sensitive to IFN-β. CXCL10 reduced melanoma cell proliferation in IFN-β-sensitive cells as well as resistant cells. Melanoma cells in which CXCL10 was knocked down were sensitive to IFN-β. CXCR3-B, which encodes the CXCL10 receptor, was up-regulated in melanoma cells with high sensitivity to IFN-β and down-regulated in melanoma cells with medium to low sensitivity. Conclusions: Our data suggest that IFN-β suppresses proliferation and metastasis from the local lymphatic system and melanoma cells via CXCL10. Down-regulation of CXCR3-B by IFN-β may be associated with resistance to IFN-β. - Highlights: • We search melanoma-suppressive molecules induced by IFN-β. • IFN-β induces a high amount of CXCL10 from lymphatic endothelial cells. • CXCL10 induction level in melanoma cells is correlated

  5. hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip

    SciTech Connect

    Shin, Ki-Hyuk Kim, Reuben H.; Kim, Roy H.; Kang, Mo K.; Park, No-Hee

    2008-08-08

    Heterogeneous nuclear ribonuclearproteins (hnRNPs) are nucleic acid-binding proteins and have critical roles in DNA repair, telomere regulation, and transcriptional gene regulation. Previously, we showed that hnRNP G has tumor-suppressive activity in human oral squamous cell carcinoma cells. Therefore, the identification of hnRNP G target genes is important for understanding the function of hnRNP G and its tumor-suppressive activity. In this study, we identify a known tumor suppressor gene, thioredoxin-interacting protein (Txnip) gene as a novel target of hnRNP G. Expression of Txnip is upregulated by wild-type (wt) hnRNP G but not by a suppression-defective mutant hnRNP G (K22R) in human squamous cell carcinoma. Wt hnRNP G binds and transactivates the Txnip promoter in vivo, whereas the K22R mutant does not. Furthermore, overexpression of Txnip alone in cancer cells leads to the inhibition of anchorage-independent growth and in vivo tumorigenicity in immunocompromised mice, suggesting a reversion of the transformation phenotype. These studies indicate that hnRNP G promotes the expression of Txnip and mediates its tumor-suppressive effect.

  6. Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion.

    PubMed

    Nguyen, Minh Phuong; Lee, Dongjin; Lee, Se-Hyung; Lee, Hye-Eun; Lee, Ho-Young; Lee, You Mie

    2015-06-30

    Deguelin is a nature-derived chemopreventive drug. Endothelial progenitor cells (EPCs) are bone-marrow (BM)-derived key components to induce new blood vessels in early tumorigenesis and metastasis. Here we determined whether deguelin inhibits EPC function in vitro and in vivo at doses not affecting cancer cell apoptosis. Deguelin significantly reduced the number of EPC colony forming units of BM-derived c-kit+/sca-1+ mononuclear cells (MNCs), proliferation, migration, and adhesion to endothelial cell monolayers, and suppressed incorporation of EPC into tube-like vessel networks when co-cultured with endothelial cells. Deguelin caused cell cycle arrest at G1 without induction of apoptosis in EPC. In a mouse tumor xenograft model, tumor growth, lung metastasis and tumor-induced circulating EPCs were supressed by deguelin treatment (2 mg/kg). In mice tranplanted with GFP-expressing BM-MNCs, deguelin reduced the co-localization of CD31 and GFP, suggesting suppression of BM-derived EPC incoporation into tumor vessels. Interestingly, focal adhesion kinase (FAK)-integrin-linked kinase (ILK) activation and actin polymerization were repressed by deguelin. Decreased number of focal adhesions and a depolarized morphology was found in deguelin-treated EPCs. Taken together, our results suggest that the deguelin inhibits tumorigenesis and metastasis via EPC suppression and that suppression of focal adhesion by FAK-integrin-ILK-dependent actin remodeling is a key underlying molecular mechanism.

  7. ‘Obligate’ anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice

    PubMed Central

    Li, Chang-Xian; Yu, Bin; Shi, Lei; Geng, Wei; Lin, Qiu-Bin; Ling, Chang-Chun; Yang, Mei; Ng, Kevin T. P.; Huang, Jian-Dong; Man, Kwan

    2017-01-01

    The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed ‘obligate’ anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro, MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death. PMID:28123538

  8. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  9. Benzyl isothiocyanate suppresses high-fat diet-stimulated mammary tumor progression via the alteration of tumor microenvironments in obesity-resistant BALB/c mice.

    PubMed

    Kim, Minhee; Cho, Han Jin; Kwon, Gyoo Taik; Kang, Young-Hee; Kwon, Seung-Hae; Her, Song; Park, Taesung; Kim, Yongkang; Kee, Yun; Park, Jung Han Yoon

    2015-01-01

    We previously reported that a high-fat diet (HFD) and M2-macrophages induce changes in tumor microenvironments and stimulate tumor growth and metastasis of 4T1 mammary cancer cells in BALB/c mice. In this study, we attempted to determine whether benzyl isothiocyanate (BITC) inhibits HFD-induced changes in tumor progression and in tumor microenvironments. Four groups of female BALB/c mice (4-week-old) were fed on a control diet (CD, 10 kcal% fat) and HFD (60 kcal% fat) containing BITC (0, 25, or 100 mg/kg diet) for 20 weeks. Following 16 weeks of feeding, 4T1 cells (5×10(4) cells) were injected into the mammary fat pads, and animals were killed 30 d after the injection. HFD feeding increased solid tumor growth and the number of tumor nodules in the lung and liver, as compared to the CD group, and these increases were inhibited by BITC supplementation. The number of lipid vacuoles, CD45+ leukocytes and CD206+ M2-macrophages, expression of Ki67, levels of cytokines/chemokines, including macrophage-colony stimulating factor (M-CSF) and monocyte chemoattractant protein-1, and mRNA levels of F4/80, CD86, Ym1, CD163, CCR2, and M-CSF receptor were increased in the tumor tissues of HFD-fed mice, and these increases were inhibited by BITC supplementation. In vitro culture results demonstrated that BITC inhibited macrophage migration as well as lipid droplet accumulation in 3T3-L1 cells. These results suggest that suppression of lipid accumulation and macrophage infiltration in tumor tissues may be one of the mechanisms by which BITC suppresses tumor progression in HFD-fed mice. © 2014 Wiley Periodicals, Inc.

  10. miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1.

    PubMed

    Zhao, Yiling; Yang, Fenghua; Li, Wenyuan; Xu, Chunyan; Li, Li; Chen, Lifei; Liu, Yancui; Sun, Ping

    2017-02-01

    Tumor necrosis factor receptor 1 is the main receptor mediating many tumor necrosis factor-alpha-induced cellular events. Some studies have shown that tumor necrosis factor receptor 1 promotes tumorigenesis by activating nuclear factor-kappa B signaling pathway, while other studies have confirmed that tumor necrosis factor receptor 1 plays an inhibitory role in tumors growth by inducing apoptosis in breast cancer. Therefore, the function of tumor necrosis factor receptor 1 in breast cancer requires clarification. In this study, we first found that tumor necrosis factor receptor 1 was significantly increased in human breast cancer tissues and cell lines, and knockdown of tumor necrosis factor receptor 1 by small interfering RNA inhibited cell proliferation by arresting the cell cycle and inducing apoptosis. In addition, miR-29a was predicted as a regulator of tumor necrosis factor receptor 1 by TargetScan and was shown to be inversely correlated with tumor necrosis factor receptor 1 expression in human breast cancer tissues and cell lines. Luciferase reporter assay further confirmed that miR-29a negatively regulated tumor necrosis factor receptor 1 expression by binding to the 3' untranslated region. In our functional study, miR-29a overexpression remarkably suppressed cell proliferation and colony formation, arrested the cell cycle, and induced apoptosis in MCF-7 cell. Furthermore, in combination with tumor necrosis factor receptor 1 transfection, miR-29a significantly reversed the oncogenic role caused by tumor necrosis factor receptor 1 in MCF-7 cell. In addition, we demonstrated that miR-29a suppressed MCF-7 cell growth by inactivating the nuclear factor-kappa B signaling pathway and by decreasing cyclinD1 and Bcl-2/Bax protein levels. Taken together, our results suggest that miR-29a is an important regulator of tumor necrosis factor receptor 1 expression in breast cancer and functions as a tumor suppressor by targeting tumor necrosis factor receptor 1 to

  11. Tumor necrosis factor α accelerates Hep-2 cells proliferation by suppressing TRPP2 expression.

    PubMed

    Wu, Jing; Guo, Jizheng; Yang, Yunyun; Jiang, Feifei; Chen, Shuo; Wu, Kaile; Shen, Bing; Liu, Yehai; Du, Juan

    2017-06-29

    TRPP2, a Ca(2+)-permeable non-selective cation channel, has been shown to negatively regulate cell cycle, but the mechanism underlying this regulation is unknown. Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine extensively involved in immune system regulation, cell proliferation and cell survival. However, the effects and mechanisms for the role of TNF-α in laryngeal cancer remain unclear. Here, we demonstrated using western blot analyses and intracellular Ca(2+) concentration measurements that TNF-α treatment suppressed both TRPP2 expression and ATP-induced Ca(2+) release in a laryngeal cancer cell line (Hep-2). Knockdown of TRPP2 by a specific siRNA significantly decreased ATP-induced Ca(2+) release and abolished the effect of TNF-α on the ATP-induced Ca(2+) release. TNF-α treatment also enhanced Hep-2 cell proliferation and growth, as determined using cell counting and flow cytometry cell cycle assays. Moreover, TNF-α treatment down-regulated phosphorylated protein kinase R-like endoplasmic reticulum kinase (p-PERK) and phosphorylated eukaryotic translation initiation factor (p-eIF2α) expression levels, without affecting PERK and eIF2α expression levels in Hep-2 cells. We concluded that suppressing TRPP2 expression and TRPP2-mediated Ca(2+) signaling may be one mechanism underlying TNF-α-enhanced Hep-2 cell proliferation. These results offer new insights into the mechanisms of TNF-α-mediated laryngeal cancer cell proliferation, and provide evidences showing a potential role of TNF-α in the development of laryngeal cancer.

  12. Systemic Delivery of Salmonella Typhimurium Transformed with IDO shRNA Enhances Intratumoral Vector Colonization and Suppresses Tumor Growth

    PubMed Central

    Blache, Celine A.; Manuel, Edwin R.; Kaltcheva, Teodora I.; Wong, Andrea N.; Ellenhorn, Joshua D.I.; Blazar, Bruce R.; Diamond, Don J.

    2012-01-01

    Generating antitumor responses through the inhibition of tumor-derived immune suppression represents a promising strategy in the development of cancer immunotherapeutics. Here we present a strategy incorporating delivery of the bacterium Salmonella typhimurium (ST), naturally tropic for the hypoxic tumor environment, transformed with an shRNA plasmid against the immunosuppressive molecule indoleamine 2,3-dioxygenase 1 (shIDO). When systemically delivered into mice, shIDO silences host IDO expression and leads to massive intratumoral cell death that is associated with significant tumor infiltration by polymorphonuclear neutrophils (PMNs). shIDO-ST treatment causes tumor cell death independently of host IDO and adaptive immunity, which may have important implications for use in immunosuppressed cancer patients. Further, shIDO-ST treatment increases reactive oxygen species (ROS) produced by infiltrating PMNs and conversely, PMN immunodepletion abrogates tumor control. Silencing of host IDO significantly enhances ST colonization, suggesting that IDO expression within the tumor controls the immune response to ST. In summary, we present a novel approach to cancer treatment that involves the specific silencing of tumor-derived IDO that allows for the recruitment of ROS-producing PMNs, which may act primarily to clear ST infection, but in the process, also induces apoptosis of surrounding tumor tissue resulting in a vigorous anti-tumor effect. PMID:23090116

  13. Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity.

    PubMed

    Kaimala, Suneesh; Mohamed, Yassir A; Nader, Nancy; Issac, Jincy; Elkord, Eyad; Chouaib, Salem; Fernandez-Cabezudo, Maria J; Al-Ramadi, Basel K

    2014-06-01

    The effectiveness of attenuated Salmonella in inhibiting tumor growth has been demonstrated in many therapeutic models, but the precise mechanisms remain incompletely understood. In this study, we show that the anti-tumor capacity of Salmonella depends on a functional MyD88-TLR pathway and is independent of adaptive immune responses. Since myeloid suppressor cells play a critical role in tumor growth, we investigated the consequences of Salmonella treatment on myeloid cell recruitment, phenotypic characteristics, and functional activation in spleen and tumor tissue of B16.F1 melanoma-bearing mice. Salmonella treatment led to increased accumulation of splenic and intratumoral CD11b(+)Gr-1(+) myeloid cells, exhibiting significantly increased expression of various activation markers such as MHC class II, costimulatory molecules, and Sca-1/Ly6A proteins. Gene expression analysis showed that Salmonella treatment induced expression of iNOS, arginase-1 (ARG1), and IFN-γ in the spleen, but down-regulated IL-4 and TGF-β. Within the tumor, expression of iNOS, IFN-γ, and S100A9 was markedly increased, but ARG1, IL-4, TGF-β, and VEGF were inhibited. Functionally, splenic CD11b(+) cells maintained their suppressive capacity following Salmonella treatment, but intratumoral myeloid cells had significantly reduced suppressive capacity. Our findings demonstrate that administration of attenuated Salmonella leads to phenotypic and functional maturation of intratumoral myeloid cells making them less suppressive and hence enhancing the host's anti-tumor immune response. Modalities that inhibit myeloid suppressor cells may be useful adjuncts in cancer immunotherapy.

  14. Human tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular carcinoma metastasis through inhibiting Rac1

    PubMed Central

    2013-01-01

    Background Tumor invasion and metastasis are the major reasons for leading death of patients with hepatocellular carcinoma (HCC). Therefore, to identify molecules that can suppress invasion and metastasis of tumor will provide novel targets for HCC therapies. Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2, TIPE2, is a novel immune negative molecule and an inhibitor of the oncogenic Ras in mice but its function in human is unclear. Our previous research has shown that TIPE2 is downregulated in human primary HCC compared with the paired adjacent non-tumor tissues. Results In present study, we provide evidence that TIPE2 inhibits effectively human hepatocellular carcinoma metastasis. The forced expression of TIPE2 in HCC-derived cell lines markedly inhibits tumor cell growth, migration and invasion in vitro and suppresses growth and metastasis of HCC in vivo. Clinical information from a cohort of 112 patients reveals that loss or reduced expression of TIPE2 in primary HCC tissues is significantly associated with tumor metastasis. Mechanically, TIPE2 inhibits the migration and invasion through targeting Rac1 and then reduces F-actin polymerization and expression of matrix metallopeptidase 9 (MMP9) and urokinase plasminogen activator (uPA). Conclusion Our results indicate that human TIPE2 is endogenous inhibitor of Rac1 in HCC by which it attenuates invasion and metastasis of HCC. The data suggest that TIPE2 will be a new target for HCC therapy. PMID:24274578

  15. Daikenchuto (TU-100) Suppresses Tumor Development in the Azoxymethane and APC(min/+) Mouse Models of Experimental Colon Cancer.

    PubMed

    Hasebe, Takumu; Matsukawa, Jun; Ringus, Daina; Miyoshi, Jun; Hart, John; Kaneko, Atsushi; Yamamoto, Masahiro; Kono, Toru; Fujiya, Mikihiro; Kohgo, Yutaka; Wang, Chong-Zi; Yuan, Chun-Su; Bissonnette, Marc; Musch, Mark W; Chang, Eugene B

    2017-01-01

    Chemopreventative properties of traditional medicines and underlying mechanisms of action are incompletely investigated. This study demonstrates that dietary daikenchuto (TU-100), comprised of ginger, ginseng, and Japanese pepper effectively suppresses intestinal tumor development and progression in the azoxymethane (AOM) and APC(min/+) mouse models. For the AOM model, TU-100 was provided after the first of six biweekly AOM injections. Mice were sacrificed at 30 weeks. APC(min/+) mice were fed diet without or with TU-100 starting at 6 weeks, and sacrificed at 24 weeks. In both models, dietary TU-100 decreased tumor size. In APC (min/+) mice, the number of small intestinal tumors was significantly decreased. In the AOM model, both TU-100 and Japanese ginseng decreased colon tumor numbers. Decreased Ki-67 and β-catenin immunostaining and activation of numerous transduction pathways involved in tumor initiation and progression were observed. EGF receptor expression and stimulation/phosphorylation in vitro were investigated in C2BBe1 cells. TU-100, ginger, and 6-gingerol suppressed EGF receptor induced Akt activation. TU-100 and ginseng and to a lesser extent ginger or 6-gingerol inhibited EGF ERK1/2 activation. TU-100 and some of its components and metabolites of these components inhibit tumor progression in two mouse models of colon cancer by blocking downstream pathways of EGF receptor activation. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Thyroid-Stimulating Hormone Suppression for Protection Against Hypothyroidism Due to Craniospinal Irradiation for Childhood Medulloblastoma/Primitive Neuroectodermal Tumor

    SciTech Connect

    Massimino, Maura Gandola, Lorenza; Collini, Paola; Seregni, Ettore; Marchiano, Alfonso; Serra, Annalisa; Pignoli, Emanuele Ph.D.; Spreafico, Filippo; Pallotti, Federica; Terenziani, Monica; Biassoni, Veronica; Bombardieri, Emilio; Fossati-Bellani, Franca

    2007-10-01

    Purpose: Hypothyroidism is one of the earliest endocrine effects of craniospinal irradiation (CSI). The effects of radiation also depend on circulating thyroid-stimulating hormone (TSH), which acts as an indicator of thyrocyte function and is the most sensitive marker of thyroid damage. Hence, our study was launched in 1998 to evaluate the protective effect of TSH suppression during CSI for medulloblastoma/primitive neuroectodermal tumor. Patients and Methods: From Jan 1998 to Feb 2001, a total of 37 euthyroid children scheduled for CSI for medulloblastoma/primitive neuroectodermal tumor underwent thyroid ultrasound and free triiodothyronine (FT3), free thyroxine (FT4), and TSH evaluation at the beginning and end of CSI. From 14 days before and up to the end of CSI, patients were administered L-thyroxine at suppressive doses; every 3 days, TSH suppression was checked to ensure a value <0.3 {mu}M/ml. During follow-up, blood tests and ultrasound were repeated after 1 year; primary hypothyroidism was considered an increased TSH level greater than normal range. CSI was done using a hyperfractionated accelerated technique with total doses ranging from 20.8-39 Gy; models were used to evaluate doses received by the thyroid bed. Results: Of 37 patients, 25 were alive a median 7 years after CSI. They were well matched for all clinical features, except that eight children underwent adequate TSH suppression during CSI, whereas 17 did not. Hypothyroidism-free survival rates were 70% for the 'adequately TSH-suppressed' group and 20% for the 'inadequately TSH-suppressed' group (p = 0.02). Conclusions: Thyroid-stimulating hormone suppression with L-thyroxine had a protective effect on thyroid function at long-term follow-up. This is the first demonstration that transient endocrine suppression of thyroid activity may protect against radiation-induced functional damage.

  17. Sulindac inhibits tumor cell invasion by suppressing NF-κB mediated transcription of microRNAs

    PubMed Central

    Li, Xiaobo; Gao, Lin; Cui, Qinghua; Gary, Bernard D.; Dyess, Donna Lynn; Taylor, William; Shevde-Samant, Lalita R.; Samant, Rajeev S.; Dean-Colomb, Windy; Piazza, Gary A.; Xi, Yaguang

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely reported to display strong efficacy for cancer chemoprevention, although their mechanism of action is poorly understood. The most well documented effects of NSAIDs include inhibition of tumor cell proliferation and induction of apoptosis, but their effect on tumor cell invasion has not been well studied. Here we show that the NSAID, sulindac sulfide (SS) can potently inhibit the invasion of human MDA-MB-231 breast and HCT116 colon tumor cells in vitro at concentrations less than those required to inhibit tumor cell growth. To study the molecular basis for this activity, we investigated the involvement of microRNA (miRNA). A total of 132 miRNAs were found to be altered in response to SS treatment including miR-10b, miR-17, miR-21, and miR-9, which have been previously implicated in tumor invasion and metastasis. We confirmed that these miRNA can stimulate tumor cell invasion and show that SS can attenuate their invasive effects by down-regulating their expression. Employing luciferase and chromatin immunoprecipitation assays, NF-κB was found to bind the promoters of all four miRNAs to suppress their expression at the transcriptional level. We show that SS can inhibit the translocation of NF-κB to the nucleus by decreasing the phosphorylation of IKKβ and IκB. Analysis of the promoter sequences of the miRNAs suppressed by SS revealed that 81 of 115 sequences contained NF-κB binding sites. These results show that SS can inhibit tumor cell invasion by suppressing NF-κB mediated transcription of miRNAs. PMID:22286762

  18. Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways.

    PubMed

    Shen, Aling; Lin, Jiumao; Chen, Youqin; Lin, Wei; Liu, Liya; Hong, Zhenfeng; Sferra, Thomas J; Peng, Jun

    2013-10-01

    Angiogenesis plays an essential role in cancer progression, which therefore has become an attractive target for anticancer treatment. Tumor angiogenesis is tightly regulated by multiple signaling pathways that usually function redundantly; in addition, crosstalk between these pathways forms a complicated network that is regulated by compensatory mechanisms. Given the complexity of pathogenic mechanisms underlying tumor angiogenesis, most currently used angiogenesis inhibitors that only target single pathways may be insufficient and probably generate drug resistance, thus, increasing the necessity for development of novel anticancer agents. Traditional Chinese medicines (TCM) are receiving great interest since they have relatively fewer side-effects and have been used for thousands of years to clinically treat various types of diseases including cancer. Pien Tze Huang (PZH), a well-known traditional Chinese formulation that was first prescribed 450 years ago, has long been used as an alternative remedy for cancers. However, the precise mechanism of PZH's anticancer activity remains to be further elucidated. Using a colorectal cancer mouse xenograft model, in the present study, we evaluated the effect of PZH on tumor angiogenesis and investigated the underlying molecular mechanisms. We found that PZH inhibited tumor growth since PZH treatment resulted in decrease in both tumor volume and tumor weight in CRC mice. In addition, PZH suppressed the activation of several signaling pathways such as STAT3, Akt and MAPKs. Consequently, the inhibitory effect of PZH on these pathways resulted in the inhibition of tumor angiogenesis as demonstrated by the decrease of microvessel density in tumor tissues. Moreover, PZH treatment reduced the expression of angiogenic factors including iNOS, eNOS, VEGF-A, bFGF as well as their specific receptors VEGFR2 and bFGFR. Altogether, our findings suggest that inhibition of tumor angiogenesis via suppression of multiple signaling pathways

  19. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone

    PubMed Central

    Gustafson, Michael P.; Lin, Yi; New, Kent C.; Bulur, Peggy A.; O'Neill, Brian Patrick; Gastineau, Dennis A.; Dietz, Allan B.

    2010-01-01

    Patients with glioblastoma (GBM) exhibit profound systemic immune defects that affect the success of conventional and immune-based treatments. A better understanding of the contribution of the tumor and/or therapy on systemic immune suppression is necessary for improved therapies, to monitor negative effects of novel treatments, to improve patient outcomes, and to increase understanding of this complex system. To characterize the immune profile of GBM patients, we phenotyped peripheral blood and compared these to normal donors. In doing so, we identified changes in systemic immunity associated with both the tumor and dexamethasone treated tumor bearing patients. In particular, dexamethasone exacerbated tumor associated lymphopenia primarily in the T cell compartment. We have also identified unique tumor and dexamethasone dependent altered monocyte phenotypes. The major population of altered monocytes (CD14+HLA-DRlo/neg) had a phenotype distinct from classical myeloid suppressor cells. These cells inhibited T cell proliferation, were unable to fully differentiate into mature dendritic cells, were associated with dexamethasone-mediated changes in CCL2 levels, and could be re-created in vitro using tumor supernatants. We provide evidence that tumors express high levels of CCL2, can contain high numbers of CD14+ cells, that tumor supernatants can transform CD14+HLA-DR+ cells into CD14+HLA-DRlo/neg immune suppressors, and that dexamethasone reduces CCL2 in vitro and is correlated with reduction of CCL2 in vivo. Consequently, we have developed a model for tumor mediated systemic immune suppression via recruitment and transformation of CD14+ cells. PMID:20179016

  20. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  1. Myristica fragrans Suppresses Tumor Growth and Metabolism by Inhibiting Lactate Dehydrogenase A.

    PubMed

    Kim, Eun-Yeong; Choi, Hee-Jung; Park, Mi-Ju; Jung, Yeon-Seop; Lee, Syng-Ook; Kim, Keuk-Jun; Choi, Jung-Hye; Chung, Tae-Wook; Ha, Ki-Tae

    2016-01-01

    Most cancer cells predominantly produce ATP by maintaining a high rate of lactate fermentation, rather than by maintaining a comparatively low rate of tricarboxylic acid cycle, i.e., Warburg's effect. In the pathway, the pyruvate produced by glycolysis is converted to lactic acid by lactate dehydrogenase (LDH). Here, we demonstrated that water extracts from the seeds of Myristica fragrans Houtt. (MF) inhibit the in vitro enzymatic activity of LDH. MF effectively suppressed cell growth and the overall Warburg effect in HT29 human colon cancer cells. Although the expression of LDH-A was not changed by MF, both lactate production and LDH activity were decreased in MF-treated cells under both normoxic and hypoxic conditions. In addition, intracellular ATP levels were also decreased by MF treatment, and the uptake of glucose was also reduced by MF treatment. Furthermore, the experiment on tumor growth in the in vivo mice model revealed that MF effectively reduced the growth of allotransplanted Lewis lung carcinoma cells. Taken together, these results suggest that MF effectively inhibits cancer growth and metabolism by inhibiting the activity of LDH, a major enzyme responsible for regulating cancer metabolism. These results implicate MF as a potential candidate for development into a novel drug against cancer through inhibition of LDH activity.

  2. MicroRNA-302a Suppresses Tumor Cell Proliferation by Inhibiting AKT in Prostate Cancer

    PubMed Central

    Zhang, Gui-Ming; Bao, Chun-Yang; Wan, Fang-Ning; Cao, Da-Long; Qin, Xiao-Jian; Zhang, Hai-Liang; Zhu, Yao; Dai, Bo; Shi, Guo-Hai; Ye, Ding-Wei

    2015-01-01

    Micro (mi) RNAs are important regulators involved in various physical and pathological processes, including cancer. The miRNA-302 family has been documented as playing a critical role in carcinogenesis. In this study, we investigated the role of miRNA-302a in prostate cancer (PCa). MiRNA-302a expression was detected in 44 PCa tissues and 10 normal prostate tissues, and their clinicopathological significance was analyzed. Cell proliferation and cell cycle analysis were performed on PCa cells that stably expressed miRNA-302a. The target gene of miRNA-302a and the downstream pathway were further investigated. Compared with normal prostate tissues, miRNA-302a expression was downregulated in PCa tissues, and was even lower in PCa tissues with a Gleason score ≥8. Overexpression of miRNA-302a induced G1/S cell cycle arrest in PCa cells, and suppressed PCa cell proliferation both in vitro and in vivo. Furthermore, miRNA-302a inhibits AKT expression by directly binding to its 3΄ untranslated region, resulting in subsequent alterations of the AKT-GSK3β-cyclin D1 and AKT-p27Kip1 pathway. These results reveal miRNA-302a as a tumor suppressor in PCa, suggesting that miRNA-302a may be used as a potential target for therapeutic intervention in PCa. PMID:25922934

  3. Chitosan/TPP Nanoparticles as a Gene Delivery Agent For Tumor Suppressant P53

    NASA Astrophysics Data System (ADS)

    Liu, Gaojun

    In the last decade, non-viral polymeric vectors have become more attractive than their viral counterparts due to their nontoxicity and good biocompatibility. However, one of the major drawbacks is the low transfection efficiency when compared to viruses. In this work, a naturally cationic polysaccharide, chitosan, was cross-linked with negatively charged tripolyphosphate (TPP) to synthesize chitosan/TPP nanoparticles (CNPs) for delivery of plasmid DNA (pDNA). Particle size and zeta potential were characterized for CNPs with chitosan-TPP mass ratios of 4:1 and 6:1 (w/w) using benchtop dynamic light scattering. And both potentiometric titration method and FTIR spectrometer were applied to measure the degree of deacetylation of chitosan. Release kinetics of a model protein (bovine serum albumin, BSA) showed a steady release that reached 7% after 6 days. Besides that, we also assessed the in vitro transfection efficiency of the CNP-pDNA system using fluorescence microscopy, as well as the effect of tumor suppressant p53. Later the release kinetics and encapsulation efficiency of plasmid DNA bound to the CNPs will be investigated. Additionally, we will try to improve the gene transfection efficiency in both MC3T3-E1 and osteosarcoma cells by applying Sonicator 740 therapeutic ultrasound. Key words: gene therapy, non-viral gene vector, chitosan/TPP nanoparticles, ionic gelation, p53.

