Science.gov

Sample records for loddigesii suppresses tumor

  1. Immune suppressive mechanisms in the tumor microenvironment.

    PubMed

    Munn, David H; Bronte, Vincenzo

    2016-04-01

    Effective immunotherapy, whether by checkpoint blockade or adoptive cell therapy, is limited in most patients by a key barrier: the immunosuppressive tumor microenvironment. Suppression of tumor-specific T cells is orchestrated by the activity of a variety of stromal myeloid and lymphoid cells. These often display inducible suppressive mechanisms that are triggered by the same anti-tumor inflammatory response that the immunotherapy intends to create. Therefore, a more comprehensive understanding of how the immunosuppressive milieu develops and persists is critical in order to harness the full power of immunotherapy of cancer.

  2. Comparison of photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii

    PubMed Central

    Sun, Zhi-Rong; Zhu, Nan-Nan; Cheng, Li-Li; Yang, Chun-Ning

    2015-01-01

    Objective: To investigate the photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii, based on which to provide helpful information for the artificial cultivation of these cultivars. Methods: Seeds were placed on the MS medium supplemented with 0.2 mg/L NAA, 2% (w/v) sucrose, 15% (v/v) potato extracts and powered agar (pH 5.8). Two months after germination, seedlings (n = 10) were transferred onto rooting medium containing MS medium supplemented with 0.5 mg/L NAA, 3% (w/v) sucrose, 20% (v/v) potato extracts and 1‰ (w/v) activated carbon (pH 5.8) in a glass bottle (6.5 cm in diameter and 9.5 cm in height) with a white transparent plastic cap. Chlorophyll content was determined using the UV-Vis spectrophotometric method. In addition, rates of oxygen evolution and uptake were measured. The chlorophyll fluorescence was determined at room temperature using PAM 2000 chlorophyll fluorometer (Heinz Walz GmbH, Germany). Results: From month 5 to month 10, the overall contents of both chlorophyll a and chlorophyll b were higher in D. loddigesii compared with those in D. officinale. No statistical differences were observed in the apparent photosynthetic rate (APR) between D. loddigesii and D. officinale. No statistical difference was noticed in the Fo, Fm and Fv between D. loddigesii and D. officinale (P > 0.05). Significant increase was noticed in the oxygen consuming in PSI in month-8 and month-10 compared with that of month-6 in D. loddigesii. Nevertheless, in the D. officinale, the oxygen consuming in PSI in month-6 was remarkably increased with those of month-8 and month-10, respectively. Conclusions: The photosynthesis and fluorescence parameters varied in the seedling of D. loddigesii and D. officinale. Such information could contribute to the artificial cultivation of these cultivars. PMID:26550239

  3. Deconstructing p53 transcriptional networks in tumor suppression.

    PubMed

    Bieging, Kathryn T; Attardi, Laura D

    2012-02-01

    p53 is a pivotal tumor suppressor that induces apoptosis, cell-cycle arrest and senescence in response to stress signals. Although p53 transcriptional activation is important for these responses, the mechanisms underlying tumor suppression have been elusive. To date, no single or compound mouse knockout of specific p53 target genes has recapitulated the dramatic tumor predisposition that characterizes p53-null mice. Recently, however, analysis of knock-in mice expressing p53 transactivation domain mutants has revealed a group of primarily novel direct p53 target genes that may mediate tumor suppression in vivo. We present here an overview of well-known p53 target genes and the tumor phenotypes of the cognate knockout mice, and address the recent identification of new p53 transcriptional targets and how they enhance our understanding of p53 transcriptional networks central for tumor suppression.

  4. Tumor Suppression and Promotion by Autophagy

    PubMed Central

    Ávalos, Yenniffer; Canales, Jimena; Criollo, Alfredo; Quest, Andrew F. G.

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer. PMID:25328887

  5. Tumor suppression and promotion by autophagy.

    PubMed

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  6. Tumor suppression by resistant maltodextrin, Fibersol-2.

    PubMed

    So, Eui Young; Ouchi, Mutsuko; Cuesta-Sancho, Sara; Olson, Susan Losee; Reif, Dirk; Shimomura, Kazuhiro; Ouchi, Toru

    2015-01-01

    Resistant maltodextrin Fibersol-2 is a soluble and fermentable dietary fiber that is Generally Recognized As Safe (GRAS) in the United States. We tested whether Fibersol-2 contains anti-tumor activity. Human colorectal cancer cell line, HCT116, and its isogenic cells were treated with FIbersol-2. Tumor growth and tumorigenesis were studied in vitro and in vivo. Apoptotic pathway and generation of reactive oxygen species (ROS) were investigated. We discovered that Fibersol-2 significantly inhibits tumor growth of HCT116 cells by inducing apoptosis. Fibersol-2 strongly induces mitochondrial ROS and Bax-dependent cleavage of caspase 3 and 9, which is shown by isogenic HCT116 variants. Fibersol-2 induces phosphorylation of Akt, mTOR in parental HCT116 cells, but not in HCT116 deficient for Bax or p53. It prevents growth of tumor xenograft without any apparent signs of toxicity in vivo. These results identify Fibersol-2 as a mechanism-based dietary supplement agent that could prevent colorectal cancer development.

  7. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  8. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation

    PubMed Central

    Janowski, Ann M.; Colegio, Oscar R.; Hornick, Emma E.; McNiff, Jennifer M.; Martin, Matthew D.; Badovinac, Vladimir P.; Norian, Lyse A.; Zhang, Weizhou; Cassel, Suzanne L.

    2016-01-01

    Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression. We found that NLRC4-deficient mice exhibited enhanced tumor growth that was independent of the inflammasome components ASC and caspase-1. Nlrc4 expression was critical for cytokine and chemokine production in tumor-associated macrophages and was necessary for the generation of protective IFN-γ–producing CD4+ and CD8+ T cells. Tumor progression was diminished when WT or caspase-1–deficient, but not NLRC4-deficient, macrophages were coinjected with B16F10 tumor cells in NLRC4-deficient mice. Finally, examination of human primary melanomas revealed the extensive presence of NLRC4+ tumor-associated macrophages. In contrast, there was a paucity of NLRC4+ tumor-associated macrophages observed in human metastatic melanoma, supporting the concept that NLRC4 expression controls tumor growth. These results reveal a critical role for NLRC4 in suppressing tumor growth in an inflammasome-independent manner. PMID:27617861

  9. Importance of DNA repair in tumor suppression

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-12-01

    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.

  10. Reversible Smad-dependent signaling between tumor suppression and oncogenesis.

    PubMed

    Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2007-06-01

    Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.

  11. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Choi, Jeong Uk; Kim, Seong Who; Kim, Sang Yoon; Ahsan, Fakhrul; Kim, In-San

    2016-01-01

    Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis. PMID:26950422

  12. A model for tumor suppression using H-1 parvovirus.

    PubMed Central

    Telerman, A; Tuynder, M; Dupressoir, T; Robaye, B; Sigaux, F; Shaulian, E; Oren, M; Rommelaere, J; Amson, R

    1993-01-01

    A model system is proposed to investigate, at the molecular level, the pathways of tumor suppression. As a tool for the selection of cells with a suppressed phenotype, we used the H-1 parvovirus that preferentially kills various neoplastic cells. From the human K562 leukemia cells, we isolated a clone, KS, that is resistant to the cytopathic effect of the H-1 virus and displays a suppressed malignant phenotype. The suppressed malignancy and the cellular resistance to H-1 killing appear to depend on the activity of wild-type p53. Whereas the KS cells express wild-type p53, the protein is undetectable in the parental K562 cells. Experiments with p53 mutants suggest that wild-type p53, in its functionally intact state, contributes to the resistance against the cytopathic effect of H-1 parvovirus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8378352

  13. Global microRNA depletion suppresses tumor angiogenesis

    PubMed Central

    Chen, Sidi; Xue, Yuan; Wu, Xuebing; Le, Cong; Bhutkar, Arjun; Bell, Eric L.; Zhang, Feng; Langer, Robert; Sharp, Phillip A.

    2014-01-01

    MicroRNAs delicately regulate the balance of angiogenesis. Here we show that depletion of all microRNAs suppresses tumor angiogenesis. We generated microRNA-deficient tumors by knocking out Dicer1. These tumors are highly hypoxic but poorly vascularized, suggestive of deficient angiogenesis signaling. Expression profiling revealed that angiogenesis genes were significantly down-regulated as a result of the microRNA deficiency. Factor inhibiting hypoxia-inducible factor 1 (HIF-1), FIH1, is derepressed under these conditions and suppresses HIF transcription. Knocking out FIH1 using CRISPR/Cas9-mediated genome engineering reversed the phenotypes of microRNA-deficient cells in HIF transcriptional activity, VEGF production, tumor hypoxia, and tumor angiogenesis. Using multiplexed CRISPR/Cas9, we deleted regions in FIH1 3′ untranslated regions (UTRs) that contain microRNA-binding sites, which derepresses FIH1 protein and represses hypoxia response. These data suggest that microRNAs promote tumor responses to hypoxia and angiogenesis by repressing FIH1. PMID:24788094

  14. Optimal Treatment Strategy for a Tumor Model under Immune Suppression

    PubMed Central

    Kim, Kwang Su; Cho, Giphil; Jung, Il Hyo

    2014-01-01

    We propose a mathematical model describing tumor-immune interactions under immune suppression. These days evidences indicate that the immune suppression related to cancer contributes to its progression. The mathematical model for tumor-immune interactions would provide a new methodology for more sophisticated treatment options of cancer. To do this we have developed a system of 11 ordinary differential equations including the movement, interaction, and activation of NK cells, CD8+T-cells, CD4+T cells, regulatory T cells, and dendritic cells under the presence of tumor and cytokines and the immune interactions. In addition, we apply two control therapies, immunotherapy and chemotherapy to the model in order to control growth of tumor. Using optimal control theory and numerical simulations, we obtain appropriate treatment strategies according to the ratio of the cost for two therapies, which suggest an optimal timing of each administration for the two types of models, without and with immunosuppressive effects. These results mean that the immune suppression can have an influence on treatment strategies for cancer. PMID:25140193

  15. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line.

    PubMed

    Chunharojrith, Paweena; Nakayama, Yuki; Jiang, Xiaobing; Kery, Rachel E; Ma, Jun; De La Hoz Ulloa, Cristine S; Zhang, Xun; Zhou, Yunli; Klibanski, Anne

    2015-11-15

    Human clinically non-functioning pituitary adenomas (NFAs) account for approximately 40% of diagnosed pituitary tumors. Epigenetic mutations in tumor suppressive genes play an important role in NFA development. Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) and we hypothesized that it is a candidate tumor suppressor whose epigenetic silencing is specifically linked to NFA development. In this study, we introduced MEG3 expression into PDFS cells, derived from a human NFA, using both inducible and constitutively active expression systems. MEG3 expression significantly suppressed xenograft tumor growth in vivo in nude mice. When induced in culture, MEG3 caused cell cycle arrest at the G1 phase. In addition, inactivation of p53 completely abolished tumor suppression by MEG3, indicating that MEG3 tumor suppression is mediated by p53. In conclusion, our data support the hypothesis that MEG3 is a lncRNA tumor suppressor in the pituitary and its inactivation contributes to NFA development.

  16. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma

    PubMed Central

    Mackiewicz, Katarzyna; Katlinskaya, Yuliya V.; Staschke, Kirk A.; Paredes, Maria C. G.; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S.; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y.; Diehl, J. Alan

    2016-01-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK. PMID:27977682

  17. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma.

    PubMed

    Pytel, Dariusz; Gao, Yan; Mackiewicz, Katarzyna; Katlinskaya, Yuliya V; Staschke, Kirk A; Paredes, Maria C G; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S; Wu, Lawrence; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y; Diehl, J Alan

    2016-12-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK.

  18. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation

    PubMed Central

    Zasadil, Lauren M.; Britigan, Eric M. C.; Ryan, Sean D.; Kaur, Charanjeet; Guckenberger, David J.; Beebe, David J.; Moser, Amy R.; Weaver, Beth A.

    2016-01-01

    Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the ApcMin/+ mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. ApcMin/+ cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E+/−;ApcMin/+ doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with ApcMin/+ animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy. PMID:27146113

  19. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression

    PubMed Central

    Rhee, Ki-Jong; Lee, Jong In; Eom, Young Woo

    2015-01-01

    Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors. PMID:26694366

  20. Exosomes as Tools to Suppress Primary Brain Tumor.

    PubMed

    Katakowski, Mark; Chopp, Michael

    2016-04-01

    Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood-brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.

  1. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    PubMed Central

    Whiteside, Theresa L.

    2016-01-01

    Tumor-derived exosomes (TEX) are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation. PMID:27775593

  2. Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment.

    PubMed

    Marsh, Justine L; Jackman, Chris P; Tang, Su-Ni; Shankar, Sharmila; Srivastava, Rakesh K

    2014-01-01

    Since pancreatic carcinoma is largely refractory to conventional therapies, development of novel agents is required for the effective treatment of pancreatic cancer. The objective of this paper was to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer growth in mice by modulating tumor immune microenvironment. Embelin inhibited PANC-1 tumor growth, angiogenesis, and metastasis which were associated with suppression of Akt and Sonic Hedgehog (Shh) pathways. Embelin inhibited the expression of Bcl-2, cyclin D1, CDK2 and CDK6, IL-6 and IL-8, and induced the expression of Bax in tumor tissues. Embelin also reversed epithelial-mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, Slug and Zeb1. Embelin inhibited pancreatic cancer growth in Kras(G12D) mice by modulating tumor immune microenvironment where CTL, NKT, γδT, NK, and IFNγ (Th1 type) cells were up-regulated, and Th17, PMN-MDSC, IL-6 and IL-8 (Th2 type) immune cells were inhibited. These data suggest that embelin can inhibit pancreatic cancer growth by modulating tumor immune microenvironment and Akt and Shh pathways, and inhibiting inflammation. Embelin may offer therapeutic benefits for the treatment and/or prevention of pancreatic cancer.

  3. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  4. Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity.

    PubMed

    Flint, Thomas R; Janowitz, Tobias; Connell, Claire M; Roberts, Edward W; Denton, Alice E; Coll, Anthony P; Jodrell, Duncan I; Fearon, Douglas T

    2016-11-08

    In patients with cancer, the wasting syndrome, cachexia, is associated with caloric deficiency. Here, we describe tumor-induced alterations of the host metabolic response to caloric deficiency that cause intratumoral immune suppression. In pre-cachectic mice with transplanted colorectal cancer or autochthonous pancreatic ductal adenocarcinoma (PDA), we find that IL-6 reduces the hepatic ketogenic potential through suppression of PPARalpha, the transcriptional master regulator of ketogenesis. When these mice are challenged with caloric deficiency, the resulting relative hypoketonemia triggers a marked rise in glucocorticoid levels. Multiple intratumoral immune pathways are suppressed by this hormonal stress response. Moreover, administering corticosterone to elevate plasma corticosterone to a level that is lower than that occurring in cachectic mice abolishes the response of mouse PDA to an immunotherapy that has advanced to clinical trials. Therefore, tumor-induced IL-6 impairs the ketogenic response to reduced caloric intake, resulting in a systemic metabolic stress response that blocks anti-cancer immunotherapy.

  5. Suppression of tumor angiogenesis by targeting the protein neddylation pathway.

    PubMed

    Yao, W-T; Wu, J-F; Yu, G-Y; Wang, R; Wang, K; Li, L-H; Chen, P; Jiang, Y-N; Cheng, H; Lee, H W; Yu, J; Qi, H; Yu, X-J; Wang, P; Chu, Y-W; Yang, M; Hua, Z-C; Ying, H-Q; Hoffman, R M; Jeong, L S; Jia, L-J

    2014-02-13

    Inhibition of protein neddylation, particularly cullin neddylation, has emerged as a promising anticancer strategy, as evidenced by the antitumor activity in preclinical studies of the Nedd8-activating enzyme (NAE) inhibitor MLN4924. This small molecule can block the protein neddylation pathway and is now in clinical trials. We and others have previously shown that the antitumor activity of MLN4924 is mediated by its ability to induce apoptosis, autophagy and senescence in a cell context-dependent manner. However, whether MLN4924 has any effect on tumor angiogenesis remains unexplored. Here we report that MLN4924 inhibits angiogenesis in various in vitro and in vivo models, leading to the suppression of tumor growth and metastasis in highly malignant pancreatic cancer, indicating that blockage of angiogenesis is yet another mechanism contributing to its antitumor activity. At the molecular level, MLN4924 inhibits Cullin-RING E3 ligases (CRLs) by cullin deneddylation, causing accumulation of RhoA at an early stage to impair angiogenic activity of vascular endothelial cells and subsequently DNA damage response, cell cycle arrest and apoptosis due to accumulation of other tumor-suppressive substrates of CRLs. Furthermore, we showed that inactivation of CRLs, via small interfering RNA (siRNA) silencing of its essential subunit ROC1/RBX1, recapitulates the antiangiogenic effect of MLN4924. Taken together, our study demonstrates a previously unrecognized role of neddylation in the regulation of tumor angiogenesis using both pharmaceutical and genetic approaches, and provides proof of concept evidence for future development of neddylation inhibitors (such as MLN4924) as a novel class of antiangiogenic agents.

  6. TGF-β Tumor Suppression Through A Lethal EMT

    PubMed Central

    David, Charles J.; Huang, Yun-Han; Chen, Mo; Su, Jie; Zou, Yilong; Bardeesy, Nabeel; Iacobuzio-Donahue, Christine A.; Massagué, Joan

    2016-01-01

    TGF-β signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-β mediator Smad4. We show that TGF-β induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-β sensitive PDA cells, EMT becomes lethal by converting TGF-β-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-β. TGF-β-induced Sox4 is thus geared to bolster progenitor identity, while simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-β tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network. PMID:26898331

  7. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    PubMed Central

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-01-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials. PMID:27485515

  8. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    NASA Astrophysics Data System (ADS)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  9. RB tumor suppressive function in response to xenobiotic hepatocarcinogens.

    PubMed

    Reed, Christopher; Hutcheson, Jack; Mayhew, Christopher N; Witkiewicz, Agnieszka K; Knudsen, Erik S

    2014-06-01

    Diverse etiologic events are associated with the development of hepatocellular carcinoma. During hepatocarcinogenesis, genetic events likely occur that subsequently cooperate with long-term exposures to further drive the progression of hepatocellular carcinoma. In this study, the frequent loss of the retinoblastoma (RB) tumor suppressor in hepatocellular carcinoma was modeled in response to diverse hepatic stresses. Loss of RB did not significantly affect the response to a steatotic stress as driven by a methionine- and choline-deficient diet. In addition, RB status did not significantly influence the response to peroxisome proliferators that can drive hepatomegaly and tumor development in rodents. However, RB loss exhibited a highly significant effect on the response to the xenobiotic1,4-Bis-[2-(3,5-dichloropyridyloxy)] benzene. Loss of RB yielded a unique proliferative response to this agent, which was distinct from both regenerative stresses and genotoxic carcinogens. Long-term exposure to 1,4-Bis-[2-(3,5-dichloropyridyloxy)] benzene yielded profound tumor development in RB-deficient livers that was principally absent in RB-sufficient tissue. These data demonstrate the context specificity of RB and the key role RB plays in the suppression of hepatocellular carcinoma driven by xenobiotic stress.

  10. Two faces of p53: aging and tumor suppression

    PubMed Central

    Rodier, Francis; Campisi, Judith; Bhaumik, Dipa

    2007-01-01

    The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity. PMID:17942417

  11. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  12. An Essential Role of Maspin in Embryogenesis and Tumor Suppression.

    PubMed

    Dzinic, Sijana H; Bernardo, M Margarida; Li, Xiaohua; Fernandez-Valdivia, Rodrigo; Ho, Ye-Shih; Mi, Qing-Sheng; Bandyopadhyay, Sudeshna; Lonardo, Fulvio; Vranic, Semir; Oliveira, Daniel S M; Bonfil, R Daniel; Dyson, Gregory; Chen, Kang; Omerovic, Almasa; Sheng, Xiujie; Han, Xiang; Wu, Dinghong; Bi, Xinling; Cabaravdic, Dzenana; Jakupovic, Una; Wahba, Marian; Pang, Aaron; Harajli, Deanna; Sakr, Wael A; Sheng, Shijie

    2017-02-15

    Maspin (SerpinB5) is an epithelial-specific tumor suppressor gene product that displays context-dependent cellular functions. Maspin-deficient mouse models created to date have not definitively established maspin functions critical for cancer suppression. In this study, we generated a mouse strain in which exon 4 of the Maspin gene was deleted, confirming its essential role in development but also enabling a breeding scheme to bypass embryonic lethality. Phenotypic characterization of this viable strain established that maspin deficiency was associated with a reduction in maximum body weight and a variety of context-dependent epithelial abnormalities. Specifically, maspin-deficient mice exhibited pulmonary adenocarcinoma, myoepithelial hyperplasia of the mammary gland, hyperplasia of luminal cells of dorsolateral and anterior prostate, and atrophy of luminal cells of ventral prostate and stratum spinosum of epidermis. These cancer phenotypes were accompanied by increased inflammatory stroma. These mice also displayed the autoimmune disorder alopecia aerate. Overall, our findings defined context-specific tumor suppressor roles for maspin in a clinically relevant model to study maspin functions in cancer and other pathologies. Cancer Res; 77(4); 886-96. ©2017 AACR.

  13. Ku80-deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response

    PubMed Central

    Holcomb, Valerie B.; Rodier, Francis; Choi, Yong Jun; Busuttil, Rita A.; Vogel, Hannes; Vijg, Jan; Campisi, Judith; Hasty, Paul

    2014-01-01

    Ku80 facilitates DNA repair and therefore should suppress cancer. However, ku80−/− mice exhibit reduced cancer, although they age prematurely and have a shortened life span. We tested the hypothesis that Ku80 deletion suppresses cancer by enhancing cellular tumor suppressive responses to inefficiently repaired DNA damage. In support of this hypothesis, Ku80 deletion ameliorated tumor burden in APCMIN mice, and increased a p53-mediated DNA damage response, DNA lesions, and chromosomal rearrangements. Thus, contrary to its assumed role as a caretaker tumor suppressor, Ku80 facilitates tumor growth most likely by dampening baseline cellular DNA damage responses. PMID:19010925

  14. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy.

  15. Comparison of tamoxifen with edible seaweed (Eucheuma cottonii L.) extract in suppressing breast tumor.

    PubMed

    Shamsabadi, Fatemeh T; Khoddami, Ali; Fard, Samaneh Ghasemi; Abdullah, Rasedee; Othman, Hemn Hassan; Mohamed, Suhaila

    2013-01-01

    The tropical edible red seaweed (Eucheuma cottonii L.) is rich in nutrients and polyphenolic compounds that may suppress cancer through its antioxidant and antiproliferative properties. The study reports on rat mammary tumor suppression and tissue antioxidant status modulation by E. cottonii ethanol extract (ECE). The effect of orally administered ECE (100 mg/kg body-weight) was compared with that of tamoxifen (10 mg/kg body-weight). Rat was induced to develop mammary tumor with subcutaneous injection of LA-7 cells (6 × 10(6) cells/rat). The ECE was more effective than tamoxifen in suppressing tumor growth (27%), improving tissues (plasma, liver, and kidney) malondialdehyde concentrations, superoxide dismutase activity and erythrocyte glutathione concentrations (P < 0.05). Unlike tamoxifen, the ECE displayed little toxicity to the liver and kidneys. The ECE exhibited strong anticancer effect with enzyme modulating properties, suggesting its potential as a suppressing agent for mammary gland tumor.

  16. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

  17. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses

    PubMed Central

    Joshi, Nikhil S.; Akama-Garren, Elliot H.; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P.; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R.; Farago, Anna F.; Robbins, Rebecca; Crowley, Denise M.; Bronson, Roderick T.; Jacks, Tyler

    2016-01-01

    SUMMARY Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically-engineered mouse lung adenocarcinoma model and found Treg cells suppress anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLS). TA-TLS have been described in human lung cancers, but their function remains to be determined. TLS in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLS upon Treg cell depletion, leading to tumor destruction. Thus, we propose Treg cells in TA-TLS can inhibit endogenous immune responses against tumors, and targeting these cells may provide therapeutic benefit for cancer patients. PMID:26341400

  18. The Role of BRCA1 Domains and Motifs in Tumor Suppression

    DTIC Science & Technology

    2010-08-01

    poorly characterized but conserved domains in BRCA1 directly participate in its tumor suppression function. To test this hypothesis we choose a global ...after ionizing radiation than HCC1937 e xpressing lacZ, delta 12/13, C61G or M1775 R mutants. This suggests that the RING, coiled-coil and BRCT...conserved domains in BRCA1 dire ctly participate in its tumor suppression fun ction. To te st this hypothesis we choose a global ap proach

  19. 1p36 tumor suppression--a matter of dosage?

    PubMed

    Henrich, Kai-Oliver; Schwab, Manfred; Westermann, Frank

    2012-12-01

    A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic "two-hit" manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes.

  20. Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages

    PubMed Central

    Allavena, P.; Chieppa, M.; Bianchi, G.; Solinas, G.; Fabbri, M.; Laskarin, G.; Mantovani, A.

    2010-01-01

    Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype. PMID:21331365

  1. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    DTIC Science & Technology

    2005-03-01

    migration to DLNs. A B A 1.2- : .0 4000 rmDC 0., 3000 mDC+TGF-p S. . 0.- 2000 S 0.4m S0.2 Hi n 10000 0.0 CCR1 CCR4 CCR5 CCR6 CCR7 SLC MIP-3p Figure 4...containing tumor microenvironment. Mice bearing established mock transfected (4T1-N) or anti-sense TGF-p-expressing (4T1-asT) tumors received i.t...day Figure 9. Treatment of established 4T1 tumors with Smad7-overexpressing DC. Mice bearing established 4T1-N or 4T1-asT primary tumors received

  2. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.

    PubMed

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille

    2016-03-08

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth.

  3. Immunotherapeutic modulation of the suppressive liver and tumor microenvironments

    PubMed Central

    Chan, Tim; Wiltrout, Robert H.; Weiss, Jonathan M.

    2011-01-01

    The liver is an immunologically unique organ, consisting of resident hematopoietic and parenchymal cells which often contribute to a relatively tolerant microenvironment. It is also becoming increasingly clear that tumor-induced immunosuppression occurs via many of the same cellular mechanisms which contribute to the tolerogenic liver microenvironment. Myeloid cells, consisting of dendritic cells (DC), macrophages and myeloid-derived suppressor cells (MDSC), have been implicated in providing a tolerogenic liver environment and immune dysfunction within the tumor microenvironment which can favor tumor progression. As we increase our understanding of the biological mechanisms involved for each phenotypic and/or functionally distinct leukocyte subset, immunotherapeutic strategies can be developed to overcome the inherent barriers to the development of improved strategies for the treatment of liver disease and tumors. In this review, we discuss the principal myeloid cell-based contributions to immunosuppression that are shared between the liver and tumor microenvironments. We further highlight immune-based strategies shown to modulate immunoregulatory cells within each microenvironment and enhance anti-tumor responses. PMID:21241810

  4. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment

    PubMed Central

    Sharma, Madhav D.; Shinde, Rahul; McGaha, Tracy L.; Huang, Lei; Holmgaard, Rikke B.; Wolchok, Jedd D.; Mautino, Mario R.; Celis, Esteban; Sharpe, Arlene H.; Francisco, Loise M.; Powell, Jonathan D.; Yagita, Hideo; Mellor, Andrew L.; Blazar, Bruce R.; Munn, David H.

    2015-01-01

    The tumor microenvironment is profoundly immunosuppressive. We show that multiple tumor types create intratumoral immune suppression driven by a specialized form of regulatory T cell (Treg) activation dependent on the PTEN (phosphatase and tensin homolog) lipid phosphatase. PTEN acted to stabilize Tregs in tumors, preventing them from reprogramming into inflammatory effector cells. In mice with a Treg-specific deletion of PTEN, tumors grew slowly, were inflamed, and could not create an immunosuppressive tumor microenvironment. In normal mice, exposure to apoptotic tumor cells rapidly elicited PTEN-expressing Tregs, and PTEN-deficient mice were unable to maintain tolerance to apoptotic cells. In wild-type mice with large established tumors, pharmacologic inhibition of PTEN after chemotherapy or immunotherapy profoundly reconfigured the tumor microenvironment, changing it from a suppressive to an inflammatory milieu, and tumors underwent rapid regression. Thus, the immunosuppressive milieu in tumors must be actively maintained, and tumors become susceptible to immune attack if the PTEN pathway in Tregs is disrupted. PMID:26601142

  5. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    SciTech Connect

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-07-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver.

  6. State of the art address oncogenes and tumor-suppressing genes

    SciTech Connect

    Frazier, M.E.

    1989-05-01

    Cancer has a myriad of causes but, whatever the cause, the changes that result in neoplasia are usually genetic. Although not all DNA damage results in cancer, evidence implicates two broad classes of genes in carcinogenesis. The first class, oncogenes are genes that cause cancer. An oncogene results when there is increased and/or changed expression of the proto-oncogene. Oncogenes are dominant: when activated, they predominate over the activity of any normal alleles in the cell. Thus oncogenes act directly to cause cancer. The second class of genes associated with cancer are tumor-suppressing genes, which either code directly for, or control expression of a wide spectrum of tissue-specific differentiation antigens. Malignancy occurs in a specific cell type when expression of an appropriate tumor-suppressing gene is, homozygously, seriously distorted or completely lacking. Tumor suppressing genes also appear to regulate expression of a third, uncharacterized group of cancer-related genes that act in a recessive manner and are not expressed in the presence of the tumor-suppressing genes. We will first discuss oncogenes, then the tumor-suppressing genes. Experimental data will be used to illustrate key features of the carcinogenic process.

  7. CDC42 inhibition suppresses progression of incipient intestinal tumors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations in the APC or Beta-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer x...

  8. Mechanism of tumor Metastasis Suppression by the KAI1 Gene

    DTIC Science & Technology

    2005-02-01

    significantly reduced in breast tumor cells, particularly in cysteine, Ni2 +, N-Myc and PTEN ( Kokame et al., 1996; patients with lymph node or bone metastasis...SC, Hirota S, Hosobe S, Kokame K, Kato H and Miyata T. (1996). J. Biol. Chem., 271, Miura K, Saito K, Commes T, Hayashi S, Watabe M and 29659-29665

  9. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumor metastasis by suppressing neuropilin 1

    PubMed Central

    Li, Xin; Fan, Shengjun; Pan, Xueyang; Xiaokaiti, Yilixiati; Duan, Jianhui; Shi, Yundi; Pan, Yan; Tie, Lu; Wang, Xin; Li, Yuhua; Li, Xuejun

    2016-01-01

    Tumor metastasis is a major cause leading to the deaths of cancer patients. Nordihydroguaiaretic acid (NDGA) is a natural product that has been demonstrated to show therapeutic values in multiple diseases. In this study, we report that NDGA can inhibit cell migration and tumor metastasis via a novel mechanism. NDGA suppresses NRP1 function by downregulating its expression, which leads to attenuated cell motility, cell adhesion to ECM and FAK signaling in cancer cells. Moreover, due to its cross-cell type activity on NRP1 suppression, NDGA also impairs angiogenesis function of endothelial cells and fibronectin assembly by fibroblasts, both of which are critical to promote metastasis. Based on these comprehensive effects, NDGA effectively suppresses tumor metastasis in nude mice model. Our findings reveal a novel mechanism underlying the anti-metastasis function of NDGA and indicate the potential value of NDGA in NRP1 targeting therapy for selected subtypes of cancer. PMID:27863391

  10. Phloroglucinol Inhibits the Bioactivities of Endothelial Progenitor Cells and Suppresses Tumor Angiogenesis in LLC-Tumor-Bearing Mice

    PubMed Central

    Kwon, Yi-Hong; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Jun-Hee; Lee, Boo-Yong; Kwon, Sang-Mo

    2012-01-01

    Background There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45−/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. Conclusions/Significance These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis. PMID:22496756

  11. Systemic elevation of PTEN induces a tumor suppressive metabolic state

    PubMed Central

    Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C.J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo

    2012-01-01

    SUMMARY Decremental loss of PTEN results in cancer susceptibility and tumor progression. In turn this raises the possibility that PTEN elevation might be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with variably elevated PTEN expression levels, taking advantage of BAC (Bacterial Artificial Chromosome)-mediated transgenesis. Super-PTEN mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake, increased mitochondrial oxidative phosphorylation, and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and independent pathways, and negatively impacts two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect. PMID:22401813

  12. New insights into IL-12-mediated tumor suppression

    PubMed Central

    Tugues, S; Burkhard, S H; Ohs, I; Vrohlings, M; Nussbaum, K; vom Berg, J; Kulig, P; Becher, B

    2015-01-01

    During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects. PMID:25190142

  13. New insights into IL-12-mediated tumor suppression.

    PubMed

    Tugues, S; Burkhard, S H; Ohs, I; Vrohlings, M; Nussbaum, K; Vom Berg, J; Kulig, P; Becher, B

    2015-02-01

    During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.

  14. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β.

    PubMed

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy.

  15. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β

    PubMed Central

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E.; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy. PMID:26516371

  16. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression.

    PubMed

    Ostrand-Rosenberg, Suzanne; Sinha, Pratima; Beury, Daniel W; Clements, Virginia K

    2012-08-01

    The tumor microenvironment is a complex milieu of tumor and host cells. Host cells can include tumor-reactive T cells capable of killing tumor cells. However, more frequently the tumor and host components interact to generate a highly immune suppressive environment that frustrates T cell cytotoxicity and promotes tumor progression through a variety of immune and non-immune mechanisms. Myeloid-derived suppressor cells (MDSC) are a major host component contributing to the immune suppressive environment. In addition to their inherent immune suppressive function, MDSC amplify the immune suppressive activity of macrophages and dendritic cells via cross-talk. This article will review the cell-cell interactions used by MDSC to inhibit anti-tumor immunity and promote progression, and the role of inflammation in promoting cross-talk between MDSC and other cells in the tumor microenvironment.

  17. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1

    PubMed Central

    Tang, Zijian; Dai, Siyuan; He, Yishu; Doty, Rosalinda A.; Shultz, Leonard D.; Sampson, Stephen B.; Dai, Chengkai

    2015-01-01

    SUMMARY Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Herein we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor-suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state and, disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy. PMID:25679764

  18. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity

    PubMed Central

    Zhang, Huang-Ge; Kim, Helen; Liu, Cunren; Yu, Shaohua; Wang, Jianhua; Grizzle, William E.; Kimberly, Robert P.; Barnes, Stephen

    2007-01-01

    An important characteristic of tumors is that they at some point in their development overcome the surveillance of the immune system. Tumors secrete exosomes, multivesicular bodies containing a distinct set of proteins that can fuse with cells of the circulating immune system. Purified exosomes from TS/A breast cancer cells, but not non-exosomal fractions, inhibit (at concentrations of nanograms per ml protein) IL-2-induced natural killer (NK) cell cytotoxicity. The dietary polyphenol, curcumin (diferuloylmethane), partially reverses tumor exosome-mediated inhibition of natural killer cell activation, which is mediated through the impairment of the ubiquitin-proteasome system. Exposure of mouse breast tumor cells to curcumin causes a dose-dependent increase in ubiquitinated exosomal proteins compared to those in untreated TS/A breast tumor cells. Furthermore, exosomes isolated from tumor cells pretreated with curcumin have a much attenuated inhibition of IL-2 stimulated NK cell activation. Jak3-mediated activation of Stat5 is required for tumor cytotoxicity of IL-2 stimulated NK cells. TS/A tumor exosomes strongly inhibit activation of Stat5, whereas the tumor exosomes isolated from curcumin-pretreated tumor cells have a lowered potency for inhibition of IL-2 stimulated NK cell cytotoxicity. These data suggest that partial reversal of tumor exosome-mediated inhibition of NK cell tumor cytotoxicity may account for the anti-cancer properties curcumin. PMID:17555831

  19. ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila.

    PubMed

    Tognon, Emiliana; Wollscheid, Nadine; Cortese, Katia; Tacchetti, Carlo; Vaccari, Thomas

    2014-01-01

    Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.

  20. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  1. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells.

    PubMed

    Marigo, Ilaria; Dolcetti, Luigi; Serafini, Paolo; Zanovello, Paola; Bronte, Vincenzo

    2008-04-01

    Emerging evidence indicates that the Achilles' heel of cancer immunotherapies is often the complex interplay of tumor-derived factors and deviant host properties, which involve a wide range of immune elements in the lymphoid and myeloid compartments. Regulatory lymphocytes, tumor-conditioned myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, and dysfunctional and immature dendritic cells take part in a complex immunoregulatory network. Despite the fact that some mechanisms governing tumor-induced immune tolerance and suppression are starting to be better understood and their complexity dissected, little is known about the diachronic picture of immune tolerance. Based on observations of MDSCs, we present a time-structured and topologically consistent idea of tumor-dependent tolerance progression in tumor-bearing hosts.

  2. Folliculin Contributes to VHL Tumor Suppressing Activity in Renal Cancer through Regulation of Autophagy

    PubMed Central

    Kellner, Emily; Mikhaylova, Olga; Yi, Ying; Sartor, Maureen A.; Medvedovic, Mario; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2013-01-01

    Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy. PMID:23922894

  3. Triparanol suppresses human tumor growth in vitro and in vivo

    SciTech Connect

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  4. CDC42 inhibition suppresses progression of incipient intestinal tumors

    PubMed Central

    Sakamori, Ryotaro; Yu, Shiyan; Zhang, Xiao; Hoffman, Andrew; Sun, Jiaxin; Das, Soumyashree; Vedula, Pavan; Li, Guangxun; Fu, Jiang; Walker, Francesca; Yang, Chung S.; Yi, Zheng; Hsu, Wei; Yu, Da-Hai; Shen, Lanlan; Rodriguez, Alexis J.; Taketo, Makoto M.; Bonder, Edward M.; Verzi, Michael P.; Gao, Nan

    2014-01-01

    Mutations in the APC or β-catenin genes are well established initiators of colorectal cancer (CRC), yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacological approaches in mouse CRC and human CRC xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or β-catenin mutations. Similarly, human CRC with relatively higher levels of CDC42 activity were particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem-cell-enriched Rho family exchange factor Arhgef4. Our results suggest that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective CRC intervention. PMID:25113996

  5. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression.

    PubMed

    Funk, Laura C; Zasadil, Lauren M; Weaver, Beth A

    2016-12-19

    Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.

  6. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    PubMed

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  7. DDA suppresses angiogenesis and tumor growth of colorectal cancer in vivo through decreasing VEGFR2 signaling

    PubMed Central

    Huang, Shiu-Wen; Lien, Jin-Cherng; Kuo, Sheng-Chu; Huang, Tur-Fu

    2016-01-01

    As angiogenesis is required for tumor growth and metastasis, suppressing angiogenesis is a promising strategy in limiting tumor progression. Vascular endothelial growth factor (VEGF)-A, a critical pro-angiogenic factor, has thus become an attractive target for therapeutic interventions in cancer. In this study, we explored the underlying mechanisms of a novel anthraquinone derivative DDA in suppressing angiogenesis. DDA inhibited VEGF-A-induced proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs). DDA also reduced VEGF-A-induced microvessel sprouting from aortic rings ex vivo and suppressed neovascularization in vivo. VEGF-A-induced VEGFR1, VEGFR2, FAK, Akt, ERK1/2 or STAT3 phosphorylation was reduced in the presence of DDA. In addition, NRP-1 siRNA reduced VEGF-A's enhancing effects in VEGFR2, FAK and Akt phosphorylation and cell proliferation in HUVECs. DDA disrupted VEGF-A-induced complex formation between NRP-1 and VEGFR2. Furthermore, systemic administration of DDA was shown to suppress tumor angiogenesis and growth in in vivo mouse xenograft models. Taken together, we demonstrated in this study that DDA exhibits anti-angiogenic properties through suppressing VEGF-A signaling. These observations also suggest that DDA might be a potential drug candidate for developing anti-angiogenic agent in the field of cancer and angiogenesis-related diseases. PMID:27517319

  8. Patrinia scabiosaefolia inhibits colorectal cancer growth through suppression of tumor angiogenesis.

    PubMed

    Chen, Liwu; Liu, Liya; Ye, Ling; Shen, Aling; Chen, Youqin; Sferra, Thomas J; Peng, Jun

    2013-09-01

    Angiogenesis is an essential process for tumor development and metastasis, therefore inhibition of tumor angiogenesis has become a promising strategy for anticancer treatments. Patrinia scabiosaefolia, a well-known Oriental folk medicine, has been shown to be effective in the clinical treatment of gastrointestinal cancers. However, the precise mechanism of its tumoricidal activity remains largely unknown. Using a colorectal cancer (CRC) mouse xenograft model, the human colon carcinoma cell line HT-29 and human umbilical vein endothelial cells (HUVECs), in the present study we evaluated the effects of an ethanol extract of Patrinia scabiosaefolia (EEPS) on tumor angiogenesis in vivo and in vitro, and investigated the underlying molecular mechanisms. We found that EEPS treatment significantly reduced the tumor volume in CRC mice and decreased the intratumoral microvessel density in tumor tissues. In addition, EEPS inhibited several key processes of angiogenesis, including the proliferation, migration and tube formation of HUVECs. Moreover, EEPS treatment suppressed the expression of VEGF-A in CRC tumors and HT-29 cells. Collectively, our data suggest that Patrinia scabiosaefolia inhibits CRC growth likely via suppression of tumor angiogenesis.

  9. Aging, tumor suppression and cancer: High-wire act!

    SciTech Connect

    Campisi, Judith

    2004-08-15

    Evolutionary theory holds that aging is a consequence of the declining force of natural selection with age. We discuss here the evidence that among the causes of aging in complex multicellular organisms, such as mammals, is the antagonistically pleiotropic effects of the cellular responses that protect the organism from cancer. Cancer is relatively rare in young mammals, owing in large measure to the activity of tumor suppressor mechanisms. These mechanisms either protect the genome from damage and/or mutations, or they elicit cellular responses--apoptosis or senescence--that eliminate or prevent the proliferation of somatic cells at risk for neoplastic transformation.We focus here on the senescence response, reviewing its causes, regulation and effects. In addition, we describe recent data that support the idea that both senescence and apoptosis may indeed be the double-edged swords predicted by the evolutionary hypothesis of antagonistic pleiotropy--protecting organisms from cancer early in life, but promoting aging phenotypes, including late life cancer, in older organisms.

  10. IκB-α: At the crossroad between oncogenic and tumor-suppressive signals

    PubMed Central

    Morotti, Alessandro; Crivellaro, Sabrina; Panuzzo, Cristina; Carrà, Giovanna; Guerrasio, Angelo; Saglio, Giuseppe

    2017-01-01

    Nuclear factor κB (NF-κB) is an essential component of tumorigenesis and resistance to cancer treatments. NFKB inhibitor α (IκB-α) acts as a negative regulator of the classical NF-κB pathway through its ability to maintain the presence of NF-κB in the cytoplasm. However, IκB-α is also able to form a complex with tumor protein p53, promoting its inactivation. Recently, we demonstrated that IκB-α is able to mediate p53 nuclear exclusion and inactivation in chronic myeloid leukemia, indicating that IκB-α can modulate either oncogenic or tumor-suppressive functions, with important implications for cancer treatment. The present review describes the role of IκB-α in cancer pathogenesis, with particular attention to hematological cancers, and highlights the involvement of IκB-α in the regulation of p53 tumor-suppressive functions. PMID:28356925

  11. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells.

  12. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells.

    PubMed

    Zheng, Yisheng; Xu, Meng; Li, Xiao; Jia, Jinpeng; Fan, Kexing; Lai, Guoxiang

    2013-05-01

    Cimetidine, a histamine type-2 receptor antagonist, is known to inhibit the growth of several tumors in human and animals, however the mechanism of action underlying this effect remains largely unknown. Here, in the mice model of 3LL lung tumor, cimetidine showed significant inhibition of tumor growth. However, an in vitro study demonstrated that cimetidine showed no effect on proliferation, survival, migration and invasion of 3LL cells. We found that cimetidine reduced CD11b(+)Gr-1(+) myeloid derived-suppressive cell (MDSC) accumulation in spleen, blood and tumor tissue of tumor-bearing mice. In vitro coculture assay showed that cimetidine reversed MDSC-mediated T-cell suppression, and improved IFN-γ production. Further investigation demonstrated that the NO production and arginase I expression of MDSCs were reduced, and MDSCs prone to apoptosis by cimetidine treatment. However, MDSC differentiation was not affect by cimetidine. Importantly, although histamine H2 receptor was expressed in MDSC surface, histamine could not reverse the proapoptosis of cimetidine. Moreover, famotidine also did not have this capacity. We found that cimetidine could induce Fas and FasL expression in MDSC surface, and sequentially regulate caspase-dependent apoptosis pathway. Thus, these findings revealed a novel mechanism for cimetidine to inhibit tumor via modulation of MDSC apoptosis.

  13. Inhibition of mouse B16 melanoma by sodium butyrate correlated to tumor associated macrophages differentiation suppression

    PubMed Central

    Xiong, Fen; Mou, Yun-Zhu; Xiang, Xiao-Yan

    2015-01-01

    Objective: As one member of the histone deacetylase inhibitor (HDACi) family, Sodium butyrate (NaB) was found out that could be used as a differentiation inducer of much cancer cell. But its effects on tumor microenvironment cells are not well recognized. The goal of this research is to investigate the effect of NaB on B16 melanoma and analysis its relevant mechanism. Methods: We observed the effect of sodium butyrate on B16 melanoma in vivo and in vitro. MTT method was performed to detect cell apoptosis rate after treatment. Tumor associated macrophage infiltration condition was detected by flow cytometry. Western-blotting and immunohistochemical method were used to detect the expression of tumor associated macrophage cytokines. Results: A certain concentration of sodium butyrate could effectively inhibit B16 melanoma growth in vivo and in vitro, and this inhibition effects related to the suppression of tumor associated macrophage differentiation. At the same time we observed the relevant macrophage factors were down-regulated compared to the control. Conclusion: Sodium butyrate could effectively inhibit B16 melanoma growth through suppressing tumor associated macrophage proliferation and reduce relevant pro-tumor macrophage factors expression, which may help to promote the clinical study of melanoma epigenetic therapy. PMID:26064327

  14. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  15. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  16. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  17. Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression.

    PubMed

    Perri, Sabrina R; Nalbantoglu, Josephine; Annabi, Borhane; Koty, Zafiro; Lejeune, Laurence; François, Moïra; Di Falco, Marcos R; Béliveau, Richard; Galipeau, Jacques

    2005-09-15

    Angiostatin, a well-characterized angiostatic agent, is a proteolytic cleavage product of human plasminogen encompassing the first four kringle structures. The fifth kringle domain (K5) of human plasminogen is distinct from angiostatin and has been shown, on its own, to act as a potent endothelial cell inhibitor. We propose that tumor-targeted K5 cDNA expression may act as an effective therapeutic intervention as part of a cancer gene therapy strategy. In this study, we provide evidence that eukaryotically expressed His-tagged human K5 cDNA (hK5His) is exported extracellularly and maintains predicted disulfide bridging conformation in solution. Functionally, hK5His protein produced by retrovirally engineered human U87MG glioma cells suppresses in vitro migration of both human umbilical vein endothelial cells and human macrophages. Subcutaneous implantation of Matrigel-embedded hK5His-producing glioma cells in nonobese diabetic/severe combined immunodeficient mice reveals that hK5His induces a marked reduction in blood vessel formation and significantly suppresses the recruitment of tumor-infiltrating CD45+ Mac3+ Gr1- macrophages. Therapeutically, we show in a nude mouse orthotopic brain cancer model that tumor-targeted K5 expression is capable of effectively suppressing glioma growth and promotes significant long-term survival (>120 days) of test animals. These data suggest that plasminogen K5 acts as a novel two-pronged anticancer agent, mediating its inhibitory effect via its action on host-derived endothelial cells and tumor-associated macrophages, resulting in a potent, clinically relevant antitumor effect.

  18. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis

    PubMed Central

    Yang, M; Liu, J; Piao, C; Shao, J; Du, J

    2015-01-01

    Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell–cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1−/−) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1−/− macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression. PMID:26068788

  19. Thyroid hormone suppresses expression of stathmin and associated tumor growth in hepatocellular carcinoma

    PubMed Central

    Tseng, Yi-Hsin; Huang, Ya-Hui; Lin, Tzu-Kang; Wu, Sheng-Ming; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Chang, Wei-Chun; Chang, Ya-Ting; Chen, Wei-Jan; Lin, Kwang-Huei

    2016-01-01

    Stathmin (STMN1), a recognized oncoprotein upregulated in various solid tumors, promotes microtubule disassembly and modulates tumor growth and migration activity. However, the mechanisms underlying the genetic regulation of STMN1 have yet to be elucidated. In the current study, we report that thyroid hormone receptor (THR) expression is negatively correlated with STMN1 expression in a subset of clinical hepatocellular carcinoma (HCC) specimens. We further identified the STMN1 gene as a target of thyroid hormone (T3) in the HepG2 hepatoma cell line. An analysis of STMN1 expression profile and mechanism of transcriptional regulation revealed that T3 significantly suppressed STMN1 mRNA and protein expression, and further showed that THR directly targeted the STMN1 upstream element to regulate STMN1 transcriptional activity. Specific knockdown of STMN1 suppressed cell proliferation and xenograft tumor growth in mice. In addition, T3 regulation of cell growth arrest and cell cycle distribution were attenuated by overexpression of STMN1. Our results suggest that the oncogene STMN1 is transcriptionally downregulated by T3 in the liver. This T3-mediated suppression of STMN1 supports the theory that T3 plays an inhibitory role in HCC tumor growth, and suggests that the lack of normal THR function leads to elevated STMN1 expression and malignant growth. PMID:27934948

  20. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1

    SciTech Connect

    Zhou, Xin; Wei, Min; Wang, Wei

    2013-08-09

    Highlights: •miR-340 is downregulated in OS cell lines and tissues. •miR-340 suppresses OS cell proliferation, migration and invasion. •miR-340 suppresses tumor growth and metastasis of OS cells in nude mice. •ROCK1 is a target gene of miR-340. •ROCK1 is involved in miR-340-induced suppression of OS cell proliferation, migration and invasion. -- Abstract: MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.

