Science.gov

Sample records for logic controlling salmonella

  1. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  2. Programmable Logic Controllers.

    ERIC Educational Resources Information Center

    Insolia, Gerard; Anderson, Kathleen

    This document contains a 40-hour course in programmable logic controllers (PLC), developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The 10 units of the course cover the following: (1) introduction to programmable logic controllers; (2) DOS primer; (3) prerequisite…

  3. Programmable Logic Controllers. Teacher Edition.

    ERIC Educational Resources Information Center

    Rauh, Bob; Kaltwasser, Stan

    These materials were developed for a seven-unit secondary or postsecondary education course on programmable logic controllers (PLCs) that treats most of the skills needed to work effectively with PLCs as programming skills. The seven units of the course cover the following topics: fundamentals of programmable logic controllers; contracts, timers,…

  4. Salmonella Control Programs in Denmark

    PubMed Central

    Hald, Tine; Wong, Lo Fo; Madsen, Mogens; Korsgaard, Helle; Bager, Flemming; Gerner-Smidt, Peter; Mølbak, Kåre

    2003-01-01

    We describe Salmonella control programs of broiler chickens, layer hens, and pigs in Denmark. Major reductions in the incidence of foodborne human salmonellosis have occurred by integrated control of farms and food processing plants. Disease control has been achieved by monitoring the herds and flocks, eliminating infected animals, and diversifying animals (animals and products are processed differently depending on Salmonella status) and animal food products according to the determined risk. In 2001, the Danish society saved U.S.$25.5 million by controlling Salmonella. The total annual Salmonella control costs in year 2001 were U.S.$14.1 million (U.S.$0.075/kg of pork and U.S.$0.02/kg of broiler or egg). These costs are paid almost exclusively by the industry. The control principles described are applicable to most industrialized countries with modern intensive farming systems. PMID:12890316

  5. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  6. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  7. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  8. Foodborne Salmonella control

    USDA-ARS?s Scientific Manuscript database

    Almost all of the paratyphoid Salmonella spp. are normal flora bacteria of the intestines of chickens and turkeys. They cohabit together and have a very comfortable living arrangement, causing little or no harm to one another and seldom attracting much attention from the birds’ defense systems. Th...

  9. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  10. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  11. Project W-058 monitor and control system logic

    SciTech Connect

    ROBERTS, J.B.

    1999-05-12

    This supporting document contains the printout of the control logic for the Project W-058 Monitor and Control System, as developed by Programmable Control Services, Inc. The logic is arranged in five appendices, one for each programmable logic controller console.

  12. Firmware Modification Analysis in Programmable Logic Controllers

    DTIC Science & Technology

    2014-03-27

    MODIFICATION ANALYSIS IN PROGRAMMABLE LOGIC CONTROLLERS Arturo M. Garcia Jr., B.S.S.E.C.A. Captain, USA Approved: //signed// Robert F. Mills , PhD...Matthew 5:37 v Acknowledgments My sincere gratitude to my committee for their guidance and teamwork which made this thesis possible. Dr. Mills ...2012. 2012. [5] Bolton, William. Programmable logic controllers. Newnes, 2009. [6] Boyer, Stuart . SCADA: Supervisory Control and Data Aquisition 4th

  13. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  14. Control loop noise rejection using fuzzy logic.

    PubMed

    Hay, Glen; Svrcek, William; Ross, Timothy; Young, Brent

    2005-10-01

    This paper describes an application of fuzzy logic to noise rejection in a control loop. This new use of fuzzy logic solves the problem of sluggish control loop response when using a set-point range to stop constant valve chattering due to noise in the output signal being sent to a control valve. Multiple related variables and a general understanding of their inter-relationship must be available for this method to be successfully applied. An overview of the specific fuzzy logic method used for this application is presented along with guidelines for the practical application. In addition, this paper includes results from the successful implementation of fuzzy logic to a control loop on a pilot plant distillation column.

  15. Synchronous universal droplet logic and control

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Cybulski, James S.; Prakash, Manu

    2015-07-01

    Droplets are versatile digital materials; they can be produced at high throughput, perform chemical reactions as miniature beakers and carry biological entities. Droplets have been manipulated with electric, optical, acoustic and magnetic forces, but all these methods use serial controls to address individual droplets. An alternative is algorithmic manipulation based on logic operations that automatically compute where droplets are stored or directed, thereby enabling parallel control. However, logic previously implemented in low-Reynolds-number droplet hydrodynamics is asynchronous and thus prone to errors that prevent scaling up the complexity of logic operations. Here we present a platform for error-free physical computation via synchronous universal logic. Our platform uses a rotating magnetic field that enables parallel manipulation of arbitrary numbers of ferrofluid droplets on permalloy tracks. Through the coupling of magnetic and hydrodynamic interaction forces between droplets, we developed AND, OR, XOR, NOT and NAND logic gates, fanouts, a full adder, a flip-flop and a finite-state machine. Our platform enables large-scale integration of droplet logic, analogous to the scaling seen in digital electronics, and opens new avenues in mesoscale material processing.

  16. Logical Access Control Mechanisms in Computer Systems.

    ERIC Educational Resources Information Center

    Hsiao, David K.

    The subject of access control mechanisms in computer systems is concerned with effective means to protect the anonymity of private information on the one hand, and to regulate the access to shareable information on the other hand. Effective means for access control may be considered on three levels: memory, process and logical. This report is a…

  17. Refining fuzzy logic controllers with machine learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  18. Voltage controlled spintronics device for logic applications.

    SciTech Connect

    Bader, S. D.; You, C.-Y.

    1999-09-03

    We consider logic device concepts based on our previously proposed spintronics device element whose magnetization orientation is controlled by application of a bias voltage instead of a magnetic field. The basic building block is the voltage-controlled rotation (VCR) element that consists of a four-layer structure--two ferromagnetic layers separated by both nanometer-thick insulator and metallic spacer layers. The interlayer exchange coupling between the two ferromagnetic layers oscillates as a function of applied voltage. We illustrate transistor-like concepts and re-programmable logic gates based on VCR elements.

  19. Convection automated logic oven control

    SciTech Connect

    Boyer, M.A.; Eke, K.I.

    1998-03-01

    For the past few years, there has been a greater push to bring more automation to the cooling process. There have been attempts at automated cooking using a wide range of sensors and procedures, but with limited success. The authors have the answer to the automated cooking process; this patented technology is called Convection AutoLogic (CAL). The beauty of the technology is that it requires no extra hardware for the existing oven system. They use the existing temperature probe, whether it is an RTD, thermocouple, or thermistor. This means that the manufacturer does not have to be burdened with extra costs associated with automated cooking in comparison to standard ovens. The only change to the oven is the program in the central processing unit (CPU) on the board. As for its operation, when the user places the food into the oven, he or she is required to select a category (e.g., beef, poultry, or casseroles) and then simply press the start button. The CAL program then begins its cooking program. It first looks at the ambient oven temperature to see if it is a cold, warm, or hot start. CAL stores this data and then begins to look at the food`s thermal footprint. After CAL has properly detected this thermal footprint, it can calculate the time and temperature at which the food needs to be cooked. CAL then sets up these factors for the cooking stage of the program and, when the food has finished cooking, the oven is turned off automatically. The total time for this entire process is the same as the standard cooking time the user would normally set. The CAL program can also compensate for varying line voltages and detect when the oven door is opened. With all of these varying factors being monitored, CAL can produce a perfectly cooked item with minimal user input.

  20. Control of Salmonella infections in animals and prevention of human foodborne Salmonella infections. WHO Consultation.

    PubMed Central

    1994-01-01

    In many countries the incidence of human salmonella infections has markedly increased in recent years. To discuss recent developments and current understanding on the control of salmonella infections in animals, WHO organized a Consultation on the Control of Salmonella Infections in Animals: Prevention of Foodborne Salmonella Infections in Humans, held in Jena, Germany, on 21-26 November 1993. The present article summarizes the recommendations made by the participants on the pathoimmunogenesis, diagnosis, epidemiology, and control of salmonella infections and contaminations in animal production. PMID:7867127

  1. Automatic Configuration of Programmable Logic Controller Emulators

    DTIC Science & Technology

    2015-03-01

    you for your passionate teaching , advice, and mentorship. I would also like to thank the other members in my committee, LTC Mason Rice and Mr. Juan...Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Protocol Informatics In-depth...tree PI Protocol Informatics PLC programmable logic controller PRISMA Protocol Inspection and State Machine Analysis RA Region Analysis RRP request

  2. MOOSE IPL Extensions (Control Logic)

    SciTech Connect

    Permann, Cody

    2015-09-01

    In FY-2015, the development of MOOSE was driven by the needs of the NEAMS MOOSE-based applications, BISON, MARMOT, and RELAP-7. An emphasis was placed on the continued upkeep and improvement MOOSE in support of the product line integration goals. New unified documentation tools have been developed, several improvements to regression testing have been enforced and overall better software quality practices have been implemented. In addition the Multiapps and Transfers systems have seen significant refactoring and robustness improvements, as has the “Restart and Recover” system in support of Multiapp simulations. Finally, a completely new “Control Logic” system has been engineered to replace the prototype system currently in use in the RELAP-7 code. The development of this system continues and is expected to handle existing needs as well as support future enhancements.

  3. Fuzzy logic control of an AGV

    NASA Astrophysics Data System (ADS)

    Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.

  4. Logic control of microfluidics with smart colloid.

    PubMed

    Wang, Limu; Zhang, Mengying; Li, Jiaxing; Gong, Xiuqing; Wen, Weijia

    2010-11-07

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate.

  5. Reactivity measurement using a programmable logic controller

    SciTech Connect

    Bobek, L.M.; Miraglia, P.Q.

    1995-12-31

    The application of digital systems for measuring reactor dynamics has been used at experimental and research reactors for almost 30 yr. At the Worcester Polytechnic Institute (WPI) nuclear reactor facility (NRF), a recent modernization effort included the installation of a programmable logic controller (PLC) and an operator interface terminal (OIT). The PLC systems are increasingly being used to replace relay-based monitoring and control systems at nuclear power plants. At WPI, the PLC and OIT provide a digital reactor monitoring system that is remote from the reactor`s analog control instrumentation. The NRF staff has programmed the monitoring system for several reactor-related applications, including reactivity measurement.

  6. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  7. Voltage controlled spintronic devices for logic applications

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A reprogrammable logic gate comprising first and second voltage-controlled rotation transistors. Each transistor comprises three ferromagnetic layers with a spacer and insulating layer between the first and second ferromagnetic layers and an additional insulating layer between the second and third ferromagnetic layers. The third ferromagnetic layer of each transistor is connected to each other, and a constant external voltage source is applied to the second ferromagnetic layer of the first transistor. As input voltages are applied to the first ferromagnetic layer of each transistor, the relative directions of magnetization of the ferromagnetic layers and the magnitude of the external voltage determines the output voltage of the gate. By altering these parameters, the logic gate is capable of behaving as AND, OR, NAND, or NOR gates.

  8. Salmonella

    USDA-ARS?s Scientific Manuscript database

    The problem of Salmonella in the global food chain and its current and projected repercussions on human health is cause for concern. Numerous studies have suggested that antimicrobial resistance among bacteria is on the rise and this has lead to changes in control and treatment strategies. Increas...

  9. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  10. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella.

    PubMed

    Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg

    2015-08-25

    Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.

  11. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella

    PubMed Central

    Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg

    2015-01-01

    Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host–plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σS and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σS and, together, RprA and σS orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer. PMID:26307765

  12. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  13. Gate-Controlled BP-WSe2 Heterojunction Diode for Logic Rectifiers and Logic Optoelectronics.

    PubMed

    Li, Dong; Wang, Biao; Chen, Mingyuan; Zhou, Jun; Zhang, Zengxing

    2017-06-01

    p-n junctions play an important role in modern semiconductor electronics and optoelectronics, and field-effect transistors are often used for logic circuits. Here, gate-controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe2 ) heterojunctions are reported. The gate-tunable ambipolar charge carriers in BP and WSe2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p-p and n-n) and anisotype (p-n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP-WSe2 heterojunction diodes can be developed for high-performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mix-valued logic-based formation control

    NASA Astrophysics Data System (ADS)

    Zhang, Lequn; Feng, Jun-e.

    2013-06-01

    The formation control (FC) problem is investigated via a mix-valued logic-based approach. First, a trajectory-tracking algorithm of mix-valued logic control networks is proposed. Then, a new formulation of FC problems is established and a feedback control is designed to solve FC problems. The mathematical description of partial-formation control (PFC) problems is then designed as a structure of logical networks. An interesting practical example of PFC is also presented and discussed in detail.

  15. Genetic and environmental control of salmonella invasion.

    PubMed

    Altier, Craig

    2005-02-01

    An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a number of genetic regulators and environmental stimuli in complex relationships. SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) with overlapping sets of target genes. These regulators are, in turn, controlled by both positive and regulators outside SPI-1, including the two-component regulators BarA/SirA and PhoP/Q, and the csr post-transcriptional control system. Additionally, several environmental conditions are known to regulate invasion, including pH, osmolarity, oxygen tension, bile, Mg2+ concentration, and short chain fatty acids. This review will discuss the current understanding of invasion control, with emphasis on the interaction of environmental factors with genetic regulators that leads to productive infection.

  16. Partial reconfiguration of concurrent logic controllers implemented in FPGA devices

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Remigiusz; Grobelna, Iwona; Stefanowicz, Łukasz

    2016-12-01

    Reconfigurable systems are recently used in many domains. Although the concept of multi-context logic controllers is relatively new, it may be noticed that the subject is receiving a lot of attention, especially in the industry. The work constitutes a stepping stone in design of reconfigurable logic controllers implemented in an FPGA device. An approach of designing of logic controllers oriented for further partial reconfiguration is proposed. A case study of a milling machine is used for an illustration.

  17. Control Law for Automatic Landing Using Fuzzy Logic Control

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Inagaki, Yoshiki

    The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.

  18. Deep Space Network Antenna Logic Controller

    NASA Technical Reports Server (NTRS)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  19. Aptamer-controlled biofuel cells in logic systems and used as self-powered and intelligent logic aptasensors.

    PubMed

    Zhou, Ming; Du, Yan; Chen, Chaogui; Li, Bingling; Wen, Dan; Dong, Shaojun; Wang, Erkang

    2010-02-24

    This communication demonstrates for the first time the controlled power release of biofuel cells (BFCs) by aptamer logic systems processed according to the Boolean logic operations "programmed" into the biocomputing systems. On the basis of the built-in Boolean NAND logic, the fabricated aptamer-based BFCs logically controlled by biochemical signals enabled us to construct self-powered and intelligent logic aptasensors that can determine whether the two specific targets are both present in a sample.

  20. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  1. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  2. DNA-based intelligent logic controlled release systems.

    PubMed

    Wen, Yongqiang; Xu, Liping; Li, Chuanbao; Du, Hongwu; Chen, Linfeng; Su, Bin; Zhang, Zhiliang; Zhang, Xueji; Song, Yanlin

    2012-08-28

    DNA assembles that can perform "OR" and "AND" logic gate operations were fabricated. The feasibility of intelligent logic controlled release was demonstrated through the controlled organization of gold nanoparticles on the surface of mesoporous silica by stimuli-induced structural transformation of DNA ensembles.

  3. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Yu; Wu, Kung C.

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  4. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  5. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  6. Control of a fluidized bed combustor using fuzzy logic

    SciTech Connect

    Koffman, S.J.; Brown, R.C.; Fullmer, R.R.

    1996-01-01

    Fuzzy logic--an artificial intelligence technique--can be employed to exploit the wealth of information human experts have learned about complex systems while attempting to control them. This information is usually of a qualitative nature that is unusable by rigid conventional control techniques. Fuzzy logic, uses as a control method, manipulates linguistically expressed, heuristic knowledge from a human expert to derive control actions for a described system. As an alternative approach to classical controls, fuzzy logic is examined for start-up control and normal regulation of a bubbling fluidized bed combustor. To validate the fuzzy logic approach, the fuzzy controller is compared to a classical proportional and integral (PI) controller, commonly used in industrial applications, designed by Ziegler-Nichols tuning.

  7. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  8. Fuzzy logic controllers: A knowledge-based system perspective

    NASA Technical Reports Server (NTRS)

    Bonissone, Piero P.

    1993-01-01

    Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.

  9. Terminology and concepts of control and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  10. Logic-controlled occlusive cuff system

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Hoffler, G. W. (Inventor); Hursta, W. N.

    1981-01-01

    An occlusive cuff system comprises a pressure cuff and a source of regulated compressed gas feeding the cuff through an electrically operated fill valve. An electrically operated vent valve vents the cuff to the ambient pressure. The fill valve is normally closed and the vent valve is normally open. In response to an external start signal, a logic network opens the fill valve and closes the vent valve, thereby starting the pressurization cycle and a timer. A pressure transducer continuously monitors the pressure in the cuff. When the transducer's output equals a selected reference voltage, a comparator causes the logic network to close the fill valve. The timer, after a selected time delay, opens the vent valve to the ambient pressure, thereby ending the pressurization cycle.

  11. Fuzzy logic controller to improve powerline communication

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore

    2015-12-01

    The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

  12. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    NASA Astrophysics Data System (ADS)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.

    2016-07-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  13. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    SciTech Connect

    Derrouazin, A.; Aillerie, M. Charles, J. P.; Mekkakia-Maaza, N.

    2016-07-25

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  14. Fuzzy logic control of the building structure with CLEMR dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao

    2013-04-01

    The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.

  15. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.

    PubMed

    Grant, Ar'Quette; Hashem, Fawzy; Parveen, Salina

    2016-02-01

    Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. UML activity diagrams in requirements specification of logic controllers

    NASA Astrophysics Data System (ADS)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  17. Development of a self-tuning fuzzy logic controller

    SciTech Connect

    Huang, S.H.; Nelson, R.M.

    1999-07-01

    To avoid the laborious task of modifying control rule sets for fuzzy logic controllers, a novel model-based self-tuning strategy has been developed. The performance of this advanced fuzzy logic controller is measured and analyzed in a linguistic plane. An optimal performance trajectory functions as the control model. The self-tuning strategy improves the performance automatically until it converges to a predetermined optimal global criterion. The experimental results indicate that the actual performance trajectory of the advanced fuzzy controller with the self-tuning strategy has reached the optimal criterion.

  18. The cognitive bases for the design of a new class of fuzzy logic controllers: The clearness transformation fuzzy logic controller

    NASA Technical Reports Server (NTRS)

    Sultan, Labib; Janabi, Talib

    1992-01-01

    This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.

  19. [Salmonella].

    PubMed

    Amo, Kiyoko

    2012-08-01

    Nontyphoidal salmonella causes infectious gastroenteritis, and sometimes causes bacteremia and meningitis. Gastroenteritis associated with nontyphoidal salmonella, in which fever, diarrhea, vomiting and abdominal cramps, is a common disease. The major way of transmittion is food of animal origin, for example egg. That is the reason why precausion is so important such as wash hands before cooking, avoid eating raw egg and wash the cooking utensils after contact raw foods. In this report, I presented the rare severe case of encephalitis caused by salmonella infection.

  20. Salmonella

    MedlinePlus

    ... Symptoms Key Resources Salmonella Oranienburg Infections Linked to Shell Eggs Recall & Advice to Consumers and Retailers Case ... Linked to Alfalfa Sprouts Enteritidis Infections Associated with Shell Eggs Chester Infections Associated with Cheesy Chicken & Rice ...

  1. Design and performance comparison of fuzzy logic based tracking controllers

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1992-01-01

    Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.

  2. UML activity diagram swimlanes in logic controller design

    NASA Astrophysics Data System (ADS)

    Grobelny, Michał; Grobelna, Iwona

    2015-12-01

    Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.

  3. Control of Salmonella Enteritidis and Salmonella Gallinarum in birds by using live vaccine candidate containing attenuated Salmonella Gallinarum mutant strain.

    PubMed

    Penha Filho, Rafael Antonio Casarin; de Paiva, Jacqueline Boldrin; da Silva, Mariana Dias; de Almeida, Adriana Maria; Berchieri, Angelo

    2010-04-01

    The ideal live vaccine to control Salmonella in commercial chicken flocks should engender protection against various strains. The purpose of the present study was to confirm the attenuation of a Salmonella Gallinarum (SG) mutant strain with deletion on genes cobS and cbiA, that are involved in the biosynthesis of cobalamin. Furthermore, evaluate its use as a live vaccine against Salmonella. For the evaluation of the vaccine efficacy, two experiments were conducted separately. Birds from a commercial brown line of chickens were used to perform challenge with SG wild type strain and birds from a commercial white line of chickens were used to perform challenge with Salmonella Enteritidis (SE) wild type strain. In both experiments, the birds were separated in three groups (A, B and C). Birds were orally vaccinated with the SG mutant as the following programme: group A, one dose at 5 days of age; group B, one dose at 5 days of age and a second dose at 25 days of age; and group C, birds were kept unvaccinated as controls. At 45 days of age, birds from all groups, including the control, were challenged orally by SG wild type (brown line) or SE wild type (white line). Lastly, another experiment was performed to evaluate the use of the SG mutant strain to prevent caecal colonization by SE wild type on 1-day-old broiler chicks. Mortality and systemic infection by SG wild type strain were assessed in brown chickens; faecal shedding and systemic infection by SE wild type were assessed in white chickens and caecal colonization was assessed in broiler chicks. Either vaccination with one or two doses of SG mutant, were capable to protect brown chickens against SG wild type. In the experiment with white chickens, only vaccination with two doses of SG mutant protected the birds against challenge with SE wild type. Although, SG mutant could not prevent caecal colonization in 1-day-old broiler chicks by the challenge strain SE wild type. Overall, the results indicated that SG mutant

  4. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  5. Programming Programmable Logic Controller. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Lipsky, Kevin

    This training module on programming programmable logic controllers (PLC) is part of the memory structure and programming unit used in a packaging systems equipment control course. In the course, students assemble, install, maintain, and repair industrial machinery used in industry. The module contains description, objectives, content outline,…

  6. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  7. Control of a flexible beam using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1991-01-01

    The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.

  8. Fuzzy Logic Controller for Low Temperature Application

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  9. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  10. Applied intelligent systems: blending fuzzy logic with conventional control

    NASA Astrophysics Data System (ADS)

    Filev, Dimitar; Syed, Fazal U.

    2010-05-01

    The aim of this paper is to show that design of applied intelligent control systems requires different types of blending between fuzzy logic and conventional control systems. Two alternative automotive applications - a manufacturing process control problem and an advisory system for fuel efficient driving - that benefit from both fuzzy and control theories are reviewed and different levels of prioritisations of both approaches are discussed based on the specificity of the applications.

  11. Economic Effects of Introducing Alternative Salmonella Control Strategies in Sweden

    PubMed Central

    Sundström, Kristian; Wahlström, Helene; Ivarsson, Sofie; Sternberg Lewerin, Susanna

    2014-01-01

    The objective of the study was to analyse the economic effects of introducing alternative Salmonella control strategies in Sweden. Current control strategies in Denmark and the Netherlands were used as benchmarks. The true number of human Salmonella cases was estimated by reconstructing the reporting pyramids for the various scenarios. Costs were calculated for expected changes in human morbidity (Salmonella and two of its sequelae), for differences in the control programmes and for changes in cattle morbidity. The net effects (benefits minus costs) were negative in all scenarios (€ −5 to −105 million), implying that it would not be cost-effective to introduce alternative control strategies in Sweden. This result was mainly due to an expected increase in the incidence of Salmonella in humans (6035–57108 reported and unreported new cases/year), with expected additional costs of € 5–55 million. Other increased costs were due to expected higher incidences of sequelae (€ 3–49 million) and a higher cattle morbidity (€ 4–8 million). Benefits in terms of lower control costs amounted to € 4–7 million. PMID:24831797

  12. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  13. Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  14. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  15. Fuzzy Logic Controller for Small Satellites Navigation

    DTIC Science & Technology

    2005-07-13

    autonomously the transition between the operational modes (acquisition, normal, safe , wheels desaturation), based on the attitude and orbital states...weights and particularly it provides for the satellite attitude control in Acquisition, Normal and Safe operative mode . The satellite control is...images without scheduling in advance - independence from ground commands in selecting operational modes - autonomous wheels desaturation

  16. Experimental and applied approaches to control Salmonella in broiler processing

    USDA-ARS?s Scientific Manuscript database

    Control of Salmonella on poultry meat should ideally include efforts from the breeder farm to the fully processed and further processed product on through consumer education. In the U.S. regulatory scrutiny is often applied at the chill tank. Therefore, processing parameters are an important compo...

  17. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  18. 103. LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770): LOGIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770): LOGIC CONTROL AND MONITOR UNIT FOR BOOSTER AND FUEL SYSTEMS, INCLUDING MISSILE GROUND POWER, HYDRAULICS, PURGE, AND COMMIT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Formally specifying the logic of an automatic guidance controller

    NASA Technical Reports Server (NTRS)

    Guaspari, David

    1990-01-01

    The following topics are covered in viewgraph form: (1) the Penelope Project; (2) the logic of an experimental automatic guidance control system for a 737; (3) Larch/Ada specification; (4) some failures of informal description; (5) description of mode changes caused by switches; (6) intuitive description of window status (chosen vs. current); (7) design of the code; (8) and specifying the code.

  20. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  1. Error Correction, Control Systems and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Smith, Earl B.

    2004-01-01

    This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

  2. Intelligent control based on fuzzy logic and neural net theory

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  3. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  4. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  5. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  6. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  7. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    NASA Astrophysics Data System (ADS)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  8. Dynamic partial reconfiguration of logic controllers implemented in FPGAs

    NASA Astrophysics Data System (ADS)

    Bazydło, Grzegorz; Wiśniewski, Remigiusz

    2016-09-01

    Technological progress in recent years benefits in digital circuits containing millions of logic gates with the capability for reprogramming and reconfiguring. On the one hand it provides the unprecedented computational power, but on the other hand the modelled systems are becoming increasingly complex, hierarchical and concurrent. Therefore, abstract modelling supported by the Computer Aided Design tools becomes a very important task. Even the higher consumption of the basic electronic components seems to be acceptable because chip manufacturing costs tend to fall over the time. The paper presents a modelling approach for logic controllers with the use of Unified Modelling Language (UML). Thanks to the Model Driven Development approach, starting with a UML state machine model, through the construction of an intermediate Hierarchical Concurrent Finite State Machine model, a collection of Verilog files is created. The system description generated in hardware description language can be synthesized and implemented in reconfigurable devices, such as FPGAs. Modular specification of the prototyped controller permits for further dynamic partial reconfiguration of the prototyped system. The idea bases on the exchanging of the functionality of the already implemented controller without stopping of the FPGA device. It means, that a part (for example a single module) of the logic controller is replaced by other version (called context), while the rest of the system is still running. The method is illustrated by a practical example by an exemplary Home Area Network system.

  9. 242-A Control System device logic software documentation. Revision 2

    SciTech Connect

    Berger, J.F.

    1995-05-19

    A Distributive Process Control system was purchased by Project B-534. This computer-based control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and Monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment System Engineering Group of Westinghouse. This document describes the Device Logic for this system.

  10. Controllability and Synchronization Analysis of Identical-Hierarchy Mixed-Valued Logical Control Networks.

    PubMed

    Zhong, Jie; Lu, Jianquan; Huang, Tingwen; Ho, Daniel W C

    2016-06-14

    This paper investigates the controllability and synchronization problems for identical-hierarchy mixed-valued logical control networks. The logical network considered is hierarchical, and Boolean network is a special case of logical network. Here, identical-hierarchy means that there are identical number of nodes in each layer of logical network and corresponding nodes have the same dimension for any two layers of logical networks. Meanwhile, in each layer of logical networks, the dimensions of nodes are distinct, and it is called a mixed-valued logical network. First, the controllability problem is investigated and two notions of controllability are presented, i.e., group-controllability and simultaneously-controllability. By resorting to Perron-Frobenius theorem, some necessary and sufficient criteria are obtained to guarantee group-controllability and simultaneously-controllability, respectively. Second, based on the algebraic representation of the studied model, synchronization problems are analytically discussed for two types of controls, i.e., free control sequences and state-output feedback control. Finally, two numerical examples are presented to show the validness of our main results.

  11. Toward a fuzzy logic control of the infant incubator.

    PubMed

    Reddy, Narender P; Mathur, Garima; Hariharan, S I

    2009-10-01

    Premature birth is a world wide problem. Thermo regulation is a major problem in premature infants. Premature infants are often kept in infant incubators providing convective heating. Currently either the incubator air temperature is sensed and used to control the heat flow, or infant's skin temperature is sensed and used in the close loop control. Skin control often leads to large fluctuations in the incubator air temperature. Air control also leads to skin temperature fluctuations. The question remains if both the infant's skin temperature and the incubator air temperature can be simultaneously used in the control. The purpose of the present study was to address this question by developing a fuzzy logic control which incorporates both incubator air temperature and infant's skin temperature to control the heating. The control was evaluated using a lumped parameter mathematical model of infant-incubator system (Simon, B. N., N. P. Reddy, and A. Kantak, J. Biomech. Eng. 116:263-266, 1994). Simulation results confirmed previous experimental results that the on-off skin control could lead to fluctuations in the incubator air temperature, and the air control could lead to too slow rise time in the core temperature. The fuzzy logic provides a smooth control with the desired rise time.

  12. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  13. Evaluation of the Control of Pathogen Load by an Anti-Salmonella Bacterium in a Herd of Cattle with Persistent Salmonella Infection

    USDA-ARS?s Scientific Manuscript database

    Objective: To isolate an anti-Salmonella bacterium that may control pathogen load in persistently-infected cattle herds. Animals: 24 Holstein calves. Procedures: An Escherchia coli (designated as P8E5) that possesses anti-Salmonella activity was isolated from Salmonella negative bovine feces ob...

  14. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  15. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  16. Motion Control of the Soccer Robot Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Coman, Daniela; Ionescu, Adela

    2009-08-01

    Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.

  17. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  18. Optoelectronic properties of nanostructured ensembles controlled by biomolecular logic systems.

    PubMed

    Pita, Marcos; Krämer, Melina; Zhou, Jian; Poghossian, Arshak; Schöning, Michael J; Fernández, Víctor M; Katz, Evgeny

    2008-10-28

    A nanostructured system composed of enzyme-functionalized silica microparticles, ca. 74 microm, and gold-coated magnetic nanoparticles, 18 +/- 3 nm, modified with pH-sensitive organic shells was used to process biochemical signals and transduce the output signal into the changes of the optoelectronic properties of the assembly. The enzymes (glucose oxidase, invertase, esterase) covalently bound to the silica microparticles performed Boolean logic operations AND/OR processing biochemical information received in the form of chemical input signals resulting in changes of the solution pH value. Dissociation state of the organic shells on the gold-coated magnetic nanoparticles was controlled by pH changes generated in situ by the enzyme logic systems. The charge variation on the organic shells upon the reversible protonation/dissociation process resulted in the changes of the gold layer localized surface plasmon resonance energy (LSPR), thus producing optical changes in the system. The proton transfer process allowed the functional coupling of the information processing enzyme systems with the signal transducing gold-coated magnetic nanoparticles providing their cooperative performance. Magnetic properties of the gold-coated magnetic nanoparticles allowed separation of the signal-transducing nanoparticles from the enzyme-modified signal processing silica microparticles. The reversible system operation was achieved by the Reset function, returning the pH value and optical properties of the system to the initial state. This process was biocatalyzed by another immobilized enzyme (urease) activated with a biochemical signal. The studied approach opens the way to novel optical biosensors logically processing multiple biochemical signals and "smart" multisignal responsive materials with logically switchable optical properties.

  19. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  20. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  1. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn

    1996-01-01

    This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

  2. Coordinated signal control for arterial intersections using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  3. Fuzzy logic anti-skid control for commercial trucks

    NASA Astrophysics Data System (ADS)

    Akey, Mark L.

    1995-06-01

    A fuzzy logic (FL) anti-skid brake controller (ABS) is proposed as the next generation ABS replacing current generation finite state (FS) control. The FL controller is part of a commercial truck braking system, encompassing reverse front-back braking proportions on an articulated vehicle as compared to that found on fixed, passenger car systems. In this early research, the FL controller must satisfy three goals. The first goal is to produce superior braking distances over that of the finite state controller, specifically under low (mu) conditions. The second goal is to provide superior braking under varying system conditions (road surface conditions, physical brake parameters, wheel velocity sensor parameters). The third goal is to provide a convenient, flexible, and tractable ABS solution which is amenable to redevelopemnt to different vehicular platforms. Monte Carlo simulation results illustrate stopping distance improvements of 5 to 10 % averaged over all (mu) surfaces for varying wheel loads. On low (mu) surfaces, the improvement increases to 15% (up to a full tractor-trailer length). These results are obtained while varying other system parameters demonstrating robustness. Finally, the fuzzy logic rule sets and the overall configuration illustrate a straight-forward design and maturation process for the rule sets.

  4. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages.

    PubMed

    Bao, Hongduo; Zhang, Pengyu; Zhang, Hui; Zhou, Yan; Zhang, Lili; Wang, Ran

    2015-08-24

    Two lytic phages, vB_SenM-PA13076 (PA13076) and vB_SenM-PC2184 (PC2184), were isolated from chicken sewage and characterized with host strains Salmonella Enteritidis (SE) ATCC13076 and CVCC2184, respectively. Transmission electron microscopy revealed that they belonged to the family Myoviridae. The lytic abilities of these two phages in liquid culture showed 104 multiplicity of infection (MOI) was the best in inhibiting bacteria, with PC2184 exhibiting more activity than PA13076. The two phages exhibited broad host range within the genus Salmonella. Phage PA13076 and PC2184 had a lytic effect on 222 (71.4%) and 298 (95.8%) of the 311 epidemic Salmonella isolates, respectively. We tested the effectiveness of phage PA13076 and PC2184 as well as a cocktail combination of both in three different foods (chicken breast, pasteurized whole milk and Chinese cabbage) contaminated with SE. Samples were spiked with 1 × 10(4) CFU individual SE or a mixture of strains (ATCC13076 and CVCC2184), then treated with 1 × 10(8) PFU individual phage or a two phage cocktail, and incubated at 4 °C or 25 °C for 5 h. In general, the inhibitory effect of phage and phage cocktail was better at 4 °C than that at 25 °C, whereas the opposite result was observed in Chinese cabbage, and phage cocktail was better than either single phage. A significant reduction in bacterial numbers (1.5-4 log CFU/sample, p < 0.05) was observed in all tested foods. The two phages on the three food samples were relatively stable, especially at 4 ºC, with the phages exhibiting the greatest stability in milk. Our research shows that our phages have potential effectiveness as a bio-control agent of Salmonella in foods.

  5. Design and implementation of a fuzzy logic yaw controller

    NASA Astrophysics Data System (ADS)

    Wu, Kung C.; Swift, Andrew H.; Craver, W. Lionel, Jr.; Chang, Yi-Chieh

    1993-08-01

    This paper describes a fuzzy logic controller (FLC) designed and implemented to control the yaw angle of a 10 kW fixed speed teetered-rotor wind turbine presently being commissioned at the University of Texas at El Paso. The technical challenge of this project is that the wind turbine represents a highly stochastic nonlinear system. The problems associated with the wind turbine yaw control are of a similar nature as those experienced with position control of high inertia equipment like tracking antenna, gun turrets, and overhead cranes. Furthermore, the wind turbine yaw controller must be extremely cost-effective and highly reliable in order to be economically viable compared to the fossil fueled power generators.

  6. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  7. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  8. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  9. On-line fuzzy logic control of tube bending

    NASA Astrophysics Data System (ADS)

    Lieh, Junghsen; Li, Wei Jie

    2005-11-01

    This paper describes the simulation and on-line fuzzy logic control of tube bending. By combining elasticity and plasticity theories, a conventional model was developed. The results from simulation were compared with those obtained from testing. The experimental data reveal that there exists certain level of uncertainty and nonlinearity in tube bending, and its variation could be significant. To overcome this, a on-line fuzzy logic controller with self-tuning capabilities was designed. The advantages of this on-line system are (1) its computational requirement is simple in comparison with more algorithmic-based controllers, and (2) the system does not need prior knowledge of material characteristics. The device includes an AC motor, a servo controller, a forming mechanism, a 3D optical sensor, and a microprocessor. This automated bending machine adopts primary and secondary errors between the actual response and desired output to conduct on-line rule reasoning. Results from testing show that the spring back angle can be effectively compensated by the self- tuning fuzzy system in a real-time fashion.

  10. NSLS-II Digital RF Controller Logic and Applications

    SciTech Connect

    Holub, B.; Gao, F.; Kulpin, J.; Marques, C.; Oliva, J.; Rose, J.; Towne, N.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) accelerator consists of the Storage Ring, the Booster Ring and Linac along with their associated cavities. Given the number, types and variety of functions of these cavities, we sought to limit the logic development effort by reuse of parameterized code on one hardware platform. Currently there are six controllers installed in the NSLS-II system. There are two in the Storage ring, two in the Booster ring, one in the Linac and one in the Master Oscillator Distribution system.

  11. Fuzzy Petri net-based programmable logic controller.

    PubMed

    Andreu, D; Pascal, J C; Valette, R

    1997-01-01

    Programmable logic controllers (PLCs) are able to directly implement control sequences specified by means of standard languages such as Grafcet or formal models such as Petri nets. In the case of simple regulation problems between two steps it could be of great interest to introduce a notion of "fuzzy events" in order to denote a continuous evolution from one state to another. This could result from a linear interpolation between the commands attached to two control steps represented by two Petri net (PN) places. This paper is an attempt to develop fuzzy PN-based PLCs in a similar way as fuzzy controllers (regulators). Our approach is based on a combination of Petri nets with possibility theory (Petri nets with fuzzy markings).

  12. Wastewater neutralization control based on fuzzy logic: Experimental results

    SciTech Connect

    Adroer, M.; Alsina, A.; Aumatell, J.; Poch, M.

    1999-07-01

    Many industrial wastes contain acidic or alkaline materials that require neutralization of previous discharge into receiving waters or to chemical and biological treatment plants. The control of the wastewater neutralization process is subjected to several difficulties, such as the highly nonlinear titration curve (with special sensitivity around neutrality), the unknown water composition, the variable buffering capacity of the system, and the changes in input loading. To deal with these problems, this study proposes a fixed fuzzy logic controller (FLC) structure coupled with a tuning factor. The versatility and robustness of this controller has been proved when faced with solutions of variable buffering capacity, with acids that cover a wide pK range and with switches between acids throughout the course of a test. Laboratory experiments and simulation runs using the proposed controller were successful in a wide operational range.

  13. Rollover prevention for sport utility vehicle using fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Lee, Yong-hwi; Yi, Seung-Jong

    2005-12-01

    The purpose of this study is to develop the fuzzy logic RSC(Roll Stability Control) system to prevent the rollover for the SUV(sport utility vehicle). The SUV model used in this study is the 8-DOF model considering the longitudinal, lateral, yaw and roll motions. The longitudinal and transversal weight transfers are considered in the computation of the vertical forces acting on a wheel. The engine torque is obtained from the throttle position and the r.p.m. of the engine map. The fuzzy logic controller input consists of the roll angle error and its derivative. The output is the brake torque and the throttle angle. The engine torque controller controls the throttle valve angle. The brake controller independently controls both right and left wheels. When the roll angle is +/-4.5° defined as the critical roll angle, the front inner tire experiences the 1/100 ~ 1/50 of the total vertical forces, and the rollover starts. To prevent the rollover in advance, the target angle +/-4.5° is adopted to control the vehicle stability. The RSC system begins operating at +/-4.5° and stops at 0°. The simulations are conducted to evaluate the controller performance at right turns for the excessive steering angle. When the roll angle error and its derivative exceed the limited point, the RSC system makes the longitudinal velocity of the SUV decrease the brake torque and adjusts the throttle angle. The roll motion of the SUV is then stabilized.