  4. MST2 phosphorylation at serine 385 in mitosis inhibits its tumor suppressing activity.

    PubMed

    Chen, Xingcheng; Chen, Yuanhong; Dong, Jixin

    2016-12-01

    Mammalian sterile 20-like kinase 1/2 (MST1/2) are core tumor suppressors in the Hippo signaling pathway. MST1/2 have been shown to regulate mitotic progression. Here, we report a novel mechanism for phospho-regulation of MST2 in mitosis and its biological significance in cancer. We found that the mitotic kinase cyclin-dependent kinase 1 (CDK1) phosphorylates MST2 in vitro and in vivo at serine 385 during antimitotic drug-induced G2/M phase arrest. This phosphorylation occurs transiently during unperturbed mitosis. Mitotic phosphorylation of MST2 does not affect its kinase activity or Hippo-YAP signaling. We further showed that mitotic phosphorylation-deficient mutant MST2-S385A possesses higher activity in suppressing cell proliferation and anchorage-independent growth in vitro and tumorigenesis in vivo. Together, our findings reveal a novel layer of regulation for MST2 in mitosis and its role in tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mouse mammary tumor virus suppresses apoptosis of mammary epithelial cells through ITAM-mediated signaling.

    PubMed

    Kim, Hyoung H; Grande, Shannon M; Monroe, John G; Ross, Susan R

    2012-12-01

    Many receptors in hematopoietic cells use a common signaling pathway that relies on a highly conserved immunoreceptor tyrosine-based activation motif (ITAM), which signals through Src family tyrosine kinases. ITAM-bearing proteins are also found in many oncogenic viruses, including the mouse mammary tumor virus (MMTV) envelope (Env). We previously showed that MMTV Env expression transformed normal mammary epithelial cells and that Src kinases were important mediators in this transformation. To study how ITAM signaling affects mammary cell transformation, we utilized mammary cell lines expressing two different ITAM-containing proteins, one encoding a MMTV provirus and the other a B cell receptor fusion protein. ITAM-expressing cells were resistant to both serum starvation- and chemotherapeutic drug-induced apoptosis, whereas cells transduced with these molecules bearing ITAM mutations were indistinguishable from untransduced cells in their sensitivity to these treatments. We also found that Src kinase was activated in the MMTV-expressing cells and that MMTV-induced apoptosis resistance was completely restored by the Src inhibitor PP2. In vivo, MMTV infection delayed involution-induced apoptosis in the mouse mammary gland. Our results show that MMTV suppresses apoptosis through ITAM-mediated Src tyrosine kinase signaling. These studies could lead to the development of effective treatment of nonhematopoietic cell cancers in which ITAM-mediated signaling plays a role.

  6. ING4 suppresses tumor angiogenesis and functions as a prognostic marker in human colorectal cancer

    PubMed Central

    Hou, Pingfu; Zhang, Zhe; Zhang, Yafei; Wang, Weimin; Sun, Guixiang; Xu, Lichun; Zhou, Jianwei; Bai, Jin; Zheng, Junnian

    2016-01-01

    ING4, a potential tumor suppressor, is implicated in cell cycle arrest, apoptosis, cell migration and angiogenesis. Here, we investigated the clinical value of ING4 and its impact on angiogenesis in colorectal cancer (CRC). In this study, we found that ING4 expression was significantly reduced in CRC tissues versus paired normal colon tissues. Moreover, low ING4 expression was significantly associated with increased lymph node metastasis, advanced TNM stage and poor overall survival. Multivariate Cox regression analysis showed that ING4 expression was an independent favourable prognostic factor for CRC (hazard ratio = 0.45, P = 0.001). In addition, we found that ING4 strongly inhibited CRC angiogenesis by suppressing Sp1 expression and transcriptional activity through ubiquitin degradation and down-regulating the expressions of Sp1 downstream pro-angiogenic genes, MMP-2 and COX-2. Moreover, ING4 might inhibit phosphorylation activity of cyclin/CDK2 complexes to trigger Sp1 degradation by inducing p21 expression in despite of p53 status. Our findings imply that reduced ING4 expression in CRC resulted in increased angiogenesis and contributed to CRC metastasis and poor prognosis. Restoration of ING4 may be a novel strategy for the treatment of metastatic CRC. PMID:27806345

  7. microRNA 31 functions as an endometrial cancer oncogene by suppressing Hippo tumor suppressor pathway

    PubMed Central

    2014-01-01

    Background We aimed to investigate whether MIR31 is an oncogene in human endometrial cancer and identify the target molecules associated with the malignant phenotype. Methods We investigated the growth potentials of MIR31-overexpressing HEC-50B cells in vitro and in vivo. In order to identify the target molecule of MIR31, a luciferase reporter assay was performed, and the corresponding downstream signaling pathway was examined using immunohistochemistry of human endometrial cancer tissues. We also investigated the MIR31 expression in 34 patients according to the postoperative risk of recurrence. Results The overexpression of MIR31 significantly promoted anchorage-independent growth in vitro and significantly increased the tumor forming potential in vivo. MIR31 significantly suppressed the luciferase activity of mRNA combined with the LATS2 3’-UTR and consequently promoted the translocation of YAP1, a key molecule in the Hippo pathway, into the nucleus. Meanwhile, the nuclear localization of YAP1 increased the transcription of CCND1. Furthermore, the expression levels of MIR31 were significantly increased (10.7-fold) in the patients (n = 27) with a high risk of recurrence compared to that observed in the low-risk patients (n = 7), and this higher expression correlated with a poor survival. Conclusions MIR31 functions as an oncogene in endometrial cancer by repressing the Hippo pathway. MIR31 is a potential new molecular marker for predicting the risk of recurrence and prognosis of endometrial cancer. PMID:24779718

  8. Stage dependent expression and tumor suppressive function of FAM134B (JK1) in colon cancer.

    PubMed

    Islam, Farhadul; Gopalan, Vinod; Wahab, Riajul; Smith, Robert A; Qiao, Bin; Lam, Alfred King-Yin

    2017-01-01

    The aims of the present study are to investigate sub-cellular location, differential expression in different cancer stages and functional role of FAM134B in colon cancer development. FAM134B expression was studied and quantified at protein and mRNA levels in cell lines using immunocytochemistry, Western blot and real-time PCR. In vitro functional assays and an in vivo xenotransplantation mouse models were used to investigate the molecular role of FAM134B in cancer cell biology in response to FAM134B silencing with shRNA lentiviral particles. FAM134B protein was noted in both cytoplasm and nuclei of cancer cells. In cancer cells derived from stage IV colon cancer, FAM134B expression was remarkably reduced when compared to non-cancer colon cells and cancer cells derived from stage II colon cancer. FAM134B knockdown significantly (P < 0.05) increased the proliferation of colon cancer cells following lentiviral transfection. Furthermore, FAM134B suppression significantly increased (34-52%; P < 0.05) the clonogenic capacity, wound healing potential of and increases the proportion of cells performing DNA synthesis (P < 0.01). Xenotransplantation model showed that larger and higher-grade tumors were formed in mice receiving FAM134B knockdown cells. To conclude, expression analysis, in vitro and in vivo indicated that FAM134B acts as a cancer suppressor gene in colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  10. Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and canstatin gene suppression therapy on breast tumor xenograft growth in mice.

    PubMed

    Wang, Wen-Bo; Zhou, Yu-Lin; Heng, De-Feng; Miao, Chuan-Hui; Cao, Ying-Lin

    2008-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and canstatin gene therapy have been investigated extensively in human xenograft tumor models established in immunocompromised nude mice. However, combination antitumor activity of these two agents and the safety of such gene constructs driven by the human telomerase reverse transcriptase (hTERT) promoter in nude mice have not been well documented. We hypothesized that TRAIL and canstatin gene therapy driven by the hTERT promoter might overcome the problem of liver toxicity and still effectively induce apoptosis on tumor cells. In this study, we evaluated the antitumor effects of TRAIL in human breast cancer cell lines and the antiangiogenic effects of canstatin on ECV204 cells. We also analyzed the effects of combined gene therapy using both TRAIL and canstatin in a human breast cancer nude mouse model. Tumor growth, tumor inhibition rate of each group, and toxicity were evaluated after gene therapy. Our results demonstrate that treatment using the canstatin- or TRAIL-expressing vector alone significantly suppresses tumor growth, compared to PBS or a vector control. We also found that combining these two therapies had greater antitumor activity than either treatment alone in the mouse model. Moreover, induction of apoptosis was not detected in normal mouse tissues after intratumoral injection of vectors and liver toxicity did not occur with either treatment. Thus, the combination of TRAIL and canstatin appears to be a promising approach for the gene therapy of breast tumors.

  11. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  12. The nonhomologous end joining factor Artemis suppresses multi-tissue tumor formation and prevents loss of heterozygosity.

    PubMed

    Woo, Y; Wright, S M; Maas, S A; Alley, T L; Caddle, L B; Kamdar, S; Affourtit, J; Foreman, O; Akeson, E C; Shaffer, D; Bronson, R T; Morse, H C; Roopenian, D; Mills, K D

    2007-09-06

    Nonhomologous end joining (NHEJ) is a critical DNA repair pathway, with proposed tumor suppression functions in many tissues. Mutations in the NHEJ factor ARTEMIS cause radiation-sensitive severe combined immunodeficiency in humans and may increase susceptibility to lymphoma in some settings. We now report that deficiency for Artemis (encoded by Dclre1c/Art in mouse) accelerates tumorigenesis in several tissues in a Trp53 heterozygous setting, revealing tumor suppression roles for NHEJ in lymphoid and non-lymphoid cells. We also show that B-lineage lymphomas in these mice undergo loss of Trp53 heterozygosity by allele replacement, but arise by mechanisms distinct from those in Art Trp53 double null mice. These findings demonstrate a general tumor suppression function for NHEJ, and reveal that interplay between NHEJ and Trp53 loss of heterozygosity influences the sequence of multi-hit oncogenesis. We present a model where p53 status at the time of tumor initiation is a key determinant of subsequent oncogenic mechanisms. Because Art deficient mice represent a model for radiation-sensitive severe combined immunodeficiency, our findings suggest that these patients may be at risk for both lymphoid and non-lymphoid cancers.

  13. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    PubMed Central

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  14. Long-term caffeine consumption reverses tumor-induced suppression of the innate immune response in adult mice.

    PubMed

    Mandal, Anup; Poddar, Mrinal K

    2008-12-01

    Caffeine (1,3,7-trimethylxanthine), the active principle alkaloid of coffee ( Coffea arabica) and tea ( Camellia sinensis) possesses a restraining effect on tumor-induced suppression of the specific immune response in adult mice. The present study deals with the effect of long-term consumption of caffeine in the development of Ehrlich ascites carcinoma (EAC) cells in adult Swiss female mice, in relation to the innate immune response and tumor growth. Although the consumption of caffeine alone for more than 12 consecutive days did not affect the innate immune response parameters, continuation of its treatment following intraperitoneal EAC cell inoculation not only reduced the IN VIVO tumor growth but also reduced/restored the EAC cell-induced suppression of the innate immune response. These results suggest that caffeine may inhibit IN VIVO tumor growth through reduction of the cancer cell-induced suppression of the innate immune response. CNS:central nervous system EAC:Ehrlich ascites carcinoma ESR:erythrocyte sedimentation rate GABA:gamma-aminobutyric acid Hb:hemoglobin HPA:hypothalamic-pituitary-adrenal HPG:hypothalamic-pituitary-gonadal PCV:packed cell volume RBC:red blood cell WBC:white blood cell.

  15. Human chromosome 11 suppresses the tumorigenicity of adenovirus transformed baby rat kidney cells: involvement of the Wilms' tumor 1 gene.

    PubMed

    Menke, A L; van Ham, R C; Sonneveld, E; Shvarts, A; Stanbridge, E J; Miyagawa, K; van der Eb, A J; Jochemsen, A G

    1995-09-27

    Human chromosome 11 was introduced into adenovirus-transformed baby rat kidney (BRK) cells by microcell-mediated chromosome transfer. The resulting microcell hybrids (MCHs) showed a reduced ability to form tumors upon s.c. injection into athymic mice. Further analysis, with the use of defined deletion chromosomes of 11p, indicated that the presence of region 11p13-p12 is necessary for the suppression of tumorigenicity. In contrast, the presence of region 11p15-14.1 appeared to increase the rate of tumor growth. Expression studies on the human Wilms' tumor I (WTI) and the insulin-like growth factor II (IGF-II) genes, which lie in regions 11p13 and 11p15, respectively, suggested the involvement of both genes in determining the degree of suppression of tumorigenicity. Finally, stable expression of a murine WTI protein in the adenovirus-transformed cells resulted in almost complete suppression of tumorigenicity, establishing the WTI protein as a tumor suppressor in this cell system.

  16. Potent suppressive activity of chlorophyll a and b from green tea (Camellia sinensis) against tumor promotion in mouse skin.

    PubMed

    Higashi-Okai, K; Okai, Y

    1998-09-01

    Potent antigenotoxic and anti-tumor promoting activities of chlorophyll a from green tea (camellia sinensis) have been shown using in vitro cell culture experiments (Okai Y. et al. (1996) Mutation Res., 370, 11-17). In the present study, the authors analyzed in vivo effects of chlorophyll a and b from green tea on tumor promotion in mouse skin in the following ways. 1. When chlorophyll a and b from green tea were applied before each treatment by a tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on BALB/c mouse skin initiated by 7, 12-dimethylbenz [a] an-thracene (DMBA), they caused significant suppression in a dose-dependent manner against BALB/c mouse skin tumorigenesis. 2. Chlorophyll a and b showed significant suppressive effects against TPA-induced inflammatory reaction such as edema formation in BALB/c mouse ear skin in a dose-dependent fashion. These results suggest that chlorophyll a and b possess potent suppressive activities against tumor promotion in mouse skin.

  17. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  18. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation

    PubMed Central

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y.; Jackson, James G.; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A.; El-Naggar, Adel K.; Lozano, Guillermina

    2011-01-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53R172H missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53R172H dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy. PMID:21285512

  19. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation.

    PubMed

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y; Jackson, James G; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A; El-Naggar, Adel K; Lozano, Guillermina

    2011-03-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53(R172H) missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53(R172H) dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy.

  20. Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis.

    PubMed

    Ming, Huixin; Lan, Ying; He, Feng; Xiao, Xue; Zhou, Xiaoying; Zhang, Zhe; Li, Ping; Huang, Guangwu

    2015-08-15

    Cytochrome b5 reductase 2 (CYB5R2) is a potential tumor suppressor that inhibits cell proliferation and motility in nasopharyngeal carcinoma (NPC). Inactivation of CYB5R2 is associated with lymph node metastasis in NPC. This study aimed to explore the mechanisms contributing to the anti-neoplastic effects of CYB5R2. Polymerase chain reaction (PCR) assays were used to analyze the transcription of 84 genes known to be involved in representative cancer pathways in the NPC cell line HONE1. NPC cell lines CNE2 and HONE1 were transiently transfected with CYB5R2, and data was validated by real-time PCR. A chick chorioallantoic membrane (CAM) embryo model was implanted with CYB5R2-expressing CNE2 and HONE1 cells to evaluate the effect of CYB5R2 on angiogenesis. An immunohistochemical assay of the CAM model was used to analyze the protein expression of vascular endothelial growth factor (VEGF). In CYB5R2-transfected NPC cells, PCR assays revealed up-regulated mRNA levels of Fas cell surface death receptor (FAS), FBJ murine osteosarcoma viral oncogene homolog (FOS), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), integrin beta 3 (ITGB3), metastasis suppressor 1 (MTSS1), interferon beta 1 (IFNB1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and down-regulated levels of integrin beta 5 (ITGB5), insulin-like growth factor 1 (IGF1), TEK tyrosine kinase (TEK), transforming growth factor beta receptor 1 (TGFBR1), and VEGF. The angiogenesis in the CAM model implanted with CYB5R2-transfected NPC cells was inhibited. Down-regulation of VEGF by CYB5R2 in NPC cells was confirmed by immunohistochemical staining in the CAM model. CYB5R2 up-regulates the expression of genes that negatively modulate angiogenesis in NPC cells and down-regulates the expression of VEGF to reduce angiogenesis, thereby suppressing tumor formation.

  1. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    PubMed

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. MicroRNA-125b predicts clinical outcome and suppressed tumor proliferation and migration in human gallbladder cancer.

    PubMed

    Yang, Liang; Huang, Sheng; Ma, Hongbin; Wu, Xiaoxiong; Feng, Feiling

    2017-03-01

    We intended to investigate the functional role and clinical relevance of microRNA-125b in human gallbladder cancer. Quantitative real-time polymerase chain reaction was used to examine microRNA-125b expression in gallbladder cancer cell lines, and 79 pairs of gallbladder cancer and normal gallbladder clinical tissues. Clinical correlations between tumorous microRNA-125b expression and gallbladder cancer patients' clinicopathological variances or overall survivals were statistically analyzed. In gallbladder cancer cell lines, TYGBK-8 and G-415 cells, microRNA-125b was upregulated to examine its regulatory effect on gallbladder cancer proliferation and migration in vitro. MicroRNA-125b was significantly downregulated in gallbladder cancer cell lines and human gallbladder cancer tumors. MicroRNA-125b in gallbladder cancer was significantly correlated with patients' clinical stage, tumor differentiation, lymph metastasis, and tumor invasion. Low tumorous microRNA-125b expression was also found to be associated with poor overall survivals among gallbladder cancer patients. In vitro studies demonstrated that microRNA-125b upregulation significantly suppressed proliferation and migration in TYGBK-8 and G-415 cells. Tumorous microRNA-125b is an independent prognostic biomarker for patients with gallbladder cancer and possibly acts as a tumor suppressor in gallbladder cancer.

  3. Suppression of hamster lymphocyte reactivity to simian virus 40 tumor surface antigens by spleen cells from pregnant hamsters

    SciTech Connect

    Weppner, W.A.; Adkinson, L.R.; Coggin, J.H.Jr

    1980-09-01

    SV40-transformed tumor cells in hamsters have been found to have cell surface antigens cross-reactive with antigens temporally expressed on fetal tissues. Using a lymphocyte transformation assay, spleen cells from pregnant hamsters were found to be incapable of responding to preparations of either hamster fetal tissue or SV40-transformed cells. However, a suppressor component can be demonstrated in spleen cell populations of both primi-and multiparous hamsters during pregnancy that is capable of reducing the response of lymphocytes sensitized against SV40 tumor-associated antigens. The degree of suppression is proportional to the ratio of responder cells to spleen cells from pregnant animals. These results suggest there is a subpopulation of spleen cells involved in immunoregulation during pregnancy that has the ability to suppress the reactivity of lymphocytes sensitized against SV40-associated oncofetal antigens.

  4. Adenovirus-mediated ING4 Gene Transfer in Osteosarcoma Suppresses Tumor Growth via Induction of Apoptosis and Inhibition of Tumor Angiogenesis.

    PubMed

    Xu, Ming; Xie, Yufeng; Sheng, Weihua; Miao, Jingcheng; Yang, Jicheng

    2015-10-01

    The inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors. ING4 as a novel member of ING family has potential tumor-suppressive effects via multiple pathways. However, the therapeutic effect of adenovirus-mediated ING4 (Ad-ING4) gene transfer in human osteosarcoma is still unknown. In this study, we explored the in vitro and in vivo antitumor activity of Ad-ING4 in human osteosarcoma and its potential mechanism using a MG-63 human osteosarcoma cell line. We demonstrated that Ad-ING4 induced significant growth inhibition and apoptosis, upregulated the expression of P21, P27 and Bax, downregulated the Bcl-2 expression and activated Caspase-3 in MG-63 human osteosarcoma cells. Moreover, intratumoral injections of Ad-ING4 in athymic nude mice bearing MG-63 human osteosarcoma tumors significantly suppressed osteosarcoma xenografted tumor growth, increased the expression of P21, P27 and Bax, reduced the Bcl-2 and CD34 expression and microvessel density (MVD) in tumors. This retarded MG-63 osteosarcoma growth in vitro and in vivo in an athymic nude mouse model elicited by Ad-ING4 was closely associated with the increase in the expression of cell cycle-related molecules P21 and P27, decrease in the ratio of anti- to pro-apoptotic molecules Bcl-2/Bax followed by the activation of Caspase-3 leading to apoptosis via intrinsic apoptotic pathways, and the inhibition of tumor angiogenesis. Thus, our results indicate that Ad-ING4 is a potential candidate for human osteosarcoma gene therapy. © The Author(s) 2014.

  5. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification.

    PubMed

    Lin, Yi-Ching; Lin, Yu-Chih; Huang, Ming-Yii; Kuo, Po-Lin; Wu, Cheng-Chin; Lee, Min-Sheng; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Kuo, Chang-Hung; Tsai, Wen-Chan; Hung, Chih-Hsing

    2017-03-01

    The treatment of rheumatoid arthritis (RA) with tumor necrosis factor-alpha (TNF-α) inhibitors could lead to adverse effects. Therefore, the identification of downstream therapeutic targets is important. Monocyte chemoattractant protein-1 (MCP-1, also called CCL2) is related to RA disease activity, and epigenetic modifications are hypothesized to regulate gene expression in RA pathogenesis. We studied the effects of two TNF-α inhibitors, etanercept and adalimumab, on CCL2 expression and the potentially associated intracellular mechanisms, including epigenetic regulation. Etanercept and adalimumab decreased CCL2 production in THP-1 cells and human primary monocytes, as detected using enzyme-linked immunosorbent assays, and these changes in the CCL2 levels were independent of the TNF-α levels. Etanercept and adalimumab suppressed mitogen-activated protein kinase (MAPK) phospho-p38, phospho-JNK, phospho-ERK and nuclear factor-κB (NF-κB) phospho-p65, as demonstrated using western blot analyses. The investigation of epigenetic modifications using chromatin immunoprecipitation revealed that etanercept and adalimumab down-regulated acetylation of histone (H)3 and H4 in the CCL2 promoter region by decreasing the recruitment of the NF-κB associated acetyltransferases p300, CBP and PCAF. Etanercept and adalimumab also down-regulated trimethylation of H3K4, H3K27, H3K36 and H3K79 in the CCL2 promoter region by decreasing the expression of the related methyltransferases WDR5 and Smyd2. We demonstrated that TNF-α inhibitors exert immunomodulatory effects on CCL2 expression in human monocytes via MAPKs, NF-κB and epigenetic modifications. These findings broaden the mechanistic knowledge related to TNF-α inhibitors and provide novel therapeutic targets for RA.

  6. The Role of BRCA1 in Suppressing Epithelial-Mesenchymal Transition in Mammary Gland and Tumor Development

    DTIC Science & Technology

    2015-09-01

    in p18- deficient mice activates epithelial -to-mesenchymal transition (EMT) and induces dedifferentiation of luminal stem cells (LSCs), which...tumorigenesis. 15. SUBJECT TERMS Brca1 suppresses EMT and stem cell dedifferentiation 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18... epithelial -mesenchymal transition (EMT)-inducing transcription factors in p18 deficient luminal and tumor cells . Germline mutation of Brca1 converts p18

  7. Zyflamend Suppresses Growth and Sensitizes Human Pancreatic Tumors to Gemcitabine in an Orthotopic Mouse Model Through Modulation of Multiple Targets

    PubMed Central

    Kunnumakkara, Ajaikumar B.; Sung, Bokyung; Ravindran, Jayaraj; Diagaradjane, Parmeswaran; Deorukhkar, Amit; Dey, Sanjit; Koca, Cemile; Tong, Zhimin; Gelovani, Juri G.; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B.

    2011-01-01

    Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement, Zyflamend, is a polyherbal preparation with potent anti-inflammatory activities, and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1, and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB, and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis. PMID:21935918

  8. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer

    PubMed Central

    Xu, Rui-Hua

    2013-01-01

    The deregulation of paxillin (PXN) has been involved in the progression and metastasis of different malignancies including colorectal cancer (CRC). miR-137 is frequently suppressed in CRC. PXN is predicted to be a direct target of miR-137 in CRC cells. On this basis, we hypothesized that overexpression of PXN induced by suppression of miR-137 may promote tumor progression and metastasis and predicts poor prognosis. We detected the expression of PXN and miR-137 in clinical tumor tissues by immunohistochemical analysis and real-time PCR, positive PXN staining was observed in 198 of the 247 (80.1%) cases, whereas no or weak PXN staining was observed in the adjacent non-cancerous area. Higher level of PXN messenger RNA (mRNA) and lower level of miR-137 was observed in cancer tissues than adjacent non-cancerous tissues. High expression of PXN and low expression of miR-137 was associated with aggressive tumor phenotype and adverse prognosis. Moreover, the expression of PXN was negatively correlated with miR-137 expression. A dual-luciferase reporter gene assay validated that PXN was a direct target of miR-137. The use of miR-137 mimics or inhibitor could decrease or increase PXN mRNA and protein levels in CRC cell lines. Knockdown of PXN or ectopic expression of miR-137 could markedly inhibit cell proliferation, migration and invasion in vitro and repress tumor growth and metastasis in vivo. Taken together, these results demonstrated that overexpression of PXN induced by suppression of miR-137 promotes tumor progression and metastasis and could serve as an independent prognostic indicator in CRC patients. PMID:23275153

  9. Bi-functional elastin-like polypeptide nanoparticles bind rapamycin and integrins, and suppress tumor growth in vivo.

    PubMed

    Dhandhukia, Jugal P; Shi, Pu; Peddi, Santosh; Li, Zhe; Aluri, Suhaas Rayudu; Ju, Yaping; Brill, Dab; Wang, Wan; Janib, Siti; Lin, Yi-An; Liu, Shuanglong; Cui, Honggang; MacKay, John Andrew

    2017-09-22

    Recombinant protein-polymer scaffolds such as Elastin-Like Polypeptides (ELPs) offer drug delivery opportunities including biocompatibility, monodispersity, and multi-functionality. We recently reported that fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses growth of breast cancer xenografts, and reduces side-effects observed with free drug controls. This new report significantly advances this carrier strategy by demonstrating the co-assembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized, which includes the canonical integrin targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio co-assemble into bi-functional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Co-assembled nanoparticles were evaluated for bi-functionality by performing in vitro cell binding and drug retention assays and in vivo MDA-MB-468 breast tumor xenograft and tumor accumulation studies. The bi-functional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.

  10. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway.

    PubMed

    Lee, Dung-Fang; Kuo, Hsu-Ping; Chen, Chun-Te; Hsu, Jung-Mao; Chou, Chao-Kai; Wei, Yongkun; Sun, Hui-Lung; Li, Long-Yuan; Ping, Bo; Huang, Wei-Chien; He, Xianghuo; Hung, Jen-Yu; Lai, Chien-Chen; Ding, Qingqing; Su, Jen-Liang; Yang, Jer-Yen; Sahin, Aysegul A; Hortobagyi, Gabriel N; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hung, Mien-Chie

    2007-08-10

    TNFalpha has recently emerged as a regulator linking inflammation to cancer pathogenesis, but the detailed cellular and molecular mechanisms underlying this link remain to be elucidated. The tuberous sclerosis 1 (TSC1)/TSC2 tumor suppressor complex serves as a repressor of the mTOR pathway, and disruption of TSC1/TSC2 complex function may contribute to tumorigenesis. Here we show that IKKbeta, a major downstream kinase in the TNFalpha signaling pathway, physically interacts with and phosphorylates TSC1 at Ser487 and Ser511, resulting in suppression of TSC1. The IKKbeta-mediated TSC1 suppression activates the mTOR pathway, enhances angiogenesis, and results in tumor development. We further find that expression of activated IKKbeta is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. Our findings identify a pathway that is critical for inflammation-mediated tumor angiogenesis and may provide a target for clinical intervention in human cancer.

  11. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo

    PubMed Central

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-01-01

    ABSTRACT Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA+ tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy PMID:26954374

  12. Chaperone-rich tumor cell lysate-mediated activation of antigen-presenting cells resists regulatory T cell suppression.

    PubMed

    Larmonier, Nicolas; Cantrell, Jessica; Lacasse, Collin; Li, Gang; Janikashvili, Nona; Situ, Elaine; Sepassi, Marjan; Andreansky, Samita; Katsanis, Emmanuel

    2008-04-01

    CD4(+)CD25(+) regulatory T lymphocytes (Tregs) critically contribute to the mechanisms of cancer-induced tolerance. These cells suppress anti-tumoral CD8(+) and CD4(+) T lymphocytes and can also restrain the function of APCs. We have previously documented the immunostimulatory effects of a chaperone-rich cell lysate (CRCL) anti-cancer vaccine. Tumor-derived CRCL induces tumor immunity in vivo, partly by promoting dendritic cell (DC) and macrophage activation. In the current study, we evaluated the effects of CD4(+)CD25(+)forkhead box P3(+) Tregs isolated from mice bearing 12B1 bcr-abl(+) leukemia on DC and macrophages that had been activated by 12B1-derived CRCL. CRCL-activated DC and macrophages resisted Treg suppression, as the production of proinflammatory cytokines, the activation of transcription factor NF-kappaB, and their immunostimulatory potential was unaffected by Tregs. Our results thus highlight CRCL as a powerful adjuvant endowed with the capacity to overcome tumor-induced Treg-inhibitory effects on APCs.