  1. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    SciTech Connect

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-09-19

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth.

  2. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  3. Intratumoral injection of attenuated Salmonella vaccine can induce tumor microenvironmental shift from immune suppressive to immunogenic.

    PubMed

    Hong, Eun-Hye; Chang, Sun-Young; Lee, Bo-Ra; Pyun, A-Rim; Kim, Ji-Won; Kweon, Mi-Na; Ko, Hyun-Jeong

    2013-02-27

    Attenuated Salmonella vaccines show therapeutic anti-cancer effects, but the underlying mechanism has not been well investigated. In the current study, intratumoral (i.t.) injection of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine (RASV) significantly inhibited Her-2/neu-expressing tumor growth. Although depletion of CD8(+) cells in RASV-treated mice significantly restored tumor growth, the induction of Her-2/neu-specific cytotoxic T lymphocytes (CTLs) was not well correlated with the generation of the anti-tumor effect. Therefore, we hypothesized that RASV might induce a tumor microenvironmental shift, from immune suppressive to immunogenic, to reduce the suppressive force and finally elicit a successful anti-tumor response. We found that i.t. injection of RASV significantly increased the level of CD11b(+)Gr-1(+) myeloid cells identified as myeloid-derived suppressor cell (MDSC), but a significant portion of these cells were TNF-α-secreting Ly6-G(high) subsets, which can function as antitumor effector cells. We further investigated whether RASV can modulate immunosuppressive Treg cells, and CD4(+)CD25(+) Foxp3(+) Tregs was significantly reduced in RASV-treated mice. Thus, i.t. injection of RASV may offer a novel anti-cancer approach by eliciting transformation of immunosuppressive MDSCs into TNF-α-secreting neutrophils and reducing the generation of Treg cells, especially in the presence of tumor-specific CTLs. Collectively, these data will provide us an insight for the development of new anti-tumor approaches to overcome the immunosuppressive environment generated by tumors.

  4. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    SciTech Connect

    Morison, W.L.; Kelley, S.P.

    1985-02-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans.

  5. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR.

  6. Elucidating the Tumor-Suppressive Role of SLITs in Maintaining the Basal Cell Niche

    DTIC Science & Technology

    2011-10-01

    of both the glandular epithelium and vasculature and promotes metastasis formation. Int J Oncol. 2009;35(3):525–36. 10. Marlow R, Strickland P, Lee JS...organize tissue structure, including cells in the breast stem cell niche, and to generate the barrier between epithelium and stroma by secreting the...Macias H., Cardiff R.D., Sukumar S., Hinck. 2008. SLITs suppress tumor growth and microenvironment by silencing Sdf1/Cxcr4 within breast epithelium

  7. Role of GCNS in Estrogen Response, Tumor Suppression, and Breast Development in Mice

    DTIC Science & Technology

    2003-06-01

    SUBJECT TERMS 15. NUMBER OF PAGES Cancer biology, tumor suppression, chromatin, histone acetylation 9 1 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...Completed. We found that GCN5 can acetylate p53 in vitro. " Goal 3: Perform co-transfection experiments to determine if GCN5 augments p53...can acetylate p53 in vitro. "* Creation of mice that carry null alleles of p53 and Gcn5 in cis on chromosome 11, and characterization of double mutant

  8. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression.

    PubMed

    Wang, Shang-Jui; Li, Dawei; Ou, Yang; Jiang, Le; Chen, Yue; Zhao, Yingming; Gu, Wei

    2016-10-04

    Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53). Whereas the loss of K98 acetylation (p53(K98R)) alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p53(4KR): K98R+ 3KR[K117R+K161R+K162R]) completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p53(3KR), p53(4KR) is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p53(4KR) is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  9. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer.

    PubMed

    Shen, W; Chang, A; Wang, J; Zhou, W; Gao, R; Li, J; Xu, Y; Luo, X; Xiang, R; Luo, N; Stupack, D G

    2015-10-26

    TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53.

  10. Inhibition of DNA Methylation Suppresses Intestinal Tumor Organoids by Inducing an Anti-Viral Response.

    PubMed

    Saito, Yoshimasa; Nakaoka, Toshiaki; Sakai, Kasumi; Muramatsu, Toshihide; Toshimitsu, Kohta; Kimura, Masaki; Kanai, Takanori; Sato, Toshiro; Saito, Hidetsugu

    2016-05-04

    Recent studies have proposed that the major anti-tumor effect of DNA methylation inhibitors is induction of interferon-responsive genes via dsRNAs-containing endogenous retroviruses. Recently, a 3D culture system for stem cells known as organoid culture has been developed. Lgr5-positive stem cells form organoids that closely recapitulate the properties of original tissues. To investigate the effect of DNA demethylation on tumor organoids, we have established organoids from intestinal tumors of Apc(Min/+) (Min) mice and subjected them to 5-aza-2'-deoxycytidine (5-Aza-CdR) treatment and Dnmt1 knockdown. DNA demethylation induced by 5-Aza-CdR treatment and Dnmt1 knockdown significantly reduced the cell proliferation of the tumor organoids. Microarray analyses of the tumor organoids after 5-Aza-CdR treatment and Dnmt1 knockdown revealed that interferon-responsive genes were activated by DNA demethylation. Gene ontology and pathway analyses clearly demonstrated that these genes activated by DNA demethylation are involved in the anti-viral response. These findings indicate that DNA demethylation suppresses the proliferation of intestinal tumor organoids by inducing an anti-viral response including activation of interferon-responsive genes. Treatment with DNA methylation inhibitors to activate a growth-inhibiting immune response may be an effective therapeutic approach for colon cancers.

  11. 2DG suppresses the in vivo anti-tumor efficacy of erlotinib in HNSCC cells

    PubMed Central

    Sobhakumari, Arya; Orcutt, Kevin; Love-Homan, Laurie; Kowalski, Christopher; Parsons, Arlene; Knudson, C. Michael; Simons, Andrean L.

    2017-01-01

    Poor tumor response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a significant challenge for effective treatment of head and neck squamous cell carcinoma (HNSCC). Therefore, strategies that may increase tumor response to EGFR TKIs are warranted in order to improve HNSCC patient treatment and overall survival. HNSCC tumors are highly glycolytic and increased EGFR signaling has been found to promote glucose metabolism through various mechanisms. We have previously shown that inhibition of glycolysis with 2-deoxy-D-glucose (2DG) significantly enhanced the antitumor effects of cisplatin and radiation which are commonly used to treat HNSCC. The goal of the current studies is to determine if 2DG will enhance the anti-tumor activity of the EGFR TKI erlotinib in HNSCC. Erlotinib transiently suppressed glucose consumption accompanied by alterations in pyruvate kinase M2 (PKM2) expression. 2DG enhanced the cytotoxic effect of erlotinib in vitro but reversed the anti-tumor effect of erlotinib in vivo. 2DG altered the N-glycosylation status of EGFR and induced the endoplasmic reticulum (ER) stress markers CHOP and BiP in vitro. Additionally, the effects of 2DG+erlotinib on cytotoxicity and ER stress in vitro were reversed by mannose but not glucose or antioxidant enzymes. Lastly, the protective effect of 2DG on erlotinib-induced cytotoxicity in vivo was reversed by chloroquine. Altogether, 2DG suppressed the anti-tumor efficacy of erlotinib in a HNSCC xenograft mouse model which may be due to increased cytoprotective autophagy mediated by ER stress activation. PMID:27178822

  12. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases.

    PubMed

    Chow, Melvyn T; Sceneay, Jaclyn; Paget, Christophe; Wong, Christina S F; Duret, Helene; Tschopp, Jürg; Möller, Andreas; Smyth, Mark J

    2012-11-15

    The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.

  13. An uncleavable form of pro–scatter factor suppresses tumor growth and dissemination in mice

    PubMed Central

    Mazzone, Massimiliano; Basilico, Cristina; Cavassa, Silvia; Pennacchietti, Selma; Risio, Mauro; Naldini, Luigi; Comoglio, Paolo M.; Michieli, Paolo

    2004-01-01

    Scatter factor (SF), also known as hepatocyte growth factor, is ubiquitously present in the extracellular matrix of tissues in the form of an inactive precursor (pro-SF). In order to acquire biological activity, pro-SF must be cleaved by specific proteases present on the cell surface. The mature form of SF controls invasive cues in both physiological and pathological processes through activation of its receptor, the Met tyrosine kinase. By substituting a single amino acid in the proteolytic site, we engineered an unprocessable form of pro-SF (uncleavable SF). Using lentivirus vector technology, we achieved local or systemic delivery of uncleavable SF in mice. We provide evidence that (a) uncleavable SF inhibits both protease-mediated pro-SF conversion and active SF–induced Met activation; (b) local expression of uncleavable SF in tumors suppresses tumor growth, impairs tumor angiogenesis, and prevents metastatic dissemination; and (c) systemic expression of uncleavable SF dramatically inhibits the growth of transplanted tumors and abolishes the formation of spontaneous metastases without perturbing vital physiological functions. These data show that proteolytic activation of pro-SF is a limiting step in tumor progression, thus suggesting a new strategy for the treatment or prevention of the malignant conversion of neoplastic lesions. PMID:15545993

  14. An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice.

    PubMed

    Mazzone, Massimiliano; Basilico, Cristina; Cavassa, Silvia; Pennacchietti, Selma; Risio, Mauro; Naldini, Luigi; Comoglio, Paolo M; Michieli, Paolo

    2004-11-01

    Scatter factor (SF), also known as hepatocyte growth factor, is ubiquitously present in the extracellular matrix of tissues in the form of an inactive precursor (pro-SF). In order to acquire biological activity, pro-SF must be cleaved by specific proteases present on the cell surface. The mature form of SF controls invasive cues in both physiological and pathological processes through activation of its receptor, the Met tyrosine kinase. By substituting a single amino acid in the proteolytic site, we engineered an unprocessable form of pro-SF (uncleavable SF). Using lentivirus vector technology, we achieved local or systemic delivery of uncleavable SF in mice. We provide evidence that (a) uncleavable SF inhibits both protease-mediated pro-SF conversion and active SF-induced Met activation; (b) local expression of uncleavable SF in tumors suppresses tumor growth, impairs tumor angiogenesis, and prevents metastatic dissemination; and (c) systemic expression of uncleavable SF dramatically inhibits the growth of transplanted tumors and abolishes the formation of spontaneous metastases without perturbing vital physiological functions. These data show that proteolytic activation of pro-SF is a limiting step in tumor progression, thus suggesting a new strategy for the treatment or prevention of the malignant conversion of neoplastic lesions.

  15. Huaier extract suppresses breast cancer via regulating tumor-associated macrophages

    PubMed Central

    Li, Yaming; Qi, Wenwen; Song, Xiaojin; Lv, Shangge; Zhang, Hanwen; Yang, Qifeng

    2016-01-01

    Macrophages in tumor microenvironment are mostly M2-polarized - and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). Here, we examined the regulatory effects of Huaier extract on TAMs using RAW264.7 murine macrophage cell line. Our data demonstrated that Huaier extract could inhibit the infiltration of macrophages into tumor microenvironment in a dose-dependent manner. By performing RT-PCR, immunofluorescence and phagocytosis assay, we were able to find that Huaier extract could regulate the polarization of macrophages, with decreased M2-polarization and increased phagocytosis of RAW264.7 cells. Moreover, we identified that Huaier extract could suppress macrophages-induced angiogenesis by using HUVEC migration assay, tube formation and chorioallantoic membrane assay. Additionally, western blotting showed decreased expression of MMP2, MMP9 and VEGF with the use of Huaier extract. Finally, we found that Huaier extract could inhibit M2-macrophages infiltration and angiogenesis through treating 4T1 tumor bearing mice with Huaier extract. Our study revealed a novel mechanism of the anti-tumor effect of Huaier extract which inhibited angiogenesis by targeting TAMs. These findings provided that Huaier was a promising drug for clinical treatment of breast cancer. PMID:26831282

  16. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis

    PubMed Central

    Lebrun, Jean-Jacques

    2012-01-01

    The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects. PMID:27340590

  17. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells.

    PubMed

    Sun, Rui; Luo, Jing; Li, Dong; Shu, Yu; Luo, Chao; Wang, Shan-Shan; Qin, Jian; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-30

    In tumor-bearing state, the function of neutrophils is converted from tumor-suppressing to tumor-promoting. Here we report that priming with IFN-γ and TNF-α could convert the potential of neutrophils from tumor-promoting to tumor-suppressing. The neutrophils with protumor potential have not lost their responsiveness to IFN-γ and TNF-α. After priming with IFN-γ and TNF-α, the potential of the neutrophils to express Bv8 and Mmp9 genes was reduced. Conversely, the tumor-promotional neutrophils recovered the expression of Rab27a and Trail, resumed the activation levels of PI3K and p38 MAPK pathways in response to stimuli, and expressed higher levels of IL-18 and NK-activating ligands such as RAE-1, MULT-1, and H60. Therefore, the anti-tumor function of the neutrophils was augmented, including the cytotoxicity to tumor cells, the capability of degranulation, and the capacity to activate NK cells. Since the function of NK cells is impaired in tumor-bearing state, the administration of normal NK cells could significantly augment the efficiency of tumor therapy based on neutrophil priming. These findings highlight the reversibility of neutrophil function in tumor-bearing state, and suggest that neutrophil priming by IFN-γ/TNF-α might be a potential approach to eliminate residual tumor cells in comprehensive strategy for tumor therapy.

  18. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    PubMed

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21.

  19. Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis.

    PubMed

    Zhao, Helong; Ahirwar, Dinesh K; Oghumu, Steve; Wilkie, Tasha; Powell, Catherine A; Nasser, Mohd W; Satoskar, Abhay R; Li, Dean Y; Ganju, Ramesh K

    2016-02-01

    Targeting tumor angiogenesis is a promising alternative strategy for improvement of breast cancer therapy. Robo4 (roundabout homolog 4) signaling has been shown to protect endothelial integrity during sepsis shock and arthritis, and inhibit Vascular Endothelial Growth Factor (VEGF) signaling during pathological angiogenesis of retinopathy, which indicates that Robo4 might be a potential target for angiogenesis in breast cancer. In this study, we used immune competent Robo4 knockout mouse model to show that endothelial Robo4 is important for suppressing breast cancer growth and metastasis. And this effect does not involve the function of Robo4 on hematopoietic stem cells. Robo4 inhibits breast cancer growth and metastasis by regulating tumor angiogenesis, endothelial leakage and tight junction protein zonula occludens protein-1 (ZO-1) downregulation. Treatment with SecinH3, a small molecule drug which deactivates ARF6 downstream of Robo4, can enhance Robo4 signaling and thus inhibit breast cancer growth and metastasis. SecinH3 mediated its effect by reducing tumor angiogenesis rather than directly affecting cancer cell proliferation. In conclusion, endothelial Robo4 signaling is important for suppressing breast cancer growth and metastasis, and it can be targeted (enhanced) by administrating a small molecular drug.

  20. Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition

    PubMed Central

    Cai, Wen-Ke; Yang, Yong-Xiang; Sun, Chao; Zhang, Zhuo; Xu, Yu-Qiao; Chang, Ting; Li, Zhu-Yi

    2015-01-01

    Histamine receptor 3 (H3R) is expressed in various tumors and correlated with malignancy and tumor proliferation. However, the role of H3R in tumor invasion and epithelial to mesenchymal transition (EMT) remains unknown. Here, we explored the H3R in the highly invasive glioblastoma (GBM) and U87MG cells. We found that H3R mRNA and protein levels were up-regulated in the GBM and glioma cell lines compared to normal brain tissue and astrocytes. In U87MG cell line, inhibition of H3R by siRNA or the antagonist ciproxifan (CPX) suppressed proliferation, invasiveness, and the expression of EMT activators (Snail, Slug and Twist). In addition, expression of epithelial markers (E-cadherin and ZO-1) was up-regulated and expression of mesenchymal markers (vimentin and N-cadherin) was down-regulated in vitro and in vivo in a xenograft model. In addition, we also showed that inhibition of H3R by siRNA or CPX inactivated the PI3K/Akt and MEK/ERK signaling pathways, while inhibition of Akt or ERK activity with antagonists or siRNAs suppressed H3R agonist (R)-(α)-(−)- methylhistamine dihydrobromide (RAMH) mediated invasion and reorganization of cadherin-household. In conclusion, overexpression of H3R is associated with glioma progression. Inhibition of H3R leads to suppressed invasion and EMT of GBM by inactivating the PI3K/Akt and MEK/ERK pathways in gliomas. PMID:25940798

  1. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy.

    PubMed

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun

    2016-01-01

    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  2. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    SciTech Connect

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-03-20

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity. Using p53{sup -/-} MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21{sup Cip1} accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  3. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer

    PubMed Central

    Shen, W; Chang, A; Wang, J; Zhou, W; Gao, R; Li, J; Xu, Y; Luo, X; Xiang, R; Luo, N; Stupack, D G

    2015-01-01

    TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53. PMID:26501855

  4. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    PubMed Central

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC. PMID:27824900

  5. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth

    PubMed Central

    Yang, Ming; Yu, Tao; Wang, Ying-Ying; Lai, Samuel K.; Zeng, Qi; Miao, Bolong; Tang, Benjamin C.; Simons, Brian W.; Ensign, Laura; Liu, Guanshu; Chan, Kannie W. Y.; Juang, Chih-Yin; Mert, Olcay; Wood, Joseph; Fu, Jie; McMahon, Michael T.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early stage cervical cancer. We hypothesize drug-loaded nanoparticles must rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract to effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner. We develop paclitaxel-loaded nanoparticles, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. We further employ a mouse model with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles , or CP) and similar particles coated with Pluronic® F127 (mucus-penetrating particles , or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared to free paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate for the first time the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface. PMID:24339398

  6. Tumor promoting and suppressive roles of autophagy in the same mouse model of BRAFV600E-driven lung cancer

    PubMed Central

    Chen, Song; Guan, Jun-Lin

    2013-01-01

    Summary Although a role of autophagy in cancer development and progression has received increasing appreciation in recent years, there are still significant uncertainty and conflicting results regarding its tumor suppressive and promoting functions, and more importantly a lack of understanding of mechanisms underlying these opposing activities. The work presented here by Strohecker and colleagues uses an innovative approach to address these challenges by examining the effects of inactivating the key autophagy gene Atg7 at different stages of oncogenic development in a BRAFV600E-driven mouse lung cancer model. The authors show that autophagy blockage accelerated tumor development initially, but suppressed tumor progression in later stages, converting adenomas to oncocytomas and increasing mouse survival. Importantly, they identify a critical role of glutamine dependency in the suppression of BRAFV600E-induced cancer, thus revealing an important mechanism by which autophagy may promote tumor progression in different cellular contexts. PMID:24203955

  7. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression.

    PubMed

    Haile, Samuel T; Dalal, Sonia P; Clements, Virginia; Tamada, Koji; Ostrand-Rosenberg, Suzanne

    2013-09-01

    Many tumor cells escape anti-tumor immunity through their expression of programmed death ligand-1 (PDL1 or B7-H1), which interacts with T cell-expressed PD1 and results in T cell apoptosis. We previously reported that transfection of human tumor cells with a membrane-bound form of the human costimulatory molecule CD80 prevented PD1 binding and restored T cell activation. We now report that a membrane-bound form of murine CD80 similarly reduces PDL1-PD1-mediated suppression by mouse tumor cells and that a soluble protein consisting of the extracellular domains of human or mouse CD80 fused to the Fc domain of IgG1 (CD80-Fc) overcomes PDL1-mediated suppression by human and mouse tumor cells, respectively. T cell activation experiments with human and mouse tumor cells indicate that CD80-Fc facilitates T cell activation by binding to PDL1 to inhibit PDL1-PD1 interactions and by costimulating through CD28. CD80-Fc is more effective in preventing PD1-PDL1-mediated suppression and restoring T cell activation compared with treatment with mAb to either PD1 or PDL1. These studies identify CD80-Fc as an alternative and potentially more efficacious therapeutic agent for overcoming PDL1-induced immune suppression and facilitating tumor-specific immunity.

  8. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity.

    PubMed

    Zhang, S; Qi, Q; Chan, C B; Zhou, W; Chen, J; Luo, H R; Appin, C; Brat, D J; Ye, K

    2016-01-01

    The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.

  9. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree.

    PubMed Central

    Pascoe, L; Jeunemaitre, X; Lebrethon, M C; Curnow, K M; Gomez-Sanchez, C E; Gasc, J M; Saez, J M; Corvol, P

    1995-01-01

    Glucocorticoid-suppressible hyperaldosteronism is a dominantly inherited form of hypertension believed to be caused by the presence of a hybrid CYP11B1/CYP11B2 gene which has arisen from an unequal crossing over between the two CYP11B genes in a previous meiosis. We have studied a French pedigree with seven affected individuals in which two affected individuals also have adrenal tumors and two others have micronodular adrenal hyperplasia. One of the adrenal tumors and the surrounding adrenal tissue has been removed, giving a rare opportunity to study the regulation and action of the hybrid gene causing the disease. The hybrid CYP11B gene was demonstrated to be expressed at higher levels than either CYP11B1 or CYP11B2 in the cortex of the adrenal by RT-PCR and Northern blot analysis. In situ hybridization showed that both CYP11B1 and the hybrid gene were expressed in all three zones of the cortex. In cell culture experiments hybrid gene expression was stimulated by ACTH leading to increased production of aldosterone and the hybrid steroids characteristic of glucocorticoid-suppressible hyperaldosteronism. The genetic basis of the adrenal pathologies in this family is not known but may be related to the duplication causing the hyperaldosteronism. Images PMID:7593610

  10. PKK suppresses tumor growth and is decreased in squamous cell carcinoma of the skin.

    PubMed

    Poligone, Brian; Gilmore, Elaine S; Alexander, Carolina V; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif F; Pentland, Alice P; Brown, Marc D; Chen, Luojing

    2015-03-01

    Non-melanoma skin cancer represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a subtype of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the protein kinase C-associated kinase (PKK), which is also known as the receptor-interacting protein kinase 4, as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared with normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. The use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a marked increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of inhibitor of NF-κB kinase function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments.

  11. PKK Suppresses Tumor Growth and is Decreased in Squamous Cell Carcinoma of the Skin

    PubMed Central

    Poligone, Brian; Gilmore, Elaine S.; Alexander, Carolina; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif; Pentland, Alice P.; Brown, Marc; Chen, Luojing

    2014-01-01

    Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also known as the Receptor-Interacting Protein Kinase 4 (RIPK4), as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared to normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. Use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a dramatic increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of IKK function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments. PMID:25285922

  12. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression.

    PubMed

    Simon, Priscilla S; Bardhan, Kankana; Chen, May R; Paschall, Amy V; Lu, Chunwan; Bollag, Roni J; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L; Pollock, Raphael E; Liu, Kebin

    2016-04-26

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression.

  13. Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats.

    PubMed

    Morita, Reiko; Shimamoto, Keisuke; Ishii, Yuji; Kuwata, Kazunori; Ogawa, Bun-ichiro; Imaoka, Masako; Hayashi, Shim-mo; Suzuki, Kazuhiko; Shibutani, Makoto; Mitsumori, Kunitoshi

    2011-11-01

    To investigate the effect of enzymatically modified isoquercitrin (EMIQ) on hepatocellular tumor promotion induced by phenobarbital (PB), male rats were administered a single intraperitoneal injection of 200 mg/kg N-diethylnitrosamine (DEN) and then fed with a diet containing PB (500 ppm) for 8 weeks, with or without EMIQ (2,000 ppm) in the drinking water. One week after PB administration, rats underwent a two-thirds partial hepatectomy. The PB-induced increase in the number and area of glutathione S-transferase placental form-positive foci and the proliferating cell nuclear antigen-positive ratio was significantly suppressed by EMIQ. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in mRNA expression levels of Cyp2b2 and Mrp2 in the DEN-PB and DEN-PB-EMIQ groups compared with the DEN-alone group, while the level of Mrp2 decreased in the DEN-PB-EMIQ group compared with the DEN-PB group. There were no significant changes in microsomal reactive oxygen species (ROS) production and oxidative stress markers between the DEN-PB and DEN-PB-EMIQ groups. Immunohistochemically, the constitutive active/androstane receptor (CAR) in the DEN-PB group was clearly localized in the nuclei, but its immunoreactive intensity was decreased in the DEN-PB-EMIQ group. These results indicate that EMIQ suppressed the liver tumor-promoting activity of PB by inhibiting nuclear translocation of CAR, and not by suppression of oxidative stress.

  14. Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80.

    PubMed

    Haile, Samuel T; Bosch, Jacobus J; Agu, Nnenna I; Zeender, Annette M; Somasundaram, Preethi; Srivastava, Minu K; Britting, Sabine; Wolf, Julie B; Ksander, Bruce R; Ostrand-Rosenberg, Suzanne

    2011-06-15

    Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.

  15. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    PubMed

    Yao, Xin; Jennings, Scott; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Davis, Mya; Chen, Renwei; Davenport, Ian; Biliran, Hector

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

  16. DAC can restore expression of NALP1 to suppress tumor growth in colon cancer.

    PubMed

    Chen, C; Wang, B; Sun, J; Na, H; Chen, Z; Zhu, Z; Yan, L; Ren, S; Zuo, Y

    2015-01-22

    Despite recent progress in the identification of genetic and molecular alternations in colorectal carcinoma, the precise molecular pathogenesis remains unclear. NALP1 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 1) is a member of the nucleotide-binding oligomerization domain-like receptor family of proteins that are key organization proteins in the inflammasome. It is reported that NALP1 plays a central role in cell apoptosis, pyroptosis, inflammatory reactions and autoimmune diseases. DAC (5-aza-2-deoxycytidine) is an antitumor drug useful to lung cancer, myelodysplastic disorders, myelodysplasia and acute myeloid leukemia. In this study, we examined the expression of NALP1 in human normal and cancerous colon tissues using tissue microarray, western blot and quantitative real-time PCR and we measured the expression of NALP1 in three kinds of colon cancer cell lines and animal models before and after treatment with DAC. Furthermore, we examined the treatment effects of DAC on colon cancer in our animal model. Our data indicate that NALP1 is expressed low in human colorectal tumoral tissues relative to paratumoral tissues and was associated with the survival and tumor metastasis of patients. The expression of NALP1 increased after treatment with DAC both in vitro and in vivo. Furthermore, DAC suppressed the growth of colon cancer and increased lifespan in mouse model. Therefore, we conclude that NALP1 is expressed low in colon cancer and associated with the survival and tumor metastasis of patients, and treatment with DAC can restore NALP1 levels to suppress the growth of colon cancer.

  17. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  18. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence.

    PubMed

    Ye, Jian; Ma, Chunling; Hsueh, Eddy C; Eickhoff, Christopher S; Zhang, Yanping; Varvares, Mark A; Hoft, Daniel F; Peng, Guangyong

    2013-03-01

    Fundamentally understanding the suppressive mechanisms used by different subsets of tumor-infiltrating regulatory T (Treg) cells is critical for the development of effective strategies for antitumor immunotherapy. γδ Treg cells have recently been identified in human diseases including cancer. However, the suppressive mechanisms and functional regulations of this new subset of unconventional Treg cells are largely unknown. In the current studies, we explored the suppressive mechanism(s) used by breast tumor-derived γδ Treg cells on innate and adaptive immunity. We found that γδ Treg cells induced immunosenescence in the targeted naive and effector T cells, as well as dendritic cells (DCs). Furthermore, senescent T cells and DCs induced by γδ Treg cells had altered phenotypes and impaired functions and developed potent suppressive activities, further amplifying the immunosuppression mediated by γδ Treg cells. In addition, we demonstrated that manipulation of TLR8 signaling in γδ Treg cells can block γδ Treg-induced conversion of T cells and DCs into senescent cells in vitro and in vivo. Our studies identify the novel suppressive mechanism mediated by tumor-derived γδ Treg cells on innate and adaptive immunity, which should be critical for the development of strong and innovative approaches to reverse the tumor-suppressive microenvironment and improve effects of immunotherapy.

  19. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  20. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer

    PubMed Central

    Kusmartsev, Sergei; Gabrilovich, Dmitry I.

    2006-01-01

    It is well established that cancers affect differentiation of dendritic cells and promote systemic expansion of immune suppressive immature myeloid cells. This phenomenon may represent a mechanism of tumor escape from immune attack and could have significant impact on tumor progression. In this review we discuss the role of different tumor-derived factors, which were implicated in abnormal myeloid cell differentiation. The role of reactive oxygen species as well as JAK/STAT signaling in mechanisms of the effects of tumor-derived factors on myeloid cells is also discussed. PMID:16983515

  1. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer.

    PubMed

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2006-09-01

    It is well established that cancers affect differentiation of dendritic cells and promote systemic expansion of immune suppressive immature myeloid cells. This phenomenon may represent a mechanism of tumor escape from immune attack and could have significant impact on tumor progression. In this review we discuss the role of different tumor-derived factors, which were implicated in abnormal myeloid cell differentiation. The role of reactive oxygen species as well as JAK/STAT signaling in mechanisms of the effects of tumor-derived factors on myeloid cells is also discussed.

  2. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    PubMed Central

    2012-01-01

    Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME), inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE) cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE) cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P < 0.01). Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK pathway

  3. The Tumor Suppressive Effects of HPP1 Are Mediated Through JAK-STAT-Interferon Signaling Pathways

    PubMed Central

    Hernandez, Jonathan M.; Elahi, Abul; Clark, Whalen; Humphries, Leigh Ann; Wang, Jian; Achille, Alex; Seto, Ed

    2015-01-01

    HPP1, a novel tumor suppressive epidermal growth factor (EGF)-like ligand, mediates its effects through signal transducer and activators of transcription (STAT) activation. We previously demonstrated the importance of STAT1 activation for HPP1 function; however the contribution of STAT2 remains unclear. We sought to delineate the components of JAK-STAT-interferon (IFN) signaling specifically associated with HPP1s biological effects. Using stable HPP1-HCT116 transfectants, expression analyses were performed by polymerase chain reaction (PCR)/western blotting while expression knockdowns were achieved using siRNA. Growth parameters evaluated included proliferation, cell cycle distribution, and anchorage-independent growth. STAT dimerization, translocation, and DNA binding were examined by reporter assays, fluorescent microscopy, and chromatin immunoprecipitation (ChIP), respectively. Forced expression of HPP1 in colon cancer cell lines results in the upregulation of total and activated levels of STAT2. We have also determined that JAK1 and JAK2 are activated in response to HPP1 overexpression, and are necessary for subsequent STAT activation. Overexpression of HPP1 was associated with significant increases in STAT1:STAT1 (p=0.007) and STAT1:STAT2 (p=0.036) dimer formation, as well as subsequent nuclear translocation. By ChIP, binding of activated STAT1 and STAT2 to the interferon-signaling regulatory element promoter sites of the selected genes, protein kinase RNA-activated (PKR), IFI44, and OAS1 was demonstrated. STAT2 knockdown resulted in partial abrogation of HPP1s growth suppressive activity with increased proliferation (p<0.0001), reduced G1/G0 phase cell cycle fraction, and a restoration of growth potential in soft agar (p<0.01). Presumably as a consequence of upregulation of IFN signaling elements, HPP1 overexpression resulted in an acquisition of exogenous IFN sensitivity. Physiologic doses of IFN-α resulted in a significant reduction in proliferation (p<0

  4. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity.

    PubMed

    Faraji, Farhoud; Pang, Yanli; Walker, Renard C; Nieves Borges, Rosan; Yang, Li; Hunter, Kent W

    2012-09-01

    Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell-mediated immunity, which was partially phenocopied by depleting CD8(+) T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors.

  5. Investigating the Expression of Oncogenic and Tumor Suppressive MicroRNA in DLBCL.

    PubMed

    Handal, Brian; Enlow, Rossanna; Lara, Daniel; Bailey, Mark; Vega, Francisco; Hu, Peter; Lennon, Alan

    2013-01-01

    Diffuse Large B-cell Lymphoma (DLBCL) is the most common form of lymphoma, accounting for 40 percent of newly diagnosed cases each year. DLBCL is an aggressive abnormal growth of tissue characterized by the accumulation of abnormal B-lymphocytes in the lymphatics of affected individuals. The goal of this study was to analyze microRNA (miRNA) as an alternative method of diagnosis and treatment for patients affected with the observed cancer. MiRNAs are small, non-coding, endogenous RNA that control gene expression at the post-transcriptional level. Emerging evidence suggests that miRNA-mediated gene regulation has a functional role in cancer and could prove to be crucial targets for therapeutic intervention. Here, we provide a quantitative study on the expression of a diverse class of oncogenic and tumor suppressive miRNA that have shown to regulate oncoproteins involved in differentiation, proliferation, and/or apoptosis.

  6. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression.

    PubMed

    Kong, Ruirui; Yi, Fengshuang; Wen, Pushuai; Liu, Jianghong; Chen, Xiaoping; Ren, Jinqi; Li, Xiaofei; Shang, Yulong; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Zhu, Li; Feng, Wei; Wu, Jane Y

    2015-11-03

    Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.

  7. MicroRNA-187 exerts tumor-suppressing functions in osteosarcoma by targeting ZEB2

    PubMed Central

    Fei, Dan; Zhao, Kunchi; Yuan, Hongping; Xing, Jie; Zhao, Dongxu

    2016-01-01

    MicroRNA-187 (miR-187) has been reported to be involved in the occurrence and development of several types of cancers; however, a role for miR-187 in osteosarcoma (OS) has not yet been reported. Here, miR-187 was found to be significantly downregulated in OS cell lines and tissue samples, and decreased miR-187 expression was shown to be correlated closely with the TNM stage and lymph node metastasis. miR-187 overexpression suppressed OS cell proliferation, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT). Mechanically, zinc finger E-box binding homeobox 2 (ZEB2) was shown to serve as a direct target of miR-187 in OS cells and the overexpression of ZEB2 rescued the miR-187-induced suppression of proliferation, colony formation, migration, and invasion in OS cells. In clinical OS specimens, ZEB2 expression levels were elevated and were inversely correlated with miR-187 expression. These results suggest that miR-187 functions as a tumor suppressor in OS, partially by targeting ZEB2, and that miR-187 can serve as a promising candidate for OS. PMID:28042505

  8. Kisspeptins (KiSS-1): essential players in suppressing tumor metastasis.

    PubMed

    Prabhu, Venugopal Vinod; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekharan

    2013-01-01

    Kisspeptins (KPs) encoded by the KiSS-1 gene are C-terminally amidated peptide products, including KP- 10, KP-13, KP-14 and KP-54, which are endogenous agonists for the G-protein coupled receptor-54 (GPR54). Functional analyses have demonstrated fundamental roles of KiSS-1 in whole body homeostasis including sexual differentiation of brain, action on sex steroids and metabolic regulation of fertility essential for human puberty and maintenance of adult reproduction. In addition, intensive recent investigations have provided substantial evidence suggesting roles of Kisspeptin signalling via its receptor GPR54 in the suppression of metastasis with a variety of cancers. The present review highlights the latest studies regarding the role of Kisspeptins and the KiSS-1 gene in tumor progression and also suggests targeting the KiSS-1/GPR54 system may represent a novel therapeutic approach for cancers. Further investigations are essential to elucidate the complex pathways regulated by the Kisspeptins and how these pathways might be involved in the suppression of metastasis across a range of cancers.

  9. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis.

    PubMed

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang

    2004-11-01

    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  10. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis

    PubMed Central

    Ro, Seung-Hyun; Xue, Xiang; Ramakrishnan, Sadeesh K; Cho, Chun-Seok; Namkoong, Sim; Jang, Insook; Semple, Ian A; Ho, Allison; Park, Hwan-Woo; Shah, Yatrik M; Lee, Jun Hee

    2016-01-01

    The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53’s control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis. DOI: http://dx.doi.org/10.7554/eLife.12204.001 PMID:26913956

  11. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  12. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    PubMed

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  13. NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma.

    PubMed

    Zhai, Z; Liu, W; Kaur, M; Luo, Y; Domenico, J; Samson, J M; Shellman, Y G; Norris, D A; Dinarello, C A; Spritz, R A; Fujita, M

    2017-03-06

    Inflammasomes are mediators of inflammation, and constitutively activated NLRP3 inflammasomes have been linked to interleukin-1β (IL-1β)-mediated tumorigenesis in human melanoma. Whereas NLRP3 regulation of caspase-1 activation requires the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), caspase-1 activation by another danger-signaling sensor NLRP1 does not require ASC because NLRP1 contains a C-terminal CARD domain that facilitates direct caspase-1 activation via CARD-CARD interaction. We hypothesized that NLRP1 has additional biological activities besides IL-1β maturation and investigated its role in melanoma tumorigenesis. NLRP1 expression in melanoma was confirmed by analysis of 216 melanoma tumors and 13 human melanoma cell lines. Unlike monocytic THP-1 cells with prominent nuclear localization of NLRP1, melanoma cells expressed NLRP1 mainly in the cytoplasm. Knocking down NLRP1 revealed a tumor-promoting property of NLRP1 both in vitro and in vivo. Mechanistic studies showed that caspase-1 activity, IL-1β production, IL-1β secretion and nuclear factor-kB activity were reduced by knocking down of NLRP1 in human metastatic melanoma cell lines 1205Lu and HS294T, indicating that NLRP1 inflammasomes are active in metastatic melanoma. However, unlike previous reports showing that NLRP1 enhances pyroptosis in macrophages, NLRP1 in melanoma behaved differently in the context of cell death. Knocking down NLRP1 increased caspase-2, -9 and -3/7 activities and promoted apoptosis in human melanoma cells. Immunoprecipitation revealed interaction of NLRP1 with CARD-containing caspase-2 and -9, whereas NLRP3 lacking a CARD motif did not interact with the caspases. Consistent with these findings, NLRP1 activation but not NLRP3 activation reduced caspase-2, -9 and -3/7 activities and provided protection against apoptosis in human melanoma cells, suggesting a suppressive role of NLRP1 in caspase-3/7 activation

  14. Tumor-suppressive effects of natural-type interferon-β through CXCL10 in melanoma

    SciTech Connect

    Kobayashi, Hikaru; Nobeyama, Yoshimasa Nakagawa, Hidemi

    2015-08-21

    Introduction: Type 1 interferon is in widespread use as adjuvant therapy to inhibit melanoma progression. Considering the tumor-suppressive effects of local administration of interferon-β (IFN-β) on lymphatic metastasis, the present study was conducted to identify melanoma-suppressive molecules that are up-regulated by IFN-β treatment of lymphatic endothelial cells. Materials and methods: Lymphatic endothelial cells, fibroblasts, and melanoma cells were treated with natural-type IFN-β, and melanoma cells were treated with CXCL10. Genome-wide oligonucleotide microarray analysis was performed using lymphatic endothelial cells with or without IFN-β treatment. Quantitative real-time reverse transcription-PCR and an enzyme-linked immunosorbent assay were performed to examine CXCL10 expression. A proliferation assay was performed to examine the effects of IFN-β and CXCL10 in melanoma cells. Results: Genome-wide microarray analyses detected CXCL10 as a gene encoding a secretory protein that was up-regulated by IFN-β in lymphatic endothelial cells. IFN-β treatment significantly induced CXCL10 in dermal lymphatic endothelial cells and melanoma cells that are highly sensitive to IFN-β. CXCL10 reduced melanoma cell proliferation in IFN-β-sensitive cells as well as resistant cells. Melanoma cells in which CXCL10 was knocked down were sensitive to IFN-β. CXCR3-B, which encodes the CXCL10 receptor, was up-regulated in melanoma cells with high sensitivity to IFN-β and down-regulated in melanoma cells with medium to low sensitivity. Conclusions: Our data suggest that IFN-β suppresses proliferation and metastasis from the local lymphatic system and melanoma cells via CXCL10. Down-regulation of CXCR3-B by IFN-β may be associated with resistance to IFN-β. - Highlights: • We search melanoma-suppressive molecules induced by IFN-β. • IFN-β induces a high amount of CXCL10 from lymphatic endothelial cells. • CXCL10 induction level in melanoma cells is correlated

  15. ‘Obligate’ anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice

    PubMed Central

    Li, Chang-Xian; Yu, Bin; Shi, Lei; Geng, Wei; Lin, Qiu-Bin; Ling, Chang-Chun; Yang, Mei; Ng, Kevin T. P.; Huang, Jian-Dong; Man, Kwan

    2017-01-01

    The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed ‘obligate’ anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro, MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death. PMID:28123538

  16. hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip

    SciTech Connect

    Shin, Ki-Hyuk Kim, Reuben H.; Kim, Roy H.; Kang, Mo K.; Park, No-Hee

    2008-08-08

    Heterogeneous nuclear ribonuclearproteins (hnRNPs) are nucleic acid-binding proteins and have critical roles in DNA repair, telomere regulation, and transcriptional gene regulation. Previously, we showed that hnRNP G has tumor-suppressive activity in human oral squamous cell carcinoma cells. Therefore, the identification of hnRNP G target genes is important for understanding the function of hnRNP G and its tumor-suppressive activity. In this study, we identify a known tumor suppressor gene, thioredoxin-interacting protein (Txnip) gene as a novel target of hnRNP G. Expression of Txnip is upregulated by wild-type (wt) hnRNP G but not by a suppression-defective mutant hnRNP G (K22R) in human squamous cell carcinoma. Wt hnRNP G binds and transactivates the Txnip promoter in vivo, whereas the K22R mutant does not. Furthermore, overexpression of Txnip alone in cancer cells leads to the inhibition of anchorage-independent growth and in vivo tumorigenicity in immunocompromised mice, suggesting a reversion of the transformation phenotype. These studies indicate that hnRNP G promotes the expression of Txnip and mediates its tumor-suppressive effect.

  17. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  18. miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1.

    PubMed

    Zhao, Yiling; Yang, Fenghua; Li, Wenyuan; Xu, Chunyan; Li, Li; Chen, Lifei; Liu, Yancui; Sun, Ping

    2017-02-01

    Tumor necrosis factor receptor 1 is the main receptor mediating many tumor necrosis factor-alpha-induced cellular events. Some studies have shown that tumor necrosis factor receptor 1 promotes tumorigenesis by activating nuclear factor-kappa B signaling pathway, while other studies have confirmed that tumor necrosis factor receptor 1 plays an inhibitory role in tumors growth by inducing apoptosis in breast cancer. Therefore, the function of tumor necrosis factor receptor 1 in breast cancer requires clarification. In this study, we first found that tumor necrosis factor receptor 1 was significantly increased in human breast cancer tissues and cell lines, and knockdown of tumor necrosis factor receptor 1 by small interfering RNA inhibited cell proliferation by arresting the cell cycle and inducing apoptosis. In addition, miR-29a was predicted as a regulator of tumor necrosis factor receptor 1 by TargetScan and was shown to be inversely correlated with tumor necrosis factor receptor 1 expression in human breast cancer tissues and cell lines. Luciferase reporter assay further confirmed that miR-29a negatively regulated tumor necrosis factor receptor 1 expression by binding to the 3' untranslated region. In our functional study, miR-29a overexpression remarkably suppressed cell proliferation and colony formation, arrested the cell cycle, and induced apoptosis in MCF-7 cell. Furthermore, in combination with tumor necrosis factor receptor 1 transfection, miR-29a significantly reversed the oncogenic role caused by tumor necrosis factor receptor 1 in MCF-7 cell. In addition, we demonstrated that miR-29a suppressed MCF-7 cell growth by inactivating the nuclear factor-kappa B signaling pathway and by decreasing cyclinD1 and Bcl-2/Bax protein levels. Taken together, our results suggest that miR-29a is an important regulator of tumor necrosis factor receptor 1 expression in breast cancer and functions as a tumor suppressor by targeting tumor necrosis factor receptor 1 to

  19. Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity.

    PubMed

    Kaimala, Suneesh; Mohamed, Yassir A; Nader, Nancy; Issac, Jincy; Elkord, Eyad; Chouaib, Salem; Fernandez-Cabezudo, Maria J; Al-Ramadi, Basel K

    2014-06-01

    The effectiveness of attenuated Salmonella in inhibiting tumor growth has been demonstrated in many therapeutic models, but the precise mechanisms remain incompletely understood. In this study, we show that the anti-tumor capacity of Salmonella depends on a functional MyD88-TLR pathway and is independent of adaptive immune responses. Since myeloid suppressor cells play a critical role in tumor growth, we investigated the consequences of Salmonella treatment on myeloid cell recruitment, phenotypic characteristics, and functional activation in spleen and tumor tissue of B16.F1 melanoma-bearing mice. Salmonella treatment led to increased accumulation of splenic and intratumoral CD11b(+)Gr-1(+) myeloid cells, exhibiting significantly increased expression of various activation markers such as MHC class II, costimulatory molecules, and Sca-1/Ly6A proteins. Gene expression analysis showed that Salmonella treatment induced expression of iNOS, arginase-1 (ARG1), and IFN-γ in the spleen, but down-regulated IL-4 and TGF-β. Within the tumor, expression of iNOS, IFN-γ, and S100A9 was markedly increased, but ARG1, IL-4, TGF-β, and VEGF were inhibited. Functionally, splenic CD11b(+) cells maintained their suppressive capacity following Salmonella treatment, but intratumoral myeloid cells had significantly reduced suppressive capacity. Our findings demonstrate that administration of attenuated Salmonella leads to phenotypic and functional maturation of intratumoral myeloid cells making them less suppressive and hence enhancing the host's anti-tumor immune response. Modalities that inhibit myeloid suppressor cells may be useful adjuncts in cancer immunotherapy.

  20. Daikenchuto (TU-100) Suppresses Tumor Development in the Azoxymethane and APC(min/+) Mouse Models of Experimental Colon Cancer.

    PubMed

    Hasebe, Takumu; Matsukawa, Jun; Ringus, Daina; Miyoshi, Jun; Hart, John; Kaneko, Atsushi; Yamamoto, Masahiro; Kono, Toru; Fujiya, Mikihiro; Kohgo, Yutaka; Wang, Chong-Zi; Yuan, Chun-Su; Bissonnette, Marc; Musch, Mark W; Chang, Eugene B

    2017-01-01

    Chemopreventative properties of traditional medicines and underlying mechanisms of action are incompletely investigated. This study demonstrates that dietary daikenchuto (TU-100), comprised of ginger, ginseng, and Japanese pepper effectively suppresses intestinal tumor development and progression in the azoxymethane (AOM) and APC(min/+) mouse models. For the AOM model, TU-100 was provided after the first of six biweekly AOM injections. Mice were sacrificed at 30 weeks. APC(min/+) mice were fed diet without or with TU-100 starting at 6 weeks, and sacrificed at 24 weeks. In both models, dietary TU-100 decreased tumor size. In APC (min/+) mice, the number of small intestinal tumors was significantly decreased. In the AOM model, both TU-100 and Japanese ginseng decreased colon tumor numbers. Decreased Ki-67 and β-catenin immunostaining and activation of numerous transduction pathways involved in tumor initiation and progression were observed. EGF receptor expression and stimulation/phosphorylation in vitro were investigated in C2BBe1 cells. TU-100, ginger, and 6-gingerol suppressed EGF receptor induced Akt activation. TU-100 and ginseng and to a lesser extent ginger or 6-gingerol inhibited EGF ERK1/2 activation. TU-100 and some of its components and metabolites of these components inhibit tumor progression in two mouse models of colon cancer by blocking downstream pathways of EGF receptor activation. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Human tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular carcinoma metastasis through inhibiting Rac1

    PubMed Central

    2013-01-01

    Background Tumor invasion and metastasis are the major reasons for leading death of patients with hepatocellular carcinoma (HCC). Therefore, to identify molecules that can suppress invasion and metastasis of tumor will provide novel targets for HCC therapies. Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2, TIPE2, is a novel immune negative molecule and an inhibitor of the oncogenic Ras in mice but its function in human is unclear. Our previous research has shown that TIPE2 is downregulated in human primary HCC compared with the paired adjacent non-tumor tissues. Results In present study, we provide evidence that TIPE2 inhibits effectively human hepatocellular carcinoma metastasis. The forced expression of TIPE2 in HCC-derived cell lines markedly inhibits tumor cell growth, migration and invasion in vitro and suppresses growth and metastasis of HCC in vivo. Clinical information from a cohort of 112 patients reveals that loss or reduced expression of TIPE2 in primary HCC tissues is significantly associated with tumor metastasis. Mechanically, TIPE2 inhibits the migration and invasion through targeting Rac1 and then reduces F-actin polymerization and expression of matrix metallopeptidase 9 (MMP9) and urokinase plasminogen activator (uPA). Conclusion Our results indicate that human TIPE2 is endogenous inhibitor of Rac1 in HCC by which it attenuates invasion and metastasis of HCC. The data suggest that TIPE2 will be a new target for HCC therapy. PMID:24274578

  2. Thyroid-Stimulating Hormone Suppression for Protection Against Hypothyroidism Due to Craniospinal Irradiation for Childhood Medulloblastoma/Primitive Neuroectodermal Tumor

    SciTech Connect

    Massimino, Maura Gandola, Lorenza; Collini, Paola; Seregni, Ettore; Marchiano, Alfonso; Serra, Annalisa; Pignoli, Emanuele Ph.D.; Spreafico, Filippo; Pallotti, Federica; Terenziani, Monica; Biassoni, Veronica; Bombardieri, Emilio; Fossati-Bellani, Franca

    2007-10-01

    Purpose: Hypothyroidism is one of the earliest endocrine effects of craniospinal irradiation (CSI). The effects of radiation also depend on circulating thyroid-stimulating hormone (TSH), which acts as an indicator of thyrocyte function and is the most sensitive marker of thyroid damage. Hence, our study was launched in 1998 to evaluate the protective effect of TSH suppression during CSI for medulloblastoma/primitive neuroectodermal tumor. Patients and Methods: From Jan 1998 to Feb 2001, a total of 37 euthyroid children scheduled for CSI for medulloblastoma/primitive neuroectodermal tumor underwent thyroid ultrasound and free triiodothyronine (FT3), free thyroxine (FT4), and TSH evaluation at the beginning and end of CSI. From 14 days before and up to the end of CSI, patients were administered L-thyroxine at suppressive doses; every 3 days, TSH suppression was checked to ensure a value <0.3 {mu}M/ml. During follow-up, blood tests and ultrasound were repeated after 1 year; primary hypothyroidism was considered an increased TSH level greater than normal range. CSI was done using a hyperfractionated accelerated technique with total doses ranging from 20.8-39 Gy; models were used to evaluate doses received by the thyroid bed. Results: Of 37 patients, 25 were alive a median 7 years after CSI. They were well matched for all clinical features, except that eight children underwent adequate TSH suppression during CSI, whereas 17 did not. Hypothyroidism-free survival rates were 70% for the 'adequately TSH-suppressed' group and 20% for the 'inadequately TSH-suppressed' group (p = 0.02). Conclusions: Thyroid-stimulating hormone suppression with L-thyroxine had a protective effect on thyroid function at long-term follow-up. This is the first demonstration that transient endocrine suppression of thyroid activity may protect against radiation-induced functional damage.