  14. Three-Function Logic Gate Controlled by Analog Voltage

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo; Stoica, Adrian

    2006-01-01

    The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that performs one of three different logic functions, depending on the level of an externally applied control voltage, V(sub sel). Specifically, the circuit acts as A NAND gate at V(sub sel) = 0.0 V, A wire (the output equals one of the inputs) at V(sub sel) = 1.0 V, or An AND gate at V(sub sel) = -1.8 V. [The nominal power-supply potential (VDD) and logic "1" potential of this circuit is 1.8 V.] Like other multifunctional circuits described in several prior NASA Tech Briefs articles, this circuit was synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. An evolved circuit can be tested by computational simulation and/or tested in real hardware, and the results of the test can provide guidance for refining the design through further iteration. The evolutionary synthesis of electronic circuits can now be implemented by means of a software package Genetic Algorithms for Circuit Synthesis (GACS) that was developed specifically for this purpose. GACS was used to synthesize the present trifunctional circuit. As in the cases of other multifunctional circuits described in several prior NASA Tech Briefs articles, the multiple functionality of this circuit, the use of a single control voltage to select the function, and the automated evolutionary approach to synthesis all contribute synergistically to a combination of features that are potentially advantageous for the further development of robust, multiple-function logic circuits, including, especially, field-programmable gate arrays (FPGAs). These advantages include the following: This circuit contains only 9 transistors about half the number of transistors that would be needed to obtain equivalent NAND/wire/AND functionality by use of components from a standard digital design library. If

  15. Divide and control: split design of multi-input DNA logic gates†

    PubMed Central

    Gerasimova, Yulia V.

    2015-01-01

    Logic gates made of DNA have received significant attention as biocompatible building blocks for molecular circuits. The majority of DNA logic gates, however, are controlled by the minimum number of inputs: one, two or three. Here we report a strategy to design a multi-input logic gate by splitting a DNA construct. PMID:25513764

  16. Divide and control: split design of multi-input DNA logic gates.

    PubMed

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2015-01-18

    Logic gates made of DNA have received significant attention as biocompatible building blocks for molecular circuits. The majority of DNA logic gates, however, are controlled by the minimum number of inputs: one, two or three. Here we report a strategy to design a multi-input logic gate by splitting a DNA construct.

  17. Logic-controlled solid state switchgear for 270 volts dc

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Waddington, D.; Buchanan, E. E., Jr.

    1973-01-01

    A feasibility study to design and demonstrate solid state switchgear in the form of circuit breakers and a power transfer switch is described. The switchgear operates on a nominal 270 V dc circuit and controls power to a load of up to 15 amperes. One circuit breaker may be interconnected to a second breaker to form a power transfer switch. On-off and transfer functions of the breakers or the transfer switch are remotely controlled. A number of reclosures with variable time delay between tripout and reclosure are programmed and controlled by integrated analog and COSMOS logic circuits. A unique commutation circuit, that generates only minimal transient disturbance to either source or load, was developed to interrupt current flow through the main SCR switching element. Laboratory tests demonstrated performance of the solid state circuit breakers over specified voltage and temperature ranges.

  18. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.

    PubMed

    Omrane, Hajer; Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.

  19. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

    PubMed Central

    Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    2016-01-01

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748

  20. Control of the receptor for galactose taxis in Salmonella typhimurium.

    PubMed

    Fahnestock, M; Koshland, D E

    1979-02-01

    The chemotactic response to galactose in wild-type Salmonella typhimurium is not inducible by galactose, but is inducible by fucose, a non-metabolizable analog. In a galactokinase mutant, however, the galactose receptor is inducible by galactose. These data indicate that the concentration of free galactose in the cell controls the levels of the galactose receptor. The intensities of the chemotactic responses were found to vary in proportion to the concentration of galactose receptors. In bacteria with higher levels of galactose receptors, the ribose response is inhibited by galactose. This supports the model in which the ribose and galactose receptors compete for a common component of the signaling system.

  1. Neural-network-based fuzzy logic control system with applications on compliant robot control

    NASA Astrophysics Data System (ADS)

    Hor, MawKae; Lu, Hui L.

    1994-10-01

    In view of the success of neural network applications in inverted pendulum control, speech recognition, and other problem solving, we believe that one could inject the noise removing concepts and learning spirits into the algorithm in constructing the neural networks and apply it to the various tasks such as compliant coordinated motion using multiple robots. Based on the fuzzy logic, a fuzzy logical control system is a logical system which is much closer to human thinking than any other logical systems. During recent years, fuzzy logic control has emerged as a fruitful area in applications, especially the applications lacking quantitative data regarding the input-output relations. Whereas, the connectionist model injects the learning ability to the fuzzy logic system. This model, proposed by Lin and Lee, is a connected neural network that embedded the fuzzy rules in the architecture. Since this model is general enough and we expect the embedded fuzzy concepts can solve the problems caused by the defective training data, it is chosen as our base structure. Appropriate modifications have been made to this model to reflect the real situations encountered in the robot applications. Our goal is to control two different types of robots for coordinated motion using sensory feedback information.

  2. 242-A/LERF programmable Logic Controller Ladder. Revision 1

    SciTech Connect

    Teats, M.C.

    1995-05-23

    This document defines and describes the user-generated application software written to transmit digital and analog signals from the Liquid Effluent Retention Facility (LERF) to the 242-A Evaporator Distributed Control System (DCS). PLCs and modems were installed in the 242-A Evaporator by Project W-105 (LERF) to transmit 6 analog liquid level signals, 6 range alarms based on the analog signals, and 6 leak detection and pump status signals to the 242-A Distributive Control System (DCS) from LERF. Communications between the two facilities are also monitored and alarm on the DCS. Following the Project W-105 completion, the communications and signal mix were modified by Project C-018H (ETF). The current PLC software (including ladder logic and data tables), PLC hardware settings, and modern option settings to transmit the signals and monitor communications are documented and described in this document.

  3. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  4. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm

  5. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  6. Synthesis of nonlinear control strategies from fuzzy logic control algorithms

    NASA Technical Reports Server (NTRS)

    Langari, Reza

    1993-01-01

    Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.

  7. Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    PubMed Central

    Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa

    2007-01-01

    Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological

  8. The programmable (logic) controller: Adapting in an environment of change

    SciTech Connect

    Levine, P.S.

    1995-03-01

    Reports of the imminent death of the PLC (programmable logic controller) were greatly exaggerated, to paraphrase Mark Twain. In fact, the PLC is not only alive and working worldwide in thousands of applications, but it is also integrating well with related technologies. Long-term survival is a larger question - probably unanswerable given the pace of technological change. However, a few questions arise about the PLC today and in the immediate future: (1) What`s happening with programming languages? (2) Will there continue to be a {open_quotes}blurring of the lines{close_quotes} between the PLC and other technologies, and what role will software play in this integration? (3) How will the PLC`s cost and size affect the market?

  9. Logical and pseudo-logical optical fibre networks based on two-state (binary) optical fibre sensors for industrial monitoring and control systems

    NASA Astrophysics Data System (ADS)

    Szczot, Feliks

    2005-09-01

    The possibilities of development of logical and pseudo-logical optical fibre networks for monitoring and control of equipment and industrial sites are presented. Such networks composed of simple binary attenuation and optical fibre communication lines may also be used as fast and reliable systems developing a final command signal - logical and/or pseudo-logical, depending or the architecture of network and the type of located sensors. They realise the process similar to standard electronic logical sets but use the optical signal directly on the monitored or controlled device. The analysis of serial and parallel networks was carried out in the "dark" mode detection. The examples of networks in power industry were presented where technical and economical merits of logical and pseudo-logical monitoring and controlling networks are clearly visible.

  10. Autonomous Control of a Quadrotor UAV Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Vijaykumar

    UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a

  11. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  12. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  13. Implementation of motor speed control using PID control in programmable logic controller

    NASA Astrophysics Data System (ADS)

    Samin, R. E.; Azmi, N. A.; Ahmad, M. A.; Ghazali, M. R.; Zawawi, M. A.

    2012-11-01

    This paper presents the implementation of motor speed control using Proportional Integral Derrivative (PID) controller using Programmable Logic Controller (PLC). Proportional Integral Derrivative (PID) controller is the technique used to actively control the speed of the motor. An AC motor is used in the research together with the PLC, encoder and Proface touch screen. The model of the PLC that has been used in this project is OMRON CJIG-CPU42P where this PLC has a build in loop control that can be made the ladder diagram quite simple using function block in CX-process tools. A complete experimental analysis of the technique in terms of system response is presented. Comparative assessment of the impact of Proportional, Integral and Derivative in the controller on the system performance is presented and discussed.

  14. Programmable logic controller optical fibre sensor interface module

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  15. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  16. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  17. A new adaptive configuration of PID type fuzzy logic controller.

    PubMed

    Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

    2015-05-01

    In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Methodological development of fuzzy-logic controllers from multivariable linear control.

    PubMed

    Tso, S K; Fung, Y H

    1997-01-01

    It is the function of the design of a fuzzy-logic controller to determine the universes of discourse of the antecedents and the consequents, number of membership labels, distribution and shape of membership functions, rule formulation, etc. Much of the information is usually extracted from expert knowledge, operator experience, or heuristic thinking. It is hence difficult to mechanize the first-stage design of fuzzy-logic controllers using linguistic labels whose performance is no worse than that of conventional multivariable linear controllers such as state-feedback controllers, PID controllers, etc. In this paper, an original systematic seven-step linear-to-fuzzy (LIN2FUZ) algorithm is proposed for generating the labels, universes of discourse of the antecedents and the consequents, and fuzzy rules of ;basically linear' fuzzy-logic controllers, given the reference design of available conventional multivariable linear controllers. The functionally equivalent fuzzy-logic controllers can thus provide the sound basis for the further development to achieve performance beyond the capability or the conventional controllers. The validity and effectiveness of the proposed LIN2FUZ algorithm are demonstrated by a four-input one-output inverted pendulum system.

  19. Evaluation of a fuzzy logic controller for laser thermal therapy

    NASA Astrophysics Data System (ADS)

    Choy, Vanessa; Sadeghian, Alireza; Sherar, Michael D.; Whelan, William M.

    2002-06-01

    Laser thermal therapy (LTT) is a minimally invasive surgical technique used to destroy solid tumors while minimizing damage to adjacent normal tissues. Optical energy, delivered through fibers implanted into the target volume, raises tissue temperatures above 60 degree(s)C resulting in coagulative necrosis (thermal damage). Thermal damage volumes, however, can be irregular and unpredictable, resulting from dynamic changes in the tissue properties during treatment. A closed-loop feedback fuzzy logic controller for LTT was developed with the tissue treated as a black-box system. Preliminary testing was conducted for simulated LTT with a single spherically emitting source fiber at the center of 5 mm and 10 mm diameter target tissues. Dynamic changes in blood perfusion and tissue optical properties due to heating were incorporated into the LTT simulator. Input laser power was modulated to control the temperature field in an attempt to reach target temperatures at the source (90 degree(s)C to avoid tissue charring) and at the target boundary (55 degree(s)C). In all simulations, thermal damage based on Arrhenius formulation ((Omega) equals 1) was reached at the target boundary. The controller also responded efficiently to unexpected, rapid temperature changes.

  20. Design and fuzzy logic control of an active wrist orthosis.

    PubMed

    Kilic, Ergin; Dogan, Erdi

    2017-08-01

    People who perform excessive wrist movements throughout the day because of their professions have a higher risk of developing lateral and medial epicondylitis. If proper precautions are not taken against these diseases, serious consequences such as job loss and early retirement can occur. In this study, the design and control of an active wrist orthosis that is mobile, powerful and lightweight is presented as a means to avoid the occurrence and/or for the treatment of repetitive strain injuries in an effective manner. The device has an electromyography-based control strategy so that the user's intention always comes first. In fact, the device-user interaction is mainly activated by the electromyography signals measured from the forearm muscles that are responsible for the extension and flexion wrist movements. Contractions of the muscles are detected using surface electromyography sensors, and the desired quantity of the velocity value of the wrist is extracted from a fuzzy logic controller. Then, the actuator system of the device comes into play by conveying the necessary motion support to the wrist. Experimental studies show that the presented device actually reduces the demand on the muscles involved in repetitive strain injuries while performing challenging daily life activities including extension and flexion wrist motions.

  1. Role of slaughtering in Salmonella spreading and control in pork production.

    PubMed

    Arguello, Hector; Alvarez-Ordoñez, Avelinó; Carvajal, Ana; Rubio, Pedro; Prieto, Miguel

    2013-05-01

    Salmonella is one of the major foodborne pathogens worldwide. Pork products are among the main sources of Salmonella infection in humans, and several countries have established Salmonella surveillance and control programs. The role of slaughtering in carcass contamination has been indicated by studies focused on the slaughterhouse environment. In this review, we examine and discuss the information available regarding the influence that farm status, pig transport, and lairage have on the carriage of Salmonella by pigs entering the slaughter line. The evolution of carcass contamination throughout the slaughtering process, the main sources of contamination in the dirty and clean zones of the slaughter line, and previously reported prevalence of Salmonella on carcasses and factors affecting this prevalence also are discussed. The importance of implementing interventions at the slaughter level is discussed briefly. Consistent with the information available, pigs from infected farms and newly acquired or recrudescent infections in pigs at the subsequent stages of transport and lairage are important sources of Salmonella at the slaughtering plant. The continuous introduction of Salmonella into the slaughterhouse and the potential for resident flora constitute a risk for carcass contamination. At the slaughterhouse, some dressing activities can reduce carcass contamination, but others are critical control points that jeopardize carcass hygiene. This information indicates the importance of considering slaughter and previous stages in the pork production chain for controlling Salmonella in swine production.

  2. PC based speed control of dc motor using fuzzy logic controller

    SciTech Connect

    Mandal, S.K.; Kanphade, R.D.; Lavekar, K.P.

    1998-07-01

    The dc motor is extensively used as constant speed drive in textile mills, paper mills, printing press, etc.. If the load and supply voltage are time varying, the speed will be changed. Since last few decades the conventional PID controllers are used to maintain the constant speed by controlling the duty ratio of Chopper. Generally, four quadrant chopper is used for regenerative braking and reverse motoring operation. Fuzzy Logic is newly introduced in control system. Fuzzy Control is based on Fuzzy Logic, a logical system which is too much closer in spirit to human thinking and natural language. The Fuzzy Logic Controller (FLC) provides a linguistic control strategy based on knowledge base of the system. Firstly, the machine is started very smoothly from zero to reference speed in the proposed scheme by increasing the duty ratio. Then change and rate of change of speed (dN, dN/dt), change and rate of change input voltage (dV, dV/dt) and load current are input to FLC. The new value of duty ratio is determined from the Fuzzy rule base and defuzzification method. The chopper will be 'ON' according to new duty ratio to maintain the constant speed. The dynamic and steady state performance of the proposed system is better than conventional control system. In this paper mathematical simulation and experimental implementation are carried out to investigate the drive performance.

  3. Dynamic Event Tree advancements and control logic improvements

    SciTech Connect

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Sen, Ramazan Sonat; Cogliati, Joshua Joseph

    2015-09-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the

  4. Prevention of dialysis hypotension episodes using fuzzy logic control system.

    PubMed

    Mancini, Elena; Mambelli, Emanuele; Irpinia, Mina; Gabrielli, Danila; Cascone, Carmelo; Conte, Ferruccio; Meneghel, Gina; Cavatorta, Fosco; Antonelli, Alessandro; Villa, Giuseppe; Dal Canton, Antonio; Cagnoli, Leonardo; Aucella, Filippo; Fiorini, Fulvio; Gaggiotti, Enzo; Triolo, Giorgio; Nuzzo, Vitale; Santoro, Antonio

    2007-05-01

    Automatic systems for stabilizing blood pressure (BP) during dialysis are few and only control those variables indirectly related to BP. Due to complex BP regulation under dynamic dialysis conditions, BP itself appears to be the most consistent input parameter for a device addressed to preventing dialysis hypotension (DH). An automatic system (ABPS, automatic blood pressure stabilization) for BP control by fluid removal feedback regulation is implemented on a dialysis machine (Dialog Advanced, Braun). A fuzzy logic (FL) control runs in the system, using instantaneous BP as the input variable governing the ultrafiltration rate (UFR) according to the BP trend. The system is user-friendly and just requires the input of two data: critical BP (individually defined as the possible level of DH risk) and the highest UFR applicable (percentage of the mean UFR). We evaluated this system's capacity to prevent DH in 55 RDT hypotension-prone patients. Sessions with (treatment A) and without (treatment B) ABPS were alternated one-by-one for 30 dialysis sessions per patient (674 with ABPS vs 698 without). Despite comparable treatment times and UF volumes, severe DH appeared in 8.3% of sessions in treatment A vs 13.8% in treatment B (-39%, P=0.01). Mild DH fell non-significantly (-12.3%). There was a similar percentage of sessions in which the planned body weight loss was not achieved and dialysis time was prolonged. In conclusion, FL may be suited to interpreting and controlling the trend of a determined multi-variable parameter like BP. The medical knowledge of the patient and the consequent updating of input parameters depending on the patient's clinical conditions seem to be the main factors for obtaining optimal results.

  5. [The fundamental role of stage control technology on the detectability for Salmonella networking laboratory].

    PubMed

    Zhou, Yong-ming; Chen, Xiu-hua; Xu, Wen; Jin, Hui-ming; Li, Chao-qun; Liang, Wei-li; Wang, Duo-chun; Yan, Mei-ying; Lou, Jing; Kan, Biao; Ran, Lu; Cui, Zhi-gang; Wang, Shu-kun; Xu, Xue-bin

    2013-11-01

    To evaluated the fundamental role of stage control technology (SCT) on the detectability for Salmonella networking laboratories. Appropriate Salmonella detection methods after key point control being evaluated, were establishment and optimized. Our training and evaluation networking laboratories participated in the World Health Organization-Global Salmonella Surveillance Project (WHO-GSS) and China-U.S. Collaborative Program on Emerging and Re-emerging infectious diseases Project (GFN) in Shanghai. Staff members from the Yunnan Yuxi city Center for Disease Control and Prevention were trained on Salmonella isolation from diarrhea specimens. Data on annual Salmonella positive rates was collected from the provincial-level monitoring sites to be part of the GSS and GFN projects from 2006 to 2012. The methodology was designed based on the conventional detection procedure of Salmonella which involved the processes as enrichment, isolation, species identification and sero-typing. These methods were simultaneously used to satisfy the sensitivity requirements on non-typhoid Salmonella detection for networking laboratories. Public Health Laboratories in Shanghai had developed from 5 in 2006 to 9 in 2011, and Clinical laboratories from 8 to 22. Number of clinical isolates, including typhoid and non-typhoid Salmonella increased from 196 in 2006 to 1442 in 2011. The positive rate of Salmonella isolated from the clinical diarrhea cases was 2.4% in Yuxi county, in 2012. At present, three other provincial monitoring sites were using the SBG technique as selectivity enrichment broth for Salmonella isolation, with Shanghai having the most stable positive baseline. The method of SCT was proved the premise of the network laboratory construction. Based on this, the improvement of precise phenotypic identification and molecular typing capabilities could reach the level equivalent to the national networking laboratory.

  6. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control.

    PubMed

    Geier, Michael L; Prabhumirashi, Pradyumna L; McMorrow, Julian J; Xu, Weichao; Seo, Jung-Woo T; Everaerts, Ken; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2013-10-09

    In this Letter, we demonstrate thin-film single-walled carbon nanotube (SWCNT) complementary metal-oxide-semiconductor (CMOS) logic devices with subnanowatt static power consumption and full rail-to-rail voltage transfer characteristics as is required for logic gate cascading. These results are enabled by a local metal gate structure that achieves enhancement-mode p-type and n-type SWCNT thin-film transistors (TFTs) with widely separated and symmetric threshold voltages. These complementary SWCNT TFTs are integrated to demonstrate CMOS inverter, NAND, and NOR logic gates at supply voltages as low as 0.8 V with ideal rail-to-rail operation, subnanowatt static power consumption, high gain, and excellent noise immunity. This work provides a direct pathway for solution processable, large area, power efficient SWCNT advanced logic circuits and systems.

  7. Reptiles, amphibians, and human Salmonella infection: a population-based, case-control study.

    PubMed

    Mermin, Jonathan; Hutwagner, Lori; Vugia, Duc; Shallow, Sue; Daily, Pamela; Bender, Jeffrey; Koehler, Jane; Marcus, Ruthanne; Angulo, Frederick J

    2004-04-15

    To estimate the burden of reptile- and amphibian-associated Salmonella infections, we conducted 2 case-control studies of human salmonellosis occurring during 1996-1997. The studies took place at 5 Foodborne Diseases Active Surveillance Network (FoodNet) surveillance areas: all of Minnesota and Oregon and selected counties in California, Connecticut, and Georgia. The first study included 463 patients with serogroup B or D Salmonella infection and 7618 population-based controls. The second study involved 38 patients with non-serogroup B or D Salmonella infection and 1429 controls from California only. Patients and controls were interviewed about contact with reptiles and amphibians. Reptile and amphibian contact was associated both with infection with serogroup B or D Salmonella (multivariable odds ratio [OR], 1.6; 95% confidence interval [CI], 1.1-2.2; P<.009) and with infection with non-serogroup B or D Salmonella (OR, 4.2; CI, 1.8-9.7; P<.001). The population attributable fraction for reptile or amphibian contact was 6% for all sporadic Salmonella infections and 11% among persons <21 years old. These data suggest that reptile and amphibian exposure is associated with approximately 74,000 Salmonella infections annually in the United States.

  8. Pneumatic-Controlled Fluidic Microdevices for Executing NOT, NOR, and NAND Logic Functions

    NASA Astrophysics Data System (ADS)

    Chang, Hsing-Cheng; Tsou, Chingfu; Lai, Chi-Chih; Huang, Ming-Che

    2008-03-01

    Novel pneumatic-controlled logic microdevices based on a microelectromechanical system (MEMS) compatible process and microfluidic control technology have been developed for executing the universal basic logic functions of NOT, NOR, and NAND. The main fabrication processes for the logic microdevices include anisotropic silicon bulk etching, silicone rubber membrane formation, wafer bonding and packaging. The dynamic characteristics and pneumatic-controlled performance of the elastic membranes have been measured using an equipped fluidic instrument, which indicates their potential application to safety monitoring for preventing electric-induced disasters. All logic functions of the microdevices have been demonstrated to correspond exactly to the related truth tables. The newly developed logic microdevices are capable of controlling a liquid or gas system with high sensitivity in a wide dynamic range, and with strong immunity from temperature fluctuations.

  9. A fuzzy logic based spacecraft controller for six degree of freedom control and performance results

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Hoblit, Jeffrey; Jani, Yashvant

    1991-01-01

    The development philosophy of the fuzzy logic controller is explained, details of the rules and membership functions used are given, and the early results of testing of the control system for a representative range of scenarios are reported. The fuzzy attitude controller was found capable of performing all rotational maneuvers, including rate hold and rate maneuvers. It handles all orbital perturbations very efficiently and is very responsive in correcting errors.

  10. Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection.

    PubMed

    Wick, Mary Jo

    2011-01-01

    Infections with Salmonella enterica serovars remain a serious problem worldwide. While serovar Typhi causes significant morbidity and mortality that is restricted to humans, serovar Typhimurium causes gastroenteritidis in humans and can also infect other animals. As mice with the susceptible Nramp1 locus get systemic infection with serovar Typhimurium, murine infection models using this serovar have been widely used to decipher the immune mechanisms required to survive systemic Salmonella infection. This review summarizes recent studies in murine infection models that have advanced our understanding of the events that occur during the first days after oral Salmonella infection. The pathways of bacterial penetration across the intestinal epithelium, bacterial spread to draining (mesenteric) lymph nodes and dissemination to systemic tissues is discussed. The response of myeloid cell populations, including dendritic cells, inflammatory monocytes and neutrophils, during the early stage of infection is also discussed. Finally, the mechanisms driving recruitment of myeloid cells to infected intestinal lymphoid tissues and what is known about Toll-like receptor signaling pathways in innate immunity to Salmonella infection is also discussed.

  11. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  12. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    NASA Technical Reports Server (NTRS)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  13. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    NASA Technical Reports Server (NTRS)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  14. A Fuzzy Logic Optimal Control Law Solution to the CMMCA Tracking Problem

    DTIC Science & Technology

    1993-03-01

    Pussy Sots. The concept of a fuzzy set is fundamental to fuzzy logic. A fuzzy set is any set in which elements may have In- between membership in...logical NOT) is "u(NOT A) - 1 - UAx)M 2.6.4 Pussy Control. With the linguistic sets defined for the j input and output variables of a given system

  15. Layered mode selection logic control for border security

    NASA Astrophysics Data System (ADS)

    Born, T.; Ferrer, G.; Wright, A. M.; Wright, A. B.

    2007-04-01

    Challenges in border security may be resolved through a team of autonomous mobile robots configured as a flexible sensor array. The robots will have a prearranged formation along a section of a border, and each robot will attempt to maintain a uniform distance with its nearest neighbors. The robots will carry sensor packages which can detect a signature that is representative of a human (for instance, a thermal signature). When a robot detects an intruder, it will move away such that it attempts to maintain a constant distance from the intruder and move away from the border (i.e. into its home territory). As the robot moves away from the border, its neighbors will move away from the border to maintain a uniform distance with the moving robot and with their fixed neighbors. The pattern of motion in the team of robots can be identified, either algorithmically by a computer or by a human monitor of a display. Unique patterns are indicative of animal movement, human movement, and mass human movement. To realize such a scheme, a new control architecture must be developed. This architecture must be fault tolerant to sensor and manipulator failures, scalable in number of agents, and adaptable to different robotic base platforms (for instance, a UGV may be appropriate at the southern border and a UAV may be appropriate at the northern border). The Central Arkansas Robotics Consortium has developed an architecture, called Layered Mode Selection Logic (LMSL), which addresses all of these concerns. The overall LMSL scheme as applied to a multi-agent flexible sensor array is described in this paper.

  16. A Genetic Algorithm Optimised Fuzzy Logic Controller for Automatic Generation Control for Single Area System

    NASA Astrophysics Data System (ADS)

    Saini, J. S.; Jain, V.

    2015-03-01

    This paper presents a genetic algorithm (GA)-based design and optimization of fuzzy logic controller (FLC) for automatic generation control (AGC) for a single area. FLCs are characterized by a set of parameters, which are optimized using GA to improve their performance. The design of input and output membership functions (mfs) of an FLC is carried out by automatically tuning (off-line) the parameters of the membership functions. Tuning is based on maximization of a comprehensive fitness function constructed as inverse of a weighted average of three performance indices, i.e., integral square deviation (ISD), the integral of square of the frequency deviation and peak overshoot (Mp), and settling time (ts). The GA-optimized FLC (GAFLC) shows better performance as compared to a conventional proportional integral (PI) and a hand-designed fuzzy logic controller not only for a standard system (displaying frequency deviations) but also under parametric and load disturbances.

  17. Depth Control of Sevofluorane Anesthesia with Microcontroller Based Fuzzy Logic System

    DTIC Science & Technology

    2007-11-02

    sevoflurane in humans”, Anesthesiology, 66:301-303, 1987 [10].YARDIMCI, A., ONURAL A.,”Fuzzy Logic Control of Child Blood Pressure During Anaesthesia...microcontroller-based fuzzy logic control system according to the blood pressure and heart rate taken from the patient. The potential benefits of the... blood pressure and hearth rate. The main reason for automating the control of depth anesthesia is to release the anesthesiologist so that he or

  18. Neural Network and Fuzzy Logic Technology for Naval Flight Control Systems

    DTIC Science & Technology

    1991-08-06

    it is still uncertain what neural network and fuzzy logic functions are both technologically feasible and suitable for flight control system...this program is focused on the development of a neural network FCS design tool, a neural network flight control law emulator, a fuzzy logic automatic...carrier landing system and a neural network flight control configuration management system. For each project, some initial results are given. Also

  19. Interlocked DNA nanostructures controlled by a reversible logic circuit

    PubMed Central

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-01-01

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems. PMID:25229207

  20. Interlocked DNA nanostructures controlled by a reversible logic circuit.

    PubMed

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-09-17

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems.

  1. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  2. Transmission and control of Salmonella in the pig feed chain: a conceptual model.

    PubMed

    Binter, Claudia; Straver, Judith Maria; Häggblom, Per; Bruggeman, Geert; Lindqvist, Per-Anders; Zentek, Jürgen; Andersson, Mats Gunnar

    2011-03-01

    Infected breeder pigs and contaminated feed represent potential sources of Salmonella introduction to fattening pig herds and may thereby cause human infections acquired via consumption of contaminated pork. Modelling approaches such as quantitative microbial risk assessment could improve the design of strategies for control and tracing of Salmonella in the feed chain. However, the construction of such models requires a thorough understanding of the dynamics of the feed chain, including production processes, microbial processes and transport logistics. The present article illustrates a conceptual model of Salmonella in the pig feed chain and explores the possibilities for quantitative modelling including identifying major gaps in data. Information was collected from peer-reviewed scientific journals, official documents and reports and by means of interviews with experts from authorities and the feed industry. Data on prevalence of Salmonella in different parts of the feed chain are difficult to compare as observed prevalence may be biased by variations in sampling procedures as well as limitations of the detection methods. There are almost no data on numbers of Salmonella in commodities of the feed chain, which often makes it difficult to evaluate risks, intervention strategies and sampling plans in a quantitative manner. Tracing the source of Salmonella contamination is hampered by the risk of cross-contamination as well as various mixing and partitioning events along the supply chain, which sometimes makes it impossible to trace the origin of a lot back to a batch or producer. Available information points to contaminated feed materials, animal vectors and persistent contamination of production environments as important sources of Salmonella in feed production. Technological procedures such as hydrothermal or acid treatment can be used to control Salmonella in feed production. However, a large fraction of pig feed is produced without decontamination procedures

  3. Study of defuzzification methods of fuzzy logic controller for speed control of a DC motor

    SciTech Connect

    Rao, D.H.; Saraf, S.S.

    1995-12-31

    A typical Fuzzy Logic Controller (FLC) has the following components: fuzzification, knowledge base, decision making and defuzzification. Various defuzzification techniques have been proposed in the literature. The efficacy of a FLC depends very much on the defuzzification process. This is so because the overall performance of the system under control is determined by the controlling signal (the defuzzified output of the FLC) the system receives. The aim of this paper is to evaluate qualitatively the performance of the different defuzzification techniques as applied to speed control of a DC motor.

  4. Experimental Evaluation of Fuzzy Logic Control of a Flexible Arm Manipulator

    DTIC Science & Technology

    1993-12-09

    motor . The encoder consists of an LED source and lens which transmits collimated light from the emitter module through a metal code wheel and phase plate...information needed to run a fuzzy logic based controller . The first of the five steps is that of fuzzification. This step simply converts a input. or a...Hardware, 15 Degree Slew 32 3.6.3 Robustness To examine the performance robustness of the fuzzy logic controller , three off-design tests were accomplished

  5. Design and verification of distributed logic controllers with application of Petri nets

    SciTech Connect

    Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał; Wiśniewska, Monika

    2015-12-31

    The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.

  6. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  7. Design and verification of distributed logic controllers with application of Petri nets

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał; Wiśniewska, Monika

    2015-12-01

    The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.

  8. Towards Quantifying Programmable Logic Controller Resilience Against Intentional Exploits

    DTIC Science & Technology

    2012-03-22

    the metric applicable. The data used for this research is derived from PLC simulations executed on LogixPro ® 500 software. The definition for...applied to the SUT are primarily fixed attributes of the PLC emulation provided by LogixPro ® 500; the varying parameter during experimentation is the...programmed in ladder logic from a laptop with the accompanying LogixPro ® 500 software package associated with the PLC. The program is loaded to the

  9. Control of Salmonella enterica Typhimurium in chicken breast meat by irradiation combined with modified atmosphere packaging.

    PubMed

    Kudra, L L; Sebranek, J G; Dickson, J S; Mendonca, A F; Zhang, Q; Jackson-Davis, A; Prusa, K J

    2011-11-01

    Salmonella is one of the leading causes of human foodborne illnesses originating from meat and poultry products. Cross-contamination of Salmonella from raw to cooked products continues to be problematic in the food industry. Therefore, new intervention strategies are needed for meat and poultry products. Vacuum or modified atmosphere packaging (MAP) are common packaging techniques used to extend the shelf life of meat products. Irradiation has been well established as an antibacterial treatment to reduce pathogens on meat and poultry. Combining irradiation with high-CO(2)+CO MAP was investigated in this study for improving the control of Salmonella enterica Typhimurium on chicken breast meat. The radiation sensitivities (D10-values) of this pathogen in chicken breast meat were found to be similar in vacuum and in high-CO(2)+CO MAP (0.55 ± 0.03 kGy and 0.54 ± 0.03 kGy, respectively). Irradiation at 1.5 kGy reduced the Salmonella population by an average of 3 log. Some Salmonella cells survived in both vacuum and high-CO(2) + CO MAP through 6 weeks of refrigerated storage following irradiation. This pathogen also grew in both vacuum and MAP when the product was held at 25°C. This study demonstrated that irradiation is an effective means of reducing Salmonella on meat or poultry, but packaging in either vacuum or MAP had little impact during subsequent refrigerated storage.

  10. Pre-Harvest Measures to Control Salmonella in Layers

    USDA-ARS?s Scientific Manuscript database

    One of the principal recurring themes during the search for effective responses to the continuing public health and economic problems caused by Salmonella contamination of eggs has concerned reducing the susceptibility of egg-laying chickens to infection. Decreasing the overall prevalence or level o...

  11. Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information.

    PubMed

    Valencia-Palomo, G; Rossiter, J A

    2011-01-01

    This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules.

  12. Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate.

    PubMed

    Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo

    2016-10-01

    Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system.

  13. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    NASA Astrophysics Data System (ADS)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  14. Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms.

    PubMed

    Liu, B D; Chen, C Y; Tsao, J Y

    2001-01-01

    In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design.

  15. Chemical treatment of animal feed and water for the control of Salmonella.

    PubMed

    Wales, Andrew D; Allen, Vivien M; Davies, Robert H

    2010-01-01

    The control of Salmonella in animal feedstuffs is important, principally to protect the human food chain from contamination by Salmonella derived from infected animals. The transmission of Salmonella from animal feeds to animals, and onward to human food products, has been convincingly documented. This is especially important for chicken breeding and laying flocks and pigs, in view of the consequences of recent or imminent control legislation in the European Union. Animal feed ingredients, particularly animal and plant-derived protein meals, are frequently contaminated with Salmonella either from source or from processing plant, and recontamination in compounding mills is an additional problem. Several complementary strategies have been used to control this feed contamination, and these include a range of chemical treatments. The principal agents used are as follows: organic acids and their salts, formaldehyde, and bacterial membrane disruptors such as terpenes and essential oils. Experimental agents include chlorate compounds. Many products use blends of agents from the same or different chemical groups to achieve synergistic or combination effects. The present review draws upon published and company data to describe the various modes of action and efficacies of different chemical agents delivered in feed or in drinking water against Salmonella occurring in feed or in livestock environments. Reasons for the failure of protection are explored, along with problems in usage such as corrosion and reduced palatability. Given the wide array of products available with contrasting modes of action, the need for standardized tests of efficacy is also discussed.

  16. Consumer method to control Salmonella and Listeria species in shrimp.

    PubMed

    Edwards, Genevieve; Janes, Marlene; Lampila, Lucina; Supan, John

    2013-01-01

    The purpose of this study was to determine whether the current consumer method of boiling shrimp until floating and pink in color is adequate for destroying Listeria and Salmonella. Shrimp samples were submerged in bacterial suspensions of Listeria and Salmonella for 30 min and allowed to air dry for 1 h under a biosafety cabinet. Color parameters were then measured with a spectrophotometer programmed with the CIELAB system. Twenty-four shrimp samples were divided into groups (days 0, 1, or 2) and stored at 4°C. The samples were treated by placing them in boiling water (100°C) on days 0, 1, and 2. The shrimp were immediately removed from the boiling water once they floated to the surface, and color parameters were measured. Bacterial counts were determined, and the log CFU per gram was calculated. The effect of sodium tripolyphosphate on the color change of cooked shrimp also was determined. Initial bacterial counts on shrimp after air drying were 5.31 ± 0.14 log CFU/g for Salmonella Enteritidis, 5.24 ± 0.31 log CFU/g for Salmonella Infantis, 5.40 ± 0.16 log CFU/g for Salmonella Typhimurium, 3.91 + 0.11 log CFU/g for Listeria innocua, 4.45 ± 0.11 log CFU/g for Listeria monocytogenes (1/2a), and 3.70 ± 0.22 log CFU/g for Listeria welshimeri. On days 0, 1, and 2, all bacterial counts were reduced to nondetectable levels for shrimp samples that floated. The average time for shrimp to float was 96 ± 8 s. The bacterial counts remained at nondetectable levels (<10 log CFU/g) during refrigerated (4°C) storage of cooked shrimp for 2 days. The redness, yellowness, and lightness were significantly higher (P < 0.0001) for the cooked shrimp than for the uncooked shrimp on all days tested. The standard deviation for redness in the cooked shrimp was large, indicating a wide range of pink coloration on all days tested. The results suggest that boiling shrimp until they float will significantly reduce Listeria and Salmonella contamination, but color change is not a good

  17. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    NASA Astrophysics Data System (ADS)

    Riente, Fabrizio; Ziemys, Grazvydas; Mattersdorfer, Clemens; Boche, Silke; Turvani, Giovanna; Raberg, Wolfgang; Luber, Sebastian; Breitkreutz-v. Gamm, Stephan

    2017-05-01

    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  18. Fine-Grained Power Gating Based on the Controlling Value of Logic Elements

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Horiyama, Takashi; Nakamura, Yuichi; Kimura, Shinji

    Leakage power consumption of logic elements has become a serious problem, especially in the sub-100-nanometer process. In this paper, a novel power gating approach by using the controlling value of logic elements is proposed. In the proposed method, sleep signals of the power-gated blocks are extracted completely from the original circuits without any extra logic element. A basic algorithm and a probability-based heuristic algorithm have been developed to implement the basic idea. The steady maximum delay constraint has also been introduced to handle the delay issues. Experiments on the ISCAS'85 benchmarks show that averagely 15-36% of logic elements could be power gated at a time for random input patterns, and 3-31% of elements could be stopped under the steady maximum delay constraints. We also show a power optimization method for AND/OR tree circuits, in which more than 80% of gates can be power-gated.

  19. CONTROLLING MECHANICAL VENTILATION IN ARDS WITH FUZZY LOGIC

    PubMed Central

    Nguyen, Binh; Bernstein, David B.; Bates, Jason H.T.

    2014-01-01

    Purpose The current ventilatory care goal for acute respiratory distress syndrome (ARDS), and the only evidence-based approach for managing ARDS, is to ventilate with a tidal volume (VT) of 6 ml/kg predicted body weight (PBW). However, it is not uncommon for some caregivers to feel inclined to deviate from this strategy for one reason or another. To accommodate this inclination in a rationalized manner, we previously developed an algorithm that allows for VT to depart from 6 ml/kg PBW based on physiological criteria. The goal of the present study was to test the feasibility of this algorithm in a small retrospective study. Materials and Methods Current values of peak airway pressure (PAP), positive end-expiratory pressure (PEEP) and arterial oxygen saturation (SaO2) are used in a fuzzy logic algorithm to decide how much VT should differ from 6 ml/kg PBW and how much PEEP should change from its current setting. We retrospectively tested the predictions of the algorithm against 26 cases of decision making in 17 patients with ARDS. Results Differences between algorithm and physician VT decisions were within 2.5 ml/kg PBW except in 1 of 26 cases, and differences between PEEP decisions were within 2.5 cm H2O except in 3 of 26 cases. The algorithm was consistently more conservative than physicians in changing VT, but was slightly less conservative when changing PEEP. Conclusions Within the limits imposed by a small retrospective study, we conclude that our fuzzy logic algorithm makes sensible decisions while at the same time keeping practice close to the current ventilatory care goal. PMID:24721387

  20. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  1. Fuzzy logic controller for the electric motor driving the astronomical telescope

    NASA Astrophysics Data System (ADS)

    Soliman, Hussein F.; Attia, Abdel-Fattah A.; Badr, Mohammed A.; Osman, Anas M.; Gamaleldin, Abdul A.