  13. Radiofrequency Ablation of Liver Tumors in Combination with Local OK-432 Injection Prolongs Survival and Suppresses Distant Tumor Growth in the Rabbit Model with Intra- and Extrahepatic VX2 Tumors

    SciTech Connect

    Kageyama, Ken Yamamoto, Akira Okuma, Tomohisa Hamamoto, Shinichi Takeshita, Toru Sakai, Yukimasa Nishida, Norifumi Matsuoka, Toshiyuki Miki, Yukio

    2013-10-15

    Purpose: To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Methods: Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at a single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Results: Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). Conclusion: ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.

  14. MicroRNA-2 suppresses Lewis lung cancer cells proliferation, invasion, and migration in tumor-bearing mice.

    PubMed

    Wang, Xu; Wang, Ping-fan; Yuan, Wu-ying

    2014-12-01

    We sought to find the biological effects of MicroRNA-2 in suppressing Lewis lung cancer cells proliferation, invasion, and migration in tumor-bearing mice. MicroRNA-2 was transfected into Lewis lung cancer cells of tumor-bearing mice by gene transient transfection technique and these Lewis-microRNA-2 cells were taken as MicroRNA transfection group. At the same time, Lewis cells were taken as control group and Lewis-EGFP cells as empty plasmid group. The growth curves of cells in the three groups were drawn by manual counting method, while the invasiveness of cells in the three groups was compared by transmembrane cell invasion assay. The three kinds of cells were seeded into BALB/Nude SPF level nude mice to detect the formation of tumors and the number of metastases by Xenograft experiments. The result showed that the MicroRNA transfection group has the lowest vitality of cells proliferation, fewest cells passed through matrigel matrix protein layer, and lowest cells invasive rate. Mice with Lewis-microRNA-2 cells apparently had a longer time of tumor formation. The average tumor mass and the number of metastases were significantly lower than the other two groups. MicroRNA-2 significantly inhibited Lewis lung cancer cell proliferation, invasion and migration in tumor-bearing mice, which may be associated with the regulation of target genes PLK1 and TGF-β.

  15. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    likely to be mechanistic drivers behind the observed tumor growth suppression.

  16. Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Kitture, Rohini; Ghosh, Sougata; Kulkarni, Parag; Liu, X. L.; Maity, Dipak; Patil, S. I.; Jun, Ding; Dushing, Yogesh; Laware, S. L.; Chopade, B. A.; Kale, S. N.

    2012-03-01

    Fe3O4 nanoparticles have been conjugated to curcumin (CU) molecules via a citrate (CA) linker (Fe-CA-CU) and have been explored for superoxide scavenging, tumor suppression, and cancer hyperthermia. The conjugation chemistry reveals that Fe3+ ions on the nanoparticle surface readily conjugates to the available carboxyl sites on the CA molecule, which further conjugates to CU at its central enol -OH group. As seen from the UV-vis spectroscopy, the therapeutically active chromophore group of CU, which is seen at 423 nm, was intact, ensuring the activity the molecule. Magnetization measurements showed good hysteresis curves of Fe3O4 and Fe-CA-CU, indicating the presence of magnetism after conjugation. The loading percentage of citrate-curcumin was seen to be ˜10% from the thermo-gravimetric analysis. The systems when subjected to radio-frequency fields of 240 KHz, were seen to get heated up. The Fe3O4 heating exhibited better slope (1 °C/s) as compared to the Fe-CA-CU system (˜0.7 °C/s) for a sample of concentration 10 mg/ml in average time of ˜20 s to reach the required hyperthermia threshold temperature of ˜45 °C. Tumor suppression studies were done using potato assay, which showed that while only CU showed 100% suppression in 7 days, it was about 89% by the Fe-CA-CU. Upon subjecting these systems to the superoxide anion scavenging assay and superoxide radical scavenging assay (riboflavin), it was observed that the activity was enhanced in the Fe-CA-CU to 40% (from 38% in only CU) and 100% (from 5.75% in only CU). These studies promise Fe-CA-CU as a good cancer hyperthermia-cum-tumor suppressant and antioxidant agent.

  17. Folliculin-interacting proteins Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn

    PubMed Central

    Hasumi, Hisashi; Baba, Masaya; Hasumi, Yukiko; Lang, Martin; Huang, Ying; Oh, HyoungBin F.; Matsuo, Masayuki; Merino, Maria J.; Yao, Masahiro; Ito, Yusuke; Furuya, Mitsuko; Iribe, Yasuhiro; Kodama, Tatsuhiko; Southon, Eileen; Tessarollo, Lino; Nagashima, Kunio; Haines, Diana C.; Linehan, W. Marston; Schmidt, Laura S.

    2015-01-01

    Folliculin (FLCN)-interacting proteins 1 and 2 (FNIP1, FNIP2) are homologous binding partners of FLCN, a tumor suppressor for kidney cancer. Recent studies have revealed potential functions for Flcn in kidney; however, kidney-specific functions for Fnip1 and Fnip2 are unknown. Here we demonstrate that Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. We observed no detectable phenotype in Fnip2 knockout mice, whereas Fnip1 deficiency produced phenotypes similar to those seen in Flcn-deficient mice in multiple organs, but not in kidneys. We found that absolute Fnip2 mRNA copy number was low relative to Fnip1 in organs that showed phenotypes under Fnip1 deficiency but was comparable to Fnip1 mRNA copy number in mouse kidney. Strikingly, kidney-targeted Fnip1/Fnip2 double inactivation produced enlarged polycystic kidneys, as was previously reported in Flcn-deficient kidneys. Kidney-specific Flcn inactivation did not further augment kidney size or cystic histology of Fnip1/Fnip2 double-deficient kidneys, suggesting pathways dysregulated in Flcn-deficient kidneys and Fnip1/Fnip2 double-deficient kidneys are convergent. Heterozygous Fnip1/homozygous Fnip2 double-knockout mice developed kidney cancer at 24 mo of age, analogous to the heterozygous Flcn knockout mouse model, further supporting the concept that Fnip1 and Fnip2 are essential for the tumor-suppressive function of Flcn and that kidney tumorigenesis in human Birt–Hogg–Dubé syndrome may be triggered by loss of interactions among Flcn, Fnip1, and Fnip2. Our findings uncover important roles for Fnip1 and Fnip2 in kidney tumor suppression and may provide molecular targets for the development of novel therapeutics for kidney cancer. PMID:25775561

  18. Folliculin-interacting proteins Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn.

    PubMed

    Hasumi, Hisashi; Baba, Masaya; Hasumi, Yukiko; Lang, Martin; Huang, Ying; Oh, HyoungBin F; Matsuo, Masayuki; Merino, Maria J; Yao, Masahiro; Ito, Yusuke; Furuya, Mitsuko; Iribe, Yasuhiro; Kodama, Tatsuhiko; Southon, Eileen; Tessarollo, Lino; Nagashima, Kunio; Haines, Diana C; Linehan, W Marston; Schmidt, Laura S

    2015-03-31

    Folliculin (FLCN)-interacting proteins 1 and 2 (FNIP1, FNIP2) are homologous binding partners of FLCN, a tumor suppressor for kidney cancer. Recent studies have revealed potential functions for Flcn in kidney; however, kidney-specific functions for Fnip1 and Fnip2 are unknown. Here we demonstrate that Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. We observed no detectable phenotype in Fnip2 knockout mice, whereas Fnip1 deficiency produced phenotypes similar to those seen in Flcn-deficient mice in multiple organs, but not in kidneys. We found that absolute Fnip2 mRNA copy number was low relative to Fnip1 in organs that showed phenotypes under Fnip1 deficiency but was comparable to Fnip1 mRNA copy number in mouse kidney. Strikingly, kidney-targeted Fnip1/Fnip2 double inactivation produced enlarged polycystic kidneys, as was previously reported in Flcn-deficient kidneys. Kidney-specific Flcn inactivation did not further augment kidney size or cystic histology of Fnip1/Fnip2 double-deficient kidneys, suggesting pathways dysregulated in Flcn-deficient kidneys and Fnip1/Fnip2 double-deficient kidneys are convergent. Heterozygous Fnip1/homozygous Fnip2 double-knockout mice developed kidney cancer at 24 mo of age, analogous to the heterozygous Flcn knockout mouse model, further supporting the concept that Fnip1 and Fnip2 are essential for the tumor-suppressive function of Flcn and that kidney tumorigenesis in human Birt-Hogg-Dubé syndrome may be triggered by loss of interactions among Flcn, Fnip1, and Fnip2. Our findings uncover important roles for Fnip1 and Fnip2 in kidney tumor suppression and may provide molecular targets for the development of novel therapeutics for kidney cancer.

  19. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis.

    PubMed

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-03-09

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage.

  20. Vascular Normalization Induced by Sinomenine Hydrochloride Results in Suppressed Mammary Tumor Growth and Metastasis

    PubMed Central

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-01-01

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage. PMID:25749075

  1. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    SciTech Connect

    Zhai, Jian; Qu, Shuping; Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia; Qu, Zengqiang; Wu, Dong

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  2. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions.

    PubMed

    Pucci, Ferdinando; Garris, Christopher; Lai, Charles P; Newton, Andita; Pfirschke, Christina; Engblom, Camilla; Alvarez, David; Sprachman, Melissa; Evavold, Charles; Magnuson, Angela; von Andrian, Ulrich H; Glatz, Katharina; Breakefield, Xandra O; Mempel, Thorsten R; Weissleder, Ralph; Pittet, Mikael J

    2016-04-08

    Tumor-derived extracellular vesicles (tEVs) are important signals in tumor-host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169(+) macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169(+) macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169(+) macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity.

  3. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    DTIC Science & Technology

    2003-07-01

    suppressing effect of n-3 fatty acid DHA on mammary tumors. MRG induces differentiation of mammary epithelial cells in vitro and its expression is...expression of MRG also increased milk protein beta-casein expression in the gland. Treatment of human breast cancer cells with w-3 PUFA DHA resulted...differentiating effect of pregnancy on breast epithelial cells and may play a major role in w-3 PUFA -mediated tumor suppression.

  4. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration.

    PubMed

    Said, Neveen; Sanchez-Carbayo, Marta; Smith, Steven C; Theodorescu, Dan

    2012-04-01

    Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive bladder cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft models of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflammation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism of metastasis suppression that works by reducing host responses that promote metastatic colonization of the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the appearance of clinical metastasis in patients.

  5. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth

    PubMed Central

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma. PMID:23533475

  6. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth.

    PubMed

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma.

  7. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration

    PubMed Central

    Said, Neveen; Sanchez-Carbayo, Marta; Smith, Steven C.; Theodorescu, Dan

    2012-01-01

    Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive bladder cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft models of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflammation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism of metastasis suppression that works by reducing host responses that promote metastatic colonization of the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the appearance of clinical metastasis in patients. PMID:22406535

  8. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma

    PubMed Central

    Qian, Li; Lin, Longlong; Du, Yufeng; Hao, Xiaoyan; Zhao, Yuze; Liu, Xuejun

    2016-01-01

    MicroRNAs (miRNAs) have been demonstrated to be critical in regulating tumor development and progression. The present study investigated the expression of miR-588 using reverse transcription-quantitative polymerase chain reaction analysis in 85 cases of lung squamous cell carcinoma (SCC), and observed the correlation between the expression of miR-588 with clinical pathologic features. The results indicated that the expression of miR-588 was predominantly lower in the tumor samples, compared with non-tumorous samples, and was negatively associated with tumor stages and lymph node invasion. The present study also examined the significance of the expression of miR-588 in SCC using gain- and loss-of-function analyses. It was found that miR-588 inhibited tumor cell migration and invasion. In addition, it was revealed that the overexpression of miR-588 in SCC cells reduced the mRNA and protein levels of progranulin (GRN), whereas miR-588 silencing increased the expression of GRN. A luciferase activity assay showed that miR-588 was able to directly bind to the 3′untranslated region of GRN and regulate its expression. Furthermore, it was found that the expression of GRN was inversely correlated with the expression of miR-588 in 85 paired SCC samples. These results indicated that GRN was involved in the miR-588-mediated suppressive functions in the progression of SCC. PMID:27571908

  9. Selective inhibition of cyclooxygenase-2 suppresses metastatic disease without affecting primary tumor growth in a murine model of Ewing sarcoma.

    PubMed

    Gendy, Amir S; Lipskar, Aaron; Glick, Richard D; Steinberg, Bettie M; Edelman, Morris; Soffer, Samuel Z

    2011-01-01

    Mammalian target of rapamycin suppression by rapamycin inhibits tumor growth and neovascularization via cyclooxygenase-2 (COX-2) downregulation with no effect on lung metastases. We hypothesize that combining a selective COX-2 antagonist (celecoxib) with rapamycin would decrease lung metastases. Ewing sarcoma cells (SK-NEP-1) were surgically implanted into the left kidney of athymic mice (n = 40). The mice were divided into 4 treatment groups (control, rapamycin only, celecoxib only, and combination) and then killed at 6 weeks. Primary tumors were weighed. Vasculature was examined using lectin angiography and immunohistochemistry, and lung metastases were examined using H&E and CD99 immunostaining. Tumor weight and lung metastases were analyzed. Mean primary tumor weights were significantly reduced in the rapamycin-treated groups but not in the celecoxib-only group. Lectin angiography and endothelial markers immunostaining showed markedly decreased vascularity in the rapamycin-treated groups but not in the celecoxib-only group. Celecoxib-treated groups showed significantly fewer mice with lung metastases than non-celecoxib-treated groups. Celecoxib prevents lung metastasis in a murine model of Ewing sarcoma with no effect on tumor size or neovascularization. Cyclooxygenase-2 may represent a future potential target for metastatic disease prevention. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    PubMed

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.

  11. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  12. A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling.

    PubMed

    Liu, Yongrui; He, Yuan; Yang, Feifei; Cong, Xiaonan; Wang, Jinhua; Peng, Shihong; Gao, Dan; Wang, Weifang; Lan, Liping; Ying, Xuexiang; Liu, Mingyao; Chen, Yihua; Yi, Zhengfang

    2017-02-01

    Tumor angiogenesis is characterized by abnormal vessel morphology, endowing tumor with highly hypoxia and unresponsive toward treatment. To date, mounting angiogenic factors have been discovered as therapeutic targets in antiangiogenic drug development. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors exerts potent antiangiogenic activity in tumor therapy. Therefore, it may provide a valid strategy for cancer treatment through targeting the tumor angiogenesis via VEGFR2 pathway. In this study, we established a high-profile compounds library and certificated a novel compound named N-(N-pyrrolidylacetyl)-9-(4-bromobenzyl)-1,3,4,9-tetrahydro-β-carboline (YF-452), which remarkably inhibited the migration, invasion and tube-like structure formation of human umbilical vein endothelial cells (HUVECs) with little toxicity invitro. Rat thoracic aorta ring assay indicated that YF-452 significantly blocked the formation of microvascular exvivo. In addition, YF-452 inhibited angiogenesis in chick chorioallantoic membrane (CAM) and mouse corneal micropocket assays. Moreover, YF-452 remarkably suppressed tumor growth in xenografts mice model. Furthermore, investigation of molecular mechanism revealed that YF-452 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal regulated kinase (ERK), focal adhesion kinase (FAK) and Src. These results indicate that YF-452 inhibits angiogenesis and may be a potential antiangiogenic drug candidate for cancer therapy.

  13. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  14. Resveratrol and Black Tea Polyphenol Combination Synergistically Suppress Mouse Skin Tumors Growth by Inhibition of Activated MAPKs and p53

    PubMed Central

    George, Jasmine; Singh, Madhulika; Srivastava, Amit Kumar; Bhui, Kulpreet; Roy, Preeti; Chaturvedi, Pranav Kumar; Shukla, Yogeshwer

    2011-01-01

    Cancer chemoprevention by natural dietary agents has received considerable importance because of their cost-effectiveness and wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP) in suppressing two-stage mouse skin carcinogenesis induced by DMBA and TPA. Resveratrol/BTP alone treatment decreased tumor incidence by ∼67% and ∼75%, while combination of both at low doses synergistically decreased tumor incidence even more significantly by ∼89% (p<0.01). This combination also significantly regressed tumor volume and number (p<0.01). Mechanistic studies revealed that this combinatorial inhibition was associated with decreased expression of phosphorylated mitogen-activated protein kinase family proteins: extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, p38 and increased in total p53 and phospho p53 (Ser 15) in skin tissue/tumor. Treatment with combinations of resveratrol and BTP also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, our results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer. This promising combination should be examined in therapeutic trials of skin and possibly other cancers. PMID:21887248

  15. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling.

    PubMed

    Zhao, Kai; Song, Xiuming; Huang, Yujie; Yao, Jing; Zhou, Mi; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2014-08-15

    Wogonin has been shown to have anti-angiogenesis and anti-tumor effects. However, whether wogonin inhibits LPS-induced tumor angiogenesis is not well known. In this study, we investigated the effect of wogonin on inhibiting LPS-induced tumor angiogenesis and further probed the underlying mechanisms. ELISA results revealed that wogonin could suppress LPS-induced VEGF secretion from tumor cells. Transwell assay, tube formation assay, rat aortic ring assay and CAM model were used to evaluate the effect of wogonin on angiogenesis induced by MCF-7 cell (treated with LPS) in vitro and in vivo. The inhibitory effect of wogonin on angiogenesis in LPS-treated MCF-7 cells was then confirmed by the above in vitro and in vivo assays. The study of the molecular mechanism showed that wogonin could suppress PI3K/Akt signaling activation. Moreover, wogonin inhibited nuclear translocation of NF-κB and its binding to DNA. The result of real-time PCR and luciferase reporter assay suggested that VEGF expression was down-regulated by wogonin primarily at the transcriptional level. IGF-1 and p65 expression plasmid were used to activate PI3K/Akt and NF-κB pathways, and to observe the effect of wogonin on the simualtion of PI3K/Akt/NF-κB signaling. Taken together, the result suggested that wogonin was a potent inhibitor of tumor angiogenesis and provided a new insight into the mechanisms of wogonin against cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Targeting A Tumor Suppressor To Suppress Tumor Growth: News and Views on Protein Phosphatase 2A (PP2A) as a Target for Anti-cancer Therapy

    PubMed Central

    Perrotti, Danilo; Neviani, Paolo

    2013-01-01

    Protein phosphatase 2A (PP2A), one of the major serine-threonine phosphatases in mammalian cells, maintains cell homeostasis by counteracting most of the kinase-driven intracellular signaling pathways. Unrestrained activation of oncogenic kinases together with inhibition of tumor suppressors is frequently required for the development of cancer. Because it has been found genetically altered or functionally inactivated in many solid cancers and leukemias, PP2A is indeed a bona fide tumor suppressor. For example, the phosphatase activity of PP2A is suppressed in chronic myelogenous leukemia and other malignancies characterized by the aberrant activity of oncogenic kinases. Notably, preclinical studies indicate that pharmacologic restoration of PP2A tumor suppressor activity by PP2A activating drugs (PADs, e.g. FTY720) effectively antagonizes cancer development and progression. Herein, we systematically discuss the importance of PP2A as a druggable tumor suppressor in light of the possible introduction of PADs into anti-cancer therapeutic protocols. PMID:23639323

  17. The Alternative Medicine Pawpaw and Its Acetogenin Constituents Suppress Tumor Angiogenesis via the HIF-1/VEGF Pathway

    PubMed Central

    Coothankandaswamy, Veena; Liu, Yang; Mao, Shui-Chun; Morgan, J. Brian; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    Products that contain twig extracts of pawpaw (Asimina triloba, Annonaceae) are widely consumed anticancer alternative medicines. Pawpaw crude extract (CE) and purified acetogenins inhibited hypoxia-inducible factor-1 (HIF-1)-mediated hypoxic signaling pathways in tumor cells. In T47D cells, pawpaw CE and the acetogenins 10-hydroxyglaucanetin (1), annonacin (2), and annonacin A (3) inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.02 μg/mL, 12 nM, 13 nM, and 31 nM, respectively. This inhibition correlates with the suppression of the hypoxic induction of HIF-1 target genes VEGF and GLUT-1. The induction of secreted VEGF protein represents a key event in hypoxia-induced tumor angiogenesis. Both the extract and the purified acetogenins blocked the angiogenesis-stimulating activity of hypoxic T47D cells in vitro. Pawpaw extract and acetogenins inhibited HIF-1 activation by blocking the hypoxic induction of nuclear HIF-1α protein. The inhibition of HIF-1 activation was associated with the suppression of mitochondrial respiration at complex I. Thus, the inhibition of HIF-1 activation and hypoxic tumor angiogenesis constitutes a novel mechanism of action for these anticancer alternative medicines. PMID:20423107

  18. 4-Methylumbelliferone Suppresses Hyaluronan Synthesis and Tumor Progression in SCID Mice Intra-abdominally Inoculated With Pancreatic Cancer Cells

    PubMed Central

    Nagase, Hayato; Kudo, Daisuke; Suto, Akiko; Yoshida, Eri; Suto, Shinichiro; Negishi, Mika; Kakizaki, Ikuko; Hakamada, Kenichi

    2017-01-01

    Objectives Pancreatic ductal adenocarcinoma contains large amounts of the glycosaminoglycan hyaluronan (HA), which is involved in various physiological processes. Here, we aimed to clarify the anticancer mechanisms of 4-methylumbelliferone (MU), a well-known HA synthesis inhibitor. Methods MIA PaCa-2 human pancreatic cancer cells were used. We evaluated cellular proliferation, migration, and invasion in the presence of MU, exogenous HA, and an anti-CD44 antibody. We also analyzed apoptosis, CD44 expression, and HA-binding ability using flow cytometry. The HA content in tumor tissue was quantified and histopathologically investigated in mice who had been inoculated with cancer cells. Results In vitro, MU inhibited pericellular HA matrix formation; however, HAS3 mRNA was up-regulated. Treatment with 0.5 mM MU suppressed cellular proliferation by 26.4%, migration by 14.7%, and invasion by 22.7%. Moreover, MU also significantly increased apoptosis. CD44 expression and HA-binding ability were not altered by MU. In vivo, MU suppressed HA accumulation in pancreatic tumors and improved survival times in tumor-bearing mice. Conclusions 4-Methylumbelliferone indirectly caused apoptosis in pancreatic cancer cells by inhibiting HA production. 4-Methylumbelliferone may be a promising agent in the treatment of pancreatic cancer. PMID:27846148

  19. Inhibition of EGFR-AKT Axis Results in the Suppression of Ovarian Tumors In Vitro and in Preclinical Mouse Model

    PubMed Central

    Gupta, Parul; Srivastava, Sanjay K.

    2012-01-01

    Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian tumor cells in vitro and in vivo. Oral administration of 12 µmol PEITC resulted in drastically suppressing ovarian tumor growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3 and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors. PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat ovarian cancer. PMID:22952709

  20. The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth

    PubMed Central

    Büchau, Amanda S.; Morizane, Shin; Trowbridge, Janet; Schauber, Jürgen; Kotol, Paul; Bui, Jack D.; Gallo, Richard L.

    2010-01-01

    Tumor surveillance requires the interaction of multiple molecules and cells that participate in innate and the adaptive immunity. Cathelicidin was initially identified as an antimicrobial peptide, although it is now clear that it fulfills a variety of immune functions beyond microbial killing. Recent data have suggested contrasting roles for cathelicidin in tumor development. Because its role in tumor surveillance is not well understood, we investigated the requirement of cathelicidin in controlling transplantable tumors in mice. Cathelicidin was observed to be abundant in tumor-infiltrating NK1.1+ cells in mice. The importance of this finding was demonstrated by the fact that cathelicidin knockout mice (Camp−/−) permitted faster tumor growth than wild type controls in two different xenograft tumor mouse models (B16.F10 and RMA-S). Functional in vitro analyses found that NK cells derived from Camp−/− versus wild type mice showed impaired cytotoxic activity toward tumor targets. These findings could not be solely attributed to an observed perforin deficiency in freshly isolated Camp−/− NK cells, because this deficiency could be partially restored by IL-2 treatment, whereas cytotoxic activity was still defective in IL-2-activated Camp−/− NK cells. Thus, we demonstrate a previously unrecognized role of cathelicidin in NK cell antitumor function. PMID:19949065

  1. A reason for intermittent fasting to suppress the awakening of dormant breast tumors.

    PubMed

    Lankelma, Jan; Kooi, Bob; Krab, Klaas; Dorsman, Josephine C; Joenje, Hans; Westerhoff, Hans V

    2015-01-01

    For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors will contain anoxic living tumor cells. These cells are dangerous, because they are capable of inducing angiogenesis, which will "wake up" the tumor. Anoxic cells are dependent on anaerobic glucose breakdown for ATP generation. The local extracellular glucose concentration gradient is determined by the blood glucose concentration and by consumption by cells closer to the nearest blood vessel. The blood glucose concentration can be lowered by 20-40% during fasting. We calculated that glucose supply to the potentially hazardous anoxic cells can thereby be reduced significantly, resulting in cell death specifically of the anoxic tumor cells. We hypothesize that intermittent fasting will help to reduce the incidence of tumor relapse via reducing the number of anoxic tumor cells and tumor awakening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  3. Combined RNAi-mediated suppression of Rictor and EGFR resulted in complete tumor regression in an orthotopic glioblastoma tumor model.

    PubMed

    Verreault, Maite; Weppler, Sherry A; Stegeman, Amelia; Warburton, Corinna; Strutt, Dita; Masin, Dana; Bally, Marcel B

    2013-01-01

    The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line's sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective

  4. Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model

    PubMed Central

    Verreault, Maite; Weppler, Sherry A.; Stegeman, Amelia; Warburton, Corinna; Strutt, Dita; Masin, Dana; Bally, Marcel B.

    2013-01-01

    The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective

  5. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration.

    PubMed

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-11-17

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation.

  6. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer.

    PubMed

    Yuan, Ye; Du, Weijie; Wang, Ying; Xu, Chaoqian; Wang, Jinghao; Zhang, Yang; Wang, Huimin; Ju, Jiaming; Zhao, Liang; Wang, Zhiguo; Lu, Yanjie; Cai, Benzhi; Pan, Zhenwei

    2015-03-15

    Lung cancer is one of the leading causes of cancer death worldwide. microRNAs have been shown to be a novel class of regulators in lung cancer. Here, we explored the role of miR-153 in the pathogenesis of lung cancer and its therapeutic potential. miR-153 was significantly decreased in lung cancer tissues than the adjacent tissues. The protein and mRNA levels of protein kinase B (AKT), which were shown to promote tumor growth, were both increased in lung cancer tissues than adjacent tissues. Overexpression of miR-153 significantly inhibited AKT protein expression, which were abrogated by co-transfection of AMO-153, the specific inhibitor of miR-153. Luciferase assay showed that transfection of miR-153 markedly suppressed the fluorescent intensity of chimeric vectors carrying the 3'UTR of AKT1, while produced no effect on the mutant construct, indicating that AKT is regulated by miR-153. Overexpression of miR-153 significantly inhibited the proliferation and migration, and promoted apoptosis of cultured lung cancer cells in vitro, and suppressed the growth of xenograft tumors in vivo. Interestingly, lung cancer cells with lower endogenous miR-153 expression are more sensitive to ectopic overexpressed miR-153. The IC50 of miR-153 on lung cancer cells is positive correlated with the endogenous miR-153 level, while negative correlated with AKT level. Knockdown of AKT expression suppressed lung cancer cell proliferation. In summary, miR-153 exerted anti-tumor activity in lung cancer by targeting on AKT. The sensitivity of lung cancer cells to miR-153 is determined by its endogenous miR-153 level.