  3. Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways.

    PubMed

    Shen, Aling; Lin, Jiumao; Chen, Youqin; Lin, Wei; Liu, Liya; Hong, Zhenfeng; Sferra, Thomas J; Peng, Jun

    2013-10-01

    Angiogenesis plays an essential role in cancer progression, which therefore has become an attractive target for anticancer treatment. Tumor angiogenesis is tightly regulated by multiple signaling pathways that usually function redundantly; in addition, crosstalk between these pathways forms a complicated network that is regulated by compensatory mechanisms. Given the complexity of pathogenic mechanisms underlying tumor angiogenesis, most currently used angiogenesis inhibitors that only target single pathways may be insufficient and probably generate drug resistance, thus, increasing the necessity for development of novel anticancer agents. Traditional Chinese medicines (TCM) are receiving great interest since they have relatively fewer side-effects and have been used for thousands of years to clinically treat various types of diseases including cancer. Pien Tze Huang (PZH), a well-known traditional Chinese formulation that was first prescribed 450 years ago, has long been used as an alternative remedy for cancers. However, the precise mechanism of PZH's anticancer activity remains to be further elucidated. Using a colorectal cancer mouse xenograft model, in the present study, we evaluated the effect of PZH on tumor angiogenesis and investigated the underlying molecular mechanisms. We found that PZH inhibited tumor growth since PZH treatment resulted in decrease in both tumor volume and tumor weight in CRC mice. In addition, PZH suppressed the activation of several signaling pathways such as STAT3, Akt and MAPKs. Consequently, the inhibitory effect of PZH on these pathways resulted in the inhibition of tumor angiogenesis as demonstrated by the decrease of microvessel density in tumor tissues. Moreover, PZH treatment reduced the expression of angiogenic factors including iNOS, eNOS, VEGF-A, bFGF as well as their specific receptors VEGFR2 and bFGFR. Altogether, our findings suggest that inhibition of tumor angiogenesis via suppression of multiple signaling pathways

  4. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone

    PubMed Central

    Gustafson, Michael P.; Lin, Yi; New, Kent C.; Bulur, Peggy A.; O'Neill, Brian Patrick; Gastineau, Dennis A.; Dietz, Allan B.

    2010-01-01

    Patients with glioblastoma (GBM) exhibit profound systemic immune defects that affect the success of conventional and immune-based treatments. A better understanding of the contribution of the tumor and/or therapy on systemic immune suppression is necessary for improved therapies, to monitor negative effects of novel treatments, to improve patient outcomes, and to increase understanding of this complex system. To characterize the immune profile of GBM patients, we phenotyped peripheral blood and compared these to normal donors. In doing so, we identified changes in systemic immunity associated with both the tumor and dexamethasone treated tumor bearing patients. In particular, dexamethasone exacerbated tumor associated lymphopenia primarily in the T cell compartment. We have also identified unique tumor and dexamethasone dependent altered monocyte phenotypes. The major population of altered monocytes (CD14+HLA-DRlo/neg) had a phenotype distinct from classical myeloid suppressor cells. These cells inhibited T cell proliferation, were unable to fully differentiate into mature dendritic cells, were associated with dexamethasone-mediated changes in CCL2 levels, and could be re-created in vitro using tumor supernatants. We provide evidence that tumors express high levels of CCL2, can contain high numbers of CD14+ cells, that tumor supernatants can transform CD14+HLA-DR+ cells into CD14+HLA-DRlo/neg immune suppressors, and that dexamethasone reduces CCL2 in vitro and is correlated with reduction of CCL2 in vivo. Consequently, we have developed a model for tumor mediated systemic immune suppression via recruitment and transformation of CD14+ cells. PMID:20179016

  5. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  6. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  7. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  8. microRNA 31 functions as an endometrial cancer oncogene by suppressing Hippo tumor suppressor pathway

    PubMed Central

    2014-01-01

    Background We aimed to investigate whether MIR31 is an oncogene in human endometrial cancer and identify the target molecules associated with the malignant phenotype. Methods We investigated the growth potentials of MIR31-overexpressing HEC-50B cells in vitro and in vivo. In order to identify the target molecule of MIR31, a luciferase reporter assay was performed, and the corresponding downstream signaling pathway was examined using immunohistochemistry of human endometrial cancer tissues. We also investigated the MIR31 expression in 34 patients according to the postoperative risk of recurrence. Results The overexpression of MIR31 significantly promoted anchorage-independent growth in vitro and significantly increased the tumor forming potential in vivo. MIR31 significantly suppressed the luciferase activity of mRNA combined with the LATS2 3’-UTR and consequently promoted the translocation of YAP1, a key molecule in the Hippo pathway, into the nucleus. Meanwhile, the nuclear localization of YAP1 increased the transcription of CCND1. Furthermore, the expression levels of MIR31 were significantly increased (10.7-fold) in the patients (n = 27) with a high risk of recurrence compared to that observed in the low-risk patients (n = 7), and this higher expression correlated with a poor survival. Conclusions MIR31 functions as an oncogene in endometrial cancer by repressing the Hippo pathway. MIR31 is a potential new molecular marker for predicting the risk of recurrence and prognosis of endometrial cancer. PMID:24779718

  9. ING4 suppresses tumor angiogenesis and functions as a prognostic marker in human colorectal cancer

    PubMed Central

    Hou, Pingfu; Zhang, Zhe; Zhang, Yafei; Wang, Weimin; Sun, Guixiang; Xu, Lichun; Zhou, Jianwei; Bai, Jin; Zheng, Junnian

    2016-01-01

    ING4, a potential tumor suppressor, is implicated in cell cycle arrest, apoptosis, cell migration and angiogenesis. Here, we investigated the clinical value of ING4 and its impact on angiogenesis in colorectal cancer (CRC). In this study, we found that ING4 expression was significantly reduced in CRC tissues versus paired normal colon tissues. Moreover, low ING4 expression was significantly associated with increased lymph node metastasis, advanced TNM stage and poor overall survival. Multivariate Cox regression analysis showed that ING4 expression was an independent favourable prognostic factor for CRC (hazard ratio = 0.45, P = 0.001). In addition, we found that ING4 strongly inhibited CRC angiogenesis by suppressing Sp1 expression and transcriptional activity through ubiquitin degradation and down-regulating the expressions of Sp1 downstream pro-angiogenic genes, MMP-2 and COX-2. Moreover, ING4 might inhibit phosphorylation activity of cyclin/CDK2 complexes to trigger Sp1 degradation by inducing p21 expression in despite of p53 status. Our findings imply that reduced ING4 expression in CRC resulted in increased angiogenesis and contributed to CRC metastasis and poor prognosis. Restoration of ING4 may be a novel strategy for the treatment of metastatic CRC. PMID:27806345

  10. Integrated digital error suppression for improved detection of circulating tumor DNA

    PubMed Central

    Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.

    2016-01-01

    High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799

  11. Mouse mammary tumor virus suppresses apoptosis of mammary epithelial cells through ITAM-mediated signaling.

    PubMed

    Kim, Hyoung H; Grande, Shannon M; Monroe, John G; Ross, Susan R

    2012-12-01

    Many receptors in hematopoietic cells use a common signaling pathway that relies on a highly conserved immunoreceptor tyrosine-based activation motif (ITAM), which signals through Src family tyrosine kinases. ITAM-bearing proteins are also found in many oncogenic viruses, including the mouse mammary tumor virus (MMTV) envelope (Env). We previously showed that MMTV Env expression transformed normal mammary epithelial cells and that Src kinases were important mediators in this transformation. To study how ITAM signaling affects mammary cell transformation, we utilized mammary cell lines expressing two different ITAM-containing proteins, one encoding a MMTV provirus and the other a B cell receptor fusion protein. ITAM-expressing cells were resistant to both serum starvation- and chemotherapeutic drug-induced apoptosis, whereas cells transduced with these molecules bearing ITAM mutations were indistinguishable from untransduced cells in their sensitivity to these treatments. We also found that Src kinase was activated in the MMTV-expressing cells and that MMTV-induced apoptosis resistance was completely restored by the Src inhibitor PP2. In vivo, MMTV infection delayed involution-induced apoptosis in the mouse mammary gland. Our results show that MMTV suppresses apoptosis through ITAM-mediated Src tyrosine kinase signaling. These studies could lead to the development of effective treatment of nonhematopoietic cell cancers in which ITAM-mediated signaling plays a role.

  12. Myristica fragrans Suppresses Tumor Growth and Metabolism by Inhibiting Lactate Dehydrogenase A.

    PubMed

    Kim, Eun-Yeong; Choi, Hee-Jung; Park, Mi-Ju; Jung, Yeon-Seop; Lee, Syng-Ook; Kim, Keuk-Jun; Choi, Jung-Hye; Chung, Tae-Wook; Ha, Ki-Tae

    2016-01-01

    Most cancer cells predominantly produce ATP by maintaining a high rate of lactate fermentation, rather than by maintaining a comparatively low rate of tricarboxylic acid cycle, i.e., Warburg's effect. In the pathway, the pyruvate produced by glycolysis is converted to lactic acid by lactate dehydrogenase (LDH). Here, we demonstrated that water extracts from the seeds of Myristica fragrans Houtt. (MF) inhibit the in vitro enzymatic activity of LDH. MF effectively suppressed cell growth and the overall Warburg effect in HT29 human colon cancer cells. Although the expression of LDH-A was not changed by MF, both lactate production and LDH activity were decreased in MF-treated cells under both normoxic and hypoxic conditions. In addition, intracellular ATP levels were also decreased by MF treatment, and the uptake of glucose was also reduced by MF treatment. Furthermore, the experiment on tumor growth in the in vivo mice model revealed that MF effectively reduced the growth of allotransplanted Lewis lung carcinoma cells. Taken together, these results suggest that MF effectively inhibits cancer growth and metabolism by inhibiting the activity of LDH, a major enzyme responsible for regulating cancer metabolism. These results implicate MF as a potential candidate for development into a novel drug against cancer through inhibition of LDH activity.

  13. The nonhomologous end joining factor Artemis suppresses multi-tissue tumor formation and prevents loss of heterozygosity.

    PubMed

    Woo, Y; Wright, S M; Maas, S A; Alley, T L; Caddle, L B; Kamdar, S; Affourtit, J; Foreman, O; Akeson, E C; Shaffer, D; Bronson, R T; Morse, H C; Roopenian, D; Mills, K D

    2007-09-06

    Nonhomologous end joining (NHEJ) is a critical DNA repair pathway, with proposed tumor suppression functions in many tissues. Mutations in the NHEJ factor ARTEMIS cause radiation-sensitive severe combined immunodeficiency in humans and may increase susceptibility to lymphoma in some settings. We now report that deficiency for Artemis (encoded by Dclre1c/Art in mouse) accelerates tumorigenesis in several tissues in a Trp53 heterozygous setting, revealing tumor suppression roles for NHEJ in lymphoid and non-lymphoid cells. We also show that B-lineage lymphomas in these mice undergo loss of Trp53 heterozygosity by allele replacement, but arise by mechanisms distinct from those in Art Trp53 double null mice. These findings demonstrate a general tumor suppression function for NHEJ, and reveal that interplay between NHEJ and Trp53 loss of heterozygosity influences the sequence of multi-hit oncogenesis. We present a model where p53 status at the time of tumor initiation is a key determinant of subsequent oncogenic mechanisms. Because Art deficient mice represent a model for radiation-sensitive severe combined immunodeficiency, our findings suggest that these patients may be at risk for both lymphoid and non-lymphoid cancers.

  14. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    PubMed Central

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  15. Potent suppressive activity of chlorophyll a and b from green tea (Camellia sinensis) against tumor promotion in mouse skin.

    PubMed

    Higashi-Okai, K; Okai, Y

    1998-09-01

    Potent antigenotoxic and anti-tumor promoting activities of chlorophyll a from green tea (camellia sinensis) have been shown using in vitro cell culture experiments (Okai Y. et al. (1996) Mutation Res., 370, 11-17). In the present study, the authors analyzed in vivo effects of chlorophyll a and b from green tea on tumor promotion in mouse skin in the following ways. 1. When chlorophyll a and b from green tea were applied before each treatment by a tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on BALB/c mouse skin initiated by 7, 12-dimethylbenz [a] an-thracene (DMBA), they caused significant suppression in a dose-dependent manner against BALB/c mouse skin tumorigenesis. 2. Chlorophyll a and b showed significant suppressive effects against TPA-induced inflammatory reaction such as edema formation in BALB/c mouse ear skin in a dose-dependent fashion. These results suggest that chlorophyll a and b possess potent suppressive activities against tumor promotion in mouse skin.

  16. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  17. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation.

    PubMed

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y; Jackson, James G; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A; El-Naggar, Adel K; Lozano, Guillermina

    2011-03-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53(R172H) missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53(R172H) dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy.

  18. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation

    PubMed Central

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y.; Jackson, James G.; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A.; El-Naggar, Adel K.; Lozano, Guillermina

    2011-01-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53R172H missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53R172H dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy. PMID:21285512

  19. Suppression of hamster lymphocyte reactivity to simian virus 40 tumor surface antigens by spleen cells from pregnant hamsters

    SciTech Connect

    Weppner, W.A.; Adkinson, L.R.; Coggin, J.H.Jr

    1980-09-01

    SV40-transformed tumor cells in hamsters have been found to have cell surface antigens cross-reactive with antigens temporally expressed on fetal tissues. Using a lymphocyte transformation assay, spleen cells from pregnant hamsters were found to be incapable of responding to preparations of either hamster fetal tissue or SV40-transformed cells. However, a suppressor component can be demonstrated in spleen cell populations of both primi-and multiparous hamsters during pregnancy that is capable of reducing the response of lymphocytes sensitized against SV40 tumor-associated antigens. The degree of suppression is proportional to the ratio of responder cells to spleen cells from pregnant animals. These results suggest there is a subpopulation of spleen cells involved in immunoregulation during pregnancy that has the ability to suppress the reactivity of lymphocytes sensitized against SV40-associated oncofetal antigens.

  20. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification.

    PubMed

    Lin, Yi-Ching; Lin, Yu-Chih; Huang, Ming-Yii; Kuo, Po-Lin; Wu, Cheng-Chin; Lee, Min-Sheng; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Kuo, Chang-Hung; Tsai, Wen-Chan; Hung, Chih-Hsing

    2017-03-01

    The treatment of rheumatoid arthritis (RA) with tumor necrosis factor-alpha (TNF-α) inhibitors could lead to adverse effects. Therefore, the identification of downstream therapeutic targets is important. Monocyte chemoattractant protein-1 (MCP-1, also called CCL2) is related to RA disease activity, and epigenetic modifications are hypothesized to regulate gene expression in RA pathogenesis. We studied the effects of two TNF-α inhibitors, etanercept and adalimumab, on CCL2 expression and the potentially associated intracellular mechanisms, including epigenetic regulation. Etanercept and adalimumab decreased CCL2 production in THP-1 cells and human primary monocytes, as detected using enzyme-linked immunosorbent assays, and these changes in the CCL2 levels were independent of the TNF-α levels. Etanercept and adalimumab suppressed mitogen-activated protein kinase (MAPK) phospho-p38, phospho-JNK, phospho-ERK and nuclear factor-κB (NF-κB) phospho-p65, as demonstrated using western blot analyses. The investigation of epigenetic modifications using chromatin immunoprecipitation revealed that etanercept and adalimumab down-regulated acetylation of histone (H)3 and H4 in the CCL2 promoter region by decreasing the recruitment of the NF-κB associated acetyltransferases p300, CBP and PCAF. Etanercept and adalimumab also down-regulated trimethylation of H3K4, H3K27, H3K36 and H3K79 in the CCL2 promoter region by decreasing the expression of the related methyltransferases WDR5 and Smyd2. We demonstrated that TNF-α inhibitors exert immunomodulatory effects on CCL2 expression in human monocytes via MAPKs, NF-κB and epigenetic modifications. These findings broaden the mechanistic knowledge related to TNF-α inhibitors and provide novel therapeutic targets for RA.

  1. Zyflamend Suppresses Growth and Sensitizes Human Pancreatic Tumors to Gemcitabine in an Orthotopic Mouse Model Through Modulation of Multiple Targets

    PubMed Central

    Kunnumakkara, Ajaikumar B.; Sung, Bokyung; Ravindran, Jayaraj; Diagaradjane, Parmeswaran; Deorukhkar, Amit; Dey, Sanjit; Koca, Cemile; Tong, Zhimin; Gelovani, Juri G.; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B.

    2011-01-01

    Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement, Zyflamend, is a polyherbal preparation with potent anti-inflammatory activities, and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1, and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB, and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis. PMID:21935918

  2. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer

    PubMed Central

    Xu, Rui-Hua

    2013-01-01

    The deregulation of paxillin (PXN) has been involved in the progression and metastasis of different malignancies including colorectal cancer (CRC). miR-137 is frequently suppressed in CRC. PXN is predicted to be a direct target of miR-137 in CRC cells. On this basis, we hypothesized that overexpression of PXN induced by suppression of miR-137 may promote tumor progression and metastasis and predicts poor prognosis. We detected the expression of PXN and miR-137 in clinical tumor tissues by immunohistochemical analysis and real-time PCR, positive PXN staining was observed in 198 of the 247 (80.1%) cases, whereas no or weak PXN staining was observed in the adjacent non-cancerous area. Higher level of PXN messenger RNA (mRNA) and lower level of miR-137 was observed in cancer tissues than adjacent non-cancerous tissues. High expression of PXN and low expression of miR-137 was associated with aggressive tumor phenotype and adverse prognosis. Moreover, the expression of PXN was negatively correlated with miR-137 expression. A dual-luciferase reporter gene assay validated that PXN was a direct target of miR-137. The use of miR-137 mimics or inhibitor could decrease or increase PXN mRNA and protein levels in CRC cell lines. Knockdown of PXN or ectopic expression of miR-137 could markedly inhibit cell proliferation, migration and invasion in vitro and repress tumor growth and metastasis in vivo. Taken together, these results demonstrated that overexpression of PXN induced by suppression of miR-137 promotes tumor progression and metastasis and could serve as an independent prognostic indicator in CRC patients. PMID:23275153

  3. Radiofrequency Ablation of Liver Tumors in Combination with Local OK-432 Injection Prolongs Survival and Suppresses Distant Tumor Growth in the Rabbit Model with Intra- and Extrahepatic VX2 Tumors

    SciTech Connect

    Kageyama, Ken Yamamoto, Akira Okuma, Tomohisa Hamamoto, Shinichi Takeshita, Toru Sakai, Yukimasa Nishida, Norifumi Matsuoka, Toshiyuki Miki, Yukio

    2013-10-15

    Purpose: To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Methods: Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at a single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Results: Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). Conclusion: ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.

  4. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway.

    PubMed

    Lee, Dung-Fang; Kuo, Hsu-Ping; Chen, Chun-Te; Hsu, Jung-Mao; Chou, Chao-Kai; Wei, Yongkun; Sun, Hui-Lung; Li, Long-Yuan; Ping, Bo; Huang, Wei-Chien; He, Xianghuo; Hung, Jen-Yu; Lai, Chien-Chen; Ding, Qingqing; Su, Jen-Liang; Yang, Jer-Yen; Sahin, Aysegul A; Hortobagyi, Gabriel N; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hung, Mien-Chie

    2007-08-10

    TNFalpha has recently emerged as a regulator linking inflammation to cancer pathogenesis, but the detailed cellular and molecular mechanisms underlying this link remain to be elucidated. The tuberous sclerosis 1 (TSC1)/TSC2 tumor suppressor complex serves as a repressor of the mTOR pathway, and disruption of TSC1/TSC2 complex function may contribute to tumorigenesis. Here we show that IKKbeta, a major downstream kinase in the TNFalpha signaling pathway, physically interacts with and phosphorylates TSC1 at Ser487 and Ser511, resulting in suppression of TSC1. The IKKbeta-mediated TSC1 suppression activates the mTOR pathway, enhances angiogenesis, and results in tumor development. We further find that expression of activated IKKbeta is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. Our findings identify a pathway that is critical for inflammation-mediated tumor angiogenesis and may provide a target for clinical intervention in human cancer.

  5. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo

    PubMed Central

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-01-01

    ABSTRACT Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA+ tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy PMID:26954374

  6. Chaperone-rich tumor cell lysate-mediated activation of antigen-presenting cells resists regulatory T cell suppression.

    PubMed

    Larmonier, Nicolas; Cantrell, Jessica; Lacasse, Collin; Li, Gang; Janikashvili, Nona; Situ, Elaine; Sepassi, Marjan; Andreansky, Samita; Katsanis, Emmanuel

    2008-04-01

    CD4(+)CD25(+) regulatory T lymphocytes (Tregs) critically contribute to the mechanisms of cancer-induced tolerance. These cells suppress anti-tumoral CD8(+) and CD4(+) T lymphocytes and can also restrain the function of APCs. We have previously documented the immunostimulatory effects of a chaperone-rich cell lysate (CRCL) anti-cancer vaccine. Tumor-derived CRCL induces tumor immunity in vivo, partly by promoting dendritic cell (DC) and macrophage activation. In the current study, we evaluated the effects of CD4(+)CD25(+)forkhead box P3(+) Tregs isolated from mice bearing 12B1 bcr-abl(+) leukemia on DC and macrophages that had been activated by 12B1-derived CRCL. CRCL-activated DC and macrophages resisted Treg suppression, as the production of proinflammatory cytokines, the activation of transcription factor NF-kappaB, and their immunostimulatory potential was unaffected by Tregs. Our results thus highlight CRCL as a powerful adjuvant endowed with the capacity to overcome tumor-induced Treg-inhibitory effects on APCs.

  7. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    likely to be mechanistic drivers behind the observed tumor growth suppression.

  8. Post-transcriptional mechanisms contribute to the suppression of the ErbB3 negative regulator protein Nrdp1 in mammary tumors.

    PubMed

    Ingalla, Ellen Q; Miller, Jamie K; Wald, Jessica H; Workman, Heather C; Kaur, Rouminder P; Yen, Lily; Fry, William H D; Borowsky, Alexander D; Young, Lawrence J T; Sweeney, Colleen; Carraway, Kermit L

    2010-09-10

    The ErbB2 and ErbB3 receptor tyrosine kinases act synergistically to promote cellular properties associated with tumor development. Previous studies indicate that endogenous ErbB3 protein is markedly elevated in mouse mammary tumors induced by transgenic ErbB2 overexpression. However, this occurs in the absence of elevated ErbB3 transcript, indicating that post-transcriptional regulatory mechanisms play crucial roles in suppressing ErbB3 protein in normal tissue. Our previous studies also demonstrate that protein levels of Nrdp1, an E3 ubiquitin ligase that targets ErbB3 for degradation, are markedly suppressed in tumors from ErbB2 transgenic animals relative to normal tissue. Here we demonstrate that transgenic expression of Nrdp1 cDNA in the mouse mammary gland is not sufficient to suppress elevated ErbB3 levels or tumor initiation and growth in ErbB2 transgenic mice. Unexpectedly, Nrdp1 protein is absent in tumors from Nrdp1/ErbB2 bigenic mice, and real time PCR analysis indicates that Nrdp1 protein levels are suppressed post-transcriptionally. Nrdp1 protein is more resistant to proteasome-dependent degradation when exogenously expressed in cultured MCF10A nontransformed human breast epithelial cells than in breast tumor cells. These observations indicate that mammary tumors use potent post-transcriptional mechanisms to suppress Nrdp1 protein levels and that protein destabilization may play a central role in Nrdp1 loss in tumors.

  9. Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Kitture, Rohini; Ghosh, Sougata; Kulkarni, Parag; Liu, X. L.; Maity, Dipak; Patil, S. I.; Jun, Ding; Dushing, Yogesh; Laware, S. L.; Chopade, B. A.; Kale, S. N.

    2012-03-01

    Fe3O4 nanoparticles have been conjugated to curcumin (CU) molecules via a citrate (CA) linker (Fe-CA-CU) and have been explored for superoxide scavenging, tumor suppression, and cancer hyperthermia. The conjugation chemistry reveals that Fe3+ ions on the nanoparticle surface readily conjugates to the available carboxyl sites on the CA molecule, which further conjugates to CU at its central enol -OH group. As seen from the UV-vis spectroscopy, the therapeutically active chromophore group of CU, which is seen at 423 nm, was intact, ensuring the activity the molecule. Magnetization measurements showed good hysteresis curves of Fe3O4 and Fe-CA-CU, indicating the presence of magnetism after conjugation. The loading percentage of citrate-curcumin was seen to be ˜10% from the thermo-gravimetric analysis. The systems when subjected to radio-frequency fields of 240 KHz, were seen to get heated up. The Fe3O4 heating exhibited better slope (1 °C/s) as compared to the Fe-CA-CU system (˜0.7 °C/s) for a sample of concentration 10 mg/ml in average time of ˜20 s to reach the required hyperthermia threshold temperature of ˜45 °C. Tumor suppression studies were done using potato assay, which showed that while only CU showed 100% suppression in 7 days, it was about 89% by the Fe-CA-CU. Upon subjecting these systems to the superoxide anion scavenging assay and superoxide radical scavenging assay (riboflavin), it was observed that the activity was enhanced in the Fe-CA-CU to 40% (from 38% in only CU) and 100% (from 5.75% in only CU). These studies promise Fe-CA-CU as a good cancer hyperthermia-cum-tumor suppressant and antioxidant agent.

  10. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis.

    PubMed

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-03-09

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage.

  11. Vascular Normalization Induced by Sinomenine Hydrochloride Results in Suppressed Mammary Tumor Growth and Metastasis

    PubMed Central

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-01-01

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage. PMID:25749075

  12. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    SciTech Connect

    Zhai, Jian; Qu, Shuping; Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia; Qu, Zengqiang; Wu, Dong

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  13. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    DTIC Science & Technology

    2003-07-01

    suppressing effect of n-3 fatty acid DHA on mammary tumors. MRG induces differentiation of mammary epithelial cells in vitro and its expression is...expression of MRG also increased milk protein beta-casein expression in the gland. Treatment of human breast cancer cells with w-3 PUFA DHA resulted...differentiating effect of pregnancy on breast epithelial cells and may play a major role in w-3 PUFA -mediated tumor suppression.

  14. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions.

    PubMed

    Pucci, Ferdinando; Garris, Christopher; Lai, Charles P; Newton, Andita; Pfirschke, Christina; Engblom, Camilla; Alvarez, David; Sprachman, Melissa; Evavold, Charles; Magnuson, Angela; von Andrian, Ulrich H; Glatz, Katharina; Breakefield, Xandra O; Mempel, Thorsten R; Weissleder, Ralph; Pittet, Mikael J

    2016-04-08

    Tumor-derived extracellular vesicles (tEVs) are important signals in tumor-host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169(+) macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169(+) macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169(+) macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity.

  15. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    PubMed

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.

  16. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma

    PubMed Central

    Qian, Li; Lin, Longlong; Du, Yufeng; Hao, Xiaoyan; Zhao, Yuze; Liu, Xuejun

    2016-01-01

    MicroRNAs (miRNAs) have been demonstrated to be critical in regulating tumor development and progression. The present study investigated the expression of miR-588 using reverse transcription-quantitative polymerase chain reaction analysis in 85 cases of lung squamous cell carcinoma (SCC), and observed the correlation between the expression of miR-588 with clinical pathologic features. The results indicated that the expression of miR-588 was predominantly lower in the tumor samples, compared with non-tumorous samples, and was negatively associated with tumor stages and lymph node invasion. The present study also examined the significance of the expression of miR-588 in SCC using gain- and loss-of-function analyses. It was found that miR-588 inhibited tumor cell migration and invasion. In addition, it was revealed that the overexpression of miR-588 in SCC cells reduced the mRNA and protein levels of progranulin (GRN), whereas miR-588 silencing increased the expression of GRN. A luciferase activity assay showed that miR-588 was able to directly bind to the 3′untranslated region of GRN and regulate its expression. Furthermore, it was found that the expression of GRN was inversely correlated with the expression of miR-588 in 85 paired SCC samples. These results indicated that GRN was involved in the miR-588-mediated suppressive functions in the progression of SCC. PMID:27571908

  17. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  18. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  19. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration

    PubMed Central

    Said, Neveen; Sanchez-Carbayo, Marta; Smith, Steven C.; Theodorescu, Dan

    2012-01-01

    Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive bladder cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft models of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflammation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism of metastasis suppression that works by reducing host responses that promote metastatic colonization of the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the appearance of clinical metastasis in patients. PMID:22406535

  20. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth

    PubMed Central

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma. PMID:23533475

  1. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration.

    PubMed

    Said, Neveen; Sanchez-Carbayo, Marta; Smith, Steven C; Theodorescu, Dan

    2012-04-01

    Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive bladder cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft models of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflammation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism of metastasis suppression that works by reducing host responses that promote metastatic colonization of the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the appearance of clinical metastasis in patients.

  2. Targeting A Tumor Suppressor To Suppress Tumor Growth: News and Views on Protein Phosphatase 2A (PP2A) as a Target for Anti-cancer Therapy

    PubMed Central

    Perrotti, Danilo; Neviani, Paolo

    2013-01-01

    Protein phosphatase 2A (PP2A), one of the major serine-threonine phosphatases in mammalian cells, maintains cell homeostasis by counteracting most of the kinase-driven intracellular signaling pathways. Unrestrained activation of oncogenic kinases together with inhibition of tumor suppressors is frequently required for the development of cancer. Because it has been found genetically altered or functionally inactivated in many solid cancers and leukemias, PP2A is indeed a bona fide tumor suppressor. For example, the phosphatase activity of PP2A is suppressed in chronic myelogenous leukemia and other malignancies characterized by the aberrant activity of oncogenic kinases. Notably, preclinical studies indicate that pharmacologic restoration of PP2A tumor suppressor activity by PP2A activating drugs (PADs, e.g. FTY720) effectively antagonizes cancer development and progression. Herein, we systematically discuss the importance of PP2A as a druggable tumor suppressor in light of the possible introduction of PADs into anti-cancer therapeutic protocols. PMID:23639323

  3. PRG4 expression in myxoid liposarcoma maintains tumor cell growth through suppression of an antitumor cytokine IL-24.

    PubMed

    Oikawa, Kosuke; Mizusaki, Anna; Takanashi, Masakatsu; Ozaki, Takashi; Sato, Fuyuki; Kuroda, Masahiko; Muragaki, Yasuteru

    2017-02-10

    PRG4 is one of the downstream molecules of the myxoid liposarcoma (MLS)-specific fusion oncoproteins TLS-CHOP and EWS-CHOP. Exogenous PRG4 expression increases the tumorigenicity of cells injected in nude mice. The molecular functions of PRG4 in tumorigenesis and/or tumor progression of MLS cells, however, still remain unclear. In this report, we demonstrated that siRNA-mediated knockdown of PRG4 suppressed the growth of the MLS-derived cell lines 1955/91 and 2645/94. In addition, PRG4 knockdown promoted adipocytic differentiation in 1955/91 cells. Thus, PRG4 may play essential roles in MLS cell growth and have potential as a therapeutic target. On the other hand, our previous study has revealed that TLS-CHOP suppresses expression of an anti-tumor cytokine IL-24, contributing to tumor cell survival. In this study, we found that double knockdown of PRG4 and IL-24 did not inhibit MLS cell growth, and single knockdown of PRG4 remarkably increased IL-24 expression. These results suggest that the growth inhibitory effect of PRG4 knockdown is caused by induction of IL-24 expression, and PRG4 may contribute to maintain MLS cell growth through repression of IL-24 expression.

  4. 4-Methylumbelliferone Suppresses Hyaluronan Synthesis and Tumor Progression in SCID Mice Intra-abdominally Inoculated With Pancreatic Cancer Cells

    PubMed Central

    Nagase, Hayato; Kudo, Daisuke; Suto, Akiko; Yoshida, Eri; Suto, Shinichiro; Negishi, Mika; Kakizaki, Ikuko; Hakamada, Kenichi

    2017-01-01

    Objectives Pancreatic ductal adenocarcinoma contains large amounts of the glycosaminoglycan hyaluronan (HA), which is involved in various physiological processes. Here, we aimed to clarify the anticancer mechanisms of 4-methylumbelliferone (MU), a well-known HA synthesis inhibitor. Methods MIA PaCa-2 human pancreatic cancer cells were used. We evaluated cellular proliferation, migration, and invasion in the presence of MU, exogenous HA, and an anti-CD44 antibody. We also analyzed apoptosis, CD44 expression, and HA-binding ability using flow cytometry. The HA content in tumor tissue was quantified and histopathologically investigated in mice who had been inoculated with cancer cells. Results In vitro, MU inhibited pericellular HA matrix formation; however, HAS3 mRNA was up-regulated. Treatment with 0.5 mM MU suppressed cellular proliferation by 26.4%, migration by 14.7%, and invasion by 22.7%. Moreover, MU also significantly increased apoptosis. CD44 expression and HA-binding ability were not altered by MU. In vivo, MU suppressed HA accumulation in pancreatic tumors and improved survival times in tumor-bearing mice. Conclusions 4-Methylumbelliferone indirectly caused apoptosis in pancreatic cancer cells by inhibiting HA production. 4-Methylumbelliferone may be a promising agent in the treatment of pancreatic cancer. PMID:27846148

  5. Inhibition of EGFR-AKT Axis Results in the Suppression of Ovarian Tumors In Vitro and in Preclinical Mouse Model

    PubMed Central

    Gupta, Parul; Srivastava, Sanjay K.

    2012-01-01

    Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian tumor cells in vitro and in vivo. Oral administration of 12 µmol PEITC resulted in drastically suppressing ovarian tumor growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3 and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors. PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat ovarian cancer. PMID:22952709

  6. The Alternative Medicine Pawpaw and Its Acetogenin Constituents Suppress Tumor Angiogenesis via the HIF-1/VEGF Pathway

    PubMed Central

    Coothankandaswamy, Veena; Liu, Yang; Mao, Shui-Chun; Morgan, J. Brian; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    Products that contain twig extracts of pawpaw (Asimina triloba, Annonaceae) are widely consumed anticancer alternative medicines. Pawpaw crude extract (CE) and purified acetogenins inhibited hypoxia-inducible factor-1 (HIF-1)-mediated hypoxic signaling pathways in tumor cells. In T47D cells, pawpaw CE and the acetogenins 10-hydroxyglaucanetin (1), annonacin (2), and annonacin A (3) inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.02 μg/mL, 12 nM, 13 nM, and 31 nM, respectively. This inhibition correlates with the suppression of the hypoxic induction of HIF-1 target genes VEGF and GLUT-1. The induction of secreted VEGF protein represents a key event in hypoxia-induced tumor angiogenesis. Both the extract and the purified acetogenins blocked the angiogenesis-stimulating activity of hypoxic T47D cells in vitro. Pawpaw extract and acetogenins inhibited HIF-1 activation by blocking the hypoxic induction of nuclear HIF-1α protein. The inhibition of HIF-1 activation was associated with the suppression of mitochondrial respiration at complex I. Thus, the inhibition of HIF-1 activation and hypoxic tumor angiogenesis constitutes a novel mechanism of action for these anticancer alternative medicines. PMID:20423107

  7. The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth

    PubMed Central

    Büchau, Amanda S.; Morizane, Shin; Trowbridge, Janet; Schauber, Jürgen; Kotol, Paul; Bui, Jack D.; Gallo, Richard L.

    2010-01-01

    Tumor surveillance requires the interaction of multiple molecules and cells that participate in innate and the adaptive immunity. Cathelicidin was initially identified as an antimicrobial peptide, although it is now clear that it fulfills a variety of immune functions beyond microbial killing. Recent data have suggested contrasting roles for cathelicidin in tumor development. Because its role in tumor surveillance is not well understood, we investigated the requirement of cathelicidin in controlling transplantable tumors in mice. Cathelicidin was observed to be abundant in tumor-infiltrating NK1.1+ cells in mice. The importance of this finding was demonstrated by the fact that cathelicidin knockout mice (Camp−/−) permitted faster tumor growth than wild type controls in two different xenograft tumor mouse models (B16.F10 and RMA-S). Functional in vitro analyses found that NK cells derived from Camp−/− versus wild type mice showed impaired cytotoxic activity toward tumor targets. These findings could not be solely attributed to an observed perforin deficiency in freshly isolated Camp−/− NK cells, because this deficiency could be partially restored by IL-2 treatment, whereas cytotoxic activity was still defective in IL-2-activated Camp−/− NK cells. Thus, we demonstrate a previously unrecognized role of cathelicidin in NK cell antitumor function. PMID:19949065

  8. A reason for intermittent fasting to suppress the awakening of dormant breast tumors.

    PubMed

    Lankelma, Jan; Kooi, Bob; Krab, Klaas; Dorsman, Josephine C; Joenje, Hans; Westerhoff, Hans V

    2015-01-01

    For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors will contain anoxic living tumor cells. These cells are dangerous, because they are capable of inducing angiogenesis, which will "wake up" the tumor. Anoxic cells are dependent on anaerobic glucose breakdown for ATP generation. The local extracellular glucose concentration gradient is determined by the blood glucose concentration and by consumption by cells closer to the nearest blood vessel. The blood glucose concentration can be lowered by 20-40% during fasting. We calculated that glucose supply to the potentially hazardous anoxic cells can thereby be reduced significantly, resulting in cell death specifically of the anoxic tumor cells. We hypothesize that intermittent fasting will help to reduce the incidence of tumor relapse via reducing the number of anoxic tumor cells and tumor awakening.

  9. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  10. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration.

    PubMed

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-11-17

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation.

  11. Combined RNAi-mediated suppression of Rictor and EGFR resulted in complete tumor regression in an orthotopic glioblastoma tumor model.

    PubMed

    Verreault, Maite; Weppler, Sherry A; Stegeman, Amelia; Warburton, Corinna; Strutt, Dita; Masin, Dana; Bally, Marcel B

    2013-01-01

    The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line's sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective

  12. Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model

    PubMed Central

    Verreault, Maite; Weppler, Sherry A.; Stegeman, Amelia; Warburton, Corinna; Strutt, Dita; Masin, Dana; Bally, Marcel B.

    2013-01-01

    The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective

  13. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer.

    PubMed

    Yuan, Ye; Du, Weijie; Wang, Ying; Xu, Chaoqian; Wang, Jinghao; Zhang, Yang; Wang, Huimin; Ju, Jiaming; Zhao, Liang; Wang, Zhiguo; Lu, Yanjie; Cai, Benzhi; Pan, Zhenwei

    2015-03-15

    Lung cancer is one of the leading causes of cancer death worldwide. microRNAs have been shown to be a novel class of regulators in lung cancer. Here, we explored the role of miR-153 in the pathogenesis of lung cancer and its therapeutic potential. miR-153 was significantly decreased in lung cancer tissues than the adjacent tissues. The protein and mRNA levels of protein kinase B (AKT), which were shown to promote tumor growth, were both increased in lung cancer tissues than adjacent tissues. Overexpression of miR-153 significantly inhibited AKT protein expression, which were abrogated by co-transfection of AMO-153, the specific inhibitor of miR-153. Luciferase assay showed that transfection of miR-153 markedly suppressed the fluorescent intensity of chimeric vectors carrying the 3'UTR of AKT1, while produced no effect on the mutant construct, indicating that AKT is regulated by miR-153. Overexpression of miR-153 significantly inhibited the proliferation and migration, and promoted apoptosis of cultured lung cancer cells in vitro, and suppressed the growth of xenograft tumors in vivo. Interestingly, lung cancer cells with lower endogenous miR-153 expression are more sensitive to ectopic overexpressed miR-153. The IC50 of miR-153 on lung cancer cells is positive correlated with the endogenous miR-153 level, while negative correlated with AKT level. Knockdown of AKT expression suppressed lung cancer cell proliferation. In summary, miR-153 exerted anti-tumor activity in lung cancer by targeting on AKT. The sensitivity of lung cancer cells to miR-153 is determined by its endogenous miR-153 level.

  14. SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

    PubMed Central

    Jeong, Seung Min; Xiao, Cuiying; Finley, Lydia W.S; Lahusen, Tyler; Souza, Amanda L.; Pierce, Kerry; Li, Ying-Hua; Wang, Xiaoxu; Laurent, Gaëlle; German, Natalie J.; Xu, Xiaoling; Li, Cuiling; Wang, Rui-Hong; Lee, Jaewon; Csibi, Alfredo; Cerione, Richard; Blenis, John; Clish, Clary B.; Kimmelman, Alec; Deng, Chu-Xia; Haigis, Marcia C.

    2013-01-01

    SUMMARY DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into TCA cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest and tumor suppression. PMID:23562301

  15. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activation

    PubMed Central

    Wang, Yurong; Wang, Bin; Guerram, Mounia; Sun, Li; Shi, Wei; Tian, Chongchong; Zhu, Xiong; Jiang, Zhenzhou; Zhang, Luyong

    2015-01-01

    Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer. PMID:26470595

  16. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  17. Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve.

    PubMed

    Ribeiro, Sara; Napoli, Ilaria; White, Ian J; Parrinello, Simona; Flanagan, Adrienne M; Suter, Ueli; Parada, Luis F; Lloyd, Alison C

    2013-10-17

    Schwann cells are highly plastic cells that dedifferentiate to a progenitor-like state following injury. However, deregulation of this plasticity, may be involved in the formation of neurofibromas, mixed-cell tumors of Schwann cell (SC) origin that arise upon loss of NF1. Here, we show that adult myelinating SCs (mSCs) are refractory to Nf1 loss. However, in the context of injury, Nf1-deficient cells display opposing behaviors along the wounded nerve; distal to the injury, Nf1(-/-) mSCs redifferentiate normally, whereas at the wound site Nf1(-/-) mSCs give rise to neurofibromas in both Nf1(+/+) and Nf1(+/-) backgrounds. Tracing experiments showed that distinct cell types within the tumor derive from Nf1-deficient SCs. This model of neurofibroma formation demonstrates that neurofibromas can originate from adult SCs and that the nerve environment can switch from tumor suppressive to tumor promoting at a site of injury. These findings have implications for both the characterization and treatment of neurofibromas.

  18. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  19. Elucidating the Tumor Suppressive Role of SLITs in Maintaining the Basal Cell Niche

    DTIC Science & Technology

    2010-07-01

    251–267. 8. Seth P, et al. (2005) Magic roundabout , a tumor endothelial marker: Expression and signaling. Biochem Biophys Res Commun 332:533–541. 9...Targeting Slit- Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Sci 99: 510–517. 11. Hu H (2001...Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active

  20. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer

    PubMed Central

    CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN

    2015-01-01

    Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159

  1. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  2. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  3. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma.

    PubMed

    González-Gómez, Pilar; Crecente-Campo, Jose; Zahonero, Cristina; de la Fuente, Maria; Hernández-Laín, Aurelio; Mira, Helena; Sánchez-Gómez, Pilar; Garcia-Fuentes, Marcos

    2015-05-10

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133(+), Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy.

  4. miR-940 Suppresses Tumor Cell Invasion and Migration via Regulation of CXCR2 in Hepatocellular Carcinoma

    PubMed Central

    Ding, Dong; Zhang, Yaodong; Yang, Renjie; Wang, Xing; Ji, Guwei; Huo, Liqun; Shao, Zicheng

    2016-01-01

    Aim. To investigate the expression of miR-940 in the hepatocellular carcinoma (HCC) and its impact on function and biological mechanism in the HCC cells. Methods. Quantitative RT-PCR analysis was used to quantify miR-940 expression in 46 cases of tissues and cells. Transfection of HCC cell lines was performed by miR-940 mimics; the abilities of invasion and migration were assessed through Transwell array. Western blot represents the alteration in expression of CXCR2 by miR-940 mimics. Results. miR-940 expression was decreased significantly in the HCC tissues and the relevant cell lines. miR-940 upregulation suppressed the invasion and migration of HCC cells in vitro. Furthermore, the CXCR2 was downregulated to suppress invasion and migration after miR-940 mimics. Moreover, decreased miR-940 expression was negatively correlated with Edmondson grade (P = 0.008), tumor microsatellite or multiple tumors (P = 0.04), vascular invasion (P = 0.035), and recurrence and metastasis (P = 0.038). Kaplan-Meier analysis demonstrated that decreased miR-940 expression contributed to poor overall survival (P < 0.05). Conclusions. Our findings present that miR-940 acts as a pivotal adaptor of CXCR2 and its transcription downregulated CXCR2 expression to decrease HCC invasion and migration in vitro. Our study suggests that miR-940 may be a novel poor prognostic biomarker for HCC. PMID:27807540

  5. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    PubMed Central

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  6. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  7. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor.

    PubMed

    Marigo, Ilaria; Bosio, Erika; Solito, Samantha; Mesa, Circe; Fernandez, Audry; Dolcetti, Luigi; Ugel, Stefano; Sonda, Nada; Bicciato, Silvio; Falisi, Erika; Calabrese, Fiorella; Basso, Giuseppe; Zanovello, Paola; Cozzi, Emanuele; Mandruzzato, Susanna; Bronte, Vincenzo

    2010-06-25

    Tumor growth is associated with a profound alteration in myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). We showed that among factors produced by various experimental tumors, the cytokines GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of CD8(+) T cells and allow long term acceptance of pancreatic islet allografts. Cytokines inducing MDSCs acted on a common molecular pathway and the immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on the C/EBPbeta transcription factor. Adoptive transfer of tumor antigen-specific CD8(+) T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBPbeta in the myeloid compartment, suggesting that C/EBPbeta is a critical regulator of the immunosuppressive environment created by growing cancers.

  8. Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers.

    PubMed

    Perez, Roberto; Schally, Andrew V; Vidaurre, Irving; Rincon, Ricardo; Block, Norman L; Rick, Ferenc G

    2012-09-01

    This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.

  9. Co-suppression of vitamin C composite nano-drug carrier and its drug delivery to nidus in tumor cells.

    PubMed

    Liu, H Z; Liu, X M; Liu, X C; Zhang, C Z; Liu, H Q

    2016-01-01

    This study aimed to discuss the co-suppression of vitamin C-contained composite nano-drug carrier and its drug delivery to nidus in tumor cells. Amphiphilic polymers PLA-block-PAAA and block polymer PLA-PEG4000-Maleimide, PLA-block-PAAA and PLA-PEG4000-Maleimide composite nano-micelles were prepared, and, PLA-block-PAAA polymer-coated Nile red nano-micelle, PLA-block-PAA and PLA-PEG4000-Maleimide composite nano-micelles as well as paclitaxel-carrying composite nano-micelle in different molar ratios were given stability tests. Lastly, PLA-block-PAAA and PLA-PEG4000-Maleimide composite nano-micelle cancer cells and paclitaxel-carrying composite nano-micelle cancer cells were given toxicity tests. Stability tests showed that self stability of PLA-block-PAAA (63/8) nano-micelle was not sufficient; the stability was good when the molar ratio of PLA-block-PAAA and PLA-PEG4000-Maleimide composite nano-micelle was 3:1; paclitaxel-carrying composite nano-micelle had good stability within 48 hours; PAAA segment had an inhibiting effect on C6 cancer cells and paclitaxel-carrying composite nano-micelle had a strong inhibiting effect also on tumors. After 24 hours, with the continuous release of paclitaxel, the tumor inhibiting effect of paclitaxel-carrying composite nano-micelle enhanced gradually, and the controlled-release of drugs had continuous inhibiting effect on tumor cells. Therefore, PAAA segment and paclitaxel had time-postponed synergistic effect. In conclusion, vitamin C-contained composite nanometer drug carrier materials can deliver anti-cancer drugs to nidus and thus inhibit tumor cells.