    1998-05-01

    The paper presents an application of fuzzy logic controller to regulate the DC motor driver system of astronomical telescope. The mathematical model of such a telescope is highly nonlinear coupled equations. However, the accuracy requirement in telescope system exceed those of other industrial plants. Fuzzy logic controller provides means to deal with nonlinear functions. A fuzzy logic controller (FLC) was designed to enhance the performance of a two-link model of astronomical telescope. The proposed FLC utilizes the position deviation for the desired value, and its rate of change to regulate the armature voltage of the DC motor drive of each link. The final action of FLC is equivalent to PD controller with a variable gain by using an expert look- up table. This work presents the derivation of the mathematical model of 14 inch Celestron telescope and computer simulation of its motion. The FLC contains two groups of fuzzy sets.

  2. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    SciTech Connect

    Kavaklioglu, K.; Ikonomopoulos, A. )

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.

  3. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    SciTech Connect

    Priyambodo, Tri Kuntoro Putra, Agfianto Eko; Dharmawan, Andi

    2016-02-01

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

  4. [Campylobacter and Salmonella control in chickens and the role of fermented food].

    PubMed

    Heres, Lourens

    2004-05-15

    Salmonella and Campylobacter are undesirable pathogens on poultry. Therefore the effect of fermented feed on the colonization in the gastro-intestinal tract of the chicken, the introduction of both bacteria in a chicken flocks, and the transmission between chickens was studied. Broilers that were fed with fermented feed were significantly less susceptible for Salmonella and Campylobacter than chickens on a standard chicken feed. The spread of Salmonella between broiler chickens was reduced. However, the results also showed, like for other known control measures, that this feed can not absolutely guarantee the absence of Salmonella and Campylobacter. Therefore fermented feed must be seen as one of the hurdles in a so called multiple hurdle strategy. The combination of different hurdles should prevent the introduction and transmission. The effect of fermented feed on Campylobacter and Salmonella is partially caused by the presence of high concentrations of organic acids. In chickens fed with liquid feed the acidic barrier in the first part of the GI-tract was clearly improved. Besides organic acids there are other changes in the GI-tract. Changes in colonization levels of indicator organisms, changes in levels of organic acids and an increased pH in ileum and ceacum. These changes indicate a stabilised GI-flora in fermented feed fed poultry. The research confirmed that by changes in the composition of the feed (carbohydrates, acids, or micro-organisms) the GI-health can be promoted and therewith can contribute to the control of food pathogens in farmed animals.

  5. A fuzzy-logic antiswing controller for three-dimensional overhead cranes.

    PubMed

    Cho, Sung-Kun; Lee, Ho-Hoon

    2002-04-01

    In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.

  6. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  7. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    SciTech Connect

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  8. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    SciTech Connect

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  9. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure

    PubMed Central

    Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.

    2016-01-01

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036

  10. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure

    NASA Astrophysics Data System (ADS)

    Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.

    2016-02-01

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated.

  11. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure.

    PubMed

    Murapaka, C; Sethi, P; Goolaup, S; Lew, W S

    2016-02-03

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated.

  12. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  13. Free vibration control of smart composite beams using particle swarm optimized self-tuning fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Zorić, Nemanja D.; Simonović, Aleksandar M.; Mitrović, Zoran S.; Stupar, Slobodan N.; Obradović, Aleksandar M.; Lukić, Nebojša S.

    2014-10-01

    This paper deals with active free vibrations control of smart composite beams using particle-swarm optimized self-tuning fuzzy logic controller. In order to improve the performance and robustness of the fuzzy logic controller, this paper proposes integration of self-tuning method, where scaling factors of the input variables in the fuzzy logic controller are adjusted via peak observer, with optimization of membership functions using the particle swarm optimization algorithm. The Mamdani and zero-order Takagi-Sugeno-Kang fuzzy inference methods are employed. In order to overcome stability problem, at the same time keeping advantages of the proposed self-tuning fuzzy logic controller, this controller is combined with the LQR making composite controller. Several numerical studies are provided for the cantilever composite beam for both single mode and multimodal cases. In the multimodal case, a large-scale system is decomposed into smaller subsystems in a parallel structure. In order to represent the efficiency of the proposed controller, obtained results are compared with the corresponding results in the cases of the optimized fuzzy logic controllers with constant scaling factors and linear quadratic regulator.

  14. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Theurl, Igor; Theurl, Milan; Lindner, Ewald; Demetz, Egon; Aβhoff, Malte; Bellmann-Weiler, Rosa; Müller, Raphael; Gerner, Romana R.; Moschen, Alexander R.; Baumgartner, Nadja; Moser, Patrizia L.; Talasz, Heribert; Tilg, Herbert; Fang, Ferric C.; Weiss, Günter

    2015-01-01

    Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α and IL-6 expression. Lcn2-/- macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2-/- IL-10-/- macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2-/- counterparts. Over-expression of the iron exporter ferroportin-1 in Lcn2-/- macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages. PMID:26332507

  15. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response.

    PubMed

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Theurl, Igor; Theurl, Milan; Lindner, Ewald; Demetz, Egon; Aßhoff, Malte; Bellmann-Weiler, Rosa; Müller, Raphael; Gerner, Romana R; Moschen, Alexander R; Baumgartner, Nadja; Moser, Patrizia L; Talasz, Heribert; Tilg, Herbert; Fang, Ferric C; Weiss, Günter

    2015-11-01

    Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study, we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α, and IL-6 expression. Lcn2(-/-) macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2(-/-) IL-10(-/-) macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2(-/-) counterparts. Overexpression of the iron exporter ferroportin-1 in Lcn2(-/-) macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages.

  16. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  17. Operation logic and functionality of automatic dose rate and image quality control of conventional fluoroscopy

    SciTech Connect

    Lin, Pei-Jan Paul

    2009-05-15

    New generation of fluoroscopic imaging systems is equipped with spectral shaping filters complemented with sophisticated automatic dose rate and image quality control logic called ''fluoroscopy curve'' or ''trajectory''. Such fluoroscopy curves were implemented first on cardiovascular angiographic imaging systems and are now available on conventional fluoroscopy equipment. This study aims to investigate the control logic operations under the fluoroscopy mode and acquisition mode (equivalent to the legacy spot filming) of a conventional fluoroscopy system typically installed for upper-lower gastrointestinal examinations, interventional endoscopy laboratories, gastrointestinal laboratory, and pain clinics.

  18. Interplay between Fur and HNS in controlling virulence gene expression in Salmonella typhimurium.

    PubMed

    Prajapat, Mahendra Kumar; Saini, Supreet

    2012-11-01

    Salmonella enterica is responsible for a large number of diseases in a wide-range of hosts. Two of the global regulators involved in controlling gene expression during the infection cycle of the bacterium are Fur and HNS. In this paper, we demonstrate computationally that Fur and HNS have disproportionately high density of binding sites in the Pathogenicity Islands on the Salmonella chromosome. Moreover, the frequency of binding sites for the two proteins is correlated throughout the genome of the organism. These results indicate a complex interplay between Fur and HNS in regulating cellular global behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  20. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    NASA Astrophysics Data System (ADS)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  1. Structured approach in PLC (programmable logic controller) programming for water/wastewater applications.

    PubMed

    Keskar, P Y

    1990-01-01

    This paper describes a methodology for efficient implementation of PLC programming for water/wastewater applications. The PLC was interfaced with a supervisory host computer which used touch screen equipped color monitors as operator interfaces. PLC ladder logic had to be designed to process real-world hardwired I/O as well as the I/O received from the host computer and/or touch screens, via a communications link. Standard "templates" of PLC networks were developed for (a) pump controls including provision for touch screen I/O; (b) PID control; (c) alarms; (d) motor run times; (e) square root extraction; (f) signal conversion, and (g) flow totalization. All logic was implemented using the standard templates. This structured approach led to efficient implementation, easy debugging/start-up, and easy to read uniform ladder logic.

  2. Clock Controller For Ac Self-Timing Analysis Of Logic System

    DOEpatents

    Lo, Tinchee; Flanagan, John D.

    2004-05-18

    A clock controller and clock generating method are provided for AC self-test timing analysis of a logic system. The controller includes latch circuitry which receives a DC input signal at a data input, and a pair of continuous out-of-phase clock signals at capture and launch clock inputs thereof. The latch circuitry outputs two overlapping pulses responsive to the DC input signal going high. The two overlapping pulses are provided to waveform shaper circuitry which produces therefrom two non-overlapping pulses at clock speed of the logic system to be tested. The two non-overlapping pulses are a single pair of clock pulses which facilitate AC self-test timing analysis of the logic system.

  3. A review on development of novel strategies for controlling Salmonella Enteritidis colonization in laying hens: fiber-based molt diets.

    PubMed

    Ricke, S C; Dunkley, C S; Durant, J A

    2013-02-01

    Limiting Salmonella Enteritidis from table eggs can involve intervention approaches at several levels of the production cycle, beginning at the hatchery and ending at the processing or table egg production facilities. Likewise, interventions that limit Salmonella Enteritidis dissemination can be implemented at various stages during the life cycle of infection of Salmonella in the laying hen. However, achieving complete elimination of Salmonella infestation in egg products has remained elusive. There is a multitude of reasons for this, including adaptability of the organism, virulence properties, and persistence. Likewise, environmental factors in the layer house such as transmission routes, reservoirs, and feed sources can influence the exposure of susceptible laying hens to Salmonella Enteritidis. Consequently, successful applications of control measures depend not only on the timing of when they are applied but also on effective surveillance to detect frequency and level of infection of Salmonella. Several studies demonstrated that molt induction by feed withdrawal altered the immune system and the gastrointestinal tract of hens, making them susceptible to Salmonella Enteritidis colonization of the gastrointestinal tract. To alleviate this, the development of alternative methods to induce a molt became necessary. The use of several fiber-containing diets was shown to effectively induce a molt with alfalfa-based diets being the most extensively studied. Further reduction of Salmonella Enteritidis levels in eggs will probably require application of multiple interventions at several steps during egg production and processing as well as a better understanding of the mechanisms used by Salmonella Enteritidis to persist in laying flocks.

  4. Autonomous and FliK-dependent length control of the flagellar rod in Salmonella enterica.

    PubMed

    Takahashi, Noriko; Mizuno, Shino; Hirano, Takanori; Chevance, Fabienne F V; Hughes, Kelly T; Aizawa, Shin-Ichi

    2009-10-01

    Salmonella flgG point mutations produce filamentous rod structures whose lengths are determined by FliK. FliK length variants produce rods with lengths proportional to the corresponding FliK molecular size, suggesting that FliK controls the length of not only the hook but also the rod by the same molecular mechanism.

  5. Autonomous and FliK-Dependent Length Control of the Flagellar Rod in Salmonella enterica▿

    PubMed Central

    Takahashi, Noriko; Mizuno, Shino; Hirano, Takanori; Chevance, Fabienne F. V.; Hughes, Kelly T.; Aizawa, Shin-Ichi

    2009-01-01

    Salmonella flgG point mutations produce filamentous rod structures whose lengths are determined by FliK. FliK length variants produce rods with lengths proportional to the corresponding FliK molecular size, suggesting that FliK controls the length of not only the hook but also the rod by the same molecular mechanism. PMID:19666714

  6. Chill water additive controls transfer of Salmonella and Campylobacter by improved chlorine efficacy

    USDA-ARS?s Scientific Manuscript database

    In earlier work, we showed that a proprietary additive (T-128) maintains chlorine activity in the presence of organic material such as broiler parts. T-128 improves the efficacy of chlorine to control transfer of Campylobacter and Salmonella from inoculated wings to un-inoculated wings during immer...

  7. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

    DOEpatents

    Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.

    2002-01-01

    A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

  8. Firmware Counterfeiting and Modification Attacks on Programmable Logic Controllers

    DTIC Science & Technology

    2013-03-01

    RTUs ) are field devices designed to control physical aspects of the system . SCADA systems branch out over various communication channels to assorted... RTUs that control and monitor actual physical objects in the system such as valves and sensors. Another type of ICS, called a distributed control system ...DISTRIBUTION UNLIMITED. AFIT-ENG-13-M-06 Abstract Recent attacks on industrial control systems (ICSs), like the highly publicized Stuxnet malware, have

  9. Adaptive fuzzy logic control of a static VAR system

    SciTech Connect

    Dash, P.K.; Routray, A.; Panda, P.C.; Panda, S.K.

    1995-12-31

    A fuzzy gain scheduling scheme for PID controller for transient and dynamic voltage stabilization of power transmission systems has been presented in this paper. Fuzzy rules and reasoning are utilized on-line to determine the controller parameters based on the error signal and its derivative. The static VAR controller is designed with the bus angle deviation and its rate as the input signal to a fuzzy PI or PID control loop. This control is tested for a power transmission system supplying dynamic loads and provides superior performance.

  10. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  11. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  12. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  13. Fuzzy-Logic Based Vibration Suppression Control Experiments on Active Structures

    NASA Astrophysics Data System (ADS)

    Kwak, M. K.; Sciulli, D.

    1996-03-01

    This paper is concerned with the fuzzy-logic based vibration suppression control of active structures equipped with piezoelectric sensors and actuators. The control methodology is based on the fuzzy logic control of the variable structures system type. The sufficient condition for the closed-loop stability of the decentralized fuzzy control for the system equipped with collocated sensors and actuators is derived from the sufficient condition of the decentralized collocated variable system control. Hence, it is concluded that the fuzzy control is in fact the variation of the variable structure system control in this case. Comparison of the variable structure system to the fuzzy control leads to a new fuzzy rule of the vibration suppression of the active structure equipped with collocated sensors and actuators. It is shown that the fuzzy-logic control can be designed for the collocated system without any knowledge of the system to be controlled. However, this may not be true in the case of multi-input and multi-output non-collocated systems. All the developments are demonstrated by means of a real-time fuzzy control experiment on the cantilever beam with surface-bonded piezoceramic sensors and actuators.

  14. Application of programmable logic controllers to space simulation

    NASA Technical Reports Server (NTRS)

    Sushon, Janet

    1992-01-01

    Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.

  15. Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    SciTech Connect

    Ainsworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-06

    Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions. We develop a proof-of-concept behavioral HEMS controller and show by simulation on an example home energy system that it capable of making context-dependent tradeoffs between goals under challenging conditions.

  16. ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    César, Manuel Braz; Barros, Rui Carneiro

    2016-11-01

    In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.

  17. Design and Implementation of Takagi-Sugeno Fuzzy Logic Controller for Shunt Compensator

    NASA Astrophysics Data System (ADS)

    Singh, Alka; Badoni, Manoj

    2016-12-01

    This paper describes the application of Takagi-Sugeno (TS) type fuzzy logic controller to a three-phase shunt compensator in power distribution system. The shunt compensator is used for power quality improvement and has the ability to provide reactive power compensation, reduce the level of harmonics in supply currents, power factor correction and load balancing. Additionally, it can also be used to regulate voltage at the point of common coupling (PCC). The paper discusses the design of TS fuzzy logic controller and its implementation based on only four rules. The smaller number of rules makes it suitable for experimental verification as compared to Mamdani fuzzy controller. A small laboratory prototype of the system is developed and the control algorithm is verified experimentally. The TS fuzzy controller is compared with the proportional integral based industrial controller and their performance is compared under a wide variation of dynamic load changes.

  18. Electro-optical logic application of multimode interference coupler by multivalued controlling.

    PubMed

    Zhou, Haifeng; Wang, Wanjun; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing

    2011-05-20

    Electro-optical hybrid logic is a potential solution to implement both electrical and optical signal processing, which receives analog or digital, electrical or optical signals and produces logic signals in a desired manner. In light of the transfer matrix theory, we found that one can steer light into different output ports of a multimode interference coupler by controlling the phases in a multivalued manner on the image-extended arms. This implementation acts as an analog-to-digital convertor from electric domain to optical domain. Also, an electrical-to-optical 2-to-2(2) binary-coded decoder is described and examined by the 3D beam propagation method.

  19. 21 CFR 1311.125 - Requirements for establishing logical access control-Individual practitioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... least one of the individuals designated under paragraph (a) of this section must verify that the DEA... authentication credential to satisfy the logical access controls. The second individual must be a DEA registrant... practitioner's DEA registration expires, unless the registration has been renewed. (3) The...

  20. 21 CFR 1311.125 - Requirements for establishing logical access control-Individual practitioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... least one of the individuals designated under paragraph (a) of this section must verify that the DEA... authentication credential to satisfy the logical access controls. The second individual must be a DEA registrant... practitioner's DEA registration expires, unless the registration has been renewed. (3) The...

  1. 21 CFR 1311.125 - Requirements for establishing logical access control-Individual practitioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... least one of the individuals designated under paragraph (a) of this section must verify that the DEA... authentication credential to satisfy the logical access controls. The second individual must be a DEA registrant... practitioner's DEA registration expires, unless the registration has been renewed. (3) The...

  2. 21 CFR 1311.125 - Requirements for establishing logical access control-Individual practitioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... least one of the individuals designated under paragraph (a) of this section must verify that the DEA... authentication credential to satisfy the logical access controls. The second individual must be a DEA registrant... practitioner's DEA registration expires, unless the registration has been renewed. (3) The...

  3. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  4. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  5. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  6. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  7. R-189 (C-620) air compressor control logic software documentation. Revision 1

    SciTech Connect

    Walter, K.E.

    1995-06-08

    This relates to FFTF plant air compressors. Purpose of this document is to provide an updated Computer Software Description for the software to be used on R-189 (C-620-C) air compressor programmable controllers. Logic software design changes were required to allow automatic starting of a compressor that had not been previously started.

  8. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  9. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  10. An Introduction to Logic Control Systems for the Behavioral Scientist, Part I, Text.

    ERIC Educational Resources Information Center

    Larsen, Lawrence A.

    This programed instruction course gives a basic introduction to solid state programing equipment. Course objectives include giving the student (1) a working knowledge of the various types of units used in building digital logic control systems and (2) an idea of how they interconnect to perform different functions. The course has no prerequisites…

  11. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  12. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  13. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    Karuppanan, P; Mahapatra, Kamala Kanta

    2012-09-01

    The authors acknowledge certain errors in their recently published paper titled "PI and fuzzy logic controllers for shunt active power filter--A report.The ambiguity in band width calculation of adaptive hysteresis controller and control aspects of dc-link voltage issues are addressed. The shunt APF system is validated through extensive simulation and the results are support features of the proposed technique.

  14. Salmonella infections in Norway: descriptive epidemiology and a case-control study.

    PubMed Central

    Kapperud, G.; Lassen, J.; Hasseltvedt, V.

    1998-01-01

    The epidemiological progression of human salmonellosis in Norway is parallel to trends noted elsewhere in Europe. During the past two decades, the number of reported cases has increased steadily, with a special sharp rise in the early 1980s due to the emergence of Salmonella enteritidis, followed by a levelling off in recent years. However, in contrast to the situation in most other European countries, about 90% of the cases from whom a travel history is available, have acquired their infection abroad. The incidence of indigenous salmonella infections as well as the prevalence of the microorganism in the domestic food chain, are both comparatively low. In 1993-4, a national case-control study of sporadic indigenous salmonella infections was conducted to identify preventable risk factors and guide preventive efforts. Ninety-four case patients and 226 matched population controls were enrolled. The study failed to demonstrate any statistically significant association between salmonellosis and consumption of domestically produced red meat, poultry or eggs. The only factor which remained independently associated with an increased risk in conditional logistic regression analysis, was consumption of poultry purchased abroad during holiday visits to neighbouring countries. A separate analysis of Salmonella typhimurium infections incriminated food from catering establishments and foreign travel among household members, in addition to imported poultry. PMID:10030706

  15. Use of Caenorhabditis elegans for preselecting Lactobacillus isolates to control Salmonella Typhimurium.

    PubMed

    Wang, Chunyang; Wang, Jinquan; Gong, Joshua; Yu, Hai; Pacan, Jennifer C; Niu, Zhongxiang; Si, Weiduo; Sabour, Parviz M

    2011-01-01

    Host-specific probiotics have been used to control enteric pathogens, including foodborne pathogens, in food animal production. However, evaluation of the efficacy of these probiotics requires costly in vivo assays in the target animal. The nematode Caenorhabditis elegans has been used for prescreening of antimicrobial agents and for studies of host-pathogen interactions. In the present study, 17 Lactobacillus isolates from chicken and pig intestines were tested with C. elegans, and the ability of these isolates to prevent death from Salmonella infection was variable. Two Lactobacillus isolates (S64, which gave full protection, and CL11, which gave no protection) were further studied. Both isolates exhibited a similar colonization profile in the C. elegans intestine. Although different culture fractions of CL11 were not protective, both live and heat-killed S64 cells provided full or partial protection of C. elegans from death caused by Salmonella infection. In contrast, different culture fractions from both isolates had similar effects on the colonization of the nematode intestine by Salmonella Typhimurium DT104. Our preliminary results from a pig performance trial revealed a correlation between the degree of protection in the C. elegans survival assay and the performance of 35-day-old weaned piglets that were treated with the same Lactobacillus isolates, suggesting that C. elegans can be used as a laboratory animal model for preselecting probiotics for control of Salmonella infections.

  16. Salmonella control measures with special focus on vaccination and logistic slaughter procedures.

    PubMed

    Hotes, S; Traulsen, I; Krieter, J

    2011-10-01

    This study focussed on the effectiveness of Salmonella control measures to decrease Salmonella prevalence at slaughter. Considered measures were the control of hygiene and husbandry management as well as vaccination and logistic slaughter procedures. Results emphasized the capabilities of the farrowing stage to influence slaughter pig prevalence. Limited Salmonella entry by the implementation of hygiene control measures at farrowing farms obtained a significant decrease in prevalence after lairage at slaughterhouse. In contrast, hygiene control measures at finishing stage were less effective. Husbandry control measures, preventing physical contacts between pigs, were proved to decrease slaughter pig prevalence whether they were implemented at farrowing or finishing stage. Furthermore, the vaccination of sows and piglets was an appropriate control measure to decrease slaughter pig prevalence, if a large part of farms established this control measure. Simultaneous implementation of control measures showed that vaccination and especially hygiene measures are mutually supportive. Concerning logistic slaughter procedures it became obvious that with decreasing prevalence, infections at transport and lairage become more and more important. The herd status separation significantly decreased the percentage of infected pigs that became infected at lairage.

  17. Plasma position control in the STOR-M tokamak: A fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Morelli, Jordan Edwin

    Adequate control of the position of the plasma column within the STOR-M tokamak is a chief requirement in order for experimental quality discharges to be obtained. Optimal control over tokamak discharge parameters, including the plasma position, is very difficult to achieve. This is due in large part to the difficulty in modelling the tokamak discharge parameters, as they are highly nonlinear and time varying in nature. The difficulty of modelling the tokamak discharge parameters suggests that a control system, such as a fuzzy logic based controller, which does not require a system model may be well suited to the control of fusion plasma. In order to improve the quality of control over the plasma position within the STOR-M tokamak, the existing analog PID controller was modified. These modifications facilitate the application of a digital controller by a personal computer via the Advantech PCL-711B data acquisition card. The performance of the modified plasma position controller and an Arbitrary Signal Generator developed by the author was evaluated. This modified plasma position controller was applied successfully to the STOR-M tokamak during both normal mode and A.C. mode operation. In both cases, the modified controller provided adequate control over the position of the plasma column within the discharge chamber. Furthermore, the modified controller was more convenient to optimize than the original, existing analog PID controller. By taking advantage of the modifications that were made to the plasma position controller, a fuzzy logic controller was developed by the author. The fuzzy logic based plasma position controller was also successfully applied to the STOR-M tokamak during both normal mode and A.C. operation. The fuzzy controller was demonstrated to reliably provide a higher degree of control over the position of the plasma column within the STOR-M tokamak than the modified PID controller.

  18. Static control logic for microfluidic devices using pressure-gain valves

    NASA Astrophysics Data System (ADS)

    Weaver, James A.; Melin, Jessica; Stark, Don; Quake, Stephen R.; Horowitz, Mark A.

    2010-03-01

    Microfluidic technology has developed greatly in recent years, enabling multiple analysis systems to be placed on a microfluidic chip. However, microfluidic large-scale integration of control elements analogous to those achieved in the microelectronics industry is still a challenge. We present an integrated microfluidic valve, compatible with standard soft-lithography processes, which has a pressure gain much greater than unity. We show that this enables integration of fully static digital control logic and state storage directly on-chip, ultimately enabling microfluidic-state machines to be designed. Outputs from this digital control logic can then be used to control traditional analyte flow valves. This strategy enables much of the bulky external hardware at present used to control pneumatically driven microfluidic chips in the laboratory to be transferred onto the microfluidic chip, which drastically reduces the required number of external chip connections.

  19. Dynamic response improvement of doubly fed induction generator-based wind farm using fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Hasanien, Hany M.; Al-Ammar, Essam A.

    2012-11-01

    Doubly fed induction generator (DFIG) based wind farm is today the most widely used concept. This paper presents dynamic response enhancement of DFIG based wind farm under remote fault conditions using the fuzzy logic controller. The goal of the work is to improve the dynamic response of DFIG based wind farm during and after the clearance of fault using the proposed controller. The stability of wind farm during and after the clearance of fault is investigated. The effectiveness of the fuzzy logic controller is then compared with that of a PI controller. The validity of the controllers in restoring the wind farms normal operation after the clearance of fault is illustrated by the simulation results which are carried out using MATLAB/SIMULINK. Simulation results are analyzed under different fault conditions.

  20. Risk factors for salmonella food poisoning in the domestic kitchen--a case control study.

    PubMed

    Parry, S M; Palmer, S R; Slader, J; Humphrey, T

    2002-10-01

    Domestic kitchen food handling risk factors for sporadic salmonella food poisoning are largely unknown. We compared food consumption and food handling practices, opportunities for cross contamination and refrigerator temperature control, in 99 households in South East Wales in 1997/8 with a case of salmonella food poisoning, and control households matched for electoral ward. On univariate analyses, cases were significantly more likely than control respondents to have purchased free-range eggs in the preceding week, and more likely than control households to have handled frozen whole chicken in the previous week, and to handle raw chicken portions at least weekly. In multivariate analysis, only consumption of raw eggs and handling free-range eggs were significant risk factors, independent of the age structure of the family and of the season.

  1. Application of programmable logic controller to pump regulation system for supplying water

    NASA Astrophysics Data System (ADS)

    Ye, Dao-Yi; Yang, Yong-Bin; Lu, Zong-Qi

    This paper describes a pump regulation system for supplying-water. The controlled variable is the output water pressure for supplying-water pumps. The reference input signal is given in PLC. The water pressure for supplying-water pump output is fed back by a A/D converter to CPU in PLC. The output of Programmable Logic Controller Controls a frequency converter. The frequency converter controls three groups of motor-pump. The water from the three pumps enters the same pipe. Programmable Logic Controller (PLC) uses Ladder-shaped diagram software to implement logical control and proportional-plus-integral control. The method for automatic tuning of regulator of the PID type is based on a simple identification method which gives one point on the Nyquist curve of the open loop transfer function. The key idea is a scheme which provides automatic excitation of the process which is nearly optimal for estimating the desired process characteristics. Only a frequency converter controls several groups of motor pumps, therefore, the cost of the system is decreased. This system has electrically breaking off protection function and automatically restoring software. Through a long time operation, the system can work well.

  2. A voluntary Salmonella control programme for the broiler industry, implemented by the Danish Poultry Council.

    PubMed

    Bisgaard, M

    1992-01-01

    In the light of data and experience gained over the last two decades, initiatives made to combat and control Salmonella in the Danish broiler industry are described and the results obtained so far are discussed. The main elements include evaluation of the establishments, procedures and processes used, including bacteriological assessment, advice and guidance, routine bacteriological monitoring, and also research. Results obtained are used in the control of breeding stock, parent stock, hatcheries, broiler farms, slaughterhouses, feedmills and transport systems.

  3. Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing

    NASA Astrophysics Data System (ADS)

    Li, Dongxu; Luo, Qing; Xu, Rui

    This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.

  4. Type-2 fuzzy logic control of a 2-DOF helicopter (TRMS system)

    NASA Astrophysics Data System (ADS)

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2014-09-01

    The helicopter dynamic includes nonlinearities, parametric uncertainties and is subject to unknown external disturbances. Such complicated dynamics involve designing sophisticated control algorithms that can deal with these difficulties. In this paper, a type 2 fuzzy logic PID controller is proposed for TRMS (twin rotor mimo system) control problem. Using triangular membership functions and based on a human operator experience, two controllers are designed to control the position of the yaw and the pitch angles of the TRMS. Simulation results are given to illustrate the effectiveness of the proposed control scheme.

  5. Fuzzy Logic Controller for Hemodialysis Machine Based on Human Body Model

    PubMed Central

    Nafisi, Vahid Reza; Eghbal, Manouchehr; Motlagh, Mohammad Reza Jahed; Yavari, Fatemeh

    2011-01-01

    Fuzzy controllers are being used in various control schemes. The aim of this study is to adjust the hemodialysis machine parameters by utilizing a fuzzy logic controller (FLC) so that patient's hemodynamic condition remains stable during hemodialysis treatment. For this purpose, a comprehensive mathematical model of the arterial pressure response during hemodialysis, including hemodynamic, osmotic, and regulatory phenomena has been used. The multi-input multi-output (MIMO) fuzzy logic controller receives three parameters from the model (heart rate, arterial blood pressure, and relative blood volume) as input. According to the changes in the controller input values and its rule base, the outputs change so that the patient's hemodynamic condition remains stable. The results of the simulations illustrate that applying the controller can improve the stability of a patient's hemodynamic condition during hemodialysis treatment and it also decreases the treatment time. Furthermore, by using fuzzy logic, there is no need to have prior knowledge about the system under control and the FLC is compatible with different patients. PMID:22606657

  6. Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control.

    PubMed

    Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.

  7. Performance Analysis of a Semiactive Suspension System with Particle Swarm Optimization and Fuzzy Logic Control

    PubMed Central

    Qazi, Abroon Jamal; de Silva, Clarence W.

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  8. Interventions for control of Salmonella: clearance of microbial growth from rubber picker fingers.

    PubMed

    Arnold, J W; Yates, I E

    2009-06-01

    A study was conducted to determine if a surface material with antimicrobial properties combined with an effective disinfectant could achieve total clearance of bacterial contamination. Before beginning the project, new rubber picker fingers collected from 3 processing facilities were tested for endogenous microflora. Five species of bacteria common to soil and human handling were present: Bacillus amyloliquefaciens, Bacillus cereus/thuringiensis, Staphylococcus epidermidis, Staphylococcus hominis ssp. novobiosepticus, and Staphylococcus intermedius. In separate experiments, new (unused) rubber picker fingers from 3 manufacturers were exposed to broiler carcass rinses, and the kinetics of bacterial attachment to finger material was determined. Turbidity of the bacterial suspensions at varying dilutions containing picker finger sections was compared hourly with controls to evaluate inhibition. New rubber finger material from the 3 manufacturers significantly inhibited bacterial growth (P < 0.05), without the aid of antibacterial additives. We improved an assay for screening disinfectants against growth of pathogens and determined the activity of 5 disinfectant compounds. Two of the compounds were most effective against Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Salmonella Enteritidis, and Escherichia coli, and one of the compounds was selected for further study with Salmonella Enteritidis. Scanning electron microscopy confirmed the levels of Salmonella Enteritidis before and after treatment. The most effective compound was nontoxic and completely cleared Salmonella Enteritidis contamination from the rubber picker finger surface.

  9. Biofuel cell controlled by enzyme logic network--approaching physiologically regulated devices.

    PubMed

    Tam, Tsz Kin; Pita, Marcos; Ornatska, Maryna; Katz, Evgeny

    2009-09-01

    A "smart" biofuel cell switchable ON and OFF upon application of several chemical signals processed by an enzyme logic network was designed. The biocomputing system performing logic operations on the input signals was composed of four enzymes: alcohol dehydrogenase (ADH), amyloglucosidase (AGS), invertase (INV) and glucose dehydrogenase (GDH). These enzymes were activated by different combinations of chemical input signals: NADH, acetaldehyde, maltose and sucrose. The sequence of biochemical reactions catalyzed by the enzymes models a logic network composed of concatenated AND/OR gates. Upon application of specific "successful" patterns of the chemical input signals, the cascade of biochemical reactions resulted in the formation of gluconic acid, thus producing acidic pH in the solution. This resulted in the activation of a pH-sensitive redox-polymer-modified cathode in the biofuel cell, thus, switching ON the entire cell and dramatically increasing its power output. Application of another chemical signal (urea in the presence of urease) resulted in the return to the initial neutral pH value, when the O(2)-reducing cathode and the entire cell are in the mute state. The reversible activation-inactivation of the biofuel cell was controlled by the enzymatic reactions logically processing a number of chemical input signals applied in different combinations. The studied biofuel cell exemplifies a new kind of bioelectronic device where the bioelectronic function is controlled by a biocomputing system. Such devices will provide a new dimension in bioelectronics and biocomputing benefiting from the integration of both concepts.

  10. A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

    DTIC Science & Technology

    2014-09-20

    Eric S. Kim , Samuel Coogan, S. Shankar Sastry , Sanjit A. Seshia Abstract— We propose to synthesize a control policy for a Markov decision process (MDP...A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications Dorsa Sadigh Eric Kim Samuel...Coogan S. Shankar Sastry Sanjit A. Seshia Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS

  11. Programmable Logic Controller Modification Attacks for use in Detection Analysis

    DTIC Science & Technology

    2014-03-27

    Control System IDS Intrusion Detection System IP Internet Protocol IT Information Technology JTAG Joint Test Action Group LAN Local Area Network PLC...firewalls or Intrusion Detection System (IDS), implementing cryptography, and improving protocol security. There are few vendors, however, that include...Mode Setting Register Values. Mode r0 Value r3 Value PRGM 0x11 0x1 RUN 0x11 0x2 REM PRGM 0x12 0x1 REM RUN 0x12 0x2 cpmode 1 contains two

  12. A case-control study of Salmonella gastrointestinal infection in Italian children.

    PubMed

    Borgnolo, G; Barbone, F; Scornavacca, G; Franco, D; Vinci, A; Iuculano, F

    1996-07-01

    A case-control study of 85 cases with non-typhoid Salmonella gastroenteritis, 85 outpatient controls and 79 inpatient controls was conducted among children in Monfalcone, north-east Italy, between June 1989 and June 1994. Logistic regression was used to evaluate the effect of demographic and socio-economic characteristics, duration of breastfeeding, history of intestinal illnesses and household diarrhoea, and the recent use of antimicrobials. Breastfeeding was the single most important factor associated with a 5-fold decreased risk of Salmonella infection. In addition, children who were treated with antimicrobials before onset of gastroenteritis had a 3-fold increased risk. Low social class and history of other chronic non-infectious intestinal diseases were also directly associated with illness.

  13. Control logic to track the outputs of a command generator or randomly forced target

    NASA Technical Reports Server (NTRS)

    Trankle, T. L.; Bryson, A. E., Jr.

    1977-01-01

    A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).

  14. Intelligent control of a multi-degree-of freedom reaction compensating platform system using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles; Lin, Yueh-Jaw

    1994-01-01

    This paper presents the development of a general-purpose fuzzy logic (FL) control methodology for isolating the external vibratory disturbances of space-based devices. According to the desired performance specifications, a full investigation regarding the development of an FL controller was done using different scenarios, such as variances of passive reaction-compensating components and external disturbance load. It was shown that the proposed FL controller is robust in that the FL-controlled system closely follows the prespecified ideal reference model. The comparative study also reveals that the FL-controlled system achieves significant improvement in reducing vibrations over passive systems.

  15. Large motion tracking control for thrust magnetic bearings with fuzzy logic, sliding mode, and direct linearization

    NASA Astrophysics Data System (ADS)

    Minihan, T. P.; Lei, S.; Sun, G.; Palazzolo, A.; Kascak, A. F.; Calvert, T.

    2003-06-01

    Conventional use of magnetic bearings relies on a zero reference to keep the rotor centered in the radial and axial axes. This paper compares different control methods developed for the alternate control task of tracking an axial dynamic target. Controllers based on fuzzy logic, sliding mode, and direct linearization were designed to meet this task. Performance criteria, such as maximum axial displacement, minimum phase lag and I2R power losses were compared for each controller. The large motion, tracking problem for a rotor has utility in applications where dynamic seal clearances are required. This has a variety of potential applications in turbo-machinery, such as active stall control.

  16. Salmonella surveillance and control at post-harvest in the Belgian pork meat chain.

    PubMed

    Delhalle, L; Saegerman, C; Farnir, F; Korsak, N; Maes, D; Messens, W; De Sadeleer, L; De Zutter, L; Daube, G

    2009-05-01

    Salmonella remains the primary cause of reported bacterial food borne disease outbreaks in Belgium. Pork and pork products are recognized as one of the major sources of human salmonellosis. In contrast with the primary production and slaughterhouse phases of the pork meat production chain, only a few studies have focussed on the post-harvest stages. The goal of this study was to evaluate Salmonella and Escherichia coli contamination at the Belgian post-harvest stages. E. coli counts were estimated in order to evaluate the levels of faecal contamination. The results of bacteriological analysis from seven cutting plants, four meat-mincing plants and the four largest Belgian retailers were collected from official and self-monitoring controls. The prevalence of Salmonella in the cutting plants and meat-mincing plants ranged from 0% to 50%. The most frequently isolated serotype was Salmonella typhimurium. The prevalence in minced meat at retail level ranged from 0.3% to 4.3%. The levels of Salmonella contamination estimated from semi-quantitative analysis of data relating to carcasses, cuts of meat and minced meat were equal to -3.40+/-2.04 log CFU/cm(2), -2.64+/-1.76 log CFU/g and -2.35+/-1.09 log CFU/g, respectively. The E. coli results in meat cuts and minced meat ranged from 0.21+/-0.50 to 1.23+/-0.89 log CFU/g and from 1.33+/-0.58 to 2.78+/-0.43 log CFU/g, respectively. The results showed that faecal contamination still needs to be reduced, especially in specific individual plants.

  17. Switchable electrode controlled by Boolean logic gates using enzymes as input signals.

    PubMed

    Wang, Xuemei; Zhou, Jian; Tam, Tsz Kin; Katz, Evgeny; Pita, Marcos

    2009-11-01

    Application of Boolean logic operations performed by enzymes to control electrochemical systems is presented. Indium-tin oxide (ITO) electrodes with the surface modified with poly-4-vinyl pyridine (P4VP) brush were synthesized and used as switchable electrochemical systems. The switch ON and OFF of the electrode activity were achieved by pH changes generated in situ by biocatalytic reactions in the presence of enzymes used as input signals. Two logic gates operating as AND/OR Boolean functions were designed using invertase and glucose oxidase or esterase and glucose oxidase as input signals, respectively. The electrode surface coated with a shrunk P4VP polymer at neutral pH values was not electrochemically active because of the blocking effect of the polymer film. The positive outputs of the logic operations yielded a pH drop to acidic conditions, resulting in the protonation and swelling of the P4VP polymer allowing penetration of a soluble redox probe to the conducting support, thus switching the electrode activity ON. The electrode interface was reset to the initial OFF state, with the inhibited electrochemical reaction, upon in situ pH increase generated by another enzymatic reaction in the presence of urease. Logically processed biochemical inputs of various enzymes allowed reversible activation-inactivation of the electrochemical reaction.

  18. Development of a fuzzy logic controller for dc/dc converters: Design, computer simulation, and experimental evaluation

    SciTech Connect

    So, W.C.; Tse, C.K.; Lee, Y.S.