  7. Curcumin Suppresses Crosstalk between Colon Cancer Stem Cells and Stromal Fibroblasts in the Tumor Microenvironment: Potential Role of EMT

    PubMed Central

    Buhrmann, Constanze; Kraehe, Patricia; Lueders, Cora; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2014-01-01

    Objective Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis. In this study, we investigated the crosstalk between colorectal cancer (CRC) cells with stromal fibroblasts and the anti-cancer effects of curcumin and 5-Fluorouracil (5-FU), especially on cancer stem cell (CSC) survival in a 3D-co-culture model that mimics in vivo tumor microenvironment. Methods Colon carcinoma cells HCT116 and MRC-5 fibroblasts were co-cultured in a monolayer or high density tumor microenvironment model in vitro with/without curcumin and/or 5-FU. Results Monolayer tumor microenvironment co-cultures supported intensive crosstalk between cancer cells and fibroblasts and enhanced up-regulation of metastatic active adhesion molecules (β1-integrin, ICAM-1), transforming growth factor-β signaling molecules (TGF-β3, p-Smad2), proliferation associated proteins (cyclin D1, Ki-67) and epithelial-to-mesenchymal transition (EMT) factor (vimentin) in HCT116 compared with tumor mono-cultures. High density tumor microenvironment co-cultures synergistically increased tumor-promoting factors (NF-κB, MMP-13), TGF-β3, favored CSC survival (characterized by up-regulation of CD133, CD44, ALDH1) and EMT-factors (increased vimentin and Slug, decreased E-cadherin) in HCT116 compared with high density HCT116 mono-cultures. Interestingly, this synergistic crosstalk was even more pronounced in the presence of 5-FU, but dramatically decreased in the presence of curcumin, inducing biochemical changes to mesenchymal-epithelial transition (MET), thereby sensitizing CSCs to 5-FU treatment. Conclusion Enrichment of CSCs, remarkable activation of tumor-promoting factors and EMT in high density co-culture highlights that the crosstalk in the tumor microenvironment plays an essential role in tumor development and progression, and this interaction appears to be mediated at least in part by TGF-β and EMT. Modulation of this synergistic crosstalk by curcumin might be

  8. E2f binding-deficient Rb1 protein suppresses prostate tumor progression in vivo

    PubMed Central

    Sun, Huifang; Wang, Yanqing; Chinnam, Meenalakshmi; Zhang, Xiaojing; Hayward, Simon W.; Foster, Barbara A.; Nikitin, Alexander Y.; Wills, Marcia; Goodrich, David W.

    2011-01-01

    Mutational inactivation of the RB1 tumor suppressor gene initiates retinoblastoma and other human cancers. RB1 protein (pRb) restrains cell proliferation by binding E2f transcription factors and repressing the expression of cell cycle target genes. It is presumed that loss of pRb/E2f interaction accounts for tumor initiation, but this has not been directly tested. RB1 mutation is a late event in other human cancers, suggesting a role in tumor progression as well as initiation. It is currently unknown whether RB1 mutation drives tumor progression and, if so, whether loss of pRb/E2f interaction is responsible. We have characterized tumorigenesis in mice expressing a mutant pRb that is specifically deficient in binding E2f. In endocrine tissue, the mutant pRb has no detectable effect on tumorigenesis. In contrast, it significantly delays progression to invasive and lethal prostate cancer. Tumor delay is associated with induction of a senescence response. We conclude that the pRb/E2f interaction is critical for preventing tumor initiation, but that pRb can use additional context-dependent mechanisms to restrain tumor progression. PMID:21187395

  9. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma

    PubMed Central

    Zhao, S; Kurenbekova, L; Gao, Y; Roos, A; Creighton, CJ; Rao, P; Hicks, J; Man, T-K; Lau, C; Brown, AMC; Jones, SN; Lazar, AJ; Ingram, D; Lev, D; Donehower, LA; Yustein, JT

    2016-01-01

    Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor that has a high propensity for metastases. Through osteoblast-specific alteration of p53 status, we developed a genetically engineered mouse model of localized and metastatic OS to gain an understanding into the molecular pathogenesis of OS. Microarray analysis of both localized tumors and metastatic tumors identified the downregulation of the naked cuticle homolog 2 (NKD2) gene, a negative regulator of Wnt signaling. Overexpression of NKD2 in metastatic human and mouse OS cells significantly decreases cell proliferation, migration and invasion ability in vitro and drastically diminishes OS tumor growth and metastasis in vivo, whereas downregulation enhances migratory and invasive potential. Evaluation of NKD2-overexpressing tumors revealed upregulation of tumor-suppressor genes and downregulation of molecules involved in blood vessel formation and cell migration. Furthermore, assessment of primary human OS revealed downregulation of NKD2 in metastatic and recurrent OS. Finally, we provide biological evidence that use of small-molecule inhibitors targeting the Wnt pathway can have therapeutic efficacy in decreasing metastatic properties in OS. Our studies provide compelling evidence that downregulation of NKD2 expression and alterations in associated regulated pathways have a significant role in driving OS tumor growth and metastasis. PMID:25579177

  10. SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

    PubMed Central

    Jeong, Seung Min; Xiao, Cuiying; Finley, Lydia W.S; Lahusen, Tyler; Souza, Amanda L.; Pierce, Kerry; Li, Ying-Hua; Wang, Xiaoxu; Laurent, Gaëlle; German, Natalie J.; Xu, Xiaoling; Li, Cuiling; Wang, Rui-Hong; Lee, Jaewon; Csibi, Alfredo; Cerione, Richard; Blenis, John; Clish, Clary B.; Kimmelman, Alec; Deng, Chu-Xia; Haigis, Marcia C.

    2013-01-01

    SUMMARY DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into TCA cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest and tumor suppression. PMID:23562301

  11. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  12. Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve.

    PubMed

    Ribeiro, Sara; Napoli, Ilaria; White, Ian J; Parrinello, Simona; Flanagan, Adrienne M; Suter, Ueli; Parada, Luis F; Lloyd, Alison C

    2013-10-17

    Schwann cells are highly plastic cells that dedifferentiate to a progenitor-like state following injury. However, deregulation of this plasticity, may be involved in the formation of neurofibromas, mixed-cell tumors of Schwann cell (SC) origin that arise upon loss of NF1. Here, we show that adult myelinating SCs (mSCs) are refractory to Nf1 loss. However, in the context of injury, Nf1-deficient cells display opposing behaviors along the wounded nerve; distal to the injury, Nf1(-/-) mSCs redifferentiate normally, whereas at the wound site Nf1(-/-) mSCs give rise to neurofibromas in both Nf1(+/+) and Nf1(+/-) backgrounds. Tracing experiments showed that distinct cell types within the tumor derive from Nf1-deficient SCs. This model of neurofibroma formation demonstrates that neurofibromas can originate from adult SCs and that the nerve environment can switch from tumor suppressive to tumor promoting at a site of injury. These findings have implications for both the characterization and treatment of neurofibromas.

  13. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  14. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activation

    PubMed Central

    Wang, Yurong; Wang, Bin; Guerram, Mounia; Sun, Li; Shi, Wei; Tian, Chongchong; Zhu, Xiong; Jiang, Zhenzhou; Zhang, Luyong

    2015-01-01

    Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer. PMID:26470595

  15. High levels of potassium inside tumors suppress immune activity | Center for Cancer Research

    Cancer.gov

    Nicholas P. Restifo, a senior investigator in CCR’s Surgery Branch and his team have discovered that an abundance of potassium inside tumors dampens immune responses, helping the tumors evade the body’s defenses. In animal experiments, genetically equipping immune cells rid themselves of potassium made them more effective at fighting cancer. The finding, published September 14, 2016, in the journal Nature, suggests a tactic for improving the effectiveness of cancer immunotherapies.  Learn more...

  16. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer

    PubMed Central

    CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN

    2015-01-01

    Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159

  17. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  18. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  19. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma.

    PubMed

    González-Gómez, Pilar; Crecente-Campo, Jose; Zahonero, Cristina; de la Fuente, Maria; Hernández-Laín, Aurelio; Mira, Helena; Sánchez-Gómez, Pilar; Garcia-Fuentes, Marcos

    2015-05-10

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133(+), Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy.

  20. miR-940 Suppresses Tumor Cell Invasion and Migration via Regulation of CXCR2 in Hepatocellular Carcinoma

    PubMed Central

    Ding, Dong; Zhang, Yaodong; Yang, Renjie; Wang, Xing; Ji, Guwei; Huo, Liqun; Shao, Zicheng

    2016-01-01

    Aim. To investigate the expression of miR-940 in the hepatocellular carcinoma (HCC) and its impact on function and biological mechanism in the HCC cells. Methods. Quantitative RT-PCR analysis was used to quantify miR-940 expression in 46 cases of tissues and cells. Transfection of HCC cell lines was performed by miR-940 mimics; the abilities of invasion and migration were assessed through Transwell array. Western blot represents the alteration in expression of CXCR2 by miR-940 mimics. Results. miR-940 expression was decreased significantly in the HCC tissues and the relevant cell lines. miR-940 upregulation suppressed the invasion and migration of HCC cells in vitro. Furthermore, the CXCR2 was downregulated to suppress invasion and migration after miR-940 mimics. Moreover, decreased miR-940 expression was negatively correlated with Edmondson grade (P = 0.008), tumor microsatellite or multiple tumors (P = 0.04), vascular invasion (P = 0.035), and recurrence and metastasis (P = 0.038). Kaplan-Meier analysis demonstrated that decreased miR-940 expression contributed to poor overall survival (P < 0.05). Conclusions. Our findings present that miR-940 acts as a pivotal adaptor of CXCR2 and its transcription downregulated CXCR2 expression to decrease HCC invasion and migration in vitro. Our study suggests that miR-940 may be a novel poor prognostic biomarker for HCC. PMID:27807540

  1. Tumor growth suppression by alpha-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation.

    PubMed

    Tsuzuki, Tsuyoshi; Tokuyama, Yoshiko; Igarashi, Miki; Miyazawa, Teruo

    2004-08-01

    We have previously shown that conjugated linolenic acids (CLnA) prepared by alkaline isomerization have a stronger antitumor effect than conjugated linoleic acids (CLA). In this study we have compared the suppressive effect on tumor growth of alpha-eleostearic acid (alpha-ESA, 9Z11E13E-18:3) with those of the CLA isomers 9Z11E-CLA and 10E12Z-CLA, using nude mice into which DLD-1 human colon cancer cells were transplanted. The results showed that alpha-ESA, which is a CLnA that can be prepared from natural sources in bulk, had a stronger antitumor effect than CLA. DNA fragmentation was enhanced and lipid peroxidation was increased in tumor tissues of the alpha-ESA-fed mice, which suggested that alpha-ESA induced apoptosis via lipid peroxidation. Furthermore, treatment of DLD-1 cells with alpha-ESA, 9Z11E-CLA and 10E12Z-CLA confirmed that alpha-ESA had a stronger antitumor effect than CLA in cultured cell lines. The induction of apoptosis by alpha-ESA was consistent with enhanced DNA fragmentation, increased caspase activity and increased expression of caspase mRNA following alpha-ESA treatment. Addition of alpha-tocopherol, an antioxidant, suppressed oxidative stress and apoptosis, suggesting that these effects were associated with lipid peroxidation.

  2. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor.

    PubMed

    Marigo, Ilaria; Bosio, Erika; Solito, Samantha; Mesa, Circe; Fernandez, Audry; Dolcetti, Luigi; Ugel, Stefano; Sonda, Nada; Bicciato, Silvio; Falisi, Erika; Calabrese, Fiorella; Basso, Giuseppe; Zanovello, Paola; Cozzi, Emanuele; Mandruzzato, Susanna; Bronte, Vincenzo

    2010-06-25

    Tumor growth is associated with a profound alteration in myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). We showed that among factors produced by various experimental tumors, the cytokines GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of CD8(+) T cells and allow long term acceptance of pancreatic islet allografts. Cytokines inducing MDSCs acted on a common molecular pathway and the immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on the C/EBPbeta transcription factor. Adoptive transfer of tumor antigen-specific CD8(+) T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBPbeta in the myeloid compartment, suggesting that C/EBPbeta is a critical regulator of the immunosuppressive environment created by growing cancers.

  3. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    PubMed Central

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  4. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  5. Co-suppression of vitamin C composite nano-drug carrier and its drug delivery to nidus in tumor cells.

    PubMed

    Liu, H Z; Liu, X M; Liu, X C; Zhang, C Z; Liu, H Q

    2016-01-01

    This study aimed to discuss the co-suppression of vitamin C-contained composite nano-drug carrier and its drug delivery to nidus in tumor cells. Amphiphilic polymers PLA-block-PAAA and block polymer PLA-PEG4000-Maleimide, PLA-block-PAAA and PLA-PEG4000-Maleimide composite nano-micelles were prepared, and, PLA-block-PAAA polymer-coated Nile red nano-micelle, PLA-block-PAA and PLA-PEG4000-Maleimide composite nano-micelles as well as paclitaxel-carrying composite nano-micelle in different molar ratios were given stability tests. Lastly, PLA-block-PAAA and PLA-PEG4000-Maleimide composite nano-micelle cancer cells and paclitaxel-carrying composite nano-micelle cancer cells were given toxicity tests. Stability tests showed that self stability of PLA-block-PAAA (63/8) nano-micelle was not sufficient; the stability was good when the molar ratio of PLA-block-PAAA and PLA-PEG4000-Maleimide composite nano-micelle was 3:1; paclitaxel-carrying composite nano-micelle had good stability within 48 hours; PAAA segment had an inhibiting effect on C6 cancer cells and paclitaxel-carrying composite nano-micelle had a strong inhibiting effect also on tumors. After 24 hours, with the continuous release of paclitaxel, the tumor inhibiting effect of paclitaxel-carrying composite nano-micelle enhanced gradually, and the controlled-release of drugs had continuous inhibiting effect on tumor cells. Therefore, PAAA segment and paclitaxel had time-postponed synergistic effect. In conclusion, vitamin C-contained composite nanometer drug carrier materials can deliver anti-cancer drugs to nidus and thus inhibit tumor cells.

  6. Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers.

    PubMed

    Perez, Roberto; Schally, Andrew V; Vidaurre, Irving; Rincon, Ricardo; Block, Norman L; Rick, Ferenc G

    2012-09-01

    This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.

  7. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression

    PubMed Central

    Shackelford, David B.; Shaw, Reuben J.

    2009-01-01

    In the past decade, studies of the human tumor suppressor LKB1 have uncovered a novel signaling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues such as liver, muscle, and adipose, a function that has made it a key therapeutic target in patients with diabetes. The connection of AMPK with several tumor suppressors suggests that therapeutic manipulation of this pathway with established diabetes drugs warrants further investigation in patients with cancer. PMID:19629071

  8. Identification of a Novel Calotropis procera Protein That Can Suppress Tumor Growth in Breast Cancer through the Suppression of NF-κB Pathway

    PubMed Central

    Samy, Ramar Perumal; Rajendran, Peramaiyan; Li, Feng; Anandi, Narayana Moorthy; Stiles, Bradley G.; Ignacimuthu, Savarimuthu; Sethi, Gautam; Chow, Vincent T. K.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, improvements in hormonal and cytotoxic therapies have not yet led to a sustained remission or cure. In the present study, we investigated the in vitro and in vivo antitumor activities of a novel Calotropis procera protein (CP-P) isolated from root bark. CP-P protein inhibited the proliferation and induced apoptosis of breast cancer cells through the suppression of nuclear factor kappaB (NF-kB) activation. CP-P, when administered individually or in combination with cyclophosphamide (CYC, 0.2 mg/kg) to rats with 7, 12-dimethyl benz(a)anthracene (DMBA)-induced breast cancer decreased tumor volume significantly without affecting the body weight. To elucidate the anticancer mechanism of CP-P, antioxidant activities such as superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST) and non-enzymatic antioxidant - reduced glutathione (GSH), vitamin E and C generation in the breast were analyzed by various assays. SOD, CAT, GST, GSH, vitamin E and C levels were high in combination-treated groups (CP-P+CYC) versus the CYC alone-treated groups. Also, the combination was more effective in down-regulating the expression of NF-kB-regulated gene products (cyclin D1 and Bcl-2) in breast tumor tissues. Our findings indicate that CP-P possesses significant antitumor activity comparable to a commonly used anticancer drug, cyclophosphamide, and may form the basis of a novel therapy for breast cancer. PMID:23284617

  9. Suppressive effect of liver tumor-promoting activities in rats subjected to combined administration of phenobarbital and piperonyl butoxide.

    PubMed

    Morita, Reiko; Yafune, Atsunori; Shiraki, Ayako; Itahashi, Megu; Akane, Hirotoshi; Nakane, Fumiyuki; Suzuki, Kazuhiko; Shibutani, Makoto; Mitsumori, Kunitoshi

    2013-01-01

    Phenobarbital (PB) is a cytochrome P450 (CYP) 2B inducer, and piperonyl butoxide (PBO) is a CYP1A/2B inducer. These inducers have liver tumor-promoting effects in rats. In this study, we performed a rat two-stage liver carcinogenesis bioassay to examine the tumor-promoting effect of PB and PBO co-administration. Male rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) for initiation. Two weeks after DEN administration, rats were given PB (60 or 120 ppm in drinking water), PBO (1,250 or 2,500 ppm in diet) or 60 ppm PB+1,250 ppm PBO for 6 weeks. One week after the PB/PBO treatment, all rats were subjected to a two-thirds partial hepatectomy. To evaluate the effect of the combined administration, we used two statistical additive models. In the isoadditive model, the average values of the area of GST-P positive foci in the PB+PBO group were significantly lower than those in the High PB or High PBO groups. In the heteroadditive model, the net values of Cyp1a1 mRNA level and microsomal reactive oxygen species (ROS) production in the PB+PBO group were significantly lower than the sum of those in the Low PB or Low PBO groups. On the contrary, there was no interactive effect in the PCNA-positive hepatocyte ratio, mRNA levels of Cyp2b1/2, Gstm3, Gpx2 and Nqo1, and the level of thiobarbituric acid-reactive substances in the PB+PBO group. These results suggest that PB and PBO co-administration causes suppressive effects in liver tumor-promoting activity in rats resulting from inhibited microsomal ROS production because of suppression of CYP1A induction.

  10. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells.

    PubMed

    Chen, Xi; Dong, Xiu-Shuai; Gao, Hai-Yan; Jiang, Yong-Fang; Jin, Ying-Lan; Chang, Yu-Ying; Chen, Li-Yan; Wang, Jing-Hua

    2016-01-01

    Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti‑cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV‑G‑NR‑U6‑shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis‑associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti‑cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia.

  11. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells

    PubMed Central

    CHEN, XI; DONG, XIU-SHUAI; GAO, HAI-YAN; JIANG, YONG-FANG; JIN, YING-LAN; CHANG, YU-YING; CHEN, LI-YAN; WANG, JING-HUA

    2016-01-01

    Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti-cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV-G-NR-U6-shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis-associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti-cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia. PMID:26648539

  12. Baccatin III, a precursor for the semisynthesis of paclitaxel, inhibits the accumulation and suppressive activity of myeloid-derived suppressor cells in tumor-bearing mice.

    PubMed

    Lee, Young-Hee; Lee, Young-Ran; Park, Chan-Su; Im, Sun-A; Song, Sukgil; Hong, Jin Tae; Whang, Bang Yeon; Kim, Kyungjae; Lee, Chong-Kil

    2014-08-01

    Myeloid-derived suppressor cells (MDSCs) mediate tumor-associated immune suppression in both cancer patients and tumor-bearing animals. Reduction or elimination of MDSCs reduces the rate of tumor progression and improves cancer therapies that employ mechanisms of immunity. Here we show that baccatin III, which is the precursor for the semisynthesis of paclitaxel, exerts anti-tumor immunomodulatory activity in very low doses (0.05-0.5mg/kg), although it is regarded as an inactive derivative of paclitaxel. Oral administration of baccatin III significantly reduced the growth of tumors induced by engrafting BALB/c mice with either 4 T1 mammary carcinoma or CT26 colon cancer cells. Baccatin III (0.5mg/kg) did not exert anti-tumor activity in athymic nude mice. Baccatin III decreased the accumulation of MDSCs in the spleens of the tumor-bearing mice. Furthermore, MDSCs isolated from baccatin III-treated mice, compared with those isolated from vehicle-treated mice, had a significantly reduced suppressive effect on T cells treated with the anti-CD3 and anti-CD28 monoclonal antibodies. Moreover, these cells produced significantly reduced amounts of reactive oxygen species and nitric oxide. These results suggest that baccatin III reduced tumor progression by inhibiting the accumulation and suppressive function of MDSCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function

    PubMed Central

    Zhang, Hongru; Li, Zheng; Wang, Li; Tian, Gaofei; Tian, Jun; Yang, Zishan; Cao, Guangchao; Zhou, Hong; Zhao, Liqing; Wu, Zhenzhou; Yin, Zhinan

    2017-01-01

    Metastasis followed by the tumor development is the primary cause of death for cancer patients. However, the underlying molecular mechanisms of how the growth of tumor resulted in the immune suppression, especially at the blood-enriched organ such as liver, were largely unknown. In this report, we studied the liver immune response of tumor-bearing (TB) mice using concanavalin A (Con A)-induced hepatitis model. We demonstrated that TB mice displayed an immune suppression phenotype, with attenuated alanine aminotransferase levels and liver damage upon Con A treatment. We also elucidated that large amounts of myeloid-derived suppressor cells (MDSCs) being influx into the liver in TB mice and these MDSCs were essential for liver immune suppression through both depletion and reconstitution approaches. We further determined that these MDSCs selectively suppressed the IFN-γ production deriving from NKT cells through membrane-bound transforming growth factor β (TGF-β). Finally, we defined a tumor-derived TGF-β-triggered CXCL1/2/5- and CXCR2-dependent recruitment of MDSC into the liver. In summary, our results defined a novel mechanism of liver immune suppression triggered by growing living tumor and provided possible therapeutic targets against these MDSCs. PMID:28243237

  14. Therapeutic approaches targeting midkine suppress tumor growth and lung metastasis in osteosarcoma.

    PubMed

    Sueyoshi, Takanao; Jono, Hirofumi; Shinriki, Satoru; Ota, Kazutoshi; Ota, Tomoko; Tasaki, Masayoshi; Atsuyama, Eri; Yakushiji, Toshitake; Ueda, Mitsuharu; Obayashi, Konen; Mizuta, Hiroshi; Ando, Yukio

    2012-03-01

    Midkine (MK) plays important roles in tumorigenesis, however, the biological function of MK and whether MK can be a therapeutic target in osteosarcoma are unclear. Here, we found that osteosarcoma tissues showed high MK expression. MK knockdown by small interfering RNA significantly induced apoptosis in osteosarcoma cells, whereas recombinant MK increased cell proliferation. Inhibition of MK signaling by anti-MK monoclonal antibody (anti-MK mAb) suppressed growth of osteosarcoma cells both in vitro and in vivo. Moreover, inhibition of MK function significantly suppressed lung metastasis in xenograft transplantation model. Targeting MK by anti-MK mAb may have value in the treatment of osteosarcoma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A4

    PubMed Central

    Brigatte, Patrícia; Faiad, Odair Jorge; Ferreira Nocelli, Roberta Cornélio; Landgraf, Richardt G.; Palma, Mario Sergio; Cury, Yara; Curi, Rui; Sampaio, Sandra Coccuzzo

    2016-01-01

    We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A4. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A4 and its natural analogue 15-epi-LXA4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A4 and 15-epi-LXA4, which might inhibit both tumor growth and formation of new vessels via FPRs. PMID:27190493

  16. Benefits of a Good Neighborhood: Normal Cells Can Suppress Tumor Formation | Center for Cancer Research

    Cancer.gov

    For several years, researchers have been trying to unlock the mysteries of cancer by studying the genomic changes and signaling pathways within tumor cells. While these aberrations undeniably contribute to cancer development, it is becoming increasingly clear that factors external to the cell—including nearby cells, the immune system, blood vessels, and other factors—also play a role.

  17. Subcellular Localization and Ser-137 Phosphorylation Regulate Tumor-suppressive Activity of Profilin-1*

    PubMed Central

    Diamond, Marc I.; Cai, Shirong; Boudreau, Aaron; Carey, Clifton J.; Lyle, Nicholas; Pappu, Rohit V.; Swamidass, S. Joshua; Bissell, Mina; Piwnica-Worms, Helen; Shao, Jieya

    2015-01-01

    The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer. PMID:25681442

  18. Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1.

    PubMed

    Diamond, Marc I; Cai, Shirong; Boudreau, Aaron; Carey, Clifton J; Lyle, Nicholas; Pappu, Rohit V; Swamidass, S Joshua; Bissell, Mina; Piwnica-Worms, Helen; Shao, Jieya

    2015-04-03

    The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis.

    PubMed

    Martínez-Iglesias, Olaia; Olmeda, David; Alonso-Merino, Elvira; Gómez-Rey, Sara; González-López, Ana M; Luengo, Enrique; Soengas, María S; Palacios, José; Regadera, Javier; Aranda, Ana

    2016-11-29

    Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.

  20. A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo.

    PubMed

    Niu, Y C; Liu, J C; Zhao, X M; Wu, X X

    2009-01-01

    Previous studies indicated that the low molecular weight polysaccharide extracts from Agaricus blazei are potential antitumor agents or adjuvant in tumor treatment. In this study, we investigated the antitumor activity of LMPAB, a low molecular weight polysaccharide isolated from Agaricus blazei, and the molecular mechanisms of its antitumor activity. The antitumor effect of LMPAB was examined using mouse sarcoma 180 (S180) xenograft models. Antiangiogenic effect of LMPAB was determined by chicken embryo chorioallantoic membrane (CAM) angiogenesis and Matrigel-induced neovascularization in vivo models. The mRNA and protein levels of vascular endothelial growth factor (VEGF) were assessed using real-time reverse transcription-polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assays. Tumor inhibitory rates in the S180 xenograft models were 9.7, 23.9, and 33.0%, respectively, after administration of LMPAB at dose of 50, 100, and 200 mg/kg/day for 2 weeks. LMPAB also inhibited angiogenesis in the CAM model and Matrigel-induced neovascularization in C57BL/6 mice. The mRNA and protein levels of VEGF in tumor tissues were significantly down-regulated in the BALB/c mice received LMPAB treatment. Furthermore, significant down-regulation of serum VEGF levels was also observed in the mice. Our data suggest that LMPAB might be a promising agent for tumor therapy, and the antitumor and antiangiogenic effects of LMPAB may be related with down-regulation of VEGF.

  1. The C-terminus of IGFBP-5 suppresses tumor growth by inhibiting angiogenesis

    PubMed Central

    Hwang, Jae Ryoung; Cho, Young-Jae; Lee, Yoonna; Park, Youngmee; Han, Hee Dong; Ahn, Hyung Jun; Lee, Je-Ho; Lee, Jeong-Won

    2016-01-01

    Insulin-like growth factor-binding protein 5 (IGFBP-5) plays a role in cell growth, differentiation, and apoptosis. In this study, we found that IGFBP5 was markedly downregulated in ovarian cancer tissue. We investigated the functional significance of IGFBP-5 as a tumor suppressor. To determine functional regions of IGFBP-5, truncation mutants were prepared and were studied the effect on tumor growth. Expression of C-terminal region of IGFBP-5 significantly decreased tumor growth in an ovarian cancer xenograft. A peptide derived from the C-terminus of IGFBP-5 (BP5-C) was synthesized to evaluate the minimal amino acid motif that retained anti-tumorigenic activity and its effect on angiogenesis was studied. BP5-C peptide decreased the expression of VEGF-A and MMP-9, phosphorylation of Akt and ERK, and NF-kB activity, and inhibited angiogenesis in in vitro and ex vivo systems. Furthermore, BP5-C peptide significantly decreased tumor weight and angiogenesis in both ovarian cancer orthotopic xenograft and patient-derived xenograft mice. These results suggest that the C-terminus of IGFBP-5 exerts anti-cancer activity by inhibiting angiogenesis via regulation of the Akt/ERK and NF-kB–VEGF/MMP-9 signaling pathway, and might be considered as a novel angiogenesis inhibitor for the treatment of ovarian cancer. PMID:28008951

  2. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis

    PubMed Central

    Martínez-Iglesias, Olaia; Olmeda, David; Alonso-Merino, Elvira; Gómez-Rey, Sara; González-López, Ana M.; Luengo, Enrique; Soengas, María S.; Palacios, José; Regadera, Javier; Aranda, Ana

    2016-01-01

    Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted. PMID:27806339

  3. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    PubMed Central

    2010-01-01

    Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and

  4. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression

    PubMed Central

    Muh, Carrie R.; Joshi, Shweta; Singh, Alok R.; Kesari, Santosh; Durden, Donald L.; Makale, Milan T.