  10. Identification of a Novel Calotropis procera Protein That Can Suppress Tumor Growth in Breast Cancer through the Suppression of NF-κB Pathway

    PubMed Central

    Samy, Ramar Perumal; Rajendran, Peramaiyan; Li, Feng; Anandi, Narayana Moorthy; Stiles, Bradley G.; Ignacimuthu, Savarimuthu; Sethi, Gautam; Chow, Vincent T. K.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, improvements in hormonal and cytotoxic therapies have not yet led to a sustained remission or cure. In the present study, we investigated the in vitro and in vivo antitumor activities of a novel Calotropis procera protein (CP-P) isolated from root bark. CP-P protein inhibited the proliferation and induced apoptosis of breast cancer cells through the suppression of nuclear factor kappaB (NF-kB) activation. CP-P, when administered individually or in combination with cyclophosphamide (CYC, 0.2 mg/kg) to rats with 7, 12-dimethyl benz(a)anthracene (DMBA)-induced breast cancer decreased tumor volume significantly without affecting the body weight. To elucidate the anticancer mechanism of CP-P, antioxidant activities such as superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST) and non-enzymatic antioxidant - reduced glutathione (GSH), vitamin E and C generation in the breast were analyzed by various assays. SOD, CAT, GST, GSH, vitamin E and C levels were high in combination-treated groups (CP-P+CYC) versus the CYC alone-treated groups. Also, the combination was more effective in down-regulating the expression of NF-kB-regulated gene products (cyclin D1 and Bcl-2) in breast tumor tissues. Our findings indicate that CP-P possesses significant antitumor activity comparable to a commonly used anticancer drug, cyclophosphamide, and may form the basis of a novel therapy for breast cancer. PMID:23284617

  11. Suppressive effect of liver tumor-promoting activities in rats subjected to combined administration of phenobarbital and piperonyl butoxide.

    PubMed

    Morita, Reiko; Yafune, Atsunori; Shiraki, Ayako; Itahashi, Megu; Akane, Hirotoshi; Nakane, Fumiyuki; Suzuki, Kazuhiko; Shibutani, Makoto; Mitsumori, Kunitoshi

    2013-01-01

    Phenobarbital (PB) is a cytochrome P450 (CYP) 2B inducer, and piperonyl butoxide (PBO) is a CYP1A/2B inducer. These inducers have liver tumor-promoting effects in rats. In this study, we performed a rat two-stage liver carcinogenesis bioassay to examine the tumor-promoting effect of PB and PBO co-administration. Male rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) for initiation. Two weeks after DEN administration, rats were given PB (60 or 120 ppm in drinking water), PBO (1,250 or 2,500 ppm in diet) or 60 ppm PB+1,250 ppm PBO for 6 weeks. One week after the PB/PBO treatment, all rats were subjected to a two-thirds partial hepatectomy. To evaluate the effect of the combined administration, we used two statistical additive models. In the isoadditive model, the average values of the area of GST-P positive foci in the PB+PBO group were significantly lower than those in the High PB or High PBO groups. In the heteroadditive model, the net values of Cyp1a1 mRNA level and microsomal reactive oxygen species (ROS) production in the PB+PBO group were significantly lower than the sum of those in the Low PB or Low PBO groups. On the contrary, there was no interactive effect in the PCNA-positive hepatocyte ratio, mRNA levels of Cyp2b1/2, Gstm3, Gpx2 and Nqo1, and the level of thiobarbituric acid-reactive substances in the PB+PBO group. These results suggest that PB and PBO co-administration causes suppressive effects in liver tumor-promoting activity in rats resulting from inhibited microsomal ROS production because of suppression of CYP1A induction.

  12. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells

    PubMed Central

    CHEN, XI; DONG, XIU-SHUAI; GAO, HAI-YAN; JIANG, YONG-FANG; JIN, YING-LAN; CHANG, YU-YING; CHEN, LI-YAN; WANG, JING-HUA

    2016-01-01

    Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti-cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV-G-NR-U6-shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis-associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti-cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia. PMID:26648539

  13. Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function

    PubMed Central

    Zhang, Hongru; Li, Zheng; Wang, Li; Tian, Gaofei; Tian, Jun; Yang, Zishan; Cao, Guangchao; Zhou, Hong; Zhao, Liqing; Wu, Zhenzhou; Yin, Zhinan

    2017-01-01

    Metastasis followed by the tumor development is the primary cause of death for cancer patients. However, the underlying molecular mechanisms of how the growth of tumor resulted in the immune suppression, especially at the blood-enriched organ such as liver, were largely unknown. In this report, we studied the liver immune response of tumor-bearing (TB) mice using concanavalin A (Con A)-induced hepatitis model. We demonstrated that TB mice displayed an immune suppression phenotype, with attenuated alanine aminotransferase levels and liver damage upon Con A treatment. We also elucidated that large amounts of myeloid-derived suppressor cells (MDSCs) being influx into the liver in TB mice and these MDSCs were essential for liver immune suppression through both depletion and reconstitution approaches. We further determined that these MDSCs selectively suppressed the IFN-γ production deriving from NKT cells through membrane-bound transforming growth factor β (TGF-β). Finally, we defined a tumor-derived TGF-β-triggered CXCL1/2/5- and CXCR2-dependent recruitment of MDSC into the liver. In summary, our results defined a novel mechanism of liver immune suppression triggered by growing living tumor and provided possible therapeutic targets against these MDSCs. PMID:28243237

  14. Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression.

    PubMed

    Katuri, V; Tang, Y; Li, C; Jogunoori, W; Deng, C-X; Rashid, A; Sidawy, A N; Evans, S; Reddy, E P; Mishra, B; Mishra, L

    2006-03-23

    Inactivation of the transforming growth factor-beta (TGF-beta) pathway occurs often in malignancies of the gastrointestinal (GI) system. However, only a fraction of sporadic GI tumors exhibit inactivating mutations in early stages of cancer formation, suggesting that other mechanisms play a critical role in the inactivation of this pathway. Here, we show a wide range of GI tumors, including those of the stomach, liver and colon in elf+/- and elf+/- / Smad4+/- mutant mice. We found that embryonic liver fodrin (ELF), a beta-Spectrin originally identified in endodermal stem/progenitor cells committed to foregut lineage, possesses potent antioncogenic activity and is frequently inactivated in GI cancers. Specifically, E-cadherin accumulation at cell-cell contacts and E-cadherin-beta-catenin-dependent epithelial cell-cell adhesion is disrupted in elf+/- / Smad4+/- mutant gastric epithelial cells, and could be rescued by ectopic expression of full-length elf, but not Smad3 or Smad4. Subcellular fractionation revealed that E-cadherin is expressed mainly at the cell membrane after TGF-beta stimulation. In contrast, elf+/- / Smad4+/- mutant tissues showed abnormal distribution of E-cadherin that could be rescued by overexpression of ELF but not Smad3 or Smad4. Our results identify a group of common lethal malignancies in which inactivation of TGF-beta signaling, which is essential for tumor suppression, is disrupted by inactivation of the ELF adaptor protein.

  15. Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222

    PubMed Central

    Zhao, Xihe; Wang, Ping; Liu, Jing; Zheng, Jian; Liu, Yunhui; Chen, Jiajia; Xue, Yixue

    2015-01-01

    Aberrant expression of noncoding RNAs in glioma cells, including long noncoding RNAs (lncRNAs) and microRNAs, may participate in the progression of glioma. Encoded by Growth Arrest-Specific 5 (GAS5) gene, lncRNA Gas5 was reported to be a negative regulator for survival and proliferation of several cancers. Here, Gas5 is found to be downregulated in glioma specimens and U87 and U251 glioma cell lines. We showed that the introduction of Gas5 by plasmid transfection increased the expression of tumor suppressor Bcl-2-modifying factor (bmf) and Plexin C1 via directly targeting and reducing the expression of miR-222. Downregulated expression of miR-222 inhibited U87 and U251 cell proliferation and promoted the apoptosis by upregulating bmf. As downstream signaling molecules of bmf, Bcl-2 and Bax were involved in the process. Meanwhile, knockdown of miR-222 attenuated U87 and U251 cell migration and invasion by upregulating Plexin C1, and cofilin was a crucial regulator targeted by Plexin C1. Gas5 combined with the knockdown of miR-222 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. In summary, we show that Gas5 suppresses tumor malignancy by downregulating miR-222, which may serve as a promising therapy for glioma. PMID:26370254

  16. Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222.

    PubMed

    Zhao, Xihe; Wang, Ping; Liu, Jing; Zheng, Jian; Liu, Yunhui; Chen, Jiajia; Xue, Yixue

    2015-12-01

    Aberrant expression of noncoding RNAs in glioma cells, including long noncoding RNAs (lncRNAs) and microRNAs, may participate in the progression of glioma. Encoded by Growth Arrest-Specific 5 (GAS5) gene, lncRNA Gas5 was reported to be a negative regulator for survival and proliferation of several cancers. Here, Gas5 is found to be downregulated in glioma specimens and U87 and U251 glioma cell lines. We showed that the introduction of Gas5 by plasmid transfection increased the expression of tumor suppressor Bcl-2-modifying factor (bmf) and Plexin C1 via directly targeting and reducing the expression of miR-222. Downregulated expression of miR-222 inhibited U87 and U251 cell proliferation and promoted the apoptosis by upregulating bmf. As downstream signaling molecules of bmf, Bcl-2 and Bax were involved in the process. Meanwhile, knockdown of miR-222 attenuated U87 and U251 cell migration and invasion by upregulating Plexin C1, and cofilin was a crucial regulator targeted by Plexin C1. Gas5 combined with the knockdown of miR-222 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. In summary, we show that Gas5 suppresses tumor malignancy by downregulating miR-222, which may serve as a promising therapy for glioma.

  17. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression.

    PubMed

    Wei, Wei; Lv, Pi-Ping; Chen, Xiao-Ming; Yue, Zhan-Guo; Fu, Qiang; Liu, Shi-Ying; Yue, Hua; Ma, Guang-Hui

    2013-05-01

    Clinical applications of siRNA are being hindered by poor intracellular uptake and enzymatic degradation. To address these problems, we devised an oral delivery system for telomerase reverse transcriptase siRNA using N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC) nanoparticles (HNP). Both the porous structure and the positive charge of HNP facilitated siRNA encapsulation. The outer coating of HTCC not only protected siRNA from enzymatic degradation, but also improved siRNA permeability in intestine tract. In vivo and in vitro experiments proved that HNP could effectively deliver siRNA to lesion site and further into tumor cells. On the basis of confirming the antitumor activity of HNP:siRNA, we continued to encapsulate a hydrophobic chemotherapeutic drug-paclitaxel (PTX) into HNP to form a "two-in-one" nano-complex (HNP:siRNA/PTX). We demonstrated that HNP:siRNA/PTX could simultaneously ferry siRNA and PTX into tumor cells and increase drug concentration, which, in particular, was much more effective in tumor suppression than that of traditional cocktail therapy. These results suggested that the HNP, as a powerful delivery system for both siRNA and chemotherapeutic drug, would have a far-reaching application in human cancer therapy.

  18. Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2.

    PubMed

    Merino, D; Best, S A; Asselin-Labat, M-L; Vaillant, F; Pal, B; Dickins, R A; Anderson, R L; Strasser, A; Bouillet, P; Lindeman, G J; Visvader, J E

    2015-07-23

    Evasion of cell death is fundamental to the development of cancer and its metastasis. The role of the BCL-2-mediated (intrinsic) apoptotic program in these processes remains poorly understood. Here we have investigated the relevance of the pro-apoptotic protein BIM to breast cancer progression using the MMTV-Polyoma middle-T (PyMT) transgenic model. BIM deficiency in PyMT females did not affect primary tumor growth, but substantially increased the survival of metastatic cells within the lung. These data reveal a role for BIM in the suppression of breast cancer metastasis. Intriguingly, we observed a striking correlation between the expression of BIM and the epithelial to mesenchymal transition transcription factor SNAI2 at the proliferative edge of the tumors. Overexpression and knockdown studies confirmed that these two genes were coordinately expressed, and chromatin immunoprecipitation analysis further revealed that Bim is a target of SNAI2. Taken together, our findings suggest that SNAI2-driven BIM-induced apoptosis may temper metastasis by governing the survival of disseminating breast tumor cells.

  19. Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo.

    PubMed

    Zhao, Tiejun; Sun, Qiang; del Rincon, Sonia V; Lovato, Amanda; Marques, Maud; Witcher, Michael

    2014-01-01

    Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn) has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1) as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP) injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.

  20. Coptisine from Rhizoma Coptidis Suppresses HCT-116 Cells-related Tumor Growth in vitro and in vivo

    PubMed Central

    Huang, Tao; Xiao, Yubo; Yi, Lin; Li, Ling; Wang, Meimei; Tian, Cheng; Ma, Hang; He, Kai; Wang, Yue; Han, Bing; Ye, Xiaoli; Li, Xuegang

    2017-01-01

    Colorectal cancer is one of the most common causes of cancer-related death in humans. Coptisine (COP) is a natural alkaloid from Coptidis Rhizoma with unclear antitumor mechanism. Human colon cancer cells (HCT-116) and xenograft mice were used to systematically explore the anti-tumor activity of COP in this study. The results indicated that COP exhibited remarkably cytotoxic activities against the HCT-116 cells by inducing G1-phase cell cycle arrest and increasing apoptosis, and preferentially inhibited the survival pathway and induced the activation of caspase proteases family of HCT-116 cells. Experimental results on male BALB/c nude mice confirmed that orally administration of COP at high-dose (150 mg/kg) could suppress tumor growth, and may reduce cancer metastasis risk by inhibiting the RAS-ERK pathway in vivo. Taken together, the results suggested that COP may be potential as a novel anti-tumor candidate in the HCT-116 cells-related colon cancer, further studies are still needed to suggest COP for the further use. PMID:28165459

  1. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis.

    PubMed

    Martínez-Iglesias, Olaia; Olmeda, David; Alonso-Merino, Elvira; Gómez-Rey, Sara; González-López, Ana M; Luengo, Enrique; Soengas, María S; Palacios, José; Regadera, Javier; Aranda, Ana

    2016-11-29

    Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.

  2. A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo.

    PubMed

    Niu, Y C; Liu, J C; Zhao, X M; Wu, X X

    2009-01-01

    Previous studies indicated that the low molecular weight polysaccharide extracts from Agaricus blazei are potential antitumor agents or adjuvant in tumor treatment. In this study, we investigated the antitumor activity of LMPAB, a low molecular weight polysaccharide isolated from Agaricus blazei, and the molecular mechanisms of its antitumor activity. The antitumor effect of LMPAB was examined using mouse sarcoma 180 (S180) xenograft models. Antiangiogenic effect of LMPAB was determined by chicken embryo chorioallantoic membrane (CAM) angiogenesis and Matrigel-induced neovascularization in vivo models. The mRNA and protein levels of vascular endothelial growth factor (VEGF) were assessed using real-time reverse transcription-polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assays. Tumor inhibitory rates in the S180 xenograft models were 9.7, 23.9, and 33.0%, respectively, after administration of LMPAB at dose of 50, 100, and 200 mg/kg/day for 2 weeks. LMPAB also inhibited angiogenesis in the CAM model and Matrigel-induced neovascularization in C57BL/6 mice. The mRNA and protein levels of VEGF in tumor tissues were significantly down-regulated in the BALB/c mice received LMPAB treatment. Furthermore, significant down-regulation of serum VEGF levels was also observed in the mice. Our data suggest that LMPAB might be a promising agent for tumor therapy, and the antitumor and antiangiogenic effects of LMPAB may be related with down-regulation of VEGF.

  3. Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A4

    PubMed Central

    Brigatte, Patrícia; Faiad, Odair Jorge; Ferreira Nocelli, Roberta Cornélio; Landgraf, Richardt G.; Palma, Mario Sergio; Cury, Yara; Curi, Rui; Sampaio, Sandra Coccuzzo

    2016-01-01

    We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A4. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A4 and its natural analogue 15-epi-LXA4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A4 and 15-epi-LXA4, which might inhibit both tumor growth and formation of new vessels via FPRs. PMID:27190493

  4. The C-terminus of IGFBP-5 suppresses tumor growth by inhibiting angiogenesis

    PubMed Central

    Hwang, Jae Ryoung; Cho, Young-Jae; Lee, Yoonna; Park, Youngmee; Han, Hee Dong; Ahn, Hyung Jun; Lee, Je-Ho; Lee, Jeong-Won

    2016-01-01

    Insulin-like growth factor-binding protein 5 (IGFBP-5) plays a role in cell growth, differentiation, and apoptosis. In this study, we found that IGFBP5 was markedly downregulated in ovarian cancer tissue. We investigated the functional significance of IGFBP-5 as a tumor suppressor. To determine functional regions of IGFBP-5, truncation mutants were prepared and were studied the effect on tumor growth. Expression of C-terminal region of IGFBP-5 significantly decreased tumor growth in an ovarian cancer xenograft. A peptide derived from the C-terminus of IGFBP-5 (BP5-C) was synthesized to evaluate the minimal amino acid motif that retained anti-tumorigenic activity and its effect on angiogenesis was studied. BP5-C peptide decreased the expression of VEGF-A and MMP-9, phosphorylation of Akt and ERK, and NF-kB activity, and inhibited angiogenesis in in vitro and ex vivo systems. Furthermore, BP5-C peptide significantly decreased tumor weight and angiogenesis in both ovarian cancer orthotopic xenograft and patient-derived xenograft mice. These results suggest that the C-terminus of IGFBP-5 exerts anti-cancer activity by inhibiting angiogenesis via regulation of the Akt/ERK and NF-kB–VEGF/MMP-9 signaling pathway, and might be considered as a novel angiogenesis inhibitor for the treatment of ovarian cancer. PMID:28008951

  5. Subcellular Localization and Ser-137 Phosphorylation Regulate Tumor-suppressive Activity of Profilin-1*

    PubMed Central

    Diamond, Marc I.; Cai, Shirong; Boudreau, Aaron; Carey, Clifton J.; Lyle, Nicholas; Pappu, Rohit V.; Swamidass, S. Joshua; Bissell, Mina; Piwnica-Worms, Helen; Shao, Jieya

    2015-01-01

    The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer. PMID:25681442

  6. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis

    PubMed Central

    Martínez-Iglesias, Olaia; Olmeda, David; Alonso-Merino, Elvira; Gómez-Rey, Sara; González-López, Ana M.; Luengo, Enrique; Soengas, María S.; Palacios, José; Regadera, Javier; Aranda, Ana

    2016-01-01

    Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted. PMID:27806339

  7. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    PubMed Central

    2010-01-01

    Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and

  8. The cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids.

    PubMed

    Nakaoka, Toshiaki; Saito, Yoshimasa; Shimamoto, Yuriko; Muramatsu, Toshihide; Kimura, Masaki; Kanai, Yae; Saito, Hidetsugu

    2017-01-16

    Tumor stem cells with self-renewal and multipotent capacity play critical roles in the initiation and progression of cancer. Recently, a new 3D culture system known as organoid culture has been developed, allowing Lgr5-positive stem cells to form organoids that resemble the properties of original tissues. Here we established organoids derived from intestinal tumors of Apc(min/+) mice and normal intestinal epithelia of C57BL/6J mice and investigated the roles of microRNAs (miRNAs) in intestinal tumor organoids. The results of microarray analyses revealed that expression of the cluster miRNAs, miR-194 and miR-215, was markedly suppressed in intestinal tumor organoids in comparison with organoids derived from normal intestinal epithelia. Enforced expression of miR-194 resulted in inhibition of E2f3, a positive regulator of the cell cycle and growth suppression of intestinal tumor organoids. In addition, enforced expression of miR-215 suppressed the cancer stem cell signature through down-regulation of intestinal stem cell markers including Lgr5. These findings indicate that the miRNA cluster including miR-194 and miR-215 plays important roles in suppressing the growth and attenuating the stemness of intestinal tumor organoids. This article is protected by copyright. All rights reserved.

  9. Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling

    PubMed Central

    Tan, Xiang-Lin; Bhattacharyya, Kalyan K.; Dutta, Shamit K.; Bamlet, William R.; Rabe, Kari G.; Wang, Enfeng; Smyrk, Thomas C.; Oberg, Ann L.; Petersen, Gloria M.; Mukhopadhyay, Debabrata

    2015-01-01

    Objectives To further elucidate anti-cancer mechanisms of metformin again pancreatic cancer, we evaluated inhibitory effects of metformin on pancreatic tumorigenesis in a genetically-engineered mouse model, and investigated its possible anti-inflammatory and anti-angiogenesis effects. Methods Six-week old LSL-KrasG12D/+;Trp53F2-10 mice (10 per group) were administered once daily intraperitoneally with saline (control) for one week or metformin (125 mg/kg) for one week (Met_1wk) or three weeks (Met_3wk) prior to tumor initiation. All mice continued with their respective injections for six weeks post-tumor initiation. Molecular changes were evaluated by quantitative polymerase chain reaction (PCR), immunohistochemistry, and Western blotting. Results At euthanasia, pancreatic tumor volume in Met_1wk (median, 181.8 mm3) and Met_3wk (median, 137.9 mm3) groups was significantly lower than the control group (median, 481.1 mm3) (P = 0.001 and 0.0009, respectively). No significant difference was observed between Met_1wk and Met_3wk groups (P = 0.51). These results were further confirmed using tumor weight and tumor burden measurements. Furthermore, metformin treatment decreased the phosphorylation of nuclear factor κB (NFκB) and signal transducer and activator of transcription 3 (STAT3) as well as the expression of Sp1 transcription factor and several NFκB-regulated genes. Conclusions Metformin may inhibit pancreatic tumorigenesis by modulating multiple molecular targets in inflammatory pathways. PMID:25875801

  10. MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer

    PubMed Central

    Wang, Lufei; He, Jin; Xu, Hongmei; Xu, Longjie; Li, Na

    2016-01-01

    A series of recent studies suggested that miR-143 might involve in the tumorigenesis and metastasis of various cancer types. However, the biological function and underlying mechanisms of miR-143 in human epithelial ovarian carcinoma (EOC) remain unknown. Therefore, this study aimed to investigate the miR-143 expression and its clinical diagnosis significance in patients suffering EOC and to analyze its role and underlying molecular mechanism in EOC. Our result showed that the expression levels of miR-143 were downregulated in EOC tissues and cell lines, was associated with International Federation of Gynaecology and Obstetrics (FIGO) stage, pathological grade and lymph node metastasis (all P < 0.01) . Overexpression of miR-143 significantly inhibited EOC cell proliferation, migration, and invasion. Furthermore, computational algorithm combined with luciferase reporter assays identified connective tissue growth factor (CTGF) as the direct target of miR-143 in EOC cells. The expression level of CTGF was significantly increased in EOC tissues, was inversely correlated with miR-143 expression in clinical EOC tissues. Knockdown of CTGF mimicked the suppression effect induced by miR-143 overexpression. Restoration of CTGF expression partially reversed the suppression effect induced by miR-143 overexpression. These results suggested that miR-143 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing CTGF expression. PMID:27398154

  11. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  12. Post-transcriptional Mechanisms Contribute to the Suppression of the ErbB3 Negative Regulator Protein Nrdp1 in Mammary Tumors*

    PubMed Central

    Ingalla, Ellen Q.; Miller, Jamie K.; Wald, Jessica H.; Workman, Heather C.; Kaur, Rouminder P.; Yen, Lily; Fry, William H. D.; Borowsky, Alexander D.; Young, Lawrence J. T.; Sweeney, Colleen; Carraway, Kermit L.

    2010-01-01

    The ErbB2 and ErbB3 receptor tyrosine kinases act synergistically to promote cellular properties associated with tumor development. Previous studies indicate that endogenous ErbB3 protein is markedly elevated in mouse mammary tumors induced by transgenic ErbB2 overexpression. However, this occurs in the absence of elevated ErbB3 transcript, indicating that post-transcriptional regulatory mechanisms play crucial roles in suppressing ErbB3 protein in normal tissue. Our previous studies also demonstrate that protein levels of Nrdp1, an E3 ubiquitin ligase that targets ErbB3 for degradation, are markedly suppressed in tumors from ErbB2 transgenic animals relative to normal tissue. Here we demonstrate that transgenic expression of Nrdp1 cDNA in the mouse mammary gland is not sufficient to suppress elevated ErbB3 levels or tumor initiation and growth in ErbB2 transgenic mice. Unexpectedly, Nrdp1 protein is absent in tumors from Nrdp1/ErbB2 bigenic mice, and real time PCR analysis indicates that Nrdp1 protein levels are suppressed post-transcriptionally. Nrdp1 protein is more resistant to proteasome-dependent degradation when exogenously expressed in cultured MCF10A nontransformed human breast epithelial cells than in breast tumor cells. These observations indicate that mammary tumors use potent post-transcriptional mechanisms to suppress Nrdp1 protein levels and that protein destabilization may play a central role in Nrdp1 loss in tumors. PMID:20628057

  13. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3.

    PubMed

    Lin, Kun-Yang; Kao, Shih-Han; Lai, Chun-Ming; Chen, Ciao-Ting; Wu, Chang-Yi; Hsu, Hwei-Jan; Wang, Wen-Der

    2015-12-11

    Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation.

  14. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3*

    PubMed Central

    Lin, Kun-Yang; Kao, Shih-Han; Lai, Chun-Ming; Chen, Ciao-Ting; Wu, Chang-Yi; Hsu, Hwei-Jan; Wang, Wen-Der

    2015-01-01

    Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation. PMID:26475862

  15. JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress

    PubMed Central

    Kostecka, A; Sznarkowska, A; Meller, K; Acedo, P; Shi, Y; Mohammad Sakil, H A; Kawiak, A; Lion, M; Królicka, A; Wilhelm, M; Inga, A; Zawacka-Pankau, J

    2014-01-01

    Hyperproliferating cancer cells produce energy mainly from aerobic glycolysis, which results in elevated ROS levels. Thus aggressive tumors often possess enhanced anti-oxidant capacity that impedes many current anti-cancer therapies. Additionally, in ROS-compromised cancer cells ubiquitin proteasome system (UPS) is often deregulated for timely removal of oxidized proteins, thus enabling cell survival. Taken that UPS maintains the turnover of factors controlling cell cycle and apoptosis – such as p53 or p73, it represents a promising target for pharmaceutical intervention. Enhancing oxidative insult in already ROS-compromised cancer cells appears as an attractive anti-tumor scenario. TAp73 is a bona fide tumor suppressor that drives the chemosensitivity of some cancers to cisplatin or γ-radiation. It is an important drug target in tumors where p53 is lost or mutated. Here we discovered a novel synergistic mechanism leading to potent p73 activation and cancer cell death by oxidative stress and inhibition of 20S proteasomes. Using a small-molecule inhibitor of 20S proteasome and ROS-inducer – withaferin A (WA), we found that WA-induced ROS activates JNK kinase and stabilizes phase II anti-oxidant response effector NF-E2-related transcription factor (NRF2). This results in activation of Nrf2 target – NQO1 (NADPH quinone oxidoreductase), and TAp73 protein stabilization. The observed effect was ablated by the ROS scavenger – NAC. Concurrently, stress-activated JNK phosphorylates TAp73 at multiple serine and threonine residues, which is crucial to ablate TAp73/MDM2 complex and to promote TAp73 transcriptional function and induction of robust apoptosis. Taken together our data demonstrate that ROS insult in combination with the inhibition of 20S proteasome and TAp73 activation endows synthetic lethality in cancer cells. Thus, our results may enable the establishment of a novel pharmacological strategy to exploit the enhanced sensitivity of tumors to elevated ROS

  16. Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma

    PubMed Central

    Yoshino, Hirofumi; Yamasaki, Takeshi; Yamada, Yasutoshi; Nohata, Nijiro; Fuse, Miki; Nakagawa, Masayuki; Enokida, Hideki

    2012-01-01

    MicroRNAs (miRNA) are non-coding RNAs, approximately 22 nucleotides in length, which function as post-transcriptional regulators. A large body of evidence indicates that miRNAs regulate the expression of cancer-related genes involved in proliferation, migration, invasion, and metastasis. The aim of this study was to identify novel cancer networks in renal cell carcinoma (RCC) based on miRNA expression signatures obtained from RCC clinical specimens. Expression signatures revealed that 103 miRNAs were significantly downregulated (< 0.5-fold change) in RCC specimens. Functional screening (cell proliferation assays) was performed to identify tumor suppressive activities of 20 downregulated miRNAs. Restoration of mature miRNAs in cancer cells showed that 14 miRNAs (miR-1285, miR-206, miR-1, miR-135a, miR-429, miR-200c, miR-1291, miR-133b, miR-508-3p, miR-360-3p, miR-509-5p, miR-218, miR-335, miR-1255b and miR-1285) markedly inhibited cancer cell proliferation, suggesting that these miRNAs were candidate tumor suppressive miRNAs in RCC. We focused on miR-1285 because it significantly inhibited cancer cell proliferation, invasion, and migration following its transfection. We addressed miR-1285-regulated cancer networks by using genome-wide gene expression analysis and bioinformatics. The data showed that transglutaminase 2 (TGM2) was directly regulated by miR-1285. Silencing of the target gene demonstrated significant inhibition of cell proliferation and invasion in the RCC cells. Furthermore, immunohistochemistry showed that TGM2 expression levels in RCC specimens were significantly higher than those in normal renal tissues. Downregulation of tumor suppressive miR-1285, which targets oncogenic genes including TGM2, might contribute to RCC development. Thus, miR-1285 modulates a novel molecular target and provides new insights into potential mechanisms of RCC oncogenesis. PMID:22294552

  17. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    PubMed Central

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-01-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects. PMID:27457182

  18. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed

    PubMed Central

    Kardos, Jordan; Chai, Shengjie; Mose, Lisle E.; Selitsky, Sara R.; Krishnan, Bhavani; Saito, Ryoichi; Iglesia, Michael D.; Milowsky, Matthew I.; Parker, Joel S.; Kim, William Y.; Vincent, Benjamin G.

    2016-01-01

    We report the discovery of a claudin-low molecular subtype of high-grade bladder cancer that shares characteristics with the homonymous subtype of breast cancer. Claudin-low bladder tumors were enriched for multiple genetic features including increased rates of RB1, EP300, and NCOR1 mutations; increased frequency of EGFR amplification; decreased rates of FGFR3, ELF3, and KDM6A mutations; and decreased frequency of PPARG amplification. While claudin-low tumors showed the highest expression of immune gene signatures, they also demonstrated gene expression patterns consistent with those observed in active immunosuppression. This did not appear to be due to differences in predicted neoantigen burden, but rather was associated with broad upregulation of cytokine and chemokine levels from low PPARG activity, allowing unopposed NFKB activity. Taken together, these results define a molecular subtype of bladder cancer with distinct molecular features and an immunologic profile that would, in theory, be primed for immunotherapeutic response. PMID:27699256

  19. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  20. p53 dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer

    PubMed Central

    Tschaharganeh, Darjus F; Xue, Wen; Calvisi, Diego F; Evert, Matthias; Michurina, Tatyana V; Dow, Lukas E; Banito, Ana; Katz, Sarah F; Kastenhuber, Edward R; Weissmueller, Susann; Huang, Chun-Hao; Lechel, Andre; Andersen, Jesper B; Capper, David; Zender, Lars; Longerich, Thomas; Enikolopov, Grigori; Lowe, Scott W

    2014-01-01

    Summary The p53 tumor suppressor coordinates a series of anti-proliferative responses that restrict the expansion of malignant cells and, as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor cell-associated protein nestin in an Sp1/3 transcription factor-dependent manner and that nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer. PMID:25083869

  1. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity.

    PubMed

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-26

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  2. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T cell activity in the lung tumor microenvironment

    PubMed Central

    Koyama, Shohei; Akbay, Esra A.; Li, Yvonne Y.; Aref, Amir R.; Skoulidis, Ferdinandos; Herter-Sprie, Grit S.; Buczkowski, Kevin A.; Liu, Yan; Awad, Mark M.; Denning, Warren L.; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R.; Wistuba, Ignacio I.; Soucheray, Margaret; Thai, Tran C.; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D.; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E.; Shimamura, Takeshi; Hellmann, Matthew D.; Heymach, John V.; Hodi, F. Stephen; Freeman, Gordon J.; Barbie, David A.; Dranoff, Glenn; Hammerman, Peter S.; Wong, Kwok-Kin

    2016-01-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether inactivation of tumor suppressor genes such as STK11/LKB1 exert similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T cell suppressive effects, along with a corresponding increase in the expression of T cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1 inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1 targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL-6 neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1 mutated tumors with PD-1 targeting antibody therapies. PMID:26833127

  3. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.

    PubMed

    Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y; Aref, Amir R; Skoulidis, Ferdinandos; Herter-Sprie, Grit S; Buczkowski, Kevin A; Liu, Yan; Awad, Mark M; Denning, Warren L; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R; Wistuba, Ignacio I; Soucheray, Margaret; Thai, Tran; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E; Shimamura, Takeshi; Hellmann, Matthew D; Heymach, John V; Hodi, F Stephen; Freeman, Gordon J; Barbie, David A; Dranoff, Glenn; Hammerman, Peter S; Wong, Kwok-Kin

    2016-03-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies.

  4. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells.

    PubMed

    Ross, Heather H; Rahman, Maryam; Levkoff, Lindsay H; Millette, Sebastien; Martin-Carreras, Teresa; Dunbar, Erin M; Reynolds, Brent A; Laywell, Eric D

    2011-12-01

    Thymidine analogs (TAs) are synthetic nucleosides that incorporate into newly synthesized DNA. Halogenated pyrimidines (HPs), such as bromodeoxyuridine (BrdU), are a class of TAs that can be detected with antibodies and are commonly used for birthdating individual cells and for assessing the proliferative index of cell populations. It is well established that HPs can act as radiosensitizers when incorporated into DNA chains, but they are generally believed not to impair normal cell function in the absence of secondary stressors. However, we and others have shown that HP incorporation leads to a sustained suppression of cell cycle progression in mammalian cells, resulting in cellular senescence in somatic cells. In addition, we have shown that HP incorporation results in delayed tumor progression in a syngeneic rat model of glioma. Here we examine ethynyldeoxyuridine (EdU), a newly developed and alkylated TA, for its anti-cancer activity, both in vitro and in vivo. We show that EdU, like HPs, leads to a severe reduction in the proliferation rate of normal and transformed cells in vitro. Unlike HPs, however, EdU incorporation also causes DNA damage resulting in the death of a substantial subset of treated cells. When administered over an extended time as a monotherapy to mice bearing subcutaneous xenografts of human glioblastoma multiforme tumors, EdU significantly reduces tumor volume and increases survival without apparent significant toxicity. These results, combined with the fact that EdU readily crosses the blood-brain barrier, support the continued investigation of EdU as a potential therapy for malignant brain tumors.

  5. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas.

    PubMed

    Qi, Wenqing; Liu, Xiaobing; Cooke, Laurence S; Persky, Daniel O; Miller, Thomas P; Squires, Matthew; Mahadevan, Daruka

    2012-06-15

    Aurora kinases are oncogenic serine/threonine kinases that play key roles in regulating the mitotic phase of the eukaryotic cell cycle. Auroras are overexpressed in numerous tumors including B-cell non-Hodgkin's lymphomas and are validated oncology targets. AT9283, a pan-aurora inhibitor inhibited growth and survival of multiple solid tumors in vitro and in vivo. In this study, we demonstrated that AT9283 had potent activity against Aurora B in a variety of aggressive B-(non-Hodgkin lymphoma) B-NHL cell lines. Cells treated with AT9283 exhibited endoreduplication confirming the mechanism of action of an Aurora B inhibitor. Also, treatment of B-NHL cell lines with AT9283 induced apoptosis in a dose and time dependent manner and inhibited cell proliferation with an IC(50) < 1 μM. It is well known that inhibition of auroras (A or B) synergistically enhances the effects of microtubule targeting agents such as taxanes and vinca alkaloids to induce antiproliferation and apoptosis. We evaluated whether AT9283 in combination with docetaxel is more efficient in inducing apoptosis than AT9283 or docetaxel alone. At very low doses (5 nM) apoptosis was doubled in the combination (23%) compared to AT9283 or docetaxel alone (10%). A mouse xenograft model of mantle cell lymphoma demonstrated that AT9283 at 15 mg/kg and docetaxel (10 mg/kg) alone had modest anti-tumor activity. However, AT9283 at 20 mg/kg and AT9283 (15 or 20 mg/kg) plus docetaxel (10 mg/kg) demonstrated a statistically significant tumor growth inhibition and enhanced survival. Together, our results suggest that AT9283 plus docetaxel may represent a novel therapeutic strategy in B-cell NHL and warrant early phase clinical trial evaluation.

  6. Suppression of homologous recombination sensitizes human tumor cells to IGF-1R inhibition.

    PubMed

    Lodhia, Kunal A; Gao, Shan; Aleksic, Tamara; Esashi, Fumiko; Macaulay, Valentine M

    2015-06-15

    Inhibition of type 1 IGF receptor (IGF-1R) sensitizes to DNA-damaging cancer treatments, and delays repair of DNA double strand breaks (DSBs) by non-homologous end-joining and homologous recombination (HR). In a recent screen for mediators of resistance to IGF-1R inhibitor AZ12253801, we identified RAD51, required for the strand invasion step of HR. These findings prompted us to test the hypothesis that IGF-1R-inhibited cells accumulate DSBs formed at endogenous DNA lesions, and depend on residual HR for their repair. Indeed, initial experiments showed time-dependent accumulation of γH2AX foci in IGF-1R -inhibited or -depleted prostate cancer cells. We then tested effects of suppressing HR, and found that RAD51 depletion enhanced AZ12253801 sensitivity in PTEN wild-type prostate cancer cells but not in cells lacking functional PTEN. Similar sensitization was induced in prostate cancer cells by depletion of BRCA2, required for RAD51 loading onto DNA, and in BRCA2(-/-) colorectal cancer cells, compared with isogenic BRCA2(+/-) cells. We also assessed chemical HR inhibitors, finding that RAD51 inhibitor BO2 blocked RAD51 focus formation and sensitized to AZ12253801. Finally, we tested CDK1 inhibitor RO-3306, which impairs HR by inhibiting CDK1-mediated BRCA1 phosphorylation. R0-3306 suppressed RAD51 focus formation consistent with HR attenuation, and sensitized prostate cancer cells to IGF-1R inhibition, with 2.4-fold reduction in AZ12253801 GI50 and 13-fold reduction in GI80. These data suggest that responses to IGF-1R inhibition are enhanced by genetic and chemical approaches to suppress HR, defining a population of cancers (PTEN wild-type, BRCA mutant) that may be intrinsically sensitive to IGF-1R inhibitory drugs.

  7. Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3.

    PubMed

    Lv, J; Liu, C; Huang, H; Meng, L; Jiang, B; Cao, Y; Zhou, Z; She, T; Qu, L; Wei Song, S; Shou, C

    2013-08-01

    Phosphatase of regenerating liver (PRL)-3 is highly expressed in multiple cancers and has important roles in cancer development. Some small-molecule inhibitors and antibodies targeting PRL-3 have been recently reported to inhibit tumor growth effectively. To determine whether PRL-3-targeted DNA vaccination can induce immune response to prevent or inhibit the tumor growth, we established mouse D2F2 breast cancer cells expressing PRL-3 (D2F2/PRL-3) and control cells (D2F2/NC) with lentivirus, and constructed pVAX1-Igκ-PRL-3 plasmid (named as K-P3) as DNA vaccine to immunize BALB/c mice. We found that the K-P3 vaccine delivered by gene gun significantly prevented the growth of D2F2/PRL-3 compared with pVAX1-vector (P<0.01), but not of D2F2/NC, and improved the survival of D2F2/PRL-3-innoculated mice. Both PRL-3-targeted cytotoxic T lymphocytes (CTLs) and T-helper type 1 cell immune response (production of high levels of interferon-γ and tumor necrosis factor-α) were found to be involved in the preventive effect. Furthermore, PRL-3-targeted DNA immunization inhibited tumor growth of D2F2/PRL-3 cells in mice. We also evaluated the potential of immunization with PRL-3 protein, but no significant therapeutic or preventive effect was obtained on tumor growth. To enhance the immunity of PRL-3, we incorporated different molecular adjuvants, such as Mycobacterium tuberculosis heat-shock protein, CTL antigen 4 and M. tuberculosis T-cell stimulatory epitope (MT), into K-P3 vaccine for expressing the fusion proteins. We found that these adjuvant molecules did not significantly improve the antitumor activity of PRL-3 vaccine, but enhanced the production of PRL-3 antibodies in immunized mice. Summarily, our findings demonstrate that PRL-3-targeted DNA vaccine can generate significantly preventive and therapeutic effects on the growth of breast cancer expressing PRL-3 through the induction of cellular immune responses to PRL-3.

  8. The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability.

    PubMed

    Aqeilan, Rami I; Abu-Remaileh, Muhannad; Abu-Odeh, Mohammad

    2014-12-01

    The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.

  9. JQ1 suppresses tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer

    PubMed Central

    Qiu, Haifeng; Li, Jing; Clark, Leslie H.; Jackson, Amanda L.; Zhang, Lu; Guo, Hui; Kilgore, Joshua E.; Gehrig, Paola A.; Zhou, Chunxiao; Bae-Jump, Victoria L.

    2016-01-01

    Overexpression of c-Myc is associated with worse outcomes in endometrial cancer, indicating that c-Myc may be a promising target for endometrial cancer therapy. A novel small molecule, JQ1, has been shown to block BRD4 resulting in inhibition of c-Myc expression and tumor growth. Thus, we investigated whether JQ1 can inhibit endometrial cancer growth in cell culture and xenograft models. In PTEN-positive endometrial cancer cells, JQ1 significantly suppressed cell proliferation via induction of G1 phase arrest and apoptosis in a dose-dependent manner, accompanied by a sharp decline in cyclin D1 and CDK4 protein expression. However, PTEN-negative endometrial cancer cells exhibited intrinsic resistance to JQ1, despite significant c-Myc inhibition. Moreover, we found that PTEN and its downstream PI3K/AKT signaling targets were modulated by JQ1, as evidenced by microarray analysis. Silencing of PTEN in PTEN-positive endometrial cancer cells resulted in resistance to JQ1, while upregulation of PTEN in PTEN-negative endometrial cancer cells increased sensitivity to JQ1. In xenografts models of PTEN-positive and PTEN-knock-in endometrial cancer, JQ1 significantly upregulated the expression of PTEN, blocked the PI3K/AKT signaling pathway and suppressed tumor growth. These effects were attenuated in PTEN-negative and PTEN-knockdown xenograft models. Thus, JQ1 resistance appears to be highly associated with the status of PTEN expression in endometrial cancer. Our findings suggest that targeting BRD4 using JQ1 might serve as a novel therapeutic strategy in PTEN-positive endometrial cancers. PMID:27572308

  10. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu.

    PubMed

    Fry, Elizabeth A; Taneja, Pankaj; Inoue, Kazushi

    2017-02-01

    The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.

  11. TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway

    PubMed Central

    Qi, Li; Lu, Zhong; Sun, Yong-Hong; Song, Hai-Tao; Xu, Wei-Kang

    2016-01-01

    Prostate carcinoma is a devastating disease which is characterized by insidious early symptoms, rapid progression and a poor prognosis. Tripartite motif-containing protein 16 (TRIM16) was identified as an estrogen- and antiestrogen-regulated gene in epithelial cells stably expressing estrogen receptors. The protein encoded by this gene contains two B-box domains and a coiled-coiled region that are characteristic of the B-box zinc finger protein family. Proteins belonging to this family have been reported to be involved in a variety of biological processes including cell growth, differentiation and pathogenesis. TRIM16 expression has been detected in most tissues. However, the funtions of this gene remain to be elucidated. In the present study, immunohistochemical staining revealed that the expression of TRIM16 was decreased in prostate adenocarcinoma compared with that in normal prostate tissues. The patients with high TRIM16-expressing tumors had a significantly greater survival than those with low TRIM16-expressing tumors. Western blot analysis showed that TRIM16 was downregulated in distant metastatic cancer tissues compared with that in non-distant metastatic cancer tissues. The overexpression of TRIM16 inhibited the migration and invasion of prostate cancer cells as well as inhibiting the epithelial-to-mesenchymal transition process, whereas TRIM16 depletion enhanced these processes. Moreover, TRIM16 inhibited the Snail signaling pathway. The silencing of Snail by small interfering RNA was performed in order to determine the role of Snail in the TRIM16-mediated tumor phenotype. Taken together, these findings suggest that TRIM16 may be an important molecular target which may aid in the design of novel therapeutic agents for prostate cancer. PMID:27748839

  12. Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth.

    PubMed

    Sher, Y-P; Chang, C-M; Juo, C-G; Chen, C-T; Hsu, J L; Lin, C-Y; Han, Z; Shiah, S-G; Hung, M-C

    2013-02-28

    There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer.

  13. E2f8 mediates tumor suppression in postnatal liver development

    PubMed Central

    Kent, Lindsey N.; Rakijas, Jessica B.; Pandit, Shusil K.; Westendorp, Bart; Chen, Hui-Zi; Huntington, Justin T.; Tang, Xing; Bae, Sooin; Srivastava, Arunima; Senapati, Shantibhusan; Martin, Chelsea K.; Cuitino, Maria C.; Perez, Miguel; Clouse, Julian M.; Chokshi, Veda; Shinde, Neelam; Kladney, Raleigh; Sun, Daokun; Perez-Castro, Antonio; Matondo, Ramadhan B.; Nantasanti, Sathidpak; Mokry, Michal; Machiraju, Raghu; Fernandez, Soledad; Rosol, Thomas J.; Pohar, Kamal S.; Pipas, James M.; Schmidt, Carl R.; de Bruin, Alain

    2016-01-01

    E2F-mediated transcriptional repression of cell cycle–dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including hepatocellular carcinoma (HCC). Here, we evaluated the function of the atypical repressor genes E2f7 and E2f8 in adult liver physiology. Using several loss-of-function alleles in mice, we determined that combined deletion of E2f7 and E2f8 in hepatocytes leads to HCC. Temporal-specific ablation strategies revealed that E2f8’s tumor suppressor role is critical during the first 2 weeks of life, which correspond to a highly proliferative stage of postnatal liver development. Disruption of E2F8’s DNA binding activity phenocopied the effects of an E2f8 null allele and led to HCC. Finally, a profile of chromatin occupancy and gene expression in young and tumor-bearing mice identified a set of shared targets for E2F7 and E2F8 whose increased expression during early postnatal liver development is associated with HCC progression in mice. Increased expression of E2F8-specific target genes was also observed in human liver biopsies from HCC patients compared to healthy patients. In summary, these studies suggest that E2F8-mediated transcriptional repression is a critical tumor suppressor mechanism during postnatal liver development. PMID:27454291

  14. Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma

    SciTech Connect

    Yue, Dongli; Fan, Qingxia; Chen, Xinfeng; Li, Feng; Wang, Liping; Huang, Lan; Dong, Wenjie; Chen, Xiaoqi; Zhang, Zhen; Liu, Jinyan; Wang, Fei; Wang, Meng; Zhang, Bin [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan; The Department of Hematology and others

    2014-03-10

    Hepatocyte growth factor activator inhibitor type 2 (SPINT2), a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor suppressor gene silenced by promoter methylation. We aimed to investigate whether SPINT2 might act as an esophageal squamous cell carcinoma (ESCC) tumor suppressor gene. Four ESCC cell lines, Fifty-two ESCC tissues and twenty-nine neighboring non-cancerous tissues were included in this study. The expression of SPINT2 was monitored by real time PCR. Bisulfite genomic sequencing and methylation-specific PCR were used to analyze methylation status. The effect of SPINT2 on cell proliferation and apoptosis in EC109 and EC9706 cells was observed by CCK-8 assay and flow cytometric analysis. We found that silencing of SPINT2 was associated with promoter methylation in ESCC cell lines. The densely methylated SPINT2 promoter region was confirmed by bisulfite genomic sequencing. Ectopic expression of SPINT2 inhibited cell proliferation through inducing cell apoptosis in vitro. Furthermore, methylation-specific PCR analysis revealed that SPINT2 promoter methylation was prominent in carcinoma tissues (52.08%) compared with neighboring non-cancerous tissues (22.58%). Kaplan–Meier analysis showed that patients with SPINT2 hypermethylation had shorter survival time. The tumor suppressor gene of SPINT2 is commonly silenced by promoter hypermethylation in human ESCC and SPINT2 hypermethylation is correlated with poor overall survival, implicating SPINT2 is an underlying prognostic marker for human ESCC. - Highlights: • We firstly found SPINT2 gene may be transcriptionally repressed by promoter hypermethylation in ESCC cells. • SPINT2 overexpressing cells induced proliferation inhibition through promoting apoptosis. • mRNA expression of SPINT2 was significantly higher in ESCC tissues than in neighboring non-cancerous tissues. • Promoter hypermethylation of SPINT2 is significantly linked to TNM stage and poor overall survival.

  15. Frondoside A Suppressive Effects on Lung Cancer Survival, Tumor Growth, Angiogenesis, Invasion, and Metastasis

    PubMed Central

    Attoub, Samir; Arafat, Kholoud; Gélaude, An; Al Sultan, Mahmood Ahmed; Bracke, Marc; Collin, Peter; Takahashi, Takashi; Adrian, Thomas E.; De Wever, Olivier

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition) at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days) significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1–0.5 µM) also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer. PMID:23308143

  16. Molecular Basis for BRCA2-mediated DNA Repair and Breast Tumor Suppression

    DTIC Science & Technology

    2009-10-01

    breaks are mediated by the RAD51 recombinase . In catalyzing recombination reactions, RAD51 must first form a right-handed helical filament, termed the...analogs and poly(ADP-ribose) polymerase inhibitors, exploit the incapability of BRCA2-deficient cells to rely on HR for the repair of DSBs. Apparently...Instability and DNA repair in Taos, New Mexico (March 1-5, 2009). I am a coauthor on manuscript “Enhancement of the RAD51 Recombinase by the Tumor Suppressor

  17. A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer; photo by Richard Frederickson, Staff Photographer Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS through a specific cascade of proteins, as reported in a recent article in Molecular and Cellular Biology by Jacqueline Salotti, Ph.D., and colleagues in the Eukaryotic Transcriptional Regulation Section of the Mouse Cancer Genetics Program, Center for Cancer Research (CCR).