    1996-01-01

    The design of a fuzzy logic controller for dc/dc converters is described in this paper. A brief review of fuzzy logic and its application to control is first given. Then, the derivation of a fuzzy control algorithm for regulating dc/dc converters is described in detail. The proposed fuzzy control is evaluated by computer simulations as well as experimental measurements of the closed-loop performance of simple dc/dc converters in respect of load regulation and line regulation.

  19. Fuzzy logic enhanced speed control of an indirect field-oriented induction machine drive

    SciTech Connect

    Heber, B.; Xu, L.; Tang, Y.

    1997-09-01

    Field orientation control (FOC) of induction machines has permitted fast transient response by decoupled torque and flux control. However, field orientation detuning caused by parameter variations is a major difficulty for indirect FOC methods. Traditional probability density function (PID) controllers have trouble meeting a wide range of speed tracking performance even when proper field orientation is achieved. PID controller performance is severely degraded when detuning occurs. This paper presents a fuzzy logic design approach that can meet the speed tracking requirements even when detuning occurs. Computer simulations and experimental results obtained via a general-purpose digital signal processor (DSP) system are presented.

  20. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    NASA Astrophysics Data System (ADS)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  1. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.

    PubMed

    Ibbini, M

    2006-01-01

    This manuscript investigates different fuzzy logic controllers for the regulation of blood glucose level in diabetic patients. While fuzzy logic control is still intuitive and at a very early stage, it has already been implemented in many industrial plants and reported results are very promising. A fuzzy logic control (FLC) scheme was recently proposed for maintaining blood glucose level in diabetics within acceptable limits, and was shown to be more effective with better transient characteristics than conventional techniques. In fact, FLC is based on human expertise and on desired output characteristics, and hence does not require precise mathematical models. This observation makes fuzzy rule-based technique very suitable for biomedical systems where models are, in general, either very complicated or over-simplistic. Another attractive feature of fuzzy techniques is their insensitivity to system parameter variations, as numerical values of physiological parameters are often not precise and usually vary from patient to another. PI and PID controllers are very popular and are efficiently used in many industrial plants. Fuzzy PI and PID controllers behave in a similar fashion to those classical controllers with the obvious advantage that the controller parameters are time dependant on the range of the control variables and consequently, result in a better performance. In this manuscript, a fuzzy PI controller is designed using a simplified design scheme and then subjected to simulations of the two common diabetes disturbances--sudden glucose meal and system parameter variations. The performance of the proposed fuzzy PI controller is compared to that of the conventional PID and optimal techniques and is shown to be superior. Moreover, the proposed fuzzy PI controller is shown to be more effective than the previously proposed FLC, especially with respect to the overshoot and settling time.

  2. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  3. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  4. Toward Automating Web Protocol Configuration for a Programmable Logic Controller Emulator

    DTIC Science & Technology

    2014-06-19

    logic controllers ( PLC ). PLC emulators used as honeypots can provide insight into these vulnerabilities. Honeypots can sometimes deter attackers from...real devices and log activity. A variety of PLC emulators exist, but require manual configuration to change their PLC profile. This limits their...flexibility for deployment. An automated process for configuring PLC emulators can open the door for emulation of many types of PLCs . This study

  5. A fuzzy logic controller for hormone administration using an implantable pump

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen; Wells, George H., Jr.

    1994-01-01

    This paper describes the requirements for a Fuzzy Logic Controller for the physiologic administration of hormones by means of a FDA-approved surgically implantable infusion pump. Results of a LabVIEW computer simulation for the administration of insulin for diabetic adult patients as well as human growth hormone for pediatric patients are presented. A VHS video tape of the simulation in action has been prepared and is available for viewing.

  6. Controlled Logic Gates-Switch Gate and Fredkin Gate Based on Enzyme-Biocatalyzed Reactions Realized in Flow Cells.

    PubMed

    Fratto, Brian E; Katz, Evgeny

    2016-04-04

    Controlled logic gates, where the logic operations on the Data inputs are performed in the way determined by the Control signal, were designed in a chemical fashion. Specifically, the systems where the Data output signals directed to various output channels depending on the logic value of the Control input signal have been designed based on enzyme biocatalyzed reactions performed in a multi-cell flow system. In the Switch gate one Data signal was directed to one of two possible output channels depending on the logic value of the Control input signal. In the reversible Fredkin gate the routing of two Data signals between two output channels is controlled by the third Control signal. The flow devices were created using a network of flow cells, each modified with one enzyme that biocatalyzed one chemical reaction. The enzymatic cascade was realized by moving the solution from one reacting cell to another which were organized in a specific network. The modular design of the enzyme-based systems realized in the flow device allowed easy reconfiguration of the logic system, thus allowing simple extension of the logic operation from the 2-input/3-output channels in the Switch gate to the 3-input/3-output channels in the Fredkin gate. Further increase of the system complexity for realization of various logic processes is feasible with the use of the flow cell modular design.

  7. Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor

    PubMed Central

    Mauseth, Richard; Wang, Youqing; Dassau, Eyal; Kircher, Robert; Matheson, Donald; Zisser, Howard; Jovanoviĉ, Lois; Doyle, Francis J.

    2010-01-01

    Background Physicians tailor insulin dosing based on blood glucose goals, response to insulin, compliance, lifestyle, eating habits, daily schedule, and fear of and ability to detect hypoglycemia. Method We introduce a method that allows a physician to tune a fuzzy logic controller (FLC) artificial pancreas (AP) for a particular patient. It utilizes the physician’s judgment and weighing of various factors. The personalization factor (PF) is a scaling of the dose produced by the FLC and is used to customize the dosing. The PF has discrete values of 1 through 5. The proposed method was developed using a database of results from 30 University of Virginia/Padova Metabolic Simulator in silico subjects (10 adults, 10 adolescents, and 10 children). Various meal sizes and timing were used to provide the physician information on which to base an initial dosing regimen and PF. Future decisions on dosing aggressiveness using the PF would be based on the patient’s data at follow-up. Results Three examples of a wide variation in diabetes situations are given to illustrate the physician’s thought process when initially configuring the AP system for a specific patient. Conclusions Fuzzy logic controllers are developed by encoding human expertise into the design of the controller. The FLC methodology allows for the real-time scaling of doses without compromising the integrity of the dosing rules matrix. The use of the PF to individualize the AP system is enabled by the fuzzy logic development methodology. PMID:20663457

  8. Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor.

    PubMed

    Mauseth, Richard; Wang, Youqing; Dassau, Eyal; Kircher, Robert; Matheson, Donald; Zisser, Howard; Jovanovic, Lois; Doyle, Francis J

    2010-07-01

    Physicians tailor insulin dosing based on blood glucose goals, response to insulin, compliance, lifestyle, eating habits, daily schedule, and fear of and ability to detect hypoglycemia. We introduce a method that allows a physician to tune a fuzzy logic controller (FLC) artificial pancreas (AP) for a particular patient. It utilizes the physician's judgment and weighing of various factors. The personalization factor (PF) is a scaling of the dose produced by the FLC and is used to customize the dosing. The PF has discrete values of 1 through 5. The proposed method was developed using a database of results from 30 University of Virginia/Padova Metabolic Simulator in silico subjects (10 adults, 10 adolescents, and 10 children). Various meal sizes and timing were used to provide the physician information on which to base an initial dosing regimen and PF. Future decisions on dosing aggressiveness using the PF would be based on the patient's data at follow-up. Three examples of a wide variation in diabetes situations are given to illustrate the physician's thought process when initially configuring the AP system for a specific patient. Fuzzy logic controllers are developed by encoding human expertise into the design of the controller. The FLC methodology allows for the real-time scaling of doses without compromising the integrity of the dosing rules matrix. The use of the PF to individualize the AP system is enabled by the fuzzy logic development methodology. 2010 Diabetes Technology Society.

  9. Fuzzy logic control system to provide autonomous collision avoidance for Mars rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1990-01-01

    NASA is currently involved with planning unmanned missions to Mars to investigate the terrain and process soil samples in advance of a manned mission. A key issue involved in unmanned surface exploration on Mars is that of supporting autonomous maneuvering since radio communication involves lengthy delays. It is anticipated that specific target locations will be designated for sample gathering. In maneuvering autonomously from a starting position to a target position, the rover will need to avoid a variety of obstacles such as boulders or troughs that may block the shortest path to the target. The physical integrity of the rover needs to be maintained while minimizing the time and distance required to attain the target position. Fuzzy logic lends itself well to building reliable control systems that function in the presence of uncertainty or ambiguity. The following major issues are discussed: (1) the nature of fuzzy logic control systems and software tools to implement them; (2) collision avoidance in the presence of fuzzy parameters; and (3) techniques for adaptation in fuzzy logic control systems.

  10. A Position Controller Model on Color-Based Object Tracking using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Cahyo Wibowo, Budi; Much Ibnu Subroto, Imam; Arifin, Bustanul

    2017-04-01

    Robotics vision is applying technology on the camera to view the environmental conditions as well as the function of the human eye. Colour object tracking system is one application of robotics vision technology with the ability to follow the object being detected. Several methods have been used to generate a good response position control, but most are still using conventional control approach. Fuzzy logic which includes several step of which is to determine the value of crisp input must be fuzzification. The output of fuzzification is forwarded to the process of inference in which there are some fuzzy logic rules. The inference output forwarded to the process of defuzzification to be transformed into outputs (crisp output) to drive the servo motors on the X-axis and Y-axis. Fuzzy logic control is applied to the color-based object tracking system, the system is successful to follow a moving object with average speed of 7.35 cm/s in environments with 117 lux light intensity.

  11. Methyl Gallate from Galla rhois Successfully Controls Clinical Isolates of Salmonella Infection in Both In Vitro and In Vivo Systems

    PubMed Central

    Choi, Jang-Gi; Mun, Su-Hyun; Chahar, Harendra S.; Bharaj, Preeti; Kang, Ok-Hwa; Kim, Se-Gun; Shin, Dong-Won; Kwon, Dong-Yeul

    2014-01-01

    Galla rhois is a commonly used traditional medicine for the treatment of pathogenic bacteria in Korea as well as in other parts of Asia. Methyl gallate (MG), a major component of Galla Rhois, exhibits strong antibacterial activity, but its mechanism of action against Salmonella spp. is unclear. In the present study, we investigated the antibacterial actions of MG against Salmonella. The antibacterial activity determined by broth dilution method indicated that the antibacterial activity of MG against Salmonella strains ranged from 3.9 to 125 µg/ml. In vitro bacterial viability test indicated that MG significantly decreased the viability of Salmonella over 40% when combined with ATPase inhibitors. The time-kill curves showed that a combined MG and ATPase inhibitors (DCCD and NaN3) treatment reduced the bacterial counts dramatically after 24 h. Oral administration of MG showed a strong anti-bacterial activity against WS-5 infected BALB/c mice. In contrast to the untreated Salmonella infected control animals, MG treated groups showed no clinical symptoms of the disease, such as lethargy and liver damage. It was observed that MG treatment significantly increased the survival of animals from Salmonella infection, while in untreated groups all animal succumbed to disease by the sixth day post infection. Thus, the present study demonstrates the therapeutic ability of MG against Salmonella infections. PMID:25048362

  12. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems.

    PubMed

    Choi, Jang-Gi; Mun, Su-Hyun; Chahar, Harendra S; Bharaj, Preeti; Kang, Ok-Hwa; Kim, Se-Gun; Shin, Dong-Won; Kwon, Dong-Yeul

    2014-01-01

    Galla rhois is a commonly used traditional medicine for the treatment of pathogenic bacteria in Korea as well as in other parts of Asia. Methyl gallate (MG), a major component of Galla Rhois, exhibits strong antibacterial activity, but its mechanism of action against Salmonella spp. is unclear. In the present study, we investigated the antibacterial actions of MG against Salmonella. The antibacterial activity determined by broth dilution method indicated that the antibacterial activity of MG against Salmonella strains ranged from 3.9 to 125 µg/ml. In vitro bacterial viability test indicated that MG significantly decreased the viability of Salmonella over 40% when combined with ATPase inhibitors. The time-kill curves showed that a combined MG and ATPase inhibitors (DCCD and NaN3) treatment reduced the bacterial counts dramatically after 24 h. Oral administration of MG showed a strong anti-bacterial activity against WS-5 infected BALB/c mice. In contrast to the untreated Salmonella infected control animals, MG treated groups showed no clinical symptoms of the disease, such as lethargy and liver damage. It was observed that MG treatment significantly increased the survival of animals from Salmonella infection, while in untreated groups all animal succumbed to disease by the sixth day post infection. Thus, the present study demonstrates the therapeutic ability of MG against Salmonella infections.

  13. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  14. Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight

    PubMed Central

    Wilson, James W.; Ott, C. Mark; Quick, Laura; Davis, Richard; zu Bentrup, Kerstin Höner; Crabbé, Aurélie; Richter, Emily; Sarker, Shameema; Barrila, Jennifer; Porwollik, Steffen; Cheng, Pui; McClelland, Michael; Tsaprailis, George; Radabaugh, Timothy; Hunt, Andrea; Shah, Miti; Nelman-Gonzalez, Mayra; Hing, Steve; Parra, Macarena; Dumars, Paula; Norwood, Kelly; Bober, Ramona; Devich, Jennifer; Ruggles, Ashleigh; CdeBaca, Autumn; Narayan, Satro; Benjamin, Joseph; Goulart, Carla; Rupert, Mark; Catella, Luke; Schurr, Michael J.; Buchanan, Kent; Morici, Lisa; McCracken, James; Porter, Marc D.; Pierson, Duane L.; Smith, Scott M.; Mergeay, Max; Leys, Natalie; Stefanyshyn-Piper, Heidemarie M.; Gorie, Dominic; Nickerson, Cheryl A.

    2008-01-01

    The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. PMID:19079590

  15. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    PubMed

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  16. An active control logic to improve the fatigue strength of smart flexible structures

    NASA Astrophysics Data System (ADS)

    Ambrosio, Pasquale; Braghin, Francesco; Resta, Ferruccio; Ripamonti, Francesco

    2013-04-01

    In general active vibration control intrinsically implies a fatigue damage reduction. Anyway, this assumption is not always verified. In these cases it is possible to deeper investigate the fatigue phenomena on smart flexible structures and their reduction from a control point of view. In this article, to identify the problem main parameters, a simplified interpretation of fatigue damage is given using the frequency analysis framework. Then, the active control logic is defined as an optimization problem with a quadratic functional taking into account the previously cited parameters. Finally, because of non-linearity of fatigue phenomenon, an adaptive approach is applied and a numerical/experimental validation is carried out.

  17. Deterministic controlled-NOT gate for single-photon two-qubit quantum logic.

    PubMed

    Fiorentino, Marco; Wong, Franco N C

    2004-08-13

    We demonstrate a robust implementation of a deterministic linear-optical controlled-not gate for single-photon two-qubit quantum logic. A polarization Sagnac interferometer with an embedded 45 degrees -oriented dove prism is used to enable the polarization control qubit to act on the momentum (spatial) target qubit of the same photon. The optical controlled-not gate requires no active stabilization because the two spatial modes share a common path, and it is used to entangle the polarization and momentum qubits.

  18. A cost-benefit analysis of Salmonella-control strategies in Danish pork production.

    PubMed

    Goldbach, Stine Gissel; Alban, Lis

    2006-11-17

    In Denmark, it was agreed to lower the Salmonella prevalence in pork to 1.2% before the end of 2006. The current control did not seem to be sufficient to attain this goal. Therefore, four alternatives to the existing Danish control strategy for Salmonella in pork were compared in a cost-benefit analysis: (1) hot-water decontamination of all pigs at slaughter, (2) sanitary slaughter of pigs from herds with high levels of Salmonella, (3) use of home-mixed feed in herds with slaughter pigs and (4) use of acidified feed for slaughter pigs. The data originated from official statistics, published papers as well as expert opinion. The partial cost-benefit analysis was restricted to slaughterhouses affiliated with the Danish Meat Association and Danish human cases ascribable to pork from these slaughterhouses. Only hot-water decontamination was socio-economically profitable. Hot-water decontamination had a net present value over 15 years of 3.5 million euros. For sanitary slaughter the net present value was - 43.6 million euros, for home-mixed feed it was - 262.3 million euros and for acidified feed it was - 79.9 million euros. For all alternatives the costs were born solely by the pig sector, whereas primarily the consumers and public authorities received the benefits. The conclusions were robust in sensitivity analyses.

  19. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review

    PubMed Central

    2010-01-01

    Salmonellosis is a frequent disease in poultry stocks, caused by several serotypes of the bacterial species Salmonella enterica and sometimes transmitted to humans through the consumption of contaminated meat or eggs. Symptom-free carriers of the bacteria contribute greatly to the propagation of the disease in poultry stocks. So far, several candidate genes and quantitative trait loci (QTL) for resistance to carrier state or to acute disease have been identified using artificial infection of S. enterica serovar Enteritidis or S. enterica serovar Typhimurium strains in diverse genetic backgrounds, with several different infection procedures and phenotypic assessment protocols. This diversity in experimental conditions has led to a complex sum of results, but allows a more complete description of the disease. Comparisons among studies show that genes controlling resistance to Salmonella differ according to the chicken line studied, the trait assessed and the chicken's age. The loci identified are located on 25 of the 38 chicken autosomal chromosomes. Some of these loci are clustered in several genomic regions, indicating the possibility of a common genetic control for different models. In particular, the genomic regions carrying the candidate genes TLR4 and SLC11A1, the Major Histocompatibility Complex (MHC) and the QTL SAL1 are interesting for more in-depth studies. This article reviews the main Salmonella infection models and chicken lines studied under a historical perspective and then the candidate genes and QTL identified so far. PMID:20429884

  20. Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout

    NASA Astrophysics Data System (ADS)

    Klenov, N. V.; Kuznetsov, A. V.; Soloviev, I. I.; Bakurskiy, S. V.; Denisenko, M. V.; Satanin, A. M.

    2017-07-01

    We present the results of an analytical study and numerical simulation of the dynamics of a superconducting three-Josephson-junction (3JJ) flux qubit magnetically coupled with rapid single-flux quantum (RSFQ) logic circuit, which demonstrate the fundamental possibility of implementing the simplest logic operations at picosecond times, as well as rapid non-destructive readout. It is shown that when solving optimization problems, the qubit dynamics can be conveniently interpreted as a precession of the magnetic moment vector around the direction of the magnetic field. In this case, the role of magnetic field components is played by combinations of the Hamiltonian matrix elements, and the role of the magnetic moment is played by the Bloch vector. Features of the 3JJ qubit model are discussed during the analysis of how the qubit is affected by exposure to a short control pulse, as are the similarities between the Bloch and Landau-Lifshitz-Gilbert equations. An analysis of solutions to the Bloch equations made it possible to develop recommendations for the use of readout RSFQ circuits in implementing an optimal interface between the classical and quantum parts of the computer system, as well as to justify the use of single-quantum logic in order to control superconducting quantum circuits on a chip.

  1. The Fuzzy Logic of MicroRNA Regulation: A Key to Control Cell Complexity

    PubMed Central

    Ripoli, Andrea; Rainaldi, Giuseppe; Rizzo, Milena; Mercatanti, Alberto; Pitto, Letizia

    2010-01-01

    Genomic and clinical evidence suggest a major role of microRNAs (miRNAs) in the regulatory mechanisms of gene expression, with a clear impact on development and physiology; miRNAs are a class of endogenous 22-25 nt single-stranded RNA molecules, that negatively regulate gene expression post-transcriptionally, by imperfect base pairing with the 3’ UTR of the corresponding mRNA target. Because of this imperfection, each miRNA can bind multiple targets, and multiple miRNAs can bind the same mRNA target; although digital, the miRNAs control mechanism is characterized by an imprecise action, naturally understandable in the theoretical framework of fuzzy logic. A major practical application of fuzzy logic is represented by the design and the realization of efficient and robust control systems, even when the processes to be controlled show chaotic, deterministic as well unpredictable, behaviours. The vagueness of miRNA action, when considered together with the controlled and chaotic gene expression, is a hint of a cellular fuzzy control system. As a demonstration of the possibility and the effectiveness of miRNA based fuzzy mechanism, a fuzzy cognitive map -a mathematical formalism combining neural network and fuzzy logic- has been developed to study the apoptosis/proliferation control performed by the miRNA-17-92 cluster/E2F1/cMYC circuitry. When experimentally demonstrated, the concept of fuzzy control could modify the way we analyse and model gene expression, with a possible impact on the way we imagine and design therapeutic intervention based on miRNA silencing. PMID:21286312

  2. On the stability of interval type-2 TSK fuzzy logic control systems.

    PubMed

    Biglarbegian, Mohammad; Melek, William W; Mendel, Jerry M

    2010-06-01

    Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainties. This paper proposes a novel inference mechanism for an interval type-2 Takagi-Sugeno-Kang fuzzy logic control system (IT2 TSK FLCS) when antecedents are type-2 fuzzy sets and consequents are crisp numbers (A2-C0). The proposed inference mechanism has a closed form which makes it more feasible to analyze the stability of this FLCS. This paper focuses on control applications for the following cases: 1) Both plant and controller use A2-C0 TSK models, and 2) the plant uses type-1 Takagi-Sugeno (TS) and the controller uses IT2 TS models. In both cases, sufficient stability conditions for the stability of the closed-loop system are derived. Furthermore, novel linear-matrix-inequality-based algorithms are developed for satisfying the stability conditions. Numerical analyses are included which validate the effectiveness of the new inference methods. Case studies reveal that an IT2 TS FLCS using the proposed inference engine clearly outperforms its type-1 TSK counterpart. Moreover, due to the simple nature of the proposed inference engine, it is easy to implement in real-time control systems. The methods presented in this paper lay the mathematical foundations for analyzing the stability and facilitating the design of stabilizing controllers of IT2 TSK FLCSs and IT2 TS FLCSs with significantly improved performance over type-1 approaches.

  3. Hierarchical rule-based monitoring and fuzzy logic control for neuromuscular block.

    PubMed

    Shieh, J S; Fan, S Z; Chang, L W; Liu, C C

    2000-01-01

    The important task for anaesthetists is to provide an adequate degree of neuromuscular block during surgical operations, so that it should not be difficult to antagonize at the end of surgery. Therefore, this study examined the application of a simple technique (i.e., fuzzy logic) to an almost ideal muscle relaxant (i.e., rocuronium) at general anaesthesia in order to control the system more easily, efficiently, intelligently and safely during an operation. The characteristics of neuromuscular blockade induced by rocuronium were studied in 10 ASA I or II adult patients anaesthetized with inhalational (i.e., isoflurane) anaesthesia. A Datex Relaxograph was used to monitor neuromuscular block. And, ulnar nerve was stimulated supramaximally with repeated train-of-four via surface electrodes at the wrist. Initially a notebook personal computer was linked to a Datex Relaxograph to monitor electromyogram (EMG) signals which had been pruned by a three-level hierarchical structure of filters in order to design a controller for administering muscle relaxants. Furthermore, a four-level hierarchical fuzzy logic controller using the fuzzy logic and rule of thumb concept has been incorporated into the system. The Student's test was used to compare the variance between the groups. p < 0.05 was considered significant. The system achieved stable control of muscle relaxation with a mean T1% error of -0.19 (SD 0.66) % accommodating a range in mean infusion rate (MIR) of 0.21-0.49 mg x kg(-1) x h(-1). When these results were compared with our previous ones using the same hierarchical structure applied to mivacurium, less variation in the T1% error (p < 0.05) but the same variation in infusion rate were observed. The controller activity of these two drugs showed no significant difference (p > 0.5). However, the consistent medium coefficient variance (CV) of the MIR of both rocuronium (i.e., 36.13 (SD 9.35) %) and mivacurium (i.e., 34.03 (SD 10.76) %) indicated a good controller

  4. Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)

    NASA Astrophysics Data System (ADS)

    Wade, Robert L.; Walker, Gregory W.

    1996-05-01

    The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.

  5. DNAzyme logic-controlled biofuel cells for self-powered biosensors.

    PubMed

    Zhou, Ming; Kuralay, Filiz; Windmiller, Joshua R; Wang, Joseph

    2012-04-21

    The integration of a biosensor employing a DNAzyme logic system within a biofuel cell is presented. The self-powered DNAzyme logic biosensor conforms with INH logic operation and generates power output in accordance with a truth table. The new concept of logic-activated DNAzyme by the input signals has wide-ranging implications in the self-powered diagnostics domain.

  6. A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella

    PubMed Central

    Miletic, Sean; Simpson, David J.; Szymanski, Christine M.; Deyholos, Michael K.; Menassa, Rima

    2016-01-01

    The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens. PMID:26779243

  7. Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Saini, Sanju; Saini, J. S.

    2012-11-01

    This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.

  8. Hybrid intelligent control scheme for air heating system using fuzzy logic and genetic algorithm

    SciTech Connect

    Thyagarajan, T.; Shanmugam, J.; Ponnavaikko, M.; Panda, R.C.

    2000-01-01

    Fuzzy logic provides a means for converting a linguistic control strategy, based on expert knowledge, into an automatic control strategy. Its performance depends on membership function and rule sets. In the traditional Fuzzy Logic Control (FLC) approach, the optimal membership is formed by trial-and-error method. In this paper, Genetic Algorithm (GA) is applied to generate the optimal membership function of FLC. The membership function thus obtained is utilized in the design of the Hybrid Intelligent Control (HIC) scheme. The investigation is carried out for an Air Heat System (AHS), an important component of drying process. The knowledge of the optimum PID controller designed, is used to develop the traditional FLC scheme. The computational difficulties in finding optimal membership function of traditional FLC is alleviated using GA In the design of HIC scheme. The qualitative performance indices are evaluated for the three control strategies, namely, PID, FLC and HIC. The comparison reveals that the HIC scheme designed based on the hybridization of FLC with GA performs better. Moreover, GA is found to be an effective tool for designing the FLC, eliminating the human interface required to generate the membership functions.

  9. Control of Turing patterns and their usage as sensors, memory arrays, and logic gates

    NASA Astrophysics Data System (ADS)

    Muzika, František; Schreiber, Igor

    2013-10-01

    We study a model system of three diffusively coupled reaction cells arranged in a linear array that display Turing patterns with special focus on the case of equal coupling strength for all components. As a suitable model reaction we consider a two-variable core model of glycolysis. Using numerical continuation and bifurcation techniques we analyze the dependence of the system's steady states on varying rate coefficient of the recycling step while the coupling coefficients of the inhibitor and activator are fixed and set at the ratios 100:1, 1:1, and 4:5. We show that stable Turing patterns occur at all three ratios but, as expected, spontaneous transition from the spatially uniform steady state to the spatially nonuniform Turing patterns occurs only in the first case. The other two cases possess multiple Turing patterns, which are stabilized by secondary bifurcations and coexist with stable uniform periodic oscillations. For the 1:1 ratio we examine modular spatiotemporal perturbations, which allow for controllable switching between the uniform oscillations and various Turing patterns. Such modular perturbations are then used to construct chemical computing devices utilizing the multiple Turing patterns. By classifying various responses we propose: (a) a single-input resettable sensor capable of reading certain value of concentration, (b) two-input and three-input memory arrays capable of storing logic information, (c) three-input, three-output logic gates performing combinations of logical functions OR, XOR, AND, and NAND.

  10. Application of fuzzy logic to the control of wind tunnel settling chamber temperature

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Humphreys, Gregory L.

    1994-01-01

    The application of Fuzzy Logic Controllers (FLC's) to the control of nonlinear processes, typically controlled by a human operator, is a topic of much study. Recent application of a microprocessor-based FLC to the control of temperature processes in several wind tunnels has proven to be very successful. The control of temperature processes in the wind tunnels requires the ability to monitor temperature feedback from several points and to accommodate varying operating conditions in the wind tunnels. The FLC has an intuitive and easily configurable structure which incorporates the flexibility required to have such an ability. The design and implementation of the FLC is presented along with process data from the wind tunnels under automatic control.

  11. Fuzzy logic control of steam generator water level in pressurized water reactors

    SciTech Connect

    Kuan, C.C.; Lin, C.; Hsu, C.C. . Dept. of Nuclear Engineering)

    1992-10-01

    In this paper a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical mode of the object to be controlled. The design is based on a set of linguistic rules that were adopted from the human operator's experience. After off-line fuzzy computation, the controller is a lookup table, and thus, real-time control is achieved. Shrink-and-swell phenomena are considered in the linguistic rules, and the simulation results show that their effect is dramatically reduced. The performance of the control system can also be improved by changing the input and output scaling factors, which is convenient for on-line tuning.

  12. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    PubMed

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  13. Culling decisions of dairy farmers during a 3-year Salmonella control study.

    PubMed

    Nielsen, L R; Dohoo, I

    2011-06-01

    Salmonella enterica subsp. enterica-serotypes lead to periodically increased morbidity and mortality in cattle herds. The bacteria can also lead to serious infections in humans. Consequently, Denmark has started a surveillance and control programme in 2002. The programme focuses on Salmonella Dublin which is the most prevalent and most persistent serotype in the Danish cattle population. A field study in 10 dairy herds with persistent Salmonella infections was carried out over three years to gain experience with control procedures including risk assessment, targeted control actions and test-and-cull procedures. From autumn 2003 until end of 2006 quarterly milk quality control samples from all lactating cows and biannual blood samples from all young stock above the age of three months were tested using an indirect antibody ELISA. The most recent and previous test results were used to categorise all animals into risk groups. These risk groups and all individual ELISA-results were communicated to the farmers as colour-coded lists four to six times per year. Farmers were advised to manage the risk of Salmonella transmission from cattle with repeatedly high ELISA results (flagged as "red") or cows with at least one recent moderately high ELISA result (flagged as "yellow") on the lists. Risk management included, e.g. culling or separation of the cows at calving. We analysed culling decisions using two models. For heifers a hierarchical multivariable logistic model with herd as random effect evaluated if animals with red and yellow flags had higher probability of being slaughtered or sold before first calving than animals without any risk flags. For adult cows a semi-parametric proportional hazard survival model was used to test the effect of number of red and yellow flags on hazards of culling at different time points and interactions with prevalence in the herd while accounting for parity, stage of lactation, milk yield, somatic cell count and the hierarchical structure

  14. Design of stability-guaranteed fuzzy logic controller for nuclear steam generators

    SciTech Connect

    Cho, B.H.; No, H.C.

    1996-04-01

    A fuzzy logic controller (FLC) and a fuzzy logic filter (FLF), which have a special type of fuzzifier, inference engine, and defuzzifier, are applied to the water level control of a nuclear steam generator (S/G). It is shown that arbitrary two-input, single-output linear controllers can be adequately expressed by this FLC. A procedure to construct stability-guaranteed FLC rules is proposed. It contains the following steps: (1) the stable sector of linear feedback gains is obtained from the suboptimal concept based on LQR theory and the Lyapunov`s stability criteria; (2) the stable sector of linear gains is mapped into two linear rule tables that are used as limits for the FLC rules; and (3) the construction of an FLC rule table is done by choosing certain rules that lie between these limits. This type of FLC guarantees asymptotic stability of the control system. The FLF generates a feedforward signal of S/G feedwater from the steam flow measurement using a fuzzy concept. Through computer simulation, it is found that the FLC with the FLF works better than a well-tuned PID controller with variable gains to reduce swell/shrink phenomena, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plants.

  15. Fuzzy Logic Controller Stability Analysis Using a Satisfiability Modulo Theories Approach

    NASA Technical Reports Server (NTRS)

    Arnett, Timothy; Cook, Brandon; Clark, Matthew A.; Rattan, Kuldip

    2017-01-01

    While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability.

  16. Design and implementation of the tree-based fuzzy logic controller.

    PubMed

    Liu, B D; Huang, C Y

    1997-01-01

    In this paper, a tree-based approach is proposed to design the fuzzy logic controller. Based on the proposed methodology, the fuzzy logic controller has the following merits: the fuzzy control rule can be extracted automatically from the input-output data of the system and the extraction process can be done in one-pass; owing to the fuzzy tree inference structure, the search spaces of the fuzzy inference process are largely reduced; the operation of the inference process can be simplified as a one-dimensional matrix operation because of the fuzzy tree approach; and the controller has regular and modular properties, so it is easy to be implemented by hardware. Furthermore, the proposed fuzzy tree approach has been applied to design the color reproduction system for verifying the proposed methodology. The color reproduction system is mainly used to obtain a color image through the printer that is identical to the original one. In addition to the software simulation, an FPGA is used to implement the prototype hardware system for real-time application. Experimental results show that the effect of color correction is quite good and that the prototype hardware system can operate correctly under the condition of 30 MHz clock rate.

  17. Persistent Salmonella Enteritidis environmental contamination on layer farms in the context of an implemented national control program with obligatory vaccination.

    PubMed

    Dewaele, I; Van Meirhaeghe, H; Rasschaert, G; Vanrobaeys, M; De Graef, E; Herman, L; Ducatelle, R; Heyndrickx, M; De Reu, K

    2012-02-01

    The aim of this study was to closely examine the Salmonella enterica serovar Enteritidis environmental contamination on persistently positive layer farms in Belgium during successive laying cycles. All of the farms were required to vaccinate their layers under the national control program for Salmonella. Seven farms with previous or current Salmonella Enteritidis contamination were monitored during different stages of the laying period and after cleaning and disinfection (CD). Environmental samples, including from the equipment and vermin, were taken in the henhouse and egg-collecting area. Dilutions were performed to define the degree of Salmonella Enteritidis contamination. Eggshells, egg contents, and ceca were also tested for Salmonella. At the end of the first sampled laying period, 41.6% of the environmental samples were contaminated with Salmonella Enteritidis. After CD, the prevalence dropped to 11.4%. On average, the prevalence in the second laying period increased again: 17.8, 18.4, and 22.3% at the onset, middle, and end of the lay period, respectively. After CD before the third laying period, the prevalence decreased to 6.6% and stabilized at the onset of lay (6.3%). During lay, as well as after CD, a wide variety of contaminated environmental samples were found; for example, in the henhouse, in the egg-collecting area, on mobile equipment and in or on vermin. In the henhouse during laying, the most recurrent and highly contaminated sites were the overshoes, floor, manure belt, and hen feces. The egg-collecting area had a significantly higher number of contaminated samples compared with that of the henhouse. For both sites, the floor appeared to be the most suitable sampling site to estimate the Salmonella Enteritidis status of the farms. Eggshell and egg content contamination varied between 0.18 and 1.8% and between 0.04 and 0.4%, respectively. In total, 2.2% of the analyzed ceca contained Salmonella Enteritidis. This study revealed that Salmonella

  18. Salmonella Infections

    USDA-ARS?s Scientific Manuscript database

    Infections with bacteria of the genus Salmonella are responsible for both acute and chronic poultry diseases. These diseases cause economically significant losses for poultry producers in many nations and absorb large investments of public and private resources in testing and control efforts. Infect...

  19. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  20. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  1. Live attenuated vaccines for invasive Salmonella infections.

    PubMed

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  2. Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output.

    PubMed

    Privman, Vladimir; Fratto, Brian E; Zavalov, Oleksandr; Halámek, Jan; Katz, Evgeny

    2013-06-27

    We report a study of a system which involves an enzymatic cascade realizing an AND logic gate, with an added photochemical processing of the output, allowing the gate's response to be made sigmoid in both inputs. New functional forms are developed for quantifying the kinetics of such systems, specifically designed to model their response in terms of signal and information processing. These theoretical expressions are tested for the studied system, which also allows us to consider aspects of biochemical information processing such as noise transmission properties and control of timing of the chemical and physical steps.

  3. Beam scanning binary logic

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Mukai, Seiji; Watanabe, Masanobu; Mori, Masahiko; Yajima, Hiroyoshi

    1990-07-01

    A beam-scanning laser diode (BSLD) is presently applied to a novel optoelectronic logic operation, designated 'beam-scanning binary logic' (BSBL), that covers the implementation of both the basic logic gates and a spatial code encoder for photodetection, while allowing a greater reduction of the number of active devices than ordinary binary logic operations. BSBL executes multifunctional logic operations simultaneously. The data connections between logic gates in BSLD are flexible, due to the ability to electrically control both output power and laser-beam direction.

  4. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    P, Karuppanan; Mahapatra, Kamala Kanta

    2012-01-01

    This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads.

  5. Design and Construction of Intelligent Traffic Light Control System Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Lin, Htin; Aye, Khin Muyar; Tun, Hla Myo; Theingi, Naing, Zaw Min

    2008-10-01

    Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulation and optimizing traffic control algorithms to better accommodate this increasing demand. This paper presents a microcontroller simulation of intelligent traffic light controller using fuzzy logic that is used to change the traffic signal cycles adaptively at a two-way intersection. This paper is an attempt to design an intelligent traffic light control systems using microcontrollers such as PIC 16F84A and PIC 16F877A. And then traffic signal can be controlled depending upon the densities of cars behind green and red lights of the two-way intersection by using sensors and detectors circuits.

  6. Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Cheatham, John B., Jr.; Magee, Kevin N.

    1991-01-01

    The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.

  7. The Programmable Logic Controller and its application in nuclear reactor systems

    SciTech Connect

    Palomar, J.; Wyman, R.

    1993-09-01

    This document provides recommendations to guide reviewers in the application of Programmable Logic Controllers (PLCS) to the control, monitoring and protection of nuclear reactors. The first topics addressed are system-level design issues, specifically including safety. The document then discusses concerns about the PLC manufacturing organization and the protection system engineering organization. Supplementing this document are two appendices. Appendix A summarizes PLC characteristics. Specifically addressed are those characteristics that make the PLC more suitable for emergency shutdown systems than other electrical/electronic-based systems, as well as characteristics that improve reliability of a system. Also covered are PLC characteristics that may create an unsafe operating environment. Appendix B provides an overview of the use of programmable logic controllers in emergency shutdown systems. The intent is to familiarize the reader with the design, development, test, and maintenance phases of applying a PLC to an ESD system. Each phase is described in detail and information pertinent to the application of a PLC is pointed out.

  8. Parameter Design of Logic-Based Controller for Two-Wheeled Vehicle

    NASA Astrophysics Data System (ADS)

    Konaka, Eiji; Mutou, Takashi; Suzuki, Tatsuya

    Programmable Logic Controllers (PLCs) are widely used in industrial world. In PLC-based control systems, low-resolution (especially ON/OFF) sensors are low-cost, and actuators are commonly used since they are compatible with programming languages used in PLCs. PLC switches ON/OFF of the actuators as ON/OFF of the sensors changes. In designing PLC-based systems, the design of parameters of these sensors and actuators (e.g., position of limit switches, torque of motors, and so on.) is important problem since they affect on overall performance of the system. This problem, however, has not been fully discussed yet. In this paper, the systematic design method for this problem is developed. The main idea is to express the model of the system as Mixed Logical Dynamical System (MLDS), and to formulate the problem as mathematical programming problem. The developed idea is applied to line following control of two-wheeled vehicle. The usefulness of the proposed method is demonstrated through simulation and experiment.

  9. Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks

    PubMed Central

    Xia, Feng; Zhao, Wenhong; Sun, Youxian; Tian, Yu-Chu

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support. PMID:28903288

  10. Controlled reversal of Co/Pt Dots for nanomagnetic logic applications

    SciTech Connect

    Breitkreutz, Stephan; Kiermaier, Josef; Schmitt-Landsiedel, Doris; Becherer, Markus; Vijay Karthik, Sankar; Csaba, Gyorgy

    2012-04-01

    Domain reversal in perpendicular multilayer films is governed by an intrinsic distribution of anisotropy. However, control of the switching field distribution (SFD) of field-coupled, single domain Co/Pt dots is the key to building large integrated systems for nanomagnetic logic applications. In this work, partial Ga{sup +} focused ion beam (FIB) irradiation of single-domain Co/Pt dots is employed which locally reduces the anisotropy and renders the film-inherent SFD ineffective. Controlled reduction in the switching field compared to non-irradiated dots is achieved, depending on size and dose of irradiation. TEM images of an as-grown and irradiated Co/Pt stack show a change in morphology from distinct Co/Pt interfaces to intermixed and randomly oriented grains due to the Ga{sup +} ion impact. The presented method is highly suitable to control the switching behavior in field-coupled logic devices. Experimental results are used to demonstrate a nanomagnetic fanout operation.