    2013-01-01

    Glioblastoma (GBM) is the most common brain cancer and is highly lethal in both adults and children. 2-methoxyestradiol (2ME2) is a microtubule inhibitor that potently inhibits HIF1α, GBM angiogenesis and tumor growth in preclinical models. In patients, 2ME2 exhibits low toxicity and promising but inconsistent efficacy. Given its preclinical potency and its tolerability in patients, we sought to determine whether 2ME2 therapy could be enhanced by addressing resistance via combination therapy, and with biomarkers to identify responsive glioma subgroups. We demonstrate that the PTEN-PI3K axis regulates HIF1α in glioma models. We utilized isogenic-pairs of glioma cell lines, deficient in PTEN or stably reconstituted with PTEN, to determine the role of PTEN in 2ME2 sensitivity in vitro and in vivo. Chou-Talalay synergy studies reveal significant synergy when a pan-PI3K inhibitor is combined with 2ME2. This synergistic activity was correlated with a synergistic suppression of HIF1α accumulation under hypoxic conditions in glioma models. In vivo, 2ME2 markedly inhibited tumor-induced angiogenesis and significantly reduced tumor growth only in a PTEN reconstituted GBM models in both subcutaneous and orthotopic intracranial mouse models. Collectively, these results: (1) suggest that PTEN status predicts sensitivity to 2ME2 and (2) justify exploration of 2ME2 combined with panPI3K inhibitors for the treatment of this intractable brain cancer. PMID:24162827

  5. Coptisine from Rhizoma Coptidis Suppresses HCT-116 Cells-related Tumor Growth in vitro and in vivo

    PubMed Central

    Huang, Tao; Xiao, Yubo; Yi, Lin; Li, Ling; Wang, Meimei; Tian, Cheng; Ma, Hang; He, Kai; Wang, Yue; Han, Bing; Ye, Xiaoli; Li, Xuegang

    2017-01-01

    Colorectal cancer is one of the most common causes of cancer-related death in humans. Coptisine (COP) is a natural alkaloid from Coptidis Rhizoma with unclear antitumor mechanism. Human colon cancer cells (HCT-116) and xenograft mice were used to systematically explore the anti-tumor activity of COP in this study. The results indicated that COP exhibited remarkably cytotoxic activities against the HCT-116 cells by inducing G1-phase cell cycle arrest and increasing apoptosis, and preferentially inhibited the survival pathway and induced the activation of caspase proteases family of HCT-116 cells. Experimental results on male BALB/c nude mice confirmed that orally administration of COP at high-dose (150 mg/kg) could suppress tumor growth, and may reduce cancer metastasis risk by inhibiting the RAS-ERK pathway in vivo. Taken together, the results suggested that COP may be potential as a novel anti-tumor candidate in the HCT-116 cells-related colon cancer, further studies are still needed to suggest COP for the further use. PMID:28165459

  6. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression.

    PubMed

    Wei, Wei; Lv, Pi-Ping; Chen, Xiao-Ming; Yue, Zhan-Guo; Fu, Qiang; Liu, Shi-Ying; Yue, Hua; Ma, Guang-Hui

    2013-05-01

    Clinical applications of siRNA are being hindered by poor intracellular uptake and enzymatic degradation. To address these problems, we devised an oral delivery system for telomerase reverse transcriptase siRNA using N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC) nanoparticles (HNP). Both the porous structure and the positive charge of HNP facilitated siRNA encapsulation. The outer coating of HTCC not only protected siRNA from enzymatic degradation, but also improved siRNA permeability in intestine tract. In vivo and in vitro experiments proved that HNP could effectively deliver siRNA to lesion site and further into tumor cells. On the basis of confirming the antitumor activity of HNP:siRNA, we continued to encapsulate a hydrophobic chemotherapeutic drug-paclitaxel (PTX) into HNP to form a "two-in-one" nano-complex (HNP:siRNA/PTX). We demonstrated that HNP:siRNA/PTX could simultaneously ferry siRNA and PTX into tumor cells and increase drug concentration, which, in particular, was much more effective in tumor suppression than that of traditional cocktail therapy. These results suggested that the HNP, as a powerful delivery system for both siRNA and chemotherapeutic drug, would have a far-reaching application in human cancer therapy.

  7. Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222

    PubMed Central

    Zhao, Xihe; Wang, Ping; Liu, Jing; Zheng, Jian; Liu, Yunhui; Chen, Jiajia; Xue, Yixue

    2015-01-01

    Aberrant expression of noncoding RNAs in glioma cells, including long noncoding RNAs (lncRNAs) and microRNAs, may participate in the progression of glioma. Encoded by Growth Arrest-Specific 5 (GAS5) gene, lncRNA Gas5 was reported to be a negative regulator for survival and proliferation of several cancers. Here, Gas5 is found to be downregulated in glioma specimens and U87 and U251 glioma cell lines. We showed that the introduction of Gas5 by plasmid transfection increased the expression of tumor suppressor Bcl-2-modifying factor (bmf) and Plexin C1 via directly targeting and reducing the expression of miR-222. Downregulated expression of miR-222 inhibited U87 and U251 cell proliferation and promoted the apoptosis by upregulating bmf. As downstream signaling molecules of bmf, Bcl-2 and Bax were involved in the process. Meanwhile, knockdown of miR-222 attenuated U87 and U251 cell migration and invasion by upregulating Plexin C1, and cofilin was a crucial regulator targeted by Plexin C1. Gas5 combined with the knockdown of miR-222 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. In summary, we show that Gas5 suppresses tumor malignancy by downregulating miR-222, which may serve as a promising therapy for glioma. PMID:26370254

  8. Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222.

    PubMed

    Zhao, Xihe; Wang, Ping; Liu, Jing; Zheng, Jian; Liu, Yunhui; Chen, Jiajia; Xue, Yixue

    2015-12-01

    Aberrant expression of noncoding RNAs in glioma cells, including long noncoding RNAs (lncRNAs) and microRNAs, may participate in the progression of glioma. Encoded by Growth Arrest-Specific 5 (GAS5) gene, lncRNA Gas5 was reported to be a negative regulator for survival and proliferation of several cancers. Here, Gas5 is found to be downregulated in glioma specimens and U87 and U251 glioma cell lines. We showed that the introduction of Gas5 by plasmid transfection increased the expression of tumor suppressor Bcl-2-modifying factor (bmf) and Plexin C1 via directly targeting and reducing the expression of miR-222. Downregulated expression of miR-222 inhibited U87 and U251 cell proliferation and promoted the apoptosis by upregulating bmf. As downstream signaling molecules of bmf, Bcl-2 and Bax were involved in the process. Meanwhile, knockdown of miR-222 attenuated U87 and U251 cell migration and invasion by upregulating Plexin C1, and cofilin was a crucial regulator targeted by Plexin C1. Gas5 combined with the knockdown of miR-222 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. In summary, we show that Gas5 suppresses tumor malignancy by downregulating miR-222, which may serve as a promising therapy for glioma.

  9. Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression.

    PubMed

    Katuri, V; Tang, Y; Li, C; Jogunoori, W; Deng, C-X; Rashid, A; Sidawy, A N; Evans, S; Reddy, E P; Mishra, B; Mishra, L

    2006-03-23

    Inactivation of the transforming growth factor-beta (TGF-beta) pathway occurs often in malignancies of the gastrointestinal (GI) system. However, only a fraction of sporadic GI tumors exhibit inactivating mutations in early stages of cancer formation, suggesting that other mechanisms play a critical role in the inactivation of this pathway. Here, we show a wide range of GI tumors, including those of the stomach, liver and colon in elf+/- and elf+/- / Smad4+/- mutant mice. We found that embryonic liver fodrin (ELF), a beta-Spectrin originally identified in endodermal stem/progenitor cells committed to foregut lineage, possesses potent antioncogenic activity and is frequently inactivated in GI cancers. Specifically, E-cadherin accumulation at cell-cell contacts and E-cadherin-beta-catenin-dependent epithelial cell-cell adhesion is disrupted in elf+/- / Smad4+/- mutant gastric epithelial cells, and could be rescued by ectopic expression of full-length elf, but not Smad3 or Smad4. Subcellular fractionation revealed that E-cadherin is expressed mainly at the cell membrane after TGF-beta stimulation. In contrast, elf+/- / Smad4+/- mutant tissues showed abnormal distribution of E-cadherin that could be rescued by overexpression of ELF but not Smad3 or Smad4. Our results identify a group of common lethal malignancies in which inactivation of TGF-beta signaling, which is essential for tumor suppression, is disrupted by inactivation of the ELF adaptor protein.

  10. A water-soluble polysaccharide from the roots of Polygala tenuifolia suppresses ovarian tumor growth and angiogenesis in vivo.

    PubMed

    Yao, Hua; Cui, Ping; Xu, Dan; Liu, Yunduo; Tian, Qinghua; Zhang, Fubin

    2017-09-15

    PTP, one polysaccharide extracted from the roots of Polygala tenuifolia, has displayed anti-cancer activity in several types of ovarian cancer cells. This study aims to elucidate the structure of PTP and investigate its anticancer effects against SKOV3 xenograft tumor growth in BALB/c mice, as well as the underlying mechanisms involved. GC-MS and NMR data indicate that PTP has a backbone composed of 1,4,6-linked-β-Galp, 1,4-linked-β-Galp and 1,4-linked-β-Glcp, with non-reducing terminal 1-linked-α-Glcp attached to O-6 of 1,4,6-linked-β-Galp. The tumor growth was suppressed in mice following two week's PTP administration (10, 20 and 40mg/kg) due to the induction of apoptosis, as detected by TUNEL assay. Moreover, lower serum VEGF and EGFR levels were observed in BALB/c mice treated with different doses of PTP when compared with that in untreated mice. Also, EGFR, VEGF, and CD34 were decreased in both transcript and protein levels in the tumor-bearing mice upon PTP treatment. Taken together, our data suggest that PTP appears to be a powerful chemopreventive agent for the patients with ovarian cancer, especially at advanced stage. Copyright © 2017. Published by Elsevier B.V.

  11. MicroRNA-506 suppresses tumor proliferation and metastasis in colon cancer by directly targeting the oncogene EZH2.

    PubMed

    Zhang, Yi; Lin, Changwei; Liao, Guoqing; Liu, Sheng; Ding, Jie; Tang, Fang; Wang, Zhenran; Liang, Xingsi; Li, Bo; Wei, Yangchao; Huang, Qi; Li, Xuan; Tang, Bo

    2015-10-20

    Increasing evidence reveals that aberrant expression of microRNA contributes to the development and progression of colon cancer, but the roles of microRNA-506 (miR-506) in colon cancer remain elusive. Here, we demonstrated that miR-506 was down-regulated in colon cancer tissue and cells and that miR-506 expression was inversely correlated with EZH2 expression, tumor size, lymph node invasion, TNM stage and metastasis. A high level of miR-506 identified patients with a favorable prognosis. In vitro and in vivo experiments confirmed that miR-506 inhibits the proliferation and metastasis of colon cancer, and a luciferase reporter assay confirmed that EZH2 is a direct and functional target of miR-506 via the 3'UTR of EZH2. The restoration of EZH2 expression partially reversed the proliferation and invasion of miR-506-overexpressing colon cancer cells. Moreover, we confirmed that the miR-506-EZH2 axis inhibits proliferation and metastasis by activating/suppressing specific downstream tumor-associated genes and the Wnt/β-catenin signaling pathway. Taking together, our study sheds light on the role of miR-506 as a suppressor for tumor growth and metastasis and raises the intriguing possibility that miR-506 may serve as a new potential marker for monitoring and treating colon cancer.

  12. Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2.

    PubMed

    Merino, D; Best, S A; Asselin-Labat, M-L; Vaillant, F; Pal, B; Dickins, R A; Anderson, R L; Strasser, A; Bouillet, P; Lindeman, G J; Visvader, J E

    2015-07-23

    Evasion of cell death is fundamental to the development of cancer and its metastasis. The role of the BCL-2-mediated (intrinsic) apoptotic program in these processes remains poorly understood. Here we have investigated the relevance of the pro-apoptotic protein BIM to breast cancer progression using the MMTV-Polyoma middle-T (PyMT) transgenic model. BIM deficiency in PyMT females did not affect primary tumor growth, but substantially increased the survival of metastatic cells within the lung. These data reveal a role for BIM in the suppression of breast cancer metastasis. Intriguingly, we observed a striking correlation between the expression of BIM and the epithelial to mesenchymal transition transcription factor SNAI2 at the proliferative edge of the tumors. Overexpression and knockdown studies confirmed that these two genes were coordinately expressed, and chromatin immunoprecipitation analysis further revealed that Bim is a target of SNAI2. Taken together, our findings suggest that SNAI2-driven BIM-induced apoptosis may temper metastasis by governing the survival of disseminating breast tumor cells.

  13. Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo.

    PubMed

    Zhao, Tiejun; Sun, Qiang; del Rincon, Sonia V; Lovato, Amanda; Marques, Maud; Witcher, Michael

    2014-01-01

    Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn) has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1) as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP) injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.

  14. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  15. MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer

    PubMed Central

    Wang, Lufei; He, Jin; Xu, Hongmei; Xu, Longjie; Li, Na

    2016-01-01

    A series of recent studies suggested that miR-143 might involve in the tumorigenesis and metastasis of various cancer types. However, the biological function and underlying mechanisms of miR-143 in human epithelial ovarian carcinoma (EOC) remain unknown. Therefore, this study aimed to investigate the miR-143 expression and its clinical diagnosis significance in patients suffering EOC and to analyze its role and underlying molecular mechanism in EOC. Our result showed that the expression levels of miR-143 were downregulated in EOC tissues and cell lines, was associated with International Federation of Gynaecology and Obstetrics (FIGO) stage, pathological grade and lymph node metastasis (all P < 0.01) . Overexpression of miR-143 significantly inhibited EOC cell proliferation, migration, and invasion. Furthermore, computational algorithm combined with luciferase reporter assays identified connective tissue growth factor (CTGF) as the direct target of miR-143 in EOC cells. The expression level of CTGF was significantly increased in EOC tissues, was inversely correlated with miR-143 expression in clinical EOC tissues. Knockdown of CTGF mimicked the suppression effect induced by miR-143 overexpression. Restoration of CTGF expression partially reversed the suppression effect induced by miR-143 overexpression. These results suggested that miR-143 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing CTGF expression. PMID:27398154

  16. Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer

    PubMed Central

    Mei, Hong; Pu, Jiarui; Xiang, Xuan; Jiao, Wanju; Song, Huajie; Qu, Hongxia; Huang, Kai; Zheng, Liduan; Tong, Qiangsong

    2015-01-01

    Recent evidence shows the emerging roles of intelectin 1 (ITLN1), a secretory lectin, in human cancers. Our previous studies have implicated the potential roles of ITLN1 in the aggressiveness of gastric cancer. Herein, we investigated the functions, downstream targets, and clinical significance of ITLN1 in the progression of gastric cancer. We demonstrated that ITLN1 increased the levels of hepatocyte nuclear factor 4 alpha (HNF4α), resulting in suppression of nuclear translocation and transcriptional activity of β-catenin in gastric cancer cells. Mechanistically, ITLN1 attenuated the activity of nuclear factor-kappa B, a transcription factor repressing the HNF4α expression, in gastric cancer cells through inactivating the phosphoinositide 3-kinase/AKT/Ikappa B kinase signaling. Gain- and loss-of-function studies demonstrated that ITLN1 suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. In addition, restoration of HNF4α expression prevented the gastric cancer cells from ITLN1-mediated changes in these biological features. In clinical gastric cancer tissues, HNF4α expression was positively correlated with that of ITLN1. Patients with high ITLN1 or HNF4α expression had greater survival probability. Taken together, these data indicate that ITLN1 suppresses the progression of gastric cancer through up-regulation of HNF4α, and is associated with improved survival in patients with gastric cancer. PMID:25965823

  17. Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer.

    PubMed

    Li, Dan; Zhao, Xiang; Xiao, Yong; Mei, Hong; Pu, Jiarui; Xiang, Xuan; Jiao, Wanju; Song, Huajie; Qu, Hongxia; Huang, Kai; Zheng, Liduan; Tong, Qiangsong

    2015-06-30

    Recent evidence shows the emerging roles of intelectin 1 (ITLN1), a secretory lectin, in human cancers. Our previous studies have implicated the potential roles of ITLN1 in the aggressiveness of gastric cancer. Herein, we investigated the functions, downstream targets, and clinical significance of ITLN1 in the progression of gastric cancer. We demonstrated that ITLN1 increased the levels of hepatocyte nuclear factor 4 alpha (HNF4α), resulting in suppression of nuclear translocation and transcriptional activity of β-catenin in gastric cancer cells. Mechanistically, ITLN1 attenuated the activity of nuclear factor-kappa B, a transcription factor repressing the HNF4α expression, in gastric cancer cells through inactivating the phosphoinositide 3-kinase/AKT/Ikappa B kinase signaling. Gain- and loss-of-function studies demonstrated that ITLN1 suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. In addition, restoration of HNF4α expression prevented the gastric cancer cells from ITLN1-mediated changes in these biological features. In clinical gastric cancer tissues, HNF4α expression was positively correlated with that of ITLN1. Patients with high ITLN1 or HNF4α expression had greater survival probability. Taken together, these data indicate that ITLN1 suppresses the progression of gastric cancer through up-regulation of HNF4α, and is associated with improved survival in patients with gastric cancer.

  18. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis.

    PubMed

    Singh, Ajay P; Moniaux, Nicolas; Chauhan, Subhash C; Meza, Jane L; Batra, Surinder K

    2004-01-15

    The MUC4 mucin is a high molecular weight membrane-bound glycoprotein. It is aberrantly expressed in pancreatic tumors and tumor cell lines with no detectable expression in the normal pancreas. A progressive increase of MUC4 expression has also been observed in pancreatic intraepithelial neoplasia, suggesting its association with disease development. Here, we investigated the consequences of silencing MUC4 expression in an aggressive and highly metastatic pancreatic tumor cell line CD18/HPAF that expresses high levels of MUC4. The expression of MUC4 was down-regulated by the stable integration of a plasmid-construct expressing antisense-MUC4 RNA. A decrease in MUC4 expression, confirmed by Western blot and immunofluorescence analyses, resulted in diminished growth and clonogenic ability of antisense-MUC4-transfected (EIAS19) cells compared with parental, empty vector (ZEO) and sense transfected (ES6) control cells. In addition, EIAS19 cells displayed a significant decrease in tumor growth and metastatic properties when transplanted orthotopically into the immunodeficient mice. In vitro biological assays for motility, adhesion, and aggregation demonstrated a 3-fold decrease in motility of EIAS19 cells compared with control cells, whereas these cells adhered more and showed an increase in cellular aggregation. Interestingly, MUC4 down-regulation also correlated with the reduced expression of its putative interacting partner, HER2/neu, in antisense-MUC4-transfected cells. In conclusion, the present work demonstrates, for the first time, a direct association of the MUC4 mucin with the metastatic pancreatic cancer phenotype and provides experimental evidence for a functional role of MUC4 in altered growth and behavioral properties of the tumor cell.

  19. Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling

    PubMed Central

    Tan, Xiang-Lin; Bhattacharyya, Kalyan K.; Dutta, Shamit K.; Bamlet, William R.; Rabe, Kari G.; Wang, Enfeng; Smyrk, Thomas C.; Oberg, Ann L.; Petersen, Gloria M.; Mukhopadhyay, Debabrata

    2015-01-01

    Objectives To further elucidate anti-cancer mechanisms of metformin again pancreatic cancer, we evaluated inhibitory effects of metformin on pancreatic tumorigenesis in a genetically-engineered mouse model, and investigated its possible anti-inflammatory and anti-angiogenesis effects. Methods Six-week old LSL-KrasG12D/+;Trp53F2-10 mice (10 per group) were administered once daily intraperitoneally with saline (control) for one week or metformin (125 mg/kg) for one week (Met_1wk) or three weeks (Met_3wk) prior to tumor initiation. All mice continued with their respective injections for six weeks post-tumor initiation. Molecular changes were evaluated by quantitative polymerase chain reaction (PCR), immunohistochemistry, and Western blotting. Results At euthanasia, pancreatic tumor volume in Met_1wk (median, 181.8 mm3) and Met_3wk (median, 137.9 mm3) groups was significantly lower than the control group (median, 481.1 mm3) (P = 0.001 and 0.0009, respectively). No significant difference was observed between Met_1wk and Met_3wk groups (P = 0.51). These results were further confirmed using tumor weight and tumor burden measurements. Furthermore, metformin treatment decreased the phosphorylation of nuclear factor κB (NFκB) and signal transducer and activator of transcription 3 (STAT3) as well as the expression of Sp1 transcription factor and several NFκB-regulated genes. Conclusions Metformin may inhibit pancreatic tumorigenesis by modulating multiple molecular targets in inflammatory pathways. PMID:25875801

  20. The tumor suppressive role of RASSF1A in osteosarcoma through the Wnt signaling pathway.

    PubMed

    Wang, Wei-Guo; Chen, Shi-Jie; He, Jin-Shen; Li, Jing-Song; Zang, Xiao-Fang

    2016-07-01

    Ras-association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene and its expression is lost in numerous types of cancer cells, including primary osteosarcoma cells. However, its functional significance in osteosarcoma has not been well defined. The messenger RNA (mRNA) expression of RASSF1A in osteosarcoma tissues and corresponding non-tumoral tissues was measured by real-time PCR. Overexpression of RASSF1A was established by an adenoviral vector expressing RASSF1A. Cell migration and invasion were analyzed in transwells. Apoptosis and cell cycle were analyzed using flow cytometry. Wnt/β-catenin activity was measured by TCF reporter dual-luciferase assay. Cell viability was measured by MTT assay. Protein expression was detected by Western blot. RASSF1A mRNA expression was significantly lower in osteosarcoma tissues than that in the corresponding non-tumoral tissues. The lowered RASSF1A expression correlated with the clinical severity of osteosarcoma. rAd-RASSF1A injection significantly inhibited the growth of xenograft MNNG/HOS tumors in mice. Overexpression of RASSF1A resulted in significant inhibition of the proliferation, migration, and invasion; induced apoptosis; and arrested cell cycle at G0/G1 phase in both the MNNG/HOS and SaOS2 cells. Overexpression of RASSF1A inhibited the Wnt/β-catenin activity, decreased phosphorylation of Akt/glycogen synthase kinase-3-β (GSK3-β), and increased phosphorylation of mammalian sterile 20-like kinase 1 (MST1). Overexpression of RASSF1A downregulated the cyclin D1, c-Myc, and matrix metalloproteinase-7 (MMP-7) protein levels. RASSF1A functions as a tumor suppressor in osteosarcoma and exerts anti-cancer roles through regulating Akt/GSK-3-Wnt/β-catenin signaling.

  1. The cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids.

    PubMed

    Nakaoka, Toshiaki; Saito, Yoshimasa; Shimamoto, Yuriko; Muramatsu, Toshihide; Kimura, Masaki; Kanai, Yae; Saito, Hidetsugu

    2017-01-16

    Tumor stem cells with self-renewal and multipotent capacity play critical roles in the initiation and progression of cancer. Recently, a new 3D culture system known as organoid culture has been developed, allowing Lgr5-positive stem cells to form organoids that resemble the properties of original tissues. Here we established organoids derived from intestinal tumors of Apc(min/+) mice and normal intestinal epithelia of C57BL/6J mice and investigated the roles of microRNAs (miRNAs) in intestinal tumor organoids. The results of microarray analyses revealed that expression of the cluster miRNAs, miR-194 and miR-215, was markedly suppressed in intestinal tumor organoids in comparison with organoids derived from normal intestinal epithelia. Enforced expression of miR-194 resulted in inhibition of E2f3, a positive regulator of the cell cycle and growth suppression of intestinal tumor organoids. In addition, enforced expression of miR-215 suppressed the cancer stem cell signature through down-regulation of intestinal stem cell markers including Lgr5. These findings indicate that the miRNA cluster including miR-194 and miR-215 plays important roles in suppressing the growth and attenuating the stemness of intestinal tumor organoids. This article is protected by copyright. All rights reserved.

  2. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3.

    PubMed

    Lin, Kun-Yang; Kao, Shih-Han; Lai, Chun-Ming; Chen, Ciao-Ting; Wu, Chang-Yi; Hsu, Hwei-Jan; Wang, Wen-Der

    2015-12-11

    Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation.

  3. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3*

    PubMed Central

    Lin, Kun-Yang; Kao, Shih-Han; Lai, Chun-Ming; Chen, Ciao-Ting; Wu, Chang-Yi; Hsu, Hwei-Jan; Wang, Wen-Der

    2015-01-01

    Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation. PMID:26475862

  4. JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress

    PubMed Central

    Kostecka, A; Sznarkowska, A; Meller, K; Acedo, P; Shi, Y; Mohammad Sakil, H A; Kawiak, A; Lion, M; Królicka, A; Wilhelm, M; Inga, A; Zawacka-Pankau, J

    2014-01-01

    Hyperproliferating cancer cells produce energy mainly from aerobic glycolysis, which results in elevated ROS levels. Thus aggressive tumors often possess enhanced anti-oxidant capacity that impedes many current anti-cancer therapies. Additionally, in ROS-compromised cancer cells ubiquitin proteasome system (UPS) is often deregulated for timely removal of oxidized proteins, thus enabling cell survival. Taken that UPS maintains the turnover of factors controlling cell cycle and apoptosis – such as p53 or p73, it represents a promising target for pharmaceutical intervention. Enhancing oxidative insult in already ROS-compromised cancer cells appears as an attractive anti-tumor scenario. TAp73 is a bona fide tumor suppressor that drives the chemosensitivity of some cancers to cisplatin or γ-radiation. It is an important drug target in tumors where p53 is lost or mutated. Here we discovered a novel synergistic mechanism leading to potent p73 activation and cancer cell death by oxidative stress and inhibition of 20S proteasomes. Using a small-molecule inhibitor of 20S proteasome and ROS-inducer – withaferin A (WA), we found that WA-induced ROS activates JNK kinase and stabilizes phase II anti-oxidant response effector NF-E2-related transcription factor (NRF2). This results in activation of Nrf2 target – NQO1 (NADPH quinone oxidoreductase), and TAp73 protein stabilization. The observed effect was ablated by the ROS scavenger – NAC. Concurrently, stress-activated JNK phosphorylates TAp73 at multiple serine and threonine residues, which is crucial to ablate TAp73/MDM2 complex and to promote TAp73 transcriptional function and induction of robust apoptosis. Taken together our data demonstrate that ROS insult in combination with the inhibition of 20S proteasome and TAp73 activation endows synthetic lethality in cancer cells. Thus, our results may enable the establishment of a novel pharmacological strategy to exploit the enhanced sensitivity of tumors to elevated ROS

  5. Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma

    PubMed Central

    Yoshino, Hirofumi; Yamasaki, Takeshi; Yamada, Yasutoshi; Nohata, Nijiro; Fuse, Miki; Nakagawa, Masayuki; Enokida, Hideki

    2012-01-01

    MicroRNAs (miRNA) are non-coding RNAs, approximately 22 nucleotides in length, which function as post-transcriptional regulators. A large body of evidence indicates that miRNAs regulate the expression of cancer-related genes involved in proliferation, migration, invasion, and metastasis. The aim of this study was to identify novel cancer networks in renal cell carcinoma (RCC) based on miRNA expression signatures obtained from RCC clinical specimens. Expression signatures revealed that 103 miRNAs were significantly downregulated (< 0.5-fold change) in RCC specimens. Functional screening (cell proliferation assays) was performed to identify tumor suppressive activities of 20 downregulated miRNAs. Restoration of mature miRNAs in cancer cells showed that 14 miRNAs (miR-1285, miR-206, miR-1, miR-135a, miR-429, miR-200c, miR-1291, miR-133b, miR-508-3p, miR-360-3p, miR-509-5p, miR-218, miR-335, miR-1255b and miR-1285) markedly inhibited cancer cell proliferation, suggesting that these miRNAs were candidate tumor suppressive miRNAs in RCC. We focused on miR-1285 because it significantly inhibited cancer cell proliferation, invasion, and migration following its transfection. We addressed miR-1285-regulated cancer networks by using genome-wide gene expression analysis and bioinformatics. The data showed that transglutaminase 2 (TGM2) was directly regulated by miR-1285. Silencing of the target gene demonstrated significant inhibition of cell proliferation and invasion in the RCC cells. Furthermore, immunohistochemistry showed that TGM2 expression levels in RCC specimens were significantly higher than those in normal renal tissues. Downregulation of tumor suppressive miR-1285, which targets oncogenic genes including TGM2, might contribute to RCC development. Thus, miR-1285 modulates a novel molecular target and provides new insights into potential mechanisms of RCC oncogenesis. PMID:22294552

  6. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  7. p53 dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer

    PubMed Central

    Tschaharganeh, Darjus F; Xue, Wen; Calvisi, Diego F; Evert, Matthias; Michurina, Tatyana V; Dow, Lukas E; Banito, Ana; Katz, Sarah F; Kastenhuber, Edward R; Weissmueller, Susann; Huang, Chun-Hao; Lechel, Andre; Andersen, Jesper B; Capper, David; Zender, Lars; Longerich, Thomas; Enikolopov, Grigori; Lowe, Scott W

    2014-01-01

    Summary The p53 tumor suppressor coordinates a series of anti-proliferative responses that restrict the expansion of malignant cells and, as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor cell-associated protein nestin in an Sp1/3 transcription factor-dependent manner and that nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer. PMID:25083869

  8. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed

    PubMed Central

    Kardos, Jordan; Chai, Shengjie; Mose, Lisle E.; Selitsky, Sara R.; Krishnan, Bhavani; Saito, Ryoichi; Iglesia, Michael D.; Milowsky, Matthew I.; Parker, Joel S.; Kim, William Y.; Vincent, Benjamin G.