  18. Ameloblastin induces tumor suppressive phenotype and enhances chemosensitivity to doxorubicin via Src-Stat3 inactivation in osteosarcoma

    PubMed Central

    Ando, Toshinori; Kudo, Yasusei; Iizuka, Shinji; Tsunematsu, Takaaki; Umehara, Hanako; Shrestha, Madhu; Matsuo, Toshihiro; Kubo, Tadahiko; Shimose, Shouji; Arihiro, Koji; Ogawa, Ikuko; Ochi, Mitsuo; Takata, Takashi

    2017-01-01

    Ameloblastin (AMBN), the most abundant non-amelogenin enamel matrix protein, plays a role in ameloblast differentiation. Previously, we found that AMBN promoted osteogenic differentiation via the interaction between CD63 and integrin β1, leading to the inactivation of Src; however, how AMBN affects the malignant behavior of osteosarcoma is still unclear. Osteosarcoma affects the bone and is associated with poor prognosis because of the high rate of pulmonary metastases and drug resistance. Here we demonstrated that stable overexpression of AMBN induced apoptosis and suppressed colony formation and cell migration via the inactivation of Src-Stat3 pathway in human osteosarcoma cells. Moreover, AMBN induced chemosensitivity to doxorubicin. Thus, AMBN induced a tumor suppressive phenotype and chemosensitivity to doxorubicin via the AMBN-Src-Stat3 axis in osteosarcoma. Indeed, immunohistochemical expression of AMBN was significantly correlated with better outcome of osteosarcoma patients. Our findings suggest that AMBN can be a new prognostic marker and therapeutic target for osteosarcoma combined with conventional doxorubicin treatment. PMID:28054649

  19. Characterization of Critical Domains within the Tumor Suppressor CASZ1 Required for Transcriptional Regulation and Growth Suppression

    PubMed Central

    Virden, Ryan A.

    2012-01-01

    CASZ1 is a zinc finger (ZF) transcription factor that is critical for controlling the normal differentiation of subtypes of neural and cardiac muscle cells. In neuroblastoma tumors, loss of CASZ1 is associated with poor prognosis and restoration of CASZ1 function suppresses neuroblastoma tumorigenicity. However, the key domains by which CASZ1 transcription controls developmental processes and neuroblastoma tumorigenicity have yet to be elucidated. In this study, we show that loss of any one of ZF1 to ZF4 resulted in a 58 to 79% loss in transcriptional activity, as measured by induction of tyrosine hydroxylase promoter-luciferase activity, compared to that of wild-type (WT) CASZ1b. Mutation of ZF5 or deletion of the C-terminal sequence of amino acids (aa) 728 to 1166 (a truncation of 38% of the protein) does not significantly alter transcriptional function. A series of N-terminal truncations reveals a critical transcriptional activation domain at aa 31 to 185 and a nuclear localization signal at aa 23 to 29. Soft agar colony formation assays and xenograft studies show that WT CASZ1b is more active in suppressing neuroblastoma growth than CASZ1b with a ZF4 mutation or a deletion of aa 31 to 185. This study identifies key domains needed for CASZ1b to regulate gene transcription. Furthermore, we establish a link between loss of CASZ1b transcriptional activity and attenuation of CASZ1b-mediated inhibition of neuroblastoma growth and tumorigenicity. PMID:22331471

  20. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras

    SciTech Connect

    Shin, Ki-Hyuk; Bae, Susan D.; Hong, Hannah S.; Kim, Reuben H.; Kang, Mo K.; Park, No-Hee

    2011-01-28

    Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biological role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.

  1. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics

    NASA Astrophysics Data System (ADS)

    Yan, Zhiqiang; Zhan, Changyou; Wen, Ziyi; Feng, Linglin; Wang, Fei; Liu, Yu; Yang, Xiangkun; Dong, Qing; Liu, Min; Lu, Weiyue

    2011-10-01

    Lymphatic metastasis can be greatly promoted by metastases growth and lymphangiogenesis in lymph nodes (LNs). LyP-1, a cyclic peptide, is able to specifically bind with tumor cells and tumor lymphatics in metastatic LNs. This work aimed to use LyP-1-conjugated liposomes (L-LS) loaded with doxorubicin (DOX) (L-LS/DOX) to suppress lymphatic metastasis by inhibiting both metastases and tumor lymphatics in LNs. L-LS were prepared and exhibited sizes around 90 nm and spherical morphology as characterized by transmission electron microscopy. The in vitro cellular studies showed that LyP-1 modification obviously increased liposome uptake by MDA-MB-435 tumor cells and enhanced the cytotoxicity of liposomal DOX. A popliteal and iliac LN metastases model was successfully established by subcutaneous inoculation of tumor cells to nude mice. The immunofluorescence staining analysis indicated that LyP-1 modification enabled specific binding of liposome with tumor lymphatics and enhanced the destroying effect of liposomal DOX on tumor lymphatics. The in vivo fluorescence imaging and pharmacodynamic studies showed that LyP-1 modification increased liposome uptake by metastatic LNs and that L-LS/DOX significantly decreased metastatic LN growth and LN metastasis rate. These results suggested that L-LS/DOX were an effective delivery system for suppressing lymphatic metastasis by simultaneously inhibiting LN metastases and tumor lymphatics.

  2. ShRNA-mediated silencing of the RFC3 gene suppress ovarian tumor cells proliferation

    PubMed Central

    Shen, Huimin; Xu, Juan; Zhao, Shanshan; Shi, Haijuan; Yao, Shuzhong; Jiang, Nan

    2015-01-01

    Ovarian carcinoma is one of the most common and lethal malignancies in the world. Replication factor C (RFC) plays an important role in DNA replication, DNA damage repair, and checkpoint control during cell cycle progression in all eukaryotes. Our previous study found that one unit of RFC complex, RFC3, is over-expressed in ovarian tumor tissues. However, its role in the development of ovarian carcinoma remains unclear. Western blot and real-time RT-PCR analysis were used to measure the expression of RFC3 in ovarian cancer cells. Lentivirus-mediated RFC3-specific shRNA was used to knock down RFC3 expression in ovarian cancer cells. Furthermore, the effect of RFC3 on tumor cellular proliferation and growth were examined, respectively. The expression level of RFC3 was remarkably up-regulated in ovarian cancer OVCAR-3 cells. With MTS and cell growth assays, the viability and proliferation of RFC3 knocking-down OVCAR-3 cell line were shown to be effectively restrained. Down-regulation of RFC3 expression arrested the cell cycle of OVCAR-3 cell in the S-phase and induced apoptosis. This study suggests that RFC3 may play an important role in the the process of ovarian carcinoma, and that it may be a potential biological treatment target in the future. PMID:26464638

  3. Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor.

    PubMed

    Mathew, Grinu; Hannan, Abdul; Hertzler-Schaefer, Kristina; Wang, Fen; Feng, Gen-Sheng; Zhong, Jian; Zhao, Jean J; Downward, Julian; Zhang, Xin

    2016-11-15

    Deficiency in PTEN (phosphatase and tensin homolog deleted on chromosome 10) is the underlying cause of PTEN hamartoma tumor syndrome and a wide variety of human cancers. In skin epidermis, we have previously identified an autocrine FGF signaling induced by loss of Pten in keratinocytes. In this study, we demonstrate that skin hyperplasia requires FGF receptor adaptor protein Frs2α and tyrosine phosphatase Shp2, two upstream regulators of Ras signaling. Although the PI3-kinase regulatory subunits p85α and p85β are dispensable, the PI3-kinase catalytic subunit p110α requires interaction with Ras to promote hyperplasia in Pten-deficient skin, thus demonstrating an important cross-talk between Ras and PI3K pathways. Furthermore, genetic and pharmacological inhibition of Ras-MAPK pathway impeded epidermal hyperplasia in Pten animals. These results reveal a positive feedback loop connecting Pten and Ras pathways and suggest that FGF-activated Ras-MAPK pathway is an effective therapeutic target for preventing skin tumor induced by aberrant Pten signaling.

  4. Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma.

    PubMed

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma.

  5. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression.

    PubMed

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-05-03

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D).We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen.In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2.

  6. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation.

    PubMed

    Aylon, Yael; Gershoni, Anat; Rotkopf, Ron; Biton, Inbal E; Porat, Ziv; Koh, Anna P; Sun, Xiaochen; Lee, Youngmin; Fiel, Maria-Isabel; Hoshida, Yujin; Friedman, Scott L; Johnson, Randy L; Oren, Moshe

    2016-04-01

    The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.

  7. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    PubMed Central

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  8. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation

    PubMed Central

    Aylon, Yael; Gershoni, Anat; Rotkopf, Ron; Biton, Inbal E.; Porat, Ziv; Koh, Anna P.; Sun, Xiaochen; Lee, Youngmin; Fiel, Maria-Isabel; Hoshida, Yujin; Friedman, Scott L.; Johnson, Randy L.; Oren, Moshe

    2016-01-01

    The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. PMID:27013235

  9. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  10. WWOX gene and gene product: tumor suppression through specific protein interactions.

    PubMed

    Salah, Zaidoun; Aqeilan, Rami; Huebner, Kay

    2010-02-01

    The WWOX gene, an archetypal fragile gene, encompasses a chromosomal fragile site at 16q23.2, and encodes the approximately 46-kDa Wwox protein, with WW domains that interact with a growing list of interesting proteins. If the function of a protein is defined by the company it keeps, then Wwox is involved in numerous important signal pathways for bone and germ-cell development, cellular and animal growth and death, transcriptional control and suppression of cancer development. Because alterations to genes at fragile sites are exquisitely sensitive to replication stress-induced DNA damage, there has been an ongoing scientific discussion questioning whether such gene expression alterations provide a selective advantage for clonal expansion of neoplastic cells, and a parallel discussion on why important genes would be present at sites that are susceptible to inactivation. We offer some answers through a description of known WWOX functions.

  11. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    PubMed

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.

  12. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function

    PubMed Central

    Cao, Shuanzhu; Wang, Yanzhou; Li, Jinquan; Lv, Mingliang; Niu, Haitao; Tian, Yong

    2016-01-01

    The human metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA associated with metastasis, and is a favorable prognostic factor for lung cancer. Recent studies have shown that MALAT1 plays an important role in many malignancies. However, little is known about the role of MALAT1 in glioma. In this study, we determined the expression of MALAT1 and explored its prognostic value in glioma. Further, we investigated the regulatory mechanism of MALAT1 in glioma progression. Our results showed that the expression of MALAT1 was significantly decreased in glioma specimens than in noncancerous brain tissues. In addition, MALAT1 expression was significantly correlated with tumor size, WHO grade and Karnofsky Performance Status (KPS), and was an independent prognostic factor for survival of glioma patients. The gain- and loss-of-function experiments revealed miR-155 down-regulation by MALAT1, resulting in reciprocal effects. Further, MALAT1 suppresses cell viability by down-regulating miR-155. FBXW7 mRNA was identified as a direct target of miR-155 in glioma. The miR-155-induced tumorigenesis is mediated through FBXW7 function. Finally, we found that MALAT1 positively regulated FBXW7 expression, which was responsible for glioma progression mediated by MALAT1-miR-155 pathway. In conclusion, our data demonstrated that MALAT1 may be a novel prognostic biomarker and therapeutic target in glioma. Restoration of MALAT1 levels represents a novel therapeutic strategy against glioma. PMID:27904771

  13. MiR-613 suppresses retinoblastoma cell proliferation, invasion, and tumor formation by targeting E2F5.

    PubMed

    Zhang, Yiting; Zhu, Xinyue; Zhu, Xiaomin; Wu, Yan; Liu, Yajun; Yao, Borui; Huang, Zhenping

    2017-03-01

    Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3'-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.

  14. Tumor-suppressive miR-99a inhibits cell proliferation via targeting of TNFAIP8 in osteosarcoma cells

    PubMed Central

    Xing, Beiguang; Ren, Cong

    2016-01-01

    Osteosarcoma (OS) has been described as the most common primary malignant bone tumor in adolescents and young adults worldwide. MicroRNAs (miRNAs) have demonstrated playing critical role on the cellular biology and development of cancer. However, the essential mechanisms of miRNAs underlying osteosarcoma oncogenesis and progression have not fully understood. In this study, we found that the expression of miR-99a was repressed in OS tissues and cells using qRT-PCR assays. We demonstrated that overexpression of miR-99a inhibits OS cell viability and growth with MTT, colony formation and in vivo mice experiment. In addition, FACS and Annexin V assays identified that miR-99a can induce OS cell cycle progression and cell apoptosis. Furthermore, we demonstrated that TNFAIP8 is a direct target of miR-99a and is upregulated in OS samples and cells. Knockdown of TNFAIP8 significantly attenuated OS cell viability and growth through inhibiting cell cycle and inducing cell apoptosis in vitro and in vivo. These findings establish that miR-99a plays a significant tumor-suppressing role in OS and proposes it as a potential diagnostic and therapeutic target in managing OS metastases. PMID:27158394

  15. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs.

    PubMed

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-03-18

    with EPQ, and H & E staining showed no morphological changes below 500 μg/mL EPQ. These results suggest that EPQ has therapeutic potential in the treatment of ovarian cancer by significantly suppressing ovarian tumor incidence and growth and lung metastasis, and by inhibiting MMP-9 secretion and invasion of A-2780 ovarian cancer cells.

  16. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs

    PubMed Central

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-01-01

    with EPQ, and H & E staining showed no morphological changes below 500 μg/mL EPQ. These results suggest that EPQ has therapeutic potential in the treatment of ovarian cancer by significantly suppressing ovarian tumor incidence and growth and lung metastasis, and by inhibiting MMP-9 secretion and invasion of A-2780 ovarian cancer cells. PMID:28335466

  17. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer

    PubMed Central

    Wen, Wei; Liang, Wei; Wu, Jun; Kowolik, Claudia M.; Buettner, Ralf; Scuto, Anna; Hsieh, Meng-Yin; Hong, Hao; Brown, Christine E.; Forman, Stephen J.; Horne, David; Morgan, Robert; Wakabayashi, Mark; Dellinger, Thanh H.; Han, Ernest S.; Yim, John H.; Jove, Richard

    2015-01-01

    JAK/STAT3 is one of the major signaling pathways that is aberrantly activated in ovarian cancer and associated with tumor progression and poor prognosis in ovarian cancer patients. In this study, we evaluated the therapeutic potential of targeting JAK/STAT3 signaling in ovarian cancer using a peritoneal dissemination mouse model. We developed this mouse model by injecting a metastatic human ovarian cancer cell line, SKOV3-M-Luc, into the peritoneal cavity of immunodeficient mice. This model displayed a phenotype similar to late stage ovarian cancer, including extensive peritoneal metastasis and ascites production. The constitutive activation of STAT3 in human ovarian cancer cells appeared to be mediated by an autocrine-cytokine loop involving the IL-6 family of cytokines and JAK1 kinase. shRNA-mediated knockdown of JAK1 or STAT3 in ovarian cancer cells led to reduced tumor growth, decreased peritoneal dissemination and diminished ascites production, suggesting a critical role of STAT3 in ovarian cancer progression. Similar results were obtained when a small-molecule inhibitor (JAKi) of the JAK1 kinase was used to treat ovarian cancer in this model. In addition, we found that the expression level of IL-6 was correlated with activation of STAT3 in ovarian cancer cells both in vitro and in vivo, suggesting a potential application of IL-6 as a biomarker. Altogether, our results demonstrate that targeting JAK1/STAT3, using shRNA knockdown or a small molecule inhibitor, effectively suppressed ovarian tumor progression and, therefore, could be a potential novel therapeutic approach for treating advanced ovarian cancer. PMID:25319391

  18. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer.

    PubMed

    Wen, Wei; Liang, Wei; Wu, Jun; Kowolik, Claudia M; Buettner, Ralf; Scuto, Anna; Hsieh, Meng-Yin; Hong, Hao; Brown, Christine E; Forman, Stephen J; Horne, David; Morgan, Robert; Wakabayashi, Mark; Dellinger, Thanh H; Han, Ernest S; Yim, John H; Jove, Richard

    2014-12-01

    JAK/STAT3 is one of the major signaling pathways that is aberrantly activated in ovarian cancer and associated with tumor progression and poor prognosis in patients with ovarian cancer. In this study, we evaluated the therapeutic potential of targeting JAK/STAT3 signaling in ovarian cancer using a peritoneal dissemination mouse model. We developed this mouse model by injecting a metastatic human ovarian cancer cell line, SKOV3-M-Luc, into the peritoneal cavity of immunodeficient mice. This model displayed a phenotype similar to late-stage ovarian cancer, including extensive peritoneal metastasis and ascites production. The constitutive activation of STAT3 in human ovarian cancer cells appeared to be mediated by an autocrine cytokine loop involving the IL6 family of cytokines and JAK1 kinase. shRNA-mediated knockdown of JAK1 or STAT3 in ovarian cancer cells led to reduced tumor growth, decreased peritoneal dissemination, and diminished ascites production, suggesting a critical role of STAT3 in ovarian cancer progression. Similar results were obtained when a small-molecule inhibitor (JAKi) of the JAK1 kinase was used to treat ovarian cancer in this model. In addition, we found that the expression level of IL6 was correlated with activation of STAT3 in ovarian cancer cells both in vitro and in vivo, suggesting a potential application of IL6 as a biomarker. Altogether, our results demonstrate that targeting JAK1/STAT3, using shRNA knockdown or a small-molecule inhibitor, effectively suppressed ovarian tumor progression and, therefore, could be a potential novel therapeutic approach for treating advanced ovarian cancer.

  19. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation

    PubMed Central

    Stojanova, Angelina; Tu, William B.; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C.; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z.

    2016-01-01

    ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions. PMID:27267444

  20. ADAMTS6 suppresses tumor progression via the ERK signaling pathway and serves as a prognostic marker in human breast cancer

    PubMed Central

    Xie, Keqi; Wang, Zhu; Wang, Yanping; Zheng, Hong

    2016-01-01

    A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is involved in tumor development. However, how ADAMTS6 influences cancer remains unknown. We investigated the biological function and clinical implications of ADAMTs6 in breast cancer (BC). Its functional significance in BC cell lines was confirmed by ADAMTs6 overexpression or downregulation both in vitro and in vivo studies. Enhanced ADAMTS6 expression suppressed cell migration, invasion, and tumorigenesis, whereas knockdown promoted these characteristics. The extracellular signal-regulated kinase (ERK) pathway was partially involved in ADAMTS6-mediated inhibition of BC development, and miR-221-3p was identified as a predicted target for ADAMTS6. Results from the luciferase assay confirmed that miR-221-3p directly inhibited ADAMTS6 expression by binding its 3′-untranslated region. In addition, immunohistochemistry data from specimens from 182 BC patients showed that high ADAMTS6 expression was significantly correlated with favorable disease-free survival (DFS, p = 0.045). Subgroup analysis of patients with ER positive, PR positive or HER-2 negative tumors revealed that high ADAMTS6 expression more strongly extended DFS compared to low expression (p = 0.004, p = 0.009, p = 0.017). Multivariate analyses confirmed that ADAMTS6 expression was an independent risk factor for DFS (p = 0.011). Together, these data demonstrate that ADAMTS6 inhibits tumor development by regulating the ERK pathway via binding of miR-221-3p. Thus, its expression may be a potential prognostic biomarker for BC. PMID:27542224

  1. Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells

    PubMed Central

    Ota, Akinobu; Sawada, Yumi; Karnan, Sivasundaram; Wahiduzzaman, Md; Inoue, Tadahisa; Kobayashi, Yuji; Yamamoto, Takaya; Ishii, Norimitsu; Ohashi, Tomohiko; Nakade, Yukiomi; Sato, Ken; Itoh, Kiyoaki; Konishi, Hiroyuki; Hosokawa, Yoshitaka; Yoneda, Masashi

    2017-01-01

    ABSTRACT Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we first report on the role of Δ40p53α in HCC cell lines. In the TP53+/Δ40 cell clones, clonogenic activity and cell survival dramatically decreased, whereas the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive cells and p21 (also known as WAF1, CIP1 and CDKN1A) expression significantly increased. These observations were clearly attenuated in the TP53+/Δ40 cell clones after Δ40p53α knockdown. In addition, exogenous Δ40p53 expression significantly suppressed cell growth in HCC cells with wild-type TP53, and in those that were mutant or null for TP53. Notably, Δ40p53α-induced tumor suppressor activity was markedly attenuated in cells expressing the hot-spot mutant Δ40p53α-R175H, which lacks the transcription factor activity of p53. Moreover, Δ40p53α expression was associated with increased full-length p53 protein expression. These findings enhance the understanding of the molecular pathogenesis of HCC and show that Δ40p53α acts as an important tumor suppressor in HCC cells. PMID:27980070

  2. Merlin's tumor suppression linked to inhibition of the E3 ubiquitin ligase CRL4DCAF1

    PubMed Central

    Li, Wei

    2010-01-01

    The mechanism by which the FERM domain protein Merlin, encoded by the tumor suppressor NF2, restrains cell proliferation is poorly understood. Prior studies have suggested that Merlin exerts its antimitogenic effect by interacting with multiple signaling proteins located at or near the plasma membrane. We have recently observed that Merlin translocates into the nucleus and binds to and inhibits the E3 ubiquitin ligase CRL4DCAF1. Genetic evidence indicates that inactivation of Merlin induces oncogenic gene expression, hyperproliferation, and tumorigenicity by unleashing the activity of CRL4DCAF1. In addition to providing a potential explanation for the diverse effects that loss of Merlin exerts in multiple cell types, these findings suggest that compounds inhibiting CRL4DCAF1 may display therapeutic efficacy in Neurofibromatosis type 2 and other cancers driven by Merlin inactivation. PMID:21084862

  3. Knockdown of PKM2 Suppresses Tumor Growth and Invasion in Lung Adenocarcinoma

    PubMed Central

    Sun, Hong; Zhu, Anyou; Zhang, Lunjun; Zhang, Jie; Zhong, Zhengrong; Wang, Fengchao

    2015-01-01

    Accumulating evidence shows that activity of the pyruvate kinase M2 (PKM2) isoform is closely related to tumorigenesis. In this study, we investigated the relationship betweenPKM2 expression, tumor invasion, and the prognosis of patients with lung adenocarcinoma. We retrospectively analyzed 65 cases of patients with lung adenocarcinoma who were divided into low and a high expression groups based on PKM2immunohistochemical staining. High PKM2 expression was significantly associated with reduced patient survival. We used small interfering RNA (siRNA) technology to investigate the effect of targeted PKM2-knockout on tumor growth at the cellular level. In vitro, siRNA-mediated PKM2-knockdown significantly inhibited the proliferation, glucose uptake (25%), ATP generation (20%) and fatty acid synthesis of A549 cells, while the mitochondrial respiratory capacity of the cells increased (13%).Western blotting analysis showed that PKM2-knockout significantly inhibited the expression of the glucose transporter GLUT1 and ATP citrate lyase, which is critical for fatty acid synthesis. Further Western blotting analysis showed that PKM2-knockdown inhibited the expression of matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor (VEGF), which are important in degradation of the extracellular matrix and angiogenesis, respectively. These observations show that PKM2 activates both glycolysis and lipid synthesis, thereby regulating cell proliferation and invasion. This information is important in elucidating the mechanisms by which PKM2 influences the growth and metastasis of lung adenocarcinoma at the cellular and molecular level, thereby providing the basic data required for the development of PKM2-targeted gene therapy. PMID:26501265

  4. Multifunctional properties of chicken embryonic prenatal mesenchymal stem cells- pluripotency, plasticity, and tumor suppression.

    PubMed

    Bhuvanalakshmi, G; Arfuso, Frank; Dharmarajan, Arun; Warrier, Sudha

    2014-12-01

    The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis, and loss/gain of function experiments. In the present study, we assessed and characterized bone marrow derived mesenchymal stem cells from prenatal day 13 chicken embryos (chBMMSCs) and determined some novel properties. After assessing the mesenchymal stem cell (MSC) properties of these cells by the presence of their signature markers (CD 44, CD 73, CD 90, CD 105, and vimentin), we ascertained a very broad spectrum of multipotentiality as these MSCs not only differentiated into the classic tri-lineages of MSCs but also into ectodermal, endodermal, and mesodermal lineages such as neuron, hepatocyte, islet cell, and cardiac. In addition to wide plasticity, we detected the presence of several pluripotent markers such as Oct4, Sox2, and Nanog. This is the first study characterizing prenatal chBMMSCs and their ability to not only differentiate into mesenchymal lineages but also into all the germ cell layer lineages. Furthermore, our studies indicate that prenatal chBMMSCs derived from the chick provide an excellent model for multi-lineage development studies because of their broad plasticity and faithful reproduction of MSC traits as seen in the human. Here, we also present evidence for the first time that media derived from prenatal chBMMSC cultures have an anti-tumorigenic, anti-migratory, and pro-apoptotic effect on human tumors cells acting through the Wnt-ß-catenin pathway. These data confirm that chBMMSCs are enriched with factors in their secretome that are able to destroy tumor cells. This suggests a commonality of properties of MSCs across species between human and chicken.

  5. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    PubMed

    Nantasanti, Sathidpak; Toussaint, Mathilda J M; Youssef, Sameh A; Tooten, Peter C J; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  6. Interleukin-5 induces tumor suppression by peritoneal exudate cells in mice.

    PubMed

    Nakashima, Y; Mita, S; Takatsu, K; Ogawa, M

    1993-09-01

    The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 microgram/day) from day -5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days -10 to -1 was used as opposed to -5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1 microgram/day, from day -10 to -1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC104E cells, they could reject Meth-A sarcoma cells but not MOPC104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augmented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.

  7. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.

    PubMed

    Ozao-Choy, Junko; Ma, Ge; Kao, Johnny; Wang, George X; Meseck, Marcia; Sung, Max; Schwartz, Myron; Divino, Celia M; Pan, Ping-Ying; Chen, Shu-Hsia

    2009-03-15

    In tumor-bearing hosts, myeloid-derived suppressor cells (MDSC) and T regulatory cells (Treg) play important roles in immune suppression, the reversal of which is vitally important for the success of immune therapy. We have shown that ckit ligand is required for MDSC accumulation and Treg development. We hypothesized that sunitinib malate, a receptor tyrosine kinase inhibitor, could reverse MDSC-mediated immune suppression and modulate the tumor microenvironment, thereby improving the efficacy of immune-based therapies. Treatment with sunitinib decreased the number of MDSC and Treg in advanced tumor-bearing animals. Furthermore, it not only reduced the suppressive function of MDSCs but also prevented tumor-specific T-cell anergy and Treg development. Interestingly, sunitinib treatment resulted in reduced expression of interleukin (IL)-10, transforming growth factor-beta, and Foxp3 but enhanced expression of Th1 cytokine IFN-gamma and increased CTL responses in isolated tumor-infiltrating leukocytes. A significantly higher percentage and infiltration of CD8 and CD4 cells was detected in tumors of sunitinib-treated mice when compared with control-treated mice. More importantly, the expression of negative costimulatory molecules CTLA4 and PD-1 in both CD4 and CD8 T cells, and PDL-1 expression on MDSC and plasmacytoid dendritic cells, was also significantly decreased by sunitinib treatment. Finally, sunitinib in combination with our immune therapy protocol (IL-12 and 4-1BB activation) significantly improves the long-term survival rate of large tumor-bearing mice. These data suggest that sunitinib can be used to reverse immune suppression and as a potentially useful adjunct for enhancing the efficacy of immune-based cancer therapy for advanced malignancies.

  8. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.

    PubMed

    Lefort, Karine; Ostano, Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, G Paolo; Chiorino, Giovanna

    2016-07-26

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.

  9. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer

    PubMed Central

    Lefort, Karine; Ostano, Gian Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, Gian Paolo; Chiorino, Giovanna

    2016-01-01

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer. PMID:27384993

  10. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    PubMed

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (P<0.05). The inhibitory effect of salinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (P<0.05). Salinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (P<0.05). Therefore, the present study indicated that salinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  11. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10.

    PubMed

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P; Salter, E Alan; Wierzbicki, Andrzej; Keeton, Adam B; Piazza, Gary A

    2015-09-29

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs.

  12. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10

    PubMed Central

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C.; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P.; Salter, E. Alan; Wierzbicki, Andrzej; Keeton, Adam B.; Piazza, Gary A.

    2015-01-01

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs. PMID:26299804

  13. MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma

    SciTech Connect

    Martin, Alissa; Jones, Aunica; Bryar, Paul J.; Mets, Marilyn; Weinstein, Joanna; Zhang, Gang; Laurie, Nikia A.

    2013-11-01

    Highlights: •We validate miR-449a/b expression in primary human retinoblastomas and cell lines. •Exogenous miRs-449a/b inhibited proliferation in retinoblastoma cell lines. •Exogenous miRs-449a/b increased apoptosis in retinoblastoma cell lines. •miRs-449a/b could serve as viable therapeutic targets for retinoblastoma treatment. -- Abstract: Retinoblastoma is the most common pediatric cancer of the eye. Currently, the chemotherapeutic treatments for retinoblastoma are broad-based drugs such as vincristine, carboplatin, or etoposide. However, therapies targeted directly to aberrant signaling pathways may provide more effective therapy for this disease. The purpose of our study is to illustrate the relationship between the expressions of miRs-449a and -449b to retinoblastoma proliferation and apoptosis. We are the first to confirm an inhibitory effect of miR-449a and -449b in retinoblastoma by demonstrating significantly impaired proliferation and increased apoptosis of tumor cells when these miRNAs are overexpressed. This study suggests that these miRNAs could serve as viable therapeutic targets for retinoblastoma treatment.

  14. Contribution of Soft Substrates to Malignancy and Tumor Suppression during Colon Cancer Cell Division

    PubMed Central

    Rabineau, Morgane; Kocgozlu, Leyla; Dujardin, Denis; Senger, Bernard; Haikel, Youssef; Voegel, Jean-Claude; Freund, Jean-Noel; Schaaf, Pierre; Lavalle, Philippe; Vautier, Dominique

    2013-01-01

    In colon cancer, a highly aggressive disease, progression through the malignant sequence is accompanied by increasingly numerous chromosomal rearrangements. To colonize target organs, invasive cells cross several tissues of various elastic moduli. Whether soft tissue increases malignancy or in contrast limits invasive colon cell spreading remains an open question. Using polyelectrolyte multilayer films mimicking microenvironments of various elastic moduli, we revealed that human SW480 colon cancer cells displayed increasing frequency in chromosomal segregation abnormalities when cultured on substrates with decreasing stiffness. Our results show that, although decreasing stiffness correlates with increased cell lethality, a significant proportion of SW480 cancer cells did escape from the very soft substrates, even when bearing abnormal chromosome segregation, achieve mitosis and undergo a new cycle of replication in contrast to human colonic HCoEpiC cells which died on soft substrates. This observation opens the possibility that the ability of cancer cells to overcome defects in chromosome segregation on very soft substrates could contribute to increasing chromosomal rearrangements and tumor cell aggressiveness. PMID:24167628

  15. Chrysin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB.

    PubMed

    Li, Xin; Huang, Qing; Ong, Choon-Nam; Yang, Xing-Fen; Shen, Han-Ming

    2010-07-01

    Chrysin (5,7-dihydroxyflavone) is a natural flavonoid commonly found in many plants. The anti-cancer property of chrysin has been demonstrated although the molecular mechanisms remain to be further elucidated. In the present study, we found that, pretreatment with chrysin greatly sensitized various human cancer cells to tumor necrosis factor-alpha (TNFalpha)-induced apoptosis. In the search of the molecular mechanisms responsible for the sensitization effect of chrysin, we discovered that such sensitization is closely associated with the inhibitory effect of chrysin on TNFalpha-mediated nuclear transcription factor-kappaB (NF-kappaB) activation. Pretreatment with chrysin inhibited TNFalpha-induced degradation of Inhibitor of kappaB (IkappaB) protein and subsequent nuclear translocation of p65. As a result, chrysin suppressed the expression of NF-kappaB-targeted anti-apoptotic gene, c-FLIP-L. The role of c-FLIP-L was further confirmed by its ectopic expression, which significantly protected cell death induced by combined treatment with chrysin and TNFalpha. Data from this study thus reveal a novel function of chrysin and enhance the value of chrysin as an anti-cancer agent.

  16. 3-Bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth

    PubMed Central

    WANG, TING-AN; ZHANG, XIAO-DONG; GUO, XING-YU; XIAN, SHU-LIN; LU, YUN-FEI

    2016-01-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213

  17. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    PubMed

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  18. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats.

    PubMed

    Fujii, Yuta; Segawa, Risa; Kimura, Masayuki; Wang, Liyun; Ishii, Yuji; Yamamoto, Ryuichi; Morita, Reiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-09-25

    To investigate the protective effect of α-lipoic acid (a-LA) on the hepatocarcinogenic process promoted by thioacetamide (TAA), we used a two-stage liver carcinogenesis model in N-diethylnitrosamine (DEN)-initiated and TAA-promoted rats. We examined the modifying effect of co-administered a-LA on the liver tissue environment surrounding preneoplastic hepatocellular lesions, with particular focus on hepatic macrophages and the mechanism behind the decrease in apoptosis of cells surrounding preneoplastic hepatocellular lesions during the early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in the liver. Co-administration with a-LA suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) hepatic macrophages as well as the number of CD3(+) lymphocytes. These effects were also suppressed by a-LA. Transcript levels of some inflammation-related genes were upregulated by TAA and downregulated by a-LA in real-time RT-PCR analysis. Outside the GST-P(+) foci, a-LA reduced the numbers of apoptotic cells, active caspase-8(+) cells and death receptor (DR)-5(+) cells. These results suggest that hepatic macrophages producing proinflammatory factors may be activated in TAA-induced tumor promotion. a-LA may suppress tumor-promoting activity by suppressing the activation of these macrophages and the subsequent inflammatory responses. Furthermore, a-LA may suppress tumor-promoting activity by suppressing the DR5-mediated extrinsic pathway of apoptosis and the subsequent regeneration of liver cells outside GST-P(+) foci.

  19. Targeted Inhibition of Heat Shock Protein 90 Suppresses Tumor Necrosis Factor–α and Ameliorates Murine Intestinal Inflammation

    PubMed Central

    Collins, Colm B.; Strassheim, Derek; Aherne, Carol M.; Yeckes, Alyson R.; Jedlicka, Paul; de Zoeten, Edwin F.

    2015-01-01

    Inflammatory bowel diseases are chronic intestinal inflammatory diseases thought to reflect a dysregulated immune response. Although antibody-based inhibition of tumor necrosis factor-α (TNF-α) has provided relief to many inflammatory bowel diseases patients, these therapies are either ineffective in a patient subset or lose their efficacy over time, leaving an unmet need for alternatives. Given the critical role of the heat shock response in regulating inflammation, this study proposed to define the impact of selective inhibition of heat shock protein 90 (HSP90) on intestinal inflammation. Using multiple preclinical mouse models of inflammatory bowel diseases, we demonstrate a potent anti-inflammatory effect of selective inhibition of the HSP90 C-terminal ATPase using the compound novobiocin. Novobiocin-attenuated dextran sulfate sodium-induced colitis and CD45RBhigh adoptive-transfer colitis through the suppression of inflammatory cytokine secretion, including TNF-α. In vitro assays demonstrate that CD4+ T cells treated with novobiocin produced significantly less TNF-α measured by intracellular cytokine staining and by enzyme-linked immunosorbent assay. This corresponded to significantly decreased nuclear p65 translocation by Western blot and a decrease in nuclear factor-κB luciferase activity in Jurkat T cells. Finally, to verify the anti-TNF action of novobiocin, 20-week-old TNFΔARE mice were treated for 2 weeks with subcutaneous administration of novobiocin. This model has high levels of circulating TNF-α and exhibits spontaneous transmural segmental ileitis. Novobiocin treatment significantly reduced inflammatory cell infiltrate in the ileal lamina propria. HSP90 inhibition with novobiocin offers a novel method of inflammatory cytokine suppression without potential for the development of tolerance that limits current antibody-based methods. PMID:24552830

  20. Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha.

    PubMed

    Lang, Charles H; Frost, Robert A

    2007-01-01

    Inhibition of translational efficiency is responsible at least in part for the sepsis-induced decrease in protein synthesis observed in skeletal muscle. Moreover, infusion of the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) into naive rats produces a comparable decrement. Therefore, the purpose of the present study was to determine whether inhibition of TNF action under in vivo conditions could prevent the sepsis-induced decrease in translation initiation observed in the postabsorptive state. To address this aim, sepsis was produced by cecal ligation and puncture (CLP) and rats were studied in the fasted condition 20 to 24 hours thereafter. Both septic and time-matched nonseptic control rats were pretreated with TNF-binding protein (TNF(BP)) before CLP or sham surgery to neutralize endogenously produced TNF. Sepsis altered the distribution of eukaryotic initiation factor 4E (eIF4E) in the gastrocnemius by increasing the amount associated with 4E-BP1 (inactive complex) and decreasing the amount bound to eIF4G (active complex). This change in eIF4E availability was associated with a decreased phosphorylation of 4E-BP1. Furthermore, the phosphorylation of ribosomal protein S6 and mammalian target of rapamycin (mTOR) was also decreased in the gastrocnemius from septic rats. Pretreatment of septic rats with TNF(BP) largely ameliorated the altered distribution of eIF4E as well as the reduced phosphorylation of 4E-BP1, S6, and mTOR. In contrast, sepsis did not change either the total amount or the phosphorylation state of eIF2alpha or eIF2Bepsilon. Furthermore, no sepsis-induced change in eIFs was detected in the slow-twitch soleus muscle. The ability of TNF(BP) to prevent the sepsis-induced alterations in translation initiation was independent of change in plasma insulin and proportional to the insulinlike growth factor I content in blood and muscle but was associated with a reduction in plasma corticosterone. Hence, the decreased constitutive protein

  1. Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer

    PubMed Central

    2012-01-01

    Introduction Signal transducer and activator of transcription 3 (STAT3) is over-activated or phosphorylated in breast cancers. The hyper-phosphorylation of STAT3 was attributed to either up-regulated phosphorylation by several tyrosine-kinases or down-regulated activity of phosphatases. Although several factors have been identified to phosphorylate STAT3, it remains unclear how STAT3 is dephosphorylated by PTPMeg2. The aim of this study was to determine the role of PTPMeg2 as a phosphatase in regulation of the activity of STAT3 in breast cancers. Methods Immunoprecipitation assays were used to study the interaction of STAT3 with PTPMeg2. A series of biochemistry experiments were performed to evaluate the role of PTPMeg2 in the dephosphorylation of STAT3. Two breast cancer cell lines MCF7 (PTPMeg2 was depleted as it was endogenously high) and MDA-MB-231 (PTPMeg2 was overexpressed as it was endogenously low) were used to compare the level of phosphorylated STAT3 and the tumor growth ability in vitro and in vivo. Samples from breast carcinoma (n = 73) were subjected to a pair-wise Pearson correlation analysis for the correlation of levels of PTPMeg2 and phosphorylated STAT3. Results PTPMeg2 directly interacts with STAT3 and mediates its dephosphorylation in the cytoplasm. Over-expression of PTPMeg2 decreased tyrosine phosphorylation of STAT3 while depletion of PTPMeg2 increased its phosphorylation. The decreased tyrosine phosphorylation of STAT3 is coupled with suppression of STAT3 transcriptional activity and reduced tumor growth in vitro and in vivo. Levels of PTPMeg2 and phosphorylated STAT3 were inversely correlated in breast cancer tissues (P = 0.004). Conclusions PTPMeg2 is an important phosphatase for the dephosphorylation of STAT3 and plays a critical role in breast cancer development. PMID:22394684

  2. Improvement of the tumor-suppressive effect of boron neutron capture therapy for amelanotic melanoma by intratumoral injection of the tyrosinase gene.

    PubMed

    Morita, Norimasa; Hiratsuka, Junichi; Kondoh, Hirohumi; Uno, Masako; Asano, Tomoyuki; Niki, Yoko; Sakurai, Yoshinori; Ono, Koji; Harada, Tamotsu; Imajo, Yoshinari

    2006-04-01

    Boron neutron capture therapy (BNCT) is successful when there is a sufficient (10)B concentration in tumor cells. In melanoma, (10)B-para-boronophenylalanine (BPA) accumulation is proportional to melanin-producing activity. This study was done to confirm enhancement of the tumor-suppressive effect of BNCT on amelanotic melanoma by intratumoral injection of the tyrosinase gene. D178 or FF amelanotic melanomas were implanted s.c. in Syrian hamsters. One group of D178- or FF-bearing hamsters (TD178 or TFF group) received intratumoral injections of pcDNA-Tyrs constructed as a tyrosinase expression plasmid. The other hamsters (pD178 and pFF groups) were injected with pUC119, and control hamsters (D178 and FF groups) only with transfection reagents. All the groups underwent immunofluorescence analysis of tyrosinase expression and BPA biodistribution studies. BNCT experiments were done at the Kyoto University Research Reactor. Tyrosinase expression increased in the tumors of the TD178 and TFF groups but remained the same in the pD178 and pFF groups. Tumor boron concentrations in the TD178 and TFF groups increased significantly (TD178: 49.7 +/- 12.6 versus D178: 27.2 +/- 4.9 microg/g, P < 0.0001; TFF: 30.7 +/- 6.6 versus FF: 13.0 +/- 4.7 microg/g, P < 0.0001). The BNCT tumor-suppressive effect was marked in the TD178 and TFF groups. In vivo transfection with the tyrosinase gene increased BPA accumulation in the tumors, the BNCT tumor-suppressive effect on amelanotic melanoma being significantly enhanced. These findings suggest a potential new clinical strategy for the treatment of amelanotic melanoma with BNCT.

  3. Potent suppressive activity of pheophytin a and b from the non-polyphenolic fraction of green tea (Camellia sinensis) against tumor promotion in mouse skin.

    PubMed

    Higashi-Okai, K; Otani, S; Okai, Y

    1998-07-17

    Chlorophyll-related compounds pheophytin a and b have been recently identified as antigenotoxic substances in the non-polyphenolic fraction of green tea (Camellia sinensis), which suppressed umu C gene expression in tester bacteria induced by various genotoxins (Okai and Higashi-Okai, Cancer Lett. 118 (1997) 117-123). In the present study, the authors analyzed in vivo and in vitro effects of pheophytin a and b from the non-polyphenolic fraction of green tea on tumor promotion in mouse skin as follows. (1) When pheophytin a and b from green tea were topically applied prior to each treatment with a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) on BALB/c mouse skin initiated by 7,12 dimethylbenz[a]anthracene (DMBA), they caused suppression in a dose-dependent fashion against skin tumorigenesis. (2) Pheophytin a and b exhibited significant suppressions against TPA-induced inflammatory reaction, such as edema formation, in BALB/c mouse ear skin in a dose-dependent manner. (3) Pheophytin a and b from green tea showed inhibitory effects against early induction of ornithine decarboxylase (ODC) in BALB/c mouse skin fibroblasts caused by TPA. These results suggest that pheophytin a and b from the non-polyphenolic fraction have potent suppressive activities against tumor promotion in mouse skin.

  4. miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer

    PubMed Central

    Zhou, Yong; Liang, Hongwei; Liao, Zhicong; Wang, Yanbo; Hu, Xiuting; Chen, Xi; Xu, Lin; Hu, Zhibin

    2017-01-01

    Human cancers often exhibit increased microRNA (miRNA) biogenesis and global aberrant expression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-203 enhances the biogenesis of tumor suppressor let-7 in lung cancer by directly targeting LIN28B. Specially, we found that the LIN28B protein levels were dramatically increased in lung cancer tissues, but its mRNA levels did not differ significantly, suggesting that a post-transcriptional mechanism is involved in LIN28B regulation. Interestingly, miR-203 overexpression was accompanied by massive upregulation of a group of miRNAs, especially let-7, and the let-7 expression level was concordant with the miR-203 expression in lung cancer tissues, implying its biological relevance. Furthermore, we showed that miR-203 played a critical role in inhibiting the proliferation and promoting the apoptosis of lung cancer cells by suppressing LIN28B and enhancing let-7 biogenesis. In summary, our results establish a novel mechanism by which miR-203, LIN28B and let-7 are tightly linked to form a regulatory network in lung cancer cells. The findings shed light on the role of a specific miRNA as a modulator of miRNA biogenesis and provide basis for developing new strategies for lung cancer therapy. PMID:28218277

  5. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma

    PubMed Central

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  6. A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice

    PubMed Central

    Wang, Jinglin; Li, Weiyong; Huang, Xiao; Liu, Ying; Li, Qiang; Zheng, Ziming; Wang, Kaiping

    2017-01-01

    The antitumor effect of Lentinan is thought rely on the activation of immune responses; however, little is known about whether Lentinan also directly attacks cancer cells. We therefore investigated the direct antitumor activity of SLNT (a water-extracted polysaccharide from Lentinus edodes) and its probable mechanism. We showed that SLNT significantly inhibited proliferation of HT-29 colon cancer cells and suppressed tumor growth in nude mice. Annxein V-FITC/PI, DAPI, AO/EB and H&E staining assays all showed that SLNT induced cell apoptosis both in vitro and in vivo. SLNT induced apoptosis by activating Caspase-3 via both intrinsic and extrinsic pathways, which presented as the activation of Caspases-9 and -8, upregulation of cytochrome c and the Bax/Bcl-2 ratio, downregulation of NF-κB, and overproduction of ROS and TNF-α in vitro and in vivo. Pretreatment with the caspase-3 inhibitor Ac-DEVD-CHO or antioxidant NAC blocked SLNT-induced apoptosis. These findings suggest that SLNT exerts direct antitumor effects by inducing cell apoptosis via ROS-mediated intrinsic and TNF-α-mediated extrinsic pathways. SLNT may thus represent a useful candidate for colon cancer prevention and treatment. PMID:27888812

  7. miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer.

    PubMed

    Zhou, Yong; Liang, Hongwei; Liao, Zhicong; Wang, Yanbo; Hu, Xiuting; Chen, Xi; Xu, Lin; Hu, Zhibin

    2017-02-20

    Human cancers often exhibit increased microRNA (miRNA) biogenesis and global aberrant expression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-203 enhances the biogenesis of tumor suppressor let-7 in lung cancer by directly targeting LIN28B. Specially, we found that the LIN28B protein levels were dramatically increased in lung cancer tissues, but its mRNA levels did not differ significantly, suggesting that a post-transcriptional mechanism is involved in LIN28B regulation. Interestingly, miR-203 overexpression was accompanied by massive upregulation of a group of miRNAs, especially let-7, and the let-7 expression level was concordant with the miR-203 expression in lung cancer tissues, implying its biological relevance. Furthermore, we showed that miR-203 played a critical role in inhibiting the proliferation and promoting the apoptosis of lung cancer cells by suppressing LIN28B and enhancing let-7 biogenesis. In summary, our results establish a novel mechanism by which miR-203, LIN28B and let-7 are tightly linked to form a regulatory network in lung cancer cells. The findings shed light on the role of a specific miRNA as a modulator of miRNA biogenesis and provide basis for developing new strategies for lung cancer therapy.

  8. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation.

    PubMed

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-04-18

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.

  9. Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer.

    PubMed

    Sierra, Rosa A; Thevenot, Paul; Raber, Patrick L; Cui, Yan; Parsons, Chris; Ochoa, Augusto C; Trillo-Tinoco, Jimena; Del Valle, Luis; Rodriguez, Paulo C

    2014-08-01

    An impaired antitumor immunity is found in patients with cancer and represents a major obstacle in the successful development of different forms of immunotherapy. Signaling through Notch receptors regulates the differentiation and function of many cell types, including immune cells. However, the effect of Notch in CD8(+) T-cell responses in tumors remains unclear. Thus, we aimed to determine the role of Notch signaling in CD8(+) T cells in the induction of tumor-induced suppression. Our results using conditional knockout mice show that Notch-1 and Notch-2 were critical for the proliferation and IFNγ production of activated CD8(+) T cells and were significantly decreased in tumor-infiltrating T cells. Conditional transgenic expression of Notch-1 intracellular domain (N1IC) in antigen-specific CD8(+) T cells did not affect activation or proliferation of CD8(+) T cells, but induced a central memory phenotype and increased cytotoxicity effects and granzyme B levels. Consequently, a higher antitumor response and resistance to tumor-induced tolerance were found after adoptive transfer of N1IC-transgenic CD8(+) T cells into tumor-bearing mice. Additional results showed that myeloid-derived suppressor cells (MDSC) blocked the expression of Notch-1 and Notch-2 in T cells through nitric oxide-dependent mechanisms. Interestingly, N1IC overexpression rendered CD8(+) T cells resistant to the tolerogenic effect induced by MDSC in vivo. Together, the results suggest the key role of Notch in the suppression of CD8(+) T-cell responses in tumors and the therapeutic potential of N1IC in antigen-specific CD8(+) T cells to reverse T-cell suppression and increase the efficacy of T cell-based immunotherapies in cancer.

  10. ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51.

    PubMed

    Yamamori, Tohru; Meike, Shunsuke; Nagane, Masaki; Yasui, Hironobu; Inanami, Osamu

    2013-10-11

    In this study, we provide evidence that endoplasmic reticulum (ER) stress suppresses DNA double-strand break (DSB) repair and increases radiosensitivity of tumor cells by altering Rad51 levels. We show that the ER stress inducer tunicamycin stimulates selective degradation of Rad51 via the 26S proteasome, impairing DSB repair and enhancing radiosensitivity in human lung cancer A549 cells. We also found that glucose deprivation, which is a physiological inducer of ER stress, triggered similar events. These findings suggest that ER stress caused by the intratumoral environment influences tumor radiosensitivity, and that it has potential as a novel target to improve cancer radiotherapy.