  11. Fuzzy Logic Controller Based on Observed Signals and a Genetic Algorithm Application with STATCOM for Power System Stabilization

    NASA Astrophysics Data System (ADS)

    Hongesombut, Komsan; Mitani, Yasunori; Tsuji, Kiichiro

    Fuzzy logic control has been applied to various applications in power systems. Its control rules and membership functions are typically obtained by trial and error methods or experience knowledge. Proposed here is the application of a micro-genetic algorithm (micro-GA) to simultaneously design optimal membership functions and control rules for STATCOM. First, we propose a simple approach to extract membership functions and fuzzy logic control rules based on observed signals. Then a proposed GA will be applied to optimize membership functions and its control rules. To validate the effectiveness of the proposed approach, several simulation studies have been performed on a multimachine power system. Simulation results show that the proposed fuzzy logic controller with STATCOM can effectively and robustly enhance the damping of oscillations.

  12. Consumption of groundwater as an independent risk factor of Salmonella choleraesuis infection: a case-control study in Taiwan.

    PubMed

    Li, Tsung-Hsien; Chiu, Cheng-Hsun; Chen, Wan-Ching; Chen, Chih-Ming; Hsu, Yuan-Man; Chiou, Shyan-Song; Chiou, Chien-Shun; Chang, Chao-Chin

    2009-12-01

    Infection with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) in humans can be considered as an endemic disease in certain regions of Taiwan, and the number of cases has increased in recent years. The goal of the case-control study discussed in this article was to identify the possible demographic and environmental risk factors associated with S. Choleraesuis infection in Taiwan. During the period of December 2005 to March 2007, the case-control study was conducted in human patients with Salmonella infection from two medical centers. Structured questionnaires were applied to collect information of relevant risk factors after interviewing 13 culture-confirmed S. Choleraesuis cases and 84 controls with other Salmonella serotype infection. After evaluation by univariate and multivariate statistical models, the results suggested that consumption of groundwater could be an independent risk factor associated with S. Choleraesuis in Taiwan. Therefore, appropriate health education needs to be conducted especially in areas where groundwater is used.

  13. Weaning infants with respiratory syncytial virus from mechanical ventilation through a fuzzy-logic controller.

    PubMed

    Olliver, S; Davis, G M; Hatzakis, G E

    2003-01-01

    We have previously developed a fuzzy logic controller for weaning adults with chronic obstructive pulmonary disease using pressure support ventilation (PSV). We used the core of our fuzzy logic-based weaning platform and further developed parametrizable components for weaning newborns of differing body size and disease-state. The controller was validated on neonates recovering from congenital heart disease (CHD) while receiving synchronous intermittent mandatory ventilation (SIMV). We wished to compare the efficacy of this controller versus the bedside weaning protocol in children with respiratory syncytial virus pneumonitis/bronchiolitis (RSV) in the pediatric intensive care unit (PICU). The fuzzy controller evaluated the "current" and "trend" weaning status of the newborn to quantitatively determine the change in the SIMV integrated ventilatory setting. For the "current" status it used heart rate (HR), respiratory rate (RR), tidal volume (VT) and oxygen saturation (SaO2), while for the "trend" status the differences of deltaRR/ deltat, deltaHR/ deltat, and deltaSaO2/ deltat recorded between two subsequent time points were utilized. The enumerated vital signs were fuzzified and then probability levels of occurrence were assigned. Individualized "golden" goals for SaO2 were set for each newborn. We retrospectively assessed the charts of 19 newborns, 113+/-128 days old, 5,546+/-2,321 gr body weight, weaning for 99+/-46 days, at 2-hour intervals. The SIMV levels proposed by the fuzzy controller were matched to those levels actually applied. In 60% of the time both values coincided. For the remaining 40%, the controller was more aggressive suggesting lower values of SIMV than the applied ones. The Area under the SIMV curves over time was 1,969+/-1,044 for the applied vs 1,886+/-978 for the suggested levels, respectively. The fuzzy controller adjusted for body size and disease-pattern can approximate the actual weaning course of newborns with RSV.

  14. Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic

    PubMed Central

    Merouani, Mehdi; Guignard, Bruno; Vincent, François; Borron, Stephen W; Karoubi, Philippe; Fosse, Jean-Philippe; Cohen, Yves; Clec'h, Christophe; Vicaut, Eric; Marbeuf-Gueye, Carole; Lapostolle, Frederic; Adnet, Frederic

    2008-01-01

    Introduction The rate of weaning of vasopressors drugs is usually an empirical choice made by the treating in critically ill patients. We applied fuzzy logic principles to modify intravenous norepinephrine (noradrenaline) infusion rates during norepinephrine infusion in septic patients in order to reduce the duration of shock. Methods Septic patients were randomly assigned to norepinephrine infused either at the clinician's discretion (control group) or under closed-loop control based on fuzzy logic (fuzzy group). The infusion rate changed automatically after analysis of mean arterial pressure in the fuzzy group. The primary end-point was time to cessation of norepinephrine. The secondary end-points were 28-day survival, total amount of norepinephine infused and duration of mechanical ventilation. Results Nineteen patients were randomly assigned to fuzzy group and 20 to control group. Weaning of norepinephrine was achieved in 18 of the 20 control patients and in all 19 fuzzy group patients. Median (interquartile range) duration of shock was significantly shorter in the fuzzy group than in the control group (28.5 [20.5 to 42] hours versus 57.5 [43.7 to 117.5] hours; P < 0.0001). There was no significant difference in duration of mechanical ventilation or survival at 28 days between the two groups. The median (interquartile range) total amount of norepinephrine infused during shock was significantly lower in the fuzzy group than in the control group (0.6 [0.2 to 1.0] μg/kg versus 1.4 [0.6 to 2.7] μg/kg; P < 0.01). Conclusions Our study has shown a reduction in norepinephrine weaning duration in septic patients enrolled in the fuzzy group. We attribute this reduction to fuzzy control of norepinephrine infusion. Trial registration Trial registration: Clinicaltrials.gov NCT00763906. PMID:19068113

  15. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection.

    PubMed

    Man, Si Ming; Ekpenyong, Andrew; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Wright, John A; Cicuta, Pietro; Guck, Jochen R; Bryant, Clare E

    2014-12-09

    Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.

  16. Logic-controlled solid-state switchgear for 270 volt dc.

    NASA Technical Reports Server (NTRS)

    Waddington, D.; Buchanan, E., Jr.; Sundberg, G.

    1973-01-01

    A feasibility study to design and demonstrate solid-state switchgear composed of circuit breakers and a power transfer switch is described. The switchgear operates on a nominal 270 Vdc circuit and controls power to a load up to 15 A. One circuit breaker may be interconnected to a second to form a power transfer switch. Breaker or switch on-off and transfer functions can be remotely controlled. Automatic overload trip-out is provided through an ultimate current trip and an I squared t trip for transient overcurrents lower than the ultimate current trip level. A number of reclosures with variable time delay between trip-out and reclosure are programmed and controlled by integrated analog and COSMOS logic circuits. A commutation circuit that creates minimal transient disturbances to either source or load was developed to interrupt current flow through the main SCR switching element.-

  17. Shunt hybrid active power filter under nonideal voltage based on fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Dey, Papan; Mekhilef, Saad

    2016-09-01

    In this paper, a synchronous reference frame (SRF) method based on a modified phase lock loop (PLL) circuit is developed for a three-phase four-wire shunt hybrid active power filter (APF). Its performance is analysed under unbalanced grid conditions. The dominant lower order harmonics as well as reactive power can be compensated by the passive elements, whereas the active part mitigates the remaining distortions and improves the power quality. As different control methods show contradictory performance, fuzzy logic controller is considered here for DC-link voltage regulation of the inverter. Extensive simulations of the proposed technique are carried out in a MATLAB-SIMULINK environment. A laboratory prototype has been built on dSPACE1104 platform to verify the feasibility of the suggested SHAPF controller. The simulation and experimental results validate the effectiveness of the proposed technique.

  18. Electrochemically controlled assembly and logic gates operations of gold nanoparticle arrays.

    PubMed

    Frasconi, Marco; Mazzei, Franco

    2012-02-14

    The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.

  19. Distributed Logics

    DTIC Science & Technology

    2014-10-03

    introduce distributed logics. Distributed logics lift the distribution structure of a distributed system directly into the logic, thereby parameterizing...the logic by the distribution structure itself. Each domain supports a “local modal logic.” The connections between domains are realized as...There are also multi- agent logic systems [12]. What distinguishes distributed logics from these are that the morphisms, i.e., the nbd maps, have

  20. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages.

    PubMed

    Ye, Jianxiong; Kostrzynska, Magdalaena; Dunfield, Kari; Warriner, Keith

    2010-01-01

    The following reports on the application of a combination of antagonistic bacteria and lytic bacteriophages to control the growth of Salmonella on sprouting mung beans and alfalfa seeds. Antagonistic bacteria were isolated from mung bean sprouts and tomatoes by using the deferred plate assay to assess anti-Salmonella activity. From the isolates screened, an Enterobacter asburiae strain (labeled "JX1") exhibited stable antagonistic activity against a broad range of Salmonella serovars (Agona, Berta, Enteritidis, Hadar, Heidelberg, Javiana, Montevideo, Muenchen, Newport, Saint Paul, and Typhimurium). Lytic bacteriophages against Salmonella were isolated from pig or cattle manure effluent. A bacteriophage cocktail prepared from six isolates was coinoculated with E. asburiae JX1 along with Salmonella in broth culture. The combination of E. asburiae JX1 and bacteriophage cocktail reduced the levels of Salmonella by 5.7 to 6.4 log CFU/ml. Mung beans inoculated with Salmonella and sprouted over a 4-day period attained levels of 6.72 + or - 0.78 log CFU/g. In contrast, levels of Salmonella were reduced to 3.31 + or - 2.48 or 1.16 + or - 2.14 log CFU/g when the pathogen was coinoculated with bacteriophages or E. asburiae JX1, respectively. However, by using a combination of E. asburiae JX1 and bacteriophages, the levels of Salmonella associated with mung bean sprouts were only detected by enrichment. The biocontrol preparation was effective at controlling the growth of Salmonella under a range of sprouting temperatures (20 to 30 degrees Celsius) and was equally effective at suppressing the growth of Salmonella on sprouting alfalfa seeds. The combination of E. asburiae JX1 and bacteriophages represents a promising, chemical-free approach for controlling the growth of Salmonella on sprouting seeds.

  1. Regulated expression of virulence gene mviN provides protective immunity and colonization control of Salmonella in poultry.

    PubMed

    Rubinelli, Peter M; Lee, Sang In; Roto, Stephanie M; Park, Si Hong; Ricke, Steven C

    2015-10-05

    Current live attenuated vaccines for control of Salmonella in poultry persist in the ceca and may persist in the environment. In this paper we report the construction and characterization of the vaccine efficacy of a Salmonella mutant strain with inducible mviN expression and rapid clearance from the host. The mutant was effective in oral immunization of the broiler chicken host against a virulent Salmonella oral challenge strain, having a mean 7×10(6)CFU/g in the ceca of unvaccinated controls compared to a mean 2×10(3)CFU/g in the ceca of vaccinated chickens at 4 weeks post-challenge (6 weeks of age). The mutant strain also demonstrated immunogenicity, reduced organ colonization, and rapid clearance in broiler chickens within 3 weeks of inoculation.

  2. Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis

    PubMed Central

    Pezza, Alejandro; Pontel, Lucas B.; López, Carolina; Soncini, Fernando C.

    2016-01-01

    Copper homeostasis is essential for bacterial pathogen fitness and infection, and has been the focus of a number of recent studies. In Salmonella, envelope protection against copper overload and macrophage survival depends on CueP, a major copper-binding protein in the periplasm. This protein is also required to deliver the metal ion to the Cu/Zn superoxide dismutase SodCII. The Salmonella-specific CueP-coding gene was originally identified as part of the Cue regulon under the transcriptional control of the cytoplasmic copper sensor CueR, but its expression differs from the rest of CueR-regulated genes. Here we show that cueP expression is controlled by the concerted action of CueR, which detects the presence of copper in the cytoplasm, and by CpxR/CpxA, which monitors envelope stress. Copper-activated CueR is necessary for the appropriate spatial arrangement of the −10 and −35 elements of the cueP promoter, and CpxR is essential to recruit the RNA polymerase. The integration of two ancestral sensory systems—CueR, which provides signal specificity, and CpxR/CpxA, which detects stress in the bacterial envelope—restricts the expression of this periplasmic copper resistance protein solely to cells encountering surplus copper that disturbs envelope homeostasis, emulating the role of the CusR/CusS regulatory system present in other enteric bacteria. PMID:27679850

  3. Controlling chaos in a defined trajectory using adaptive fuzzy logic algorithm

    NASA Astrophysics Data System (ADS)

    Sadeghi, Maryam; Menhaj, Bagher

    2012-09-01

    Chaos is a nonlinear behavior of chaotic system with the extreme sensitivity to the initial conditions. Chaos control is so complicated that solutions never converge to a specific numbers and vary chaotically from one amount to the other next. A tiny perturbation in a chaotic system may result in chaotic, periodic, or stationary behavior. Modern controllers are introduced for controlling the chaotic behavior. In this research an adaptive Fuzzy Logic Controller (AFLC) is proposed to control the chaotic system with two equilibrium points. This method is introduced as an adaptive progressed fashion with the full ability to control the nonlinear systems even in the undertrained conditions. Using AFLC designers are released to determine the precise mathematical model of system and satisfy the vast adaption that is needed for a rapid variation which may be caused in the dynamic of nonlinear system. Rules and system parameters are generated through the AFLC and expert knowledge is downright only in the initialization stage. So if the knowledge was not assuring the dynamic of system it could be changed through the adaption procedure of parameters values. AFLC methodology is an advanced control fashion in control yielding to both robustness and smooth motion in nonlinear system control.

  4. Nontyphoidal Salmonella Gastroenteritis in Baoshan, Shanghai, China, 2010 to 2014: An Etiological Surveillance and Case-Control Study.

    PubMed

    Yang, Xingtang; Jin, Kai; Yang, Fan; Yuan, Guoping; Liu, Wenbin; Xiang, Lunhui; Wu, Zhenqiang; Li, Zixiong; Mao, Jianying; Shen, Junqing; Lombe, Nelson; Zandamela, Hemitério; Hazoume, Lucrece; Hou, Xiaomei; Ding, Yibo; Cao, Guangwen

    2017-03-01

    Nontyphoidal Salmonella (NTS) gastroenteritis is a widespread global foodborne disease. To identify the epidemiologic characteristics, sources of food contamination, and risk factors of NTS gastroenteritis, epidemiologic data and stool specimens of diarrheal patients were collected from sentinel hospitals in Baoshan, Shanghai, People's Republic of China, between 2010 and 2014. Food products from nearby farmers' markets and animal feces from live poultry markets and livestock farms were sampled to identify the pathogen; a case-control study was conducted to characterize risk factors of NTS gastroenteritis. Of 3,906 diarrheal patients examined, 266 (6.8%) were positive for Salmonella. The positive rates were higher in summer than in the other seasons. Salmonella Typhimurium (36.1%) and Salmonella Enteritidis (30.8%) were the dominant serovars in the patients. Salmonella was detected in 26.2% pork samples, 7.1 to 7.8% poultry meats, and 3.3 to 8.9% poultry feces. Salmonella Typhimurium was the major serovar in contaminated food and animal feces. Multivariate conditional logistic regression analysis indicated that consumption of pork and quickly cooked eggs increased, whereas separating kitchen knives for cooked and raw food decreased the risk of NTS gastroenteritis, independently. We believe that NTS in poultry feces contaminated the meat products in the same markets and then infected humans if these foods were not sufficiently cooked. To prevent NTS gastroenteritis, it is necessary to survey Salmonella in meats and poultry feces, to cook eggs and pork sufficiently, to separate kitchen knives for cooked and raw food, and to prohibit live poultry trade in fresh meat markets.

  5. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  6. Saltwell Leak Detector Station Programmable Logic Controller (PLC) Software Configuration Management Plan (SCMP)

    SciTech Connect

    WHITE, K.A.

    2000-11-28

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell Leak Detector Stations as required by HNF-PRO-309, Rev. 1, Computer Software Quality Assurance, Section 2.4, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell Leak Detector Station Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell Leak Detector Station PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

  7. Saltwell PIC Skid Programmable Logic Controller (PLC) Software Configuration Management Plan

    SciTech Connect

    KOCH, M.R.

    1999-11-16

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell PIC Skids as required by LMH-PRO-309, Rev. 0, Computer Software Quality Assurance, Section 2.6, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell PIC Skid Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell PIC Skid PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

  8. Causal diagrams and the logic of matched case-control studies

    PubMed Central

    Shahar, Eyal; Shahar, Doron J

    2012-01-01

    It is tempting to assume that confounding bias is eliminated by choosing controls that are identical to the cases on the matched confounder(s). We used causal diagrams to explain why such matching not only fails to remove confounding bias, but also adds colliding bias, and why both types of bias are removed by conditioning on the matched confounder(s). As in some publications, we trace the logic of matching to a possible tradeoff between effort and variance, not between effort and bias. Lastly, we explain why the analysis of a matched case-control study – regardless of the method of matching – is not conceptually different from that of an unmatched study. PMID:22701093

  9. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

    PubMed

    Farhoud, Aidin; Erfanian, Abbas

    2014-05-01

    In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.

  10. Energy consumption analysis of graphene based all spin logic device with voltage controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhizhong; Zhang, Yue; Zheng, Zhenyi; Wang, Guanda; Su, Li; Zhang, Youguang; Zhao, Weisheng

    2017-05-01

    All spin logic device (ASLD) is a promising option to realize the ultra-low power computing systems. However, the low spin transport efficiency and the non-local switching of the detector have become two key challenges of the ASLD. In this paper, we analyze the energy consumption of a graphene based ASLD with the ferromagnetic layer switching assistance by voltage control magnetic anisotropy (VCMA) effect. This structure has significant potential towards ultra-low power consumption: the applied voltage can not only shorten switching time of the ferromagnetic layer, but also decreases the critical injection current; the graphene channel enhances greatly the spin transport efficiency. By applying the approximate circuit model, the impact of material configurations, interfaces and geometry can be synthetically studied. An accurate physic model was also developed, based on which, we carry out the micro-magnetic simulations to analyze the magnetization dynamics. Combining these electrical and magnetic investigations, the energy consumption of the proposed ASLD can be estimated. With the optimizing parameters, the energy consumption can be reduced to 2.5 pJ for a logic operation.

  11. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  12. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    NASA Astrophysics Data System (ADS)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  13. Salmonella Infection

    MedlinePlus

    Salmonella infection Overview By Mayo Clinic Staff Salmonella infection (salmonellosis) is a common bacterial disease that affects the intestinal tract. Salmonella bacteria typically live in animal and human intestines and are ...

  14. Logic gate scanner focus control in high-volume manufacturing using scatterometry

    NASA Astrophysics Data System (ADS)

    Dare, Richard J.; Swain, Bryan; Laughery, Michael

    2004-05-01

    Tool matching and optimal process control are critical requirements for success in semiconductor manufacturing. It is imperative that a tool"s operating conditions are understood and controlled in order to create a process that is repeatable and produces devices within specifications. Likewise, it is important where possible to match multiple systems using some methodology, so that regardless of which tool is used the process remains in control. Agere Systems is currently using Timbre Technologies" Optical Digital Profilometry (ODP) scatterometry for controlling Nikon scanner focus at the most critical lithography layer; logic gate. By adjusting focus settings and verifying the resultant changes in resist profile shape using ODP, it becomes possible to actively control scanner focus to achieve a desired resist profile. Since many critical lithography processes are designed to produce slightly re-entrant resist profiles, this type of focus control is not possible via Critical Dimension Scanning Electron Microscopy (CDSEM) where reentrant profiles cannot be accurately determined. Additionally, the high throughput and non-destructive nature of this measurement technique saves both cycle time and wafer costs compared to cross-section SEM. By implementing an ODP daily process check and after any maintenance on a scanner, Agere successfully enabled focus drift control, i.e. making necessary focus or equipment changes in order to maintain a desired resist profile.

  15. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  16. Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection.

    PubMed

    Hoang, Ky V; Borteh, Hassan M; Rajaram, Murugesan V S; Peine, Kevin J; Curry, Heather; Collier, Michael A; Homsy, Michael L; Bachelder, Eric M; Gunn, John S; Schlesinger, Larry S; Ainslie, Kristy M

    2014-12-30

    AR-12 has been evaluated in clinical trials as an anti-cancer agent but also has demonstrated host-directed, broad-spectrum clearance of bacteria. We have previously shown that AR-12 has activity in vitro against Salmonella enterica serovar Typhimurium and Francisella species by inducing autophagy and other host immune pathways. AR-12 treatment of S. Typhimurium-infected mice resulted in a 10-fold reduction in bacterial load in the liver and spleen and an increased survival time. However, AR-12 treatment did not protect mice from death, likely due poor formulation. In the current study, AR-12 was encapsulated in a microparticulate carrier formulated from the novel degradable biopolymer acetalated dextran (Ace-DEX) and subsequently evaluated for its activity in human monocyte-derived macrophages (hMDMs). Our results show that hMDMs efficiently internalized Ace-DEX microparticles (MPs), and that encapsulation significantly reduced host cell cytotoxicity compared to unencapsulated AR-12. Efficient macrophage internalization of AR-12 loaded MPs (AR-12/MPs) was further demonstrated by autophagosome formation that was comparable to free AR-12 and resulted in enhanced clearance of intracellular Salmonella. Taken together, these studies provide support that Ace-DEX encapsulated AR-12 may be a promising new therapeutic agent to control intracellular bacterial pathogens of macrophages by targeting delivery and reducing drug toxicity.

  17. The inositol phosphatase SHIP controls Salmonella enterica serovar Typhimurium infection in vivo.

    PubMed

    Bishop, Jennifer L; Sly, Laura M; Krystal, Gerald; Finlay, B Brett

    2008-07-01

    The SH2 domain-containing inositol 5'-phosphatase, SHIP, negatively regulates various hematopoietic cell functions and is critical for maintaining immune homeostasis. However, whether SHIP plays a role in controlling bacterial infections in vivo remains unknown. Salmonella enterica causes human salmonellosis, a disease that ranges in severity from mild gastroenteritis to severe systemic illness, resulting in significant morbidity and mortality worldwide. The susceptibility of ship(+/+) and ship(-/-) mice and bone marrow-derived macrophages to S. enterica serovar Typhimurium infection was compared. ship(-/-) mice displayed an increased susceptibility to both oral and intraperitoneal serovar Typhimurium infection and had significantly higher bacterial loads in intestinal and systemic sites than ship(+/+) mice, indicating a role for SHIP in the gut-associated and systemic pathogenesis of serovar Typhimurium in vivo. Cytokine analysis of serum from orally infected mice showed that ship(-/-) mice produce lower levels of Th1 cytokines than do ship(+/+) animals at 2 days postinfection, and in vitro analysis of supernatants taken from infected bone marrow-derived macrophages derived to mimic the in vivo ship(-/-) alternatively activated (M2) macrophage phenotype correlated with these data. M2 macrophages were the predominant population in vivo in both oral and intraperitoneal infections, since tissue macrophages within the small intestine and peritoneal macrophages from ship(-/-) mice showed elevated levels of the M2 macrophage markers Ym1 and Arginase 1 compared to ship(+/+) cells. Based on these data, we propose that M2 macrophage skewing in ship(-/-) mice contributes to ineffective clearance of Salmonella in vivo.

  18. Acetalated Dextran Encapsulated AR-12 as a Host-directed Therapy to Control Salmonella Infection

    PubMed Central

    Hoang, Ky V.; Borteh, Hassan M.; Rajaram, Murugesan V. S.; Peine, Kevin J.; Curry, Heather; Collier, Michael A.; Homsy, Michael L.; Bachelder, Eric M.; Gunn, John S.; Schlesinger, Larry S.; Ainslie, Kristy M.

    2014-01-01

    AR-12 has been evaluated in clinical trials as an anti-cancer agent but also has demonstrated host-directed, broad-spectrum clearance of bacteria. We have previously shown that AR-12 has activity in vitro against Salmonella enterica serovar Typhimurium and Francisella species by inducing autophagy and other host immune pathways. AR-12 treatment of S. Typhimurium-infected mice resulted in a 10-fold reduction in bacterial load in the liver and spleen and an increased survival time. However, AR-12 treatment did not protect mice from death, likely due poor formulation. In the current study, AR-12 was encapsulated in a microparticulate carrier formulated from the novel degradable biopolymer acetalated dextran (Ace-DEX) and subsequently evaluated for its activity in human monocyte-derived macrophages (hMDMs). Our results show that hMDMs efficiently internalized Ace-DEX microparticles (MPs), and that encapsulation significantly reduced host cell cytotoxicity compared to unencapsulated AR-12. Efficient macrophage internalization of AR-12 loaded MPs (AR-12/MPs) was further demonstrated by autophagosome formation that was comparable to free AR-12 and resulted in enhanced clearance of intracellular Salmonella. Taken together, these studies provide support that Ace-DEX encapsulated AR-12 may be a promising new therapeutic agent to control intracellular bacterial pathogens of macrophages by targeting delivery and reducing drug toxicity. PMID:25447826

  19. Fuzzy logic control algorithms for MagneShock semiactive vehicle shock absorbers: design and experimental evaluations

    NASA Astrophysics Data System (ADS)

    Craft, Michael J.; Buckner, Gregory D.; Anderson, Richard D.

    2003-07-01

    Automotive ride quality and handling performance remain challenging design tradeoffs for modern, passive automobile suspension systems. Despite extensive published research outlining the benefits of active vehicle suspensions in addressing this tradeoff, the cost and complexity of these systems frequently prohibit commercial adoption. Semi-active suspensions can provide performance benefits over passive suspensions without the cost and complexity associated with fully active systems. This paper outlines the development and experimental evaluation of a fuzzy logic control algorithm for a commercial semi-active suspension component, Carrera's MagneShockTM shock absorber. The MagneShockTM utilizes an electromagnet to change the viscosity of magnetorheological (MR) fluid, which changes the damping characteristics of the shock. Damping for each shock is controlled by manipulating the coil current using real-time algorithms. The performance capabilities of fuzzy logic control (FLC) algorithms are demonstrated through experimental evaluations on a passenger vehicle. Results show reductions of 25% or more in sprung mass absorbed power (U.S. Army 6 Watt Absorbed Power Criterion) as compared to typical passive shock absorbers over urban terrains in both simulation and experimentation. Average sprung-mass RMS accelerations were also reduced by as much as 9%, but usually with an increase in total suspension travel over the passive systems. Additionally, a negligible decrease in RMS tire normal force was documented through computer simulations. And although the FLC absorbed power was comparable to that of the fixed-current MagneShockTM the FLC revealed reduced average RMS sprung-mass accelerations over the fixed-current MagneShocks by 2-9%. Possible means for improvement of this system include reducing the suspension spring stiffness and increasing the dynamic damping range of the MagneShockTM.

  20. Observations on the distribution and control of Salmonella species in two integrated broiler companies.

    PubMed

    Davies, R; Breslin, M; Corry, J E; Hudson, W; Allen, V M

    2001-08-25

    The effectiveness of cleaning and disinfecting broiler farms and the persistence of Salmonella species in two integrated broiler companies was investigated for two years. Both companies used a cleaning and disinfection regime which included the application of a spray of phenolic disinfectant followed by fogging with formaldehyde solution, and this was highly effective in preventing carry-over of infection in the broiler houses. The disinfection of service areas and areas outside the houses was less effective but it had no influence on the Salmonella status of later flocks. Both companies had persistent problems with the contamination of pellet cooling systems in their feedmills with Salmonella 4, 12:d:- in company A, and with Salmonella binza and Salmonella ohio in company B. The hatcher incubators of both companies were also persistently contaminated with Salmonella livingstone and Salmonella thomasville in company A and with Salmonella senftenberg in company B. At both companies sites Salmonella enteritidis and Salmonella typhimurium Tr104 were also isolated occasionally from various locations.

  1. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  2. Salmonella enteritidis: clinical epidemiological approaches for prevention and control of S. enteritidis in poultry production.

    PubMed

    Noordhuizen, J P; Frankena, K

    1994-01-01

    Salmonella enteritidis infections in poultry appear to be of major public concern. Prevalence levels in veal calves and pigs are rather low. Because of the complex of socio-psychological, welfare, economic and public health aspects great emphasis should be put on prevention and control. This paper deals with some clinical epidemiological approaches for prevention and control of S. enteritidis. Emphasis is set on multifactorial background of infection occurrence, epidemiological methods and features of monitoring and surveillance for evaluation of measures taken during a follow-up period. Finally, it is stated that the application of Risk Assessment & Analysis principles in this problem area, integrating the concepts previously addressed, might prove to be a valuable perspective.

  3. Motor imaginary-based brain-machine interface design using programmable logic controllers for the disabled.

    PubMed

    Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong

    2010-10-01

    Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.

  4. Including xpc® feed additive in the diet of inoculated broilers during grow-out helps control salmonella associated with their carcasses after processing

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to test XPC® feed additive for control of Salmonella in poultry meat products. Day of hatch broiler chicks were gavaged with 106 cells of a nalidixic acid resistant marker strain of Salmonella Typhimurium and placed on clean pine shavings in 9 separate floor pens (25 ...

  5. [Research on the Application of Fuzzy Logic to Systems Analysis and Control

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Research conducted with the support of NASA Grant NCC2-275 has been focused in the main on the development of fuzzy logic and soft computing methodologies and their applications to systems analysis and control. with emphasis 011 problem areas which are of relevance to NASA's missions. One of the principal results of our research has been the development of a new methodology called Computing with Words (CW). Basically, in CW words drawn from a natural language are employed in place of numbers for computing and reasoning. There are two major imperatives for computing with words. First, computing with words is a necessity when the available information is too imprecise to justify the use of numbers, and second, when there is a tolerance for imprecision which can be exploited to achieve tractability, robustness, low solution cost, and better rapport with reality. Exploitation of the tolerance for imprecision is an issue of central importance in CW.

  6. Improvement of photovoltaic pumping systems based on standard frequency converters by means of programmable logic controllers

    SciTech Connect

    Fernandez-Ramos, Jose; Narvarte-Fernandez, Luis; Poza-Saura, Fernando

    2010-01-15

    Photovoltaic pumping systems (PVPS) based on standard frequency converters (SFCs) are currently experiencing a growing interest in pumping programmes implemented in remote areas because of their high performance in terms of component reliability, low cost, high power range and good availability of components virtually anywhere in the world. However, in practical applications there have appeared a number of problems related to the adaptation of the SFCs to the requirements of the photovoltaic pumping systems (PVPS). Another disadvantage of dedicated PVPS is the difficulty in implementing maximum power point tracking (MPPT). This paper shows that these problems can be solved through the addition of a basic industrial programmable logic controller (PLC) to the system. This PLC does not increase the cost and complexity of the system, but improves the adaptation of the SFC to the photovoltaic pumping system, and increases the overall performance of the system. (author)

  7. Designing a Beamline Equipment Protection System Using a Programmable Logic Controller

    NASA Astrophysics Data System (ADS)

    Minich, James M.

    1996-09-01

    As part of the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT), a new beamline equipment protection system was designed, implemented and installed. The beamline equipment protection system is designed to assure the safe operation of bending magnet and insertion device beamline components, such as white-beam slits, user filters, shutters and stops, mirrors and monochromators. Design goals of the equipment protection system were to improve equipment safety performance, reduce nuisance trips and incorporate additional system functions with minimal cost. To meet the requirements of such a safety system, it was configured to use a programmable controller, remote block input/output (I/O), local interfaces and a serial communication link known as remote I/O (RIO). Aspects about the design requirements, functionality and constraints are presented, as well as specifics on programmable ladder logic design, hardware selection, testing and interfacing requirements.

  8. Photoluminescent logic gate controlled by the optical Kerr effect exhibited by porous silicon

    NASA Astrophysics Data System (ADS)

    de la Mora, M. B.; Torres-Torres, C.; Nava, R.; Trejo-Valdez, M.; Reyes-Esqueda, J. A.

    2014-07-01

    The magnitude of the third order optical susceptibility exhibited by porous silicon monolayers was measured by a non-degenerated vectorial two-wave interaction. Optical irradiations at 488 nm and 532 nm wavelengths were employed to carry out the nonlinear optical experiments. Compared to bulk silicon material, a noticeable enhancement in the third order nonlinear optical response was identified. Photoluminescence and photoconductive properties were evaluated for the two studied wavelengths. The photoluminescent logic gate function AND was experimentally demonstrated using as a control a reflective optical Kerr gate configuration. A perceptible contribution for the third order optical nonlinearities seems to be related to the optical Kerr effect originated by excited states population. A two-level model was considered in order to describe the observed optical behavior.

  9. Controlled exchange interaction for quantum logic operations with spin qubits in coupled quantum dots

    SciTech Connect

    Moskal, S.; Bednarek, S.; Adamowski, J.

    2007-09-15

    A two-electron system confined in two coupled semiconductor quantum dots is investigated as a candidate for performing quantum logic operations with spin qubits. We study different processes of swapping the electron spins by a controlled switching on and off of the exchange interaction. The resulting spin swap corresponds to an elementary operation in quantum-information processing. We perform direct simulations of the time evolution of the two-electron system. Our results show that, in order to obtain the full interchange of spins, the exchange interaction should change smoothly in time. The presence of jumps and spikes in the time characteristics of the confinement potential leads to a considerable increase of the spin-swap time. We propose several mechanisms to modify the exchange interaction by changing the confinement potential profile and discuss their advantages and disadvantages.

  10. Weaning Infants with Respiratory Syncytial Virus from Mechanical Ventilation through a Fuzzy-Logic Controller

    PubMed Central

    Olliver, S.; Davis, G.M.; Hatzakis, G.E.

    2003-01-01

    We have previously developed a fuzzy logic controller for weaning adults with chronic obstructive pulmonary disease using pressure support ventilation (PSV). We used the core of our fuzzy logic-based weaning platform and further developed parametrizable components for weaning newborns of differing body size and disease-state. The controller was validated on neonates recovering from congenital heart disease (CHD) while receiving synchronous intermittent mandatory ventilation (SIMV). We wished to compare the efficacy of this controller versus the bedside weaning protocol in children with respiratory syncytial virus pneumonitis/bronchiolitis (RSV) in the pediatric intensive care unit (PICU). The fuzzy controller evaluated the “current” and “trend” weaning status of the newborn, to quantitatively determine the change in the SIMV integrated ventilatory setting. For the “current” status, it used heart rate (HR), respiratory rate (RR), tidal volume (VT) and oxygen saturation (SaO2), while for the “trend” status, the differences of ΔRR/Δt, ΔHR/Δt, and ΔSaO2/Δt, recorded between two subsequent time points, were utilized. The enumerated vital signs were fuzzified and then probability levels of occurrence were assigned. Individualized “golden” goals for SaO2 were set for each newborn. We retrospectively assessed the charts of 19 newborns, 113±128 days old, 5,546±2,321 gr body weight, weaning for 99±46 days, at 2-hour intervals. The SIMV levels proposed by the fuzzy controller were matched to those levels actually applied. In 60% of the time both values coincided. For the remaining 40%, the controller was more aggressive suggesting lower values of SIMV than the applied ones. The Area under the SIMV curves over time was 1,969±1,044 for the applied vs 1,886±978 for the suggested levels, respectively. The fuzzy controller, adjusted for body size and disease-pattern, can approximate the actual weaning course of newborns with RSV. PMID:14728223

  11. Burn control of an ITER-like fusion reactor using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Garcia-Amador, A. Sair; Martinell, Julio J.

    2016-10-01

    The fuel burn in a fusion reactor has to be kept at a nearly constant rate in order to have a steady power exhaust. Here, we develop a control system based on a fuzzy logic controller in order that adjusts external parameters to keep the plasma temperature and density at the design values of a reactor of the characteristics of ITER. The control parameters chosen are the D-T refueling rate, the auxiliary heating power and a neutral helium beam. We use a fuzzy controller of the Mamdani type that uses a number of membership functions appropriate to produce a response to parameter deviations that minimizes the response time. The inference rules are determined in a way to provide stabilization to all perturbations of the temperature, density and alpha particle fraction. The dynamical response of the reactor is simulated with a 0D model that uses confinement times provided by the ITER scaling. We show that the system is feedback stabilized for a large range of parameters around the nominal values. The recovery time after a departure from the steady values is of the order of one second. We compare the results with another control system based on neural networks that was developed previously. Funded by projects PAPIIT IN109115 and Conacyt 152905.

  12. The use of meat juice or blood serum for the diagnosis of Salmonella infection in pigs and its possible implications on Salmonella control programs.

    PubMed

    Vico, Juan P; Mainar-Jaime, Raúl C

    2011-05-01

    Serology is the method of choice for country-scale Salmonella control programs in pigs and can be carried out both on blood serum or meat juice. However, the diagnostic performance of enzyme-linked immunosorbent assays (ELISAs) on these sample matrices has not been sufficiently compared. The agreement between the serum ELISA and meat juice ELISA on samples taken from commercial farms was assessed in 2 pig populations (adult sows and finishers). Results of optical density percentage (OD%) from the serum ELISA were consistently higher than those from the meat juice ELISA (38.5 vs. 27.9; P<0.001), and the mean difference between them was significantly different from zero (P<0.0001). The overall correlation coefficient between serum ELISA and meat juice ELISA results was low (r=0.53). These results indicated an important disagreement between ELISA performed on serum and meat juice matrices and suggested that before implementing a control program to reduce the prevalence of Salmonella in swine the choice of matrix on which to perform the ELISA should be carefully considered. © 2011 The Author(s)

  13. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. Report for January 1994-June 1995

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1995-10-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, validated by simulation study, and then performances have been evaluated in detail.

  14. Combinational logic for generating gate drive signals for phase control rectifiers

    NASA Technical Reports Server (NTRS)

    Dolland, C. R.; Trimble, D. W. (Inventor)

    1982-01-01

    Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.

  15. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models.

    PubMed

    Jeronymo, Daniel Cavalcanti; Coelho, Antonio Augusto Rodrigues

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC).

  16. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  17. The Swiss control programme for Salmonella enteritidis in laying hens: experiences and problems.

    PubMed

    Hoop, R K

    1997-12-01

    The Swiss control programme for Salmonella Enteritidis began at the end of 1993. All efforts are focused on the elimination of infected parent and layer flocks and on the production of S. Enteritidis-free eggs. The new Zoonosis Order and more stringent import regulations help to identify S. Enteritidis-positive parent layer and layer flocks. Other measures, such as additional voluntary monitoring of parent layer flocks, hatcheries and layer flocks, increased hygiene on poultry farms and the use of heat-treated feed, serve to prevent the spread of S. Enteritidis. An important point of concern is the elimination of S. Enteritidis from contaminated poultry farms, particularly from free-range farms. In the last two years, the number of reported infections of S. Enteritidis in humans has almost fallen to the level of 1988 (the year before the onset of S. Enteritidis infection in laying hens in Switzerland).

  18. Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium.

    PubMed

    Jung, Lae-Seung; Ding, Tian; Ahn, Juhee

    2017-09-22

    The emergence of antibiotic-resistant bacteria can cause serious clinical and public health problems. This study describes the possibility of using bacteriophages as an alternative agent to control multidrug-resistant Salmonella Typhimurium. The potential lytic bacteriophages (P22-B1, P22, PBST10, PBST13, PBST32, and PBST 35) were characterized by morphological property, heat and pH stability, optimum multiplicity of infection (MOI), and lytic activity against S. Typhimurium KCCM 40253, S. Typhimurium ATCC 19585, ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and S. Typhimurium CCARM 8009. P22-B1 and P22 belong to Podoviridae family and PBST10, PBST13, PBST32, and PBST 35 show a typical structure with polyhedral head and long tail, belonging to Siphoviridae family. Salmonella bacteriophages were highly stable at the temperatures (< 60 °C) and pHs (5.0-11.0). The reduction rates of host cells were increased at the MOI-dependent manner, showing the highest reduction rate at MOI of 10. The host cells were most effectively reduced by P22, while P22-B1 showed the least lytic activity. The ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 were resistant to ciprofloxacin, levofloxacin, norfloxacin, and tetracycline. P22 showed the highest lytic activity against S. Typhimurium KCCM 40253 (> 5 log reduction), followed by S. Typhimurium ATCC 19585 (4 log reduction) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585 (4 log reduction). The results would provide vital insights into the application of lytic bacteriophages as an alternative therapeutics for the control of multidrug-resistant pathogens.