    2016-01-01

    We report the discovery of a claudin-low molecular subtype of high-grade bladder cancer that shares characteristics with the homonymous subtype of breast cancer. Claudin-low bladder tumors were enriched for multiple genetic features including increased rates of RB1, EP300, and NCOR1 mutations; increased frequency of EGFR amplification; decreased rates of FGFR3, ELF3, and KDM6A mutations; and decreased frequency of PPARG amplification. While claudin-low tumors showed the highest expression of immune gene signatures, they also demonstrated gene expression patterns consistent with those observed in active immunosuppression. This did not appear to be due to differences in predicted neoantigen burden, but rather was associated with broad upregulation of cytokine and chemokine levels from low PPARG activity, allowing unopposed NFKB activity. Taken together, these results define a molecular subtype of bladder cancer with distinct molecular features and an immunologic profile that would, in theory, be primed for immunotherapeutic response. PMID:27699256

  9. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    PubMed Central

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-01-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects. PMID:27457182

  10. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity.

    PubMed

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-26

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  11. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas.

    PubMed

    Qi, Wenqing; Liu, Xiaobing; Cooke, Laurence S; Persky, Daniel O; Miller, Thomas P; Squires, Matthew; Mahadevan, Daruka

    2012-06-15

    Aurora kinases are oncogenic serine/threonine kinases that play key roles in regulating the mitotic phase of the eukaryotic cell cycle. Auroras are overexpressed in numerous tumors including B-cell non-Hodgkin's lymphomas and are validated oncology targets. AT9283, a pan-aurora inhibitor inhibited growth and survival of multiple solid tumors in vitro and in vivo. In this study, we demonstrated that AT9283 had potent activity against Aurora B in a variety of aggressive B-(non-Hodgkin lymphoma) B-NHL cell lines. Cells treated with AT9283 exhibited endoreduplication confirming the mechanism of action of an Aurora B inhibitor. Also, treatment of B-NHL cell lines with AT9283 induced apoptosis in a dose and time dependent manner and inhibited cell proliferation with an IC(50) < 1 μM. It is well known that inhibition of auroras (A or B) synergistically enhances the effects of microtubule targeting agents such as taxanes and vinca alkaloids to induce antiproliferation and apoptosis. We evaluated whether AT9283 in combination with docetaxel is more efficient in inducing apoptosis than AT9283 or docetaxel alone. At very low doses (5 nM) apoptosis was doubled in the combination (23%) compared to AT9283 or docetaxel alone (10%). A mouse xenograft model of mantle cell lymphoma demonstrated that AT9283 at 15 mg/kg and docetaxel (10 mg/kg) alone had modest anti-tumor activity. However, AT9283 at 20 mg/kg and AT9283 (15 or 20 mg/kg) plus docetaxel (10 mg/kg) demonstrated a statistically significant tumor growth inhibition and enhanced survival. Together, our results suggest that AT9283 plus docetaxel may represent a novel therapeutic strategy in B-cell NHL and warrant early phase clinical trial evaluation.

  12. Luteolin suppresses development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats.

    PubMed

    Cook, Matthew T; Mafuvadze, Benford; Besch-Williford, Cynthia; Ellersieck, Mark R; Goyette, Sandy; Hyder, Salman M

    2016-02-01

    Postmenopausal women undergoing hormone-replacement therapy containing both progestins and estrogens are at an increased risk of developing breast cancer compared with women taking estrogen alone. We recently demonstrated that medroxyprogesterone acetate, a progestin commonly used for hormone-replacement therapy, accelerates development of mammary carcinogenesis in 7,12-dimethylbenz(a)anthracene‑treated Sprague-Dawley rats. Synthetic antiprogestins used to block the deleterious effects of progestins, are themselves associated with toxic side-effects. In order to circumvent this, we used the aforementioned model to identify less toxic natural compounds that may prevent the development of progestin-accelerated tumors. Luteolin, a naturally-occurring flavonoid commonly found in fruits and vegetables, has previously been shown to possess anticancer properties. In our studies, both low (1 mg/kg) and high (25 mg/kg) doses of luteolin significantly suppressed progestin-dependent increases in tumor incidence, while increasing tumor latency and reducing the occurrence of large (>300 mm3) mammary tumors. However, an intermediate dose of luteolin (10 mg/kg), while suppressing the development of large tumors, did not affect either tumor incidence or latency. Immunohistochemical analysis of tumor tissues revealed that all concentrations of luteolin (1, 10, and 25 mg/kg) significantly reduced levels of VEGF within tumors. The suppressive effects of luteolin on tumor incidence and volume, together with its ability to reduce VEGF and blood vessels, persisted even after treatment was terminated. This suggests that luteolin possesses anti‑angiogenic properties which could mechanistically explain its capacity to control tumor progression. Thus luteolin may be a valuable, non-toxic, naturally-occurring anticancer compound which may potentially be used to combat progestin-accelerated mammary tumors.

  13. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells.

    PubMed

    Ross, Heather H; Rahman, Maryam; Levkoff, Lindsay H; Millette, Sebastien; Martin-Carreras, Teresa; Dunbar, Erin M; Reynolds, Brent A; Laywell, Eric D

    2011-12-01

    Thymidine analogs (TAs) are synthetic nucleosides that incorporate into newly synthesized DNA. Halogenated pyrimidines (HPs), such as bromodeoxyuridine (BrdU), are a class of TAs that can be detected with antibodies and are commonly used for birthdating individual cells and for assessing the proliferative index of cell populations. It is well established that HPs can act as radiosensitizers when incorporated into DNA chains, but they are generally believed not to impair normal cell function in the absence of secondary stressors. However, we and others have shown that HP incorporation leads to a sustained suppression of cell cycle progression in mammalian cells, resulting in cellular senescence in somatic cells. In addition, we have shown that HP incorporation results in delayed tumor progression in a syngeneic rat model of glioma. Here we examine ethynyldeoxyuridine (EdU), a newly developed and alkylated TA, for its anti-cancer activity, both in vitro and in vivo. We show that EdU, like HPs, leads to a severe reduction in the proliferation rate of normal and transformed cells in vitro. Unlike HPs, however, EdU incorporation also causes DNA damage resulting in the death of a substantial subset of treated cells. When administered over an extended time as a monotherapy to mice bearing subcutaneous xenografts of human glioblastoma multiforme tumors, EdU significantly reduces tumor volume and increases survival without apparent significant toxicity. These results, combined with the fact that EdU readily crosses the blood-brain barrier, support the continued investigation of EdU as a potential therapy for malignant brain tumors.

  14. Suppression of tumor growth by palm tocotrienols via the attenuation of angiogenesis.

    PubMed

    Weng-Yew, Wong; Selvaduray, Kanga Rani; Ming, Cheng Hwee; Nesaretnam, Kalanithi

    2009-01-01

    Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.

  15. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    SciTech Connect

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  16. Suppression of homologous recombination sensitizes human tumor cells to IGF-1R inhibition.

    PubMed

    Lodhia, Kunal A; Gao, Shan; Aleksic, Tamara; Esashi, Fumiko; Macaulay, Valentine M

    2015-06-15

    Inhibition of type 1 IGF receptor (IGF-1R) sensitizes to DNA-damaging cancer treatments, and delays repair of DNA double strand breaks (DSBs) by non-homologous end-joining and homologous recombination (HR). In a recent screen for mediators of resistance to IGF-1R inhibitor AZ12253801, we identified RAD51, required for the strand invasion step of HR. These findings prompted us to test the hypothesis that IGF-1R-inhibited cells accumulate DSBs formed at endogenous DNA lesions, and depend on residual HR for their repair. Indeed, initial experiments showed time-dependent accumulation of γH2AX foci in IGF-1R -inhibited or -depleted prostate cancer cells. We then tested effects of suppressing HR, and found that RAD51 depletion enhanced AZ12253801 sensitivity in PTEN wild-type prostate cancer cells but not in cells lacking functional PTEN. Similar sensitization was induced in prostate cancer cells by depletion of BRCA2, required for RAD51 loading onto DNA, and in BRCA2(-/-) colorectal cancer cells, compared with isogenic BRCA2(+/-) cells. We also assessed chemical HR inhibitors, finding that RAD51 inhibitor BO2 blocked RAD51 focus formation and sensitized to AZ12253801. Finally, we tested CDK1 inhibitor RO-3306, which impairs HR by inhibiting CDK1-mediated BRCA1 phosphorylation. R0-3306 suppressed RAD51 focus formation consistent with HR attenuation, and sensitized prostate cancer cells to IGF-1R inhibition, with 2.4-fold reduction in AZ12253801 GI50 and 13-fold reduction in GI80. These data suggest that responses to IGF-1R inhibition are enhanced by genetic and chemical approaches to suppress HR, defining a population of cancers (PTEN wild-type, BRCA mutant) that may be intrinsically sensitive to IGF-1R inhibitory drugs. © 2014 UICC.

  17. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T cell activity in the lung tumor microenvironment

    PubMed Central

    Koyama, Shohei; Akbay, Esra A.; Li, Yvonne Y.; Aref, Amir R.; Skoulidis, Ferdinandos; Herter-Sprie, Grit S.; Buczkowski, Kevin A.; Liu, Yan; Awad, Mark M.; Denning, Warren L.; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R.; Wistuba, Ignacio I.; Soucheray, Margaret; Thai, Tran C.; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D.; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E.; Shimamura, Takeshi; Hellmann, Matthew D.; Heymach, John V.; Hodi, F. Stephen; Freeman, Gordon J.; Barbie, David A.; Dranoff, Glenn; Hammerman, Peter S.; Wong, Kwok-Kin

    2016-01-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether inactivation of tumor suppressor genes such as STK11/LKB1 exert similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T cell suppressive effects, along with a corresponding increase in the expression of T cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1 inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1 targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL-6 neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1 mutated tumors with PD-1 targeting antibody therapies. PMID:26833127

  18. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.

    PubMed

    Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y; Aref, Amir R; Skoulidis, Ferdinandos; Herter-Sprie, Grit S; Buczkowski, Kevin A; Liu, Yan; Awad, Mark M; Denning, Warren L; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R; Wistuba, Ignacio I; Soucheray, Margaret; Thai, Tran; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E; Shimamura, Takeshi; Hellmann, Matthew D; Heymach, John V; Hodi, F Stephen; Freeman, Gordon J; Barbie, David A; Dranoff, Glenn; Hammerman, Peter S; Wong, Kwok-Kin

    2016-03-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies.

  19. Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3.

    PubMed

    Lv, J; Liu, C; Huang, H; Meng, L; Jiang, B; Cao, Y; Zhou, Z; She, T; Qu, L; Wei Song, S; Shou, C

    2013-08-01

    Phosphatase of regenerating liver (PRL)-3 is highly expressed in multiple cancers and has important roles in cancer development. Some small-molecule inhibitors and antibodies targeting PRL-3 have been recently reported to inhibit tumor growth effectively. To determine whether PRL-3-targeted DNA vaccination can induce immune response to prevent or inhibit the tumor growth, we established mouse D2F2 breast cancer cells expressing PRL-3 (D2F2/PRL-3) and control cells (D2F2/NC) with lentivirus, and constructed pVAX1-Igκ-PRL-3 plasmid (named as K-P3) as DNA vaccine to immunize BALB/c mice. We found that the K-P3 vaccine delivered by gene gun significantly prevented the growth of D2F2/PRL-3 compared with pVAX1-vector (P<0.01), but not of D2F2/NC, and improved the survival of D2F2/PRL-3-innoculated mice. Both PRL-3-targeted cytotoxic T lymphocytes (CTLs) and T-helper type 1 cell immune response (production of high levels of interferon-γ and tumor necrosis factor-α) were found to be involved in the preventive effect. Furthermore, PRL-3-targeted DNA immunization inhibited tumor growth of D2F2/PRL-3 cells in mice. We also evaluated the potential of immunization with PRL-3 protein, but no significant therapeutic or preventive effect was obtained on tumor growth. To enhance the immunity of PRL-3, we incorporated different molecular adjuvants, such as Mycobacterium tuberculosis heat-shock protein, CTL antigen 4 and M. tuberculosis T-cell stimulatory epitope (MT), into K-P3 vaccine for expressing the fusion proteins. We found that these adjuvant molecules did not significantly improve the antitumor activity of PRL-3 vaccine, but enhanced the production of PRL-3 antibodies in immunized mice. Summarily, our findings demonstrate that PRL-3-targeted DNA vaccine can generate significantly preventive and therapeutic effects on the growth of breast cancer expressing PRL-3 through the induction of cellular immune responses to PRL-3.

  20. Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer.

    PubMed

    Yu, J; Liang, Q Y; Wang, J; Cheng, Y; Wang, S; Poon, T C W; Go, M Y Y; Tao, Q; Chang, Z; Sung, J J Y

    2013-01-17

    Zinc-finger protein 331 (ZNF331), a Kruppel-associated box zinc-finger protein gene, was identified as a putative tumor suppressor in our previous study. However, the role of ZNF331 in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. ZNF331 was silenced or downregulated in 71% (12/17) gastric cancer cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancer tissues. In contrast, ZNF331 was readily expressed in various normal adult tissues. The downregulation of ZNF331 was closely linked to the promoter hypermethylation as evidenced by methylation-specific PCR, bisulfite genomic sequencing and reexpression by demethylation agent treatment. DNA sequencing showed no genetic mutation/deletion of ZNF331 in gastric cancer cell lines. Ectopic expression of ZNF331 in the silenced cancer cell lines MKN28 and HCT116 significantly reduced colony formation and cell viability, induced cell cycle arrests and repressed cell migration and invasive ability. Concordantly, knockdown of ZNF331 increased cell viability and colony formation ability of gastric cancer cell line MKN45. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic approach were applied to analyze the molecular basis of the biological functions of ZNF331. In all, 10 downstream targets of ZNF331 were identified to be associated with regulation of cell growth and metastasis. The tumor-suppressive effect of ZNF331 is mediated at least by downregulation of genes involved in cell growth promotion (DSTN, EIF5A, GARS, DDX5, STAM, UQCRFS1 and SET) and migration/invasion (DSTN and ACTR3), and upregulation of genome-stability gene (SSBP1) and cellular senescence gene (PNPT1). A novel target of ZNF331 (DSTN) was functionally validated. Overexpression of DSTN in BGC-823 cells increased colony formation and migration ability. In conclusion, our results suggest that ZNF

  1. The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability.

    PubMed

    Aqeilan, Rami I; Abu-Remaileh, Muhannad; Abu-Odeh, Mohammad

    2014-12-01

    The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.

  2. Suppression of BCL2 by Antisense Oligonucleotides and Compensation by Non-Targeted Genes May Enhance Tumor Proliferation.

    PubMed

    Rubenstein, Marvin; Hollowell, Courtney M P; Guinan, Patrick

    2015-01-01

    Antisense oligonucleotides have been used to target regulatory proteins in both in vivo and in vitro models of prostate cancer. Our previous studies showed that oligonucleotide-treated LNCaP prostate cancer cells compensate for diminished expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), an apoptosis inhibitor, by suppressing the expression of caspase-3 (an apoptosis promoter) while enhancing that of serine/threonine protein kinase (AKT1) (another apoptosis inhibitor). In addition, we found an enhanced expression of the androgen receptor (AR), its p300 and interleukin-6 (IL6) co-activators, polymerase transcription mediator (MED12), and growth-regulating signal transducer (STAT3). The net result was an altered pattern of gene expression often associated with more aggressive and proliferative tumors. To further evaluate adaptive compensatory mechanisms related to tumor resistance, aggression and proliferation, herein we evaluated the level of expression of a proliferation antigen (KI-67) and mitosis-regulating cyclins (B1 and D1). Compared to the relative levels of compensation detailed above, we found the expression of KI-67 to be statistically the most enhanced non-targeted protein yet identified in compensation for suppression of BCL2. Expression of cyclin D1 was also significantly enhanced, although to a much lesser extent. As a result, we propose that oligonucleotide-mediated treatment could be more effective when directed towards KI-67 and BCL2. This could be accomplished by dual monospecific targeting KI-67 and BCL2, or with a bispecific (or proposed multispecific) oligonucleotide simultaneously targeting both.

  3. JQ1 suppresses tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer

    PubMed Central

    Qiu, Haifeng; Li, Jing; Clark, Leslie H.; Jackson, Amanda L.; Zhang, Lu; Guo, Hui; Kilgore, Joshua E.; Gehrig, Paola A.; Zhou, Chunxiao; Bae-Jump, Victoria L.

    2016-01-01

    Overexpression of c-Myc is associated with worse outcomes in endometrial cancer, indicating that c-Myc may be a promising target for endometrial cancer therapy. A novel small molecule, JQ1, has been shown to block BRD4 resulting in inhibition of c-Myc expression and tumor growth. Thus, we investigated whether JQ1 can inhibit endometrial cancer growth in cell culture and xenograft models. In PTEN-positive endometrial cancer cells, JQ1 significantly suppressed cell proliferation via induction of G1 phase arrest and apoptosis in a dose-dependent manner, accompanied by a sharp decline in cyclin D1 and CDK4 protein expression. However, PTEN-negative endometrial cancer cells exhibited intrinsic resistance to JQ1, despite significant c-Myc inhibition. Moreover, we found that PTEN and its downstream PI3K/AKT signaling targets were modulated by JQ1, as evidenced by microarray analysis. Silencing of PTEN in PTEN-positive endometrial cancer cells resulted in resistance to JQ1, while upregulation of PTEN in PTEN-negative endometrial cancer cells increased sensitivity to JQ1. In xenografts models of PTEN-positive and PTEN-knock-in endometrial cancer, JQ1 significantly upregulated the expression of PTEN, blocked the PI3K/AKT signaling pathway and suppressed tumor growth. These effects were attenuated in PTEN-negative and PTEN-knockdown xenograft models. Thus, JQ1 resistance appears to be highly associated with the status of PTEN expression in endometrial cancer. Our findings suggest that targeting BRD4 using JQ1 might serve as a novel therapeutic strategy in PTEN-positive endometrial cancers. PMID:27572308

  4. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer.

    PubMed

    Endo, Hironori; Muramatsu, Tomoki; Furuta, Mayuko; Uzawa, Narikazu; Pimkhaokham, Atiphan; Amagasa, Teruo; Inazawa, Johji; Kozaki, Ken-ichi

    2013-03-01

    The incidence and mortality statistics for oral squamous cell carcinoma (OSCC) were 10th and 12th, respectively, in human cancers diagnosed worldwide in 2008. In this study, to identify novel tumor-suppressive microRNAs (TS-miRNAs) and their direct targets in OSCC, we performed methylation-based screening for 43 miRNAs encoded by 46 miRNA genes located within 500 bp downstream of 40 CpG islands and genome-wide gene expression profiling in combination with a prediction database analysis, respectively, in 18 cell lines, resulting in the identification of a novel TS-miRNA miR-596 directly targeting LGALS3BP/Mac-2 BP/90K. DNA hypermethylation of CpG island located 5'-upstream of miR-596 gene was frequently observed in OSCC cell lines (100% of 18 cell lines) and primary OSCC cases (46.2 and 76.3% of 26 Japanese and 38 Thais primary cases, respectively) in a tumor-specific manner. The ectopic transfection of double-stranded RNA (dsRNA) mimicking miR-596 or specific small interfering RNA for LGALS3BP significantly induced growth inhibition and apoptosis in cell lines lacking miR-596 expression or overexpressing LGALS3BP, respectively, in a manner associated with a suppression of ERK1/2 phosphorylation. Moreover, we also mention the effect of dsRNA mimicking miR-596 on the growth of an OSCC cell line in vivo. Our findings define a central role for miR-596 in OSCC and suggest the potential of miR-596 as an anticancer agent for miRNA replacement therapy in OSCC.

  5. E2f8 mediates tumor suppression in postnatal liver development

    PubMed Central

    Kent, Lindsey N.; Rakijas, Jessica B.; Pandit, Shusil K.; Westendorp, Bart; Chen, Hui-Zi; Huntington, Justin T.; Tang, Xing; Bae, Sooin; Srivastava, Arunima; Senapati, Shantibhusan; Martin, Chelsea K.; Cuitino, Maria C.; Perez, Miguel; Clouse, Julian M.; Chokshi, Veda; Shinde, Neelam; Kladney, Raleigh; Sun, Daokun; Perez-Castro, Antonio; Matondo, Ramadhan B.; Nantasanti, Sathidpak; Mokry, Michal; Machiraju, Raghu; Fernandez, Soledad; Rosol, Thomas J.; Pohar, Kamal S.; Pipas, James M.; Schmidt, Carl R.; de Bruin, Alain

    2016-01-01

    E2F-mediated transcriptional repression of cell cycle–dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including hepatocellular carcinoma (HCC). Here, we evaluated the function of the atypical repressor genes E2f7 and E2f8 in adult liver physiology. Using several loss-of-function alleles in mice, we determined that combined deletion of E2f7 and E2f8 in hepatocytes leads to HCC. Temporal-specific ablation strategies revealed that E2f8’s tumor suppressor role is critical during the first 2 weeks of life, which correspond to a highly proliferative stage of postnatal liver development. Disruption of E2F8’s DNA binding activity phenocopied the effects of an E2f8 null allele and led to HCC. Finally, a profile of chromatin occupancy and gene expression in young and tumor-bearing mice identified a set of shared targets for E2F7 and E2F8 whose increased expression during early postnatal liver development is associated with HCC progression in mice. Increased expression of E2F8-specific target genes was also observed in human liver biopsies from HCC patients compared to healthy patients. In summary, these studies suggest that E2F8-mediated transcriptional repression is a critical tumor suppressor mechanism during postnatal liver development. PMID:27454291

  6. Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma.

    PubMed

    Su, Y; Wagner, E R; Luo, Q; Huang, J; Chen, L; He, B-C; Zuo, G-W; Shi, Q; Zhang, B-Q; Zhu, G; Bi, Y; Luo, J; Luo, X; Kim, S H; Shen, J; Rastegar, F; Huang, E; Gao, Y; Gao, J-L; Yang, K; Wietholt, C; Li, M; Qin, J; Haydon, R C; He, T-C; Luu, H H

    2011-09-15

    Osteosarcoma (OS) is the most common primary malignancy of bone. There is a critical need to identify the events that lead to the poorly understood mechanism of OS development and metastasis. The goal of this investigation is to identify and characterize a novel marker of OS progression. We have established and characterized a highly metastatic OS subline that is derived from the less metastatic human MG63 line through serial passages in nude mice via intratibial injections. Microarray analysis of the parental MG63, the highly metastatic MG63.2 subline, as well as the corresponding primary tumors and pulmonary metastases revealed insulin-like growth factor binding protein 5 (IGFBP5) to be one of the significantly downregulated genes in the metastatic subline. Confirmatory quantitative RT-PCR on 20 genes of interest demonstrated IGFBP5 to be the most differentially expressed and was therefore chosen to be one of the genes for further investigation. Adenoviral mediated overexpression and knockdown of IGFBP5 in the MG63 and MG63.2 cell lines, as well as other OS lines (143B and MNNG/HOS) that are independent of our MG63 lines, were employed to examine the role of IGFBP5. We found that overexpression of IGFBP5 inhibited in vitro cell proliferation, migration and invasion of OS cells. Additionally, IGFBP5 overexpression promoted apoptosis and cell cycle arrest in the G1 phase. In an orthotopic xenograft animal model, overexpression of IGFBP5 inhibited OS tumor growth and pulmonary metastases. Conversely, siRNA-mediated knockdown of IGFBP5 promoted OS tumor growth and pulmonary metastases in vivo. Immunohistochemical staining of patient-matched primary and metastatic OS samples demonstrated decreased IGFBP5 expression in the metastases. These results suggest 1) a role for IGFBP5 as a novel marker that has an important role in the pathogenesis of OS, and 2) that the loss of IGFBP5 function may contribute to more metastatic phenotypes in OS.

  7. Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma

    SciTech Connect

    Yue, Dongli; Fan, Qingxia; Chen, Xinfeng; Li, Feng; Wang, Liping; Huang, Lan; Dong, Wenjie; Chen, Xiaoqi; Zhang, Zhen; Liu, Jinyan; Wang, Fei; Wang, Meng; Zhang, Bin [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan; The Department of Hematology and others

    2014-03-10

    Hepatocyte growth factor activator inhibitor type 2 (SPINT2), a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor suppressor gene silenced by promoter methylation. We aimed to investigate whether SPINT2 might act as an esophageal squamous cell carcinoma (ESCC) tumor suppressor gene. Four ESCC cell lines, Fifty-two ESCC tissues and twenty-nine neighboring non-cancerous tissues were included in this study. The expression of SPINT2 was monitored by real time PCR. Bisulfite genomic sequencing and methylation-specific PCR were used to analyze methylation status. The effect of SPINT2 on cell proliferation and apoptosis in EC109 and EC9706 cells was observed by CCK-8 assay and flow cytometric analysis. We found that silencing of SPINT2 was associated with promoter methylation in ESCC cell lines. The densely methylated SPINT2 promoter region was confirmed by bisulfite genomic sequencing. Ectopic expression of SPINT2 inhibited cell proliferation through inducing cell apoptosis in vitro. Furthermore, methylation-specific PCR analysis revealed that SPINT2 promoter methylation was prominent in carcinoma tissues (52.08%) compared with neighboring non-cancerous tissues (22.58%). Kaplan–Meier analysis showed that patients with SPINT2 hypermethylation had shorter survival time. The tumor suppressor gene of SPINT2 is commonly silenced by promoter hypermethylation in human ESCC and SPINT2 hypermethylation is correlated with poor overall survival, implicating SPINT2 is an underlying prognostic marker for human ESCC. - Highlights: • We firstly found SPINT2 gene may be transcriptionally repressed by promoter hypermethylation in ESCC cells. • SPINT2 overexpressing cells induced proliferation inhibition through promoting apoptosis. • mRNA expression of SPINT2 was significantly higher in ESCC tissues than in neighboring non-cancerous tissues. • Promoter hypermethylation of SPINT2 is significantly linked to TNM stage and poor overall survival.

  8. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth.

    PubMed

    Zhou, YingJun; Liu, Yiliang Ellie; Cao, JianGuo; Zeng, GuangYao; Shen, Cui; Li, YanLan; Zhou, MeiChen; Chen, Yiding; Pu, Weiping; Potters, Louis; Shi, Y Eric

    2009-08-15

    Lignans such as secoisolariciresinol diglucoside in flaxseed, are metabolizes to bioactive mammalian lignans of END and ENL. Because mammalian lignans have chemical structural similarity to the natural estrogen, they are thought to behave like selective estrogen receptor modulators and therefore have anticancer effect against hormone-related cancers. We isolated a series of lignan compounds, named as Vitexins, from the seed of Chinese herb Vitex Negundo. We purified several Vitexin lignan compounds. Cytotoxic and antitumor effects were analyzed in cancer cells and in tumor xenograft models. In vivo metabolism of Vitexins was determined in rat. Contrasts to the classic lignans, Vitexins were not metabolized to END and ENL. A mixture of Vitexins EVn-50 and purified Vitexin compound 6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-3, 4-dihydro-2-naphthaldehyde have cytotoxic effect on breast, prostate, and ovarian cancer cells and induces apoptosis with cleavage in poly ADP ribose polymerase protein, up-regulation of Bax, and down-regulation of Bcl-2. This induction of apoptosis seems to be mediated by activation of caspases because inhibition of caspases activity significantly reduced induced apoptosis. We showed a broad antitumor activity of EVn-50 on seven tumor xenograft models including breast, prostate, liver, and cervical cancers. Consistent with in vitro data, EVn-50 treatment induced apoptosis, down-regulated of Bcl-2, and up-regulated Bax in tumor xenografts. Vitexin is a class of nature lignan compounds, whose action and anticancer effect is mediated by the mechanisms different from the classic lignans. Vitexin-induced antitumor effect and cytotoxic activity is exerted through proapoptotic process, which is mediated by a decreased Bcl-2/Bax ratio and activation of caspases.