  11. Daidzein suppresses tumor necrosis factor-α induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells.

    PubMed

    Bao, Cheng; Namgung, Hyeju; Lee, Jaehoo; Park, Hyun-Chang; Ko, Jiwon; Moon, Heejung; Ko, Hyuk Wan; Lee, Hong Jin

    2014-04-30

    In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion.

  12. Energy controllable steep pulse (ECSP) treatment suppresses tumor growth in rats implanted with Walker 256 carcinosarcoma cells through apoptosis and an antitumor immune response.

    PubMed

    Luo, Xiao-Dong; Sun, Jiang-chuan; Liu, Feng; Hu, Li-Na; Dong, Xiao-Jing; Sun, Di-Na; Xiao, Jin

    2012-01-01

    Electrochemotherapy has been widely used for the treatment of solid tumors, although the underlying mechanism remains unclear. We aimed to investigate the effects of energy controllable steep pulse (ECSP) on the regulation of tumor growth and apoptosis in rats implanted with Walker 256 carcinosarcoma cells. A rat tumor model was established by injection of Walker 256 carcinosarcoma cells into the inguinal area. H&E staining, transmission electron microscopy, and the TUNEL assay were used to detect apoptosis. Concanavalin A-induced lymphocyte transformation and MTT assays were used to assess lymphocyte proliferation. ELISA was used to determine serum cytokine levels. After 2 weeks of ECSP treatment, tumor growth in rats was effectively suppressed, while tumor cell apoptosis was significantly induced compared to the control tumor group. Moreover, ECSP treatment enhanced proliferation and activation of lymphocytes and natural killer (NK) cells. Serum IL-2 and IFN-gamma levels were significantly decreased, and IL-4 and 1-10 levels dramatically increased in rats with control tumors compared to rats without tumors and lacking treatment (p < 0.05). In contrast, ECSP treatment increased IL-2 and IFN-gamma levels, but reduced IL-4 and IL-10 levels to normal values. Moreover, ECSP also increased TNF-alpha production, possibly from peritoneal microphages. Our current study demonstrates that ECSP treatment is able to effectively reduce tumors in rats via induction of apoptosis and activation of the rat antitumor immune response. These data provide insightful information for the future application of ECSP-based electrochemotherapy in clinical trials against solid tumors.

  13. Tumor suppressive microRNA-133a regulates novel targets: Moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma

    SciTech Connect

    Kinoshita, Takashi; Nohata, Nijiro; Fuse, Miki; Hanazawa, Toyoyuki; Kikkawa, Naoko; Fujimura, Lisa; Watanabe-Takano, Haruko; Yamada, Yasutoshi; Yoshino, Hirofumi; Enokida, Hideki; Nakagawa, Masayuki; Okamoto, Yoshitaka; Seki, Naohiko

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Tumor suppressive microRNA-133a regulates moesin (MSN) expression in HNSCC. Black-Right-Pointing-Pointer Silencing of MSN in HNSCC cells suppressed proliferation, migration and invasion. Black-Right-Pointing-Pointer The expression level of MSN was significantly up-regulated in cancer tissues. -- Abstract: Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into

  14. Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma.

    PubMed

    Kinoshita, Takashi; Nohata, Nijiro; Fuse, Miki; Hanazawa, Toyoyuki; Kikkawa, Naoko; Fujimura, Lisa; Watanabe-Takano, Haruko; Yamada, Yasutoshi; Yoshino, Hirofumi; Enokida, Hideki; Nakagawa, Masayuki; Okamoto, Yoshitaka; Seki, Naohiko

    2012-02-10

    Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.

  15. MicroRNA-542-3p Suppresses Tumor Cell Invasion via Targeting AKT Pathway in Human Astrocytoma*

    PubMed Central

    Cai, Junchao; Zhao, JingJing; Zhang, Nu; Xu, Xiaonan; Li, Rong; Yi, Yang; Fang, Lishan; Zhang, Le; Li, Mengfeng; Wu, Jueheng; Zhang, Heng

    2015-01-01

    The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma. PMID:26286747

  16. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer

    PubMed Central

    OKATO, ATSUSHI; GOTO, YUSUKE; KUROZUMI, AKIRA; KATO, MAYUKO; KOJIMA, SATOKO; MATSUSHITA, RYOSUKE; YONEMORI, MASAYA; MIYAMOTO, KAZUTAKA; ICHIKAWA, TOMOHIKO; SEKI, NAOHIKO

    2016-01-01

    Advanced prostate cancer (PCa) metastasizes to bone and lymph nodes, and currently available treatments cannot prevent the progression and metastasis of the disease. Therefore, an improved understanding of the molecular mechanisms of the progression and metastasis of advanced PCa using current genomic approaches is needed. Our miRNA expression signature in castration-resistant prostate cancer (CRPC) revealed that microRNA-320a (miR-320a) was significantly reduced in cancer tissues, suggesting that miR-320a may be a promising anticancer miRNA. The aim of this study was to investigate the functional roles of miR-320a in naïve PCa and CRPC cells and to identify miR-320a-regulated genes involved in PCa metastasis. The expression levels of miR-320a were significantly reduced in naïve PCa, CRPC specimens, and PCa cell lines. Restoration of mature miR-320a in PCa cell lines showed that miR-320a significantly inhibited cancer cell migration and invasion. Moreover, we found that lysosomal-associated membrane protein 1 (LAMP1) was a direct target of miR-320a in PCa cells. Silencing of LAMP1 using siRNA significantly inhibited cell proliferation, migration, and invasion in PCa cells. Overexpression of LAMP1 was observed in PCa and CRPC clinical specimens. Moreover, downstream pathways were identified using si-LAMP1-transfected cells. The discovery of tumor-suppressive miR-320a-mediated pathways may provide important insights into the potential mechanisms of PCa metastasis. PMID:27212625

  17. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    SciTech Connect

    Guo, Jia; Liu, Xiuheng Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  18. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock.

    PubMed

    Du, Shi-lin; Yuan, Xue; Zhan, Sun; Tang, Luo-jia; Tong, Chao-yang

    2015-03-13

    Lipopolysaccharide (LPS), one of the most prominent pathogen-associated molecular patterns (PAMPs), activates macrophages, causing release of toxic cytokines (i.e. tumor necrosis factor (TNF)-α) that may provoke inflammation and endotoxin shock. Here, we tested the potential role of trametinib, a novel and highly potent MAPK/ERK kinase (MEK) inhibitor, against LPS-induced TNF-α response in monocytes, and analyzed the underlying mechanisms. We showed that trametinib, at nM concentrations, dramatically inhibited LPS-induced TNF-α mRNA expression and protein secretion in transformed (RAW 264.7 cells) and primary murine macrophages. In ex-vivo cultured human peripheral blood mononuclear cells (PBMCs), this MEK inhibitor similarly suppressed TNF-α production by LPS. For the mechanism study, we found that trametinib blocked LPS-induced MEK-ERK activation in above monocytes, which accounted for the defective TNF-α response. Macrophages or PBMCs treated with a traditional MEK inhibitor PD98059 or infected with MEK1/2-shRNA lentivirus exhibited a similar defect as trametinib, and nullified the activity of trametinib. On the other hand, introducing a constitutively-active (CA) ERK1 restored TNF-α production by LPS in the presence of trametinib. In vivo, mice administrated with trametinib produced low levels of TNF-α after LPS stimulation, and these mice were protected from LPS-induced endotoxin shock. Together, these results show that trametinib inhibits LPS-induced TNF-α expression and endotoxin shock probably through blocking MEK-ERK signaling.

  19. MiR-30b suppresses tumor migration and invasion by targeting EIF5A2 in gastric cancer

    PubMed Central

    Tian, Shu-Bo; Yu, Jian-Chun; Liu, Yu-Qin; Kang, Wei-Ming; Ma, Zhi-Qiang; Ye, Xin; Yan, Chao

    2015-01-01

    AIM: To elucidate the potential biological role of miR-30b in gastric cancer and investigate the underlying molecular mechanisms of miR-30b to inhibit metastasis of gastric cancer cells. METHODS: The expression of miR-30b was detected in gastric cancer cell lines and samples by reverse transcription-polymerase chain reaction. CCK-8 assays were conducted to explore the impact of miR-30b overexpression on the proliferation of gastric cancer cells. Flow cytometry was used to examine the effect of miR-30b on the apoptosis. Transwell test was used for the migration and invasion assays. Luciferase reporter assays and Western blot were employed to validate regulation of putative target of miR-30b. RESULTS: The results showed that miR-30b was downregulated in gastric cancer tissues and cancer cell lines and functioned as a tumor suppressor. Overexpression of miR-30b promoted cell apoptosis, and suppressed proliferation, migration and invasion of the gastric cancer cell lines AGS and MGC803. Bioinformatic analysis identified the 3’-untranslated region of eukaryotic translation initiation factor 5A2 (EIF5A2) as a putative binding site of miR-30b. Luciferase reporter assays and Western blot analysis confirmed the EIF5A2 gene as a target of miR-30b. Moreover, expression levels of the EIF5A2 targets E-cadherin and Vimentin were altered following transfection of miR-30b mimics. CONCLUSION: Our findings describe a link between miR-30b and EIF5A2, which plays an important role in mediating epithelial-mesenchymal transition. PMID:26309359

  20. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    SciTech Connect

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  1. A novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity.

    PubMed

    Whitt, Jason D; Li, Nan; Tinsley, Heather N; Chen, Xi; Zhang, Wei; Li, Yonghe; Gary, Bernard D; Keeton, Adam B; Xi, Yaguang; Abadi, Ashraf H; Grizzle, William E; Piazza, Gary A

    2012-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely reported to inhibit tumor growth by a COX-independent mechanism, although alternative targets have not been well defined or used to develop improved drugs for cancer chemoprevention. Here, we characterize a novel sulindac derivative referred to as sulindac benzylamine (SBA) that does not inhibit COX-1 or COX-2, yet potently inhibits the growth and induces the apoptosis of human colon tumor cells. The basis for this activity appears to involve cyclic guanosine 3',5',-monophosphate phosphodiesterase (cGMP PDE) inhibition as evident by its ability to inhibit cGMP hydrolysis in colon tumor cell lysates and purified cGMP-specific PDE5, increase intracellular cGMP levels, and activate cGMP-dependent protein kinase G at concentrations that suppress tumor cell growth. PDE5 was found to be essential for colon tumor cell growth as determined by siRNA knockdown studies, elevated in colon tumor cells as compared with normal colonocytes, and associated with the tumor selectivity of SBA. SBA activation of PKG may suppress the oncogenic activity of β-catenin as evident by its ability to reduce β-catenin nuclear levels, Tcf (T-cell factor) transcriptional activity, and survivin levels. These events preceded apoptosis induction and appear to result from a rapid elevation of intracellular cGMP levels following cGMP PDE inhibition. We conclude that PDE5 and possibly other cGMP degrading isozymes can be targeted to develop safer and more efficacious NSAID derivatives for colorectal cancer chemoprevention.

  2. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model

    PubMed Central

    Kim, Chulwon; Lee, Jong Hyun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-01-01

    Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo. PMID:25738364

  3. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer

    PubMed Central

    Jia, Linghan; Liu, Wen; Guan, Lizhao; Lu, Min; Wang, KeWei

    2015-01-01

    Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy. PMID:26305547

  4. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    PubMed

    Jia, Linghan; Liu, Wen; Guan, Lizhao; Lu, Min; Wang, KeWei

    2015-01-01

    Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  5. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    PubMed

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-03-26

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  6. KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line.

    PubMed

    Jee, Bo Keun; Park, Koung Min; Surendran, Sibin; Lee, Woon Kyu; Han, Chang Whan; Kim, Yong Sik; Lim, Young

    2006-04-07

    We conducted a study on the mechanism of KAI1/CD82-mediated suppression of tumor invasiveness and metastasis, and examined its effect on MMP-9 activity and the TIMP1 levels in H1299 human non-small cell lung carcinoma cells. The H1299 human lung carcinoma cells were transfected with pcDNA3.1-CD82 and stable transfectant clones that had a high KAI1/CD82 expression were obtained. We performed Western blot analysis, cell invasion assay, gelatin zymography, and RT-PCR to assess the KAI1/CD82 expression and tumor invasiveness, the MMP-9 activity, the MMP-9 mRNA and protein levels, and the TIMP1 levels in the H1299/CD82 transfectant cells and compared the results with those of the control groups. The H1299/CD82 transfectants exhibited significant suppression of cell invasion, reduced MMP9 enzyme activity, elevated MMP9 mRNA and MMP-9 protein levels, and elevated TIMP1 levels. It may be postulated that KAI1/CD82 over-expression in the H1299 non-small cell lung carcinoma cells suppresses the tumor invasiveness and metastatic potential by inducing MMP9 inactivation via the up-regulation of TIMP1.

  7. Interaction of endothelial progenitor cells expressing cytosine deaminase in tumor tissues and 5-fluorocytosine administration suppresses growth of 5-fluorouracil-sensitive liver cancer in mice.

    PubMed

    Torimura, Takuji; Ueno, Takato; Taniguchi, Eitaro; Masuda, Hiroshi; Iwamoto, Hideki; Nakamura, Toru; Inoue, Kinya; Hashimoto, Osamu; Abe, Mitsuhiko; Koga, Hironori; Barresi, Vincenza; Nakashima, Emi; Yano, Hirohisa; Sata, Michio

    2012-03-01

    The drug delivery system to tumors is a critical factor in upregulating the effect of anticancer drugs and reducing adverse events. Recent studies indicated selective migration of bone marrow-derived endothelial progenitor cells (EPC) into tumor tissues. Cytosine deaminase (CD) transforms nontoxic 5-fluorocytosine (5-FC) into the highly toxic 5-fluorouracil (5-FU). We investigated the antitumor effect of a new CD/5-FC system with CD cDNA transfected EPC for hepatocellular carcinoma (HCC) in mice. We used human hepatoma cell lines (HuH-7, HLF, HAK1-B, KYN-2, KIM-1) and a rat EPC cell line (TR-BME-2). Escherichia coli CD cDNA was transfected into TR-BME-2 (CD-TR-BME). The inhibitory effect of 5-FU on the proliferation of hepatoma cell lines and the inhibitory effect of 5-FU secreted by CD-TR-BME and 5-FC on the proliferation of co-cultured hepatoma cells were evaluated by a tetrazolium-based assay. In mouse subcutaneous xenograft models of KYN-2 and HuH-7, CD-TR-BME was transplanted intravenously followed by 5-FC injection intraperitoneally. HuH-7 cells were the most sensitive to 5-FU and KYN-2 cells were the most resistant. CD-TR-BME secreted 5-FU and inhibited HuH-7 proliferation in a 5-FC dose-dependent manner. CD-TR-BME were recruited into the tumor tissues and some were incorporated into tumor vessels. Tumor growth of HuH-7 was significantly suppressed during 5-FC administration. No bodyweight loss, ALT abnormality or bone marrow suppression was observed. These findings suggest that our new CD/5-FC system with CD cDNA transfected EPC could be an effective and safe treatment for suppression of 5-FU-sensitive HCC growth.

  8. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation.

    PubMed

    Hosseinkhani, H; Kushibiki, T; Matsumoto, K; Nakamura, T; Tabata, Y

    2006-05-01

    This investigation aims to determine experimentally whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of NK4 plasmid DNA and suppressing tumor growth. NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as an HGF-antagonist and angiogenesis inhibitor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow for polyionic complexation with NK4 plasmid DNA. The cationized dextran was additionally modified with poly(ethylene glycol) (PEG) molecules giving PEG engrafted cationized dextran. Significant suppression of tumor growth was observed when PEG engrafted cationized dextran-NK4 plasmid DNA complexes were intravenously injected into mice carrying a subcutaneous Lewis lung carcinoma tumor mass with subsequent US irradiation when compared with the cationized dextran-NK4 plasmid DNA complex and naked NK4 plasmid DNA with or without US irradiation. We conclude that complexation with PEG-engrafted cationized dextran in combination with US irradiation is a promising way to target the NK4 plasmid DNA to the tumor for gene expression.

  9. CD151-α3β1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling.

    PubMed

    Baldwin, Lauren A; Hoff, John T; Lefringhouse, Jason; Zhang, Michael; Jia, Changhe; Liu, Zeyi; Erfani, Sonia; Jin, Hongyan; Xu, Mei; She, Qing-Bai; van Nagell, John R; Wang, Chi; Chen, Li; Plattner, Rina; Kaetzel, David M; Luo, Jia; Lu, Michael; West, Dava; Liu, Chunming; Ueland, Fred R; Drapkin, Ronny; Zhou, Binhua P; Yang, Xiuwei H

    2014-12-15

    Human ovarian cancer is diagnosed in the late, metastatic stages but the underlying mechanisms remain poorly understood. We report a surprising functional link between CD151-α3β1 integrin complexes and the malignancy of serous-type ovarian cancer. Analyses of clinical specimens indicate that CD151 expression is significantly reduced or diminished in 90% of metastatic lesions, while it remains detectable in 58% of primary tumors. These observations suggest a putative tumor-suppressing role of CD151 in ovarian cancer. Indeed, our analyses show that knocking down CD151 or α3 integrin enhances tumor cell proliferation, growth and ascites production in nude mice. These changes are accompanied by impaired cell-cell contacts and aberrant expression of E-cadherin, Mucin 5AC and fibronectin, largely reminiscent of an epithelial to mesenchymal transition (EMT)-like change. Importantly, Slug, a master regulator of EMT, is markedly elevated. Knocking down Slug partially restores CD151-α3β1 integrin complex-dependent suppression of cell proliferation. Moreover, disruption of these adhesion protein complexes is accompanied by a concomitant activation of canonical Wnt signaling, including elevated levels of β-catenin and Axin-2 as well as resistance to the inhibition in β-catenin-dependent transcriptional complexes. Together, our study demonstrates that CD151-α3β1 integrin complexes regulate ovarian tumor growth by repressing Slug-mediated EMT and Wnt signaling.

  10. Inhibition of PHLPP2/cyclin D1 protein translation contributes to the tumor suppressive effect of NFκB2 (p100)

    PubMed Central

    Xu, Jiawei; Wang, Yulei; Hua, Xiaohui; Xu, Jiheng; Tian, Zhongxian; Jin, Honglei; Li, Jingxia; Wu, Xue-Ru; Huang, Chuanshu

    2016-01-01

    Although the precursor protein of NFκB2 (p100) is thought to act as a tumor suppressor in mammalian cells, the molecular mechanism of its anti-tumor activity is far from clear. Here, we are, for the first time, to report that p100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients. Knockdown of p100 in cultured human bladder cancer cells promoted anchorage-independent growth accompanied with elevating abundance of cell-cycle-related proteins and accelerated cell-cycle progression. Above effects could be completely reversed by ectopically expression of p100, but not p52. Mechanistically, p100 inhibited Cyclin D1 protein translation by activating the transcription of LARP7 and its hosted miR-302d, which could directly bind to 3′-UTR of cyclin d1 mRNA and inhibited its protein translation. Furthermore, p100 suppressed the expression of PHLPP2 (PH domain and leucine-rich repeat protein phosphatases 2), thus promoting CREB phosphorylation at Ser133 and subsequently leading to miR-302d transcription. Taken together, our studies not only for the first time establish p100 as a key tumor suppressor of bladder cancer growth, but also identify a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100. PMID:27095572

  11. Total alkaloids of Rubus alceifolius Poir inhibit tumor angiogenesis through suppression of the Notch signaling pathway in a mouse model of hepatocellular carcinoma.

    PubMed

    Zhao, Jinyan; Lin, Wei; Cao, Zhiyun; Zhuang, Qunchuan; Zheng, Liangpu; Peng, Jun; Hong, Zhenfeng

    2015-01-01

    Angiogenesis, which has a critical role in human tumor growth and development, is tightly regulated by the Notch signaling pathway. Total alkaloids are active components of the plant Rubus alceifolius Poir, which is used for the treatment of various types of cancer. A previous study by our group showed that the total alkaloids of Rubus alceifolius Poir (TARAP) induced hepatocellular carcinoma (HCC) cell apoptosis through the activation of the mitochondria-dependent pathway in vitro and in vivo, as well as inhibited angiogenesis in a chick embryo chorioallantoic membrane model. In the present study, to further analyze the specific mechanisms underlying the antitumor activity of TARAP, a HCC xenograft mouse model was used to assess the effect of TARAP on angiogenesis in vivo. TARAP was found to suppress the expression of vascular endothelial growth factor (VEGF) A and VEGF receptor-2 in tumor tissues, which resulted in the inhibition of tumor angiogenesis. In addition, TARAP treatment was observed to inhibit the expression of Notch1, delta-like ligand 4 and jagged 1, which are key mediators of the Notch signaling pathway. The present study identified that the inhibition of tumor angiogenesis through the suppression of the Notch signaling pathway may be one of the mechanisms through which TARAP may be effective in the treatment of cancer.

  12. MiR-203 suppresses tumor growth and invasion and down-regulates MiR-21 expression through repressing Ran in esophageal cancer.

    PubMed

    Zhang, Fang; Yang, Zhiping; Cao, Minjun; Xu, Yinsheng; Li, Jintao; Chen, Xuebin; Gao, Zhi; Xin, Jing; Zhou, Shaomei; Zhou, Zhixiang; Yang, Yishu; Sheng, Wang; Zeng, Yi

    2014-01-01

    The expression of miR-203 has been reported to be significantly down-regulated in esophageal cancer. We showed here that overexpression of miR-203 in esophageal cancer cells dramatically increased cell apoptosis and inhibited cell proliferation, migration and invasion as well as tumor growth and down-regulated miR-21 expression. We subsequently identified that small GTPase Ran was a target gene of miR-203. Furthermore, Ran restoration partially counteracted the tumor suppressive effects of miR-203 and increased miR-21 expression. Taken together, our findings suggest that miR-203 may act as novel tumor suppressor in esophageal cancer through down-regulating the expression of Ran and miR-21.

  13. Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma

    PubMed Central

    MIZUNO, KEIKO; SEKI, NAOHIKO; MATAKI, HIROKO; MATSUSHITA, RYOSUKE; KAMIKAWAJI, KAZUTO; KUMAMOTO, TOMOHIRO; TAKAGI, KOICHI; GOTO, YUSUKE; NISHIKAWA, RIKA; KATO, MAYUKO; ENOKIDA, HIDEKI; NAKAGAWA, MASAYUKI; INOUE, HIROMASA

    2016-01-01

    Lung cancer remains the most frequent cause of cancer-related death in developed countries. A recent molecular-targeted strategy has contributed to improvement of the remarkable effect of adenocarcinoma of the lung. However, such treatment has not been developed for squamous cell carcinoma (SCC) of the disease. Our recent studies of microRNA (miRNA) expression signatures of human cancers showed that the microRNA-29 family (miR-29a, miR-29b and miR-29c) significantly reduced cancer tissues compared to normal tissues. These findings suggest that miR-29s act as tumor-suppressors by targeting several oncogenic genes. The aim of the study was to investigate the functional significance of miR-29s in lung SCC and to identify miR-29s modulating molecular targets in lung SCC cells. Restoration of all mature members of the miR-29s inhibited cancer cell migration and invasion. Gene expression data combined in silico analysis and luciferase reporter assays demonstrated that the lysyl oxidase-like 2 (LOXL2) gene was a direct regulator of tumor-suppressive miR-29s. Moreover, overexpressed LOXL2 was confirmed in lung SCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in lung SCC cell lines. Our present data suggested that loss of tumor-suppressive miR-29s enhanced cancer cell invasion in lung SCC through direct regulation of oncogenic LOXL2. Elucidation of the novel lung SCC molecular pathways and targets regulated by tumor-suppressive miR-29s will provide new insights into the potential mechanisms of oncogenesis and metastasis of the disease. PMID:26676674

  14. Tumor

    MedlinePlus

    ... plants (aflatoxins) Excessive sunlight exposure Genetic problems Obesity Radiation exposure Viruses Types of tumors known to be caused by or linked with viruses are: Cervical cancer (human papillomavirus) Most anal cancers (human papillomavirus) Some throat ...

  15. Combination radiofrequency (RF) ablation and IV liposomal heat shock protein suppression: Reduced tumor growth and increased animal endpoint survival in a small animal tumor model

    PubMed Central

    Yang, Wei; Ahmed, Muneeb; Tasawwar, Beenish; Levchenko, Tatynana; Sawant, Rupa R.; Torchilin, Vladimir; Goldberg, S. Nahum

    2012-01-01

    Background To investigate the effect of IV liposomal quercetin (a known down-regulator of heat shock proteins) alone and with liposomal doxorubicin on tumor growth and end-point survival when combined with radiofrequency (RF) tumor ablation in a rat tumor model. Methods Solitary subcutaneous R3230 mammary adenocarcinoma tumors (1.3–1.5 cm) were implanted in 48 female Fischer rats. Initially, 32 tumors (n=8, each group) were randomized into four experimental groups: (a) conventional monopolar RF alone (70°C for 5 min), (b) IV liposomal quercetin alone (1 mg/kg), (c) IV liposomal quercetin followed 24hr later with RF, and (d) no treatment. Next, 16 additional tumors were randomized into two groups (n=8, each) that received a combined RF and liposomal doxorubicin (15 min post-RF, 8 mg/kg) either with or without liposomal quercetin. Kaplan-Meier survival analysis was performed using a tumor diameter of 3.0 cm as the defined survival endpoint. Results Differences in endpoint survival and tumor doubling time among the groups were highly significant (P<0.001). Endpoint survivals were 12.5±2.2 days for the control group, 16.6±2.9 days for tumors treated with RF alone, 15.5±2.1days for tumors treated with liposomal quercetin alone, and 22.0±3.9 days with combined RF and quercetin. Additionally, combination quercetin/RF/doxorubicin therapy resulted in the longest survival (48.3±20.4 days), followed by RF/doxorubicin (29.9±3.8 days). Conclusions IV liposomal quercetin in combination with RF ablation reduces tumor growth rates and improves animal endpoint survival. Further increases in endpoint survival can be seen by adding an additional anti-tumor adjuvant agent liposomal doxorubicin. This suggests that targeting several post-ablation processes with multi-drug nanotherapies can increase overall ablation efficacy. PMID:22230341

  16. Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model.

    PubMed

    Zhuang, Qunchuan; Hong, Fei; Shen, Aling; Zheng, Liangpu; Zeng, Jianwei; Lin, Wei; Chen, Youqin; Sferra, Thomas J; Hong, Zhenfeng; Peng, Jun

    2012-05-01

    Signal transducer and activator of transcription 3 (STAT3) plays a critical role in cell survival and proliferation. Constitutive activation of STAT3 is strongly correlated with pathogenesis of various types of malignant tumors including colorectal cancer (CRC), and therefore is a major focus in the development of anti-cancer agents. Pien Tze Huang (PZH), a well-known traditional Chinese formula prescribed already in the Ming Dynasty, has been demonstrated to be clinically effective in the treatment of CRC. However, the precise mechanism of its anti-cancer activity remains largely unknown. In the present study we evaluated the efficacy of PZH against tumor growth in vivo in the CRC mouse xenograft model, and investigated the underlying molecular mechanisms. We found that administration of PZH reduced tumor volume and tumor weight but had no effect on body weight gain in CRC mice, demonstrating that PZH can inhibit colon cancer growth in vivo without apparent adverse effect. We also observed that PZH treatment inhibited the phosphorylation level of STAT3 in tumor tissues. Consequently, the inhibitory effect of PZH on STAT3 activation resulted in the up-regulation of Bax/Bcl-2 ratio as well as down-regulation of Cyclin D1 and CDK4 expression, leading to the induction of apoptosis as well as the inhibition of cell proliferation. These results suggest that promotion of cancer cell apoptosis and inhibition of proliferation via suppression of STAT3 pathway might be one of the mechanisms by which PZH treats colorectal cancer.

  17. Tumor suppression involves down-regulation of interleukin 3 expression in hybrids between autocrine mastocytoma and interleukin 3-dependent parental mast cells.

    PubMed

    Diamantis, I D; Nair, A P; Hirsch, H H; Moroni, C

    1989-12-01

    Interleukin 3 (IL-3)-dependent PB-3c mouse mastocytes can be transformed by the v-Ha-ras oncogene to generate autocrine IL-3-producing mastocytomas. Hybrid cell lines were constructed by fusing an IL-3-producing mastocytoma cell line with its IL-3-dependent normal parental cell. Unlike the mastocytoma parent cell line, hybrid cell lines required growth factor for in vitro proliferation, indicating that the IL-3-dependent phenotype is dominant. IL-3 mRNA, expressed at high levels in the tumor cells, appeared down-regulated in the cell hybrids. In contrast, p21v-Ha-ras levels were not reduced in the hybrids. The hybrid lines generated tumors in vivo with drastically prolonged latency times when compared to the tumor parent (10 versus 2 weeks). We propose that down-regulation of IL-3 mRNA production after cell fusion is responsible for the loss of growth autonomy in the hybrids and is likely to play a role in the partial suppression of tumor formation in vivo. Our data are consistent with the hypothesis that a tumor suppressor, present in PB-3c cells, acts as a negative regulator of IL-3 expression.

  18. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment.

    PubMed

    Lee, Youn-Sun; Choi, Kyeong-Mi; Kim, Wonkyun; Jeon, Young-Soo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2013-12-27

    Hinokitiol (1), a tropolone-related natural compound, induces apoptosis and has anti-inflammatory, antioxidant, and antitumor activities. In this study, the inhibitory effects of 1 were investigated on human colon cancer cell growth and tumor formation of xenograft mice. HCT-116 and SW-620 cells derived from human colon cancers were found to be similarly susceptible to 1, with IC50 values of 4.5 and 4.4 μM, respectively. Compound 1 induced S-phase arrest in the cell cycle progression and decreased the expression levels of cyclin A, cyclin E, and Cdk2. Conversely, 1 increased the expression of p21, a Cdk inhibitor. Compound 1 decreased Bcl-2 expression and increased the expression of Bax, and cleaved caspase-9 and -3. The effect of 1 on tumor formation when administered orally was evaluated in male BALB/c-nude mice implanted intradermally separately with HCT-116 and SW-620 cells. Tumor volumes and tumor weights in the mice treated with 1 (100 mg/kg) were decreased in both cases. These results suggest that the suppression of tumor formation by compound 1 in human colon cancer may occur through cell cycle arrest and apoptosis.

  19. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells

    PubMed Central

    Cockbill, Louisa M. R.; Murk, Kai; Love, Seth; Hanley, Jonathan G.

    2015-01-01

    Astrocytic tumors are the most common form of primary brain tumor. Astrocytic tumor cells infiltrate the surrounding CNS tissue, allowing them to evade removal upon surgical resection of the primary tumor. Dynamic changes to the actin cytoskeleton are crucial to cancer cell invasion, but the specific mechanisms that underlie the particularly invasive phenotype of astrocytic tumor cells are unclear. Protein interacting with C kinase 1 (PICK1) is a PDZ and BAR domain–containing protein that inhibits actin-related protein 2/3 (Arp2/3)-dependent actin polymerization and is involved in regulating the trafficking of a number of cell-surface receptors. Here we report that, in contrast to other cancers, PICK1 expression is down-regulated in grade IV astrocytic tumor cell lines and also in clinical cases of the disease in which grade IV tumors have progressed from lower-grade tumors. Exogenous expression of PICK1 in the grade IV astrocytic cell line U251 reduces their capacity for anchorage-independent growth, two-dimensional migration, and invasion through a three-dimensional matrix, strongly suggesting that low PICK1 expression plays an important role in astrocytic tumorigenesis. We propose that PICK1 negatively regulates neoplastic infiltration of astrocytic tumors and that manipulation of PICK1 is an attractive possibility for therapeutic intervention. PMID:26466675

  20. Cat's whiskers tea (Orthosiphon stamineus) extract inhibits growth of colon tumor in nude mice and angiogenesis in endothelial cells via suppressing VEGFR phosphorylation.

    PubMed

    Ahamed, Mohamed B Khadeer; Aisha, Abdalrahim F A; Nassar, Zeyad D; Siddiqui, Jamshed M; Ismail, Z; Omari, S M S; Parish, C R; Majid, A M S Abdul

    2012-01-01

    Cat's whiskers (Orthosiphon stamineus) is commonly used as Java tea to treat kidney stones including a variety of angiogenesis-dependent diseases such as tumorous edema, rheumatism, diabetic blindness, and obesity. In the present study, antitumor potential of standardized 50% ethanol extract of O. stamineus leaves (EOS) was evaluated against colorectal tumor in athymic mice and antiangiogenic efficacy of EOS was investigated in human umbilical vein endothelial cells (HUVEC). EOS at 100 mg/kg caused 47.62 ± 6.4% suppression in tumor growth, while at 200 mg/kg it caused 83.39 ± 4.1% tumor regression. Tumor histology revealed significant reduction in extent of vascularization. Enzyme-linked immunosorbent assay showed EOS (200 mg/kg) significantly reduced the vascular endothelial growth factor (VEGF) level in vitro (211 ± 0.26 pg/ml cell lysate) as well as in vivo (90.9 ± 2 pg/g tissue homogenate) when compared to the control (378 ± 5 and 135.5 ± 4 pg, respectively). However, EOS was found to be noncytotoxic to colon cancer and endothelial cells. In vitro, EOS significantly inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs). EOS suppressed VEGF-induced phosphorylation of VEGF receptor-2 in HUVECs. High performance liquid chromatography (HPLC) analysis of EOS showed high rosmarinic acid contents, whereas phytochemical analysis revealed high protein and phenolic contents. These results demonstrated that the antitumor activity of EOS may be due to its VEGF-targeted antiangiogenicity.

  1. Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression: role of chelatable iron.

    PubMed

    Hickok, Jason R; Sahni, Sumit; Mikhed, Yuliya; Bonini, Marcelo G; Thomas, Douglas D

    2011-12-02

    N-Myc downstream-regulated gene 1 (NDRG1) is a ubiquitous cellular protein that is up-regulated under a multitude of stress and growth-regulatory conditions. Although the exact cellular functions of this protein have not been elucidated, mutations in this gene or aberrant expression of this protein have been linked to both tumor suppressive and oncogenic phenotypes. Previous reports have demonstrated that NDRG1 is strongly up-regulated by chemical iron chelators and hypoxia, yet its regulation by the free radical nitric oxide ((•)NO) has never been demonstrated. Herein, we examine the chemical biology that confers NDRG1 responsiveness at the mRNA and protein levels to (•)NO. We demonstrate that the interaction of (•)NO with the chelatable iron pool (CIP) and the appearance of dinitrosyliron complexes (DNIC) are key determinants. Using HCC 1806 triple negative breast cancer cells, we find that NDRG1 is up-regulated by physiological (•)NO concentrations in a dose- and time-dependant manner. Tumor cell migration was suppressed by NDRG1 expression and we excluded the involvement of HIF-1α, sGC, N-Myc, and c-Myc as upstream regulatory targets of (•)NO. Augmenting the chelatable iron pool abolished (•)NO-mediated NDRG1 expression and the associated phenotypic effects. These data, in summary, reveal a link between (•)NO, chelatable iron, and regulation of NDRG1 expression and signaling in tumor cells.

  2. The microRNA miR-33a suppresses IL-6-induced tumor progression by binding Twist in gallbladder cancer

    PubMed Central

    Zhang, Mingdi; Gong, Wei; Zuo, Bin; Chu, Bingfeng; Tang, Zhaohui; Zhang, Yong; Yang, Yong; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Ma, Mingzhe; Jiang, Alex; Ma, Fei; Quan, Zhiwei

    2016-01-01

    Cytokine is a key molecular link between chronic inflammation and gallbladder cancer (GBC) progression. The potential mechanism of cytokine-associated modulation of microRNAs (miRNAs) expression in GBC progression is not fully understood. In this study, we investigated the biological effects and prognostic significance of interleukin-6 (IL-6) -induced miRNAs in the development of GBC. We identify that inflammatory cytokine, IL-6 promotes proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of GBC both in vitro and in vivo. Among all the changed miRNAs in miRNA profiling, miR-33a expression was significantly decreased in IL-6 treated GBC cell lines, as well as in GBC tissues compared with case-matched normal tissues and cholecystitis tissues. In turn, miR-33a suppresses IL-6−induced tumor metastasis by directly binding Twist which was identified as an EMT marker. High expression of miR-33a suppressed xenograft tumor growth and dissemination in nude mice. The downregulation of miR-33a was closely associated with advanced clinical stage, lymph node metastasis, and poor clinical outcomes in patients with GBC. miR-33a acts as a tumor suppressor miRNA in GBC progression and may be considered for the development of potential therapeutics against GBC. PMID:27769047

  3. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small cell lung cancer in preclinical models

    PubMed Central

    Svensson, Robert U.; Parker, Seth J.; Eichner, Lillian J.; Kolar, Matthew J.; Wallace, Martina; Brun, Sonja N.; Lombardo, Portia S.; Van Nostrand, Jeanine L.; Hutchins, Amanda; Vera, Lilliana; Gerken, Laurie; Greenwood, Jeremy; Bhat, Sathesh; Harriman, Geraldine; Westlin, William F.; Harwood, H. James; Saghatelian, Alan; Kapeller, Rosana; Metallo, Christian M.; Shaw, Reuben J.

    2016-01-01

    Continuous de novo fatty acid synthesis is a common feature of cancer required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC), an attractive but traditionally intractable drug target. Here, we provide genetic and pharmacological evidence that in preclinical models ACC is required to maintain de novo fatty acid synthesis needed for growth and viability of non-small cell lung cancer (NSCLC). We describe the ability of ND-646—an allosteric inhibitor of the ACC enzymes ACC1 and ACC2 that prevents ACC subunit dimerization—to suppress fatty acid synthesis in vitro and in vivo. Chronic ND-646 treatment of xenograft and genetically engineered mouse models of NSCLC inhibited tumor growth. When administered as a single agent or in combination with the standard-of-care drug carboplatin, ND-646 markedly suppressed lung tumor growth in the Kras;Trp53−/− (also known as KRAS p53) and Kras;Stk11−/− (also known as KRAS Lkb1) mouse models of NSCLC. These findings demonstrate that ACC mediates a metabolic liability of NSCLC and that ACC inhibition by ND-646 is detrimental to NSCLC growth, supporting further examination of the use of ACC inhibitors in oncology. PMID:27643638

  4. Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1/LSF-MMP2/CD44 axes

    PubMed Central

    Luo, Xiangjian; Li, Namei; Zhong, Juanfang; Tan, Zheqiong; Liu, Ying; Dong, Xin; Cheng, Can; Xu, Zhijie; Li, Hongde; Yang, Lifang; Tang, Min; Weng, Xinxian; Yi, Wei; Liu, Jikai; Cao, Ya

    2016-01-01

    Grifolin, a farnesyl phenolic compound isolated from the fresh fruiting bodies of the mushroom Albatrellus confluens, exhibits effective antitumor bioactivity in previous study of our group and other lab. In this study, we observed that grifolin inhibited tumor cells adhesion and migration. Moreover, grifolin reduced reactive oxygen species (ROS) production and caused cellular ATP depletion in high-metastatic tumor cells. PGC1α (Peroxisome proliferator-activated receptor γ, coactivator 1α) encodes a transcriptional co-activator involved in mitochondrial biogenesis and respiration and play a critical role in the maintenance of energy homeostasis. Interestingly, grifolin suppressed the mRNA as well as protein level of PGC1α. We further identified that MMP2 and CD44 expressions were PGC1α inducible. PGC1α can bind with metastatic-associated transcription factors: Fra-1 and LSF and the protein-protein interaction was attenuated by grifolin treatment. Overall, these findings suggest that grifolin decreased ROS generation and intracellular ATP to suppress tumor cell adhesion/migration via impeding the interplay between PGC1α and Fra-1 /LSF-MMP2/CD44 axes. Grifolin may develop as a promising lead compound for antitumor therapies by targeting energy metabolism regulator PGC1α signaling. PMID:27626695

  5. Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function

    PubMed Central

    VON BÜLOW, CHARLOTTE; OLIVEIRA-FERRER, LETICIA; LÖNING, THOMAS; TRILLSCH, FABIAN; MAHNER, SVEN; MILDE-LANGOSCH, KARIN

    2015-01-01

    Cadherin-11 (CDH11, OB-cadherin) is a mesenchymal cadherin found to be upregulated in various types of tumors and implicated in tumor progression and metastasis. In order to determine the role of CDH11 expression in ovarian tumors, we performed a combined reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemical study on a large cohort of benign, borderline and invasive ovarian tumors. The RT-qPCR and western blot analysis demonstrated that the CDH11 expression was high in benign cystadenomas and decreased with increasing malignancy. This may be explained by the different tumor-stroma ratios, since immunohistochemistry revealed strong staining of stromal cells, particularly vascular smooth muscle cells and endothelial cells, but only weak cytoplasmic or nuclear immunoreactivity of cancer cells. Within the group of invasive carcinomas, high CDH11 protein expression, as detected by western blot analysis, was found to be significantly correlated with advanced stage and nodal involvement. However, the recurrence-free and overall survival analyses did not reveal any prognostic or predictive significance. In conclusion, in contrast to other tumor types, CDH11 does not play an important role in ovarian cancer progression. PMID:26623052

  6. Enhanced 15-lipoxygenase activity and elevated eicosanoid production in kidney tumor microenvironment contribute to the inflammation and immune suppression

    PubMed Central

    2012-01-01

    Macrophage infiltration is a hallmark in the majority of solid tumors. Our studies demonstrated that macrophages that infiltrate human renal cells carcinoma (RCC) display markedly enhanced expression and activity of 15-lipoxygenase-2 (15-LOX2). Obtained data suggest that enhanced lipoxygenase activity in tumor-associated macrophages stimulates cancer inflammation and causes immune dysfunction. PMID:22720260

  7. Enhanced 15-lipoxygenase activity and elevated eicosanoid production in kidney tumor microenvironment contribute to the inflammation and immune suppression.

    PubMed

    Kusmartsev, Sergei

    2012-03-01

    Macrophage infiltration is a hallmark in the majority of solid tumors. Our studies demonstrated that macrophages that infiltrate human renal cells carcinoma (RCC) display markedly enhanced expression and activity of 15-lipoxygenase-2 (15-LOX2). Obtained data suggest that enhanced lipoxygenase activity in tumor-associated macrophages stimulates cancer inflammation and causes immune dysfunction.

  8. Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines

    PubMed Central

    Simova, Jana; Sapega, Olena; Imrichova, Terezie; Stepanek, Ivan; Kyjacova, Lenka; Mikyskova, Romana; Indrova, Marie; Bieblova, Jana; Bubenik, Jan; Bartek, Jiri; Hodny, Zdenek; Reinis, Milan

    2016-01-01

    Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo. PMID:27448982

  9. Tumor necrosis factor suppresses interleukin 10 in peripheral B cells via upregulating Bcl2-like protein 12 in patients with inflammatory bowel disease.

    PubMed

    Guo, Xiutian; Li, Mao-Gang; Li, Shan-Shan; Liu, Feng-Hua; Liu, Zhan-Ju; Yang, Ping-Chang

    2017-03-01

    The pathogenesis of the immune regulation dysfunction is unclear. Bcl2-like protein 12 (Bcl2L12) has immune suppression function. This study tests a hypothesis that tumor necrosis factor (TNF) increases Bcl2L12 to suppress the expression of interleukin (IL) 10 in peripheral B cells of patients with inflammatory bowel disease (IBD). In this study, peripheral blood samples were collected from IBD patients and healthy controls. B cells were isolated from the blood samples. The expression of IL-10 and Bcl2L12 in B cells was analyzed by quantitative reverse transcription polymerase chain reaction and Western blotting. We observed that the expression of Bcl2L12 in the peripheral B cells was higher in IBD patients than that in healthy controls. The IL-10 levels in B cells were negatively correlated with the expression of Bcl2L12. Exposure of B cells to TNF in the culture enhanced the expression of Bcl2L12. The Bcl2L12 mediated the effects of TNF on suppression of IL-10 in B cells. In conclusion, Bcl2L12 mediates the effects of TNF to suppress the expression of IL-10 in B cells. The data suggest that Bcl2L12 may be a therapeutic target for the treatment of IBD.

  10. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Wu, Chung-Chun; Hsu, Hui-Yu; Chuang, Hsin-Ying; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chang, Yao; Tsao, George Sai-Wah; Chen, Chi-Long; Chen, Jen-Yang

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC. PMID:25625511

  11. Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice.

    PubMed

    Gil, Eun-Young; Jo, Uk-Hyun; Lee, Hye Jin; Kang, Jinho; Seo, Jae Hong; Lee, Eun Sook; Kim, Yeul Hong; Kim, InSun; Phan-Lai, Vy; Disis, Mary L; Park, Kyong Hwa

    2014-08-01

    ErbB-2 has been implicated as a target for cancer-initiating cells in breast and other cancers. ErbB-2-directed peptide vaccines have been shown to be effective in prevention of spontaneous tumorigenesis of breast in neu transgenic mouse model, and cellular immunity is proposed as a mechanism for the anti-tumor efficacy. However, there has been no explanation as to how immunity suppresses tumorigenesis from the early stage carcinogenesis, when ErbB-2 expression in breast is low. Here, we investigated a peptide-based vaccine, which consists of two MHC class II epitopes derived from murine ErbB-2, to prevent the occurrence of spontaneous tumors in breast and assess immune impact on breast cancer stem cells. Female MMTV-PyMT transgenic mice were immunized with either ErbB-2 peptide vaccine, or a peptide from tetanus toxoid, or PBS in immune adjuvant. ErbB-2 peptides vaccine completely suppressed spontaneous breast tumors, and the efficacy was correlated with antigen-specific T-cell and antibody responses. In addition, immune serum from the mice of ErbB-2 vaccine group had an inhibitory effect on mammosphere-forming capacity and signaling through ErbB-2 and downstream Akt pathway in ErbB-2 overexpressing mouse mammary cancer cells. We provide evidence that multi-epitope class II peptides vaccine suppresses tumorigenesis of breast potentially by inhibiting the growth of cancer stem cells. We also suggest that a strategy of inducing strong immune responses using multi-epitope ErbB-2-directed helper vaccine might be useful in preventing breast cancer recurrence.

  12. Chrysin Inhibits Tumor Promoter-Induced MMP-9 Expression by Blocking AP-1 via Suppression of ERK and JNK Pathways in Gastric Cancer Cells

    PubMed Central

    Xia, Yong; Lian, Sen; Khoi, Pham Ngoc; Yoon, Hyun Joong; Joo, Young Eun; Chay, Kee Oh; Kim, Kyung Keun; Do Jung, Young

    2015-01-01

    Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9) is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients’ survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA)-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells. PMID:25875631

  13. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    PubMed

    Xia, Yong; Lian, Sen; Khoi, Pham Ngoc; Yoon, Hyun Joong; Joo, Young Eun; Chay, Kee Oh; Kim, Kyung Keun; Do Jung, Young

    2015-01-01

    Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9) is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA)-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  14. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    SciTech Connect

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  15. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha.

    PubMed

    Kast, R E

    2001-11-01

    Recent double blind studies have shown some benefit of borage oil in treatment of rheumatoid arthritis. Tumor necrosis factor-alpha has been shown to be a central mediator of inflammatory and joint destructive processes in rheumatoid arthritis. In this paper, evidence from published research is reviewed that indicates gamma linolenic acid component of borage oil increases prostaglandin E levels that increase cAMP levels that in turn suppress tumor necrosis factor-alpha synthesis. If this biochemical path of borage oil is correct then (1) concomitant non-steroidal anti-inflammatory drug use would tend to undermine borage oil effects, and (2) borage oil would be contraindicated in pregnancy given the teratogenic and labor inducing effects of prostaglandin E agonists.