  19. Estimating the incidence of food-borne Salmonella and the effectiveness of alternative control measures using the Delphi method.

    PubMed

    Henson, S

    1997-04-15

    The paper describes the use of the Delphi method to estimate the incidence of food-borne Salmonella in the UK and the effectiveness of alternative control measures. A panel of experts of food-borne Salmonella participated in the Delphi survey, which involved five rounds of questioning taking place in the period July 1993 to January 1994. Participants were asked to give initial estimates for a number of parameters and invited to revise these estimates through progressive rounds of the survey at which the group responses were reported back. This process resulted in a reduction in the variation between the estimates given by individual experts. The final estimated annual incidence of food-borne Salmonella in the UK was 537,000, although significant variation remained between, individual estimates. The foods judged to be the most important modes of transmission were poultry and poultry products (50% of cases) and eggs and egg products (26% of cases). The panel was also requested to estimate the effectiveness of strategies available to reduce the incidence of food-borne Salmonella from all sources. The most effective methods were judged to be food irradiation and mandatory application of HACCP, although there were significant differences in the judged effectiveness of these technologies for individual respondents. The paper demonstrates the efficacy of the Delphi method as a mechanism for reconciling differences between expert judgements of the incidence of food-borne disease and the effectiveness of alternative control strategies.

  20. D0 General Support: The Use of Programmable Logic Controllers (PLCS) at D0

    SciTech Connect

    Hance, R.; /Fermilab

    2000-05-05

    With the exception of control of heating, ventilation, and air conditioning (HVAC) ventilation fans, and their shutdown in the case of smoke in the ducts, all implementations of Programmable Logic Controllers (PLCs) in Dzero have been made within the fundamental premise that no uncertified PLC apparatus shall be entrusted with the safety of equipment or personnel. Thus although PLCs are used to control and monitor all manner of intricate equipment, simple hardware interlocks and relief devices provide basic protection against component failure, control failure, or inappropriate control operation. Nevertheless, this report includes two observations as follows: (1) It may be prudent to reconfigure the link between the Pyrotronics system and the HVAC system such that the Pyrotronics system provides interlocks to the ventilation fans instead of control inputs to the uncertified HVAC PLCs. Although the Pyrotronics system is certified and maintained to life safety standards, the HVAC system is not. A hardware or software failure of the HVAC system probably should not be allowed to result in the situation where the ventilation fans in a smoke filled duct continue to operate. Dan Markley is investigating this matter. (2) It may also be prudent to examine the network security of those systems connected to the Fermilab WAN (HVAC, Cryo, and Solenoid Controls). Even though the impact of a successful hack might only be to operations, it might nevertheless be disruptive and could be expensive. The risks should perhaps be analyzed. One of the most attractive features of these systems, from a user's viewpoint, is their unlimited networking. The unlimited networking that makes the systems so convenient to legitimate access also makes them vulnerable to illegitimate access.

  1. Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control

    PubMed Central

    Kish, Laszlo Bela; Granqvist, Claes-Göran

    2012-01-01

    We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics. PMID:23077525

  2. Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control.

    PubMed

    Kish, Laszlo Bela; Granqvist, Claes-Göran

    2012-01-01

    We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics.

  3. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    PubMed Central

    Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2016-01-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented. PMID:27118340

  4. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2016-04-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented.

  5. Adaptive rate error control through the use of diversity combining and majority logic decoding in a hybrid-ARQ protocol

    NASA Astrophysics Data System (ADS)

    Wicker, Stephen B.

    The author demonstrates an adaptive rate coding system based on the majority logic decoding of convolutional codes. The proposed system retains the high-data-rate capability of FEC (forward error correction) majority logic decoders while providing an adaptive code rate and a significant improvement in error protection through the incorporation of diversity combining and hybrid-ARQ (automatic repeat request) techniques. It is shown through analysis and simulation that this error control system provides a high level of data reliability at the expense of a minimal reduction in throughput.

  6. R-1 (C-620-A) and R-2 (C-620-B) air compressor control logic, computer software description. Revision 1

    SciTech Connect

    Walter, K.E.

    1995-06-08

    This document provides an updated computer software description for the software used on the FFTF R-1 (C-620-A) and R-2 (C-620-B) air compressor programmable controllers. Logic software design changes were required to allow automatic starting of a compressor that had not been previously started.

  7. Natural antimicrobials to control biofilms formed by environmental isolates of Salmonella

    USDA-ARS?s Scientific Manuscript database

    Fresh produce account for 9.5 million (12%) of the ~76 million U.S. foodborne illnesses annually. Salmonella is the leading causative agent of an estimated 35% hospitalizations and 28% deaths. Fresh produce can be contaminated by Salmonella at farm level via contaminated manure, irrigation water, w...

  8. Fuzzy logic control of fuel cell for stand-alone and grid connection

    NASA Astrophysics Data System (ADS)

    Sakhare, Abhishek; Davari, Asad; Feliachi, Ali

    Fuel cells have become one of the major areas of research in the academia and the industry with the numerous advantages they provide over the batteries and especially over the other small-scale sources of electricity including the photovoltaic and solar cells. Fuel cells generate electricity from hydrogen by a chemical process and are environmentally safe and efficient. Fuel cells have numerous stand-alone and grid-connected applications. The aim of the paper is to achieve the control of the fuel cell for stand-alone and grid connection. This is achieved by designing a suitable power conditioning unit. The power conditioning unit is needed for processing of the raw power output of the fuel cell in order to make it usable. The power conditioning unit might have only dc/dc converter or the two stages of dc/dc converter and dc/ac inverter. For the stand-alone part, the concentration is on the controlled direct current (dc) power, thus, only a boost converter (dc/dc) stage is used. For the grid interface of the fuel cell, controlled alternating current (ac) power is needed at the interface point of the fuel cell and the utility grid; thus, both stages, boost converter as well as the inverter (dc/ac), are needed. A power conditioning unit is designed for the solid oxide fuel cell, which can be used for other fuel cells with converter and the inverter of different ratings, but the control strategy will remain the same. The fuzzy logic control strategy is used for designing the controllers for both the stages.

  9. A controller based on Optimal Type-2 Fuzzy Logic: systematic design, optimization and real-time implementation.

    PubMed

    Fayek, H M; Elamvazuthi, I; Perumal, N; Venkatesh, B

    2014-09-01

    A computationally-efficient systematic procedure to design an Optimal Type-2 Fuzzy Logic Controller (OT2FLC) is proposed. The main scheme is to optimize the gains of the controller using Particle Swarm Optimization (PSO), then optimize only two parameters per type-2 membership function using Genetic Algorithm (GA). The proposed OT2FLC was implemented in real-time to control the position of a DC servomotor, which is part of a robotic arm. The performance judgments were carried out based on the Integral Absolute Error (IAE), as well as the computational cost. Various type-2 defuzzification methods were investigated in real-time. A comparative analysis with an Optimal Type-1 Fuzzy Logic Controller (OT1FLC) and a PI controller, demonstrated OT2FLC׳s superiority; which is evident in handling uncertainty and imprecision induced in the system by means of noise and disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure

    NASA Astrophysics Data System (ADS)

    Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan

    2017-01-01

    This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.

  11. Fiber-optic control and thermometry of single-cell thermosensation logic.

    PubMed

    Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M

    2015-11-13

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.

  12. Fiber-optic control and thermometry of single-cell thermosensation logic

    PubMed Central

    Fedotov, I.V.; Safronov, N.A.; Ermakova, Yu.G.; Matlashov, M.E.; Sidorov-Biryukov, D.A.; Fedotov, A.B.; Belousov, V.V.; Zheltikov, A.M.

    2015-01-01

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen—vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels. PMID:26563494

  13. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control.

    PubMed

    Ajiboye, Abidemi Bolu; Weir, Richard F ff

    2005-09-01

    This paper presents a heuristic fuzzy logic approach to multiple electromyogram (EMG) pattern recognition for multifunctional prosthesis control. Basic signal statistics (mean and standard deviation) are used for membership function construction, and fuzzy c-means (FCMs) data clustering is used to automate the construction of a simple amplitude-driven inference rule base. The result is a system that is transparent to, and easily "tweaked" by, the prosthetist/clinician. Other algorithms in current literature assume a longer period of unperceivable delay, while the system we present has an update rate of 45.7 ms with little postprocessing time, making it suitable for real-time application. Five subjects were investigated (three with intact limbs, one with a unilateral transradial amputation, and one with a unilateral transradial limb-deficiency from birth). Four subjects were used for system offline analysis, and the remaining intact-limbed subject was used for system real-time analysis. We discriminated between four EMG patterns for subjects with intact limbs, and between three patterns for limb-deficient subjects. Overall classification rates ranged from 94% to 99%. The fuzzy algorithm also demonstrated success in real-time classification, both during steady state motions and motion state transitioning. This functionality allows for seamless control of multiple degrees-of-freedom in a multifunctional prosthesis.

  14. Fiber-optic control and thermometry of single-cell thermosensation logic

    NASA Astrophysics Data System (ADS)

    Fedotov, I. V.; Safronov, N. A.; Ermakova, Yu. G.; Matlashov, M. E.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Belousov, V. V.; Zheltikov, A. M.

    2015-11-01

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen—vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.

  15. SVR learning-based spatiotemporal fuzzy logic controller for nonlinear spatially distributed dynamic systems.

    PubMed

    Zhang, Xian-Xia; Jiang, Ye; Li, Han-Xiong; Li, Shao-Yuan

    2013-10-01

    A data-driven 3-D fuzzy-logic controller (3-D FLC) design methodology based on support vector regression (SVR) learning is developed for nonlinear spatially distributed dynamic systems. Initially, the spatial information expression and processing as well as the fuzzy linguistic expression and rule inference of a 3-D FLC are integrated into spatial fuzzy basis functions (SFBFs), and then the 3-D FLC can be depicted by a three-layer network structure. By relating SFBFs of the 3-D FLC directly to spatial kernel functions of an SVR, an equivalence relationship of the 3-D FLC and the SVR is established, which means that the 3-D FLC can be designed with the help of the SVR learning. Subsequently, for an easy implementation, a systematic SVR learning-based 3-D FLC design scheme is formulated. In addition, the universal approximation capability of the proposed 3-D FLC is presented. Finally, the control of a nonlinear catalytic packed-bed reactor is considered as an application to demonstrate the effectiveness of the proposed 3-D FLC.

  16. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  17. Applications of fuzzy logic

    SciTech Connect

    Zargham, M.R.

    1995-06-01

    Recently, fuzzy logic has been applied to many areas, such as process control, image understanding, robots, expert systems, and decision support systems. This paper will explain the basic concepts of fuzzy logic and its application in different fields. The steps to design a control system will be explained in detail. Fuzzy control is the first successful industrial application of fuzzy logic. A fuzzy controller is able to control systems which previously could only be controlled by skilled operators. In recent years Japan has achieved significant progress in this area and has applied it to variety of products such as cruise control for cars, video cameras, rice cookers, washing machines, etc.

  18. A self-powered "sense-act-treat" system that is based on a biofuel cell and controlled by boolean logic.

    PubMed

    Zhou, Ming; Zhou, Nandi; Kuralay, Filiz; Windmiller, Joshua R; Parkhomovsky, Serguey; Valdés-Ramírez, Gabriela; Katz, Evgeny; Wang, Joseph

    2012-03-12

    Bio-logic-al: an autonomous, integrated "sense-act-treat" system that is based on an enzymatic biofuel cell has been developed. The system couples a biocomputing logic-detection method with a drug-release system to provide a logic-activated therapeutic intervention in response to a simulated abnormal physiological state, without the need for an external power source, control electronics, or microelectromechanical actuators.

  19. System design specification for rotary mode core sample trucks No. 2, 3, and 4 programmable logic controller

    SciTech Connect

    Dowell, J.L.; Akers, J.C.

    1995-12-31

    The system this document describes controls several functions of the Core Sample Truck(s) used to obtain nuclear waste samples from various underground storage tanks at Hanford. The system will monitor the sampling process and provide alarms and other feedback to insure the sampling process is performed within the prescribed operating envelope. The intended audience for this document is anyone associated with rotary or push mode core sampling. This document describes the Alarm and Control logic installed on Rotary Mode Core Sample Trucks (RMCST) {number_sign}2, 3, and 4. It is intended to define the particular requirements of the RMCST alarm and control operation (not defined elsewhere) sufficiently for detailed design to implement on a Programmable Logic Controller (PLC).

  20. Salmonella enterica serovar Typhi and gallbladder cancer: a case-control study and meta-analysis.

    PubMed

    Koshiol, Jill; Wozniak, Aniela; Cook, Paz; Adaniel, Christina; Acevedo, Johanna; Azócar, Lorena; Hsing, Ann W; Roa, Juan C; Pasetti, Marcela F; Miquel, Juan F; Levine, Myron M; Ferreccio, Catterina

    2016-11-01

    In Chile, where gallbladder cancer (GBC) rates are high and typhoid fever was endemic until the 1990s, we evaluated the association between Salmonella enterica serovar Typhi (S. Typhi) antibodies and GBC. We tested 39 GBC cases, 40 gallstone controls, and 39 population-based controls for S. Typhi Vi antibodies and performed culture and quantitative polymerase chain reaction for the subset with bile, gallstone, tissue, and stool samples available. We calculated gender and education-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the association with GBC. We also conducted a meta-analysis of >1000 GBC cases by combining our results with previous studies. GBC cases were more likely to have high Vi antibody titer levels than combined controls (OR: 4.0, 95% CI: 0.9-18.3), although S. Typhi was not recovered from bile, gallstone, tissue, or stool samples. In our meta-analysis, the summary relative risk was 4.6 (95% CI: 3.1-6.8, Pheterogeneity =0.6) for anti-Vi and 5.0 (95% CI: 2.7-9.3, Pheterogeneity  = 0.2) for bile or stool culture. Our results are consistent with the meta-analysis. Despite differences in study methods (e.g., S. Typhi detection assay), most studies found a positive association between S. Typhi and GBC. However, the mechanism underlying this association requires further investigation.

  1. A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme

    SciTech Connect

    Hilloowala, R.M.; Sharaf, A.M.

    1996-01-01

    The paper presents a rule-based fuzzy logic controller to control the output power of a pulse width modulated (PWM) inverter used in a stand alone wind energy conversion scheme (SAWECS). The self-excited induction generator used in SAWECS has the inherent problem of fluctuations in the magnitude and frequency of its terminal voltage with changes in wind velocity and load. To overcome this drawback the variable magnitude, variable frequency voltage at the generator terminals is rectified and the dc power is transferred to the load through a PWM inverter. The objective is to track and extract maximum power from the wind energy system (WES) and transfer this power to the local isolated load. This is achieved by using the fuzzy logic controller which regulates the modulation index of the PWM inverter based on the input signals: the power error e = (P{sub ref} {minus} P{sub o}) and its rate of change {dot e}. These input signals are fuzzified, that is defined by a set of linguistic labels characterized by their membership functions predefined for each class. Using a set of 49 rules which relate the fuzzified input signals (e, {dot e}) to the fuzzy controller output U, fuzzy set theory and associated fuzzy logic operations, the fuzzy controller`s output (in terms of linguistic labels) is defuzzified to obtain the actual analog (numerical) output signal which is then used to control the PWM inverter and ensure complete utilization of the available wind energy. The proposed rule-based fuzzy logic controller is simulated and the results are experimentally verified on a scaled down laboratory prototype of the SAWECS.

  2. Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers

    ERIC Educational Resources Information Center

    Besada-Portas, E.; Lopez-Orozco, J. A.; de la Torre, L.; de la Cruz, J. M.

    2013-01-01

    This paper presents a new methodology to develop remote laboratories for systems engineering and automation control courses, based on the combined use of TwinCAT, a laboratory Java server application, and Easy Java Simulations (EJS). The TwinCAT system is used to close the control loop for the selected plants by means of programmable logic…

  3. Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers

    ERIC Educational Resources Information Center

    Besada-Portas, E.; Lopez-Orozco, J. A.; de la Torre, L.; de la Cruz, J. M.

    2013-01-01

    This paper presents a new methodology to develop remote laboratories for systems engineering and automation control courses, based on the combined use of TwinCAT, a laboratory Java server application, and Easy Java Simulations (EJS). The TwinCAT system is used to close the control loop for the selected plants by means of programmable logic…

  4. Fuzzy logic controller approach in quality and productivity improvement program (PPKP)

    NASA Astrophysics Data System (ADS)

    Ruza, Nadiah; Mustafa, Zainol; Rika Fatimah, P. L.; Hussain, Saiful Izzuan

    2013-04-01

    The education sector plays a major role in building the stability and strength of a country and also the main channel in shaping the quality of nation. Each generation have different educational level. Therefore, improvements should be made on an on-going basis to ensure that quality of education is at high level all the time. In general, this study aimed to determine the effectiveness of the education system for Quality and Productivity Improvement Program (PPKP), Universiti Kebangsaan Malaysia (UKM) from the perspective of alumni as well as their satisfaction and importance level on how PPKP be able to meet the needs of their students. This study discusses the application of Fuzzy Logic Control analysis, which is flexible and adjustable. This analysis also identifies the program's quality of education system through alumni point of view. Overall, it was found that 93.4 percent of respondents felt that all four dimensions of students' needs have high level of importance. The rest felt that the importance level of all four dimensions is modest. Next, in term of satisfaction level with PPKP, only one percent was very satisfied with PPKP's role in meeting the needs of students and the rest felt that their needs are met only at moderate level. Results of this study could be used to improve the quality of education system for PPKP.

  5. Hybrid Genetic Algorithm with Fuzzy Logic Controller for Obstacle Location-Allocation Problem

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jyunichi; Wang, Xiaodong; Gen, Mitsuo; Yokota, Takao

    Location-allocation problem is known as one of the important problems faced in Industrial Engineering/Operations Research fields. One of important logistic tasks is transfer of manufactured products from plants to customers. If there is a need to supply products to large number of customers in a wide area, it is disadvantageous to deliver products from the only central distribution center or direct from plants. It is suitable to build up local distribution centers. In literature, different location models have been used according to characteristics of a distribution area. However, most of them related the location problem without obstacle. In this paper, an extended location-allocation problem with obstacles is considered. Since this problem is very complex and with many infeasible solutions, no direct method is effective to solve it, we propose a hybrid Genetic Algorithm (hGA) for effectively solving this problem. The proposed hGA combines two efficient methods based on Lagrangian relaxation and Dijkstra’s shortest path algorithm. To improve the performance of the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  6. Phase-shift-controlled logic gates in Y-shaped nonlinearly coupled chains

    NASA Astrophysics Data System (ADS)

    Assunção, T. F.; Nascimento, E. M.; Sombra, A. S. B.; Lyra, M. L.

    2016-02-01

    We introduce a model system composed of two input discrete chains nonlinearly coupled to a single output chain which mimics the geometry of Y-shaped carbon nanotubes, photonic crystal wave guides, and DNA junctions. We explore the capability of the proposed system to perform logic gate operations based on the transmission of phase-shifted harmonic incoming waves. Within a tight-binding approach, we determine the exact transmission spectrum which exhibits a nonlinear induced bistability. Using a digitalization scheme of the output signal based on amplitude modulation, we show that AND, OR, and XOR logic operations can be achieved. Nonlinearity strongly favors the realization of logic operations in the regime of large wavelengths, while phase shifting is required for the OR logic gate to be realizable. A detailed analysis of the contrast ratio shows that optimal operation of the AND and OR logic gates takes place when the nonlinear response is the predominant physical property distinguishing the coupling and regular sites. These results point towards the possibility of Y-branched junctions to perform logic operations based on the transmission of traveling waves.

  7. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-03-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.

  8. Case-control study of an outbreak of clinical disease attributable to Salmonella menhaden infection in eight dairy herds.

    PubMed

    Anderson, R J; Walker, R L; Hird, D W; Blanchard, P C

    1997-02-15

    To identify risk factors associated with Salmonella menhaden associated disease in adult dairy cows during an outbreak in California. Case-control study. 8 case dairies that had > or = 1 adult animal that had clinical signs of salmonellosis and from which S menhaden was isolated and 22 control dairies, 16 of which were matched on the basis of herd size and county and 6 of which were matched on the basis of herd size, county, and breed (Jersey). A questionnaire was developed and reviewed with the herdsman or owner of each dairy. Primary areas of concern were herd management, disease characteristics, and feed-related information. Use of 1 particular feed mill and feeding animal fat were significant risk factors for clinical disease attributable to S menhaden infection. Feed should not be overlooked as a potential source of Salmonella organisms in dairy herds.

  9. Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate

    NASA Astrophysics Data System (ADS)

    Li, R. B.; Deng, L.; Hagley, E. W.

    2014-12-01

    We demonstrate all-optical multilogic gate operations and transistor functionalities using a Kerr phase gate method in a room-temperature 85Rb vapor. Two symmetric Mach-Zehnder interferometers are constructed in the same vapor cell in which a Raman gain medium is established. We show three basic logic gates (and, or, and not) by controlling the output combinations from the two interferometers. With one weakly driven interferometer acting as the phase control light for a strongly driven interferometer, we further demonstrate optical field-effect transistor functionalities. More complex combinations of this Kerr phase gate method and scheme allow all eight basic logic gate operations including the controlled-not gate to be constructed and implemented.

  10. A novel fuzzy logic correctional algorithm for traction control systems on uneven low-friction road conditions

    NASA Astrophysics Data System (ADS)

    Li, Liang; Ran, Xu; Wu, Kaihui; Song, Jian; Han, Zongqi

    2015-06-01

    The traction control system (TCS) might prevent excessive skid of the driving wheels so as to enhance the driving performance and direction stability of the vehicle. But if driven on an uneven low-friction road, the vehicle body often vibrates severely due to the drastic fluctuations of driving wheels, and then the vehicle comfort might be reduced greatly. The vibrations could be hardly removed with traditional drive-slip control logic of the TCS. In this paper, a novel fuzzy logic controller has been brought forward, in which the vibration signals of the driving wheels are adopted as new controlled variables, and then the engine torque and the active brake pressure might be coordinately re-adjusted besides the basic logic of a traditional TCS. In the proposed controller, an adjustable engine torque and pressure compensation loop are adopted to constrain the drastic vehicle vibration. Thus, the wheel driving slips and the vibration degrees might be adjusted synchronously and effectively. The simulation results and the real vehicle tests validated that the proposed algorithm is effective and adaptable for a complicated uneven low-friction road.

  11. Amplifying genetic logic gates.

    PubMed

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  12. Salmonella Growth and Deposition Inside Eggs: Implications for Refrigeration as a Control Strategy

    USDA-ARS?s Scientific Manuscript database

    A recent risk assessment for Salmonella Enteritidis contamination of eggs concluded that prompt refrigeration of freshly laid eggs was among the most promising disease mitigation strategies. ARS research has provided detailed information about the deposition, movement, and multiplication of Salmonel...

  13. Validation of the baking process as a kill-step for controlling Salmonella in muffins.

    PubMed

    Channaiah, Lakshmikantha H; Michael, Minto; Acuff, Jennifer C; Phebus, Randall K; Thippareddi, Harshavardhan; Olewnik, Maureen; Milliken, George

    2017-06-05

    This research investigates the potential risk of Salmonella in muffins when contamination is introduced via flour, the main ingredient. Flour was inoculated with a 3-strain cocktail of Salmonella serovars (Newport, Typhimurium, and Senftenberg) and re-dried to achieve a target concentration of ~8logCFU/g. The inoculated flour was then used to prepare muffin batter following a standard commercial recipe. The survival of Salmonella during and after baking at 190.6°C for 21min was analyzed by plating samples on selective and injury-recovery media at regular intervals. The thermal inactivation parameters (D and z values) of the 3-strain Salmonella cocktail were determined. A ≥5logCFU/g reduction in Salmonella population was demonstrated by 17min of baking, and a 6.1logCFU/g reduction in Salmonella population by 21min of baking. The D-values of Salmonella serovar cocktail in muffin batter were 62.2±3.0, 40.1±0.9 and 16.5±1.7min at 55, 58 and 61°C, respectively; and the z-value was 10.4±0.6°C. The water activity (aw) of the muffin crumb (0.928) after baking and 30min of cooling was similar to that of pre-baked muffin batter, whereas the aw of the muffin crust decreased to (0.700). This study validates a typical commercial muffin baking process utilizing an oven temperature of 190.6°C for at least 17min as an effective kill-step in reducing a Salmonella serovar population by ≥5logCFU/g. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The use of tannins to control Salmonella typhimurium infections in pigs.

    PubMed

    Van Parys, A; Boyen, F; Dewulf, J; Haesebrouck, F; Pasmans, F

    2010-09-01

    The aim of this study was to determine whether a hydrolysable tannin extract of sweet chestnut wood (Globatan(®)) has an inhibitory effect on Salmonella Typhimurium survival both in vitro and in vivo in pigs. In a first experiment, the minimal inhibitory concentration of Globatan(®) on 57 Salmonella Typhimurium isolates was determined. For all isolates, an MIC of 160-320 μg/ml was found. The second in vitro study revealed that Salmonella growth was strongly reduced using Globatan(®) concentrations of 25-50 μg/ml and nearly completely inhibited at a concentration of 100 μg/ml Globatan(®). In an in vivo trial, two groups of six piglets, each group receiving feed with or without the addition of Globatan(®) (3 g/kg), were orally inoculated with 10(7) colony forming units of a Salmonella Typhimurium strain. Globatan(®) had no effect on faecal excretion of Salmonella, and no differences in colonization of the intestines and internal organs were demonstrated in pigs euthanized at 4 days post-inoculation. In conclusion, the hydrolysable tannin extract used in this study showed strong action against Salmonella Typhimurium in vitro but not in vivo.

  15. Microencapsulated sorbic acid and pure botanicals affect Salmonella Typhimurium shedding in pigs: a close-up look from weaning to slaughter in controlled and field conditions.

    PubMed

    Grilli, Ester; Foresti, Fabio; Tugnoli, Benedetta; Fustini, Mattia; Zanoni, Maria G; Pasquali, Paolo; Callaway, Todd R; Piva, Andrea; Alborali, Giovanni L

    2015-10-01

    The aim of this study was to assess the efficacy of a combination of sorbic acid, thymol, and carvacrol in reducing the prevalence and shedding level of Salmonella Typhimurium in pigs either in a controlled challenge environment or in a production setting. In the first study, 24 weaned piglets were separated in 4 isolation units (6 piglets/isolation unit). Each unit received either a basal diet (no treatment) or a microencapsulated mixture of sorbic acid, thymol, and carvacrol at 1, 2, or 5 g/kg of feed. After 21 d, pigs were orally challenged with 6 log10 colony-forming units of Salmonella Typhimurium. Blood samples and feces from rectal ampullae were collected every week. On d56 of the study, pigs were euthanized and necropsied to collect intestinal contents (jejunum through colon) and ileocecal lymph nodes. Samples were analyzed for Salmonella Typhimurium and serological analysis was also conducted. In the second study, an all-in-all-out multisite pig farm that was positive for monophasic Salmonella Typhimurium was followed throughout a production cycle from weaning to slaughter. Pigs received either a basal diet or the basal diet including 5 g/kg of the microencapsulated additive. Environmental, fecal, and blood samples were collected monthly, and cecal contents and ileocecal lymph nodes were collected at slaughter to isolate and enumerate Salmonella. The results indicate that the additive at 5 g/kg tended to reduce Salmonella fecal prevalence in both a controlled challenge (p=0.07) and in production conditions (p=0.03). Nevertheless, the additive did not reduce the number of pigs seropositive for Salmonella, nor it reduced the Salmonella prevalence at slaughter. The data indicate that these additives are not effective alone but must be used in conjunction with appropriate containment measures at lairage in order to prevent reinfection in pigs and to reduce the number of pigs carrying Salmonella entering the food chain.

  16. Description of extended pre-harvest pig Salmonella surveillance-and-control programme and its estimated effect on food safety related to pork.

    PubMed

    Alban, L; Barfod, K; Petersen, J V; Dahl, J; Ajufo, J C; Sandø, G; Krog, H H; Aabo, S

    2010-11-01

    Salmonella in pork can be combated during pre- or post-harvest. For large slaughterhouses, post-harvest measures like decontamination might be cost-effective while this is less likely with small-to-medium sized slaughterhouses. In this study, pre-harvest measures might be more relevant. We describe an extended surveillance-and-control programme for Salmonella in finisher pigs, which, to establish equivalence to the Swedish control programme, is intended for implementation on the Danish island, Bornholm. The effect of the programme on food safety was estimated by analysing Salmonella data from pig carcasses originating from herds that would have qualified for the programme during 2006-2008. Food safety was interpreted as prevalence of Salmonella on carcasses as well as the estimated number of human cases of salmonellosis related to pork produced within the programme. Data from the Danish Salmonella programme were obtained from Bornholm. We used a simulation model developed to estimate the number of human cases based on the prevalence of Salmonella on carcass swabs. Herds are only accepted in the programme if they have one or less seropositive sample within the previous 6 months. In this way, the Salmonella load is kept to a minimum. The programme is not yet in operation and pigs that qualify for the programme are currently mixed at slaughter with those that do not qualify. Therefore, we had to assess the impact on the carcass prevalence indirectly. The prevalence of Salmonella in carcass swabs among qualifying herds was 0.46% for the 3 years as a whole, with 2006 as the year with highest prevalence. According to the simulation the expected number of human cases relating to pork produced within the programme was below 10. When the programme is in operation, an extra effect of separating pigs within the programme from those outside is expected to lower the prevalence of Salmonella even further.

  17. Control of Salmonella Enteritidis in turkeys using organic acids and competitive exclusion product.

    PubMed

    Milbradt, E L; Zamae, J R; Araújo Júnior, J P; Mazza, P; Padovani, C R; Carvalho, V R; Sanfelice, C; Rodrigues, D M; Okamoto, A S; Andreatti Filho, R L

    2014-08-01

    To evaluate the use of organic acids (OAs) and competitive exclusion (CE) product administered continuously in the feed and transiently in drinking water on the control of Salmonella enterica subspecie enterica serotype Enteritidis (SE) prior to slaughter. The influence of treatments were evaluated on pH, population of the lactic acid bacteria (LAB) and bacteria of the family Enterobacteriaceae, concentration of volatile fatty acids and SE colonization in the crop and caecum. The birds were challenged with SE 24 h before being slaughtered, and then, the caeca and crop were removed and subjected to SE counts. Continuous administration of OAs reduced the population of bacteria from the Enterobacteriaceae family in both crop and caecum, positively influenced the butyric acid concentration and reduced SE colonization in the caecum. The diet supplemented with CE product positively influenced the quantity of LAB in the crop and caecum, elevated the butyric acid concentration and reduced both Enterobacteriaceae quantity and SE colonization in the caecum. There was no effect from administering the treatments via drinking water on the variables measured. Continuous supplementation in feed with OAs and CE product reduced SE colonization of the caeca. Supplementation of OAs and CE product in diet to turkeys can reduce the SE load, potentially leading to a lower contamination risk of meat during slaughter. © 2014 The Society for Applied Microbiology.

  18. Salmonella enterica.

    USDA-ARS?s Scientific Manuscript database

    Avian Salmonella infections are important as both a cause of clinical disease in poultry and as a source of food-borne transmission of disease to humans. Host-adapted salmonellae (Salmonella enterica serovar Pullorum and Gallinarum) are responsible for severe systemic diseases, whereas numerous sero...

  19. Case-control study of infections with Salmonella enteritidis phage type 4 in England.

    PubMed Central

    Cowden, J. M.; Lynch, D.; Joseph, C. A.; O'Mahony, M.; Mawer, S. L.; Rowe, B.; Bartlett, C. L.

    1989-01-01

    OBJECTIVE--To determine the source of indigenous sporadic infection with Salmonella enteritidis phage type 4. DESIGN--Case-control study of primary sporadic cases identified by the Public Health Laboratory Service between 1 August and 30 September 1988. SETTING--PHLS Communicable Disease Surveillance Centre, Division of Enteric Pathogens, 11 PHLS laboratories, and 42 local authority environmental health departments in England. SUBJECTS--232 Patients (cases) with confirmed primary sporadic infection, for 160 of whom (88 female) (median age 30 years, age range 4 months to 85 years) data were obtained by questionnaire about consumption of fresh eggs, egg products, precooked chicken, and minced meat in the three days and one week before onset of the symptoms. Up to three controls, matched for neighbourhood, age, and sex (if aged greater than 11 years), were asked the same questions for the same calendar period. MAIN OUTCOME MEASURE--Association of primary sporadic infection with consumption of suspected food items. RESULTS--Illness due to S enteritidis phage type 4 was significantly associated with consumption of raw shell egg products (homemade mayonnaise, ice cream, and milk drinks containing eggs) (matched p = 0.02) and shop bought sandwiches containing mayonnaise (matched p = 0.00004) or eggs (matched p = 0.02). Illness was also significantly associated with eating lightly cooked eggs (unmatched p = 0.02), but not soft boiled eggs, and precooked hot chicken (matched p = 0.006). Reported consumption of eggs was not appreciably different between cases and controls before or after the median date of interview. CONCLUSIONS--Fresh shell eggs, egg products, and precooked hot chicken are vehicles of S enteritidis phage type 4 infection in indigenous sporadic cases. Public health education and reduction in contamination of eggs and infection of poultry with S enteritidis are needed to reduce the incidence of human infection. PMID:2508916

  20. Plain packaging: a logical progression for tobacco control in one of the world's ‘darkest markets’

    PubMed Central

    Scollo, Michelle; Bayly, Megan; Wakefield, Melanie

    2015-01-01

    The Australian approach to tobacco control has been a comprehensive one, encompassing mass media campaigns, consumer information, taxation policy, access for smokers to smoking cessation advice and pharmaceutical treatments, protection from exposure to tobacco smoke and regulation of promotion. World-first legislation to standardise the packaging of tobacco was a logical next step to further reduce misleadingly reassuring promotion of a product known for the past 50 years to kill a high proportion of its long-term users. Similarly, refreshed, larger pack warnings which started appearing on packs at the end of 2012 were a logical progression of efforts to ensure that consumers are better informed about the health risks associated with smoking. Regardless of the immediate effects of legislation, further progress will continue to require a comprehensive approach to maintain momentum and ensure that government efforts on one front are not undermined by more vigorous efforts and greater investment by tobacco companies elsewhere.

  1. Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control.

    PubMed

    Ki, Seo Jin; Ray, Chittaranjan

    2014-09-15

    Determining optimal locations for best management practices (BMPs), including their field considerations and limitations, plays an important role for effective stormwater management. However, these issues have been often overlooked in modeling studies that focused on downstream water quality benefits. This study illustrates the methodology of locating infiltration trenches at suitable locations from spatial overlay analyses which combine multiple layers that address different aspects of field application into a composite map. Using seven thematic layers for each analysis, fuzzy logic was employed to develop a site suitability map for infiltration trenches, whereas the DRASTIC method was used to produce a groundwater vulnerability map on the island of Oahu, Hawaii, USA. In addition, the analytic hierarchy process (AHP), one of the most popular overlay analyses, was used for comparison to fuzzy logic. The results showed that the AHP and fuzzy logic methods developed significantly different index maps in terms of best locations and suitability scores. Specifically, the AHP method provided a maximum level of site suitability due to its inherent aggregation approach of all input layers in a linear equation. The most eligible areas in locating infiltration trenches were determined from the superposition of the site suitability and groundwater vulnerability maps using the fuzzy AND operator. The resulting map successfully balanced qualification criteria for a low risk of groundwater contamination and the best BMP site selection. The results of the sensitivity analysis showed that the suitability scores were strongly affected by the algorithms embedded in fuzzy logic; therefore, caution is recommended with their use in overlay analysis. Accordingly, this study demonstrates that the fuzzy logic analysis can not only be used to improve spatial decision quality along with other overlay approaches, but also is combined with general water quality models for initial and refined

  2. Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance

    PubMed Central

    Cota, Ignacio; Sánchez-Romero, María Antonia; Hernández, Sara B.; Pucciarelli, M. Graciela; García-del Portillo, Francisco; Casadesús, Josep

    2015-01-01

    The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvAB OFF and opvAB ON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvAB OFF subpopulation is killed and the opvAB ON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvAB OFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only. PMID:26583926

  3. Deciphering the Regulatory Circuitry That Controls Reversible Lysine Acetylation in Salmonella enterica

    PubMed Central

    Hentchel, Kristy L.; Thao, Sandy; Intile, Peter J.

    2015-01-01

    ABSTRACT In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR+ allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR+ strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. PMID:26199328

  4. A quantitative risk assessment of the public health impact of the Finnish Salmonella control program for broilers.

    PubMed

    Maijala, R; Ranta, J; Seuna, E; Pelkonen, S; Johansson, T

    2005-06-25

    In order to study the public health effects of the Finnish Salmonella control program (FSCP), a quantitative risk assessment model of Salmonella from slaughtered broiler flocks to consumers was developed. Based on the model, approximately 0.21% of domestically produced broiler meat mass was contaminated with Salmonella (95% probability interval 0.05-0.48%). This model was combined to the model on primary production of broilers. By this way, the effect of eliminating breeder flocks from production which have tested positive for Salmonella and heat-treating the meat of detected positive broiler flocks on public health could be simulated. Based on the whole model, if detected positive breeder flocks were not removed this would result in 1.0-2.5 more reported human cases compared to the expected number of cases under current FSCP (95% predictive interval). Without heat treatment of meat the increase would be 2.9-5.4-fold and without both interventions 3.8-9.0-fold. In scenarios with one grandparent or five parent flocks infected, the combined effect of these two interventions was 9.3-25.8-fold and 4.9-11.7-fold compared to the baseline level under each scenario, respectively. The scenario analyses suggest that with a higher infection level, inclusion of both interventions will be more effective than either of the interventions alone. Replacement of half of the current retail broiler meat by meat with 20-40% contamination could result in 33-93 times more human cases compared to the expected value under current situations. On the basis of the model, the interventions applied in FSCP clearly protect the public health.

  5. A Salmonella Typhi homologue of bacteriophage muramidases controls typhoid toxin secretion.

    PubMed

    Hodak, Hélène; Galán, Jorge E

    2013-01-01

    Unlike other Salmonella, which can infect a broad range of hosts causing self-limiting infection, Salmonella Typhi is an exclusively human pathogen that causes typhoid fever, a life-threatening systemic disease. Typhoid toxin is a unique virulence factor of Salmonella Typhi, which is expressed when the bacteria are within mammalian cells. Here, we report that an N-acetyl-β-D-muramidase similar to phage endolysins encoded within the same pathogenicity islet as the toxin is required for typhoid toxin secretion. Genetic and functional analysis of TtsA revealed unique amino acids at its predicted peptidoglycan-binding domain that are essential for protein secretion and that distinguishes this protein from other homologues. We propose that TtsA defines a new protein secretion mechanism recently evolved from the machine that mediates phage release.

  6. Knowledge-based control and case-based diagnosis based upon empirical knowledge and fuzzy logic for the SBR plant.

    PubMed

    Bae, H; Seo, H Y; Kim, S; Kim, Y

    2006-01-01

    Because biological wastewater treatment plants (WWTPs) involve a long time-delay and various disturbances, in general, skilled operators manually control the plant based on empirical knowledge. And operators usually diagnose the plant using similar cases experienced in the past. For the effective management of the plant, system automation has to be accomplished based upon operating recipes. This paper introduces automatic control and diagnosis based upon the operator's knowledge. Fuzzy logic was employed to design this knowledge-based controller because fuzzy logic can convert the linguistic information to rules. The controller can manage the influent and external carbon in considering the loading rate. The input of the controller is not the loading rate but the dissolved oxygen (DO) lag-time, which has a strong relation to the loading rate. This approach can replace an expensive sensor, which measures the loading rate and ammonia concentration in the reactor, with a cheaper DO sensor. The proposed controller can assure optimal operation and prevent the over-feeding problem. Case-based diagnosis was achieved by the analysis of profile patterns collected from the past. A new test profile was diagnosed by comparing it with template patterns containing normal and abnormal cases. The proposed control and diagnostic system will guarantee the effective and stable operation of WWTPs.

  7. Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage.

    PubMed

    Sun, Shengqian; Anderson, Nathan M; Keller, Susanne

    2014-12-01

    Spices, including black pepper, are a source of microbial contamination and have been linked to outbreaks of salmonellosis when added to products that undergo no further processing. Traditional thermal processing employed to reduce microbial contamination can lead to losses of heat-sensitive compounds. Thus, alternative processes such as atmospheric pressure plasma (APP) are desirable. The purpose of this research was to determine the efficacy of APP in the destruction of Salmonella inoculated on the surface of peppercorns. Secondarily, we examined the effect of storage on the subsequent inactivation of Salmonella on the surfaces of black peppercorns by APP. Black peppercorns inoculated with a cocktail of Salmonella enterica serotypes Oranienburg, Tennessee, Anatum, and Enteritidis were stored at 25 °C, 33% relative humidity (RH); 25 °C, 97% RH; and, 37 °C, 33% RH for 10 d and additionally at 25 °C, 33% RH for 1 and 30 d then treated with APP. Results showed that Salmonella populations decreased significantly (P < 0.05) with respect to the treatment time, but where not related to previous storage conditions (P > 0.05). Approximately a 4.5- to 5.5-log10 reduction in population was achieved after 60 to 80 s treatment. A combination of treatments, storage and 80 s of plasma, may achieve a total reduction on the order of 7-log10 CFU/g. These findings support the potential of APP to decontaminate Salmonella on the surfaces of black peppercorns and other dry foods and illustrate that a multiple hurdle approach may prove effective for achieving significant reductions of Salmonella in many low-moisture foods.

  8. Dispositional logic

    NASA Technical Reports Server (NTRS)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  9. Improved CD control for 45-40 nm CMOS logic patterning: anticipation for 32-28 nm

    NASA Astrophysics Data System (ADS)

    Le Gratiet, Bertrand; Sundermann, Frank; Massin, Jean; Decaux, Marianne; Thivolle, Nicolas; Baron, Fabrice; Ostrovsky, Alain; Monget, Cedric; Chapon, Jean Damien; Blancquaert, Yoann; Dabertrand, Karen; Thevenon, Lionel; Bry, Benedicte; Cluet, Nicolas; Borot, Bertrand; Bingert, Raphael; Devoivre, Thierry; Gourard, Pascal; Babaud, Laurène; Buttgereit, Ute; Birkner, Robert; Joyner, Mark; Graitzer, Erez; Cohen, Avi

    2010-03-01

    Since 2008, we have been presenting some papers regarding CMOS 45nm logic gate patterning activity to reduce CD dispersion. After a global CD budget evaluation at SPIE08, we have been focusing on Intrafield CD corrections using Dose MapperTM. The story continues and since then we have pursued our intrafield characterisation and focus on ways to get Dose MapperTM dose recipe created before the first silicon is coming. In fact 40nm technology is already more demanding and we must be ready with integrated solutions for 32/28nm node. Global CD budget can be divided in Lot to Lot, Wafer to Wafer, Intra wafer and Intra field component. We won't talk here about run to run solutions which are put in place for Lot to Lot and Wafer to Wafer. We will emphasize on the intrafield / intrawafer process corrections and outline process compensation control and strategy. A lot of papers regarding intrafield CD compensation are available in the litterature but they do not necesserally fit logic manufacturing needs or possibilities. We need to put similar solutions in place which are comprehensive and flexible. How can we correct upfront an Etch chamber CD profile combined with a mask and scanner CD signature? How can we get intrafield map from random logic devices? This is what we will develop in this paper.

  10. A new approach to diabetic control: fuzzy logic and insulin pump technology.

    PubMed

    Grant, Paul

    2007-09-01

    Diabetes is a major health problem. Since the utilisation of insulin in the 1920s there have been myriad problems in developing suitable technologies to formulate and administer correct dosages to temper this metabolic disease. From multiple daily injections, nasal inhalations and enzymatic supplementation these artificial shortcuts still do not have the ability to fully replicate a 'normoglycaemic' state of being. In this paper, we sought to explore the use of insulin pumps and the application of fuzzy logic technology to act as an 'artificial pancreas' in diabetic patients. This paper builds on our previous work [Grant P, Naesh, O. Fuzzy logic and decision-making in anaesthetics. J Roy Soc Med 2005;98(1):7-9 [review

  11. Assessment of Benefits and Drawbacks of Using Fuzzy Logic, Especially in Fire Control Systems

    DTIC Science & Technology

    1994-03-01

    classitied by :W. Pelt classitication date :September 20, 1993 jp:op:ved ci.’ :::: - - - - title :ongerubriceerd manage mentuittreksel :Ongerubriceerd...kanonsysteem het gebruik van "fuzzy reasoning" technieken voorkwam. Dit voorstel is gedaan door SIGNAAL, in een opdracht van de KM. Het TNO-FEL had een...van bet gebruik van fuzzy logic in vergelijking met ’conventionele’ methoden. Geconcludeerd wordt dat er in principe goede mogelijkhieden voor

  12. Polyphasic characterization of Salmonella Enteritidis isolates on persistently contaminated layer farms during the implementation of a national control program with obligatory vaccination: a longitudinal study.

    PubMed

    Dewaele, I; Rasschaert, G; Wildemauwe, C; Van Meirhaeghe, H; Vanrobaeys, M; De Graef, E; Herman, L; Ducatelle, R; Heyndrickx, M; De Reu, K

    2012-11-01

    Since 2007, a national Salmonella control program including obligatory vaccination has been ongoing in Belgium. In this context, the aim of the present study was to investigate the diversity of Salmonella enterica serovar Enteritidis isolates on 5 persistently contaminated Belgian layer farms and to examine the potential sources and transmission routes of Salmonella Enteritidis contamination on the farms during successive laying rounds. A collection of 346 Salmonella isolates originating from the sampled farms were characterized using a combination of multilocus variable number of tandem repeat analysis (MLVA) and phage typing (PT). On each farm, one or 2 dominant MLVA-PT types were found during successive laying cycles. The dominant MLVA type was different for each of the individual farms, but some farms shared the same dominant phage type. Isolates recovered from hens' feces and ceca, egg contents, eggshells, vermin (mice, rats, red mites, and flies), and pets (dog and cat feces) had the same MLVA-PT type also found in the inside henhouse environment of the respective layer farm. Persistent types were identified in the layer farm inside environment (henhouse and egg collecting area). Furthermore, this study demonstrated cross-contamination of Salmonella between henhouses and between the henhouse and the egg collecting area. Additional isolates with a different MLVA-PT type were also recovered, mainly from the egg collecting area. A potential risk for cross-contamination of Salmonella between the individual layer farms and their egg trader was identified.

  13. Application of emerging technologies to control Salmonella in foods: a review

    USDA-ARS?s Scientific Manuscript database

    Salmonella is one of the major causes of foodborne illnesses in United States and many other parts of the world. The ubiquitous nature of the organisms and innumerous serotypes present in various foods makes it interesting and challenging for researchers to strive for its elimination. In the past d...

  14. Salmonellae in the environment.

    PubMed

    Murray, C J

    1991-09-01

    Salmonellae are part of the bacterial flora normally found in Man and animals, although the frequency of occurrence is variable, reflecting the general level of Salmonella in food, water and the environment. They are widely disseminated into environments which have been disturbed by human activities. Wildlife may harbour the organisms but do not appear to be a major conduit by which the organisms enter the human and animal food chain. In areas associated with Man, salmonellae in wild animals and birds reflect the serovars disseminated into the environment. Seasonal changes in infection occur, and the capacity of the organisms to survive in nature varies. Water plays an important role in the spread of the organisms to Man and animals. Control of salmonellae must start with a significant decrease in the number of organisms which are discharged into the environment.

  15. Logic programming

    SciTech Connect

    Lusk, E.L.; Overbeek, R.A.

    1989-01-01

    This book contains the proceedings of the 1989 North American Conference on Logic Programming. Included are the following papers: Expanding query power in constrain logic programming languages, Investigating the linguistics of DNA with definite clause grammars, An intermediate language to support prolog's unification.

  16. [Salmonella taxonomy].

    PubMed

    Eiguer, T; Caffer, M I

    1988-01-01

    Throughout the years, Salmonella nomenclature has suffered continual revisions, due to the confusion created by the different criteria adopted by the several groups of researchers. At the present time, it is recognized that the genus Salmonella is a single species, composed by seven taxa, with the level of subspecies (subsp.), which can be divided into serovars, described in the Kauffmann-White scheme. The name of four the species type Salmonella is Salmonella enteral sp. nov. nom. rev. The serovar of the taxon I is designated, for instance, Salmonella subsp. I ser. Typhimurium. For the other taxa, less frequent in human or animal pathology, the name of the subsp., followed by the antigenic formula (e.g. Salmonella subsp. IV 50: b-) is used. This criterion has been validated by the International Committee of Systematic Bacteriology and the names of the serovars are included in the Approved Lists of Bacterial Names.

  17. An Improved Genetic Fuzzy Logic Control Method to Reduce the Enlargement of Coal Floor Deformation in Shearer Memory Cutting Process

    PubMed Central

    Tan, Chao; Xu, Rongxin; Wang, Zhongbin; Si, Lei; Liu, Xinhua

    2016-01-01

    In order to reduce the enlargement of coal floor deformation and the manual adjustment frequency of rocker arms, an improved approach through integration of improved genetic algorithm and fuzzy logic control (GFLC) method is proposed. The enlargement of coal floor deformation is analyzed and a model is built. Then, the framework of proposed approach is built. Moreover, the constituents of GA such as tangent function roulette wheel selection (Tan-RWS) selection, uniform crossover, and nonuniform mutation are employed to enhance the performance of GFLC. Finally, two simulation examples and an industrial application example are carried out and the results indicate that the proposed method is feasible and efficient. PMID:27217824

  18. An Improved Genetic Fuzzy Logic Control Method to Reduce the Enlargement of Coal Floor Deformation in Shearer Memory Cutting Process.

    PubMed

    Tan, Chao; Xu, Rongxin; Wang, Zhongbin; Si, Lei; Liu, Xinhua

    2016-01-01

    In order to reduce the enlargement of coal floor deformation and the manual adjustment frequency of rocker arms, an improved approach through integration of improved genetic algorithm and fuzzy logic control (GFLC) method is proposed. The enlargement of coal floor deformation is analyzed and a model is built. Then, the framework of proposed approach is built. Moreover, the constituents of GA such as tangent function roulette wheel selection (Tan-RWS) selection, uniform crossover, and nonuniform mutation are employed to enhance the performance of GFLC. Finally, two simulation examples and an industrial application example are carried out and the results indicate that the proposed method is feasible and efficient.

  19. Outbreak investigation and case-control study: penta-resistant Salmonella Typhimurium DT104 associated with biltong in London in 2008.

    PubMed

    Mindlin, M J; Lang, N; Maguire, H; Walsh, B; Verlander, N Q; Lane, C; Taylor, C; Bishop, L A; Crook, P D

    2013-09-01

    In August 2008 an outbreak of Salmonella Typhimurium DT104 occurred in South West London. Sixteen cases were identified with a particular multilocus variable number tandem repeat analysis (MLVA) pattern. In a matched case-control study 14 primary cases were included. These were defined as individuals with gastrointestinal symptoms and Salmonella Typhimurium DT104 isolated from a stool specimen, with a characteristic antibiotic resistance profile and MLVA pattern, and diagnosed in a local laboratory. Four controls per case were matched on age, gender and area of residence. Cases were 26 times more likely than controls to have eaten beef biltong, a South African speciality meat product (odds ratio 25·83, 95% confidence interval 4·92–135·59, P < 0·01). Although environmental investigation failed to identify Salmonella in the food product we conclude that beef biltong consumption led to this outbreak. This conclusion has importance in informing the ongoing risk assessment relating to uncontrolled foodstuffs.

  20. Type-1 and Type-2 Fuzzy Logic and Sliding-Mode Based Speed Control of Direct Torque and Flux Control Induction Motor Drives - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ramesh, Tejavathu; Panda, A. K.; Kumar, S. Shiva

    2013-08-01

    In this research study, the performance of direct torque and flux control induction motor drive (IMD) is presented using five different speed control techniques. The performance of IMD mainly depends on the design of speed controller. The PI speed controller requires precise mathematical model, continuous and appropriate gain values. Therefore, adaptive control based speed controller is desirable to achieve high-performance drive. The sliding-mode speed controller (SMSC) is developed to achieve continuous control of motor speed and torque. Furthermore, the type-1 fuzzy logic speed controller (T1FLSC), type-1 fuzzy SMSC and a new type-2 fuzzy logic speed controller are designed to obtain high performance, dynamic tracking behaviour, speed accuracy and also robustness to parameter variations. The performance of each control technique has been tested for its robustness to parameter uncertainties and load disturbances. The detailed comparison of different control schemes are carried out in a MATALB/Simulink environment at different speed operating conditions, such as, forward and reversal motoring under no-load, load and sudden change in speed.

  1. Estimation of the sensitivity of environmental sampling for detection of Salmonella in commercial layer flocks post-introduction of national control programmes.

    PubMed

    Arnold, M E; Martelli, F; McLaren, I; Davies, R H

    2014-05-01

    A key element of national control programmes (NCPs) for Salmonella in commercial laying flocks, introduced across the European Union, is the identification of infected flocks and holdings through statutory sampling. It is therefore important to know the sensitivity of the sampling methods, in order to design effective and efficient surveillance for Salmonella. However, improved Salmonella control in response to the NCP may have influenced key factors that determine the sensitivity of the sampling methods used to detect Salmonella in NCPs. Therefore the aim of this study was to compare estimates of the sensitivity of the sampling methods using data collected before and after the introduction of the NCP, using Bayesian methods. There was a large reduction in the sensitivity of dust in non-cage flocks between the pre-NCP studies (81% of samples positive in positive flocks) and post-NCP studies (10% of samples positive in positive flocks), leading to the conclusion that sampling dust is not recommended for detection of Salmonella in non-cage flocks. However, cage dust (43% of samples positive in positive flocks) was found to be more sensitive than cage faeces (29% of samples positive in positive flocks). To have a high probability of detection, several NCP-style samples need to be used. For confirmation of Salmonella, five NCP faecal samples for cage flocks, and three NCP faecal boot swab samples for non-cage flocks would be required to have the equivalent sensitivity of the EU baseline survey method, which was estimated to have an 87% and 75% sensitivity to detect Salmonella at a 5% within-flock prevalence in cage and non-cage flocks, respectively.

  2. A Rapid Systematic Review and Meta-Analysis of the Efficacy of Slaughter and Processing Interventions to Control Non-Typhoidal Salmonella in Beef and Pork.

    PubMed

    Young, Ian; Wilhelm, Barbara J; Cahill, Sarah; Nakagawa, Rei; Desmarchelier, Patricia; Rajić, Andrijana

    2016-12-01

    Pork is one of the major food sources of human salmonellosis worldwide, while beef products have been implicated in numerous foodborne outbreaks. As a result, effective interventions to reduce Salmonella contamination during beef and pork processing are of interest to both regulators and industry. We conducted a rapid systematic review and meta-analysis of literature investigating the efficacy of slaughter and processing interventions to control Salmonella in beef and pork. Review steps included: a comprehensive search strategy; relevance screening of abstracts; relevance confirmation of articles; data extraction; risk-of-bias assessment; meta-analysis (where appropriate); and a weight-of-evidence assessment. A total of 191 relevant experimental studies were identified. Two controlled trials indicated that hot water and steam treatments are effective at reducing the prevalence of Salmonella on beef carcasses (relative risk [RR] = 0.11, 95% confidence interval [CI]: 0.02, 0.58), while four trials found that pre-chill organic acid washes are effective at reducing Salmonella on pork carcasses (RR = 0.32, 95% CI: 0.13, 0.78), with high confidence in the estimates of effect. Four quasi-experimental studies found that post-exsanguination chemical washes were effective to reduce the prevalence of Salmonella on cattle hides, with low confidence in the specific estimate of effect; moderate confidence was found for the effect estimates of scalding (RR = 0.20, 95% CI: 0.14, 0.29) and singeing (RR = 0.34, 95% CI: 0.22, 0.52) of pork carcasses. The overall evidence supported enhanced reductions of Salmonella through a multiple-hurdle approach. In conclusion, various slaughter and processing interventions can contribute to reducing Salmonella on beef and pork carcasses, depending on the context of application; an appropriate combination should be selected, validated, and verified by establishment operators within their local conditions.

  3. Neural network and fuzzy logic based secondary cells charging algorithm development and the controller architecture for implementation

    NASA Astrophysics Data System (ADS)

    Ullah, Muhammed Zafar

    Neural Network and Fuzzy Logic are the two key technologies that have recently received growing attention in solving real world, nonlinear, time variant problems. Because of their learning and/or reasoning capabilities, these techniques do not need a mathematical model of the system, which may be difficult, if not impossible, to obtain for complex systems. One of the major problems in portable or electric vehicle world is secondary cell charging, which shows non-linear characteristics. Portable-electronic equipment, such as notebook computers, cordless and cellular telephones and cordless-electric lawn tools use batteries in increasing numbers. These consumers demand fast charging times, increased battery lifetime and fuel gauge capabilities. All of these demands require that the state-of-charge within a battery be known. Charging secondary cells Fast is a problem, which is difficult to solve using conventional techniques. Charge control is important in fast charging, preventing overcharging and improving battery life. This research work provides a quick and reliable approach to charger design using Neural-Fuzzy technology, which learns the exact battery charging characteristics. Neural-Fuzzy technology is an intelligent combination of neural net with fuzzy logic that learns system behavior by using system input-output data rather than mathematical modeling. The primary objective of this research is to improve the secondary cell charging algorithm and to have faster charging time based on neural network and fuzzy logic technique. Also a new architecture of a controller will be developed for implementing the charging algorithm for the secondary battery.

  4. Dynamic control of gene regulatory logic by seemingly redundant transcription factors

    PubMed Central

    AkhavanAghdam, Zohreh; Sinha, Joydeb; Tabbaa, Omar P; Hao, Nan

    2016-01-01

    Many transcription factors co-express with their homologs to regulate identical target genes, however the advantages of such redundancies remain elusive. Using single-cell imaging and microfluidics, we study the yeast general stress response transcription factor Msn2 and its seemingly redundant homolog Msn4. We find that gene regulation by these two factors is analogous to logic gate systems. Target genes with fast activation kinetics can be fully induced by either factor, behaving as an 'OR' gate. In contrast, target genes with slow activation kinetics behave as an 'AND' gate, requiring distinct contributions from both factors, upon transient stimulation. Furthermore, such genes become an 'OR' gate when the input duration is prolonged, suggesting that the logic gate scheme is not static but rather dependent on the input dynamics. Therefore, Msn2 and Msn4 enable a time-based mode of combinatorial gene regulation that might be applicable to homologous transcription factors in other organisms. DOI: http://dx.doi.org/10.7554/eLife.18458.001 PMID:27690227

  5. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles.

    PubMed

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH=7.0 phosphate buffered saline (PBS) solution without 365nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH=5.0 PBS) and 365nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled.

  6. A high-speed multiplexer-based fine-grain pipelined architecture for digital fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Rashidi, Bahram; Masoud Sayedi, Sayed

    2015-12-01

    Design and implementation of a high-speed multiplexer-based fine-grain pipelined architecture for a general digital fuzzy logic controller has been presented. All the operators have been designed at gate level. For the multiplication, a multiplexer-based modified Wallace tree multiplier has been designed, and for the division and addition multiplexer-based non-restoring parallel divider and multiplexer-based Manchester adder have been used, respectively. To further increase the processing speed, fine-grain pipelining technique has been employed. By using this technique, the critical path of the circuit is broken into finer pieces. Based on the proposed architecture, and by using Quartus II 9.1, a sample two-input, one-output digital fuzzy logic controller with eight rules has been successfully synthesised and implemented on Stratix II field programmable gate array. Simulations were carried out using DSP Builder in the MATLAB/Simulink tool at a maximum clock rate of 301.84 MHz.

  7. Effective control of bioelectricity generation from a microbial fuel cell by logical combinations of pH and temperature.

    PubMed

    Tang, Jiahuan; Liu, Ting; Yuan, Yong; Zhuang, Li

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as "temperature" and "pH." Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices.

  8. Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature

    PubMed Central

    Tang, Jiahuan; Liu, Ting; Yuan, Yong

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343

  9. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids. Part I: effects on growth performance, microbial populations, and immune status.

    PubMed

    Walsh, M C; Rostagno, M H; Gardiner, G E; Sutton, A L; Richert, B T; Radcliffe, J S

    2012-01-01

    Pigs (n = 88) weaned at 19 ± 2 d of age were used in a 14-d study to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on growth, immune status, Salmonella infection and shedding, and intestinal microbial populations after intranasal inoculation of Salmonella Typhimurium (10(10) cfu/pig). Pigs were challenged with Salmonella 6 d after commencement of water treatments. Treatments were 1) control diet; 2) control diet + DFM (Enterococcus faecium, Bacillus subtilis, and Bacillus licheniformis) in drinking water at 10(9) cfu/L for each strain of bacteria; 3) control diet + an organic acid-based blend (predominantly propionic, acetic, and benzoic acid) in drinking water at 2.58 mL/L; and 4) control diet + 55 mg/kg of carbadox. Serum samples were taken on d 6, 8, 10, and 14 for determination of tumor necrosis factor α (TNFα) concentrations. Fecal samples were taken on d 0, 5, 7, and 11 for determination of Salmonella shedding and enumeration of coliforms. Pigs were euthanized on d 6, 8, 10, and 14. Intestinal and cecal tissue and digesta and mesenteric lymph nodes were sampled and analyzed for Salmonella. Duodenal, jejunal, and ileal mucosal scrapings were sampled for measurement of mucosal TNFα concentrations. Water delivery of DFM prevented a decline in ADG on d 2 to 6 postchallenge compared with the negative control (P < 0.05). Coliform counts tended to be greater (P = 0.09) in the cecum of the DFM treatment group on d 2 postinfection compared with the negative control and acid treatment groups. However, Salmonella prevalence in the feces, gastrointestinal tract, or lymph nodes was not affected by water delivery of acids or DFM. Serum and mucosal TNFα concentrations were not affected by treatment throughout the study with the exception of ileal concentrations on d 4 postchallenge, which were greater in the negative control group compared with all other treatments (P < 0.05). The in-feed antibiotic was the only treatment that

  10. Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2015-06-01

    Control of Salmonella in poultry is a public health concern as salmonellosis is one of the most common foodborne diseases worldwide. This study aimed to screen the ability of 5 Salmonella serovars to degrade the mustard glucosinolate, sinigrin (by bacterial myrosinase) in Mueller-Hinton broth at 25 °C for 21 d and to reduce Salmonella on fresh chicken breasts by developing an edible 0.2% (w/v) κ-carrageenan/2% (w/v) chitosan-based coating containing Oriental mustard extract, allyl isothiocyanate (AITC), EDTA or their combinations. Individual Salmonella serovars degraded 50.2%-55.9% of the sinigrin present in 21 d. κ-Carrageenan/chitosan-based coatings containing 250 mg Oriental mustard extract/g or 50 μl AITC/g reduced the numbers of Salmonella on chicken breasts 2.3 log10 CFU/g at 21 d at 4 °C. However, when either mustard extract or AITC was combined with 15 mg/g EDTA in κ-carrageenan/chitosan-based coatings, Salmonella numbers were reduced 2.3 log10 CFU/g at 5 d and 3.0 log10 CFU/g at 21 d. Moreover, these treatments reduced numbers of lactic acid bacteria and aerobic bacteria by 2.5-3.3 log10 CFU/g at 21 d. κ-Carrageenan/chitosan coatings containing either 50 μl AITC/g or 250 mg Oriental mustard extract/g plus 15 mg EDTA/g have the potential to reduce Salmonella on raw chicken.

  11. Decommissioning of the Hematite Former Fuel Cycle Facility using a decision flow logic based work control process

    SciTech Connect

    Anderson, Keith D.

    2013-07-01

    The remediation and decommissioning of the Hematite Former Fuel Cycle Facility (FFCF), the Hematite Facility, is currently being carried out by Westinghouse Electric Company LLC under the Hematite Decommissioning Project (HDP). The Hematite Facility is located near the town of Hematite, Missouri, USA. The Hematite Facility consists of 228 acres of land with primary operations historically being conducted within the central portion of the property that is roughly 10 acres including Burial Pits and the Site Pond area. Decommissioning and remediation activities are being performed with the eventual objective of the release of the property. Primary contaminants include the legacy disposal and contamination of natural and enriched uranium from the nuclear fuel cycle, as well as chemicals used during the facility operations. Two major regulatory bodies, the U.S. Nuclear Regulatory Commission (NRC) and the Missouri Department of Natural Resources (MDNR), provide critical roles in the approval and oversight of the current regulatory path to remediation, decommissioning and eventual release. Further, remediation and decommissioning activities are performed under the implementing policies, plans, and procedures under the Hematite Decommissioning Plan (DP) and the Record of Decision (ROD). Remediation and decommissioning tasks at the Hematite Former Fuel Cycle Facility, referred to as the Hematite Facility, are performed against a disciplined decision logic flow that applies accumulated technical and monitoring data to determine each step of the excavation, exhumation, and removal of wastes from the Burial Pits and the remaining Areas of Concern (AOC). Decision flow logic is based upon the nuclear criticality safety controls and threshold conditions, relative level of radioactive and chemical contamination, security protocol, and final waste stream disposition. The end result is to remediate the residual radioactive and chemical contamination to approved dose-based and risk

  12. Salmonella Osteomyelitis.

    PubMed

    McAnearney, S; McCall, D

    2015-10-01

    Salmonella infection can cause four predominant clinical syndromes: enteric fever, acute gastroenteritis, bacteraemia with or without metastatic infection, and the asymptomatic carrier state. Salmonella as an aetiological agent in osteomyelitis is essentially rare and salmonella osteomyelitis in itself is predominantly seen in patients with haemoglobinopathies such as sickle cell disease or thalassemia. There are very few cases reported in the literature in which salmonella osteomyelitis is seen in otherwise healthy individuals. We describe here a case of salmonella osteomyelitis in a young gentleman with no significant comorbidities who presented with fever and severe back pain, having returned from recent foreign travel. It is therefore important to consider uncommon pathogens in the differential diagnosis of travellers with prolonged fever and insidious symptoms.

  13. Programmable logic controller performance enhancement by field programmable gate array based design.

    PubMed

    Patel, Dhruv; Bhatt, Jignesh; Trivedi, Sanjay

    2015-01-01

    PLC, the core element of modern automation systems, due to serial execution, exhibits limitations like slow speed and poor scan time. Improved PLC design using FPGA has been proposed based on parallel execution mechanism for enhancement of performance and flexibility. Modelsim as simulation platform and VHDL used to translate, integrate and implement the logic circuit in FPGA. Xilinx's Spartan kit for implementation-testing and VB has been used for GUI development. Salient merits of the design include cost-effectiveness, miniaturization, user-friendliness, simplicity, along with lower power consumption, smaller scan time and higher speed. Various functionalities and applications like typical PLC and industrial alarm annunciator have been developed and successfully tested. Results of simulation, design and implementation have been reported.

  14. Controlling mechanical ventilation in acute respiratory distress syndrome with fuzzy logic.

    PubMed

    Nguyen, Binh; Bernstein, David B; Bates, Jason H T

    2014-08-01

    The current ventilatory care goal for acute respiratory distress syndrome (ARDS) and the only evidence-based approach for managing ARDS is to ventilate with a tidal volume (VT) of 6 mL/kg predicted body weight (PBW). However, it is not uncommon for some caregivers to feel inclined to deviate from this strategy for one reason or another. To accommodate this inclination in a rationalized manner, we previously developed an algorithm that allows for VT to depart from 6 mL/kg PBW based on physiological criteria. The goal of the present study was to test the feasibility of this algorithm in a small retrospective study. Current values of peak airway pressure, positive end-expiratory pressure (PEEP), and arterial oxygen saturation are used in a fuzzy logic algorithm to decide how much VT should differ from 6 mL/kg PBW and how much PEEP should change from its current setting. We retrospectively tested the predictions of the algorithm against 26 cases of decision making in 17 patients with ARDS. Differences between algorithm and physician VT decisions were within 2.5 mL/kg PBW, except in 1 of 26 cases, and differences between PEEP decisions were within 2.5 cm H2O, except in 3 of 26 cases. The algorithm was consistently more conservative than physicians in changing VT but was slightly less conservative when changing PEEP. Within the limits imposed by a small retrospective study, we conclude that our fuzzy logic algorithm makes sensible decisions while at the same time keeping practice close to the current ventilatory care goal. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    PubMed

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

  16. Persistence of Salmonellae in Blood and Bone Marrow: Randomized Controlled Trial Comparing Ciprofloxacin and Chloramphenicol Treatments against Enteric Fever

    PubMed Central

    Gasem, M. Hussein; Keuter, Monique; Dolmans, Wil M. V.; van der Ven-Jongekrijg, Johanna; Djokomoeljanto, Robert; van der Meer, Jos W. M.

    2003-01-01

    We performed a randomized controlled trial involving 55 adult patients with enteric fever to compare ciprofloxacin and chloramphenicol. Blood and bone marrow cultures and cytokine profiles during therapy were done to compare the clinical and bacteriological efficacies of these drugs. All patients were randomly assigned to receive chloramphenicol (500 mg four times a day orally) for 14 days or ciprofloxacin (500 mg twice a day orally) for 7 days. In each treatment group, patients were subsequently randomized to have blood and bone marrow cultured after either 3 or 5 days of treatment. Twenty-seven patients received chloramphenicol, and 28 received ciprofloxacin. The two groups were similar in terms of baseline characteristics. No significant differences in clinical cure and time to defervescence were found. All strains isolated were susceptible to both antibiotics. Although ciprofloxacin was more effective in the elimination of Salmonella enterica serovars Typhi and Paratyphi A from bone marrow than chloramphenicol, there was still an impressive persistence of Salmonella in the bone marrow culture (67%). In the ciprofloxacin-treated patients the suppressed cytokine production capacity showed a trend to normalize earlier than in patients treated with chloramphenicol. PMID:12709347

  17. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs.

    PubMed

    Lin, Xiaodong; Liu, Yaqing; Tao, Zhanhui; Gao, Jinting; Deng, Jiankang; Yin, Jinjin; Wang, Shuo

    2017-08-15

    Since HCV and HIV share a common transmission path, high sensitive detection of HIV and HCV gene is of significant importance to improve diagnosis accuracy and cure rate at early stage for HIV virus-infected patients. In our investigation, a novel nanozyme-based bio-barcode fluorescence amplified assay is successfully developed for simultaneous detection of HIV and HCV DNAs with excellent sensitivity in an enzyme-free and label-free condition. Here, bimetallic nanoparticles, PtAuNPs, present outstanding peroxidase-like activity and act as barcode to catalyze oxidation of nonfluorescent substrate of amplex red (AR) into fluorescent resorufin generating stable and sensitive "Turn On" fluorescent output signal, which is for the first time to be integrated with bio-barcode strategy for fluorescence detection DNA. Furthermore, the provided strategy presents excellent specificity and can distinguish single-base mismatched mutant from target DNA. What interesting is that cascaded INHIBIT-OR logic gate is integrated with biosensors for the first time to distinguish individual target DNA from each other under logic function control, which presents great application in development of rapid and intelligent detection. Copyright © 2017. Published by Elsevier B.V.

  18. Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks.

    PubMed

    Ashayerizadeh, Amin; Dastar, Behrouz; Shams Shargh, Mahmoud; Sadeghi Mahoonak, Alireza; Zerehdaran, Saeed

    2017-03-01

    The aim of present experiment was to assess the effects of fermented rapeseed meal (FRSM) on Salmonella enterica serovar Typhimurium (S. Typhimurium) colonization and growth performance in broiler chicks. Two hundred forty day-old male Cobb 500 broiler chicks were divided into six experimental treatments with four replicates and 10 birds per each. The treatments were including two positive and negative controls which birds received a basal corn-soybean diet as well as four others which birds received the diets that rapeseed meal (RSM) or FRSM was replaced with soybean meal at 50 and 100% levels. All chicks except the negative control birds were challenged orally with 10(5) CFU of S. Typhimurium at 3days of age. Results showed that birds were fed FRSM had significantly greater lactic acid bacteria populations and lesser S. Typhimurium colonization in ileal and cecal sections compared to others (P<0.05). The less percentage of liver and bursa of fabricius was belonged to negative control group. At 10day, feeding chicks with diet containing FRSM, but not RSM, significantly decreased the organ invasion by S. Typhimurium (P<0.05). Heterophil to lymphocyte ratio was significantly lesser in chicks were fed FRSM compared to those fed RSM or positive control (P<0.05). Birds were fed FRSM had significantly higher weight gain and better feed conversion ratio compared to those birds were fed RSM (P<0.05). The findings of present experiment concerning positive effects of feeding FRSM on reducing S. Typhimurium and improving growth performance show that this processed protein source can be considered as a nutritional effective strategy to control Salmonella contamination in broiler chicks.

  19. Salmonella Infections (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Salmonella Infections KidsHealth > For Parents > Salmonella Infections A A ... bathroom and before handling food in any way. Salmonella Basics Not everyone who ingests Salmonella bacteria will ...

  20. Microencapsulated sorbic acid and pure botanicals affect Salmonella Typhimurium shedding in pigs: a close-up look from weaning to slaughter in controlled and field conditions

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to assess the efficacy of a combination of sorbic acid, thymol, and carvacrol in reducing the prevalence and shedding of Salmonella Typhimurium in pigs either in a controlled challenge environment or in a production setting. In the first study, 24 weaned piglets were dist...

  1. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    PubMed

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes.

  2. Performance Analysis of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy Logic Controller Applied to Anesthesia

    PubMed Central

    Fan, Shou-Zen; Shieh, Jiann-Shing

    2014-01-01

    We compare type-1 and type-2 self-organizing fuzzy logic controller (SOFLC) using expert initialized and pretrained extracted rule-bases applied to automatic control of anaesthesia during surgery. We perform experimental simulations using a nonfixed patient model and signal noise to account for environmental and patient drug interaction uncertainties. The simulations evaluate the performance of the SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for muscle relaxation and blood pressure during a multistage surgical procedure. The performances of the SOFLCs are evaluated by measuring the steady state errors and control stabilities which indicate the accuracy and precision of control task. Two sets of comparisons based on using expert derived and extracted rule-bases are implemented as Wilcoxon signed-rank tests. Results indicate that type-2 SOFLCs outperform type-1 SOFLC while handling the various sources of uncertainties. SOFLCs using the extracted rules are also shown to outperform those using expert derived rules in terms of improved control stability. PMID:25587533

  3. MD-Logic overnight type 1 diabetes control in home settings: A multicentre, multinational, single blind randomized trial.

    PubMed

    Nimri, Revital; Bratina, Natasa; Kordonouri, Olga; Avbelj Stefanija, Magdalena; Fath, Maryam; Biester, Torben; Muller, Ido; Atlas, Eran; Miller, Shahar; Fogel, Aviel; Phillip, Moshe; Danne, Thomas; Battelino, Tadej

    2017-04-01

    To evaluate the safety, efficacy and need for remote monitoring of the MD-Logic closed-loop system during short-term overnight use at home. Seventy-five patients (38 male; aged 10-54 years; average A1c, 7.8% ± 0.7%, 61.8 ± 7.2 mmol/mol) were enrolled from 3 clinical sites. Patients were randomly assigned to participate in 2 overnight crossover periods, each including 4 consecutive nights, 1 under closed-loop control and 1 under sensor-augmented pump (SAP) therapy in the patient's home. Both study arms were supervised using a remote-monitoring system in a blinded manner. Primary endpoints were time spent with glucose levels below 70 mg/dL and percentage of nights in which mean overnight glucose levels were within 90 to 140 mg/dL. The median [interquartile range] percentage of time spent in hypoglycaemia was significantly lower on nights when MD-Logic was used, compared to SAP therapy (2.07 [0, 4.78] and 2.6 [0, 10.34], respectively; P = .004) and the percentage of individual nights with a mean overnight glucose level in target was significantly greater (75 [42, 75] and 50 [25,75], respectively; P = .008). The time spent in target range was increased by a median of 28% (P = .001), with the same amount of insulin (10.69 [7.28, 13.94] and 10.41[6.9, 14.07], respectively; P = .087). The remote monitoring triggered calls for hypoglycaemia at twice the rate during SAP therapy compared to closed-loop control (62 and 29, respectively; P = .002). The MD-Logic system demonstrated a safe and efficient profile during overnight use by children, adolescents and adults with type 1 diabetes and, therefore, provides an effective means of mitigating the risk of nocturnal hypoglycaemia. © 2016 John Wiley & Sons Ltd.

  4. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation.

  5. Salmonella Prevention

    MedlinePlus

    ... Symptoms Key Resources Salmonella Oranienburg Infections Linked to Shell Eggs Recall & Advice to Consumers and Retailers Case ... Linked to Alfalfa Sprouts Enteritidis Infections Associated with Shell Eggs Chester Infections Associated with Cheesy Chicken & Rice ...

  6. Salmonella Infections

    MedlinePlus

    ... reptiles like snakes, turtles, and lizards. Symptoms include Fever Diarrhea Abdominal cramps Headache Possible nausea, vomiting, and ... be serious. The usual treatment is antibiotics. Typhoid fever, a more serious disease caused by Salmonella, is ...

  7. The iron-sensing fur regulator controls expression timing and levels of salmonella pathogenicity island 2 genes in the course of environmental acidification.

    PubMed

    Choi, Eunna; Kim, Hyunkeun; Lee, Hwiseop; Nam, Daesil; Choi, Jeongjoon; Shin, Dongwoo

    2014-06-01

    In order to survive inside macrophages, Salmonella produces a series of proteins encoded by genes within Salmonella pathogenicity island 2 (SPI-2). In the present study, we report that Fur, a central regulator of iron utilization, negatively controls the expression of SPI-2 genes. Time course analysis of SPI-2 expression after the entry of Salmonella into macrophages revealed that SPI-2 genes are induced earlier and at higher levels in the absence of the Fur regulator. It was hypothesized that Fur repressed the SPI-2 expression that was activated during acidification of the phagosome. Indeed, as pH was lowered from pH 7.0 to pH 5.5, the lack of Fur enabled SPI-2 gene expression to be induced at higher pH and to be expressed at higher levels. Fur controlled SPI-2 genes via repression of the SsrB response regulator, a primary activator of SPI-2 expression. Fur repressed ssrB expression both inside macrophages and under acidic conditions, which we ascribe to the direct binding of Fur to the ssrB promoter. Our study suggests that Salmonella could employ iron inside the phagosome to precisely control the timing and levels of SPI-2 expression inside macrophages.

  8. Hemodynamic management of congestive heart failure by means of a multiple mode rule-based control system using fuzzy logic.

    PubMed

    Held, C M; Roy, R J

    2000-01-01

    A rule-based system was designed to control the mean arterial pressure (MAP) and the cardiac output (CO) of a patient with congestive heart failure (CHF), using two vasoactive drugs: sodium nitroprusside (SNP) and dopamine (DPM). The controller has three different modes, that engage according to the hemodynamic state. The critical conditions control mode (CCC) determines the initial infusion rates, and continues active if the MAP or the CO fall outside of the defined criticality thresholds: an upper and a lower boundary for the MAP and a lower boundary for the CO. Inside the boundaries the control is performed by noncritical conditions control modes (NCC's), which are fuzzy logic controllers. If the CO is within normal range and the MAP is close to the goal range, then the MAP is driven using only SNP, in a single-input-single-output mode (NCC-SISO). Otherwise the NCC multiple-input-multiple-output is active (NCC-MIMO). The goal values for the controlled variables are defined as a band of 5 mmHg for the MAP and 5 mL/kg/min for the CO, but there is little concern for this application if the CO is too high (i.e., in practical terms the CO only needs to achieve a necessary minimum rate). The NCC-MIMO includes a gain adaptation algorithm to cope with the wide variety in sensitivities to SNP. Supervisory capabilities to ensure adequate drug delivery complete the controller scheme. After extensive testing and tuning on a CHF-hemodynamics nonlinear model, the control system was applied in dog experiments, which led to further enhancements. The results show an adequate control, presenting a fast response to setpoint changes with an acceptable overshoot.

  9. The control region of the metH gene of Salmonella typhimurium LT2: an atypical met promoter.

    PubMed

    Urbanowski, M L; Stauffer, G V

    1988-12-15

    The control region of the Salmonella typhimurium metH gene was sequenced and the transcription start point was determined by S1 nuclease mapping experiments. Activation of the metH gene by the metR gene product was shown to occur at the level of transcription. The translation start site was determined by amino acid sequence analysis of the amino terminus of a chimeric Met-Lac fusion protein encoded by a metH-lacZ gene fusion. Analysis of the nucleotide sequence of the metH promoter region showed that two sequence elements, present in the promoters of all other met biosynthetic genes thus far examined, are not present in the metH promoter region, namely, the repeated MetJ repressor recognition sequence 5'-AGACGTCT-3' and a highly conserved sequence 5'-TGGA----TAAAC-3' of unknown function.

  10. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids: Part II. Effects on intestinal histology and active nutrient transport.

    PubMed

    Walsh, M C; Rostagno, M H; Gardiner, G E; Sutton, A L; Richert, B T; Radcliffe, J S

    2012-08-01

    The objective of this study was to evaluate the effects of water-delivered, direct-fed microbials (DFM) or organic acids on intestinal morphology and active nutrient absorption in weanling pigs after deliberate Salmonella infection. Pigs (n = 88) were weaned at 19 ± 2 d of age and assigned to 1 of the following treatments, which were administered for 14 d: 1) control diet; 2) control diet + DFM (Enterococcus faecium, Bacillus subtilis, and Bacillus licheniformis) in drinking water at 10(9) cfu/L for each strain of bacteria; 3) control diet + organic acid-based blend (predominantly propionic, acetic, and benzoic acids) in drinking water at 2.58 mL/L; and 4) control diet + 55 mg/kg carbadox. Pigs were challenged with 10(10) cfu Salmonella enterica var Typhimurium 6 d after commencement of treatments. Pigs (n = 22/d) were harvested before Salmonella challenge and on d 2, 4, and 8 after challenge. Duodenal, jejunal, and ileal mucosal tissues were sampled for measurement of villus height and crypt depth. Jejunal tissue was sampled for determination of active nutrient absorption in modified Ussing chambers. Duodenal villus height was greater in pigs fed in-feed antibiotic before infection (P < 0.05). Jejunal crypts were deeper in DFM- and acid-treated pigs on d 4 after infection compared with all other treatments (P < 0.05). Salmonella infection resulted in a linear decrease in phosphorus (P < 0.001) and glucose (P < 0.05) active transport, and an increase (P < 0.001) in glutamine uptake immediately after challenge. Salmonella infection reduced basal short-circuit current (I(sc)); however, water-delivered DFM or organic acid treatments caused greater basal I(sc) on d 2 after challenge than did carbadox. Carbachol-induced chloride ion secretion was greatest in negative control pigs before infection (P < 0.01) and DFM-treated pigs (P < 0.05) after infection. In conclusion, both the DFM and acidification treatments induced increases in basal active ion movement and jejunal

  11. Efficacy of European starling control to reduce Salmonella enterica contamination in a concentrated animal feeding operation in the Texas panhandle.

    PubMed

    Carlson, James C; Engeman, Richard M; Hyatt, Doreene R; Gilliland, Rickey L; DeLiberto, Thomas J; Clark, Larry; Bodenchuk, Michael J; Linz, George M

    2011-02-16

    European starlings (Sturnus vulgaris) are an invasive bird species known to cause damage to plant and animal agriculture. New evidence suggests starlings may also contribute to the maintenance and spread of diseases within livestock facilities. Identifying and mitigating the risk pathways that contribute to disease in livestock is necessary to reduce production losses and contamination of human food products. To better understand the impact starlings have on disease transmission to cattle we assessed the efficacy of starling control as a tool to reduce Salmonella enterica within a concentrated animal feeding operation. We matched a large facility, slated for operational control using DRC-1339 (3-chloro-4-methylaniline hydrochloride, also 3-chloro p-toluidine hydrochloride, 3-chloro-4-methylaniline), with a comparable reference facility that was not controlling birds. In both facilities, we sampled cattle feed, cattle water and cattle feces for S. enterica before and after starling control operations. Within the starling-controlled CAFO, detections of S. enterica contamination disappeared from feed bunks and substantially declined within water troughs following starling control operations. Within the reference facility, detections of S. enterica contamination increased substantially within feed bunks and water troughs. Starling control was not observed to reduce prevalence of S. enterica in the cattle herd. Following starling control operations, herd prevalence of S. enterica increased on the reference facility but herd prevalence of S. enterica on the starling-controlled CAFO stayed at pretreatment levels. Within the starling-controlled facility detections of S. enterica disappeared from feed bunks and substantially declined within water troughs following control operations. Since cattle feed and water are obvious routes for the ingestion of S. enterica, starling control shows promise as a tool to help livestock producers manage disease. Yet, we do not believe

  12. Efficacy of European starling control to reduce Salmonella enterica contamination in a concentrated animal feeding operation in the Texas panhandle

    PubMed Central

    2011-01-01

    Background European starlings (Sturnus vulgaris) are an invasive bird species known to cause damage to plant and animal agriculture. New evidence suggests starlings may also contribute to the maintenance and spread of diseases within livestock facilities. Identifying and mitigating the risk pathways that contribute to disease in livestock is necessary to reduce production losses and contamination of human food products. To better understand the impact starlings have on disease transmission to cattle we assessed the efficacy of starling control as a tool to reduce Salmonella enterica within a concentrated animal feeding operation. We matched a large facility, slated for operational control using DRC-1339 (3-chloro-4-methylaniline hydrochloride, also 3-chloro p-toluidine hydrochloride, 3-chloro-4-methylaniline), with a comparable reference facility that was not controlling birds. In both facilities, we sampled cattle feed, cattle water and cattle feces for S. enterica before and after starling control operations. Results Within the starling-controlled CAFO, detections of S. enterica contamination disappeared from feed bunks and substantially declined within water troughs following starling control operations. Within the reference facility, detections of S. enterica contamination increased substantially within feed bunks and water troughs. Starling control was not observed to reduce prevalence of S. enterica in the cattle herd. Following starling control operations, herd prevalence of S. enterica increased on the reference facility but herd prevalence of S. enterica on the starling-controlled CAFO stayed at pretreatment levels. Conclusions Within the starling-controlled facility detections of S. enterica disappeared from feed bunks and substantially declined within water troughs following control operations. Since cattle feed and water are obvious routes for the ingestion of S. enterica, starling control shows promise as a tool to help livestock producers manage

  13. Assessing the potential impact of Salmonella vaccines in an endemically infected dairy herd

    USDA-ARS?s Scientific Manuscript database

    Salmonella spp. in cattle are contributing to bacterial foodborne disease for humans. Reduction of Salmonella prevalence in herds is important to prevent human Salmonella infections. Typical control measures are culling of infectious animals, vaccination, and improved hygiene management. Vaccines ha...

  14. Adaptive control design for a class of nonlinear systems based on fuzzy logic systems with scalers and saturators

    NASA Astrophysics Data System (ADS)

    Wang, Yin-He; Luo, Liang; Fan, Yong-Qing; Zhang, Yun; Liu, Xiao-Ping; Zhang, Si-Ying

    2014-03-01

    Many practical engineering applications require various types of fuzzy logic systems (FLSs) to design adaptive controllers for nonlinear systems with uncertainties. In this article, we will consider a fundamental theoretical question: is it possible to find a unified adaptive control design method suited to various types of FLSs? In order to solve this problem, we will introduce scalers and saturators at the input and output terminals of FLSs to form the extended FLSs (EFLS). The scalers and saturators have adjustable parameters. By designing the updated laws of these parameters and the estimate values of the fuzzy approximate accuracies, stable adaptive fuzzy controllers can be realised for a class of nonlinear systems with unknown homogeneous drift functions and gains. The proposed design method is only dependent on the outputs of EFLS and the above updated laws, thus increasing its adaptability. The fuzzy control scheme introduced in this article is suitable for all fuzzy systems with or without fuzzy rules. Simulations will also be used to show the validity of the method proposed in this article.

  15. Effective control of a gentamicin-resistant Salmonella arizonae infection in turkey poults.

    PubMed

    Ekperigin, H E; Jang, S; McCapes, R H

    1983-01-01

    A gentamicin-resistant Salmonella arizonae isolate was identified as the cause of an unusually high early mortality rate in several flocks of poults produced by a primary turkey breeder. The company routinely dipped its hatching eggs in 500 ppm gentamicin before incubation and injected each poult at 1 day of age with 1 mg gentamicin. Mortality was reduced to normal, but S. arizonae was not eliminated by injecting the day-old poults with higher doses of gentamicin. S. arizonae was not isolated from sample normal-sized poults in treated groups when tetracyclines were used for antibiotic inoculation of day-old poults. Tetracyclines seemed to be completely effective only when a 5-mg subcutaneous injection per day-old poult was combined with an approximately equal dose in drinking water daily for 4 days, and therapy was accompanied by the culling of runts and other debilitated poults.

  16. Two Mutations in the First Gene of the Histidine Operon of Salmonella typhimurium Affecting Control

    PubMed Central

    Rothman-Denes, Lucia; Martin, Robert G.

    1971-01-01

    Two strains with mutations in the first structural gene of the histidine operon of Salmonella typhimurium were characterized. (The first structural gene specifies the first enzyme of histidine biosynthesis, phosphoribosyltransferase, which is sensitive to feedback inhibition by histidine.) One mutation, hisG3934, results in a phosphoribosyltransferase which is no longer sensitive to feedback inhibition by histidine but is instead subject to inhibition by aspartic acid. The other mutation, hisG3935, allows the histidine operon to be partially repressed by several amino acids, including aspartic acid. Analysis of hisG3935 is consistent with the hypothesis that phosphoribosyltransferase is directly involved in the regulation of the histidine operon. PMID:4928009

  17. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  18. Reducing the Impact of Uncertainties in Networked Control Systems Using Type-2 Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Michal, Blaho; J´n, Murgaš; Eugen, Viszus; Peter, Fodrek

    2015-01-01

    The networked control systems (NCS) have grown in popularity in recent years. Despite their advantages over the traditional control schemes, some of their drawbacks emerged as well (time delays, packet losses). There are several ways of dealing with the time delays and packet losses in NCS, but only a few authors have ever used type-2 fuzzy controllers for this purpose to our knowledge. This paper is aimed at dealing with the negative effects that occur in NCS, by using type-2 fuzzy control systems. It is presented that this approach can be successfully used to decrease the effects of time delays and packet losses. A type-2 fuzzy controller has been designed and compared to a type-1 fuzzy controller. The intervals of type-2 fuzzy controller were optimized via genetic algorithm.

  19. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste).

    PubMed

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Shaker, Reyad R; Zein Elabedeen, Noor; Jaradat, Ziad W; Abushelaibi, Aisha; Holley, Richard A

    2014-09-01

    Since tahini and its products have been linked to Salmonella illness outbreaks and product recalls in recent years, this study assessed the ability of Salmonella Typhimurium to survive or grow in commercial tahini and when hydrated (10% w/v in water), treated with 0.1%-0.5% acetic or citric acids, and stored at 37, 21 and 10 °C for 28 d. S. Typhimurium survived in commercial tahini up to 28 d but was reduced in numbers from 1.7 to 3.3 log10 CFU/ml. However, in the moist or hydrated tahini, significant growth of S. Typhimurium occurred at the tested temperatures. Acetic and citric acids at ≤0.5% reduced S. Typhimurium by 2.7-4.8 log10 CFU/ml and 2.5-3.8 log10 CFU/ml, respectively, in commercial tahini at 28 d. In hydrated tahini the organic acids were more effective. S. Typhimurium cells were not detected in the presence of 0.5% acetic acid after 7 d or with 0.5% citric acid after 21 d at the tested temperatures. The ability of S. Typhimurium to grow or survive in commercial tahini and products containing hydrated tahini may contribute to salmonellosis outbreaks; however, use of acetic and citric acids in ready-to-eat foods prepared from tahini can significantly minimize the risk associated with this pathogen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    PubMed

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production.

  1. Microfluidic bubble logic.

    PubMed

    Prakash, Manu; Gershenfeld, Neil

    2007-02-09

    We demonstrate universal computation in an all-fluidic two-phase microfluidic system. Nonlinearity is introduced into an otherwise linear, reversible, low-Reynolds number flow via bubble-to-bubble hydrodynamic interactions. A bubble traveling in a channel represents a bit, providing us with the capability to simultaneously transport materials and perform logical control operations. We demonstrate bubble logic AND/OR/NOT gates, a toggle flip-flop, a ripple counter, timing restoration, a ring oscillator, and an electro-bubble modulator. These show the nonlinearity, gain, bistability, synchronization, cascadability, feedback, and programmability required for scalable universal computation. With increasing complexity in large-scale microfluidic processors, bubble logic provides an on-chip process control mechanism integrating chemistry and computation.

  2. Selection of population controls for a Salmonella case-control study in the UK using a market research panel and web-survey provides time and resource savings.

    PubMed

    Mook, P; Kanagarajah, S; Maguire, H; Adak, G K; Dabrera, G; Waldram, A; Freeman, R; Charlett, A; Oliver, I

    2016-04-01

    Timely recruitment of population controls in infectious disease outbreak investigations is challenging. We evaluated the timeliness and cost of using a market research panel as a sampling frame for recruiting controls in a case-control study during an outbreak of Salmonella Mikawasima in the UK in 2013. We deployed a web-survey by email to targeted members of a market research panel (panel controls) in parallel to the outbreak control team interviewing randomly selected public health staff by telephone and completing paper-based questionnaires (staff controls). Recruitment and completion of exposure history web-surveys for panel controls (n = 123) took 14 h compared to 15 days for staff controls (n = 82). The average staff-time cost per questionnaire for staff controls was £13·13 compared to an invoiced cost of £3·60 per panel control. Differences in the distribution of some exposures existed between these control groups but case-control studies using each group found that illness was associated with consumption of chicken outside of the home and chicken from local butchers. Recruiting market research panel controls offers time and resource savings. More rapid investigations would enable more prompt implementation of control measures. We recommend that this method of recruiting controls is considered in future investigations and assessed further to better understand strengths and limitations.

  3. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD

    USDA-ARS?s Scientific Manuscript database

    For Salmonella to cause disease, it must first invade the intestinal epithelium using genes encoded within Salmonella Pathogenicity Island 1 (SPI1). Previous work has shown that propionate, a short chain fatty acid abundant in the intestine of animal hosts, negatively regulates SPI1 in vitro. Here...

  4. Implementation of a Risk-Orientated Hygiene Analysis for the Control of Salmonella JAVA in the Broiler Production.

    PubMed

    Kloska, Franziska; Casteel, Maximilian; Kump, Frederik Wilms-Schulze; Klein, Günter

    2017-03-01

    This field study aimed to establish a risk-orientated hygiene analysis on two broiler farms in Northwestern Germany for the practical use in broiler housing to evaluate the success of disinfection procedures for eradicating S. Java. The risk-orientated hygiene analysis enables fast, reproducible and cost-effective testing of broiler farms and in turn helps minimize the public health risk ensuing from S. Java. Farms were tested before and after cleaning as well as after disinfection according to a risk-orientated hygiene analysis for the presence of Salmonella DNA with qPCR. Positive PCR samples were confirmed by classical microbiology. Before cleaning, all checkpoints were tested positive for Salmonella DNA. Salmonella reduction of ca 66% of the sampled points could be achieved by intensive cleaning. A first disinfection on farm A and B failed to completely eradicate S. Java. A second disinfection followed and finally achieved a Salmonella-free status of the barns. During nine rearing periods, farms were tested weekly with boot swabs for Salmonella and at slaughter carcasses were tested for Salmonella status. No Salmonella were detected in these examinations. The two studied broiler farms have, to date, remained free of Salmonella.

  5. Fuzzy logic control of rotating drum bioreactor for improved production of amylase and protease enzymes by Aspergillus oryzae in solid-state fermentation.

    PubMed

    Sukumprasertsri, Monton; Unrean, Pornkamol; Pimsamarn, Jindarat; Kitsubun, Panit; Tongta, Anan

    2013-03-01

    In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

  6. Control by Fur of the nitrate respiration regulators NarP and NarL in Salmonella enterica.

    PubMed

    Teixidó, Laura; Cortés, Pilar; Bigas, Anna; Alvarez, Gerard; Barbé, Jordi; Campoy, Susana

    2010-03-01

    Anaerobic metabolism is controlled by several transcriptional regulators, including ArcA, Fnr, NarP, and NarL, with the Fnr and ArcA proteins sensitive to the cell's redox status. Specifically, the two-component ArcAB system is activated in response to the oxidation state of membrane-bound quinones, which are the central electron carriers of respiration. Fnr, by contrast, directly senses cellular oxidation status through the [4Fe-4S] cluster present in its own structure. In this study, a third additional redox-associated pathway that controls the nitrate respiration regulators NarL and NarP was identified. The results showed that, in Salmonella enterica, the expression of these two transcriptional regulators is under the control of Fur, a metalloregulator that senses the presence of Fe2+ and regulates the homeostasis of this cation inside the cell. Thus, the Fur- Fe2+ complex increases the expression of narL and represses that of narP. Furthermore, studies of S. enteric mutants defective in the Fur-regulated sRNA RfrA and RfrB showed that those sRNA control both narP and narL expression. These results confirm Fur as a global regulator based on its involvement not only in iron uptake and detoxification but also in the control of nitrate/nitrite respiration by sensing cellular redox status.

  7. Determination of Reduced Number and Suitable Locations of Fuzzy Logic Controlled Braking Resistors for Transient Stability Enhancement

    NASA Astrophysics Data System (ADS)

    Ali, Mohd. Hasan; Murata, Toshiaki; Tamura, Junji

    Braking resistor is known to be a very powerful tool for transient stability improvement in electric power systems. Usually, in a large power system braking resistors are placed at each generator terminal bus which requires a high installation as well as operation cost. Also, heavy computation is required for the controllers used for the switching of the resistors. From these viewpoints, this paper directs to the study of installation of reduced number of fuzzy logic controlled braking resistors at suitable locations for transient stability enhancement. Groups of coherent generators in the power system are determined. Then one braking resistor is installed in each of the coherent group and at each of the remaining generator terminal bus. Thus, the number of braking resistors is reduced and hence the installation and operation cost as well as computational burden for the controllers are minimized. The suitable location for the braking resistor in each coherent group of generators is determined according to the values of the transient stability index as calculated for a 3LG (Three-phase-to-ground) fault at the points near the generators of the coherent group without considering the braking resistors in the system. The effectiveness of the proposed method is demonstrated through EMTP simulations for the IEEJ West-10 machine model system.

  8. An optimal vibration control logic for minimising fatigue damage in flexible structures

    NASA Astrophysics Data System (ADS)

    Ambrosio, P.; Cazzulani, G.; Resta, F.; Ripamonti, F.

    2014-02-01

    One of the most common applications of active control on flexible structures is the mitigation of vibrations to reduce stresses and consequently increase lifetime. However, except for a few particular cases, the fatigue phenomenon has never been taken into account in the design of the control algorithm. Moreover, since fatigue is mainly a local effect, in some cases active control could even worsen the structure's integrity (e.g. consider local damage close to the actuators caused by control strategies requiring high control forces). For this reason, control is not able to achieve the best performance in terms of damage reduction and lifetime maximisation. This paper proposes an optimal active control designed to minimise fatigue damage on the structure. A model of the fatigue phenomenon is introduced and included in the definition of the control parameters. The solution is firstly described from a theoretical point of view and then tested both numerically and experimentally, showing a significant improvement over state-of-the-art techniques.

  9. Occupational Control in Education: The Logic and Leverage of Epistemic Communities

    ERIC Educational Resources Information Center

    Glazer, Joshua L.; Peurach, Donald J.

    2015-01-01

    Most current approaches to improving teaching and learning in American public schools rely on either market pressures or bureaucratic controls to leverage performance. In this article, however, authors Joshua Glazer and Donald Peurach examine occupational control as a third approach, whereby the internalization of norms, technical language, and…

  10. Occupational Control in Education: The Logic and Leverage of Epistemic Communities

    ERIC Educational Resources Information Center

    Glazer, Joshua L.; Peurach, Donald J.

    2015-01-01

    Most current approaches to improving teaching and learning in American public schools rely on either market pressures or bureaucratic controls to leverage performance. In this article, however, authors Joshua Glazer and Donald Peurach examine occupational control as a third approach, whereby the internalization of norms, technical language, and…

  11. A Logically Centralized Approach for Control and Management of Large Computer Networks

    ERIC Educational Resources Information Center

    Iqbal, Hammad A.

    2012-01-01

    Management of large enterprise and Internet service provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these…

  12. A Logically Centralized Approach for Control and Management of Large Computer Networks

    ERIC Educational Resources Information Center

    Iqbal, Hammad A.

    2012-01-01

    Management of large enterprise and Internet service provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these…

  13. Real-Time Implementation of a Fuzzy Logic Controller for DC-DC Switching Converters

    DTIC Science & Technology

    2007-11-02

    studies, it will be observed that, the proposed fuzzy controller maintains the output voltage at the desired 5V with slight overshoot during each...537-546, May 1997. [3] H. Sira -Ramirez, “Design of P-I controllers for DC-to-DC power supplies via extended linearization,” Int. J. Control, vol. 51...Technology, vol. 7, pp. 230-237, Mar. 1999. [5] G. Escobar, R. Ortega, H. Sira -Ramirez, J.P. Vilain and I. Zein, “An experimental comparison of several

  14. A Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    SciTech Connect

    Ainstworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-05

    Presentation for NAPS 2015 associated with conference publication CP-64392. Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions.

  15. A new robust control scheme using second order sliding mode and fuzzy logic of a DFIM supplied by two five-level SVPWM inverters

    NASA Astrophysics Data System (ADS)

    Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj

    2017-02-01

    Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.

  16. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  17. The outcome competency framework for practitioners in infection prevention and control: use of the outcome logic model for evaluation

    PubMed Central

    Curran, E; Loveday, HP; Kiernan, MA; Tannahill, M

    2013-01-01

    Healthcare is delivered in a dynamic environment with frequent changes in populations, methods, equipment and settings. Infection prevention and control practitioners (IPCPs) must ensure that they are competent in addressing the challenges they face and are equipped to develop infection prevention and control (IPC) services in line with a changing world of healthcare provision. A multifaceted Framework was developed to assist IPCPs to enhance competence at an individual, team and organisational level to enable quality performance and improved quality of care. However, if these aspirations are to be met, it is vital that competency frameworks are fit for purpose or they risk being ignored. The aim of this unique study was to evaluate short and medium term outcomes as set out in the Outcome Logic Model to assist with the evaluation of the impact and success of the Framework. This study found that while the Framework is being used effectively in some areas, it is not being used as much or in the ways that were anticipated. The findings will enable future work on revision, communication and dissemination, and will provide intelligence to those initiating education and training in the utilisation of the competences. PMID:28989348

  18. Control of Hydrogen Generation from Water Molecules Dissociated by Activated Aluminum Particles Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Maekawa, Koji; Takahara, Kenji; Kajiwara, Toshinori; Watanabe, Masao

    This paper proposes a control system to keep hydrogen generation by a reaction between water and activated aluminum particles at desired level. Because the activated aluminum particles are produced shredded aluminum sawdust, the characteristics of hydrogen generation vary depending on its samples. Therefore, the fuzzy control system to determine the quantum of the activated aluminum particles is designed based on the measured characteristics of hydrogen generation. Error form a desired value, error rate and dead time of the reaction are chosen as the labels of the proposed fuzzy membership functions. The reactor vessel that the activated aluminum particles are put into is developed to generate hydrogen continuously. Three types of aluminum particles of the characteristic are used for the experiments. The proposed system is confirmed to be useful for the control of hydrogen generation, coping with the effect of reacting characteristic changes according to the activated aluminum samples.

  19. Singularity and steering logic for control moment gyros on flexible space structures

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Guo, Chuandong; Zhang, Jun

    2017-08-01

    Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.

  20. 21 CFR 1311.125 - Requirements for establishing logical access control-Individual practitioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... that the DEA registration and State authorization(s) to practice and, where applicable, State... must be a DEA registrant. (d) A registrant's permission to indicate that controlled substances...) The individual practitioner's DEA registration expires, unless the registration has been renewed....

  1. Composite and Loose Concepts, Historical Analogies, and the Logic of Control in Comparative Historical Analysis

    ERIC Educational Resources Information Center

    Møller, Jørgen

    2016-01-01

    The use of controlled comparisons pervades comparative historical analysis. Heated debates have surrounded the methodological purchase of such comparisons. However, the quality and validity of the conceptual building blocks on which the comparisons are based have largely been ignored. This article discusses a particular problem pertaining to these…

  2. Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles

    SciTech Connect

    Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

    2003-12-01

    This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

  3. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells.

    PubMed

    Lobato-Márquez, Damián; Moreno-Córdoba, Inmaculada; Figueroa, Virginia; Díaz-Orejas, Ramón; García-del Portillo, Francisco

    2015-03-20

    Toxin-antitoxin (TA) modules contribute to the generation of non-growing cells in response to stress. These modules abound in bacterial pathogens although the bases for this profusion remain largely unknown. Using the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as a model, here we show that a selected group of TA modules impact bacterial fitness inside eukaryotic cells. We characterized in this pathogen twenty-seven TA modules, including type I and type II TA modules encoding antisense RNA and proteinaceous antitoxins, respectively. Proteomic and gene expression analyses revealed that the pathogen produces numerous toxins of TA modules inside eukaryotic cells. Among these, the toxins HokST, LdrAST, and TisBST, encoded by type I TA modules and T4ST and VapC2ST, encoded by type II TA modules, promote bacterial survival inside fibroblasts. In contrast, only VapC2ST shows that positive effect in bacterial fitness when the pathogen infects epithelial cells. These results illustrate how S. Typhimurium uses distinct type I and type II TA modules to regulate its intracellular lifestyle in varied host cell types. This function specialization might explain why the number of TA modules increased in intracellular bacterial pathogens.

  4. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.

    PubMed

    Li, Tzuu-Hseng S; Su, Yu-Te; Lai, Shao-Wei; Hu, Jhen-Jia

    2011-06-01

    This paper proposes the implementation of fuzzy motion control based on reinforcement learning (RL) and Lagrange polynomial interpolation (LPI) for gait synthesis of biped robots. First, the procedure of a walking gait is redefined into three states, and the parameters of this designed walking gait are determined. Then, the machine learning approach applied to adjusting the walking parameters is policy gradient RL (PGRL), which can execute real-time performance and directly modify the policy without calculating the dynamic function. Given a parameterized walking motion designed for biped robots, the PGRL algorithm automatically searches the set of possible parameters and finds the fastest possible walking motion. The reward function mainly considered is first the walking speed, which can be estimated from the vision system. However, the experiment illustrates that there are some stability problems in this kind of learning process. To solve these problems, the desired zero moment point trajectory is added to the reward function. The results show that the robot not only has more stable walking but also increases its walking speed after learning. This is more effective and attractive than manual trial-and-error tuning. LPI, moreover, is employed to transform the existing motions to the motion which has a revised angle determined by the fuzzy motion controller. Then, the biped robot can continuously walk in any desired direction through this fuzzy motion control. Finally, the fuzzy-based gait synthesis control is demonstrated by tasks and point- and line-target tracking. The experiments show the feasibility and effectiveness of gait learning with PGRL and the practicability of the proposed fuzzy motion control scheme.

  5. Risk factors for sporadic domestically acquired Salmonella serovar Enteritidis infections: a case-control study in Ontario, Canada, 2011.

    PubMed

    Middleton, D; Savage, R; Tighe, M K; Vrbova, L; Walton, R; Whitfield, Y; Varga, C; Lee, B; Rosella, L; Dhar, B; Johnson, C; Ahmed, R; Allen, V G; Crowcroft, N S

    2014-07-01

    In Ontario, Canada, the number of Salmonella Enteritidis (SE) cases increased over the years 2005-2010. A population-based case-control study was undertaken from January to August 2011 for the purpose of identifying risk factors for acquiring illness due to SE within Ontario. A total of 199 cases and 241 controls were enrolled. After adjustment for confounders, consuming any poultry meat [adjusted odds ratio (aOR) 2·24, 95% confidence interval (CI) 1·31-3·83], processed chicken (aOR 3·32, 95% CI 1·26-8·76) and not washing hands following handling of raw eggs (OR 2·82, 95% CI 1·48-5·37) were significantly associated with SE infection. The population attributable fraction was 46% for any poultry meat consumption and 10% for processed chicken. Poultry meat continues to be identified as a risk factor for SE illness. Control of SE at source, as well as proper food handling practices, are required to reduce the number of SE cases.

  6. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    PubMed Central

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  7. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection.

    PubMed

    Sabag-Daigle, Anice; Blunk, Henry M; Gonzalez, Juan F; Steidley, Brandi L; Boyaka, Prosper N; Ahmer, Brian M M

    2016-07-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.

  8. Use of green fluorescent protein expressing Salmonella Stanley to investigate survival, spatial location, and control on alfalfa sprouts.

    PubMed

    Gandhi, M; Golding, S; Yaron, S; Matthews, K R

    2001-12-01

    Laser scanning confocal microscopy (LSCM) was used to observe the interaction of Salmonella Stanley with alfalfa sprouts. The green fluorescent protein (gfp) gene was integrated into the chromosome of Salmonella Stanley for constitutive expression, thereby eliminating problems of plasmid stability and loss of signal. Alfalfa seeds were inoculated by immersion in a suspension of Salmonella Stanley (ca. 10(7) CFU/ml) for 5 min at 22 degrees C. Epifluorescence microscopy demonstrated the presence of target bacteria on the surface of sprouts. LSCM demonstrated bacteria present at a depth of 12 microm within intact sprout tissue. An initial population of ca. 10(4) CFU/g seed increased to 7.0 log CFU/g during a 24-h germination period and then decreased to 4.9 log CFU/g during a 144-h sprouting period. Populations of Salmonella Stanley on alfalfa seeds decreased from 5.2 to 4.1 log CFU/g and from 5.2 to 2.8 log CFU/g for seeds stored 60 days at 5 and 22 degrees C, respectively. The efficacy of 100, 200, 500, or 2,000 ppm chlorine in killing Salmonella Stanley associated with sprouts was determined. Treatment of sprouts in 2,000 ppm chlorine for 2 or 5 min caused a significant reduction in populations of Salmonella Stanley. Influence of storage on Salmonella Stanley populations was investigated by storing sprouts 4 days at 4 degrees C. The initial population (7.76 log CFU/g) of Salmonella Stanley on mature sprouts decreased (7.67 log CFU/g) only slightly. Cross-contamination during harvest was investigated by harvesting contaminated sprouts, then directly harvesting noncontaminated sprouts. This process resulted in the transfer of ca. 10(5) CFU/g Salmonella Stanley to the noncontaminated sprouts.

  9. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.

    PubMed

    Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens

    2014-07-07

    The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from

  10. Stress Testing of an Artificial Pancreas System With Pizza and Exercise Leads to Improvements in the System's Fuzzy Logic Controller.

    PubMed

    Mauseth, Richard; Lord, Sandra M; Hirsch, Irl B; Kircher, Robert C; Matheson, Don P; Greenbaum, Carla J

    2015-09-14

    Under controlled conditions, the Dose Safety artificial pancreas (AP) system controller, which utilizes "fuzzy logic" (FL) methodology to calculate and deliver appropriate insulin dosages based on changes in blood glucose, successfully managed glycemic excursions. The aim of this study was to show whether stressing the system with pizza (high carbohydrate/high fat) meals and exercise would reveal deficits in the performance of the Dose Safety FL controller (FLC) and lead to improvements in the dosing matrix. Ten subjects with type 1 diabetes (T1D) were enrolled and participated in 30 studies (17 meal, 13 exercise) using 2 versions of the FLC. After conducting 13 studies with the first version (FLC v2.0), interim results were evaluated and the FLC insulin-dosing matrix was modified to create a new controller version (FLC v2.1) that was validated through regression testing using v2.0 CGM datasets prior to its use in clinical studies. The subsequent 17 studies were performed using FLC v2.1. Use of FLC v2.1 vs FLC v2.0 in the pizza meal tests showed improvements in mean blood glucose (205 mg/dL vs 232 mg/dL, P = .04). FLC v2.1 versus FLC v2.0 in exercise tests showed improvements in mean blood glucose (146 mg/dL vs 201 mg/dL, P = .004), percentage time spent >180 mg/dL (19.3% vs 46.7%, P = .001), and percentage time spent 70-180 mg/dL (80.0% vs 53.3%, P = .002). Stress testing the AP system revealed deficits in the FLC performance, which led to adjustments to the dosing matrix followed by improved FLC performance when retested. © 2015 Diabetes Technology Society.

  11. Multi-objective design of fuzzy logic controller in supply chain

    NASA Astrophysics Data System (ADS)

    Ghane, Mahdi; Tarokh, Mohammad Jafar

    2012-08-01

    Unlike commonly used methods, in this paper, we have introduced a new approach for designing fuzzy controllers. In this approach, we have simultaneously optimized both objective functions of a supply chain over a two-dimensional space. Then, we have obtained a spectrum of optimized points, each of which represents a set of optimal parameters which can be chosen by the manager according to the importance of objective functions. Our used supply chain model is a member of inventory and order-based production control system family, a generalization of the periodic review which is termed `Order-Up-To policy.' An auto rule maker, based on non-dominated sorting genetic algorithm-II, has been applied to the experimental initial fuzzy rules. According to performance measurement, our results indicate the efficiency of the proposed approach.

  12. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    PubMed

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions.

  13. Poultry Body Temperature Contributes to Invasion Control through Reduced Expression of Salmonella Pathogenicity Island 1 Genes in Salmonella enterica Serovars Typhimurium and Enteritidis

    PubMed Central

    Petri, Nicholas; Daron, Caitlyn; Pereira, Rafaela; Mendoza, Mary; Hassan, Hosni M.; Koci, Matthew D.

    2015-01-01

    Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S. Typhimurium or S. Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S. Typhimurium or S. Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC, invF, and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur, fliZ, and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence. PMID:26386070

  14. Easy design of colorimetric logic gates based on nonnatural base pairing and controlled assembly of gold nanoparticles.

    PubMed

    Zhang, Li; Wang, Zhong-Xia; Liang, Ru-Ping; Qiu, Jian-Ding

    2013-07-16

    Utilizing the principles of metal-ion-mediated base pairs (C-Ag-C and T-Hg-T), the pH-sensitive conformational transition of C-rich DNA strand, and the ligand-exchange process triggered by DL-dithiothreitol (DTT), a system of colorimetric logic gates (YES, AND, INHIBIT, and XOR) can be rationally constructed based on the aggregation of the DNA-modified Au NPs. The proposed logic operation system is simple, which consists of only T-/C-rich DNA-modified Au NPs, and it is unnecessary to exquisitely design and alter the DNA sequence for different multiple molecular logic operations. The nonnatural base pairing combined with unique optical properties of Au NPs promises great potential in multiplexed ion sensing, molecular-scale computers, and other computational logic devices.

  15. Control and accountability in the NHS market: a practical proposition or logical impossibility?

    PubMed

    Glynn, J J; Perkins, D

    1998-01-01

    Before the imposition of the NHS internal market, systems of accountability and control were far from adequate and could be criticized on a number of grounds. The market was offered as a panacea to address these inadequacies. However, in practice there have only been partial improvements which could have been achieved without the imposition of the market. The market also creates new problems and a number of crises and scandals seem to be addressed at the political level by pleas to utilize resources more effectively. These pleas mean that more and more the focus is turning back to central planning in the provision of care and further away from so-called market mechanisms. The NHS "managed" market has been imperfect and will continue to be so. Argues that there is no alternative but to return to the planned provision of health care in order to improve on accountability and control in the NHS. Hopefully the adverse impact of the market on clinicians and others will force a more rational reappraisal of the fundamental raison d'être of the NHS and the need for those involved in the delivery of services, at all levels, to be more openly accountable.

  16. Nitric oxide–mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection

    PubMed Central

    Nairz, Manfred; Schleicher, Ulrike; Schroll, Andrea; Sonnweber, Thomas; Theurl, Igor; Ludwiczek, Susanne; Talasz, Heribert; Brandacher, Gerald; Moser, Patrizia L.; Muckenthaler, Martina U.; Fang, Ferric C.; Bogdan, Christian

    2013-01-01

    Nitric oxide (NO) generated by inducible NO synthase 2 (NOS2) affects cellular iron homeostasis, but the underlying molecular mechanisms and implications for NOS2-dependent pathogen control are incompletely understood. In this study, we found that NO up-regulated the expression of ferroportin-1 (Fpn1), the major cellular iron exporter, in mouse and human cells. Nos2−/− macrophages displayed increased iron content due to reduced Fpn1 expression and allowed for an enhanced iron acquisition by the intracellular bacterium Salmonella typhimurium. Nos2 gene disruption or inhibition of NOS2 activity led to an accumulation of iron in the spleen and splenic macrophages. Lack of NO formation resulted in impaired nuclear factor erythroid 2-related factor-2 (Nrf2) expression, resulting in reduced Fpn1 transcription and diminished cellular iron egress. After infection of Nos2−/− macrophages or mice with S. typhimurium, the increased iron accumulation was paralleled by a reduced cytokine (TNF, IL-12, and IFN-γ) expression and impaired pathogen control, all of which were restored upon administration of the iron chelator deferasirox or hyperexpression of Fpn1 or Nrf2. Thus, the accumulation of iron in Nos2−/− macrophages counteracts a proinflammatory host immune response, and the protective effect of NO appears to partially result from its ability to prevent iron overload in macrophages PMID:23630227

  17. Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes.

    PubMed

    Bains, William; Schulze-Makuch, Dirk

    2015-08-01

    The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.

  18. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    PubMed

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  19. Salmonella infections

    USDA-ARS?s Scientific Manuscript database

    Infections of poultry with bacteria of the genus Salmonella can cause clinical disease, but are of greater current concern as agents of food-borne transmission of illness to humans. However, two nonmotile organisms, S. Pullorum and S. Gallinarum, are host-specific for avian species. Pullorum disease...

  20. Study on perception and control layer of mine CPS with mixed logic dynamic approach

    NASA Astrophysics Data System (ADS)

    Li, Jingzhao; Ren, Ping; Yang, Dayu

    2017-01-01

    Mine inclined roadway transportation system of mine cyber physical system is a hybrid system consisting of a continuous-time system and a discrete-time system, which can be divided into inclined roadway signal subsystem, error-proofing channel subsystems, anti-car subsystems, and frequency control subsystems. First, to ensure stable operation, improve efficiency and production safety, this hybrid system model with n inputs and m outputs is constructed and analyzed in detail, then its steady schedule state to be solved. Second, on the basis of the formal modeling for real-time systems, we use hybrid toolbox for system security verification. Third, the practical application of mine cyber physical system shows that the method for real-time simulation of mine cyber physical system is effective.