  9. TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway

    PubMed Central

    Qi, Li; Lu, Zhong; Sun, Yong-Hong; Song, Hai-Tao; Xu, Wei-Kang

    2016-01-01

    Prostate carcinoma is a devastating disease which is characterized by insidious early symptoms, rapid progression and a poor prognosis. Tripartite motif-containing protein 16 (TRIM16) was identified as an estrogen- and antiestrogen-regulated gene in epithelial cells stably expressing estrogen receptors. The protein encoded by this gene contains two B-box domains and a coiled-coiled region that are characteristic of the B-box zinc finger protein family. Proteins belonging to this family have been reported to be involved in a variety of biological processes including cell growth, differentiation and pathogenesis. TRIM16 expression has been detected in most tissues. However, the funtions of this gene remain to be elucidated. In the present study, immunohistochemical staining revealed that the expression of TRIM16 was decreased in prostate adenocarcinoma compared with that in normal prostate tissues. The patients with high TRIM16-expressing tumors had a significantly greater survival than those with low TRIM16-expressing tumors. Western blot analysis showed that TRIM16 was downregulated in distant metastatic cancer tissues compared with that in non-distant metastatic cancer tissues. The overexpression of TRIM16 inhibited the migration and invasion of prostate cancer cells as well as inhibiting the epithelial-to-mesenchymal transition process, whereas TRIM16 depletion enhanced these processes. Moreover, TRIM16 inhibited the Snail signaling pathway. The silencing of Snail by small interfering RNA was performed in order to determine the role of Snail in the TRIM16-mediated tumor phenotype. Taken together, these findings suggest that TRIM16 may be an important molecular target which may aid in the design of novel therapeutic agents for prostate cancer. PMID:27748839

  10. Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth.

    PubMed

    Sher, Y-P; Chang, C-M; Juo, C-G; Chen, C-T; Hsu, J L; Lin, C-Y; Han, Z; Shiah, S-G; Hung, M-C

    2013-02-28

    There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer.

  11. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu.

    PubMed

    Fry, Elizabeth A; Taneja, Pankaj; Inoue, Kazushi

    2017-02-01

    The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.

  12. Frondoside A Suppressive Effects on Lung Cancer Survival, Tumor Growth, Angiogenesis, Invasion, and Metastasis

    PubMed Central

    Attoub, Samir; Arafat, Kholoud; Gélaude, An; Al Sultan, Mahmood Ahmed; Bracke, Marc; Collin, Peter; Takahashi, Takashi; Adrian, Thomas E.; De Wever, Olivier

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition) at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days) significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1–0.5 µM) also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer. PMID:23308143

  13. Monoclonal Antibody and an Antibody-Toxin Conjugate to a Cell Surface Proteoglycan of Melanoma Cells Suppress in vivo Tumor Growth

    NASA Astrophysics Data System (ADS)

    Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.

    1983-01-01

    A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.

  14. A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer; photo by Richard Frederickson, Staff Photographer Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS through a specific cascade of proteins, as reported in a recent article in Molecular and Cellular Biology by Jacqueline Salotti, Ph.D., and colleagues in the Eukaryotic Transcriptional Regulation Section of the Mouse Cancer Genetics Program, Center for Cancer Research (CCR).

  15. A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer; photo by Richard Frederickson, Staff Photographer Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS through a specific cascade of proteins, as reported in a recent article in Molecular and Cellular Biology by Jacqueline Salotti, Ph.D., and colleagues in the Eukaryotic Transcriptional Regulation Section of the Mouse Cancer Genetics Program, Center for Cancer Research (CCR).

  16. Molecular Basis for BRCA2-mediated DNA Repair and Breast Tumor Suppression

    DTIC Science & Technology

    2009-10-01

    breaks are mediated by the RAD51 recombinase . In catalyzing recombination reactions, RAD51 must first form a right-handed helical filament, termed the...analogs and poly(ADP-ribose) polymerase inhibitors, exploit the incapability of BRCA2-deficient cells to rely on HR for the repair of DSBs. Apparently...Instability and DNA repair in Taos, New Mexico (March 1-5, 2009). I am a coauthor on manuscript “Enhancement of the RAD51 Recombinase by the Tumor Suppressor

  17. Fei-Liu-Ping ointment inhibits lung cancer growth and invasion by suppressing tumor inflammatory microenvironment

    PubMed Central

    2014-01-01

    Background Lung cancer is one of the leading causes of cancer-related mortality worldwide. Conventional chemotherapy and radiotherapy are the primary therapeutic methods for lung cancer with the use of combination therapies gaining popularity. The frequency and duration of treatment, as well as, managing lung cancer by targeting multiple aspects of cancer biology is often limited by toxicity to the patient. There are many naturally occurring anticancer agents that have a high degree of efficacy and low toxicity, offering a viable and safe approach for the treatment of lung cancer. The herbs traditionally used in Chinese medicine for anticancer treatment offer great potential to enhance the efficacy of conventional therapy. In this study, we evaluated the synergistic effects of Fei-Liu-Ping (FLP) ointment in treating lung cancer; a known anticancer Chinese herbal based formula. Methods In this study, A549 human lung carcinoma cell line and Lewis lung carcinoma xenograft mouse model were used. In addition, we utilized an in vitro co-culture system to simulate the tumor microenvironment in order to evaluate the molecular mechanisms of FLP treatment. Results FLP treatment significantly inhibited tumor growth in the Lewis lung xenograft by 40 percent, compared to that of cyclophosphamide (CTX) of 62.02 percent. Moreover, combining FLP and CTX inhibited tumor growth by 83.23 percent. Upon evaluation, we found that FLP treatment reduced the concentration of serum pro-inflammatory cytokines IL-6, TNF-α, and IL-1β. In addition, we also found an improvement in E-cadherin expression and inhibition of N-cadherin and MMP9. We found similar findings in vitro when we co-cultured A549 cells with macrophages. FLP treatment inhibited A549 cell growth, invasion and metastasis, in part, through the regulation of NF-κB and altering the expression of E-cadherin, N-cadherin, MMP2 and MMP9. Conclusions FLP exerts anti-inflammatory properties in the tumor microenvironment, which may

  18. Tumor Suppression and Sensitization to Taxol Induces Apoptosis of EIA in Breast Cancer Cells

    DTIC Science & Technology

    2005-06-01

    mediated downregulation of a chemokine receptor CXCR4 contributed in part to E1A-mediated inhibition of cell invasion and migration in vitro and tumor...cancer. Mol. Therapy 7 (5): 1074 Part 2, 2003 "* Deng J, Zhang H, Kloosterbore F, Liao Y, Klostergaard J, Levitt ML and Hung MC: Ceramide is not a...animal survival rate by non-viral mediated systemic delivery of E1A gene in orthotopic xonograft human breast cancer. Mol. Therapy 7 (5): 1074 Part 2

  19. Treatment Combining X-Irradiation and a Ribonucleoside Anticancer Drug, TAS106, Effectively Suppresses the Growth of Tumor Cells Transplanted in Mice

    SciTech Connect

    Yasui, Hironobu; Inanami, Osamu; Asanuma, Taketoshi; Iizuka, Daisuke; Nakajima, Takayuki; Kon, Yasuhiro; Matsuda, Akira; Kuwabara, Mikinori . E-mail: kuwabara@vetmed.hokudai.ac.jp

    2007-05-01

    Purpose: To examine the in vivo antitumor efficacy of X-irradiation combined with administration of a ribonucleoside anticancer drug, 1-(3-C-ethynyl-{beta}-D-ribo-pentofuranosyl)cytosine (TAS106, ECyd), to tumor cell-transplanted mice. Methods and Materials: Colon26 murine rectum adenocarcinoma cells and MKN45 human gastric adenocarcinoma cells were inoculated into the footpad in BALB/c mice and severe combined immunodeficient mice, respectively. They were treated with a relatively low dose of X-irradiation (2 Gy) and low amounts of TAS106 (0.1 mg/kg and 0.5 mg/kg). The tumor growth was monitored by measuring the tumor volume from Day 5 to Day 16 for Colon26 and from Day 7 to Day 20 for MKN45. Histologic analyses for proliferative and apoptotic cells in the tumors were performed using Ki-67 immunohistochemical and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. The expression of survivin, a key molecule related to tumor survival, was assessed by quantitative polymerase chain reaction and immunohistochemical analysis. Results: When X-irradiation and TAS106 treatment were combined, significant inhibition of tumor growth was observed in both types of tumors compared with mice treated with X-irradiation or TAS106 alone. Marked inhibition of tumor growth was observed in half of the mice that received the combined treatment three times at 2-day intervals. Parallel to these phenomena, the suppression of survivin expression and appearance of Ki-67-negative and apoptotic cells were observed. Conclusions: X-irradiation and TAS106 effectively suppress tumor growth in mice. The inhibition of survivin expression by TAS106 is thought to mainly contribute to the suppression of the tumor growth.

  20. Ameloblastin induces tumor suppressive phenotype and enhances chemosensitivity to doxorubicin via Src-Stat3 inactivation in osteosarcoma

    PubMed Central

    Ando, Toshinori; Kudo, Yasusei; Iizuka, Shinji; Tsunematsu, Takaaki; Umehara, Hanako; Shrestha, Madhu; Matsuo, Toshihiro; Kubo, Tadahiko; Shimose, Shouji; Arihiro, Koji; Ogawa, Ikuko; Ochi, Mitsuo; Takata, Takashi

    2017-01-01

    Ameloblastin (AMBN), the most abundant non-amelogenin enamel matrix protein, plays a role in ameloblast differentiation. Previously, we found that AMBN promoted osteogenic differentiation via the interaction between CD63 and integrin β1, leading to the inactivation of Src; however, how AMBN affects the malignant behavior of osteosarcoma is still unclear. Osteosarcoma affects the bone and is associated with poor prognosis because of the high rate of pulmonary metastases and drug resistance. Here we demonstrated that stable overexpression of AMBN induced apoptosis and suppressed colony formation and cell migration via the inactivation of Src-Stat3 pathway in human osteosarcoma cells. Moreover, AMBN induced chemosensitivity to doxorubicin. Thus, AMBN induced a tumor suppressive phenotype and chemosensitivity to doxorubicin via the AMBN-Src-Stat3 axis in osteosarcoma. Indeed, immunohistochemical expression of AMBN was significantly correlated with better outcome of osteosarcoma patients. Our findings suggest that AMBN can be a new prognostic marker and therapeutic target for osteosarcoma combined with conventional doxorubicin treatment. PMID:28054649

  1. Characterization of Critical Domains within the Tumor Suppressor CASZ1 Required for Transcriptional Regulation and Growth Suppression

    PubMed Central

    Virden, Ryan A.

    2012-01-01

    CASZ1 is a zinc finger (ZF) transcription factor that is critical for controlling the normal differentiation of subtypes of neural and cardiac muscle cells. In neuroblastoma tumors, loss of CASZ1 is associated with poor prognosis and restoration of CASZ1 function suppresses neuroblastoma tumorigenicity. However, the key domains by which CASZ1 transcription controls developmental processes and neuroblastoma tumorigenicity have yet to be elucidated. In this study, we show that loss of any one of ZF1 to ZF4 resulted in a 58 to 79% loss in transcriptional activity, as measured by induction of tyrosine hydroxylase promoter-luciferase activity, compared to that of wild-type (WT) CASZ1b. Mutation of ZF5 or deletion of the C-terminal sequence of amino acids (aa) 728 to 1166 (a truncation of 38% of the protein) does not significantly alter transcriptional function. A series of N-terminal truncations reveals a critical transcriptional activation domain at aa 31 to 185 and a nuclear localization signal at aa 23 to 29. Soft agar colony formation assays and xenograft studies show that WT CASZ1b is more active in suppressing neuroblastoma growth than CASZ1b with a ZF4 mutation or a deletion of aa 31 to 185. This study identifies key domains needed for CASZ1b to regulate gene transcription. Furthermore, we establish a link between loss of CASZ1b transcriptional activity and attenuation of CASZ1b-mediated inhibition of neuroblastoma growth and tumorigenicity. PMID:22331471

  2. Na+/H+ exchanger 1 has tumor suppressive activity and prognostic value in esophageal squamous cell carcinoma

    PubMed Central

    Ichikawa, Daisuke; Shimizu, Hiroki; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Fujiwara, Hitoshi; Okamoto, Kazuma; Kishimoto, Mitsuo; Marunaka, Yoshinori; Otsuji, Eigo

    2017-01-01

    Na+/H+ exchanger 1 (NHE1) is a plasma membrane transporter that controls intracellular pH and regulates apoptosis and invasion in various cancer cells. However, the function of NHE1 in esophageal squamous cell carcinoma (ESCC) cells and the relationship between the expression of NHE1 and prognosis of ESCC remain unclear. We found that the knockdown of NHE1 in ESCC cells inhibited apoptosis and promoted cell proliferation, migration, and invasion and showed increases in Snail, β-catenin, and activation of PI3K-AKT signaling, which was consistent with the results obtained from microarrays. Microarrays results suggested that the knockdown of NHE1 suppressed Notch signaling pathway. An immunohistochemical investigation of 61 primary ESCC samples revealed that NHE1 was expressed at higher levels in well-differentiated tumors. The 5-year survival rate was poorer in the NHE1 low group (57.0%) than in the NHE1 high group (82.8%). Multivariate analyses revealed that the weak expression of NHE1 was associated with shorter postoperative survival (hazard ratio 3.570, 95% CI 1.291-11.484, p = 0.0135).We herein demonstrated that the suppression of NHE1 in ESCC may enhance malignant potential by mediating PI3K-AKT signaling and EMT via Notch signaling, and may be related to a poor prognosis in patients with ESCC. PMID:27902974

  3. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras

    SciTech Connect

    Shin, Ki-Hyuk; Bae, Susan D.; Hong, Hannah S.; Kim, Reuben H.; Kang, Mo K.; Park, No-Hee

    2011-01-28

    Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biological role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.

  4. Long noncoding RNA ENST00000434223 suppressed tumor progression in non-small cell lung cancer.

    PubMed

    Chai, Xiaofei; Ye, Xiangyun; Song, Yongping

    2016-08-01

    In spite of the fact that the great progress has been made in the treatment of non-small cell lung cancer (NSCLC), the prognosis of NSCLC remains comparatively dismal. Therefore, it is of great value to identify novel effective diagnostic biomarkers and therapeutic targets of NSCLC. Emerging evidence has demonstrated the vital roles of long noncoding RNAs (lncRNAs) in cancer development. ENST00000434223 was recently identified as a lncRNA that is downregulated in early stage lung adenocarcinoma in a profiling study. However, little is known about its role in the development of NSCLC. In the present study, we found that ENST00000434223 was greatly downregulated in cancer tissues compared to adjacent normal tissues. ENST00000434223 overexpression suppressed the proliferation and migration in NSCLC cell lines in vitro. Moreover, ENST00000434223 overexpression reversed the epithelial-mesenchymal transition in NSCLC cell line. Our study suggests that ENST00000434223 may be a potential biomarker and a therapeutic target of NSCLC.

  5. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    PubMed

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.

  6. WWOX gene and gene product: tumor suppression through specific protein interactions.

    PubMed

    Salah, Zaidoun; Aqeilan, Rami; Huebner, Kay

    2010-02-01

    The WWOX gene, an archetypal fragile gene, encompasses a chromosomal fragile site at 16q23.2, and encodes the approximately 46-kDa Wwox protein, with WW domains that interact with a growing list of interesting proteins. If the function of a protein is defined by the company it keeps, then Wwox is involved in numerous important signal pathways for bone and germ-cell development, cellular and animal growth and death, transcriptional control and suppression of cancer development. Because alterations to genes at fragile sites are exquisitely sensitive to replication stress-induced DNA damage, there has been an ongoing scientific discussion questioning whether such gene expression alterations provide a selective advantage for clonal expansion of neoplastic cells, and a parallel discussion on why important genes would be present at sites that are susceptible to inactivation. We offer some answers through a description of known WWOX functions.

  7. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression.

    PubMed

    David, Diana; Nair, S Asha; Pillai, M Radhakrishna

    2013-01-01

    Smad ubiquitin regulatory factors (Smurfs) belong to the HECT- family of E3 ubiquitin ligases and comprise mainly of two members, Smurf1 and Smurf2. Initially, Smurfs have been implicated in determining the competence of cells to respond to TGF-β/BMP signaling pathway. Nevertheless, the intrinsic catalytic activity has extended the repertoire of Smurf substrates beyond the TGF-β/BMP super family expanding its realm further to epigenetic modifications of histones governing the chromatin landscape. Through regulation of a large number of proteins in multiple cellular compartments, Smurfs regulate diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and metastasis. As the genomic ablation of Smurfs leads to global changes in histone modifications and predisposition to a wide spectrum of tumors, Smurfs are also considered to have a novel tumor suppressor function. This review focuses on regulation network and biological functions of Smurfs in connection with its role in cancer progression. By providing a portrait of their protein targets, we intend to link the substrate specificity of Smurfs with their contribution to tumorigenesis. Since the regulation and biological functions of Smurfs are quite complex, understanding the oncogenic potential of these E3 ubiquitin ligases may facilitate the development of mechanism-based drugs in cancer treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. λ Phage nanobioparticle expressing apoptin efficiently suppress human breast carcinoma tumor growth in vivo.

    PubMed

    Shoae-Hassani, Alireza; Keyhanvar, Peyman; Seifalian, Alexander Marcus; Mortazavi-Tabatabaei, Seyed Abdolreza; Ghaderi, Narmin; Issazadeh, Khosro; Amirmozafari, Nour; Verdi, Javad

    2013-01-01

    Using phages is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. Apoptin, a protein from chicken anemia virus (CAV) has the ability to specifically induce apoptosis only in carcinoma cells. We presented a safe method of breast tumor therapy via the apoptin expressing λ NBPs. Here, we constructed a λ ZAP-CMV-apoptin recombinant NBP and investigated the effectiveness of its apoptotic activity on BT-474, MDA-MB-361, SKBR-3, UACC-812 and ZR-75 cell lines that over-expressing her-2 marker. Apoptosis was evaluated via annexin-V fluorescent iso-thiocyanate/propidium iodide staining, flow-cytometric method and TUNEL assay. Transfection with NBPs carrying λ ZAP-CMV-apoptin significantly inhibited growth of all the breast carcinoma cell lines in vitro. Also nude mice model implanted BT-474 human breast tumor was successfully responded to the systemic and local injection of untargeted recombinant λ NBPs. The results presented here reveal important features of recombinant λ nanobioparticles to serve as safe delivery and expression platform for human cancer therapy.

  9. λ Phage Nanobioparticle Expressing Apoptin Efficiently Suppress Human Breast Carcinoma Tumor Growth In Vivo

    PubMed Central

    Shoae-Hassani, Alireza; Keyhanvar, Peyman; Seifalian, Alexander Marcus; Mortazavi-Tabatabaei, Seyed Abdolreza; Ghaderi, Narmin; Issazadeh, Khosro; Amirmozafari, Nour; Verdi, Javad

    2013-01-01

    Using phages is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. Apoptin, a protein from chicken anemia virus (CAV) has the ability to specifically induce apoptosis only in carcinoma cells. We presented a safe method of breast tumor therapy via the apoptin expressing λ NBPs. Here, we constructed a λ ZAP-CMV-apoptin recombinant NBP and investigated the effectiveness of its apoptotic activity on BT-474, MDA-MB-361, SKBR-3, UACC-812 and ZR-75 cell lines that over-expressing her-2 marker. Apoptosis was evaluated via annexin-V fluorescent iso-thiocyanate/propidium iodide staining, flow-cytometric method and TUNEL assay. Transfection with NBPs carrying λ ZAP-CMV-apoptin significantly inhibited growth of all the breast carcinoma cell lines in vitro. Also nude mice model implanted BT-474 human breast tumor was successfully responded to the systemic and local injection of untargeted recombinant λ NBPs. The results presented here reveal important features of recombinant λ nanobioparticles to serve as safe delivery and expression platform for human cancer therapy. PMID:24278212

  10. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression.

    PubMed

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-05-03

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D).We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen.In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2.

  11. Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma.

    PubMed

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma.

  12. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation.

    PubMed

    Aylon, Yael; Gershoni, Anat; Rotkopf, Ron; Biton, Inbal E; Porat, Ziv; Koh, Anna P; Sun, Xiaochen; Lee, Youngmin; Fiel, Maria-Isabel; Hoshida, Yujin; Friedman, Scott L; Johnson, Randy L; Oren, Moshe

    2016-04-01

    The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.

  13. DADS Suppresses Human Esophageal Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways

    PubMed Central

    Yin, Xiaoran; Zhang, Jun; Li, Xiaoning; Liu, Dong; Feng, Cheng; Liang, Rongrui; Zhuang, Kun; Cai, Chenlei; Xue, Xinghuan; Jing, Fuchun; Wang, Xijing; Wang, Jun; Liu, Xinlian; Ma, Hongbing

    2014-01-01

    Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI) staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA). DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma. PMID:25026173

  14. Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor.

    PubMed

    Mathew, Grinu; Hannan, Abdul; Hertzler-Schaefer, Kristina; Wang, Fen; Feng, Gen-Sheng; Zhong, Jian; Zhao, Jean J; Downward, Julian; Zhang, Xin

    2016-11-15

    Deficiency in PTEN (phosphatase and tensin homolog deleted on chromosome 10) is the underlying cause of PTEN hamartoma tumor syndrome and a wide variety of human cancers. In skin epidermis, we have previously identified an autocrine FGF signaling induced by loss of Pten in keratinocytes. In this study, we demonstrate that skin hyperplasia requires FGF receptor adaptor protein Frs2α and tyrosine phosphatase Shp2, two upstream regulators of Ras signaling. Although the PI3-kinase regulatory subunits p85α and p85β are dispensable, the PI3-kinase catalytic subunit p110α requires interaction with Ras to promote hyperplasia in Pten-deficient skin, thus demonstrating an important cross-talk between Ras and PI3K pathways. Furthermore, genetic and pharmacological inhibition of Ras-MAPK pathway impeded epidermal hyperplasia in Pten animals. These results reveal a positive feedback loop connecting Pten and Ras pathways and suggest that FGF-activated Ras-MAPK pathway is an effective therapeutic target for preventing skin tumor induced by aberrant Pten signaling.

  15. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    PubMed Central

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  16. ShRNA-mediated silencing of the RFC3 gene suppress ovarian tumor cells proliferation

    PubMed Central

    Shen, Huimin; Xu, Juan; Zhao, Shanshan; Shi, Haijuan; Yao, Shuzhong; Jiang, Nan

    2015-01-01

    Ovarian carcinoma is one of the most common and lethal malignancies in the world. Replication factor C (RFC) plays an important role in DNA replication, DNA damage repair, and checkpoint control during cell cycle progression in all eukaryotes. Our previous study found that one unit of RFC complex, RFC3, is over-expressed in ovarian tumor tissues. However, its role in the development of ovarian carcinoma remains unclear. Western blot and real-time RT-PCR analysis were used to measure the expression of RFC3 in ovarian cancer cells. Lentivirus-mediated RFC3-specific shRNA was used to knock down RFC3 expression in ovarian cancer cells. Furthermore, the effect of RFC3 on tumor cellular proliferation and growth were examined, respectively. The expression level of RFC3 was remarkably up-regulated in ovarian cancer OVCAR-3 cells. With MTS and cell growth assays, the viability and proliferation of RFC3 knocking-down OVCAR-3 cell line were shown to be effectively restrained. Down-regulation of RFC3 expression arrested the cell cycle of OVCAR-3 cell in the S-phase and induced apoptosis. This study suggests that RFC3 may play an important role in the the process of ovarian carcinoma, and that it may be a potential biological treatment target in the future. PMID:26464638

  17. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  18. A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression.

    PubMed

    Lee, Yong Sun

    2015-06-01

    nc886 (=vtRNA2-1, pre-miR-886, or CBL3) is a newly identified non-coding RNA (ncRNA) that represses the activity of protein kinase R (PKR). nc886 is transcribed by RNA polymerase III (Pol III) and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

  19. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation

    PubMed Central

    Aylon, Yael; Gershoni, Anat; Rotkopf, Ron; Biton, Inbal E.; Porat, Ziv; Koh, Anna P.; Sun, Xiaochen; Lee, Youngmin; Fiel, Maria-Isabel; Hoshida, Yujin; Friedman, Scott L.; Johnson, Randy L.; Oren, Moshe

    2016-01-01

    The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. PMID:27013235

  20. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function

    PubMed Central

    Cao, Shuanzhu; Wang, Yanzhou; Li, Jinquan; Lv, Mingliang; Niu, Haitao; Tian, Yong

    2016-01-01

    The human metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA associated with metastasis, and is a favorable prognostic factor for lung cancer. Recent studies have shown that MALAT1 plays an important role in many malignancies. However, little is known about the role of MALAT1 in glioma. In this study, we determined the expression of MALAT1 and explored its prognostic value in glioma. Further, we investigated the regulatory mechanism of MALAT1 in glioma progression. Our results showed that the expression of MALAT1 was significantly decreased in glioma specimens than in noncancerous brain tissues. In addition, MALAT1 expression was significantly correlated with tumor size, WHO grade and Karnofsky Performance Status (KPS), and was an independent prognostic factor for survival of glioma patients. The gain- and loss-of-function experiments revealed miR-155 down-regulation by MALAT1, resulting in reciprocal effects. Further, MALAT1 suppresses cell viability by down-regulating miR-155. FBXW7 mRNA was identified as a direct target of miR-155 in glioma. The miR-155-induced tumorigenesis is mediated through FBXW7 function. Finally, we found that MALAT1 positively regulated FBXW7 expression, which was responsible for glioma progression mediated by MALAT1-miR-155 pathway. In conclusion, our data demonstrated that MALAT1 may be a novel prognostic biomarker and therapeutic target in glioma. Restoration of MALAT1 levels represents a novel therapeutic strategy against glioma. PMID:27904771

  1. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics

    NASA Astrophysics Data System (ADS)

    Yan, Zhiqiang; Zhan, Changyou; Wen, Ziyi; Feng, Linglin; Wang, Fei; Liu, Yu; Yang, Xiangkun; Dong, Qing; Liu, Min; Lu, Weiyue

    2011-10-01

    Lymphatic metastasis can be greatly promoted by metastases growth and lymphangiogenesis in lymph nodes (LNs). LyP-1, a cyclic peptide, is able to specifically bind with tumor cells and tumor lymphatics in metastatic LNs. This work aimed to use LyP-1-conjugated liposomes (L-LS) loaded with doxorubicin (DOX) (L-LS/DOX) to suppress lymphatic metastasis by inhibiting both metastases and tumor lymphatics in LNs. L-LS were prepared and exhibited sizes around 90 nm and spherical morphology as characterized by transmission electron microscopy. The in vitro cellular studies showed that LyP-1 modification obviously increased liposome uptake by MDA-MB-435 tumor cells and enhanced the cytotoxicity of liposomal DOX. A popliteal and iliac LN metastases model was successfully established by subcutaneous inoculation of tumor cells to nude mice. The immunofluorescence staining analysis indicated that LyP-1 modification enabled specific binding of liposome with tumor lymphatics and enhanced the destroying effect of liposomal DOX on tumor lymphatics. The in vivo fluorescence imaging and pharmacodynamic studies showed that LyP-1 modification increased liposome uptake by metastatic LNs and that L-LS/DOX significantly decreased metastatic LN growth and LN metastasis rate. These results suggested that L-LS/DOX were an effective delivery system for suppressing lymphatic metastasis by simultaneously inhibiting LN metastases and tumor lymphatics.

  2. MiR-613 suppresses retinoblastoma cell proliferation, invasion, and tumor formation by targeting E2F5.

    PubMed

    Zhang, Yiting; Zhu, Xinyue; Zhu, Xiaomin; Wu, Yan; Liu, Yajun; Yao, Borui; Huang, Zhenping

    2017-03-01

    Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3'-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.

  3. Tumor-suppressive miR-99a inhibits cell proliferation via targeting of TNFAIP8 in osteosarcoma cells

    PubMed Central

    Xing, Beiguang; Ren, Cong

    2016-01-01

    Osteosarcoma (OS) has been described as the most common primary malignant bone tumor in adolescents and young adults worldwide. MicroRNAs (miRNAs) have demonstrated playing critical role on the cellular biology and development of cancer. However, the essential mechanisms of miRNAs underlying osteosarcoma oncogenesis and progression have not fully understood. In this study, we found that the expression of miR-99a was repressed in OS tissues and cells using qRT-PCR assays. We demonstrated that overexpression of miR-99a inhibits OS cell viability and growth with MTT, colony formation and in vivo mice experiment. In addition, FACS and Annexin V assays identified that miR-99a can induce OS cell cycle progression and cell apoptosis. Furthermore, we demonstrated that TNFAIP8 is a direct target of miR-99a and is upregulated in OS samples and cells. Knockdown of TNFAIP8 significantly attenuated OS cell viability and growth through inhibiting cell cycle and inducing cell apoptosis in vitro and in vivo. These findings establish that miR-99a plays a significant tumor-suppressing role in OS and proposes it as a potential diagnostic and therapeutic target in managing OS metastases. PMID:27158394

  4. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 suppresses tumor growth in breast cancer-bearing mice by negatively regulating myeloid-derived suppressor cell functions.

    PubMed

    Hong, Hye-Jin; Lim, Hui Xuan; Song, Ju Han; Lee, Arim; Kim, Eugene; Cho, Daeho; Cohen, Edward P; Kim, Tae Sung

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment.