  16. High Potency VEGFRs/MET/FMS Triple Blockade by TAS-115 Concomitantly Suppresses Tumor Progression and Bone Destruction in Tumor-Induced Bone Disease Model with Lung Carcinoma Cells

    PubMed Central

    Fujioka, Yayoi; Kataoka, Yuki; Tanaka, Kenji; Hashimoto, Akihiro; Suzuki, Takamasa; Ito, Kenjiro; Haruma, Tomonori; Yamamoto-Yokoi, Hiromi; Harada, Naomoto; Sakuragi, Motomu; Oda, Nobuyuki; Matsuo, Kenichi; Inada, Masaki; Yonekura, Kazuhiko

    2016-01-01

    Approximately 25–40% of patients with lung cancer show bone metastasis. Bone modifying agents reduce skeletal-related events (SREs), but they do not significantly improve overall survival. Therefore, novel therapeutic approaches are urgently required. In this study, we investigated the anti-tumor effect of TAS-115, a VEGFRs and HGF receptor (MET)-targeted kinase inhibitor, in a tumor-induced bone disease model. A549-Luc-BM1 cells, an osteo-tropic clone of luciferase-transfected A549 human lung adenocarcinoma cells (A549-Luc), produced aggressive bone destruction associated with tumor progression after intra-tibial (IT) implantation into mice. TAS-115 significantly reduced IT tumor growth and bone destruction. Histopathological analysis showed a decrease in tumor vessels after TAS-115 treatment, which might be mediated through VEGFRs inhibition. Furthermore, the number of osteoclasts surrounding the tumor was decreased after TAS-115 treatment. In vitro studies demonstrated that TAS-115 inhibited HGF-, VEGF-, and macrophage-colony stimulating factor (M-CSF)-induced signaling pathways in osteoclasts. Moreover, TAS-115 inhibited Feline McDonough Sarcoma oncogene (FMS) kinase, as well as M-CSF and receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Thus, VEGFRs/MET/FMS-triple inhibition in osteoclasts might contribute to the potent efficacy of TAS-115. The fact that concomitant dosing of sunitinib (VEGFRs/FMS inhibition) with crizotinib (MET inhibition) exerted comparable inhibitory efficacy for bone destruction to TAS-115 also supports this notion. In conclusion, TAS-115 inhibited tumor growth via VEGFR-kinase blockade, and also suppressed bone destruction possibly through VEGFRs/MET/FMS-kinase inhibition, which resulted in potent efficacy of TAS-115 in an A549-Luc-BM1 bone disease model. Thus, TAS-115 shows promise as a novel therapy for lung cancer patients with bone metastasis. PMID:27736957

  17. Suppression of Tumor Growth by Pleurotus ferulae Ethanol Extract through Induction of Cell Apoptosis, and Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen

    2014-01-01

    Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment. PMID:25029345

  18. p53 directly activates cystatin D/CST5 to mediate mesenchymal-epithelial transition: a possible link to tumor suppression by vitamin D3

    PubMed Central

    Hünten, Sabine; Hermeking, Heiko

    2015-01-01

    Cystatin D (CST5) encodes an inhibitor of cysteine proteases of the cathepsin family and is directly induced by the vitamin D receptor (VDR). Interestingly, vitamin D3 exerts tumor suppressive effects in a variety of tumor types. In colorectal cancer (CRC) cells CST5 was shown to mediate mesenchymal-epithelial transition (MET). We recently performed an integrated genomic and proteomic screen to identify targets of the p53 tumor suppressor in CRC cells. Thereby, we identified CST5 as a putative p53 target gene. Here, we validated and characterized CST5 as a direct p53 target gene. After activation of a conditional p53 allele, CST5 was upregulated on mRNA and protein levels. Treatment with nutlin-3a or etoposide induced CST5 in a p53-dependent manner. These regulations were direct, since ectopic and endogenous p53 occupied a conserved binding site in the CST5 promoter region. In addition, treatment with calcitriol, the active vitamin D3 metabolite, and simultaneous activation of p53 resulted in enhanced CST5 induction and increased repression of SNAIL, an epithelial-mesenchymal transition (EMT) inducing transcription factor. Furthermore, CST5 inactivation decreased p53-induced mesenchymal-epithelial transition (MET) as evidenced by decreased inhibition of SNAIL and of migration by p53. Furthermore, CST5 expression was directly repressed by SNAIL. In summary, these results imply CST5 as an important mediator of tumor suppression by p53 in colorectal cancer. In addition, they suggest that a combined treatment activating p53 and the vitamin D3 pathway may function via induction of CST5. PMID:26158294

  19. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: Identification of common effectors with p53 and p21Waf1

    PubMed Central

    Roperch, Jean-Pierre; Lethrone, Florence; Prieur, Sylvie; Piouffre, Laurence; Israeli, David; Tuynder, Marcel; Nemani, Mona; Pasturaud, Patricia; Gendron, Marie-Claude; Dausset, Jean; Oren, Moshe; Amson, Robert B.; Telerman, Adam

    1999-01-01

    We have previously described biological model systems for studying tumor suppression in which, by using H-1 parvovirus as a selective agent, cells with a strongly suppressed malignant phenotype (KS or US) were derived from malignant cell lines (K562 or U937). By using cDNA display on the K562/KS cells, 15 cDNAs were now isolated, corresponding to genes differentially regulated in tumor suppression. Of these, TSAP9 corresponds to a TCP-1 chaperonin, TSAP13 to a regulatory proteasome subunit, and TSAP21 to syntaxin 11, a vesicular trafficking molecule. The 15 cDNAs were used as a molecular fingerprint in different tumor-suppression models. We found that a similar pattern of differential regulation is shared by activation of p53, p21Waf1, and the human homologue of Drosophila seven in absentia, SIAH-1. Because SIAH-1 is differentially expressed in the various models, we characterized it at the protein and functional levels. The 32-kDa, mainly nuclear protein encoded by SIAH-1, can induce apoptosis and promote tumor suppression. These results suggest the existence of a common mechanism of tumor suppression and apoptosis shared by p53, p21Waf1, and SIAH-1 and involving regulation of the cellular machinery responsible for protein folding, unfolding, and trafficking. PMID:10393949

  20. Gr-1 Ab administered after bone marrow transplantation plus thymus transplantation suppresses tumor growth by depleting granulocytic myeloid-derived suppressor cells.

    PubMed

    Shi, Ming; Li, Ming; Cui, Yunze; Adachi, Yasushi; Ikehara, Susumu

    2014-01-01

    It has been shown that allogeneic intra-bone marrow-bone marrow transplantation (IBM-BMT) plus thymus transplantation (TT) is effective in treating recipients with malignant tumors. Although TT increases the percentage of T cells in the early term after BMT, the myeloid-derived suppressor cells (MDSCs) are still the dominant population. We used the Gr-1 Ab to deplete the granulocytic MDSCs (G-MDSCs) in tumor-bearing mice that had received BMT+TT. Two weeks after the BMT, the mice injected with Gr-1 Ab showed smaller tumors than those in the control group. In addition, Gr-1 Ab significantly increased the percentages and numbers of CD4+ and CD8+ T cells, and decreased the percentages and numbers of MDSCs and G-MDSCs. No side effects of the Gr-1 Ab on recipient or donor thymus were observed. These findings indicate that Gr-1 Ab administered after BMT+TT may enhance the effectiveness of tumor suppression.

  1. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation.

    PubMed

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm(2)) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers.

  2. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.

    PubMed

    Li, Nan; Xi, Yaguang; Tinsley, Heather N; Gurpinar, Evrim; Gary, Bernard D; Zhu, Bing; Li, Yonghe; Chen, Xi; Keeton, Adam B; Abadi, Ashraf H; Moyer, Mary P; Grizzle, William E; Chang, Wen-Chi; Clapper, Margie L; Piazza, Gary A

    2013-09-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes.

  3. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model

    PubMed Central

    Gu, Yuan; Körbel, Christina; Scheuer, Claudia; Nenicu, Anca; Menger, Michael D.; Laschke, Matthias W.

    2016-01-01

    Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases. PMID:26701724

  4. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation

    PubMed Central

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm2) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers. PMID:26379793

  5. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling; Li, Fang; Chai, Haiyun; Tao, Xin; Wang, Haili; Ji, Aifang

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeutic gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.

  6. Protein kinase Cα suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGFβ signaling axis

    PubMed Central

    Hill, KS; Erdogan, E; Khoor, A; Walsh, MP; Leitges, M; Murray, NR; Fields, AP

    2014-01-01

    Protein kinase C alpha (PKCα) can activate both pro- and anti-tumorigenic signaling depending upon cellular context. Here, we investigated the role of PKCα in lung tumorigenesis in vivo. Gene expression data sets revealed that primary human non-small lung cancers (NSCLC) express significantly decreased PKCα levels, indicating that loss of PKCα expression is a recurrent event in NSCLC. We evaluated the functional relevance of PKCα loss during lung tumorigenesis in three murine lung adenocarcinoma models (LSL-Kras, LA2-Kras and urethane exposure). Genetic deletion of PKCα resulted in a significant increase in lung tumor number, size, burden and grade, bypass of oncogene-induced senescence, progression from adenoma to carcinoma and a significant decrease in survival in vivo. The tumor promoting effect of PKCα loss was reflected in enhanced Kras-mediated expansion of bronchio-alveolar stem cells (BASCs), putative tumor-initiating cells, both in vitro and in vivo. LSL-Kras/Prkca−/− mice exhibited a decrease in phospho-p38 MAPK in BASCs in vitro and in tumors in vivo, and treatment of LSL-Kras BASCs with a p38 inhibitor resulted in increased colony size indistinguishable from that observed in LSL-Kras/Prkca−/− BASCs. In addition, LSL-Kras/Prkca−/− BASCs exhibited a modest but reproducible increase in TGFβ1 mRNA, and addition of exogenous TGFβ1 to LSL-Kras BASCs results in enhanced growth similar to untreated BASCs from LSL-Kras/Prkca−/− mice. Conversely, a TGFβR1 inhibitor reversed the effects of PKCα loss in LSL-Kras/Prkca−/−BASCs. Finally, we identified the inhibitors of DNA binding (Id) Id1–3 and the Wilm’s Tumor 1 as potential downstream targets of PKCα-dependent tumor suppressor activity in vitro and in vivo. We conclude that PKCα suppresses tumor initiation and progression, at least in part, through a PKCα-p38MAPK-TGFβ signaling axis that regulates tumor cell proliferation and Kras-induced senescence. Our results provide the

  7. Suppressive effects of a proton beam on tumor growth and lung metastasis through the inhibition of metastatic gene expression in 4T1 orthotopic breast cancer model.

    PubMed

    Kwon, Yun-Suk; Lee, Kyu-Shik; Chun, So-Young; Jang, Tae Jung; Nam, Kyung-Soo

    2016-07-01

    A proton beam is a next generation tool to treat intractable cancer. Although the therapeutic effects of a proton beam are well known, the effect on tumor metastasis is not fully described. Here, we investigated the effects of a proton beam on metastasis in highly invasive 4T1 murine breast cancer cells and their orthotopic breast cancer model. Cells were irradiated with 2, 4, 8 or 16 Gy proton beam, and changes in cell proliferation, survival, and migration were observed by MTT, colony forming and wound healing assays. 4T1 breast cancer cell-implanted BALB/c mice were established and the animals were randomly divided into 4 groups when tumor size reached 200 mm3. Breast tumors were selectively irradiated with 10, 20 or 30 Gy proton beam. Breast tumor sizes were measured twice a week, and breast tumor and lung tissues were pathologically observed. Metastasis-regulating gene expression was assessed with quantitative RT-PCR. A proton beam dose-dependently decreased cell proliferation, survival and migration in 4T1 murine breast cancer cells. Also, growth of breast tumors in the 4T1 orthotopic breast cancer model was significantly suppressed by proton beam irradiation without significant change of body weight. Furthermore, fewer tumor nodules metastasized from breast tumor into lung in mice irradiated with 30 Gy proton beam, but not with 10 and 20 Gy, than in control. We observed correspondingly lower expression levels of urokinase plasminogen activator (uPA), uPA receptor, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF), which are important factors in cancer metastasis, in breast tumor irradiated with 30 Gy proton beam. Proton beam irradiation did not affect expressions of matrix metalloproteinase (MMP)-9 and MMP-2. Taken together, the data suggest that, although proton beam therapy is an effective tool for breast cancer treatment, a suitable dose is necessary to prevent metastasis-linked relapse and poor prognosis.

  8. Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo.

    PubMed

    Reddy, Kaladhar B; Glaros, Selina

    2007-04-01

    Elevated expression of mitogen-activated protein kinase (Erk/MAPK) has been noted in a significant percentage of primary human breast cancers. To directly assess the importance of Erk/MAPK activation in estrogen (E2)-induced tumor progression, we blocked E2-signaling with MEK-inhibitor CI-1040 and/or tamoxifen (Tam). Our data show that both MEK-inhibitor CI-1040 and Tam blocked E2-induced MAPK phosphorylation and cell proliferation in MCF-7 breast cancer cells in vitro. However, in vivo studies show that anti-tumor efficacy of combining the CI-1040 and Tam was similar to single agent(s). Furthermore, sequential treatment with Tam followed by CI-1040 or CI-1040 followed by Tam did not significantly reduce E2-induced tumor growth. This suggests that the combination of CI-1040 and Tam may not be synergistic in inhibiting E2-induced tumor growth. However, these findings also indicate that MAPK plays a critical role in E2-induced tumor growth, and that this could be a potential therapeutic target to combat hormonally regulated growth in ER-positive tumors.

  9. Suppressive effects of antimycotics on tumor necrosis factor-alpha-induced CCL27, CCL2, and CCL5 production in human keratinocytes.

    PubMed

    Kanda, Naoko; Watanabe, Shinichi

    2006-08-14

    Antimycotic agents are reported to improve cutaneous symptoms of atopic dermatitis or psoriasis vulgaris. Keratinocytes in these lesions excessively produce chemokines, CCL27, CCL2, or CCL5 which trigger inflammatory infiltrates. Tumor necrosis factor-alpha (TNF-alpha) induces production of these chemokines via activating nuclear factor-kappaB (NF-kappaB). We examined in vitro effects of antimycotics on TNF-alpha-induced CCL27, CCL2, and CCL5 production in human keratinocytes. Antimycotics ketoconazole and terbinafine hydrochloride suppressed TNF-alpha-induced CCL27, CCL2, and CCL5 secretion and mRNA expression in keratinocytes in parallel to the inhibition of NF-kappaB activity while fluconazole was ineffective. Anti-prostaglandin E2 (PGE2) antiserum or antisense oligonucleotides against PGE2 receptor EP2 or EP3 abrogated inhibitory effects of ketoconazole and terbinafine hydrochloride on TNF-alpha-induced NF-kappaB activity and CCL27, CCL2, and CCL5 production, indicating the involvement of endogenous PGE2 in the inhibitory effects. Prostaglandin H2, a precursor of PGE2 can be converted to thromboxane A2. Ketoconazole, terbinafine hydrochloride and thromboxane A2 synthase (EC 5.3.99.5) inhibitor, carboxyheptyl imidazole increased PGE2 release from keratinocytes and reduced that of thromboxane B2, a stable metabolite of thromboxane A2. Carboxyheptyl imidazole also suppressed TNF-alpha-induced NF-kappaB activity and CCL27, CCL2, and CCL5 production. These results suggest that ketoconazole and terbinafine hydrochloride may suppress TNF-alpha-induced NF-kappaB activity and CCL27, CCL2, and CCL5 production by increasing PGE2 release from keratinocytes. These antimycotics may suppress thromboxane A2 synthesis and redirect the conversion of PGH2 toward PGE2. These antimycotics may alleviate inflammatory infiltration in atopic dermatitis or psoriasis vulgaris by suppressing chemokine production.

  10. EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage

    PubMed Central

    Kuroda, Shinji; Tam, Justina; Roth, Jack A; Sokolov, Konstantin; Ramesh, Rajagopal

    2014-01-01

    Background We have previously demonstrated the epidermal growth factor receptor (EGFR)-targeted hybrid plasmonic magnetic nanoparticles (225-NP) produce a therapeutic effect in human lung cancer cell lines in vitro. In the present study, we investigated the molecular mechanism of 225-NP-mediated antitumor activity both in vitro and in vivo using the EGFR-mutant HCC827 cell line. Methods The growth inhibitory effect of 225-NP on lung tumor cells was determined by cell viability and cell-cycle analysis. Protein expression related to autophagy, apoptosis, and DNA-damage were determined by Western blotting and immunofluorescence. An in vivo efficacy study was conducted using a human lung tumor xenograft mouse model. Results The 225-NP treatment markedly reduced tumor cell viability at 72 hours compared with the cell viability in control treatment groups. Cell-cycle analysis showed the percentage of cells in the G2/M phase was reduced when treated with 225-NP, with a concomitant increase in the number of cells in Sub-G1 phase, indicative of cell death. Western blotting showed LC3B and PARP cleavage, indicating 225-NP-treatment activated both autophagy- and apoptosis-mediated cell death. The 225-NP strongly induced γH2AX and phosphorylated histone H3, markers indicative of DNA damage and mitosis, respectively. Additionally, significant γH2AX foci formation was observed in 225-NP-treated cells compared with control treatment groups, suggesting 225-NP induced cell death by triggering DNA damage. The 225-NP-mediated DNA damage involved abrogation of the G2/M checkpoint by inhibiting BRCA1, Chk1, and phospho-Cdc2/CDK1 protein expression. In vivo therapy studies showed 225-NP treatment reduced EGFR phosphorylation, increased γH2AX foci, and induced tumor cell apoptosis, resulting in suppression of tumor growth. Conclusion The 225-NP treatment induces DNA damage and abrogates G2/M phase of the cell cycle, leading to cellular apoptosis and suppression of lung tumor growth

  11. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA.

    PubMed

    Cho, Won-Young; Hong, Seong-Ho; Singh, Bijay; Islam, Mohammad Ariful; Lee, Somin; Lee, Ah Young; Gankhuyag, Nomundelger; Kim, Ji-Eun; Yu, Kyeong-Nam; Kim, Kwang-Ho; Park, Young-Chan; Cho, Chong-Su; Cho, Myung-Haing

    2015-08-01

    Small interfering RNA (siRNA)-mediated gene silencing represents a promising strategy for treating diseases such as cancer; however, specific gene silencing requires an effective delivery system to overcome the instability and low transfection efficiency of siRNAs. To address this issue, a polysorbitol-based transporter (PSOT) was prepared by low molecular weight branched polyethylenimine (bPEI) crosslinked with sorbitol diacrylate (SDA). Osteopontin (OPN) gene, which is highly associated with non-small cell lung cancer (NSCLC) was targeted by siRNA therapy using siRNA targeting OPN (siOPN). Characterization study confirmed that PSOT formed compact complexes with siOPN and protected siOPN against degradation by RNase. PSOT/siOPN complexes demonstrated low cytotoxicity and enhanced transfection efficiency in vitro, suggesting that this carrier may be suitable for gene silencing. In the A549 and H460 lung cancer cell lines, PSOT/siOPN complexes demonstrated significant silencing efficiency at both RNA and protein levels. To study in vivo tumor growth suppression, two lung cancer cell-xenograft mouse models were prepared and PSOT/siOPN complexes were delivered into the mice through intravenous injection. The siOPN-treated groups demonstrated significantly reduced OPN expression at both the RNA and protein levels as well as suppression of tumor volume and weight. Taken together, siOPN delivery using PSOT may present an effective and novel therapeutic system for lung cancer treatment.

  12. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    SciTech Connect

    Matsuoka, Hiroshi; Tsubaki, Masanobu; Yamazoe, Yuzuru; Ogaki, Mitsuhiko; Satou, Takao; Itoh, Tatsuki; Kusunoki, Takashi; Nishida, Shozo

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  13. Potentiation of cell killing by fractionated radiation and suppression of proliferative recovery in MCF-7 breast tumor cells by the Vitamin D3 analog EB 1089.

    PubMed

    DeMasters, Gerald A; Gupta, Mona S; Jones, Kara R; Cabot, Myles; Wang, Hongtao; Gennings, Chris; Park, Misook; Bratland, Ase; Ree, Anne H; Gewirtz, David A

    2004-12-01

    A senescence-like growth arrest succeeded by recovery of proliferative capacity was observed in MCF-7 breast tumor cells exposed to fractionated radiation, 5 x 2 Gy. Exposure to EB 1089, an analog of the steroid hormone 1alpha, 25 dihydroxycholecalciferol (1alpha, 25 dihydroxy Vitamin D(3); calcitriol), prior to irradiation promoted cell death and delayed both the development of a senescent phenotype and the recovery of proliferative capacity. EB 1089 also reduced clonogenic survival over and above that produced by fractionated radiation alone and further conferred susceptibility to apoptosis in MCF-7 cells exposed to radiation. In contrast, EB 1089 failed to enhance the response to radiation (or to promote apoptosis) in normal breast epithelial cells or BJ fibroblast cells. EB 1089 treatment and fractionated radiation additively promoted ceramide generation and suppressed expression of polo-like kinase 1. Taken together, these data indicate that EB 1089 (and 1alpha, 25 dihydroxycholecalciferol or its analogs) could selectively enhance breast tumor cell sensitivity to radiation through the promotion of cell death, in part through the generation of ceramide and the suppression of polo-like kinase.

  14. DEC2 suppresses tumor proliferation and metastasis by regulating ERK/NF-κB pathway in gastric cancer

    PubMed Central

    Li, Ping; Jia, Yan-Fei; Ma, Xiao-Li; Zheng, Yan; Kong, Yi; Zhang, Yao; Zong, Shuai; Chen, Zhi-Tao; Wang, Yun-Shan

    2016-01-01

    Differentiated embryonic chondrocyte expressed gene 2 (DEC2; BHLHE41/Sharp1) is a helix-loop-helix (bHLH) transcription factor, and its deregulation has been observed in several tumors. However, this gene’s effects on tumor progression are controversial, and its roles in gastric cancer (GC) remain unclear. In the present study, we found that DEC2 expression level is lower in GC tissues compared with adjacent non-tumor tissues, and negatively correlated with tumor invasion, lymph node metastasis, TNM stage, and poor survival of GC patients. Positive clinical correlations of DEC2 with EMT regulator, E-cadherin, were also observed in the tissue sections. Overexpression of DEC2 inhibits cell proliferation and EMT in vitro, as well as tumor growth and metastasis in vivo. DEC2 expression also induces cell apoptosis. Furthermore, the anti-metastatic effect of DEC2 was mediated by inhibiting ERK/NF-κB/EMT axis. After treatment with ERK1/2 chemical inhibitor (U0126), DEC2’s inhibitory effect on ERK/NF-κB/EMT was further decreased. Collectively, these data helped to characterize DEC2, which might be a potential molecular target for diagnostic and therapeutic approaches for GC. PMID:27648362

  15. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase.

    PubMed

    Chang, Da-Young; Yoo, Seung-Wan; Hong, Youngtae; Kim, Sujeong; Kim, Se Joong; Yoon, Sung-Hwa; Cho, Kyung-Gi; Paek, Sun Ha; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2010-10-15

    Suicide genes have recently emerged as an attractive alternative therapy for the treatment of various types of intractable cancers. The efficacy of suicide gene therapy relies on efficient gene delivery to target tissues and the localized concentration of final gene products. Here, we showed a potential ex vivo therapy that used mesenchymal stem cells (MSCs) as cellular vehicles to deliver a bacterial suicide gene, cytosine deaminase (CD) to brain tumors. MSCs were engineered to produce CD enzymes at various levels using different promoters. When co-cultured, CD-expressing MSCs had a bystander, anti-cancer effect on neighboring C6 glioma cells in proportion to the levels of CD enzymes that could convert a nontoxic prodrug, 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) in vitro. Consistent with the in vitro results, for early stage brain tumors induced by intracranial inoculation of C6 cells, transplantation of CD-expressing MSCs reduced tumor mass in proportion to 5-FC dosages. However, for later stage, established tumors, a single treatment was insufficient, but only multiple transplantations were able to successfully repress tumor growth. Our findings indicate that the level of total CD enzyme activity is a critical parameter that is likely to affect the clinical efficacy for CD gene therapy. Our results also highlight the potential advantages of autograftable MSCs compared with other types of allogeneic stem cells for the treatment of recurrent glioblastomas through repetitive treatments.

  16. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT

    PubMed Central

    Visuttijai, Kittichate; Pettersson, Jennifer; Mehrbani Azar, Yashar; van den Bout, Iman; Örndal, Charlotte; Marcickiewicz, Janusz; Nilsson, Staffan; Hörnquist, Michael; Olsson, Björn; Ejeskär, Katarina

    2016-01-01

    Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition. PMID:27716847

  17. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle.

    PubMed

    Tebebi, Pamela A; Burks, Scott R; Kim, Saejeong J; Williams, Rashida A; Nguyen, Ben A; Venkatesh, Priyanka; Frenkel, Victor; Frank, Joseph A

    2015-04-01

    Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.

  18. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma.

    PubMed

    Johnson, Jeff J; Miller, Daniel L; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R; Stack, M Sharon

    2016-03-25

    Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors.

  19. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles.

    PubMed

    Qian, Chenchen; Wang, Yong; Chen, Yinting; Zeng, Linjuan; Zhang, Qiubo; Shuai, Xintao; Huang, Kaihong

    2013-08-01

    Arsenic trioxide (As2O3) is a promising anticancer agent for solid tumors. However, the high toxicity to normal tissues resulting from the lack of tumor specificity remains a huge challenge in its systemic application. Targeted vectors enabling drug delivery to specific cancer cells bring about great potential for better therapeutic efficacy whereas low side effects in cancer treatments. Our previous work has demonstrated that the anti-CD44v6 single chain variable fragment (scFv(CD44v6)) screened out from the human phage-displayed scFv library possesses high specificity and affinity to membrane antigen CD44v6 over-expressing in a subset of epithelium-derived cancers, such as pancreatic, hepatocellular, colorectal and gastric cancers. Herein, a maleimide-functionalized amphiphilic diblock copolymer of poly (ethylene glycol) and poly (D, L-lactide) (mal-PEG-PDLLA) was synthesized and assembled to vesicles with arsenite ion (As) encapsulated in their cores (As-NPs). Conjugation of scFv(CD44v6) with mal-PEG-PDLLA (scFv-As-NPs) enabled more efficient delivery of As and exhibited higher cytotoxic activity than non-targeted ones (As-NPs) in human pancreatic cancer cells PANC-1. Furthermore, the targeted delivery of As induced more significant gene suppression in terms of the expression of anti-apoptotic Bcl-2 protein. Consequently, the expression level of cleaved caspase-3 which is a molecular indicator of cell apoptosis was remarkably elevated. In animal tests, scFv-As-NPs were found to greatly increase accumulation of drug in tumor site and potentiate the efficacy of As in inhibiting tumor growth owing to the enhanced cell apoptosis. These results imply that our tumor specific nanocarriers provide a highly efficient and safe platform for pancreatic cancer therapy.

  20. Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody.

    PubMed

    Coxon, Angela; Bready, James; Min, Hosung; Kaufman, Stephen; Leal, Juan; Yu, Dongyin; Lee, Tani Ann; Sun, Ji-Rong; Estrada, Juan; Bolon, Brad; McCabe, James; Wang, Ling; Rex, Karen; Caenepeel, Sean; Hughes, Paul; Cordover, David; Kim, Haejin; Han, Seog Joon; Michaels, Mark L; Hsu, Eric; Shimamoto, Grant; Cattley, Russell; Hurh, Eunju; Nguyen, Linh; Wang, Shao Xiong; Ndifor, Anthony; Hayward, Isaac J; Falcón, Beverly L; McDonald, Donald M; Li, Luke; Boone, Tom; Kendall, Richard; Radinsky, Robert; Oliner, Jonathan D

    2010-10-01

    AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism is less clear. To investigate the consequences of Ang1 neutralization, we have developed potent and selective peptibodies that inhibit the interaction between Ang1 and its receptor, Tie2. Although selective Ang1 antagonism has no independent effect in models of angiogenesis-associated diseases (cancer and diabetic retinopathy), it induces ovarian atrophy in normal juvenile rats and inhibits ovarian follicular angiogenesis in a hormone-induced ovulation model. Surprisingly, the activity of Ang1 inhibitors seems to be unmasked in some disease models when combined with Ang2 inhibitors, even in the context of concurrent vascular endothelial growth factor inhibition. Dual inhibition of Ang1 and Ang2 using AMG 386 or a combination of Ang1- and Ang2-selective peptibodies cooperatively suppresses tumor xenograft growth and ovarian follicular angiogenesis; however, Ang1 inhibition fails to augment the suppressive effect of Ang2 inhibition on tumor endothelial cell proliferation, corneal angiogenesis, and oxygen-induced retinal angiogenesis. In no case was Ang1 inhibition shown to (a) confer superior activity to Ang2 inhibition or dual Ang1/2 inhibition or (b) antagonize the efficacy of Ang2 inhibition. These results imply that Ang1 plays a context-dependent role in promoting postnatal angiogenesis and that dual Ang1/2 inhibition is superior to selective Ang2 inhibition for suppression of angiogenesis in some postnatal settings.

  1. Piceatannol inhibits MMP-9-dependent invasion of tumor necrosis factor-α-stimulated DU145 cells by suppressing the Akt-mediated nuclear factor-κB pathway

    PubMed Central

    JAYASOORIYA, RAJAPAKSHA GENDARA PRASAD THARANGA; LEE, YONG-GAB; KANG, CHANG-HEE; LEE, KYOUNG-TAE; CHOI, YUNG HYUN; PARK, SUNG-YONG; HWANG, JAE-KWAN; KIM, GI-YOUNG

    2013-01-01

    Piceatannol has potent anti-inflammatory, immunomodulatory, anticancer and antiproliferative effects. However, little is known about the mechanism by which piceatannol inhibits invasion and metastasis. The aim of the current study was to investigate the effects of piceatannol on the expression of matrix metalloproteinase-9 (MMP-9) in DU145 human prostate cancer cells. The results revealed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α). However, treatment with piceatannol reversed TNF-α- and MMP-9-induced gelatin zymography and its gene expression. In addition, a Matrigel invasion assay determined that piceatannol reduces the TNF-α-induced invasion of DU145 cells. Nuclear factor-κ B (NF-κB) is a significant transcription factor that regulates numerous genes involved in tumor cell invasion and metastasis. Therefore, whether piceatannol acts on NF-κB to regulate MMP-9 gene expression was analyzed. The results revealed that piceatannol attenuates MMP-9 gene expression via the suppression of NF-κB activity. Using a specific NF-κB inhibitor, pyrrolidine dithiocarbamate, it was confirmed that TNF-α-induced MMP-9 gene expression is primarily regulated by NF-κB activation. Piceatannol inhibited NF-κB activity by suppressing nuclear translocation of the NF-κB p65 and p50 subunits. Furthermore, TNF-α-induced Akt phosphorylation was significantly downregulated in the presence of piceatannol. The Akt inhibitor LY294002 caused a significant decrease in TNF-α-induced NF-κB activity and MMP-9 gene expression. Overall, these data suggest that piceatannol inhibits TNF-α-induced invasion by suppression of MMP-9 activation via the Akt-mediated NF-κB pathway in DU145 prostate cancer cells. PMID:23255946

  2. The Role of BRCA1 in Suppressing Epithelial-Mesenchymal Transition in Mammary Gland and Tumor Development

    DTIC Science & Technology

    2014-09-01

    expression of EMT-TFs and observed that 77% (n=13, >one year of age) of p18-/- ;Brca1+/- tumors were stained positive for Twist, Foxc1, Foxc2, Slug, and Snail ...At least two EMT-inducing transcription factors (EMT-TFs), which include Twist, Slug, Snail , Foxc1 and Foxc2, stained positive in >2% tumor cells...Slug Snail Foxc1 Twist Twist2 0 20 40 60 80 8 results indicate that haploid or near complete loss of Brca1 in mammary epithelium not only

  3. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets.

    PubMed

    Park, Byoungduck; Prasad, Sahdeo; Yadav, Vivek; Sung, Bokyung; Aggarwal, Bharat B

    2011-01-01

    Pancreatic cancer (PaCa) is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA), an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation). These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg) significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets.

  4. Eriocalyxin B, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling

    PubMed Central

    Zhou, Xunian; Yue, Grace Gar-Lee; Liu, Minghua; Zuo, Zhili; Lee, Julia Kin-Ming; Li, Mingyue; Tsui, Stephen Kwok-Wing; Fung, Kwok-Pui; Sun, Handong; Pu, Jianxin; Lau, Clara Bik-San

    2016-01-01

    Eriocalyxin B (EriB), a natural ent-kaurane diterpenoid isolated from the plant Isodon eriocalyx var. laxiflora, has emerged as a promising anticancer agent. The effects of EriB on angiogenesis were explored in the present study. Here we demonstrated that the subintestinal vein formation was significantly inhibited by EriB treatment (10, 15 μM) in zebrafish embryos, which was resulted from the alteration of various angiogenic genes as shown in transcriptome profiling. In human umbilical vein endothelial cells, EriB treatment (50, 100 nM) could significantly block vascular endothelial growth factors (VEGF)-induced cell proliferation, tube formation, cell migration and cell invasion. Furthermore, EriB also caused G1 phase cell cycle arrest which was correlated with the down-regulation of the cyclin D1 and CDK4 leading to the inhibition of phosphorylated retinoblastoma protein expression. Investigation of the signal transduction revealed that EriB inhibited VEGF-induced phosphorylation of VEGF receptor-2 via the interaction with the ATP-binding sites according to the molecular docking simulations. The suppression of VEGFR-2 downstream signal transduction cascades was also observed. EriB was showed to inhibit new blood vessel formation in Matrigel plug model and mouse 4T1 breast tumor model. EriB (5 mg/kg/day) treatment was able to decrease tumor vascularization and suppress tumor growth and angiogenesis. Taken together, our findings suggested that EriB is a novel inhibitor of angiogenesis through modulating VEGFR-2 signaling pathway, which could be developed as a promising anti-angiogenic agent for treatment of angiogenesis-related human diseases, such as cancer. PMID:27756875

  5. Tumor-suppressive miR-218-5p inhibits cancer cell proliferation and migration via EGFR in non-small cell lung cancer

    PubMed Central

    Liao, Zhicong; Fu, Zheng; Hong, Yeting; Zhou, Yong; Zhang, Chen-Yu; Chen, Xi

    2016-01-01

    Lung cancer remains the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer cases. Recently, microRNAs (miRNAs) have been consistently demonstrated to be involved in NSCLC and to act as either tumor oncogenes or tumor suppressors. In this study, we identified a specific binding site for miR-218-5p in the 3′-untranslated region of the epidermal growth factor receptor (EGFR). We further experimentally validated miR-218-5p as a direct regulator of EGFR. We also identified an inverse correlation between miR-218-5p and EGFR protein levels in NSCLC tissue samples. Moreover, we demonstrated that miR-218-5p plays a critical role in suppressing the proliferation and migration of lung cancer cells probably by binding to EGFR. Finally, we examined the function of miR-218-5p in vivo and revealed that miR-218-5p exerts an anti-tumor effect by negatively regulating EGFR in a xenograft mouse model. Taken together, the results of this study highlight an important role for miR-218-5p in the regulation of EGFR in NSCLC and may open new avenues for future lung cancer therapies. PMID:27057632

  6. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways

    PubMed Central

    El Hasasna, Hussain; Saleh, Alaaeldin; Samri, Halima Al; Athamneh, Khawlah; Attoub, Samir; Arafat, Kholoud; Benhalilou, Nehla; Alyan, Sofyan; Viallet, Jean; Dhaheri, Yusra Al; Eid, Ali; Iratni, Rabah

    2016-01-01

    Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis. PMID:26888313

  7. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death

    PubMed Central

    Salah, F S; Ebbinghaus, M; Muley, V Y; Zhou, Z; Al-Saadi, K R D; Pacyna-Gengelbach, M; O'Sullivan, G A; Betz, H; König, R; Wang, Z-Q; Bräuer, R; Petersen, I

    2016-01-01

    GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response. PMID:27124579

  8. Tumor progression locus 2 ablation suppressed hepatocellular carcinoma development by inhibiting hepatic inflammation and steatosis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Tumor progression locus 2 (TPL2), a serine threonine kinase, functions as a critical regulator of inflammatory pathways and mediates oncogenic events. The potential role of Tpl2 in nonalcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) development remains unkn...

  9. Suppression of NFkB by Tetrathiomolybdate Inhibits Tumor Angiogenesis and Enhances Apoptosis in Human Breast Cancers

    DTIC Science & Technology

    2005-05-01

    Q. P., L. W. B., C. G. K., S. D. M.], University of Michigan Medical tumors, including breast, ovarian, colon, pancreatic, thyroid , School, Ann Arbor...while AP1 and SP1 binding ties, inhibited NFKB activity in DAOY medulloblastoma cells activities were unchanged. Taken together, these results (16

  10. Tumor Suppression and Sensitization to Taxol-Induced Apoptosis of E1A in Breast Cancer Cells

    DTIC Science & Technology

    2003-06-01

    Yang Y, Peng Y, Austin RJ, Van Eyndhoven WG, Nguyen KC, Gabriele T, McCurrach ME, Marks JR, Hoey T, Lowe SW, Powers S. Oncogenic properties of PPM1D...suppression by a c-erbB-2/neu-independent mechanism. Cancer Res. 55:5551-5555. 17. Gratton , J. P., M.-R. M., Y. Kureishi, D. Fulton, K. Walsh, and W. C

  11. Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake.

    PubMed Central

    Hurwitz, E; Stancovski, I; Sela, M; Yarden, Y

    1995-01-01

    Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene. Images Fig. 3 Fig. 4 PMID:7724565

  12. Theaflavins suppress tumor growth and metastasis via the blockage of the STAT3 pathway in hepatocellular carcinoma

    PubMed Central

    Shao, Jianping; Meng, Qingyan; Li, Yongyuan

    2016-01-01

    Theaflavins, the major black tea polyphenols, have been reported to exhibit promising antitumor activities in several human cancers. However, the role of theaflavins in hepatocellular carcinoma (HCC) is still unknown. In this study, we found that theaflavins could significantly inhibit proliferation, migration, and invasion, and induce apoptosis in HCC cells in vitro. Furthermore, we found that theaflavins inhibited the growth and metastasis of HCC in an orthotopic model and a lung metastasis model. Immunohistochemical analyses and terminal deoxynucleotidyl transferase dUTP nick end-labeling assays showed that theaflavins could suppress proliferation and induce apoptosis in vivo. Theaflavins also suppressed constitutive and inducible signal transducer and activator of transcription 3 (STAT3) phosphorylation. The downstream proteins regulated by STAT3, including the antiapoptotic proteins (Bcl-2 and Survivin) and the invasion-related proteins (MMP-2, MMP-9), were also downregulated after theaflavins treatment. Theaflavins induced apoptosis by activating the caspase pathway. Together, our results suggest that theaflavins suppress the growth and metastasis of human HCC through the blockage of the STAT3 pathway, and thus may act as potential therapeutic agents for HCC. PMID:27478384

  13. Digoxin Suppresses Tumor Malignancy through Inhibiting Multiple Src-Related Signaling Pathways in Non-Small Cell Lung Cancer.

    PubMed

    Lin, Sheng-Yi; Chang, Hsiu-Hui; Lai, Yi-Hua; Lin, Ching-Hsiung; Chen, Min-Hsuan; Chang, Gee-Chen; Tsai, Meng-Feng; Chen, Jeremy J W

    2015-01-01

    Non-small cell lung cancer is the predominant type of lung cancer, resulting in high mortality worldwide. Digoxin, a cardiac glycoside, has recently been suggested to be a novel chemotherapeutic agent. Src is an oncogene that plays an important role in cancer progression and is therefore a potential target for cancer therapy. Here, we investigated whether digoxin could suppress lung cancer progression through the inhibition of Src activity. The effects of digoxin on lung cancer cell functions were investigated using colony formation, migration and invasion assays. Western blotting and qPCR assays were used to analyze the mRNA and protein expression levels of Src and its downstream proteins, and a cell viability assay was used to measure cellular cytotoxicity effects. The results of the cell function assays revealed that digoxin inhibited the proliferation, invasion, migration, and colony formation of A549 lung cancer cells. Similar effects of digoxin were also observed in other lung cancer cell lines. Furthermore, we found that digoxin significantly suppressed Src activity and its protein expression in a dose- and time-dependent manner as well as reduced EGFR and STAT3 activity. Our data suggest that digoxin is a potential anticancer agent that may suppress lung cancer progression through inhibiting Src and the activity of related proteins.

  14. MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and metastasis in ovarian cancer

    PubMed Central

    Chen, Li-Lan; Wang, Luo-Qiao; Nephew, Kenneth P.; Wu, Ying-Li; Zhang, Shu

    2014-01-01

    Metastasis is major cause of mortality in patients with ovarian cancer. MiR-373 has been shown to play pivotal roles in tumorigenesis and metastasis; however, a role for miR-373 in ovarian cancer has not been investigated. In this study, we show that the miR-373 expression is down-regulated in human epithelial ovarian cancer (EOC) and inversely correlated with clinical stage and histological grade. Ectopic overexpression of miR-373 in human EOC cells suppressed cell invasion in vitro and metastasis in vivo, and the epithelial–mesenchymal transition process. Silencing the expression of miR-373 resulted in an increased migration and invasion of EOC cells. Using integrated bioinformatics analysis, gene expression arrays, and luciferase assay, we identified Rab22a as a direct and functional target of miR-373 in EOC cells. Expression levels of miR-373 were inversely correlated with Rab22a protein levels in human EOC tissues. Rab22a knockdown inhibited invasion and migration of EOC cells, increased E-cadherin expression, and suppressed the expression of N-cadherin. Moreover, overexpression of Rab22a abrogated miR-373-induced invasion and migration of EOC cells. Taken together, these results demonstrate that miR-373 suppresses EOC invasion and metastasis by directly targeting Rab22a gene, a new potential therapeutic target in EOC. PMID:25460499

  15. In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression.

    PubMed Central

    Darji, A; Beschin, A; Sileghem, M; Heremans, H; Brys, L; De Baetselier, P

    1996-01-01

    Experimental infections of mice with the African trypanosome Trypanosoma brucei lead to a profound state of T-cell unresponsiveness in the lymph node cell (LNC) compartment. This suppression is mediated by macrophage-like cells which inhibit interleukin 2 (IL-2) secretion and down-regulate IL-2 receptor expression (M. Sileghem, A. Darji, R. Hamers, M. Van de Winkel, and P. De Baetselier, Eur. J. Immunol. 19:829-835, 1989). Similar suppressive cells can be generated in vitro by pulsing 2C11-12 macrophage hybridoma cells with opsonized T. brucei parasites (2C11-12P cells). Cocultures of 2C11-12P cells and LNCs secrete higher levels of gamma interferon (IFN-gamma), and the hyperproduction of IFN-gamma was found to be confined to CD8+ lymphoid cells. Elimination of CD8+ cells from cocultures of 2C11-12P cells and LNCs restores the T-cell proliferative response. Furthermore, addition of neutralizing anti-IFN-gamma antibodies to the cocultures reduces the level of suppression and concomitantly restores the level of IL-2 receptor expression. Hence, IFN-gamma plays a cardinal role in this in vitro model for T. brucei-elicited immunosuppression. Cocultures of LNCs and 2C11-12P cells in a two-chamber culture system further demonstrated that cell-cell contact is required for hyperproduction of IFN-gamma and, moreover, that IFN-gamma cooperates with a 2C11-12P-derived diffusible factor to exert its suppressive activity. Finally, tumor necrosis factor alpha (TNF-alpha produced by 2C11-12P cells was found to be implicated in the hyperproduction of IFN-gamma, since addition of neutralizing anti-TNF-alpha antibodies to cocultures reduced the level of suppression and concomitantly abrogated the hyperproduction of IFN-gamma. Collectively, our findings indicate that T. brucei-elicited suppressive 2C11-12 macrophage cells differentially influence T-cell subpopulations: (i) CD8+ cells are signaled via cell-cell contact to produce IFN-gamma, and TNF-alpha is implicated in this process

  16. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer.

    PubMed

    Fuse, Miki; Kojima, Satoko; Enokida, Hideki; Chiyomaru, Takeshi; Yoshino, Hirofumi; Nohata, Nijiro; Kinoshita, Takashi; Sakamoto, Shinichi; Naya, Yukio; Nakagawa, Masayuki; Ichikawa, Tomohiko; Seki, Naohiko

    2012-11-26

    microRNAs (miRNAs) have key roles in human tumorigenesis, tumor progression and metastasis. miRNAs are aberrantly expressed in many human cancers and can function as tumor suppressors or oncogenes that target many cancer-related genes. This study seeks to identify novel miRNA-regulated molecular pathways in prostate cancer (PCa). The miRNA expression signature in clinical specimens of PCa showed that 56 miRNAs were significantly downregulated in PCa compared with non-PCa tissues. We focused on the top four downregulated miRNAs (miR-187, miR-205, miR-222 and miR-31) to investigate their functional significance in PCa cells. Expression levels of these four miRNAs were validated in PCa specimens (15 PCa tissues and 17 non-PCa tissues) to confirm that they were significantly reduced in these PCa tissues. Gain-of-function analysis demonstrated that miR-222 and miR-31 inhibited cell proliferation, invasion and migration in PCa cell lines (PC3 and DU145), suggesting that miR-222 and miR-31 may act as tumor suppressors in PCa. Genome-wide gene expression analysis using miR-222 or miR-31 transfectants to identify the pathways they affect showed that many cancer-related genes are regulated by these miRNAs in PC3 cells. Identification and categorization of the molecular pathways regulated by tumor suppressive miRNAs could provide new information about the molecular mechanisms of PCa tumorigenesis.

  17. The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family

    PubMed Central

    Busch, Bianca; Bley, Nadine; Müller, Simon; Glaß, Markus; Misiak, Danny; Lederer, Marcell; Vetter, Martina; Strauß, Hans-Georg; Thomssen, Christoph; Hüttelmaier, Stefan

    2016-01-01

    The tumor-suppressive let-7 microRNA family targets various oncogene-encoding mRNAs. We identify the let-7 targets HMGA2, LIN28B and IGF2BP1 to form a let-7 antagonizing self-promoting oncogenic triangle. Surprisingly, 3′-end processing of IGF2BP1 mRNAs is unaltered in aggressive cancers and tumor-derived cells although IGF2BP1 synthesis was proposed to escape let-7 attack by APA-dependent (alternative polyadenylation) 3′ UTR shortening. However, the expression of the triangle factors is inversely correlated with let-7 levels and promoted by LIN28B impairing let-7 biogenesis. Moreover, IGF2BP1 enhances the expression of all triangle factors by recruiting the respective mRNAs in mRNPs lacking AGO proteins and let-7 miRNAs. This indicates that the downregulation of let-7, largely facilitated by LIN28B upregulation, and the protection of let-7 target mRNAs by IGF2BP1-directed shielding in mRNPs synergize in enhancing the expression of triangle factors. The oncogenic potential of this triangle was confirmed in ovarian cancer (OC)-derived ES-2 cells transduced with let-7 targeting decoys. In these, the depletion of HMGA2 only diminishes tumor cell growth under permissive conditions. The depletion of LIN28B and more prominently IGF2BP1 severely impairs tumor cell viability, self-renewal and 2D as well as 3D migration. In conclusion, this suggests the targeting of the HMGA2-LIN28B-IGF2BP1 triangle as a promising strategy in cancer treatment. PMID:26917013

  18. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2009-07-01

    In revision) T. Fazio, M. L. Visnapuu, S. Wind, E. C. Greene, Langmuir 24, 10524 (Sep 16, 2008). M. L. Visnapuu, T. Fazio, S. Wind, E. C. Greene... Langmuir 24, 11293 (Oct 7, 2008). CONCLUSION Our experiments in cell-free extracts have allowed us to separate the functions of the BRCA1/BARD1...checkpoint signaling might be critical to prevent breast tumor development. 11 REFERENCES 1. S. V. Hodgson, P. J. Morrison, M. Irving , Am J Med

  19. Genetic Suppression of Inflammation Blocks the Tumor-Promoting Effects of TGF-β in Gastric Tissue

    PubMed Central

    Ota, Mitsuhiko; Horiguchi, Masahito; Fang, Victoria; Shibahara, Kotaro; Kadota, Kyuichi; Loomis, Cynthia; Cammer, Michael; Rifkin, Daniel B.

    2014-01-01

    The contributions of TGF-β signaling to cancer are complex but involve the inflammatory microenvironment as well as cancer cells themselves. In mice encoding a TGF-β mutant that precludes its binding to the latent TGF-β binding protein (Tgfb1−/C33S), we observed multiorgan inflammation and an elevated incidence of various types of gastrointestinal solid tumors due to impaired conversion of latent to active TGF-β1. By genetically eliminating activators of latent TGF-β1, we further lowered the amount of TGF-β, which enhanced tumor frequency and multiorgan inflammation. This model system was used to further investigate the relative contribution of TGF-β1 to lymphocyte-mediated inflammation in gastrointestinal tumorigenesis. Toward this end, we generated Tgfb1−/C33S;Rag2−/− mice that lacked adaptive immune function, which eliminated tumor production. Analysis of tissue from Tgfb1−/C33S mice indicated decreased levels of P-Smad3 compared to wild type animals, whereas tissue from Tgfb1−/C33S;Rag2−/− mice had normal P-Smad3 levels. Inhibiting the inflammatory response normalized levels of IL-1β and IL-6 and reduced tumor cell proliferation. Additionally, Tgfb1−/C33S;Rag2−/− mice exhibited reduced paracrine signaling in the epithelia, mediated by hepatocyte growth factor produced by gastric stroma. Together, our results indicate that many of the responses of the gastric tissue associated with decreased TGF-β1 may be directly or indirectly affected by inflammatory processes, which accompany loss of TGF-β1, rather than a direct effect of loss of the cytokine. PMID:24590056

  20. Neem tree (Azadirachta indica) extract specifically suppresses the growth of tumors in H22-bearing Kunming mice.

    PubMed

    He, Zhenxiang; Jiang, Cuihua; Zhang, Jian; Yin, Zhiqi; Yin, Zengfang; Zhu, Yunfeng; Fu, Jie

    Recently, neem tree (Azadirachta indica) extract (NTE) has been reported to have various antitumor activities against gastric, breast, prostate, and skin cancer, respectively. The current study was designed to evaluate the effect of NTE on hepatic cancer in a mouse model. The possible side effects elicited by NTE were also evaluated. The components in NTE were analyzed by liquid chromatography-mass spectrometry (LC-MS). H22 cells-bearing Kumming mice were generated by injecting H22 cells subcutaneously into the right forelimb armpit of the mice. Then the mice were treated daily for 27 days with NTE (150, 300, and 600 mg/kg body weight) by intragastric administration, using carboxymethyl cellulose (CMC, 1%) as blank control and cyclophosphamide (CTX, 20 mg/kg) as positive control. The antitumor effect of NTE was evaluated by assessment of survival rate, body weight, tumor volume and weight, tumor histology, thymus and spleen indexes, and liver histology. The tumor weight and volume in groups of NTE and CTX were significantly lower than those in the CMC group. The survival rate in the NTE group receiving the high dose (600 mg/kg) was significantly higher than that in the CTX and CMC groups. Compared with CTX, NTE was observed to have a tumor-specific cytotoxicity without impairing the normal liver tissue. Additionally, the higher indexes of thymus and spleen indicated that NTE could facilitate the growth of immune organs. The results indicate that NTE is a promising candidate for the antitumor treatment with high efficacy and safety.

  1. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Shin, Yong Pyo; Park, Ho Jin; Lee, Young Shin; Lee, In Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2016-03-01

    The CopA3 dimer peptide is a coprisin analog that has an anticancer effect against human cancer cells in vitro. In this study, we investigated the anticancer activity of the enantiomeric CopA3 dimer peptide in human gastric cancer cell lines as well as in an in vivo tumor xenograft model. Enantiomeric CopA3 reduced gastric cancer cell viability and exhibited cytotoxicity against cancer cells. Enantiomeric CopA3-induced cell death was mediated by specific interactions with phosphatidylserine and phosphatidylcholine, membrane components that are enriched in cancer cells, in a calcein leakage assay. Moreover, acridine orange/ethidium bromide staining, flow cytometric analysis, and Western blot analysis showed that enantiomeric CopA3 induced apoptotic and necrotic gastric cancer cell death. The antitumor effect was also observed in a mouse tumor xenograft model in which intratumoral inoculation of the peptide resulted in a significant decrease in the SNU-668 gastric cancer tumor volume. In addition, periodic acid-Schiff and hematoxylin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed apoptotic and necrotic cell death in tumor masses treated with greater than 150 μg CopA3. Collectively, these results indicate that the enantiomeric CopA3 dimer peptide induces apoptosis and necrosis of gastric cancer cells in vitro and in vivo, indicating that the peptide is a potential candidate for the treatment of gastric cancer, which is a common cause of cancer and cancer deaths worldwide.

  2. Fusogenic-oligoarginine peptide-mediated silencing of the CIP2A oncogene suppresses oral cancer tumor growth in vivo.

    PubMed

    Alexander-Bryant, Angela A; Dumitriu, Anca; Attaway, Christopher C; Yu, Hong; Jakymiw, Andrew

    2015-11-28

    Intracellular delivery and endosomal escape of functional small interfering RNAs (siRNAs) remain major barriers limiting the clinical translation of RNA interference (RNAi)-based therapeutics. Recently, we demonstrated that a cell-penetrating endosome-disruptive peptide we synthesized, termed 599, enhanced the intracellular delivery and bioavailability of siRNAs designed to target the CIP2A oncoprotein (siCIP2A) into oral cancer cells and consequently inhibited oral cancer cell invasiveness and anchorage-independent growth in vitro. Thus, to further assess the therapeutic potential of the 599 peptide in mediating RNAi-based therapeutics for oral cancer and its prospective applicability in clinical settings, the objective of the current study was to determine whether intratumoral dosing of the 599 peptide-siCIP2A complex could induce silencing of CIP2A and consequently impair tumor growth using a xenograft oral cancer mouse model. Our results demonstrate that the 599 peptide is able to protect siRNAs from degradation by serum and ribonucleases in vitro and upon intratumoral injection in vivo, confirming the stability of the 599 peptide-siRNA complex and its potential for therapeutic utility. Moreover, 599 peptide-mediated delivery of siCIP2A to tumor tissue induces CIP2A silencing without any associated toxicity, consequently resulting in reduction of the mitotic index and significant inhibition of tumor growth. Together, these data suggest that the 599 peptide carrier is a clinically effective mediator of RNAi-based cancer therapeutics.

  3. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment.

    PubMed

    Shiri, Sadaf; Alizadeh, Ali Mohammad; Baradaran, Behzad; Farhanghi, Baharak; Shanehbandi, Dariush; Khodayari, Saeed; Khodayari, Hamid; Tavassoli, Abbas

    2015-01-01

    Curcumin, a lipid-soluble compound extracted from the plant Curcuma Longa, has been found to exert immunomodulatory effects via macrophages. However, most studies focus on the low bioavailability issue of curcumin by nano and microparticles, and thus the role of macrophages in the anticancer mechanism of curcumin has received little attention so far. We have previously shown the potential biocompatibility, biodegradability and anti-cancer effects of dendrosomal curcumin (DNC). In this study, twenty-seven BALB/c mice were equally divided into control as well as 40 and 80 mg/kg groups of DNC to investigate the involvement of macrophages in the antitumor effects of curcumin in a typical animal model of metastatic breast cancer. At the end of intervention, the tumor volume and weight were significantly reduced in DNC groups compared to control (P<0.05). Histopathological data showed the presence of macrophages in tumor and spleen tissues. Real-time PCR results showed that DNC increased the expression of STAT4 and IL-12 genes in tumor and spleen tissues in comparison with control (P<0.05), referring to the high levels of M1 macrophages. Furthermore treatment with DNC decreased STAT3, IL-10 and arginase I gene expression (P<0.05), indicating low levels of M2 macrophage. The results confirm the role of macrophages in the protective effects of dendrosomal curcumin against metastatic breast cancer in mice.

  4. Tumor-suppressing effects of microRNA-429 in human renal cell carcinoma via the downregulation of Sp1

    PubMed Central

    Wu, Deyao; Niu, Xiaobing; Pan, Huixing; Zhou, Yunfeng; Zhang, Zichun; Qu, Ping; Zhou, Jian

    2016-01-01

    MicroRNA (miR)-429 has been frequently reported to be downregulated in various tumors, including renal cell carcinoma (RCC), nasopharyngeal carcinoma, Ehrlich ascites tumor cells, gastric cancer, non-small cell lung cancer and endometrial endometrioid carcinoma. The present study investigated the effects of miR-429 on human RCC A498 and 786-O cells. Following transfection of cells with miR-429 mimics and scrambled control, MTT, cell migration, cell invasion and luciferase assays were performed. In addition, western blotting was performed in order to assess the expression of specificity protein 1 (Sp1), which was predicted to be a target of miR-429 by TargetScan. The present results revealed that miR-429 inhibited cell proliferation, migration and invasion of 786-O and A498 cells. In addition, the present results demonstrated that miR-429 overexpression downregulated Sp1 protein expression, which provides evidence that miR-429 may directly target Sp1 in RCC. These results suggest that miR-429 may be investigated for use as a predictive marker for early detection of tumor metastasis and blocking RCC cells from becoming invasive. PMID:27698878

  5. Overexpression of protein kinase C in HT29 colon cancer cells causes growth inhibition and tumor suppression.

    PubMed Central

    Choi, P M; Tchou-Wong, K M; Weinstein, I B

    1990-01-01

    By using a retrovirus-derived vector system, we generated derivatives of the human colon cancer cell line HT29 that stably overexpress a full-length cDNA encoding the beta 1 isoform of rat protein kinase C (PKC). Two of these cell lines, PKC6 and PKC7, displayed an 11- to 15-fold increase in PKC activity when compared with the C1 control cell line that carries the vector lacking the PKC cDNA insert. Both of the overexpresser cell lines exhibited striking alterations in morphology when exposed to the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Following exposure to TPA, PKC6 and PKC7 cells displayed increased doubling time, decreased saturation density, and loss of anchorage-independent growth in soft agar; but these effects were not seen with the C1 cells. Also, in contrast to the control cells, the PKC-overproducing cells failed to display evidence of differentiation, as measured by alkaline phosphatase activity, when exposed to sodium butyrate. In addition, the PKC-overexpresser cells displayed decreased tumorigenicity in nude mice, even in the absence of treatment with TPA. These results provide the first direct evidence that PKC can inhibit tumor cell growth. Thus, in some tumors, PKC might act as a growth-suppressor gene. Images PMID:2388620

  6. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    PubMed

    Azarenko, Olga; Jordan, Mary Ann; Wilson, Leslie

    2014-01-01

    Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  7. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-Dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2011-07-01

    J. 17:6412–25 52. Gravel S, Chapman JR, Magill C , Jackson SP. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev...protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15:3237– 42 124. Prinz S, Amon A, Klein F. 1997. Isolation...cerevisiae. Genes Dev. 19:1390–99 130. Richardson C , Moynahan ME, Jasin M. 1998. Double-strand break repair by interchromosomal recom- bination: suppression

  8. Lkb1/Stk11 regulation of mTOR signaling controls the transition of chondrocyte fates and suppresses skeletal tumor formation.

    PubMed

    Lai, Lick Pui; Lilley, Brendan N; Sanes, Joshua R; McMahon, Andrew P

    2013-11-26

    Liver kinase b1 (Lkb1) protein kinase activity regulates cell growth and cell polarity. Here, we show Lkb1 is essential for maintaining a balance between mitotic and postmitotic cell fates in development of the mammalian skeleton. In this process, Lkb1 activity controls the progression of mitotic chondrocytes to a mature, postmitotic hypertrophic fate. Loss of this Lkb1-dependent switch leads to a dramatic expansion of immature chondrocytes and formation of enchondroma-like tumors. Pathway analysis points to a mammalian target of rapamycin complex 1-dependent mechanism that can be partially suppressed by rapamycin treatment. These findings highlight a critical requirement for integration of mammalian target of rapamycin activity into developmental decision-making during mammalian skeletogenesis.

  9. miR-144-3p, a tumor suppressive microRNA targeting ETS-1 in laryngeal squamous cell carcinoma.

    PubMed

    Zhang, Si-Yi; Lu, Zhong-Ming; Lin, Ye-Feng; Chen, Liang-Si; Luo, Xiao-Ning; Song, Xin-Han; Chen, Shao-Hua; Wu, Yi-Long

    2016-03-08

    Regional lymph node metastasis and distant metastasis are critical in the prognosis of laryngeal squamous cell carcinoma (LSCC). This study investigated the roles of miR-144-3p and E26 transformation specific-1 (ETS-1) in the invasion and migration of LSCC cells. The effects of miR-144-3p and ETS-1 on FaDu and Hep2 cell growth, migration and invasion were determined. Suppression of ETS-1 by miR-144-3p was confirmed using luciferase assays; the effects of ETS-1 silencing were determined using a xenograft tumor model. The expression of ETS-1 was analyzed in 71 paraffin-embedded tissue biopsies and eight fresh frozen biopsies obtained from LSCC patients. miR-144-3p inhibited the growth, invasion and migration of FaDu and Hep2 cells in part through suppression of epithelial-mesenchymal transition as determined by increased E-cadherin and α-catenin and reduced fibronectin and vimentin expression. Additionally, ETS-1 is a molecular target of miR-144-3p, and silencing ETS-1 expression inhibited FaDu and Hep2 cell invasion and migration as well as reduced Hep2 xenograft tumor volume. In LSCC, the expression of ETS-1 is upregulated with disease progression, and higher ETS-1 expression, which was negatively associated with miR-144-3p levels, adversely corresponded with prognoses. Thus, upregulated ETS-1 levels may promote LSCC metastasis, resulting in poor patient prognosis.

  10. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling

    PubMed Central

    Loo, Jacky F.C.; Xia, Dajin; Gao, Sizhi P.; Ma, Zhongjun; Chen, Zhe

    2016-01-01

    The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays critical roles in the pathogenesis and progression of various human cancers, including non-small cell lung cancer (NSCLC). In this study, we aimed to evaluate the therapeutic potential of physalin A, a bioactive withanolide derived from Physalis alkekengi var. francheti used in traditional Chinese medicine, was evaluated in human NSCLC cells. Its and determined whether it effect oninhibited both constitutive and induced STAT3 activity, through repressing the phosphorylation levels of JAK2 and JAK3, resulting in anti-proliferation and pro-apoptotic effects on NSCLC cells was also determined, and. theThe antitumor effects of physalin A were also validated usingin an in vivo mouse xenograft models of NSCLC cells. Physalin A had anti-proliferative and pro-apoptotic effects in NSCLC cells with constitutively activated STAT3; it also suppressed both constitutive and induced STAT3 activity by modulating the phosphorylation of JAK2 and JAK3. Furthermore, physalin A abrogated the nuclear translocation and transcriptional activity of STAT3, thereby decreasing the expression levels of STAT3, its target genes, such as Bcl-2 and XIAP. Knockdown of STAT3 expression by small interfering RNA (siRNA) significantly enhanced the pro-apoptotic effects of physalin A in NSCLC cells. Moreover, physalin A significantly suppressed tumor xenograft growth. Thus, as an inhibitor of JAK2/3-STAT3 signaling, physalin A, has potent anti-tumor activities, which may facilitate the development of a therapeutic strategy for treating NSCLC. PMID:26843613

  11. C-terminal-truncated HBV X promotes hepato-oncogenesis through inhibition of tumor-suppressive β-catenin/BAMBI signaling

    PubMed Central

    Lee, Seok; Lee, Mi-Jin; Zhang, Jun; Yu, Goung-Ran; Kim, Dae-Ghon

    2016-01-01

    C-terminal-truncated hepatitis B virus (HBV) X (HBx) (ctHBX) is frequently detected in hepatocellular carcinoma (HCC) through HBV integration into the host genome. However, the molecular mechanisms underlying ctHBx-associated oncogenic signaling have not yet been clarified. To elucidate the biological role of ctHBx in hepato-oncogenesis, we functionally analyzed ctHBx-mediated regulation of the activin membrane-bound inhibitor bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) through transforming growth factor-β (TGF-β) or β-catenin (CTNNB1) in HCC cells and in an animal model, and we compared its role to that of the full-length HBx protein. Ectopic ctHBx expression generated more colonies in anchorage-dependent and -independent growth assays than did HBx expression alone. ctHBx downregulated BAMBI to a greater degree than did HBx in HCC cells. HBx activated the Wnt/β-catenin pathway, which positively regulated the BAMBI expression through T-cell factor 1 signaling, whereas ctHBx negatively regulated the Wnt/β-catenin pathway. BAMBI downregulated the β-catenin and TGF-β1 signaling pathways. TGF-β1 positively regulated BAMBI expression thorough Smad3 signaling. Furthermore, knockdown of BAMBI was more tumorigenic in HCC cells. Therefore, downregulation of both β-catenin and TGF-β1 signaling by BAMBI might contribute to tumor suppression in mice xenotransplanted with HepG2 or SH-J1 cells. Taken together, ctHBx may have a more oncogenic role than HBx through its inhibition of tumor-suppressive β-catenin/BAMBI signaling. PMID:27909336

  12. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression.

    PubMed

    Okada, Nobuhiro; Lin, Chao-Po; Ribeiro, Marcelo C; Biton, Anne; Lai, Gregory; He, Xingyue; Bu, Pengcheng; Vogel, Hannes; Jablons, David M; Keller, Andreas C; Wilkinson, J Erby; He, Biao; Speed, Terry P; He, Lin

    2014-03-01

    As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a represses HDM4, a potent negative regulator of p53, creating a positive feedback loop acting on p53. In a Kras-induced mouse lung cancer model, miR-34a deficiency alone does not exhibit a strong oncogenic effect. However, miR-34a deficiency strongly promotes tumorigenesis when p53 is haploinsufficient, suggesting that the defective p53-miR-34 feedback loop can enhance oncogenesis in a specific context. The importance of the p53/miR-34/HDM4 feedback loop is further confirmed by an inverse correlation between miR-34 and full-length HDM4 in human lung adenocarcinomas. In addition, human lung adenocarcinomas generate an elevated level of a short HDM4 isoform through alternative polyadenylation. This short HDM4 isoform lacks miR-34-binding sites in the 3' untranslated region (UTR), thereby evading miR-34 regulation to disable the p53-miR-34 positive feedback. Taken together, our results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.

  13. Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G{sub 0}/G{sub 1} arrest

    SciTech Connect

    Dan, Shingo; Yoshimi, Hisashi; Okamura, Mutsumi; Mukai, Yumiko; Yamori, Takao

    2009-01-30

    Phosphoinositide 3-kinase (PI3K) is a potential target in cancer therapy. Inhibition of PI3K is believed to induce apoptosis. We recently developed a novel PI3K inhibitor ZSTK474 with antitumor efficacy. In this study, we have examined the underlying mode of action by which ZSTK474 exerts its antitumor efficacy. In vivo, ZSTK474 effectively inhibited the growth of human cancer xenografts. In parallel, ZSTK474 treatment suppressed the expression of phospho-Akt, suggesting effective PI3K inhibition, and also suppressed the expression of nuclear cyclin D1 and Ki67, both of which are hallmarks of proliferation. However, ZSTK474 treatment did not increase TUNEL-positive apoptotic cells. In vitro, ZSTK474 induced marked G{sub 0}/G{sub 1} arrest, but did not increase the subdiploid cells or activate caspase, both of which are hallmarks of apoptosis. These results clearly indicated that inhibition of PI3K by ZSTK474 did not induce apoptosis but rather induced strong G{sub 0}/G{sub 1} arrest, which might cause its efficacy in tumor cells.

  14. Preclinical evaluation on the tumor suppression efficiency and combination drug effects of fermented wheat germ extract in human ovarian carcinoma cells.

    PubMed

    Wang, Chia-Woei; Wang, Chien-Kai; Chang, Yu-Jia; Choong, Chen-Yen; Lin, Chi-Shian; Tai, Cheng-Jeng; Tai, Chen-Jei

    2015-01-01

    Fermented wheat germ extract (FWGE) is a nutrient supplement and a potential antitumor ingredient for developing an integrated chemotherapy with standard chemotherapeutic drugs for treating ovarian cancer patients. In this study, we evaluated the tumor suppression efficiency of FWGE in human ovarian carcinoma cells, SKOV-3 and ES-2, and found the half-maximal inhibitory concentrations (IC50s) to be 643.76 μg/mL and 246.11 μg/mL after 48 h of FWGE treatment. FWGE treatment also induced programmed cell death by activating the caspase-7 cleavage in both SKOV-3 and ES-2 cells, but only caspase-3 and poly(adenosine diphosphate-ribose) polymerase cleavages were activated in SKOV-3 cells. Moreover, FWGE exhibited combination drug effects with cisplatin and docetaxel in SKOV-3 and ES-2 cells by enhancing the cytotoxicity of both drugs. In conclusion, we found that FWGE not only suppressed cell growth but also induced caspase-3-related and caspase-7-related cell death in human ovarian carcinoma cells. FWGE treatment further enhanced the cytotoxicity of cisplatin and docetaxel, suggesting that FWGE is a potential ingredient in the development of adjuvant chemotherapy with cisplatin or docetaxel for treating ovarian cancer patients.

  15. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4.

    PubMed

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5'-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4.

  16. The Novel miR-9600 Suppresses Tumor Progression and Promotes Paclitaxel Sensitivity in Non–small-cell Lung Cancer Through Altering STAT3 Expression

    PubMed Central

    Sun, Cheng-Cao; Li, Shu-Jun; Zhang, Feng; Zhang, Ya-Dong; Zuo, Zhen-Yu; Xi, Yong-Yong; Wang, Liang; Li, De-Jia

    2016-01-01

    MicroRNAs have been identified to be involved in center stage of cancer biology. They accommodate cell proliferation and migration by negatively regulate gene expression either by hampering the translation of targeted mRNAs or by promoting their degradation. We characterized and identified the novel miR-9600 and its target in human non–small-cell lung cancer (NSCLC). Our results demonstrated that the miR-9600 were downregulated in NSCLC tissues and cells. It is confirmed that signal transducer and activator of transcription 3 (STAT3), a putative target gene, is directly inhibited by miR-9600. The miR-9600 markedly suppressed the protein expression of STAT3, but with no significant influence in corresponding mRNA levels, and the direct combination of miR-9600 and STAT3 was confirmed by a luciferase reporter assay. miR-9600 inhibited cell growth, hampered expression of cell cycle-related proteins and inhibited cell migration and invasion in human NSCLC cell lines. Further, miR-9600 significantly suppressed tumor growth in nude mice. Similarly, miR-9600 impeded tumorigenesis and metastasis through directly targeting STAT3. Furthermore, we identified that miR-9600 augmented paclitaxel and cisplatin sensitivity by downregulating STAT3 and promoting chemotherapy-induced apoptosis. These data demonstrate that miR-9600 might be a useful and novel therapeutic target for NSCLC. PMID:27845771

  17. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    PubMed

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  18. Contribution of AP-1 interference induced by TAC-101 to tumor growth suppression in a hepatocellular carcinoma model.

    PubMed

    Eshima, Kokoro; Fukaya, Satoshi; Sugimoto, Akiko; Mori, Tomoko; Yokoi, Hiromi; Yamamoto, Yasuji; Sugiura, Shin; Honda, Shizu; Masuko, Norio; Murakami, Koji; Yamasaki, Yasundo; Kagechika, Hiroyuki

    2009-01-01

    TAC-101, 4-[3,5-bis(trimethylsilyl)benzamido] benzoic acid, is a synthetic ligand for retinoic acid receptor (RAR)-alpha. Here, we demonstrate the contribution of TAC-101-induced AP-1 interference to stabilization of tumor growth. TAC-101 induced transcriptional activation of RAR, resulting in marked elevation of RARbeta, a representative retinoid response marker, and it also significantly repressed the transcriptional activity of AP-1 in JHH-7 cells. In contrast to JHH-7, JHH-6 is another RARalpha-expressing human hepatocellular carcinoma (HCC) cell line with constitutive activation of AP-1, but it is retinoid insensitive and did not respond to the TAC-101-induced RAR signal. TAC-101 did not inhibit AP-1 activity of the JHH-6 cell line, showing that AP-1 interference by TAC-101 must be in parallel with RAR activation. Interleukin-8 (IL-8), one of the AP-1-regulated factors which correlate with a poor prognosis in HCC patients, was found to be overexpressed in JHH-7 cells. TAC-101 reduced IL-8 production without cytotoxicity and inhibited the progression of HCC in the orthotopic mouse model with decreased tumor IL-8 level. These results suggest that downregulation of the extracellular biomarker for AP-1 interference via the induction of retinoid signals will enhance the pharmacological effect of TAC-101 on HCC and it could be useful as a surrogate biomarker of therapeutic efficacy.

  19. Decreased microRNA-143 expression and its tumor suppressive function in human oral squamous cell carcinoma.

    PubMed

    Ni, Z Y; Lin, F O; Liu, D F; Xiao, J

    2015-06-26

    MicroRNA-143 serves as a tumor suppressor in many human malignancies. However, its involvement in oral squamous cell carcinoma (OSCC) is still unclear. In this study, we investigated the effects of miR-143 in OSCC tumorigenesis and development. Using real-time quantitative reverse transcription-polymerase chain reaction, we detected miR-143 expression in 109 pairs of human OSCC and adjacent noncancerous tissues. The associations between miR-143 expression and clinicopathological factors and prognosis of OSCC patients were also statistically analyzed. Further, the effects of miR-143 on the biological behavior of OSCC cells were investigated. miR-143 expression was significantly downregulated in OSCC tissue samples and cell lines. Decreased miR-143 expression was significantly associated with advanced T classifications, positive N classification, advanced TNM stage, and shorter overall survival. In addition, upregulation of miR-143 in Tca8113 cells reduced cell proliferation, invasion, and migration, as well as promoted cell apoptosis in vitro. These findings validate the clinical significance of miR-143 in OSCC and reveal that it may be an intrinsic regulator of tumor progression and a potential prognostic factor for this disease.

  20. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    SciTech Connect

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  1. Suppression of established hepatocarcinoma in adjuvant only immunotherapy: alum triggers anti-tumor CD8+ T cell response

    PubMed Central

    Wang, Bo; Wang, Xuanyi; Wen, Yumei; Fu, Jing; Wang, Hongyang; Ma, Zhangmei; Shi, Yan; Wang, Bin

    2015-01-01

    Dendritic cell-based immunotherapy is a new weapon in our battle against malignancies in human. Recent trials in human and research work in model animals have shown various degrees of success, suggesting its great potential for clinical use. While protocols vary, a common scheme in this category of treatment involves activation of dendritic cells, with the purpose of increasing antigen presentation and cellular immunity. Therefore, proper use of immune adjuvant is a central subject of study. We report here an unexpected finding that injection of alum, the most widely used human adjuvant, into mice carrying H22 hepatocarcinoma resulted in a significant reduction of tumor growth with extended animal survival. This effect was associated with an increased specific CD8+ T cell activation and an inflammatory environment, yet with minimal overt side effects. Our finding suggests that use of adjuvant alone in certain established tumors can invoke protective host immune activation against the same target, which may be of value in our development of new cancer immunotherapies. PMID:26647964

  2. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics.

    PubMed

    Anastasi, Sergio; Lamberti, Dante; Alemà, Stefano; Segatto, Oreste

    2016-02-01

    The ErbB signaling network instructs the execution of key cellular programs, such as cell survival, proliferation and motility, through the generation of robust signals of defined strength and duration. In contrast, unabated ErbB signaling disrupts tissue homeostasis and leads to cell transformation. Cells oppose the threat inherent in excessive ErbB activity through several mechanisms of negative feedback regulation. Inducible feedback inhibitors (IFIs) are expressed in the context of transcriptional responses triggered by ErbB signaling, thus being uniquely suited to regulate ErbB activity during the execution of complex cellular programs. This review focuses on MIG6, an IFI that restrains ErbB signaling by mediating ErbB kinase suppression and receptor down-regulation. We will review key issues in MIG6 function, regulation and tumor suppressor activity. Subsequently, the role for MIG6 loss in the pathogenesis of tumors driven by ErbB oncogenes as well as in the generation of cellular addiction to ErbB signaling will be discussed. We will conclude by analyzing feedback inhibition by MIG6 in the context of therapies directed against ErbB and non-ErbB oncogenes.

  3. ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2/M arrest, apoptosis, and senescence

    PubMed Central

    Jia, Lijun; Soengas, Maria S.; Sun, Yi

    2009-01-01

    ROC1 (Regulator of Cullins-1) or RBX1 (Ring Box Protein-1) is a RING component of SCF (Skp-1, cullins, F-box proteins) E3 ubiquitin ligases, which regulate diverse cellular processes by targeting a variety of substrates for degradation. However, little is known about the role of ROC1 in human cancer. Here we reported that ROC1 is ubiquitously over-expressed in primary human tumor tissues and human cancer cell lines. ROC1 silencing by siRNA significantly inhibited the growth of multiple human cancer cells via induction of senescence and apoptosis as well as G2/M arrest. Senescence induction is coupled with DNA damage in p53/p21 and p16/pRB-independent manners. Apoptosis is associated with accumulation of Puma and reduction of Bcl-2, Mcl-1, and survivin; and G2/M arrest is associated with accumulation of 14-3-3σ and elimination of cyclin B1 and Cdc2. In U87 glioblastoma cells, these phenotypic changes occur sequentially upon ROC1 silencing, starting with G2/M arrest, followed by apoptosis and senescence. Thus, ROC1 silencing triggers multiple death and growth arrest pathways to effectively suppress tumor cell growth, suggesting that ROC1 may serve as a potential anti-cancer target. PMID:19509229

  4. Long Non-coding RNA TUSC7, a Target of miR-23b, Plays Tumor-Suppressing Roles in Human Gliomas

    PubMed Central

    Shang, Chao; Guo, Yan; Hong, Yang; Xue, Yi-xue

    2016-01-01

    Tumour suppressor candidate 7 (TUSC7) is a novel tumor suppressor gene generating long non-coding RNA (lncRNAs) in several types of human cancers. The expression and function of TUSC7 in human brain glioma has yet to be elucidated. In this study, TUSC7 was poorly expressed in tissues and cell lines of glioma, and the lower expression was correlated with glioma of the worse histological grade. Moreover, TUSC7 is a prognostic biomarker of glioma patients. Up-regulation of TUSC7 suppressed cellular proliferation and invasion of glioma cells, and accelerated cellular apoptosis. Bioinformatics analysis showed that TUSC7 specifically binds to miR-23b. MiR-23b was up-regulated in glioma and negatively correlated with the expression of TUSC7. The miR-23b expression was inhibited remarkably by the upregulation of TUSC7 and the reciprocal inhibition was determined between TUSC7 and miR-23b.RNA pull-down and luciferase reporter assays were used to validate the sequence-specific correlation between miR-23b and TUSC7. TUSC7 inhibited the proliferation, migration and invasion of glioma cells and promoted cellular apoptosis largely bypassing miR-23b. We conclude that the lncRNA TUSC7 acted as a tumor suppressor gene negatively regulated by miR-23b, suggesting a novel therapeutic strategy against gliomas. PMID:27766072

  5. Preparation of Oxaliplatin-Deoxycholic Acid Derivative Nanocomplexes and In Vivo Evaluation of Their Oral Absorption and Tumor Growth Suppression.

    PubMed

    Jeon, Ok-Cheol; Byun, Youngro; Park, Jin Woo

    2016-02-01

    To prepare orally available oxaliplatin (OXA), nanocomplexes were formed by ionic conjugation of OXA with the deoxycholic acid derivative, Nalpha-deoxycholy-L-lysyl-methylester (DCK), as an oral absorption enhancer. We characterized the DCK-conjugated OXA nanocomplexes by differential scanning calorimetry, particle size determination, and morphological analysis. To evaluate the effects of DCK on the intestinal permeability of OXA, we assessed the solubilities and partition coefficients of OXA and the OXA/DCK nanocomplex, and then conducted in vitro artificial intestinal membrane and Caco-2 cell permeability studies. Finally, bioavailability in rats and tumor growth inhibition in the squamous cell carcinoma (SCC7) model after oral administration of the OXA/DCK nanocomplex were investigated compared to pure OXA. Analysis of the ionic complex formation of OXA with DCK revealed that OXA existed in an amorphous form within the complex, resulting in for- mation of nanocomp;exes (35.05 +/- 4.48 nm in diameter). The solubility of OXA in water was approximately 7.07 mg/mL, whereas the water solubility of OXA/DCK was approximately 2.04 mg/mL and its partition coefficient was approximately 1.2-fold higher than that of OXA. The in vitro intestinal membrane permeability of OXA was significantly enhanced by complex formation with DCK. An in vivo pharmacokinetic study revealed that the Cm value of the OXA/DCK nanocomplex was 3.18-fold higher than that of OXA (32.22 +/- 10.24 ng/mL), and the resulting oral bioavailability of the OXA/DCK nanocomplex was 39.3-fold more than that of OXA. Furthermore, the oral administration of OXA/DCK significantly inhibited tumor growth in SCC7-bearing mice, and maximally inhibited tumor volume by 54% compared to the control. These findings demonstrate the therapeutic potential of the OXA/DCK nanocomplex as an oral anti-cancer therapy because it improves the oral absorption of OXA, which may improve patient compliance and expand the therapeutic

  6. PKCα TUMOR SUPPRESSION IN THE INTESTINE IS ASSOCIATED WITH TRANSCRIPTIONAL AND TRANSLATIONAL INHIBITION OF CYCLIN D1

    PubMed Central

    Pysz, Marybeth A.; Leontieva, Olga V.; Bateman, Nicholas W.; Uronis, Joshua M.; Curry, Kathryn J.; Threadgill, David W.; Janssen, Klaus-Peter; Robine, Sylvie; Velcich, Anna; Augenlicht, Leonard; Black, Adrian R.; Black, Jennifer D.

    2009-01-01

    Alterations in PKC isozyme expression and aberrant induction of cyclin D1 are early events in intestinal tumorigenesis. Previous studies have identified cyclin D1 as a major target in the antiproliferative effects of PKCα in non-transformed intestinal cells; however, a link between PKC signaling and cyclin D1 in colon cancer remained to be established. The current study further characterized PKC isozyme expression in intestinal neoplasms and explored the consequences of restoring PKCα or PKCδ in a panel of colon carcinoma cell lines. Consistent with patterns of PKC expression in primary tumors, PKCα and δ levels were generally reduced in colon carcinoma cell lines, PKCβII was elevated and PKCε showed variable expression, thus establishing the suitability of these models for analysis of PKC signaling. While colon cancer cells were insensitive to the effects of PKC agonists on cyclin D1 levels, restoration of PKCα downregulated cyclin D1 by two independent mechanisms. PKCα expression consistently (a) reduced steady-state levels of cyclin D1 by a novel transcriptional mechanism not previously seen in non-transformed cells, and (b) re-established the ability of PKC agonists to activate the translational repressor 4E-BP1 and inhibit cyclin D1 translation. In contrast, PKCδ had modest and variable effects on cyclin D1 steady state levels and failed to restore responsiveness to PKC agonists. Notably, PKCα expression blocked anchorage-independent growth in colon cancer cells via a mechanism partially dependent on cyclin D1 deficiency, while PKCδ had only minor effects. Loss of PKCα and effects of its re-expression were independent of the status of the APC/β-catenin signaling pathway or known genetic alterations, indicating that they are a general characteristic of colon tumors. Thus, PKCα is a potent negative regulator of cyclin D1 expression and anchorage-independent cell growth in colon tumor cells, findings that offer important perspectives on the

  7. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis

    PubMed Central

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-01-01

    ABSTRACT Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a+/CD207+ dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)+/T-bet+ ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)+ regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02–5.56, p = 0.044; HR = 3.06, 95%CI 1.14–7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host–tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH. PMID:27622040

  8. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126.

  9. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis.

    PubMed

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-07-01

    Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a(+)/CD207(+) dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)(+)/T-bet(+) ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)(+) regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02-5.56, p = 0.044; HR = 3.06, 95%CI 1.14-7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host-tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH.

  10. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways.

    PubMed

    Kaipparettu, Benny Abraham; Ma, Yewei; Park, Jun Hyoung; Lee, Tin-Lap; Zhang, Yiqun; Yotnda, Patricia; Creighton, Chad J; Chan, Wai-Yee; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial-nucleus cross talks and mitochondrial retrograde regulation can play a significant role in cellular properties. Transmitochondrial cybrid systems (cybrids) are an excellent tool to study specific effects of altered mitochondria under a defined nuclear background. The majority of the studies using the cybrid model focused on the significance of specific mitochondrial DNA variations in mitochondrial function or tumor properties. However, most of these variants are benign polymorphisms without known functional significance. From an objective of rectifying mitochondrial defects in cancer cells and to establish mitochondria as a potential anticancer drug target, understanding the role of functional mitochondria in reversing oncogenic properties under a cancer nuclear background is very important. Here we analyzed the potential reversal of oncogenic properties of a highly metastatic cell line with the introduction of non-cancerous mitochondria. Cybrids were established by fusing the mitochondria DNA depleted 143B TK- ρ0 cells from an aggressive osteosarcoma cell line with mitochondria from benign breast epithelial cell line MCF10A, moderately metastatic breast cancer cell line MDA-MB-468 and 143B cells. In spite of the uniform cancerous nuclear background, as observed with the mitochondria donor cells, cybrids with benign mitochondria showed high mitochondrial functional properties including increased ATP synthesis, oxygen consumption and respiratory chain activities compared to cybrids with cancerous mitochondria. Interestingly, benign mitochondria could reverse different oncogenic characteristics of 143B TK(-) cell including cell proliferation, viability under hypoxic condition, anti-apoptotic properties, resistance to anti-cancer drug, invasion, and colony formation in soft agar, and in vivo tumor growth in nude mice. Microarray analysis suggested that several oncogenic pathways observed in cybrids with cancer mitochondria are inhibited in cybrids with

  11. Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice.

    PubMed

    Dai, M; Liu, J; Chen, D-E; Rao, Y; Tang, Z-J; Ho, W-Z; Dong, C-Y

    2012-02-01

    Clinical efficacy of current therapies for hepatocellular carcinoma (HCC) treatment is limited. Indole-3-acetic acid (IAA) is non-toxic for mammalian cells. Oxidative decarboxylation of IAA by horseradish peroxidase (HRP) leads to toxic effects of IAA. The purpose of this study was to investigate the effects of a novel gene-targeted enzyme prodrug therapy with IAA on hepatoma growth in vitro and in vivo mouse hepatoma models. We generated a plasmid using adenovirus to express HRP isoenzyme C (HRPC) with the HCC marker, alpha-fetoprotein (AFP), as the promoter (pAdv-AFP-HRPC). Hepatocellular cells were infected with pAdv-AFP-HRPC and treated with IAA. Cell death was detected using MTT assay. Hepatoma xenografts were developed in mice by injection of mouse hepatoma cells. The size and weight of tumors and organs were evaluated. Cell death in tumors was assessed using hematoxylin and eosin-stained tissue sections. HRPC expression in tissues was detected using Reverse Transcriptase-Polymerase Chain Reaction. IAA stimulated death of hepatocellular cells infected with pAdv-AFP-HRPC, in a dose- and time-dependent manner, but not in control cells. Growth of hepatoma xenografts, including the size and weight, was inhibited in mice treated with pAdv-AFP-HRPC and IAA, compared with that in control group. pAdv-AFP-HRPC/IAA treatment induced cell death in hepatoma xenografts in mice. HRPC gene expressed only in hepatoma, but not in other normal organs of mice. pAdv-AFP-HRPC/IAA treatment did not cause any side effects on normal organs. These findings suggest that pAdv-AFP-HRPC/IAA enzyme/prodrug system may serve as a strategy for HCC therapy.

  12. MiRNA-181b suppresses IGF-1R and functions as a tumor suppressor gene in gliomas.

    PubMed

    Shi, Zhu-Mei; Wang, Xie-Feng; Qian, Xu; Tao, Tao; Wang, Lin; Chen, Qiu-Dan; Wang, Xi-Rui; Cao, Lei; Wang, Ying-Yi; Zhang, Jun-Xia; Jiang, Tao; Kang, Chun-Sheng; Jiang, Bing-Hua; Liu, Ning; You, Yong-Ping

    2013-04-01

    MicroRNAs (miRNAs) are single-stranded, 18- to 23-nt RNA molecules that function as regulators of gene expression. Previous studies have shown that microRNAs play important roles in human cancers, including gliomas. Here, we found that expression levels of miR-181b were decreased in gliomas, and we identified IGF-1R as a novel direct target of miR-181b. MiR-181b overexpression inhibited cell proliferation, migration, invasion, and tumorigenesis by targeting IGF-1R and its downstream signaling pathways, PI3K/AKT and MAPK/ERK1/2. Overexpression of IGF-1R rescued the inhibitory effects of miR-181b. In clinical specimens, IGF-1R was overexpressed, and its protein levels were inversely correlated with miR-181b expression. Taken together, our results indicate that miR-181b functions in gliomas to suppress growth by targeting the IGF-1R oncogene and that miR-181b may serve as a novel therapeutic target for gliomas.

  13. Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal

    PubMed Central

    Wu, Guikai; Qiu, Xiao-Long; Zhou, Longen; Zhu, Jiewen; Chamberlin, Richard; Lau, Johnson; Chen, Phang-Lang; Lee, Wen-Hwa

    2009-01-01

    Hec1 is a conserved mitotic regulator critical for spindle checkpoint control, kinetochore functionality and cell survival. Overexpression of Hec1 has been detected in a variety of human cancers and is linked to poor prognosis of primary breast cancers. Through a chemical genetic screening, we have identified a small molecule, INH1, which specifically disrupts the Hec1/Nek2 interaction via direct Hec1 binding. Treating cells with INH1 triggered reduction of kinetochore-bound Hec1 as well as global Nek2 protein level, consequently leading to metaphase chromosome misalignment, spindle aberrancy and eventual cell death. INH1 effectively inhibited the proliferation of multiple human breast cancer cell lines in culture (GI50 10~21 μM). Furthermore, treatment with INH1 retarded tumor growth in a nude mouse model bearing xenografts derived from the human breast cancer line MDA-MB-468, with no apparent side effects. This study suggests that the Hec1/Nek2 pathway may serve as a novel mitotic target for cancer intervention by small compounds. PMID:18922912

  14. Effects of Anticancer Drug on Chromosome Instability (CIN) and New Clinical Implications for Tumor-Suppressing Therapies

    PubMed Central

    Lee, Hee-Sheung; Lee, Nicholas CO; Kouprina, Natalay; Kim, Jung-Hyun; Kagansky, Alex; Bates, Susan; Trepel, Jane B.; Pommier, Yves; Sackett, Dan; Larionov, Vladimir

    2016-01-01

    Whole-chromosomal instability (CIN), manifested as unequal chromosome distribution during cell division, is a distinguishing feature of most cancer types. CIN is generally considered to drive tumorigenesis, but a threshold level exists whereby further increases in CIN frequency in fact hinder tumor growth. While this attribute is appealing for therapeutic exploitation, drugs that increase CIN beyond this therapeutic threshold are currently limited. In our previous work, we developed a quantitative assay for measuring CIN based on the use of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Here, we used this assay to rank 62 different anticancer drugs with respect to their effects on chromosome transmission fidelity. Drugs with various mechanisms of action such as antimicrotubule activity, histone deacetylase (HDAC) inhibition, mitotic checkpoint inhibition, and targeting of DNA replication and damage responses were included in the analysis. Ranking of the drugs based on their ability to induce HAC loss revealed that paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib, olaparib, peloruside A, GW843682, VX-680, and cisplatin were the top ten drugs demonstrating HAC loss at a high frequency. Therefore, identification of currently used compounds that greatly increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target and leverage the CIN phenotype in cancer cells. PMID:26837770

  15. An immune escape screen reveals Cdc42 as regulator of cancer susceptibility to lymphocyte-mediated tumor suppression.

    PubMed

    Marques, Celio A; Hähnel, Patricia S; Wölfel, Catherine; Thaler, Sonja; Huber, Christoph; Theobald, Matthias; Schuler, Martin

    2008-02-01

    Adoptive cellular immunotherapy inducing a graft-versus-tumor (GVT) effect is the therapeutic mainstay of allogeneic hematopoietic stem cell transplantation (ASCT) for high-risk leukemias. Autologous immunotherapies using vaccines or adoptive transfer of ex vivo-manipulated lymphocytes are clinically explored in patients with various cancer entities. Main reason for failure of ASCT and cancer immunotherapy is progression of the underlying malignancy, which is more prevalent in patients with advanced disease. Elucidating the molecular mechanisms contributing to immune escape will help to develop strategies for the improvement of immunologic cancer treatment. To this end, we have undertaken functional screening and expression cloning of factors mediating resistance to antigen-specific cytotoxic T lymphocytes (CTLs). We have identified Cdc42, a GTPase regulating actin dynamics and growth factor signaling that is highly expressed in invasive cancers, as determinator of cancer cell susceptibility to antigen-specific CTLs in vitro and adoptively transferred immune effectors in vivo. Cdc42 prevents CTL-induced apoptosis via mitogen-activated protein kinase (MAPK) signaling and posttranscriptional stabilization of Bcl-2. Pharmacologic inhibition of MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) overcomes Cdc42-mediated immunoresistance and activation of Bcl-2 in vivo. In conclusion, Cdc42 signaling contributes to immune escape of cancer. Targeting Cdc42 may improve the efficacy of cancer immunotherapies.

  16. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  17. Individual Bromodomains of Polybromo-1 Contribute to Chromatin Association and Tumor Suppression in Clear Cell Renal Carcinoma.

    PubMed

    Porter, Elizabeth G; Dykhuizen, Emily C

    2017-02-17

    The architecture of chromatin is governed, in part, by ATP-dependent chromatin remodelers. These multiprotein complexes contain targeting domains that recognize post-translational marks on histones. One such targeting domain is the bromodomain (BD), which recognizes acetyl-lysines and recruits proteins to sites of acetylation across the genome. Polybromo1 (PBRM1), a subunit of the Polybromo-associated BRG1- or hBRM-associated factors (PBAF) chromatin remodeler, contains six tandem BDs and is frequently mutated in clear cell renal cell carcinoma (ccRCC). Mutations in the PBRM1 gene often lead to the loss of protein expression; however, missense mutations in PBRM1 have been identified and tend to cluster in the BDs, particularly BD2 and BD4, suggesting that individual BDs are critical for PBRM1 function. To study the role of these six BDs, we inactivated each of the six BDs of PBRM1 and re-expressed these mutants in Caki2 cells (ccRCC cells with the loss of function mutation in PBRM1). Four of the six BDs abrogated PBRM1 tumor suppressor function, gene regulation, and chromatin affinity with the degree of importance correlating strongly to the rate of missense mutations in patients. Furthermore, we identified BD2 as the most critical for PBRM1 and confirmed BD2-mediated association to histone H3 peptides acetylated at lysine 14 (H3K14Ac), validating the importance of this specific acetylation mark for PBRM1 binding. From these data, we conclude that four of the BDs act together to target PBRM1 to sites on chromatin; when a single BD is mutated, PBRM1 no longer controls gene expression properly, leading to increased cell proliferation.

  18. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival

    PubMed Central

    Mitsunari, Kensuke; Miyata, Yasuyoshi; Watanabe, Shin-Ichi; Asai, Akihiro; Yasuda, Takuji; Kanda, Shigeru; Sakai, Hideki

    2017-01-01

    Fps/Fes related (Fer) is a non-receptor tyrosine kinase that is expressed in fibroblasts, immune cells and endothelial cells. Fer serves an important pathological role in cell survival, angiogenesis and the immune system. However, the pathological role of Fer expression in the stromal cells surrounding renal cell carcinoma (RCC) has not been previously investigated. In the present study, immunohistochemical analysis of Fer was performed using the formalin-fixed tissue samples of 152 patients with RCC. The proliferative and apoptotic indices were used to represent the percentage of proliferation marker protein Ki-67- and cleaved caspase-3-positive cells, respectively. The microvessel density was defined as the number of cluster of differentiation (CD) 31-positively stained vessels/mm2. In addition, CD57+ and CD68+ cells were counted using semi-quantification of natural killer (NK) cells and macrophages. Fer expression in stromal cells was negatively associated with Fuhrman grade, pathological tumor stage and metastasis (P<0.001). Fer expression in stromal cells was negatively associated with CD68+ macrophage density, whereas it was positively associated with CD57+ NK cell density. Kaplan-Meier estimators indicated that decreased stromal Fer expression was a predictive marker of decreased cause-specific survival rate (P<0.001). Furthermore, low expression of Fer was identified as being an independent marker of decreased cause-specific survival using multivariate analysis (hazard ratio, 7.4; 95% confidence interval, 1.7–33.0; P<0.001). The results of the present study suggested that low Fer expression in stromal cells is associated with increased malignant aggressiveness and decreased survival in patients with RCC. CD57+ NK cell and CD68+ macrophage regulation in cancer-stromal tissue is considered to affect RCC pathology. PMID:28356966

  19. Enhancing Mitochondrial Respiration Suppresses Tumor Promoter TPA-Induced PKM2 Expression and Cell Transformation in Skin Epidermal JB6 Cells

    PubMed Central

    Wittwer, Jennifer A.; Robbins, Delira; Wang, Fei; Codarin, Sarah; Shen, Xinggui; Kevil, Christopher G.; Huang, Ting-Ting; Van Remmen, Holly; Richardson, Arlan; Zhao, Yunfeng

    2016-01-01

    Differentiated cells primarily metabolize glucose for energy via the tricarboxylic acid cycle and oxidative phosphorylation, but cancer cells thrive on a different mechanism to produce energy, characterized as the Warburg effect, which describes the increased dependence on aerobic glycolysis. The M2 isoform of pyruvate kinase (PKM2), which is responsible for catalyzing the final step of aerobic glycolysis, is highly expressed in cancer cells and may contribute to the Warburg effect. However, whether PKM2 plays a contributing role during early cancer development is unclear. In our studies, we have made an attempt to elucidate the effects of varying mitochondrial respiration substrates on skin cell transformation and expression of PKM2. Tumorigenicity in murine skin epidermal JB6 P+ (promotable) cells was measured in a soft agar assay using 12-O-tetradecanoylphorbol-13-acetate (TPA) as a tumor promoter. We observed a significant reduction in cell transformation upon pretreatment with the mitochondrial respiration substrate succinate or malate/pyruvate. We observed that increased expression and activity of PKM2 in TPA-treated JB6 P+ cells and pretreatment with succinate or malate/pyruvate suppressed the effects. In addition, TPA treatment also induced PKM2 whereas PKM1 expression was suppressed in mouse skin epidermal tissues in vivo. In comparison with JB6 P+ cells, the nonpromotable JB6 P− cells showed no increase in PKM2 expression or activity upon TPA treatment. Knockdown of PKM2 using a siRNA approach significantly reduced skin cell transformation. Thus, our results suggest that PKM2 activation could be an early event and play a contributing role in skin tumorigenesis. PMID:21673231

  20. A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression.

    PubMed

    Zeineldin, M; Cunningham, J; McGuinness, W; Alltizer, P; Cowley, B; Blanchat, B; Xu, W; Pinson, D; Neufeld, K L

    2012-05-10

    Mutation of the tumor suppressor adenomatous polyposis coli (APC) is considered an initiating step in the genesis of the vast majority of colorectal cancers. APC inhibits the Wnt-signaling pathway by targeting the proto-oncogene β-catenin for destruction by cytoplasmic proteasomes. In the presence of a Wnt signal, or in the absence of functional APC, β-catenin can serve as a transcription cofactor for genes required for cell proliferation such as cyclin-D1 and c-Myc. In cultured cells, APC shuttles between the nucleus and the cytoplasm, with nuclear APC implicated in the inhibition of Wnt target gene expression. Adopting a genetic approach to evaluate the functions of nuclear APC in the context of a whole organism, we generated a mouse model with mutations that inactivate the nuclear localization signals (NLSs) of Apc (Apc(mNLS)). Apc(mNLS/mNLS) mice are viable and fractionation of mouse embryonic fibroblasts (MEFs) isolated from these mice revealed a significant reduction in nuclear Apc as compared with Apc(+/+) MEFs. The levels of Apc and β-catenin protein were not significantly altered in small intestinal epithelia from Apc(mNLS/mNLS) mice. Compared with Apc(+/+) mice, Apc(mNLS/mNLS) mice showed increased proliferation in epithelial cells from the jejunum, ileum and colon. These same tissues from Apc(mNLS/mNLS) mice showed more mRNA from three genes upregulated in response to canonical Wnt signal, c-Myc, axin-2 and cyclin-D1, and less mRNA from Hath-1, which is downregulated in response to Wnt. These observations suggest a role for nuclear Apc in the inhibition of canonical Wnt signaling and the control of epithelial proliferation in intestinal tissue. Furthermore, we found Apc(Min/+) mice, which harbor a mutation that truncates Apc, to have an increased polyp size and multiplicity if they also carry the Apc(mNLS) allele. Taken together, this analysis of the novel Apc(mNLS) mouse model supports a role for nuclear Apc in the control of Wnt target genes