  5. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs

    PubMed Central

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-01-01

    with EPQ, and H & E staining showed no morphological changes below 500 μg/mL EPQ. These results suggest that EPQ has therapeutic potential in the treatment of ovarian cancer by significantly suppressing ovarian tumor incidence and growth and lung metastasis, and by inhibiting MMP-9 secretion and invasion of A-2780 ovarian cancer cells. PMID:28335466

  6. Novel MR imaging method--MAVRIC--for metal artifact suppression after joint replacement in musculoskeletal tumor patients.

    PubMed

    Susa, Michiro; Oguro, Sota; Kikuta, Kazutaka; Nishimoto, Kazumasa; Horiuchi, Keisuke; Jinzaki, Masahiro; Nakamura, Masaya; Matsumoto, Morio; Chiba, Kazuhiro; Morioka, Hideo

    2015-12-04

    Standard imaging modality for the follow-up after prosthetic replacements for musculoskeletal tumor patients has been conventional radiography. This technique is effective in detecting subtle changes in bone adjacent to metal implants, but in many cases, radiographs do not lead to definitive diagnosis of postoperative adverse events such as acute infection, local recurrence of soft tissue tumor or soft tissue local recurrence of osseous sarcoma. Conventional MRI sequences have not been effective due to metal artifacts. In this study, we tried to elucidate the effectiveness of metal artifact suppression using novel sequence, multiacquisition variable-resonance image combination (MAVRIC), after musculoskeletal tumor surgeries. We retrospectively analyzed 5 cases of malignant bone and soft tissue sarcoma patients who were reconstructed with metal prosthesis after wide resection of tumors. Images obtained using MAVRIC and short tau inversion recovery (STIR) were compared side by side. The paired MAVRIC and STIR images were qualitatively compared independently by two specialists for 4 parameters: visualization of bone - implant interface, visualization of surrounding soft tissues, image blurring, and overall image quality. Quantitatively, paired images were reviewed to identify the slice where the metal artifact was maximal, and a region of interest encompassing the implant and surrounding artifact was drawn using Advantage Workstation (GE Healthcare, Japan). There were no local recurrences that were detected. By utilizing MAVRIC, visualization of the bone - implant interface and visualization of the surrounding soft tissue were significantly improved in MAVRIC compared to STIR. Although blurring was worse on the MAVRIC acquisitions, the overall image quality was still better on MAVRIC. Quantitatively, the area of metal artifact measured using MAVRIC was markedly less compared to STIR (61.4 cm(2) vs 135.9 cm(2)). Despite the relatively small number of cases in the

  7. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs.

    PubMed

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-03-18

    proliferation with EPQ, and H & E staining showed no morphological changes below 500 μg/mL EPQ. These results suggest that EPQ has therapeutic potential in the treatment of ovarian cancer by significantly suppressing ovarian tumor incidence and growth and lung metastasis, and by inhibiting MMP-9 secretion and invasion of A-2780 ovarian cancer cells.

  8. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation

    PubMed Central

    Stojanova, Angelina; Tu, William B.; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C.; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z.

    2016-01-01

    ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions. PMID:27267444

  9. Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells

    PubMed Central

    Ota, Akinobu; Sawada, Yumi; Karnan, Sivasundaram; Wahiduzzaman, Md; Inoue, Tadahisa; Kobayashi, Yuji; Yamamoto, Takaya; Ishii, Norimitsu; Ohashi, Tomohiko; Nakade, Yukiomi; Sato, Ken; Itoh, Kiyoaki; Konishi, Hiroyuki; Hosokawa, Yoshitaka; Yoneda, Masashi

    2017-01-01

    ABSTRACT Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we first report on the role of Δ40p53α in HCC cell lines. In the TP53+/Δ40 cell clones, clonogenic activity and cell survival dramatically decreased, whereas the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive cells and p21 (also known as WAF1, CIP1 and CDKN1A) expression significantly increased. These observations were clearly attenuated in the TP53+/Δ40 cell clones after Δ40p53α knockdown. In addition, exogenous Δ40p53 expression significantly suppressed cell growth in HCC cells with wild-type TP53, and in those that were mutant or null for TP53. Notably, Δ40p53α-induced tumor suppressor activity was markedly attenuated in cells expressing the hot-spot mutant Δ40p53α-R175H, which lacks the transcription factor activity of p53. Moreover, Δ40p53α expression was associated with increased full-length p53 protein expression. These findings enhance the understanding of the molecular pathogenesis of HCC and show that Δ40p53α acts as an important tumor suppressor in HCC cells. PMID:27980070

  10. ADAMTS6 suppresses tumor progression via the ERK signaling pathway and serves as a prognostic marker in human breast cancer

    PubMed Central

    Xie, Keqi; Wang, Zhu; Wang, Yanping; Zheng, Hong

    2016-01-01

    A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is involved in tumor development. However, how ADAMTS6 influences cancer remains unknown. We investigated the biological function and clinical implications of ADAMTs6 in breast cancer (BC). Its functional significance in BC cell lines was confirmed by ADAMTs6 overexpression or downregulation both in vitro and in vivo studies. Enhanced ADAMTS6 expression suppressed cell migration, invasion, and tumorigenesis, whereas knockdown promoted these characteristics. The extracellular signal-regulated kinase (ERK) pathway was partially involved in ADAMTS6-mediated inhibition of BC development, and miR-221-3p was identified as a predicted target for ADAMTS6. Results from the luciferase assay confirmed that miR-221-3p directly inhibited ADAMTS6 expression by binding its 3′-untranslated region. In addition, immunohistochemistry data from specimens from 182 BC patients showed that high ADAMTS6 expression was significantly correlated with favorable disease-free survival (DFS, p = 0.045). Subgroup analysis of patients with ER positive, PR positive or HER-2 negative tumors revealed that high ADAMTS6 expression more strongly extended DFS compared to low expression (p = 0.004, p = 0.009, p = 0.017). Multivariate analyses confirmed that ADAMTS6 expression was an independent risk factor for DFS (p = 0.011). Together, these data demonstrate that ADAMTS6 inhibits tumor development by regulating the ERK pathway via binding of miR-221-3p. Thus, its expression may be a potential prognostic biomarker for BC. PMID:27542224

  11. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer

    PubMed Central

    Wen, Wei; Liang, Wei; Wu, Jun; Kowolik, Claudia M.; Buettner, Ralf; Scuto, Anna; Hsieh, Meng-Yin; Hong, Hao; Brown, Christine E.; Forman, Stephen J.; Horne, David; Morgan, Robert; Wakabayashi, Mark; Dellinger, Thanh H.; Han, Ernest S.; Yim, John H.; Jove, Richard

    2015-01-01

    JAK/STAT3 is one of the major signaling pathways that is aberrantly activated in ovarian cancer and associated with tumor progression and poor prognosis in ovarian cancer patients. In this study, we evaluated the therapeutic potential of targeting JAK/STAT3 signaling in ovarian cancer using a peritoneal dissemination mouse model. We developed this mouse model by injecting a metastatic human ovarian cancer cell line, SKOV3-M-Luc, into the peritoneal cavity of immunodeficient mice. This model displayed a phenotype similar to late stage ovarian cancer, including extensive peritoneal metastasis and ascites production. The constitutive activation of STAT3 in human ovarian cancer cells appeared to be mediated by an autocrine-cytokine loop involving the IL-6 family of cytokines and JAK1 kinase. shRNA-mediated knockdown of JAK1 or STAT3 in ovarian cancer cells led to reduced tumor growth, decreased peritoneal dissemination and diminished ascites production, suggesting a critical role of STAT3 in ovarian cancer progression. Similar results were obtained when a small-molecule inhibitor (JAKi) of the JAK1 kinase was used to treat ovarian cancer in this model. In addition, we found that the expression level of IL-6 was correlated with activation of STAT3 in ovarian cancer cells both in vitro and in vivo, suggesting a potential application of IL-6 as a biomarker. Altogether, our results demonstrate that targeting JAK1/STAT3, using shRNA knockdown or a small molecule inhibitor, effectively suppressed ovarian tumor progression and, therefore, could be a potential novel therapeutic approach for treating advanced ovarian cancer. PMID:25319391

  12. Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

    PubMed Central

    Ohta, Naomi; Ishiguro, Susumu; Kawabata, Atsushi; Uppalapati, Deepthi; Pyle, Marla; Troyer, Deryl; De, Supriyo; Zhang, Yongqing; Becker, Kevin G.; Tamura, Masaaki

    2015-01-01

    Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species’ breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression. PMID:25942583

  13. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation.

    PubMed

    Stojanova, Angelina; Tu, William B; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z

    2016-07-02

    MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions.

  14. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity

    PubMed Central

    Graff, Jeremy R.; Konicek, Bruce W.; Vincent, Thomas M.; Lynch, Rebecca L.; Monteith, David; Weir, Spring N.; Schwier, Phil; Capen, Andrew; Goode, Robin L.; Dowless, Michele S.; Chen, Yuefeng; Zhang, Hong; Sissons, Sean; Cox, Karen; McNulty, Ann M.; Parsons, Stephen H.; Wang, Tao; Sams, Lillian; Geeganage, Sandaruwan; Douglass, Larry E.; Neubauer, Blake Lee; Dean, Nicholas M.; Blanchard, Kerry; Shou, Jianyong; Stancato, Louis F.; Carter, Julia H.; Marcusson, Eric G.

    2007-01-01

    Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers. PMID:17786246

  15. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer.

    PubMed

    Wen, Wei; Liang, Wei; Wu, Jun; Kowolik, Claudia M; Buettner, Ralf; Scuto, Anna; Hsieh, Meng-Yin; Hong, Hao; Brown, Christine E; Forman, Stephen J; Horne, David; Morgan, Robert; Wakabayashi, Mark; Dellinger, Thanh H; Han, Ernest S; Yim, John H; Jove, Richard

    2014-12-01

    JAK/STAT3 is one of the major signaling pathways that is aberrantly activated in ovarian cancer and associated with tumor progression and poor prognosis in patients with ovarian cancer. In this study, we evaluated the therapeutic potential of targeting JAK/STAT3 signaling in ovarian cancer using a peritoneal dissemination mouse model. We developed this mouse model by injecting a metastatic human ovarian cancer cell line, SKOV3-M-Luc, into the peritoneal cavity of immunodeficient mice. This model displayed a phenotype similar to late-stage ovarian cancer, including extensive peritoneal metastasis and ascites production. The constitutive activation of STAT3 in human ovarian cancer cells appeared to be mediated by an autocrine cytokine loop involving the IL6 family of cytokines and JAK1 kinase. shRNA-mediated knockdown of JAK1 or STAT3 in ovarian cancer cells led to reduced tumor growth, decreased peritoneal dissemination, and diminished ascites production, suggesting a critical role of STAT3 in ovarian cancer progression. Similar results were obtained when a small-molecule inhibitor (JAKi) of the JAK1 kinase was used to treat ovarian cancer in this model. In addition, we found that the expression level of IL6 was correlated with activation of STAT3 in ovarian cancer cells both in vitro and in vivo, suggesting a potential application of IL6 as a biomarker. Altogether, our results demonstrate that targeting JAK1/STAT3, using shRNA knockdown or a small-molecule inhibitor, effectively suppressed ovarian tumor progression and, therefore, could be a potential novel therapeutic approach for treating advanced ovarian cancer.

  16. Deguelin Suppresses Pancreatic Tumor Growth and Metastasis by Inhibiting Epithelial to Mesenchymal Transition in an Orthotopic Model1

    PubMed Central

    Boreddy, Srinivas Reddy; Srivastava, Sanjay K.

    2012-01-01

    Deguelin is known to suppress the growth of cancer cells; however, its anti-metastatic effects have not been studied so far in any cancer model. In the present study, we aimed to evaluate the anti-metastatic potential of deguelin in vivo and in TGFβ1-stimulated cells. Our results demonstrate that tumor growth, peritoneal-dissemination and liver/lung metastasis of orthotopically implanted PanC-1-luc cells were significantly reduced in deguelin-treated mice along with the induction of apoptosis. Furthermore, deguelin-treated tumors showed increased epithelial signature such as increased expression of E-Cadherin and cytokeratin-18 and decreased expression of Snail. Similar observations were made when PanC-1, COLO-357 and L3.6pl cells were treated in vitro with deguelin. Moreover, E-cadherin was transcriptionally up-regulated and accumulated in the membrane fraction of deguelin-treated cells as indicated by increased interaction of E-Cadherin with β-catenin. TGFβ1-induced down-regulation of E-Cadherin and up-regulation of Snail were abrogated by deguelin treatment. In addition, deguelin inhibited TGFβ1-induced Smad3 phosphorylation and Smad4 nuclear translocation in PanC-1 cells. Furthermore, when TGFβ1-induced NFkB activation was inhibited, TGFβ1-induced Snail up-regulation or E-Cadherin down-regulation was blocked. Deguelin also significantly down regulated the constitutive phosphorylation and DNA binding of NFkB in a dose dependent manner. Interestingly, overexpression of either NFkB or Snail completely abrogated deguelin-mediated EMT inhibition, whereas overexpression of NFkB but not Snail rescued cells from deguelin-induced apoptosis. Hence, deguelin targets NFkB to induce reversal of EMT and apoptosis but downstream effectors might be different for both processes. Taken together, our results suggest that deguelin suppresses both pancreatic tumor growth and metastasis by inducing apoptosis and inhibiting epithelial to mesenchymal transition. PMID:22986522

  17. Merlin's tumor suppression linked to inhibition of the E3 ubiquitin ligase CRL4DCAF1

    PubMed Central

    Li, Wei

    2010-01-01

    The mechanism by which the FERM domain protein Merlin, encoded by the tumor suppressor NF2, restrains cell proliferation is poorly understood. Prior studies have suggested that Merlin exerts its antimitogenic effect by interacting with multiple signaling proteins located at or near the plasma membrane. We have recently observed that Merlin translocates into the nucleus and binds to and inhibits the E3 ubiquitin ligase CRL4DCAF1. Genetic evidence indicates that inactivation of Merlin induces oncogenic gene expression, hyperproliferation, and tumorigenicity by unleashing the activity of CRL4DCAF1. In addition to providing a potential explanation for the diverse effects that loss of Merlin exerts in multiple cell types, these findings suggest that compounds inhibiting CRL4DCAF1 may display therapeutic efficacy in Neurofibromatosis type 2 and other cancers driven by Merlin inactivation. PMID:21084862

  18. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  19. Interleukin-5 induces tumor suppression by peritoneal exudate cells in mice.

    PubMed

    Nakashima, Y; Mita, S; Takatsu, K; Ogawa, M

    1993-09-01

    The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 microgram/day) from day -5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days -10 to -1 was used as opposed to -5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1 microgram/day, from day -10 to -1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC104E cells, they could reject Meth-A sarcoma cells but not MOPC104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augmented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.

  20. Multifunctional properties of chicken embryonic prenatal mesenchymal stem cells- pluripotency, plasticity, and tumor suppression.

    PubMed

    Bhuvanalakshmi, G; Arfuso, Frank; Dharmarajan, Arun; Warrier, Sudha

    2014-12-01

    The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis, and loss/gain of function experiments. In the present study, we assessed and characterized bone marrow derived mesenchymal stem cells from prenatal day 13 chicken embryos (chBMMSCs) and determined some novel properties. After assessing the mesenchymal stem cell (MSC) properties of these cells by the presence of their signature markers (CD 44, CD 73, CD 90, CD 105, and vimentin), we ascertained a very broad spectrum of multipotentiality as these MSCs not only differentiated into the classic tri-lineages of MSCs but also into ectodermal, endodermal, and mesodermal lineages such as neuron, hepatocyte, islet cell, and cardiac. In addition to wide plasticity, we detected the presence of several pluripotent markers such as Oct4, Sox2, and Nanog. This is the first study characterizing prenatal chBMMSCs and their ability to not only differentiate into mesenchymal lineages but also into all the germ cell layer lineages. Furthermore, our studies indicate that prenatal chBMMSCs derived from the chick provide an excellent model for multi-lineage development studies because of their broad plasticity and faithful reproduction of MSC traits as seen in the human. Here, we also present evidence for the first time that media derived from prenatal chBMMSC cultures have an anti-tumorigenic, anti-migratory, and pro-apoptotic effect on human tumors cells acting through the Wnt-ß-catenin pathway. These data confirm that chBMMSCs are enriched with factors in their secretome that are able to destroy tumor cells. This suggests a commonality of properties of MSCs across species between human and chicken.

  1. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    PubMed

    Nantasanti, Sathidpak; Toussaint, Mathilda J M; Youssef, Sameh A; Tooten, Peter C J; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  2. Knockdown of PKM2 Suppresses Tumor Growth and Invasion in Lung Adenocarcinoma

    PubMed Central

    Sun, Hong; Zhu, Anyou; Zhang, Lunjun; Zhang, Jie; Zhong, Zhengrong; Wang, Fengchao

    2015-01-01

    Accumulating evidence shows that activity of the pyruvate kinase M2 (PKM2) isoform is closely related to tumorigenesis. In this study, we investigated the relationship betweenPKM2 expression, tumor invasion, and the prognosis of patients with lung adenocarcinoma. We retrospectively analyzed 65 cases of patients with lung adenocarcinoma who were divided into low and a high expression groups based on PKM2immunohistochemical staining. High PKM2 expression was significantly associated with reduced patient survival. We used small interfering RNA (siRNA) technology to investigate the effect of targeted PKM2-knockout on tumor growth at the cellular level. In vitro, siRNA-mediated PKM2-knockdown significantly inhibited the proliferation, glucose uptake (25%), ATP generation (20%) and fatty acid synthesis of A549 cells, while the mitochondrial respiratory capacity of the cells increased (13%).Western blotting analysis showed that PKM2-knockout significantly inhibited the expression of the glucose transporter GLUT1 and ATP citrate lyase, which is critical for fatty acid synthesis. Further Western blotting analysis showed that PKM2-knockdown inhibited the expression of matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor (VEGF), which are important in degradation of the extracellular matrix and angiogenesis, respectively. These observations show that PKM2 activates both glycolysis and lipid synthesis, thereby regulating cell proliferation and invasion. This information is important in elucidating the mechanisms by which PKM2 influences the growth and metastasis of lung adenocarcinoma at the cellular and molecular level, thereby providing the basic data required for the development of PKM2-targeted gene therapy. PMID:26501265

  3. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer

    PubMed Central

    Lefort, Karine; Ostano, Gian Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, Gian Paolo; Chiorino, Giovanna

    2016-01-01

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer. PMID:27384993

  4. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.

    PubMed

    Lefort, Karine; Ostano, Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, G Paolo; Chiorino, Giovanna

    2016-07-26

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.

  5. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    PubMed

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (P<0.05). The inhibitory effect of salinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (P<0.05). Salinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (P<0.05). Therefore, the present study indicated that salinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  6. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.

    PubMed

    Ozao-Choy, Junko; Ma, Ge; Kao, Johnny; Wang, George X; Meseck, Marcia; Sung, Max; Schwartz, Myron; Divino, Celia M; Pan, Ping-Ying; Chen, Shu-Hsia

    2009-03-15

    In tumor-bearing hosts, myeloid-derived suppressor cells (MDSC) and T regulatory cells (Treg) play important roles in immune suppression, the reversal of which is vitally important for the success of immune therapy. We have shown that ckit ligand is required for MDSC accumulation and Treg development. We hypothesized that sunitinib malate, a receptor tyrosine kinase inhibitor, could reverse MDSC-mediated immune suppression and modulate the tumor microenvironment, thereby improving the efficacy of immune-based therapies. Treatment with sunitinib decreased the number of MDSC and Treg in advanced tumor-bearing animals. Furthermore, it not only reduced the suppressive function of MDSCs but also prevented tumor-specific T-cell anergy and Treg development. Interestingly, sunitinib treatment resulted in reduced expression of interleukin (IL)-10, transforming growth factor-beta, and Foxp3 but enhanced expression of Th1 cytokine IFN-gamma and increased CTL responses in isolated tumor-infiltrating leukocytes. A significantly higher percentage and infiltration of CD8 and CD4 cells was detected in tumors of sunitinib-treated mice when compared with control-treated mice. More importantly, the expression of negative costimulatory molecules CTLA4 and PD-1 in both CD4 and CD8 T cells, and PDL-1 expression on MDSC and plasmacytoid dendritic cells, was also significantly decreased by sunitinib treatment. Finally, sunitinib in combination with our immune therapy protocol (IL-12 and 4-1BB activation) significantly improves the long-term survival rate of large tumor-bearing mice. These data suggest that sunitinib can be used to reverse immune suppression and as a potentially useful adjunct for enhancing the efficacy of immune-based cancer therapy for advanced malignancies.

  7. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10.

    PubMed

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P; Salter, E Alan; Wierzbicki, Andrzej; Keeton, Adam B; Piazza, Gary A

    2015-09-29

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs.

  8. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10

    PubMed Central

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C.; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P.; Salter, E. Alan; Wierzbicki, Andrzej; Keeton, Adam B.; Piazza, Gary A.

    2015-01-01

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs. PMID:26299804

  9. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells.

    PubMed

    Sarkar, Susobhan; Döring, Axinia; Zemp, Franz J; Silva, Claudia; Lun, Xueqing; Wang, Xiuling; Kelly, John; Hader, Walter; Hamilton, Mark; Mercier, Philippe; Dunn, Jeff F; Kinniburgh, Dave; van Rooijen, Nico; Robbins, Stephen; Forsyth, Peter; Cairncross, Gregory; Weiss, Samuel; Yong, V Wee

    2014-01-01

    Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.

  10. Coordinate redeployment of PRC1 proteins suppresses tumor formation during Drosophila development.

    PubMed

    Loubière, Vincent; Delest, Anna; Thomas, Aubin; Bonev, Boyan; Schuettengruber, Bernd; Sati, Satish; Martinez, Anne-Marie; Cavalli, Giacomo

    2016-11-01

    Polycomb group proteins form two main complexes, PRC2 and PRC1, which generally coregulate their target genes. Here we show that PRC1 components act as neoplastic tumor suppressors independently of PRC2 function. By mapping the distribution of PRC1 components and trimethylation of histone H3 at Lys27 (H3K27me3) across the genome, we identify a large set of genes that acquire PRC1 in the absence of H3K27me3 in Drosophila larval tissues. These genes massively outnumber canonical targets and are mainly involved in the regulation of cell proliferation, signaling and polarity. Alterations in PRC1 components specifically deregulate this set of genes, whereas canonical targets are derepressed in both PRC1 and PRC2 mutants. In human embryonic stem cells, PRC1 components colocalize with H3K27me3 as in Drosophila embryos, whereas in differentiated cell types they are selectively recruited to a large set of proliferation and signaling-associated genes that lack H3K27me3, suggesting that the redeployment of PRC1 components during development is evolutionarily conserved.

  11. MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma

    SciTech Connect

    Martin, Alissa; Jones, Aunica; Bryar, Paul J.; Mets, Marilyn; Weinstein, Joanna; Zhang, Gang; Laurie, Nikia A.

    2013-11-01

    Highlights: •We validate miR-449a/b expression in primary human retinoblastomas and cell lines. •Exogenous miRs-449a/b inhibited proliferation in retinoblastoma cell lines. •Exogenous miRs-449a/b increased apoptosis in retinoblastoma cell lines. •miRs-449a/b could serve as viable therapeutic targets for retinoblastoma treatment. -- Abstract: Retinoblastoma is the most common pediatric cancer of the eye. Currently, the chemotherapeutic treatments for retinoblastoma are broad-based drugs such as vincristine, carboplatin, or etoposide. However, therapies targeted directly to aberrant signaling pathways may provide more effective therapy for this disease. The purpose of our study is to illustrate the relationship between the expressions of miRs-449a and -449b to retinoblastoma proliferation and apoptosis. We are the first to confirm an inhibitory effect of miR-449a and -449b in retinoblastoma by demonstrating significantly impaired proliferation and increased apoptosis of tumor cells when these miRNAs are overexpressed. This study suggests that these miRNAs could serve as viable therapeutic targets for retinoblastoma treatment.

  12. Suppression of SOX7 by DNA methylation and its tumor suppressor function in acute myeloid leukemia.

    PubMed

    Man, Cheuk Him; Fung, Tsz Kan; Wan, Haixia; Cher, Chae Yin; Fan, August; Ng, Nelson; Ho, Christa; Wan, Thomas S K; Tanaka, Toshiyuki; So, Chi Wai Eric; Kwong, Yok Lam; Leung, Anskar Y H

    2015-06-18

    SOX7 belongs to the SOX (Sry-related high-mobility group [HMG] box) gene family, a group of transcription factors containing in common a HMG box domain. Its role in hematologic malignancies and, in particular, acute myeloid leukemia (AML) is completely unknown. Here, we showed that SOX7 expression was regulated by DNA hypermethylation in AML but not in acute lymphoblastic leukemia or normal bone marrow cells. In cell lines (KG1, ML2, and K562) and in primary CD34(+) AML samples, SOX7 expression could be induced by the DNA demethylating agent 5-aza-2'-deoxycytidine. Overexpression of SOX7 in K562 cells inhibited cell proliferation, with cell cycle delay in S/G2/M phases and reduced clonogenic activity. Apoptosis was unaffected. Ectopic expression of SOX7 in K562 and THP-1 cells, as well as primary CD33(+)CD34(+) AML cells, abrogated leukemia engraftment in xenogeneic transplantation. SOX7 expression inhibited the Wnt/β-catenin pathway through direct protein binding to β-catenin, and the antileukemia effects of SOX7 in THP-1 cells were significantly reduced by deletion of its β-catenin binding site. The results provided unequivocal evidence for a novel tumor suppressor role of SOX7 in AML via a negative modulatory effect on the Wnt/β-catenin pathway. © 2015 by The American Society of Hematology.

  13. Contribution of Soft Substrates to Malignancy and Tumor Suppression during Colon Cancer Cell Division

    PubMed Central

    Rabineau, Morgane; Kocgozlu, Leyla; Dujardin, Denis; Senger, Bernard; Haikel, Youssef; Voegel, Jean-Claude; Freund, Jean-Noel; Schaaf, Pierre; Lavalle, Philippe; Vautier, Dominique

    2013-01-01

    In colon cancer, a highly aggressive disease, progression through the malignant sequence is accompanied by increasingly numerous chromosomal rearrangements. To colonize target organs, invasive cells cross several tissues of various elastic moduli. Whether soft tissue increases malignancy or in contrast limits invasive colon cell spreading remains an open question. Using polyelectrolyte multilayer films mimicking microenvironments of various elastic moduli, we revealed that human SW480 colon cancer cells displayed increasing frequency in chromosomal segregation abnormalities when cultured on substrates with decreasing stiffness. Our results show that, although decreasing stiffness correlates with increased cell lethality, a significant proportion of SW480 cancer cells did escape from the very soft substrates, even when bearing abnormal chromosome segregation, achieve mitosis and undergo a new cycle of replication in contrast to human colonic HCoEpiC cells which died on soft substrates. This observation opens the possibility that the ability of cancer cells to overcome defects in chromosome segregation on very soft substrates could contribute to increasing chromosomal rearrangements and tumor cell aggressiveness. PMID:24167628

  14. Chrysin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB.

    PubMed

    Li, Xin; Huang, Qing; Ong, Choon-Nam; Yang, Xing-Fen; Shen, Han-Ming

    2010-07-01

    Chrysin (5,7-dihydroxyflavone) is a natural flavonoid commonly found in many plants. The anti-cancer property of chrysin has been demonstrated although the molecular mechanisms remain to be further elucidated. In the present study, we found that, pretreatment with chrysin greatly sensitized various human cancer cells to tumor necrosis factor-alpha (TNFalpha)-induced apoptosis. In the search of the molecular mechanisms responsible for the sensitization effect of chrysin, we discovered that such sensitization is closely associated with the inhibitory effect of chrysin on TNFalpha-mediated nuclear transcription factor-kappaB (NF-kappaB) activation. Pretreatment with chrysin inhibited TNFalpha-induced degradation of Inhibitor of kappaB (IkappaB) protein and subsequent nuclear translocation of p65. As a result, chrysin suppressed the expression of NF-kappaB-targeted anti-apoptotic gene, c-FLIP-L. The role of c-FLIP-L was further confirmed by its ectopic expression, which significantly protected cell death induced by combined treatment with chrysin and TNFalpha. Data from this study thus reveal a novel function of chrysin and enhance the value of chrysin as an anti-cancer agent.

  15. An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth.

    PubMed

    Liu, T; Chopra, A K

    2010-02-01

    An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44(+) cells grew much faster than CD44(-) cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44(high) and CD4(+)CD25(+) T(reg) cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.

  16. 3-Bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth

    PubMed Central

    WANG, TING-AN; ZHANG, XIAO-DONG; GUO, XING-YU; XIAN, SHU-LIN; LU, YUN-FEI

    2016-01-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213

  17. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    PubMed

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken to