Post optimization paradigm in maximum 3-satisfiability logic programming
NASA Astrophysics Data System (ADS)
Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd
2017-08-01
Maximum 3-Satisfiability (MAX-3SAT) is a counterpart of the Boolean satisfiability problem that can be treated as a constraint optimization problem. It deals with a conundrum of searching the maximum number of satisfied clauses in a particular 3-SAT formula. This paper presents the implementation of enhanced Hopfield network in hastening the Maximum 3-Satisfiability (MAX-3SAT) logic programming. Four post optimization techniques are investigated, including the Elliot symmetric activation function, Gaussian activation function, Wavelet activation function and Hyperbolic tangent activation function. The performances of these post optimization techniques in accelerating MAX-3SAT logic programming will be discussed in terms of the ratio of maximum satisfied clauses, Hamming distance and the computation time. Dev-C++ was used as the platform for training, testing and validating our proposed techniques. The results depict the Hyperbolic tangent activation function and Elliot symmetric activation function can be used in doing MAX-3SAT logic programming.
Artificial bee colony in neuro - Symbolic integration
NASA Astrophysics Data System (ADS)
Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf
2017-08-01
Swarm intelligence is a research area that models the population of the swarm based on natural computation. Artificial bee colony (ABC) algorithm is a swarm based metaheuristic algorithm introduced by Karaboga to optimize numerical problem. Pattern-SAT is a pattern reconstruction paradigm that utilized 2SAT logical rule in representing the behavior of the desired pattern. The information of the desired pattern in terms of 2SAT logic is embedded to Hopfield neural network (HNN-P2SAT) and the desired pattern is reconstructed during the retrieval phase. Since the performance of HNN-P2SAT in Pattern-SAT deteriorates when the number of 2SAT clause increased, newly improved ABC is used to reduce the computation burden during the learning phase of HNN-P2SAT (HNN-P2SATABC). The aim of this study is to investigate the performance of Pattern-SAT produced by ABC incorporated with HNN-P2SAT and compare it with conventional standalone HNN. The comparison is examined by using Microsoft Visual Basic C++ 2013 software. The detailed comparison in doing Pattern-SAT is discussed based on global Pattern-SAT, ratio of activated clauses and computation time. The result obtained from computer simulation indicates the beneficial features of HNN-P2SATABC in doing Pattern-SAT. This finding is expected to result in a significant implication on the choice of searching method used to do Pattern-SAT.
Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem
NASA Astrophysics Data System (ADS)
Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf
2017-08-01
Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.
SAT Encoding of Unification in EL
NASA Astrophysics Data System (ADS)
Baader, Franz; Morawska, Barbara
Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. In a recent paper, we have shown that unification in EL is NP-complete, and thus of a complexity that is considerably lower than in other Description Logics of comparably restricted expressive power. In this paper, we introduce a new NP-algorithm for solving unification problems in EL, which is based on a reduction to satisfiability in propositional logic (SAT). The advantage of this new algorithm is, on the one hand, that it allows us to employ highly optimized state-of-the-art SAT solvers when implementing an EL-unification algorithm. On the other hand, this reduction provides us with a proof of the fact that EL-unification is in NP that is much simpler than the one given in our previous paper on EL-unification.
Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases
NASA Astrophysics Data System (ADS)
Zengler, Christoph; Küchlin, Wolfgang
We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.
Evaluation of the KLA-Tencor 2138 for line monitoring applications
NASA Astrophysics Data System (ADS)
Metteer, Brian; Garvin, James F., Jr.; Cataldi, Frank; Ng, Albert; Button, Jon; Newell, Robyn; Rodriguez, Mike D.; Miller, Arlisa
1998-06-01
This report summarizes the results of an evaluation of the KLA-Tencor (KT) 2138 Ultra-Broadband (UBB) optical inspection system performed in the DP1 development facility at Texas Instruments from July 1997 to November 1997. The purpose of this project was to evaluate the effectiveness of the new 2138 UBB system compared to a KT AIT, non-SAT tests on a KT 2135, and SAT recipes on the KT 2132. The 2138 system was designed to provide improved sensitivity and defect detection over the 2135 and other tools. In particular, the UBB illumination source utilized by the 2138 system was expected to provide a significant sensitivity improvement over the 2135 on wafers with color variation as a source of noise. The speeds of the individual pixel tests on the 2138 are the same as those on the 2135. However, it was found that the 2138 0.62 micrometer pixel tests actually found more defects than did the 0.39 micrometer pixel tests on the 2132 on the process levels where this comparison was studied. This type of comparison was not performed between the 2138 and the 2135 since SAT capability was not available on the DP1 2135 during the evaluation. Initially, the primary objective of this project was to measure the UBB system's performance as compared to the 2135 on two Memory levels and three Logic levels. However, since the DP1 2135 system did not possess segmented autothreshold (SAT) capability during this evaluation and the DP1 2132 system did possess SAT capability, the DP1 2132 was added to the evaluation for a 2138 versus 213X SAT direct comparison. Also, the AIT was added to the evaluation plan for a brightfield versus darkfield technology comparison. Finally, three additional Logic levels were added to the evaluation plan, including one Post-CMP level. During this evaluation, the 2138 was proven to be significantly more sensitive than was the 2135, 2132, and the AIT on all process levels compared. Also, very few hardware or software problems were noted during the evaluation.
Hardening Logic Encryption against Key Extraction Attacks with Circuit Camouflage
2017-03-01
camouflage; obfuscation; SAT; key extraction; reverse engineering; security; trusted electronics Introduction Integrated Circuit (IC) designs are...Encryption Algorithms”, Hardware Oriented Security and Trust , 2015. 3. Rajendran J., Pino, Y., Sinanoglu, O., Karri, R., “Security Analysis of Logic
Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko
2013-06-18
Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.
NASA Astrophysics Data System (ADS)
Gong, Weiwei; Zhou, Xu
2017-06-01
In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
Complexity and approximability of quantified and stochastic constraint satisfaction problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, H. B.; Stearns, R. L.; Marathe, M. V.
2001-01-01
Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SAT{sub c}(S)). Here, we study simultaneously the complexity of and the existence of efficient approximation algorithms for a number of variants of the problems SAT(S) and SAT{sub c}(S), and for many different D, C, and S.more » These problem variants include decision and optimization problems, for formulas, quantified formulas stochastically-quantified formulas. We denote these problems by Q-SAT(S), MAX-Q-SAT(S), S-SAT(S), MAX-S-SAT(S) MAX-NSF-Q-SAT(S) and MAX-NSF-S-SAT(S). The main contribution is the development of a unified predictive theory for characterizing the the complexity of these problems. Our unified approach is based on the following basic two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic representability. Let k {ge} 2. Let S be a finite set of finite-arity relations on {Sigma}{sub k} with the following condition on S: All finite arity relations on {Sigma}{sub k} can be represented as finite existentially-quantified conjunctions of relations in S applied to variables (to variables and constant symbols in C), Then we prove the following new results: (1) The problems SAT(S) and SAT{sub c}(S) are both NQL-complete and {le}{sub logn}{sup bw}-complete for NP. (2) The problems Q-SAT(S), Q-SAT{sub c}(S), are PSPACE-complete. Letting k = 2, the problem S-SAT(S) and S-SAT{sub c}(S) are PSPACE-complete. (3) {exists} {epsilon} > 0 for which approximating the problems MAX-Q-SAT(S) within {epsilon} times optimum is PSPACE-hard. Letting k =: 2, {exists} {epsilon} > 0 for which approximating the problems MAX-S-SAT(S) within {epsilon} times optimum is PSPACE-hard. (4) {forall} {epsilon} > 0 the problems MAX-NSF-Q-SAT(S) and MAX-NSF-S-SAT(S), are PSPACE-hard to approximate within a factor of n{sup {epsilon}} times optimum. These results significantly extend the earlier results by (i) Papadimitriou [Pa851] on complexity of stochastic satisfiability, (ii) Condon, Feigenbaum, Lund and Shor [CF+93, CF+94] by identifying natural classes of PSPACE-hard optimization problems with provably PSPACE-hard {epsilon}-approximation problems. Moreover, most of our results hold not just for Boolean relations: most previous results were done only in the context of Boolean domains. The results also constitute as a significant step towards obtaining a dichotomy theorems for the problems MAX-S-SAT(S) and MAX-Q-SAT(S): a research area of recent interest [CF+93, CF+94, Cr95, KSW97, LMP99].« less
DNA strand displacement system running logic programs.
Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr
2014-01-01
The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Integrated logic circuits using single-atom transistors
Mol, J. A.; Verduijn, J.; Levine, R. D.; Remacle, F.
2011-01-01
Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal–oxide–semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050
Quantum probabilistic logic programming
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
NASA Astrophysics Data System (ADS)
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
TemperSAT: A new efficient fair-sampling random k-SAT solver
NASA Astrophysics Data System (ADS)
Fang, Chao; Zhu, Zheng; Katzgraber, Helmut G.
The set membership problem is of great importance to many applications and, in particular, database searches for target groups. Recently, an approach to speed up set membership searches based on the NP-hard constraint-satisfaction problem (random k-SAT) has been developed. However, the bottleneck of the approach lies in finding the solution to a large SAT formula efficiently and, in particular, a large number of independent solutions is needed to reduce the probability of false positives. Unfortunately, traditional random k-SAT solvers such as WalkSAT are biased when seeking solutions to the Boolean formulas. By porting parallel tempering Monte Carlo to the sampling of binary optimization problems, we introduce a new algorithm (TemperSAT) whose performance is comparable to current state-of-the-art SAT solvers for large k with the added benefit that theoretically it can find many independent solutions quickly. We illustrate our results by comparing to the currently fastest implementation of WalkSAT, WalkSATlm.
COMPLEXITY&APPROXIMABILITY OF QUANTIFIED&STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, H. B.; Marathe, M. V.; Stearns, R. E.
2001-01-01
Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity ormore » efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C ,S, T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic represent ability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94O]u r techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-&-SAT( S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93,CF+94,Cr95,KSW97]« less
Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions.
Wijesinghe, Parami; Liyanagedera, Chamika; Roy, Kaushik
2018-05-02
Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of variables(<50).
A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph
Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.
2016-01-01
We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference. PMID:27857179
A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem
NASA Astrophysics Data System (ADS)
Jäger, Gerold; Zhang, Weixiong
The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.
Baruah, Manash P.; Bhattacharya, Bhaskar
2012-01-01
Background: C-reactive protein (CRP), which is a marker of inflammation, has not been widely studied in inflammatory thyroid disorders particularly in sub-acute thyroiditis (SAT). Aim: This study was aimed to find the significance of CRP level rise in patients with SAT and compare that to the rise in erythrocyte sedimentation rate (ESR), a gold standard laboratory parameter in establishing the diagnosis of SAT. Materials and Methods: Serum CRP levels were measured at initial presentation in 28 subjects with SAT(12 male, 16 female, age (Mean +SD) 37.96 ±8.5 years),and 19 patients with Graves’ disease (2 male, 17 female, age [Mean +SD] 36.8 ±16.5 years) as controls. Erythrocyte sedimentation rate (ESR) was measured in all 28 patients with SAT by Westergrens’ method. Either Tc99 nucleotide thyroid scan or high resolution ultrasonography (HR-USG) was performed to differentiate SAT from Graves’ disease.Fine needle aspiration cytology (FNAC) of thyroid was performed selected patients. Results: Serum CRP level was high in 61% of SAT patients but in none of the Graves′patients. Mean (SEM) (90%CI) serum CRP level (mg/L) was also significantly higher (P <0.0004) in the SAT group [27.55 (5.76) (15.72-39.38)], than in the Graves’ group [4.09 (0.12) (3.81-4.36)]. The sensitivity of serum CRP was 73.33%, specificity 53.85%, positive predictive value (PPV) 64.71%, and negative predictive value (NPV) 63.64% as compared to the sensitivity (53.57%), specificity (15.38%), PPV (57.69 %), and NPV (13.33%) of ESR. Conclusion: There is significantly higher rise in serum CRP level in patients with SAT is compared to patients with Graves’ disease. It correlates well with the rise in ESR. Such findings of this pilot study highlight the scope of using serum CRP as a diagnostic marker of SAT specially in situations when it may be confused with Graves’ disease, another common cause of thyrotoxicosis. It is logical to carry out studies to find a particular cut-off for serum CRP which can serve as an objective parameter for grading the inflammation in patients with SAT. PMID:23226645
Baruah, Manash P; Bhattacharya, Bhaskar
2012-11-01
C-reactive protein (CRP), which is a marker of inflammation, has not been widely studied in inflammatory thyroid disorders particularly in sub-acute thyroiditis (SAT). This study was aimed to find the significance of CRP level rise in patients with SAT and compare that to the rise in erythrocyte sedimentation rate (ESR), a gold standard laboratory parameter in establishing the diagnosis of SAT. Serum CRP levels were measured at initial presentation in 28 subjects with SAT(12 male, 16 female, age (Mean +SD) 37.96 ±8.5 years),and 19 patients with Graves' disease (2 male, 17 female, age [Mean +SD] 36.8 ±16.5 years) as controls. Erythrocyte sedimentation rate (ESR) was measured in all 28 patients with SAT by Westergrens' method. Either Tc(99) nucleotide thyroid scan or high resolution ultrasonography (HR-USG) was performed to differentiate SAT from Graves' disease.Fine needle aspiration cytology (FNAC) of thyroid was performed selected patients. Serum CRP level was high in 61% of SAT patients but in none of the Graves'patients. Mean (SEM) (90%CI) serum CRP level (mg/L) was also significantly higher (P <0.0004) in the SAT group [27.55 (5.76) (15.72-39.38)], than in the Graves' group [4.09 (0.12) (3.81-4.36)]. The sensitivity of serum CRP was 73.33%, specificity 53.85%, positive predictive value (PPV) 64.71%, and negative predictive value (NPV) 63.64% as compared to the sensitivity (53.57%), specificity (15.38%), PPV (57.69 %), and NPV (13.33%) of ESR. There is significantly higher rise in serum CRP level in patients with SAT is compared to patients with Graves' disease. It correlates well with the rise in ESR. Such findings of this pilot study highlight the scope of using serum CRP as a diagnostic marker of SAT specially in situations when it may be confused with Graves' disease, another common cause of thyrotoxicosis. It is logical to carry out studies to find a particular cut-off for serum CRP which can serve as an objective parameter for grading the inflammation in patients with SAT.
Comparing State SAT Scores: Problems, Biases, and Corrections.
ERIC Educational Resources Information Center
Gohmann, Stephen F.
1988-01-01
One method to correct for selection bias in comparing Scholastic Aptitude Test (SAT) scores among states is presented, which is a modification of J. J. Heckman's Selection Bias Correction (1976, 1979). Empirical results suggest that sample selection bias is present in SAT score regressions. (SLD)
Handicapped Students and the SAT.
ERIC Educational Resources Information Center
Ragosta, Marjorie
A pilot study of handicapped students and the Scholastic Aptitude Test (SAT) was designed to assess the concerns of handicapped students about the SAT, to identify problems specific to certain disabilities or common across disabilities, to alert the College Board and Educational Testing Service (ETS) about the findings, and to make recommendations…
Development of Novel Integrated Antennas for CubeSats
NASA Technical Reports Server (NTRS)
Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew
2015-01-01
The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.
NASA Technical Reports Server (NTRS)
Swenson, Charles
2016-01-01
The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.
The QBito CubeSat: Applications in Space Engineering Education at Technical University of Madrid
NASA Astrophysics Data System (ADS)
Fernandez Fraile, Jose Javier; Laverón-Simavilla, Ana; Calvo, Daniel; Moreno Benavides, Efren
The QBito CubeSat is one of the 50 CubeSats that is being developed for the QB50 project. The project is funded by the 7 (th) Frame Program to launch 50 CubeSats in a ‘string-of-pearls’ configuration for multi-point, in-situ measurements in the lower thermosphere and re-entry research. The 50 CubeSats, developed by an international network of universities and research institutions, will comprise 40 double CubeSats with atmospheric sensors and 10 double or triple CubeSats for science and technology demonstration. It will be the first large-scale CubeSat constellation in orbit; a concept that has been under discussion for several years but not implemented up to now. This project has a high educational interest for universities; beyond the scientific and technological results, being part of an international group of over 90 universities all over the world working and sharing knowledge to achieve a successful mission represents an exciting opportunity. The QBito project main educational motivation is to educate students in space technologies and in space systems engineering. The Universidad Politécnica de Madrid (UPM) is designing, developing, building and testing one of the double CubeSats carrying as payload a kit of atmospheric sensors from the consortium, and other payloads developed by the team such as an IR non-refrigerated sensor, a Phase Change Material (PCM) for thermal control applications, a Fuzzy Logic Attitude Control System and other technological developments such as an optimized antenna deployment mechanism, a lightweight multi-mission configurable structure, and an efficient Electric Power System (EPS) with a Maximum Peak Power Tracker (MPPT). This project has been integrated in the training of the Aerospatiale Engineering, Master and PhD degree students by involving them in the complete engineering process, from its conceptual design to the post-flight conclusions. Three subsystems have been selected for being developed from the conceptual design stage to the flight device: structure, electrical power system and antenna deployment mechanism. In this work, the main characteristics adopted for structure are presented. The project has already provided very interesting lessons to all the people involved, not only students.
NASA Astrophysics Data System (ADS)
Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.
2016-10-01
This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.
2017-09-14
e.g. 000111) may be emitted along an ultra- high frequency (UHF) communications path as a possible waveform state generated by some circuit...Positive Rate TN True Negative TNR True Negative Rate TVR True Verification Rate Tx Transmitter UHF Ultra High Frequency 21 BIOLOGICALLY...otherwise healthy RF networks. More specifically, a representative miniaturized ultra- high frequency (UHF) CubeSat uplink access boundary, protected
Manipulation of oligonucleotides immobilized on solid supports - DNA computations on surfaces
NASA Astrophysics Data System (ADS)
Liu, Qinghua
The manipulation of DNA oligonucleotides immobilized on various solid supports has been studied intensively, especially in the area of surface hybridization. Recently, surface-based biotechnology has been applied to the area of molecular computing. These surface-based methods have advantages with regard to ease of handling, facile purification, and less interference when compared to solution methodologies. This dissertation describes the investigation of molecular approaches to DNA computing. The feasibility of encoding a bit (0 or 1) of information for DNA-based computations at the single nucleotide level was studied, particularly with regard to the efficiency and specificity of hybridization discrimination. Both gold and glass surfaces, with addressed arrays of 32 oligonucleotides, were employed with similar hybridization results. Although single-base discrimination may be achieved in the system, it is at the cost of a severe decrease in the efficiency of hybridization to perfectly matched sequences. This compromises the utility of single nucleotide encoding for DNA computing applications in the absence of some additional mechanism for increasing specificity. Several methods are suggested including a multiple-base encoding strategy. The multiple-base encoding strategy was employed to develop a prototype DNA computer. The approach was demonstrated by solving a small example of the Satisfiability (SAT) problem, an NP-complete problem in Boolean logic. 16 distinct DNA oligonucleotides, encoding all candidate solutions to the 4-variable-4-clause-3-SAT problem, were immobilized on a gold surface in the non-addressed format. Four cycles of MARK (hybridization), DESTROY (enzymatic destruction) and UNMARK (denaturation) were performed, which identified and eliminated members of the set which were not solutions to the problem. Determination of the answer was accomplished in the READOUT (sequence identification) operation by PCR amplification of the remaining molecules and hybridization to an addressed array. Four answers were determined and the S/N ratio between correct and incorrect solutions ranged from 10 to 777, making discrimination between correct and incorrect solutions to the problem straightforward. Additionally, studies of enzymatic manipulations of DNA molecules on surfaces suggested the use of E. coli Exonuclease I (Exo I) and perhaps EarI in the DESTROY operation.
A Historical Perspective on the Content of the SAT®. Research Report No. 2003-3. ETS RR-03-10
ERIC Educational Resources Information Center
Lawrence, Ida M.; Rigol, Gretchen W.; Van Essen, Thomas; Jackson, Carol A.
2003-01-01
This paper provides an historical perspective on the content of the SAT. The review begins at the beginning, when the first College Board SAT (the Scholastic Aptitude Test) was administered to 8,040 students on June 23, 1926. At that time, the SAT consisted of nine subtests: Definitions, Arithmetical Problems, Classification, Artificial Language,…
Solving Open Job-Shop Scheduling Problems by SAT Encoding
NASA Astrophysics Data System (ADS)
Koshimura, Miyuki; Nabeshima, Hidetomo; Fujita, Hiroshi; Hasegawa, Ryuzo
This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.
Assessing the Value of Structured Analytic Techniques in the U.S. Intelligence Community
2016-01-01
Analytic Techniques, and Why Do Analysts Use Them? SATs are methods of organizing and stimulating thinking about intelligence problems. These methods... thinking ; and imaginative thinking techniques encourage new perspectives, insights, and alternative scenarios. Among the many SATs in use today, the...more transparent, so that other analysts and customers can bet - ter understand how the judgments were reached. SATs also facilitate group involvement
NASA Technical Reports Server (NTRS)
Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.
2013-01-01
Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.
Crucial design issues for special access technology; a Delphi study.
O'Rourke, Pearl; Ekins, Ray; Timmins, Bernard; Timmins, Fiona; Long, Siobhan; Coyle, Eugene
2014-01-01
To develop and demonstrate a method to involve professional users of assistive technology (AT) in the development process of customisable products. Employing the ideas of user participation and mass customisation, this research addresses the need for reduced product costs and optimised product flexibility. An adaptable six-question Delphi study was developed to establish consensus among AT professionals on design issues relating to a specified AT domain requiring innovation. The study is demonstrated for the special access technology (SAT) domain. A modified morphological matrix structures the application of the study results to the product design process. Fourteen professionals from the Republic of Ireland and the UK participated. Consensus was reached on prevalent parts of SAT that malfunction, primary reasons for SAT malfunction, characteristics of clients associated with SAT selection, client needs regarding SAT use and training, desirable traits of SAT and clinicians' frustrations with SAT. The study revealed a range of problems related to SAT, highlighting the complexities of successful SAT adoption. The questions led to differentiated insights and enabled design solution conceptualisation from various perspectives. The approach was found to help facilitate efficient generation and application of professional users' knowledge during the design process of customisable AT.
Artificial immune system algorithm in VLSI circuit configuration
NASA Astrophysics Data System (ADS)
Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd
2017-08-01
In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.
NASA Technical Reports Server (NTRS)
Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric
2014-01-01
Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and verification/validation of the MSFC SDR, called PULSAR, which contributes to advancing the state-of-the-art in transponder design - directly applicable to the SmallSat and CubeSat communities. This paper focuses on lessons learned on the first sub-orbital flight (high altitude balloon) and the follow-on steps taken to validate PULSAR. A sounding rocket launch, currently planned for 03/2015, will further expose PULSAR to the high dynamics of sub-orbital flights. Future opportunities for orbiting satellite incorporation reside in the small satellite missions (FASTSat, CubeSat. etc.).
Amoeba-Inspired Heuristic Search Dynamics for Exploring Chemical Reaction Paths.
Aono, Masashi; Wakabayashi, Masamitsu
2015-09-01
We propose a nature-inspired model for simulating chemical reactions in a computationally resource-saving manner. The model was developed by extending our previously proposed heuristic search algorithm, called "AmoebaSAT [Aono et al. 2013]," which was inspired by the spatiotemporal dynamics of a single-celled amoeboid organism that exhibits sophisticated computing capabilities in adapting to its environment efficiently [Zhu et al. 2013]. AmoebaSAT is used for solving an NP-complete combinatorial optimization problem [Garey and Johnson 1979], "the satisfiability problem," and finds a constraint-satisfying solution at a speed that is dramatically faster than one of the conventionally known fastest stochastic local search methods [Iwama and Tamaki 2004] for a class of randomly generated problem instances [ http://www.cs.ubc.ca/~hoos/5/benchm.html ]. In cases where the problem has more than one solution, AmoebaSAT exhibits dynamic transition behavior among a variety of the solutions. Inheriting these features of AmoebaSAT, we formulate "AmoebaChem," which explores a variety of metastable molecules in which several constraints determined by input atoms are satisfied and generates dynamic transition processes among the metastable molecules. AmoebaChem and its developed forms will be applied to the study of the origins of life, to discover reaction paths for which expected or unexpected organic compounds may be formed via unknown unstable intermediates and to estimate the likelihood of each of the discovered paths.
Compositional Verification with Abstraction, Learning, and SAT Solving
2015-05-01
arithmetic, and bit-vectors (currently, via bit-blasting). The front-end is based on an existing tool called UFO [8] which converts C programs to the Horn...supports propositional logic, linear arithmetic, and bit-vectors (via bit-blasting). The front-end is based on the tool UFO [8]. It encodes safety of...tool UFO [8]. The encoding in Horn-SMT only uses the theory of Linear Rational Arithmetic. All experiments were carried out on an Intel R© CoreTM2 Quad
Automated discovery of local search heuristics for satisfiability testing.
Fukunaga, Alex S
2008-01-01
The development of successful metaheuristic algorithms such as local search for a difficult problem such as satisfiability testing (SAT) is a challenging task. We investigate an evolutionary approach to automating the discovery of new local search heuristics for SAT. We show that several well-known SAT local search algorithms such as Walksat and Novelty are composite heuristics that are derived from novel combinations of a set of building blocks. Based on this observation, we developed CLASS, a genetic programming system that uses a simple composition operator to automatically discover SAT local search heuristics. New heuristics discovered by CLASS are shown to be competitive with the best Walksat variants, including Novelty+. Evolutionary algorithms have previously been applied to directly evolve a solution for a particular SAT instance. We show that the heuristics discovered by CLASS are also competitive with these previous, direct evolutionary approaches for SAT. We also analyze the local search behavior of the learned heuristics using the depth, mobility, and coverage metrics proposed by Schuurmans and Southey.
Truth Values of Quantum Phenomena
NASA Astrophysics Data System (ADS)
Bolotin, Arkady
2018-04-01
In the paper, the idea of describing not-yet-verified properties of quantum objects with logical many-valuedness is scrutinized. As it is argued, to promote such an idea, the following two foundational problems of many-valued quantum logic must be decided: the problem of choosing a proper system of many-valued logic and the problem of the emergence of bivalence from logical many-valuedness. Difficulties accompanying solutions of these problems are discussed.
Albu, Jeanine B; Kenya, Sonjia; He, Qing; Wainwright, Marsha; Berk, Evan S; Heshka, Stanley; Kotler, Donald P; Engelson, Ellen S
2009-01-01
Background Obesity and insulin resistance are growing problems in HIV-positive (HIV+) women receiving highly active antiretroviral therapy (HAART). Objective The objective was to determine the contribution of adipose tissue (AT) enlargement and distribution to the presence of insulin resistance in obese HIV+ women. Design Whole-body intermuscular AT (IMAT), visceral AT (VAT), subcutaneous AT (SAT), and SAT distribution (leg versus upper body) were measured by whole-body magnetic resonance imaging. Insulin sensitivity (SI) was measured with an intravenous glucose tolerance test in obese HIV+ women recruited because of their desire to lose weight (n = 17) and in obese healthy controls (n = 32). Results The HIV+ women had relatively less whole-body SAT and more VAT and IMAT than did the controls (P < 0.05 for all). A significant interaction by HIV status was observed for the relation of total SAT with SI (P < 0.001 for the regression’s slope interactions after adjustment for age, height, and weight). However, relations of IMAT, VAT, and SAT distribution (leg SAT as a percentage of total SAT; leg SAT%) with SI did not differ significantly between groups. For both groups combined, the best model predicting a low SI included significant contributions by both high IMAT and low leg SAT%, independent of age, height, and weight, and no interaction between groups was observed (overall r2 = 0.44, P = 0.0003). Conclusion In obese HIV+ women, high whole-body IMAT and low leg SAT% distribution are independently associated with insulin resistance. PMID:17616768
The King and Prisoner Puzzle: A Way of Introducing the Components of Logical Structures
ERIC Educational Resources Information Center
Roh, Kyeong Hah; Lee, Yong Hah; Tanner, Austin
2016-01-01
The purpose of this paper is to provide issues related to student understanding of logical components that arise when solving word problems. We designed a logic problem called the King and Prisoner Puzzle--a linguistically simple, yet logically challenging problem. In this paper, we describe various student solutions to the puzzle and discuss the…
Bounded Parametric Model Checking for Elementary Net Systems
NASA Astrophysics Data System (ADS)
Knapik, Michał; Szreter, Maciej; Penczek, Wojciech
Bounded Model Checking (BMC) is an efficient verification method for reactive systems. BMC has been applied so far to verification of properties expressed in (timed) modal logics, but never to their parametric extensions. In this paper we show, for the first time that BMC can be extended to PRTECTL - a parametric extension of the existential version of CTL. To this aim we define a bounded semantics and a translation from PRTECTL to SAT. The implementation of the algorithm for Elementary Net Systems is presented, together with some experimental results.
Conquering the SAT: How Parents Can Help Teens Overcome the Pressure and Succeed
ERIC Educational Resources Information Center
Johnson, Ned; Eskelsen, Emily Warner
2006-01-01
This insightful and practical guide for parents shows how they often undermine rather than encourage their teens' success on one of the most stressful standardized tests--the SAT--and what strategies will remedy the problem. In recent years this test has taken on fearsome proportions, matched only by the growing competition for slots at major…
Morsanyi, Kinga; Handley, Simon J
2012-05-01
When people evaluate syllogisms, their judgments of validity are often biased by the believability of the conclusions of the problems. Thus, it has been suggested that syllogistic reasoning performance is based on an interplay between a conscious and effortful evaluation of logicality and an intuitive appreciation of the believability of the conclusions (e.g., Evans, Newstead, Allen, & Pollard, 1994). However, logic effects in syllogistic reasoning emerge even when participants are unlikely to carry out a full logical analysis of the problems (e.g., Shynkaruk & Thompson, 2006). There is also evidence that people can implicitly detect the conflict between their beliefs and the validity of the problems, even if they are unable to consciously produce a logical response (e.g., De Neys, Moyens, & Vansteenwegen, 2010). In 4 experiments we demonstrate that people intuitively detect the logicality of syllogisms, and this effect emerges independently of participants' conscious mindset and their cognitive capacity. This logic effect is also unrelated to the superficial structure of the problems. Additionally, we provide evidence that the logicality of the syllogisms is detected through slight changes in participants' affective states. In fact, subliminal affective priming had an effect on participants' subjective evaluations of the problems. Finally, when participants misattributed their emotional reactions to background music, this significantly reduced the logic effect. (c) 2012 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Biswas, Rupak
1996-01-01
Solving the hard Satisfiability Problem is time consuming even for modest-sized problem instances. Solving the Random L-SAT Problem is especially difficult due to the ratio of clauses to variables. This report presents a parallel synchronous simulated annealing method for solving the Random L-SAT Problem on a large-scale distributed-memory multiprocessor. In particular, we use a parallel synchronous simulated annealing procedure, called Generalized Speculative Computation, which guarantees the same decision sequence as sequential simulated annealing. To demonstrate the performance of the parallel method, we have selected problem instances varying in size from 100-variables/425-clauses to 5000-variables/21,250-clauses. Experimental results on the AP1000 multiprocessor indicate that our approach can satisfy 99.9 percent of the clauses while giving almost a 70-fold speedup on 500 processors.
Application of temporal LNC logic in artificial intelligence
NASA Astrophysics Data System (ADS)
Adamek, Marek; Mulawka, Jan
2016-09-01
This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.
Combining fuzzy mathematics with fuzzy logic to solve business management problems
NASA Astrophysics Data System (ADS)
Vrba, Joseph A.
1993-12-01
Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.
Identifying Fallacies of Reference in Argumentation
ERIC Educational Resources Information Center
Gough, Jim
2009-01-01
The experience of teaching informal logic (sometimes called practical logic) at the introductory level over the last fifteen years has allowed the author the opportunity to identify some interesting problems. These problems have been encountered by students attempting to understand some of the ideas presented in the informal logic course and by…
The Quantum Logical Challenge: Peter Mittelstaedt's Contributions to Logic and Philosophy of Science
NASA Astrophysics Data System (ADS)
Beltrametti, E.; Dalla Chiara, M. L.; Giuntini, R.
2017-12-01
Peter Mittelstaedt's contributions to quantum logic and to the foundational problems of quantum theory have significantly realized the most authentic spirit of the International Quantum Structures Association: an original research about hard technical problems, which are often "entangled" with the emergence of important changes in our general world-conceptions. During a time where both the logical and the physical community often showed a skeptical attitude towards Birkhoff and von Neumann's quantum logic, Mittelstaedt brought into light the deeply innovating features of a quantum logical thinking that allows us to overcome some strong and unrealistic assumptions of classical logical arguments. Later on his intense research on the unsharp approach to quantum theory and to the measurement problem stimulated the increasing interest for unsharp forms of quantum logic, creating a fruitful interaction between the work of quantum logicians and of many-valued logicians. Mittelstaedt's general views about quantum logic and quantum theory seem to be inspired by a conjecture that is today more and more confirmed: there is something universal in the quantum theoretic formalism that goes beyond the limits of microphysics, giving rise to interesting applications to a number of different fields.
Heuristic and analytic processes in reasoning: an event-related potential study of belief bias.
Banks, Adrian P; Hope, Christopher
2014-03-01
Human reasoning involves both heuristic and analytic processes. This study of belief bias in relational reasoning investigated whether the two processes occur serially or in parallel. Participants evaluated the validity of problems in which the conclusions were either logically valid or invalid and either believable or unbelievable. Problems in which the conclusions presented a conflict between the logically valid response and the believable response elicited a more positive P3 than problems in which there was no conflict. This shows that P3 is influenced by the interaction of belief and logic rather than either of these factors on its own. These findings indicate that belief and logic influence reasoning at the same time, supporting models in which belief-based and logical evaluations occur in parallel but not theories in which belief-based heuristic evaluations precede logical analysis.
Using logic models in a community-based agricultural injury prevention project.
Helitzer, Deborah; Willging, Cathleen; Hathorn, Gary; Benally, Jeannie
2009-01-01
The National Institute for Occupational Safety and Health has long promoted the logic model as a useful tool in an evaluator's portfolio. Because a logic model supports a systematic approach to designing interventions, it is equally useful for program planners. Undertaken with community stakeholders, a logic model process articulates the underlying foundations of a particular programmatic effort and enhances program design and evaluation. Most often presented as sequenced diagrams or flow charts, logic models demonstrate relationships among the following components: statement of a problem, various causal and mitigating factors related to that problem, available resources to address the problem, theoretical foundations of the selected intervention, intervention goals and planned activities, and anticipated short- and long-term outcomes. This article describes a case example of how a logic model process was used to help community stakeholders on the Navajo Nation conceive, design, implement, and evaluate agricultural injury prevention projects.
Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.
ERIC Educational Resources Information Center
Cleaver, Thomas G.
1988-01-01
Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)
Fuzzy branching temporal logic.
Moon, Seong-ick; Lee, Kwang H; Lee, Doheon
2004-04-01
Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.
Exploiting Elementary Landscapes for TSP, Vehicle Routing and Scheduling
2015-09-03
Traveling Salesman Problem (TSP) and Graph Coloring are elementary. Problems such as MAX-kSAT are a superposition of k elementary landscapes. This...search space. Problems such as the Traveling Salesman Problem (TSP), Graph Coloring, the Frequency Assignment Problem , as well as Min-Cut and Max-Cut...echoing our earlier esults on the Traveling Salesman Problem . Using two locally optimal solutions as “parent” solutions, we have developed a
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.
Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M
2015-06-12
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
Ozhinsky, Eugene; Vigneron, Daniel B; Nelson, Sarah J
2011-04-01
To develop a technique for optimizing coverage of brain 3D (1) H magnetic resonance spectroscopic imaging (MRSI) by automatic placement of outer-volume suppression (OVS) saturation bands (sat bands) and to compare the performance for point-resolved spectroscopic sequence (PRESS) MRSI protocols with manual and automatic placement of sat bands. The automated OVS procedure includes the acquisition of anatomic images from the head, obtaining brain and lipid tissue maps, calculating optimal sat band placement, and then using those optimized parameters during the MRSI acquisition. The data were analyzed to quantify brain coverage volume and data quality. 3D PRESS MRSI data were acquired from three healthy volunteers and 29 patients using protocols that included either manual or automatic sat band placement. On average, the automatic sat band placement allowed the acquisition of PRESS MRSI data from 2.7 times larger brain volumes than the conventional method while maintaining data quality. The technique developed helps solve two of the most significant problems with brain PRESS MRSI acquisitions: limited brain coverage and difficulty in prescription. This new method will facilitate routine clinical brain 3D MRSI exams and will be important for performing serial evaluation of response to therapy in patients with brain tumors and other neurological diseases. Copyright © 2011 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Students' Concept-Building Approaches: A Novel Predictor of Success in Chemistry Courses
ERIC Educational Resources Information Center
Frey, Regina F.; Cahill, Michael J.; McDaniel, Mark A.
2017-01-01
One primary goal of many science courses is for students to learn creative problem-solving skills; that is, integrating concepts, explaining concepts in a problem context, and using concepts to solve problems. However, what science instructors see is that many students, even those having excellent SAT/ACT and Advanced Placement scores, struggle in…
A Unified Approach to Optimization
2014-10-02
employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers
Constraint Logic Programming approach to protein structure prediction.
Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico
2004-11-30
The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
OpenSatKit Enables Quick Startup for CubeSat Missions
NASA Technical Reports Server (NTRS)
McComas, David; Melton, Ryan
2017-01-01
The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether its a large or small satellite. Even getting started can be a monumental task. To solve this problem, NASAs Core Flight System (cFS), NASA's 42 spacecraft dynamics simulator, and Ball Aerospaces COSMOS ground system have been integrated together into a kit called OpenSatKit that provides a complete and open source software solution for starting a new satellite mission. Users can have a working system with flight software, dynamics simulation, and a ground command and control system up and running within hours.Every satellite mission requires three primary categories of software to function. The first is Flight Software (FSW) which provides the onboard control of the satellites and its payload(s). NASA's cFS provides a great platform for developing this software. Second, while developing a satellite on earth, it is necessary to simulate the satellites orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real environment. NASAs 42 simulator provides these functionalities. Finally, the ground has to be able to communicate with the satellite, monitor its performance and health, and display its data. Additionally, test scripts have to be written to verify the system on the ground. Ball Aerospace's COSMOS command and control system provides this functionality. Once the OpenSatKit is up and running, the next step is to customize the platform and get it running on the end target. Starting from a fully working system makes porting the cFS from Linux to a users platform much easier. An example Raspberry Pi target is included in the kit so users can gain experience working with a low cost hardware target. All users can benefit from OpenSatKit but the greatest impact and benefits will be to SmallSat missions with constrained budgets and small software teams. This paper describes OpenSatKits system design, the steps necessary to run the system to target the Raspberry Pi, and future plans. OpenSatKit is a free fully functional spacecraft software system that we hope will greatly benefit the SmallSat community.
ERIC Educational Resources Information Center
Santi, Terri
This book contains a classroom-tested approach to the teaching of problem solving to all students in Grades 4-6, regardless of ability. Information on problem solving in general is provided, then mathematical problems on logic, whole numbers, number theory, fractions, decimals, geometry, ratio, proportion, percent, probability, sets, and…
NASA Astrophysics Data System (ADS)
Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton
2018-04-01
We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.
A few categories of electromagnetic field problems treated through Fuzzy Logic
NASA Astrophysics Data System (ADS)
Lolea, M. S.; Dzitac, S.
2018-01-01
The paper deals with the problems of fuzzy logic applied in the field of electromagnetism. In the first part, there are presented some theoretical aspects regarding the characteristics and the application of the fuzzy logic in the general case. Are presented then, some categories of electromagnetic field problems treated by fuzzy logic. The accent is on the effects of exposure to the electromagnetic field on the human body. For this approach is dedicated a paragraph at the end of the paper. There is an application on how to treat by fuzzy logic the effects of electric field exposure. For this purpose, the fuzzy toolbox existing in the Matlab software and the results of some electric field strength measurements into a power substation are used. The results of the study and its conclusions are analyzed and exposed at the end of the paper.
Relay Protection and Automation Systems Based on Programmable Logic Integrated Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashin, A. V., E-mail: LashinAV@lhp.ru; Kozyrev, A. V.
One of the most promising forms of developing the apparatus part of relay protection and automation devices is considered. The advantages of choosing programmable logic integrated circuits to obtain adaptive technological algorithms in power system protection and control systems are pointed out. The technical difficulties in the problems which today stand in the way of using relay protection and automation systems are indicated and a new technology for solving these problems is presented. Particular attention is devoted to the possibility of reconfiguring the logic of these devices, using programmable logic integrated circuits.
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Dan; Abbott, Terence; Baxley, Brian; Greco, Adam; Ridgway, Richard
2005-01-01
The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) concept holds the promise for increased efficiency and throughput at many of the nations under-used airports. This concept allows for concurrent operations at uncontrolled airports that under today s procedures are restricted to one arrival or one departure operation at a time, when current-day IFR separation standards are applied. To allow for concurrent operations, SATS HVO proposes several fundamental changes to today's system. These changes include: creation of dedicated airspace, development of new procedures and communications (phraseologies), and assignment of roles and responsibilities for pilots and controllers, among others. These changes would affect operations on the airborne side (pilot) as well as the groundside (controller and air traffic flow process). The focus of this paper is to discuss some of the issues and potential problems that have been considered in the development of the SATS HVO concept, in particular from the ground side perspective. Reasonable solutions to the issues raised here have been proposed by the SATS HVO team, and are discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less
Integration of a MicroCAT Propulsion System and a PhoneSat Bus into a 1.5U CubeSat
NASA Technical Reports Server (NTRS)
Agasid, Elwood Floyd; Perez, Andres Dono; Gazulla, Oriol Tintore; Trinh, Greenfield Tran; Uribe, Eddie Anthony; Keidar, Michael; Haque, Samudra; Teel, George
2014-01-01
NASA Ames Research Center and the George Washington University have developed an electric propulsion subsystem that can be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The three thrusters were controlled by a SmartPhone that was running the PhoneSat software. The subsystem is fully operational and it requires low average power to function (about 0.1 W). The interface consists of a microcontroller that sends a trigger pulses to the PPU (Plasma Processing Unit), which is responsible for the thruster operation. Frequencies ranging from 1 to 50Hz have been tested, showing a strong flexibility. A SmartPhone acts as the main user interface for the selection of commands that control the entire system. The micro cathode arc thruster MicroCAT provides a high 1(sub sp) of 3000s that allows a 4kg satellite to obtain a (delta)V of 300m/s. The system mass is only 200g with a total of volume of 200(cu cm). The propellant is based on a solid cylinder made of Titanium, which is the cathode at the same time. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of MicroCATs to perform attitude control and orbital correcton maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and PPU inside a 1.5U CubeSat together with the PhoneSat bus into a 1.5U CubeSat. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone byros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary CubeSat missions.
Reflections on writing hydrologic reports
Olcott, Perry G.
1987-01-01
Reporting of scientific work should be characterized by a logical argument that is developed through presentation of the problem, tabulation and display of data pertinent to the problem , and testing and interpretation of the data to prove hypotheses that address the problem. Organization of the report is vital to developing this logical argument: it provides structure, continuity, logic, and emphasis to the presentation. Each part of the report serves a specific function and each is linked by a connecting logic, the logical argument of the report. Each scientific report normally has a title, table of contents, abstract, introduction, body (of the report), and summary and/or conclusions. Organization of sections within the body of the report is exactly parallel to overall organization; subjects presented in the section title are developed by logical subdivisions and pertinent discussion. The summary and/or conclusions section culminates the logical argument of the report by drawing together and quantitatively reiterating the principal conclusions developed in the discussion. Supplemental information on report content, background of the study, additional data or details on procedures, and other information of interest to the reader is presented in the foreward or preface, list of illustrations or tables, glossaries, and appendixes. (Lantz-PTT)
Xatcobeo: Small Mechanisms for CubeSat Satellites - Antenna and Solar Array Deployment
NASA Technical Reports Server (NTRS)
EncinasPlaza, Jose Miguel; VilanVilan, Jose Antonio; AquadoAgelet, Fernando; BrandiaranMancheno, Javier; LopezEstevez, Miguel; MartinezFernandez, Cesar; SarmientoAres, Fany
2010-01-01
The Xatcobeo project, which includes the mechanisms dealt with here, is principally a university project to design and construct a CubeSat 1U-type satellite. This work describes the design and operational features of the system for antenna storage and deployment, and the design and simulations of the solar array deployment system. It explains the various problems faced and solutions adopted, with a view to providing valid data for any other applications that could find them useful, be they of a similar nature or not.
The UoSAT-5 solar cell experiment: First year in orbit
NASA Technical Reports Server (NTRS)
Goodbody, C.
1993-01-01
The results for the first year in orbit of the DRA solar cell experiment flying on the Surrey University UoSAT-5 satellite are described. Several problems were identified with the measured data, which are discussed along with the techniques used to remove or minimize the effect of the problems. After 1 year in orbit the majority of the cells flying on the experiment have undergone little or no degradation. The exception to this are all the ITO/InP cells, supplied by two different manufacturers, they are showing more degradation than the GaAs cells. This result is unexpected and currently unexplainable. It will be necessary to retrieve data from the experiment for several years to obtain the best results due to the relatively benign radiation environment.
ERIC Educational Resources Information Center
Santi, Terri
This book contains a classroom-tested approach to the teaching of problem solving to all students in Grades 6-8, regardless of ability. Information on problem solving in general is provided, then mathematical problems on logic, exponents, fractions, pre-algebra, algebra, geometry, number theory, set theory, ratio, proportion, percent, probability,…
Zero-Energy Optical Logic: Can It Be Practical?
NASA Astrophysics Data System (ADS)
Caulfield, H. John
The thermodynamic “permission” to build a device that can evaluate a sequence of logic operations that operate at zero energy has existed for about 40 years. That is, physics allows it in principle. Conceptual solutions have been explored ever since then. A great number of important concepts were developed in so doing. Over the last four years, my colleagues and I have explored the possibility of a constructive proof. And we finally succeeded. Somewhat unexpectedly, we found such a proof and found that lossless logic systems could actually be built. And, as we had anticipated, it can only be implemented by optics. That raises a new question: Might an optical zero-energy logic system actually be good enough to displace electronic versions in some cases? In this paper, I do not even try to answer that question, but I do lay out some problems now blocking practical applications and show some promising approaches to solving them. The problems addressed are speed, size, and error rate. The anticipated speed problem simply vanishes, as it was an inference from the implicit assumption that the logic would be electronic. But the other two problems are real and must be addressed if energy-free logic is to have any significant applications. Initial steps in solving the size and error rate are addressed in more detail.
Cost of specialized addiction treatment of clients with fetal alcohol spectrum disorder in Canada.
Popova, Svetlana; Lange, Shannon; Burd, Larry; Urbanoski, Karen; Rehm, Jürgen
2013-06-11
Individuals with Fetal Alcohol Spectrum Disorder (FASD) constitute a special population that may be at particularly high risk for substance use. The purpose of the current study was to estimate the utilization of specialized addiction treatment services (SATS) and the associated cost, as a part of the total cost of health care associated with FASD in Canada. The current study was a modeling study. Data on SATS by lifetime mental disorder status were obtained from the Drug and Alcohol Treatment Information System (DATIS) in Ontario, Canada for 2010/11. The number of clients with FASD who received SATS in Ontario in 2010/11 was estimated, assuming that approximately 37% (confidence interval: 21.6%-54.5%) of individuals with FASD abuse or are addicted to alcohol and/or drugs and that their utilization rate of SATS is the same as those for people with a lifetime mental disorder. The data from DATIS was then extrapolated to the total Canadian population. The cost of SATS for clients with FASD in Canada in 2010/11 ranged from $1.65 million Canadian dollars (CND) to $3.59 million CND, based on 5,526 outpatient visits and 9,529 resident days. When the sensitivity analysis was performed the cost of SATS ranged from $979 thousand CND to $5.34 million CND. Special attention must be paid to at-risk groups of individuals such as those with FASD, in order to reduce the likelihood of the development of co-morbid substance abuse problems, and thus, reducing the overall burden on Canadian society.
Micro Cathode Arc Thruster for PhoneSat: Development and Potential Applications
NASA Technical Reports Server (NTRS)
Gazulla, Oriol Tintore; Perez, Andres Dono; Agasid, Elwood; Uribe, Eddie; Trinh, Greenfield; Keidar, Michael; Teel, George; Haque, Samudra; Lukas, Joseph; Salas, Alberto Guillen;
2014-01-01
NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of µCATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions.
Sequential antimicrobial therapy: comparison of the views of microbiologists and pharmacists.
Smyth, E T; Tillotson, G S
1998-07-01
Sequential antimicrobial therapy (SAT) is arousing keen interest in microbiologists and pharmacists. In an attempt to obtain information from these groups regarding the use of SAT in hospitals, an anonymized postal survey was carried out. A SAT questionnaire was circulated to consultant medical microbiologists, clinical microbiologists, and heads of pharmacy departments within the British Isles. Four hundred and forty-seven microbiologists and pharmacists returned completed questionnaires, giving a response rate of 29%. Just over half of medical microbiologists (MM) and pharmacists (PH) indicated that SAT was used in their institution in respiratory medicine, geriatrics, surgery and, significantly, to a lesser degree in paediatrics. The most common infections treated were pneumonia, bronchitis and wound infection. However, there were significant differences between MM and PH, with MM favouring greater use of SAT in peritonitis (P=0.03), septicaemia (P<0.01), bone infection (P<0.01), pyelonephritis (UTI) (P<0.01), and PH favouring use in bronchitis (P<0.01). The ability to take oral fluids or a recognition of no potential absorption problems were key criteria in the decision process leading to the institution of SAT by MM and PH. Significantly more MM favoured employing criteria such as temperature <38 degrees C (P<0.01), no requirement for high tissue concentrations (P=0.02) and evidence of response to i.v. antimicrobial therapy (P<0.01) than PH. The most frequently "switched" antimicrobials were metronidazole, ciprofloxacin and co-amoxiclav. There were more than five times as many MM reporting the use of clindamycin than PH (P<0.01), whereas nearly twice as many PH cited use of cefuroxime (P<0.01). Of those hospitals not employing SAT, most MM and PH concurred that the commonest reason to institute SAT was financial, followed by convenience to patients and staff. However, more PH than MM indicated that protocols (P<0.01) and a reduction in i.v. complications (P<0.01) were important to them. In promoting SAT, MM and PH felt they had the major role. Significantly, each profession felt that the other had a lesser role to play; MM as judged by the PH (P<0.01) and PH as judged by MM (P<0.01). When promoting SAT, both MM and PH felt that "education for clinicians" followed by regular audit was the best way to ensure implementation. However, significant differences arose with PH regarding nurse education (P<0.01), SAT posters (P=0.02), regular review of patients (P=0.04) and patient's notes SAT stickers (P<0.01) as more important to them than MM. Significantly, less MM than PH (P<0.01) insisted that either the i.v. and PO antimicrobials were identical or were from the same group or class when "switching". This survey highlights interesting comparisons between the approaches of MM and PH towards SAT and may indicate ways in which both groups may work together to bring about change.
Human SLC26A1 gene variants: a pilot study.
Dawson, Paul A; Sim, Pearl; Mudge, David W; Cowley, David
2013-01-01
Kidney stones are a global health problem, incurring massive health costs annually. Why stones recur in many patients remains unknown but likely involves environmental, physiological, and genetic factors. The solute linked carrier (SLC) 26A1 gene has previously been linked to kidney stones in mice. SLC26A1 encodes the sulfate anion transporter 1 (SAT1) protein, and its loss in mice leads to hyperoxaluria and calcium oxalate renal stones. To investigate the possible involvement of SAT1 in human urolithiasis, we screened the SLC26A1 gene in a cohort of 13 individuals with recurrent calcium oxalate urolithiasis, which is the commonest type. DNA sequence analyses showed missense mutations in seven patients: one individual was heterozygous R372H; 4 individuals were heterozygous Q556R; one patient was homozygous Q556R; and one patient with severe nephrocalcinosis (requiring nephrectomy) was homozygous Q556R and heterozygous M132T. The M132 amino acid in human SAT1 is conserved with 15 other species and is located within the third transmembrane domain of the predicted SAT1 protein structure, suggesting that this amino acid may be important for SAT1 function. These initial findings demonstrate genetic variants in SLC26A1 of recurrent stone formers and warrant wider independent studies of SLC26A1 in humans with recurrent calcium oxalate stones.
Pedagogy of the logic model: teaching undergraduates to work together to change their communities.
Zimmerman, Lindsey; Kamal, Zohra; Kim, Hannah
2013-01-01
Undergraduate community psychology courses can empower students to address challenging problems in their local communities. Creating a logic model is an experiential way to learn course concepts by "doing." Throughout the semester, students work with peers to define a problem, develop an intervention, and plan an evaluation focused on an issue of concern to them. This report provides an overview of how to organize a community psychology course around the creation of a logic model in order for students to develop this applied skill. Two undergraduate student authors report on their experience with the logic model assignment, describing the community problem they chose to address, what they learned from the assignment, what they found challenging, and what they are doing now in their communities based on what they learned.
New mode switching algorithm for the JPL 70-meter antenna servo controller
NASA Technical Reports Server (NTRS)
Nickerson, J. A.
1988-01-01
The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.
NASA Technical Reports Server (NTRS)
Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.
2002-01-01
The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.
Hands on Education Through Student-Industry Partnerships
NASA Astrophysics Data System (ADS)
Brown, J.; Wolfson, M.; Morris, K.
2013-09-01
Lockheed Martin Space Systems Company has invested in the future generation of engineers by partially funding and mentoring CubeSat projects around the country. One CubeSat in particular, ALL-STAR, has shown how this industry/university partnership benefits both the students and their mentors. Students gain valuable insight into aspects of spacecraft design that aren't taught in classes. They also start learning about industry processes for designing, building, and testing satellites before ever working in that environment. Because of this experience, industry is getting more qualified engineers starting fresh out of college. In addition Lockheed Martin's partnership with the university will allow them to use the students to help build affordable CubeSats for internal and customer's research and development projects. The mentoring also challenges the engineers to think differently about similar problems they face every day with their larger programs in order to make the solution simple and affordable.
Can Mathematics be Justified by Natural Logic?
NASA Astrophysics Data System (ADS)
Schreiber, Lothar; Sommer, Hanns
2010-11-01
Charles Darwin claimed that the forms and the behaviour of living beings can be explained from their will to survive. But what are the consequences of this idea for humans knowledge, their theories of nature and their mathematics?. We discuss the view that even Plato's objective world of mathematical objects does not exist absolutely, without the intentions of mathematicians. Using Husserl's Phenomenological Method, cognition can be understood as a process by which meaning is deduced from empirical data relative to intentions. Thereby the essential structure of any cognition process can be detected and this structure is mirrored in logic. A natural logic becomes the direct result of cognition. Only in a second step, mathematics is obtained by abstraction from natural logic. In this way mathematics gains a well-defined foundation and is no longer part of a dubious 'a-priori knowledge' (Kant). This access to mathematics offers a new look on many old problems, e.g. the Petersburg problem and the problem 'P = NP?'. We demonstrate that this new justification of mathematics has also important applications in Artificial Intelligence. Our method provides a procedure to construct an adequate logic to solve most efficiently the problems of a given problem class. Thus, heuristics can be tailor-made for the necessities of applications.
Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing
Dorneich, Michael C.; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D.; Beekhuyzen, Martijn
2017-01-01
This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who “close the loop” by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution. PMID:28400716
Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing.
Dorneich, Michael C; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D; Beekhuyzen, Martijn
2017-01-01
This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who "close the loop" by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution.
Jung, Nadine; Wranke, Christina; Hamburger, Kai; Knauff, Markus
2014-01-01
Recent experimental studies show that emotions can have a significant effect on the way we think, decide, and solve problems. This paper presents a series of four experiments on how emotions affect logical reasoning. In two experiments different groups of participants first had to pass a manipulated intelligence test. Their emotional state was altered by giving them feedback, that they performed excellent, poor or on average. Then they completed a set of logical inference problems (with if p, then q statements) either in a Wason selection task paradigm or problems from the logical propositional calculus. Problem content also had either a positive, negative or neutral emotional value. Results showed a clear effect of emotions on reasoning performance. Participants in negative mood performed worse than participants in positive mood, but both groups were outperformed by the neutral mood reasoners. Problem content also had an effect on reasoning performance. In a second set of experiments, participants with exam or spider phobia solved logical problems with contents that were related to their anxiety disorder (spiders or exams). Spider phobic participants' performance was lowered by the spider-content, while exam anxious participants were not affected by the exam-related problem content. Overall, unlike some previous studies, no evidence was found that performance is improved when emotion and content are congruent. These results have consequences for cognitive reasoning research and also for cognitively oriented psychotherapy and the treatment of disorders like depression and anxiety.
Jung, Nadine; Wranke, Christina; Hamburger, Kai; Knauff, Markus
2014-01-01
Recent experimental studies show that emotions can have a significant effect on the way we think, decide, and solve problems. This paper presents a series of four experiments on how emotions affect logical reasoning. In two experiments different groups of participants first had to pass a manipulated intelligence test. Their emotional state was altered by giving them feedback, that they performed excellent, poor or on average. Then they completed a set of logical inference problems (with if p, then q statements) either in a Wason selection task paradigm or problems from the logical propositional calculus. Problem content also had either a positive, negative or neutral emotional value. Results showed a clear effect of emotions on reasoning performance. Participants in negative mood performed worse than participants in positive mood, but both groups were outperformed by the neutral mood reasoners. Problem content also had an effect on reasoning performance. In a second set of experiments, participants with exam or spider phobia solved logical problems with contents that were related to their anxiety disorder (spiders or exams). Spider phobic participants' performance was lowered by the spider-content, while exam anxious participants were not affected by the exam-related problem content. Overall, unlike some previous studies, no evidence was found that performance is improved when emotion and content are congruent. These results have consequences for cognitive reasoning research and also for cognitively oriented psychotherapy and the treatment of disorders like depression and anxiety. PMID:24959160
Almeida, Fernando; Moreira, Diana
2017-01-01
Many clinical patients present to mental health clinics with depressive symptoms, anxiety, psychosomatic complaints, and sleeping problems. These symptoms which originated may originate from marital problems, conflictual interpersonal relationships, problems in securing work, and housing issues, among many others. These issues might interfere which underlie the difficulties that with the ability of the patients face in maintaining faultless logical reasoning (FLR) and faultless logical functioning (FLF). FLR implies to assess correctly premises, rules, and conclusions. And FLF implies assessing not only FLR, but also the circumstances, life experience, personality, events that validate a conclusion. Almost always, the symptomatology is accompanied by intense emotional changes. Clinical experience shows that a logic-based psychotherapy (LBP) approach is not practiced, and that therapists’ resort to psychopharmacotherapy or other types of psychotherapeutic approaches that are not focused on logical reasoning and, especially, logical functioning. Because of this, patients do not learn to overcome their reasoning and functioning errors. The aim of this work was to investigate how LBP works to improve the patients’ ability to think and function in a faultless logical way. This work describes the case studies of three patients. For this purpose we described the treatment of three patients. With this psychotherapeutic approach, patients gain knowledge that can then be applied not only to the issues that led them to the consultation, but also to other problems they have experienced, thus creating a learning experience and helping to prevent such patients from becoming involved in similar problematic situations. This highlights that LBP is a way of treating symptoms that interfere on some level with daily functioning. This psychotherapeutic approach is relevant for improving patients’ quality of life, and it fills a gap in the literature by describing original case analyses. PMID:29312088
NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.
Mitra, Avik; Mahesh, T S; Kumar, Anil
2008-03-28
NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.
An Analysis of Categorical and Quantitative Methods for Planning Under Uncertainty
Langlotz, Curtis P.; Shortliffe, Edward H.
1988-01-01
Decision theory and logical reasoning are both methods for representing and solving medical decision problems. We analyze the usefulness of these two approaches to medical therapy planning by establishing a simple correspondence between decision theory and non-monotonic logic, a formalization of categorical logical reasoning. The analysis indicates that categorical approaches to planning can be viewed as comprising two decision-theoretic concepts: probabilities (degrees of belief in planning hypotheses) and utilities (degrees of desirability of planning outcomes). We present and discuss examples of the following lessons from this decision-theoretic view of categorical (nonmonotonic) reasoning: (1) Decision theory and artificial intelligence techniques are intended to solve different components of the planning problem. (2) When considered in the context of planning under uncertainty, nonmonotonic logics do not retain the domain-independent characteristics of classical logical reasoning for planning under certainty. (3) Because certain nonmonotonic programming paradigms (e.g., frame-based inheritance, rule-based planning, protocol-based reminders) are inherently problem-specific, they may be inappropriate to employ in the solution of certain types of planning problems. We discuss how these conclusions affect several current medical informatics research issues, including the construction of “very large” medical knowledge bases.
Metacognition and abstract reasoning.
Markovits, Henry; Thompson, Valerie A; Brisson, Janie
2015-05-01
The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue.
Launch and Early Orbit Operations for CryoSat-2
NASA Astrophysics Data System (ADS)
Mardel, Nic; Marchese, Franco
2010-12-01
CryoSat-2 was launched from Baikonur on 8th of April 2010 aboard a modified Dnepr ICBM, the so-called SS18 Satan. Following the ascent and separation from the launch vehicle the Flight Operations Segment (FOS) in ESOC, Darmstadt started the operations to configure the satellite into the correct mode to acquire science; switching on units, configuring software and ensuring that the satellite health and performance was as expected. This paper will describe the operations performed by the FOS during the first weeks in orbit, including the unexpected problems encountered, their implications and solutions.
NASA Technical Reports Server (NTRS)
Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph
2016-01-01
The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.
NASA Astrophysics Data System (ADS)
van Aalsvoort, Joke
2004-09-01
Secondary school chemical education has a problem: namely, the seeming irrelevance to the pupils of chemistry. Chemical education prepares pupils for participation in society. Therefore, it must imply a model of society, of chemistry, and of the relation between them. In this article it is hypothesized that logical positivism currently offers this model. Logical positivism is a philosophy of science that creates a divide between science and society. It is therefore further hypothesized that the adoption of logical positivism causes chemistry's lack of relevance in chemical education. Both hypotheses could be confirmed by an analysis of a grade nine course.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
NASA Technical Reports Server (NTRS)
Sims. Herb; Varnavas, Kosta; Eberly, Eric
2013-01-01
Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.
Successful testing and treating of HIV/AIDS in Indonesia depends on the addiction treatment modality
Iskandar, Shelly; de Jong, Cor AJ; Hidayat, Teddy; Siregar, Ike MP; Achmad, Tri H; van Crevel, Reinout; van der Ven, Andre
2012-01-01
Background In many settings, people who inject drugs (PWID) have limited access to human immunodeficiency virus (HIV) care which is provided in several hospitals and primary health centers in big cities. Substance abuse treatment (SAT) can be used as the entry-point to HIV programs. The aim of this study is to describe the characteristics of the PWID who had accessed SAT and determine which SAT modality associates significantly with HIV programs. Methods PWID were recruited by respondent-driven sampling in an urban setting in Java, Indonesia and interviewed with the Addiction Severity Index (ASI), Blood-Borne Virus Transmission Risk Assessment Questionnaires, and Knowledge Questionnaire on HIV/AIDS. The information regarding the use of substance abuse treatment and HIV program were based on questions in ASI. Results Seventy-seven percent of 210 PWID had accessed SAT at least once. PWID who had accessed a SAT modality reported more severe drug problems. The most widely used SAT were opioid substitution (57%) and traditional/faith-based treatment (56%). Accessing substitution treatment (adjusted odds ratio [OR] = 5.8; 95% confidence interval [CI]: 2.5–13.9) or residential drug-free treatment (adjusted OR = 3.7; 95% CI: 1.4–9.7) was significantly associated with HIV testing, whereas accessing substitution treatment (adjusted OR = 3.8; 95% CI: 1.9–7.5) or other medical services (adjusted OR = 3.1; 95% CI: 1.1–8.7) was significantly associated with HIV treatment. There was no significant association between accessing traditional/faith-based treatment and HIV testing and treatment. Conclusion Efforts should be made to link HIV services with traditional/faith-based treatment to increase the coverage of HIV programs. PMID:23293529
Iskandar, Shelly; de Jong, Cor Aj; Hidayat, Teddy; Siregar, Ike Mp; Achmad, Tri H; van Crevel, Reinout; van der Ven, Andre
2012-01-01
In many settings, people who inject drugs (PWID) have limited access to human immunodeficiency virus (HIV) care which is provided in several hospitals and primary health centers in big cities. Substance abuse treatment (SAT) can be used as the entry-point to HIV programs. The aim of this study is to describe the characteristics of the PWID who had accessed SAT and determine which SAT modality associates significantly with HIV programs. PWID were recruited by respondent-driven sampling in an urban setting in Java, Indonesia and interviewed with the Addiction Severity Index (ASI), Blood-Borne Virus Transmission Risk Assessment Questionnaires, and Knowledge Questionnaire on HIV/AIDS. The information regarding the use of substance abuse treatment and HIV program were based on questions in ASI. Seventy-seven percent of 210 PWID had accessed SAT at least once. PWID who had accessed a SAT modality reported more severe drug problems. The most widely used SAT were opioid substitution (57%) and traditional/faith-based treatment (56%). Accessing substitution treatment (adjusted odds ratio [OR] = 5.8; 95% confidence interval [CI]: 2.5-13.9) or residential drug-free treatment (adjusted OR = 3.7; 95% CI: 1.4-9.7) was significantly associated with HIV testing, whereas accessing substitution treatment (adjusted OR = 3.8; 95% CI: 1.9-7.5) or other medical services (adjusted OR = 3.1; 95% CI: 1.1-8.7) was significantly associated with HIV treatment. There was no significant association between accessing traditional/faith-based treatment and HIV testing and treatment. Efforts should be made to link HIV services with traditional/faith-based treatment to increase the coverage of HIV programs.
ERIC Educational Resources Information Center
Lopez, Antonio M., Jr.
1989-01-01
Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)
An Application of Fuzzy Logic Control to a Classical Military Tracking Problem
1994-05-19
34, Fuzzy Sets and Systems, vol.4., 1980, pp.13-30. Berenji , Hamid R . and Pratap Khedkar. "Learning and Tuning Fuzzy Logic Controllers Through...A TRIDENT SCHOLAR PROJECT REPORT" NO. 222 "An Application of Fuzzy Logic Control to a Classical Military Tracking Problem" DTIC •S r F UNITED STATES...Zq qAvail andlor ____________________I__________ Dist SpecialDate USNA- 1531-2 REPORT DOCUMENTATION PAGE r •,,,op APmw OMB no. 0704.0188 ¢iQiiati~m.f
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.
A Small Aircraft Transportation System (SATS) Demand Model
NASA Technical Reports Server (NTRS)
Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.
ERIC Educational Resources Information Center
Lubis, Asrin; Nasution, Andrea Arifsyah
2017-01-01
Mathematical reasoning in logical context has now received much attention in the mathematics curriculum documents of many countries, including Indonesia. In Indonesia, students start formally learning about logic when they pursue to senior-high school. Before, they previously have many experiences to deal with logic, but the earlier assignments do…
Visual attitude propagation for small satellites
NASA Astrophysics Data System (ADS)
Rawashdeh, Samir A.
As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. The stellar gyroscope is a technology demonstration experiment on KySat-2, a 1-Unit CubeSat being developed in Kentucky that is in line to launch with the NASA ELaNa CubeSat Launch Initiative. It has also been adopted by industry as a sensor for CubeSat Attitude Determination and Control Systems (ADCS). KEYWORDS: Small Satellites, Attitude Determination, Egomotion Estimation, RANSAC, Image Processing.
Logic via Computer Programming.
ERIC Educational Resources Information Center
Wieschenberg, Agnes A.
This paper proposed the question "How do we teach logical thinking and sophisticated mathematics to unsophisticated college students?" One answer among many is through the writing of computer programs. The writing of computer algorithms is mathematical problem solving and logic in disguise and it may attract students who would otherwise stop…
Nigeria's Satellite Programme Development: Prospects and Challenges
NASA Astrophysics Data System (ADS)
Akinyede, Joseph
Nigeria's desire to maximize the benefits of space technology for its sustainable development, has become a reality with the establishment of the National Space Research and Development Agency (NASRDA) in May 1999 and the approval of the national Space Policy and Programmes in July 2001. In November, 2000, the Federal Government took a bold step with the signing of an agreement with the Surrey Satellite Technology Limited (SSTL) of United Kingdom (UK) for the design, construction and launch of a medium resolution micro-satellite - NigeriaSat-1 with a Ground Sampling Distance of thirty-two (32) meters. The agreement also covers the Know-How-Technology-Training (KHTT) to Nigerian Engineers and Scientists for a period of 18th months at SSTL‘s facility in the U.K.. NigeriaSat-1 was successfully launched into Leo Earth Orbit on 27th September, 2003. NigeriaSat- 1 is one of the five (5) satellites belonging to Nigeria, Algeria, Turkey, United Kingdom and China being operated in a Disaster Monitoring Constellation (DMC). The launch of NigeriaSat-1 has promoted access to information which has become a strategy for mass socio-economic development, as information underscores all developmental effort be it in education, provision of health services, marketing, construction industry, tourism, defense, etc. As a follow-up to the successful launch of NigeriaSat-1, the government of Nigeria started the implementation of a Nigerian communication satellite (NigcomSat-1) to address the problem of communication which is the greatest drawbacks to the socio-economic development of the country, particularly in the areas of rural telephone, tele-education, tele-medicine, egovernment, e-commerce and real-time monitoring services. NigcomSat-1, which carries 40- hybrid transponders in the C, KU, KA and L bands, has a 15 years life span and coverage of the African continent, Middle East and part of Europe was launched in May 2007. To satisfy geospatial data needs in sectors such as survey, housing, defence and security and urban renewal, and large scale mapping community, NASRDA has embarked on the development of a higher resolution satellite NigeriaSat-2 which carries spatial resolution pay loads of 2.5 and 5 meters in panchromatic and multi-spectral bands respectively. In addition, the satellite has been designed to provide stereo-imaging capability. It also carries a 32m resolution payload to ensure the continuity of NigeriaSat-1 data beyond its 2008 lifespan. The launch of NigeriaSat-2 is being planned for 2009. Furthermore, Nigeria's concern over the incessant cloud cover of a large area of its southern part has informed NASRDA's quest to acquire capacity for SAR-based image interpretation and application to socio-economic development. The programme will eventually lead to the acquisition of a SAR-based micro-satellite (NigeriaSat-3) in the near future.
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
Japanese Logic Puzzles and Proof
ERIC Educational Resources Information Center
Wanko, Jeffrey J.
2009-01-01
An understanding of proof does not start in a high school geometry course. Rather, attention to logical reasoning throughout a student's school experience can help the development of proof readiness. In the spirit of problem solving, the author has begun to use some Japanese logic puzzles other than sudoku to help students develop additional…
Logic, probability, and human reasoning.
Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P
2015-04-01
This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hannon, Brenda
2012-11-01
This study uses analysis of co-variance in order to determine which cognitive/learning (working memory, knowledge integration, epistemic belief of learning) or social/personality factors (test anxiety, performance-avoidance goals) might account for gender differences in SAT-V, SAT-M, and overall SAT scores. The results revealed that none of the cognitive/learning factors accounted for gender differences in SAT performance. However, the social/personality factors of test anxiety and performance-avoidance goals each separately accounted for all of the significant gender differences in SAT-V, SAT-M, and overall SAT performance. Furthermore, when the influences of both of these factors were statistically removed simultaneously, all non-significant gender differences reduced further to become trivial by Cohen's (1988) standards. Taken as a whole, these results suggest that gender differences in SAT-V, SAT-M, and overall SAT performance are a consequence of social/learning factors.
NASA Technical Reports Server (NTRS)
Le Balleur, J. C.
1988-01-01
The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.
Simulators' validation study: Problem solution logic
NASA Technical Reports Server (NTRS)
Schoultz, M. B.
1974-01-01
A study was conducted to validate the ground based simulators used for aircraft environment in ride-quality research. The logic to the approach for solving this problem is developed. The overall problem solution flow chart is presented. The factors which could influence the human response to the environment on board the aircraft are analyzed. The mathematical models used in the study are explained. The steps which were followed in conducting the validation tests are outlined.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
NASA Technical Reports Server (NTRS)
Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph
2016-01-01
This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.
Teaching Semantic Tableaux Method for Propositional Classical Logic with a CAS
ERIC Educational Resources Information Center
Aguilera-Venegas, Gabriel; Galán-García, José Luis; Galán-García, María Ángeles; Rodríguez-Cielos, Pedro
2015-01-01
Automated theorem proving (ATP) for Propositional Classical Logic is an algorithm to check the validity of a formula. It is a very well-known problem which is decidable but co-NP-complete. There are many algorithms for this problem. In this paper, an educationally oriented implementation of Semantic Tableaux method is described. The program has…
Adding a Bit More History to Science Courses
NASA Astrophysics Data System (ADS)
DeBuvitz, William
2011-05-01
The usual science course is not meant to be a history course and the usual science book is not meant to be a history book. However, most science books do include some historical information. Unfortunately, the history part is usually so brief that it is far from interesting and often so oversimplified that it is totally wrong. Introductory physics books often present the history of physics as a dull, cold, logical progression of discoveries and theories. As a result, the student might think that one day Sir Isaac Newton said to himself, "I think I'll produce a theory of gravitation." Then he sat down, wrote it all out, published it, received universal acclaim, and then was included in all physics textbooks. This view of science can look pretty dull and unappealing to students.
Teaching Discrete and Programmable Logic Design Techniques Using a Single Laboratory Board
ERIC Educational Resources Information Center
Debiec, P.; Byczuk, M.
2011-01-01
Programmable logic devices (PLDs) are used at many universities in introductory digital logic laboratories, where kits containing a single high-capacity PLD replace "standard" sets containing breadboards, wires, and small- or medium-scale integration (SSI/MSI) chips. From the pedagogical point of view, two problems arise in these…
The Role of Guidance in Computer-Based Problem Solving for the Development of Concepts of Logic.
ERIC Educational Resources Information Center
Eysink, Tessa H. S.; Dijkstra, Sanne; Kuper, Jan
2002-01-01
Describes a study at the University of Twente (Netherlands) that investigated the effect of two instructional variables, manipulation of objects and guidance, in learning to use the logical connective, conditional with a computer-based learning environment, Tarski's World, designed to teach first-order logic. Discusses results of…
Regulatory Conformance Checking: Logic and Logical Form
ERIC Educational Resources Information Center
Dinesh, Nikhil
2010-01-01
We consider the problem of checking whether an organization conforms to a body of regulation. Conformance is studied in a runtime verification setting. The regulation is translated to a logic, from which we synthesize monitors. The monitors are evaluated as the state of an organization evolves over time, raising an alarm if a violation is…
ERIC Educational Resources Information Center
Pourciau, Bruce
2018-01-01
In a first proof-oriented mathematics course, students will often ask questions--for example, "What is this problem asking me to do?" or "What would a proof of this even look like"--that have more to do with logic than mathematics. The logical structure of a proof is a dance involving those basic logical forms--such as "p…
What It Is, What It's Not, and What's Related: Exploring Plato's "Meno"
ERIC Educational Resources Information Center
Heller, Stephen
2010-01-01
Teaching logic typically falls under the areas of argumentation and research, as students are taught the importance of "logos," or logical appeals, in their pursuit of an original point. Cohesive, cogent arguments--devoid of logical fallacy--produce more compelling points, and teachers take great strides in pointing to the problems of…
Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing
2014-05-06
The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zadeh, L.A.
1988-01-01
The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived. 7 references.
Zucker, I; Mamane, H; Cikurel, H; Jekel, M; Hübner, U; Avisar, D
2015-11-01
The Shafdan reclamation project facility (Tel Aviv, Israel) practices soil aquifer treatment (SAT) of secondary effluent with hydraulic retention times (HRTs) of a few months to a year for unrestricted agricultural irrigation. During the SAT, the high oxygen demand (>40 mg L(-1)) of the infiltrated effluent causes anoxic conditions and mobilization of dissolved manganese from the soil. An additional emerging problem is the occurrence of persistent trace organic compounds (TrOCs) in reclaimed water that should be removed prior to reuse. An innovative hybrid process based on biofiltration, ozonation and short SAT with ∼22 d HRT is proposed for treatment of the Shafdan secondary effluent to overcome limitations of the existing system and to reduce the SAT's physical footprint. Besides efficient removal of particulate matter to minimize clogging, coagulation/flocculation and filtration (5-6 m h(-1)) operated with the addition of hydrogen peroxide as an oxygen source efficiently removed dissolved organic carbon (DOC, to 17-22%), ammonium and nitrite. This resulted in reduced effluent oxygen demand during infiltration and oxidant (ozone) demand during ozonation by 23 mg L(-1) and 1.5 mg L(-1), respectively. Ozonation (1.0-1.2 mg O3 mg DOC(-1)) efficiently reduced concentrations of persistent TrOCs and supplied sufficient dissolved oxygen (>30 mg L(-1)) for fully oxic operation of the short SAT with negligible Mn(2+) mobilization (<50 μg L(-1)). Overall, the examined hybrid process provided DOC reduction of 88% to a value of 1.2 mg L(-1), similar to conventional SAT, while improving the removal of TrOCs and efficiently preventing manganese dissolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.
2014-12-01
There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.
Model checking for linear temporal logic: An efficient implementation
NASA Technical Reports Server (NTRS)
Sherman, Rivi; Pnueli, Amir
1990-01-01
This report provides evidence to support the claim that model checking for linear temporal logic (LTL) is practically efficient. Two implementations of a linear temporal logic model checker is described. One is based on transforming the model checking problem into a satisfiability problem; the other checks an LTL formula for a finite model by computing the cross-product of the finite state transition graph of the program with a structure containing all possible models for the property. An experiment was done with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms.
Verifying the Modal Logic Cube Is an Easy Task (For Higher-Order Automated Reasoners)
NASA Astrophysics Data System (ADS)
Benzmüller, Christoph
Prominent logics, including quantified multimodal logics, can be elegantly embedded in simple type theory (classical higher-order logic). Furthermore, off-the-shelf reasoning systems for simple type type theory exist that can be uniformly employed for reasoning within and about embedded logics. In this paper we focus on reasoning about modal logics and exploit our framework for the automated verification of inclusion and equivalence relations between them. Related work has applied first-order automated theorem provers for the task. Our solution achieves significant improvements, most notably, with respect to elegance and simplicity of the problem encodings as well as with respect to automation performance.
ERIC Educational Resources Information Center
Nasser, Ramzi; Carifio, James
The purpose of this study was to find out whether students perform differently on algebra word problems that have certain key context features and entail proportional reasoning, relative to their level of logical reasoning and their degree of field dependence/independence. Field-independent students tend to restructure and break stimuli into parts…
ERIC Educational Resources Information Center
Van Aalsvoort, Joke
2004-01-01
Secondary school chemical education has a problem: namely, the seeming irrelevance to the pupils of chemistry. Chemical education prepares pupils for participation in society. Therefore, it must imply a model of society, of chemistry, and of the relation between them. In this article it is hypothesized that logical positivism currently offers this…
A multiple process solution to the logical problem of language acquisition*
MACWHINNEY, BRIAN
2006-01-01
Many researchers believe that there is a logical problem at the center of language acquisition theory. According to this analysis, the input to the learner is too inconsistent and incomplete to determine the acquisition of grammar. Moreover, when corrective feedback is provided, children tend to ignore it. As a result, language learning must rely on additional constraints from universal grammar. To solve this logical problem, theorists have proposed a series of constraints and parameterizations on the form of universal grammar. Plausible alternatives to these constraints include: conservatism, item-based learning, indirect negative evidence, competition, cue construction, and monitoring. Careful analysis of child language corpora has cast doubt on claims regarding the absence of positive exemplars. Using demonstrably available positive data, simple learning procedures can be formulated for each of the syntactic structures that have traditionally motivated invocation of the logical problem. Within the perspective of emergentist theory (MacWhinney, 2001), the operation of a set of mutually supportive processes is viewed as providing multiple buffering for developmental outcomes. However, the fact that some syntactic structures are more difficult to learn than others can be used to highlight areas of intense grammatical competition and processing load. PMID:15658750
Orbital Express fluid transfer demonstration system
NASA Astrophysics Data System (ADS)
Rotenberger, Scott; SooHoo, David; Abraham, Gabriel
2008-04-01
Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging of receiving tank, purging of coupling and de-mate of the coupling.
ERIC Educational Resources Information Center
Morsanyi, Kinga; Handley, Simon J.
2012-01-01
When people evaluate syllogisms, their judgments of validity are often biased by the believability of the conclusions of the problems. Thus, it has been suggested that syllogistic reasoning performance is based on an interplay between a conscious and effortful evaluation of logicality and an intuitive appreciation of the believability of the…
Examination of Children Decision Making Using Clues during the Logical Reasoning Process
ERIC Educational Resources Information Center
Çelik, Meryem
2017-01-01
Logical reasoning is the process of thinking about a problem and finding the most effective solution. Children's decision-making skills are part of their cognitive development and are also indicative. The purpose of this study was to examine children's decision-making skills using clues in logical reasoning based on various variables. The study…
Chess games: a model for RNA based computation.
Cukras, A R; Faulhammer, D; Lipton, R J; Landweber, L F
1999-10-01
Here we develop the theory of RNA computing and a method for solving the 'knight problem' as an instance of a satisfiability (SAT) problem. Using only biological molecules and enzymes as tools, we developed an algorithm for solving the knight problem (3 x 3 chess board) using a 10-bit combinatorial pool and sequential RNase H digestions. The results of preliminary experiments presented here reveal that the protocol recovers far more correct solutions than expected at random, but the persistence of errors still presents the greatest challenge.
Plausible inference: A multi-valued logic for problem solving
NASA Technical Reports Server (NTRS)
Friedman, L.
1979-01-01
A new logic is developed which permits continuously variable strength of belief in the truth of assertions. Four inference rules result, with formal logic as a limiting case. Quantification of belief is defined. Propagation of belief to linked assertions results from dependency-based techniques of truth maintenance so that local consistency is achieved or contradiction discovered in problem solving. Rules for combining, confirming, or disconfirming beliefs are given, and several heuristics are suggested that apply to revising already formed beliefs in the light of new evidence. The strength of belief that results in such revisions based on conflicting evidence are a highly subjective phenomenon. Certain quantification rules appear to reflect an orderliness in the subjectivity. Several examples of reasoning by plausible inference are given, including a legal example and one from robot learning. Propagation of belief takes place in directions forbidden in formal logic and this results in conclusions becoming possible for a given set of assertions that are not reachable by formal logic.
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.
A Formalized Design Process for Bacterial Consortia That Perform Logic Computing
Sun, Rui; Xi, Jingyi; Wen, Dingqiao; Feng, Jingchen; Chen, Yiwei; Qin, Xiao; Ma, Yanrong; Luo, Wenhan; Deng, Linna; Lin, Hanchi; Yu, Ruofan; Ouyang, Qi
2013-01-01
The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation. PMID:23468999
Education in the Scottish Parliament: Parliamentary Report Number 3.
ERIC Educational Resources Information Center
Donn, Gari
2000-01-01
Describes the new Scottish Parliament's first education crisis: failure of the Scottish Qualifications Authority (SQA), which oversees the public examinations system, to make timely and correct awards to secondary students who sat exams. Discusses data processing problems, accountability and ministerial responsibility, communication issues,…
Gender Equity: Still Knocking at the Classroom Door.
ERIC Educational Resources Information Center
Sadker, David
1999-01-01
Subtlety and complacency mask ongoing gender bias in today's classrooms. Updates are presented concerning career segregation; single-sex classrooms; safety and health problems; dropout rates; gifted programs; male/female stereotypes; classroom interactions; SAT scores; math, science and technology gender gaps; political reversals; and female…
Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.
Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G
2005-04-01
Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.
Graphical approach for multiple values logic minimization
NASA Astrophysics Data System (ADS)
Awwal, Abdul Ahad S.; Iftekharuddin, Khan M.
1999-03-01
Multiple valued logic (MVL) is sought for designing high complexity, highly compact, parallel digital circuits. However, the practical realization of an MVL-based system is dependent on optimization of cost, which directly affects the optical setup. We propose a minimization technique for MVL logic optimization based on graphical visualization, such as a Karnaugh map. The proposed method is utilized to solve signed-digit binary and trinary logic minimization problems. The usefulness of the minimization technique is demonstrated for the optical implementation of MVL circuits.
Logical definability and asymptotic growth in optimization and counting problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compton, K.
1994-12-31
There has recently been a great deal of interest in the relationship between logical definability and NP-optimization problems. Let MS{sub n} (resp. MP{sub n}) be the class of problems to compute, for given a finite structure A, the maximum number of tuples {bar x} in A satisfying a {Sigma}{sub n} (resp. II{sub n}) formula {psi}({bar x}, {bar S}) as {bar S} ranges over predicates on A. Kolaitis and Thakur showed that the classes MS{sub n} and MP{sub n} collapse to a hierarchy of four levels. Papadimitriou and Yannakakis previously showed that problems in the two lowest levels MS{sub 0} andmore » MS{sub 1} (which they called Max Snp and Max Np) are approximable to within a contrast factor in polynomial time. Similarly, Saluja, Subrahmanyam, and Thakur defined SS{sub n} (resp. SP{sub n}) to be the class of problems to compute, for given a finite structure A, the number of tuples ({bar T}, {bar S}) satisfying a given {Sigma}{sub n} (resp. II{sub n}) formula {psi}({bar T}, {bar c}) in A. They showed that the classes SS{sub n} and SP{sub n} collapse to a hierarchy of five levels and that problems in the two lowest levels SS{sub 0} and SS{sub 1} have a fully polynomial time randomized approximation scheme. We define extended classes MSF{sub n}, MPF{sub n} SSF{sub n}, and SPF{sub n} by allowing formulae to contain predicates definable in a logic known as least fixpoint logic. The resulting hierarchies classes collapse to the same number of levels and problems in the bottom levels can be approximated as before, but now some problems descend from the highest levels in the original hierarchies to the lowest levels in the new hierarchies. We introduce a method characterizing rates of growth of average solution sizes thereby showing a number of important problems do not belong MSF{sub 1} and SSF{sub 1}. This method is related to limit laws for logics and the probabilistic method from combinatorics.« less
Time-stable overset grid method for hyperbolic problems using summation-by-parts operators
NASA Astrophysics Data System (ADS)
Sharan, Nek; Pantano, Carlos; Bodony, Daniel J.
2018-05-01
A provably time-stable method for solving hyperbolic partial differential equations arising in fluid dynamics on overset grids is presented in this paper. The method uses interface treatments based on the simultaneous approximation term (SAT) penalty method and derivative approximations that satisfy the summation-by-parts (SBP) property. Time-stability is proven using energy arguments in a norm that naturally relaxes to the standard diagonal norm when the overlap reduces to a traditional multiblock arrangement. The proposed overset interface closures are time-stable for arbitrary overlap arrangements. The information between grids is transferred using Lagrangian interpolation applied to the incoming characteristics, although other interpolation schemes could also be used. The conservation properties of the method are analyzed. Several one-, two-, and three-dimensional, linear and non-linear numerical examples are presented to confirm the stability and accuracy of the method. A performance comparison between the proposed SAT-based interface treatment and the commonly-used approach of injecting the interpolated data onto each grid is performed to highlight the efficacy of the SAT method.
When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias.
Trippas, Dries; Thompson, Valerie A; Handley, Simon J
2017-05-01
Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was valid on half the trials or to decide whether the conclusion was believable on the other half. When belief and logic conflict, the default-interventionist view predicts that it should take less time to respond on the basis of belief than logic, and that the believability of a conclusion should interfere with judgments of validity, but not the reverse. The parallel-processing view predicts that beliefs should interfere with logic judgments only if the processing required to evaluate the logical structure exceeds that required to evaluate the knowledge necessary to make a belief-based judgment, and vice versa otherwise. Consistent with this latter view, for the simplest reasoning problems (modus ponens), judgments of belief resulted in lower accuracy than judgments of validity, and believability interfered more with judgments of validity than the converse. For problems of moderate complexity (modus tollens and single-model syllogisms), the interference was symmetrical, in that validity interfered with belief judgments to the same degree that believability interfered with validity judgments. For the most complex (three-term multiple-model syllogisms), conclusion believability interfered more with judgments of validity than vice versa, in spite of the significant interference from conclusion validity on judgments of belief.
Group Solutions, Too! More Cooperative Logic Activities for Grades K-4. Teacher's Guide. LHS GEMS.
ERIC Educational Resources Information Center
Goodman, Jan M.; Kopp, Jaine
There is evidence that structured cooperative logic is an effective way to introduce or reinforce mathematics concepts, explore thinking processes basic to both math and science, and develop the important social skills of cooperative problem-solving. This book contains a number of cooperative logic activities for grades K-4 in order to improve…
SAR Altimetry for Mean Sea Surface Determination in the Arctic DTU15MSS
NASA Astrophysics Data System (ADS)
Piccioni, G.; Andersen, O. B.; Stenseng, L.
2015-12-01
A reliable MSS that includes high-latitude regions within the 82 degree parallel is required for the Sentinel-3 data processing. In this paper we present the new DTU15MSS which is an update of the DTU13MSS with more years of CryoSat-2. CryoSat-2 offers a unique dataset in the Arctic Ocean for testing SAR altimetry with nearly five years of high-resolution SAR altimetry. In the Arctic Ocean older conventional altimetry satellites (ERS-1/ERS-2/Envisat) have only been able to provide sparse data for the past 20 years. Here we present the development of the DTU13MSS in the Arctic being the latest release of the global high resolution mean sea surface from DTU Space based on 4 years/repeat of Cryostat-2. The analysis shows that Laser Altimetry from the ICESat satellite being the basis of DTU10 and DTU13MSS between 82 and 86N is now obsolete for mean sea surface determination. The study also highlight the problems of integrating altimetry from various modes (LRM, SAR and SAR-in) as well as the problems relating to the fact that the averaging period of CryoSat-2 is adjacent to the 20 years (1993-2012) period used to develop DTU13MSS. Evaluation of the new MSS is performed and comparison with existing MSS models is performed to evaluate the impact of these updates into MSS computation.
Model Checking Temporal Logic Formulas Using Sticker Automata
Feng, Changwei; Wu, Huanmei
2017-01-01
As an important complex problem, the temporal logic model checking problem is still far from being fully resolved under the circumstance of DNA computing, especially Computation Tree Logic (CTL), Interval Temporal Logic (ITL), and Projection Temporal Logic (PTL), because there is still a lack of approaches for DNA model checking. To address this challenge, a model checking method is proposed for checking the basic formulas in the above three temporal logic types with DNA molecules. First, one-type single-stranded DNA molecules are employed to encode the Finite State Automaton (FSA) model of the given basic formula so that a sticker automaton is obtained. On the other hand, other single-stranded DNA molecules are employed to encode the given system model so that the input strings of the sticker automaton are obtained. Next, a series of biochemical reactions are conducted between the above two types of single-stranded DNA molecules. It can then be decided whether the system satisfies the formula or not. As a result, we have developed a DNA-based approach for checking all the basic formulas of CTL, ITL, and PTL. The simulated results demonstrate the effectiveness of the new method. PMID:29119114
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.
Mathematical logic as a mean of solving the problems of power supply for buildings and constructions
NASA Astrophysics Data System (ADS)
Pryadko, Igor; Nozdrina, Ekaterina; Boltaevsky, Andrey
2017-10-01
The article analyzes the questions of application of mathematical logic in engineering design associated with machinery and construction. The aim of the work is to study the logical working-out of Russian electrical engineer V.I. Shestakov. These elaborations are considered in connection with the problem of analysis and synthesis of relay contact circuits of the degenerate (A) class which the scientist solved. The article proposes to use Shestakov’s elaborations for optimization of buildings and constructions of modern high-tech. In the second part of the article the events are actualized in association with the development of problems of application of mathematical logic in the analysis and synthesis of electric circuits, relay and bridging. The arguments in favor of the priority of the authorship of the elaborations of Russian electrical engineer V. I. Shestakov, K. Shannon - one of the founders of computer science, and Japanese engineer A. Nakashima are discussed. The issue of contradiction between V. I. Shestakov and representatives of the school of M. A. Gavrilov is touched on.
NASA Technical Reports Server (NTRS)
Babuscia, Alessandra; Cheung, Kar-Ming; Divsalar, Dariush; Lee, Charles
2014-01-01
This paper aims to address this problem by proposing cooperative communication approaches in which multiple CubeSats communicate cooperatively together to improve the link performance with respect to the case of a single satellite transmitting. Three approaches are proposed: a beam-forming approach, a coding approach, and a network approach. The approaches are applied to the specific case of a proposed constellation of CubeSats at the Lunar Lagrangian point L1 which aims to perform radio astronomy at very low frequencies (30 KHz -3 MHz). The paper describes the development of the approaches, the simulation and a graphical user interface developed in Matlab which allows to perform trade-offs across multiple constellation's configurations.
ERIC Educational Resources Information Center
Korkmaz, Özgen
2016-01-01
The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…
ERIC Educational Resources Information Center
Chaudhary, Sohanvir; Garg, Suresh
2010-01-01
One of the serious problems associated with Indian school education has been high dropout rate. The reasons are many and varied but the major constraints are: non-availability of adequate number of competent and trained teachers in most of the schools and separate room for each class. To overcome such problems and increase equitable access to all,…
SatR Is a Repressor of Fluoroquinolone Efflux Pump SatAB
Escudero, Jose Antonio; San Millan, Alvaro; Montero, Natalia; Gutierrez, Belen; Ovejero, Cristina Martinez; Carrilero, Laura
2013-01-01
Streptococcus suis is an emerging zoonotic agent responsible for high-mortality outbreaks among the human population in China. In this species, the ABC transporter SatAB mediates fluoroquinolone resistance when overexpressed. Here, we describe and characterize satR, an open reading frame (ORF) encoding a MarR superfamily regulator that acts as a repressor of satAB. satR is cotranscribed with satAB, and its interruption entails the overexpression of the pump, leading to a clinically relevant increase in resistance to fluoroquinolones. PMID:23650171
Discriminative Learning with Markov Logic Networks
2009-10-01
Discriminative Learning with Markov Logic Networks Tuyen N. Huynh Department of Computer Sciences University of Texas at Austin Austin, TX 78712...emerging area of research that addresses the problem of learning from noisy structured/relational data. Markov logic networks (MLNs), sets of weighted...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Texas at Austin,Department of Computer
Online Testing: The Dog Sat on My Keyboard.
ERIC Educational Resources Information Center
White, Jacci
This paper will highlight some advantages and disadvantages of several online models for student assessment. These models will include: live exams, multiple choice tests, essay exams, and student projects. In addition, real student responses and "problems" will be used as prompts to improve models of authentic online assessment in mathematics.…
Implementation of a three-qubit refined Deutsch Jozsa algorithm using SFG quantum logic gates
NASA Astrophysics Data System (ADS)
DelDuce, A.; Savory, S.; Bayvel, P.
2006-05-01
In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another.
Kumar, Sudhir; Mazumder, Mohit; Dharavath, Sudhaker; Gourinath, S.
2013-01-01
The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by Km, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3) shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor. PMID:23437075
Local Ionospheric Measurements Satellite (LionSat)
2005-07-01
LionSat)," NASA Third Space Internet Workshop, Cleveland, OH, 4-6 June 2003. ** Graduate Student * Undergraduate Student "LionSat PENNSTATE LionSat 2...Measurements Satellite (UonSat)Lý NASA Third Space Internet MINISTATE Workshop, Cleveland, OH, 4-6 June 2003. University Nanosat-3 Flight Competition Review
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.
Some historical and conceptual relations among logical positivism, operationism, and behaviorism.
Moore, J
1985-01-01
Historical and conceptual relations among logical positivism, conventional operationism, and behaviorism are examined from the standpoint of Skinner's radical behaviorism. Although logical positivism and conventional operationism sought the formulation and application of an epistemology based strictly upon physicalistic principles and experiential verification, the application of that epistemology in psychology has resulted in the perpetuation, rather than the resolution, of a number of mentalistic, if not outright dualistic, problems.
Yoshihara, Motojiro; Yoshihara, Motoyuki
In this article, we describe an incorrect use of logic which involves the careless application of the 'necessary and sufficient' condition originally used in formal logic. This logical fallacy is causing frequent confusion in current biology, especially in neuroscience. In order to clarify this problem, we first dissect the structure of this incorrect logic (which we refer to as 'misapplied-N&S') to show how necessity and sufficiency in misapplied-N&S are not matching each other. Potential pitfalls of utilizing misapplied-N&S are exemplified by cases such as the discrediting of command neurons and other potentially key neurons, the distorting of truth in optogenetic studies, and the wrongful justification of studies with little meaning. In particular, the use of the word 'sufficient' in optogenetics tends to generate misunderstandings by opening up multiple interpretations. To avoid the confusion caused by the misleading logic, we now recommend using 'indispensable and inducing' instead of using 'necessary and sufficient.' However, we ultimately recommend fully articulating the limits of what our experiments suggest, not relying on such simple phrases. Only after this problem is fully understood and more rigorous language is demanded, can we finally interpret experimental results in an accurate way.
NASA Astrophysics Data System (ADS)
Stromberg, E. M.; Shaw, H.; Estabrook, P.; Neilsen, T. L.; Gunther, J.; Swenson, C.; Fish, C. S.; Schaire, S. H.
2014-12-01
Space Situational Awareness (SSA) is an area where spaceflight activities and missions can directly influence the quality of life on earth. The combination of space weather, near earth orbiting objects, atmospheric conditions at the space boundary, and other phenomena can have significant short-term and long-term implications for the inhabitants of this planet. The importance of SSA has led to increased activity in this area from both space and ground based platforms. The emerging capability of CubeSats and SmallSats provides an opportunity for these low-cost, versatile platforms to augment the SSA infrastructure. The CubeSats and SmallSats can be launched opportunistically with shorter lead times than larger missions. They can be organized both as constellations or individual sensor elements. Combining CubeSats and SmallSats with the existing NASA communications networks (TDRS Space Network, Deep Space Network and the Near Earth Network) provide a backbone structure for SSA which can be tied to a SSA portal for data distribution and management. In this poster we will describe the instruments and sensors needed for CubeSat and SmallSat SSA missions. We will describe the architecture and concept of operations for a set of opportunistic, periodically launched, SSA CubeSats and SmallSats. We will also describe the integrated communications infrastructure to support end-to-end data delivery and management to a SSA portal.
Johannesen, Jason K; Lurie, Jessica B; Fiszdon, Joanna M; Bell, Morris D
2013-01-01
The Social Attribution Task-Multiple Choice (SAT-MC) uses a 64-second video of geometric shapes set in motion to portray themes of social relatedness and intentions. Considered a test of "Theory of Mind," the SAT-MC assesses implicit social attribution formation while reducing verbal and basic cognitive demands required of other common measures. We present a comparability analysis of the SAT-MC and the new SAT-MC-II, an alternate form created for repeat testing, in a university sample (n = 92). Score distributions and patterns of association with external validation measures were nearly identical between the two forms, with convergent and discriminant validity supported by association with affect recognition ability and lack of association with basic visual reasoning. Internal consistency of the SAT-MC-II was superior (alpha = .81) to the SAT-MC (alpha = .56). Results support the use of SAT-MC and new SAT-MC-II as equivalent test forms. Demonstrating relatively higher association to social cognitive than basic cognitive abilities, the SAT-MC may provide enhanced sensitivity as an outcome measure of social cognitive intervention trials.
Pyle, J D; Scholthof, Karen-Beth G
2018-01-15
Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions. Copyright © 2017 Elsevier Inc. All rights reserved.
Bird's-eye view on noise-based logic.
Kish, Laszlo B; Granqvist, Claes G; Horvath, Tamas; Klappenecker, Andreas; Wen, He; Bezrukov, Sergey M
2014-01-01
Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as ( i ) What does practical determinism mean? ( ii ) Is noise-based logic a Turing machine? ( iii ) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, ( iv ) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.
Bird's-eye view on noise-based logic
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Granqvist, Claes G.; Horvath, Tamas; Klappenecker, Andreas; Wen, He; Bezrukov, Sergey M.
2014-09-01
Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as (i) What does practical determinism mean? (ii) Is noise-based logic a Turing machine? (iii) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, (iv) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.
2009-06-01
2 3. Space Access Challenges to the CubeSat Community........ 3 B. NPSCUL/NPSCUL-LITE PROGRAM HISTORY TO DATE...Astronautics, AIAA Space 2008 Conference and Exhibition, 2008. 3 3. Space Access Challenges to the CubeSat Community In less than ten years since... challenges to space access for CubeSats.5 Launch of a CubeSat aboard US launch vehicles from US launch facilities would allow CubeSats of a sensitive nature
Waves of Hope: The U.S. Navy’s Response to the Tsunami in Northern Indonesia
2007-02-01
mountain of rice, instant noodles , and crackers sat waiting on the airfield, their delivery hampered by the small size of the airport and limited...Miscommunication and rumor were still rampant. One incident that exemplifies this problem involved a large box of dried noodles that accidentally fell
College Admissions: Beyond Conventional Testing
ERIC Educational Resources Information Center
Sternberg, Robert J.
2012-01-01
Standardized admissions tests such as the SAT (originally stood for "Scholastic Aptitude Test") and the ACT measure only a narrow segment of the skills needed to become an active citizen and possibly a leader who makes a positive, meaningful, and enduring difference to the world. The problem with these tests is that they promised, under…
Spatial Abilities of High-School Students in the Perception of Geologic Structures.
ERIC Educational Resources Information Center
Kali, Yael; Orion, Nir
1996-01-01
Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…
Compatible diagonal-norm staggered and upwind SBP operators
NASA Astrophysics Data System (ADS)
Mattsson, Ken; O'Reilly, Ossian
2018-01-01
The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.
Model predictive and reallocation problem for CubeSat fault recovery and attitude control
NASA Astrophysics Data System (ADS)
Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina
2018-01-01
In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.
NASA Astrophysics Data System (ADS)
Hoffman, A.
2011-12-01
This paper analyzes the extent to which two institutional logics around climate change - the climate change "convinced" and climate change "skeptical" logics - are truly competing or talking past each other in a way that can be described as a logic schism. Drawing on the concept of framing from social movement theory, it uses qualitative field observations from the largest climate deniers conference in the U.S. and a dataset of almost 800 op/eds from major news outlets over a two year period to examine how convinced and skeptical logics employ frames and issue categories to make arguments about climate change. This paper finds that the two logics are engaging in different debates on similar issues with the former focusing on solutions while the latter debates the definition of the problem. It concludes that the debate appears to be reaching a level of polarization where one might begin to question whether meaningful dialogue and problem-solving has become unavailable to participants. The implications of such a logic schism is a shift from an integrative debate focused on addressing interests to a distributive battle over concessionary agreements with each side pursuing its goals by demonizing the other. Avoiding such an outcome requires the activation of, as yet, dormant "broker" frames (technology, religion and national security), the redefinition of existing ones (science, economics, risk, ideology) and the engagement of effective "brokers" to deliver them.
Some historical and conceptual relations among logical positivism, operationism, and behaviorism
Moore, Jay
1985-01-01
Historical and conceptual relations among logical positivism, conventional operationism, and behaviorism are examined from the standpoint of Skinner's radical behaviorism. Although logical positivism and conventional operationism sought the formulation and application of an epistemology based strictly upon physicalistic principles and experiential verification, the application of that epistemology in psychology has resulted in the perpetuation, rather than the resolution, of a number of mentalistic, if not outright dualistic, problems. PMID:22478620
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
NASA Technical Reports Server (NTRS)
Petropulos, Dolores; Bittner, David; Murawski, Robert; Golden, Bert
2015-01-01
The SmallSat has an unrealized potential in both the private industry and in the federal government. Currently over 70 companies, 50 universities and 17 governmental agencies are involved in SmallSat research and development. In 1994, the U.S. Army Missile and Defense mapped the moon using smallSat imagery. Since then Smart Phones have introduced this imagery to the people of the world as diverse industries watched this trend. The deployment cost of smallSats is also greatly reduced compared to traditional satellites due to the fact that multiple units can be deployed in a single mission. Imaging payloads have become more sophisticated, smaller and lighter. In addition, the growth of small technology obtained from private industries has led to the more widespread use of smallSats. This includes greater revisit rates in imagery, significantly lower costs, the ability to update technology more frequently and the ability to decrease vulnerability of enemy attacks. The popularity of smallSats show a changing mentality in this fast paced world of tomorrow. What impact has this created on the NASA communication networks now and in future years? In this project, we are developing the SmallSat Relational Database which can support a simulation of smallSats within the NASA SCaN Compatability Environment for Networks and Integrated Communications (SCENIC) Modeling and Simulation Lab. The NASA Space Communications and Networks (SCaN) Program can use this modeling to project required network support needs in the next 10 to 15 years. The SmallSat Rational Database could model smallSats just as the other SCaN databases model the more traditional larger satellites, with a few exceptions. One being that the smallSat Database is designed to be built-to-order. The SmallSat database holds various hardware configurations that can be used to model a smallSat. It will require significant effort to develop as the research material can only be populated by hand to obtain the unique data required. When completed it will interface with the SCENIC environment to allow modeling of smallSats. The SmallSat Relational Database can also be integrated with the SCENIC Simulation modeling system that is currently in development. The SmallSat Relational Database simulation will be of great significance in assisting the NASA SCaN group to understand the impact the smallSats have made which have populated the lower orbit around our mother earth. What I have created and worked on this summer session 2015, is the basis for a tool that will be of value to the NASA SCaN SCENIC Simulation Environment for years to come.
CubeSat Launch Initiative Overview and CubeSat 101
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2017-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.
Correcting the SAT's Ethnic and Social-Class Bias: A Method for Reestimating SAT Scores.
ERIC Educational Resources Information Center
Freedle, Roy O.
2003-01-01
A corrective scoring method, the Revised-Scholastic Achievement Test (R-SAT), addresses nonrandom ethnic test bias patterns found in the SAT. The R-SAT has been shown to reduce the mean-score difference between African-American and white test-takers by one-third, increase verbal scores by as much as 200-300 points for individuals, and benefit…
Johannesen, Jason K.; Lurie, Jessica B.; Fiszdon, Joanna M.; Bell, Morris D.
2013-01-01
The Social Attribution Task-Multiple Choice (SAT-MC) uses a 64-second video of geometric shapes set in motion to portray themes of social relatedness and intentions. Considered a test of “Theory of Mind,” the SAT-MC assesses implicit social attribution formation while reducing verbal and basic cognitive demands required of other common measures. We present a comparability analysis of the SAT-MC and the new SAT-MC-II, an alternate form created for repeat testing, in a university sample (n = 92). Score distributions and patterns of association with external validation measures were nearly identical between the two forms, with convergent and discriminant validity supported by association with affect recognition ability and lack of association with basic visual reasoning. Internal consistency of the SAT-MC-II was superior (alpha = .81) to the SAT-MC (alpha = .56). Results support the use of SAT-MC and new SAT-MC-II as equivalent test forms. Demonstrating relatively higher association to social cognitive than basic cognitive abilities, the SAT-MC may provide enhanced sensitivity as an outcome measure of social cognitive intervention trials. PMID:23864984
Determining the sources of fine-grained sediment using the Sediment Source Assessment Tool (Sed_SAT)
Gorman Sanisaca, Lillian E.; Gellis, Allen C.; Lorenz, David L.
2017-07-27
A sound understanding of sources contributing to instream sediment flux in a watershed is important when developing total maximum daily load (TMDL) management strategies designed to reduce suspended sediment in streams. Sediment fingerprinting and sediment budget approaches are two techniques that, when used jointly, can qualify and quantify the major sources of sediment in a given watershed. The sediment fingerprinting approach uses trace element concentrations from samples in known potential source areas to determine a clear signature of each potential source. A mixing model is then used to determine the relative source contribution to the target suspended sediment samples.The computational steps required to apportion sediment for each target sample are quite involved and time intensive, a problem the Sediment Source Assessment Tool (Sed_SAT) addresses. Sed_SAT is a user-friendly statistical model that guides the user through the necessary steps in order to quantify the relative contributions of sediment sources in a given watershed. The model is written using the statistical software R (R Core Team, 2016b) and utilizes Microsoft Access® as a user interface but requires no prior knowledge of R or Microsoft Access® to successfully run the model successfully. Sed_SAT identifies outliers, corrects for differences in size and organic content in the source samples relative to the target samples, evaluates the conservative behavior of tracers used in fingerprinting by applying a “Bracket Test,” identifies tracers with the highest discriminatory power, and provides robust error analysis through a Monte Carlo simulation following the mixing model. Quantifying sediment source contributions using the sediment fingerprinting approach provides local, State, and Federal land management agencies with important information needed to implement effective strategies to reduce sediment. Sed_SAT is designed to assist these agencies in applying the sediment fingerprinting approach to quantify sediment sources in the sediment TMDL framework.
Assessing modelled spatial distributions of ice water path using satellite data
NASA Astrophysics Data System (ADS)
Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.
2010-05-01
The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.
Andrews, Christina M
2014-10-01
The Affordable Care Act will dramatically increase the number of Americans with Medicaid coverage for substance abuse treatment (SAT). Currently, few SAT providers accept Medicaid, and consequently, there is concern that newly-eligible Medicaid enrollees will have difficulty finding SAT providers willing to serve them. However, little is known about why few SAT providers accept Medicaid. In response, this study examines how features of state Medicaid coverage for SAT, including benefits, eligibility, and oversight, are associated with Medicaid acceptance among SAT providers. Medicaid acceptance was positively associated with the number of SAT services covered, and the number of optional categorical expansions implemented by the state. Requirements for physician involvement were associated with lower odds of acceptance. The results suggest that more generous Medicaid coverage may encourage SAT providers to accept Medicaid, but regulatory policies may inhibit their ability to do so.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-01-01
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238
Aqua vs TanSat: A Long-Term Analysis
NASA Technical Reports Server (NTRS)
Pharr, James; Patano, Scott
2017-01-01
A six-year analysis between Aqua and TanSat was conducted in order to assess whether or not TanSat would be a continued threat to Aqua. It is predicted that TanSat will cross Aqua seven times prior to Aqua's predicted constellation exit and lowering in February 2022. The predicted crossing geometry is generally favorable at any of the crossings due to TanSat's orbit eccentricity.
CryoSat Plus for Oceans - analysis of the state-of-the-art
NASA Astrophysics Data System (ADS)
Naeije, Marc; Gommenginger, Christine; Moreau, Thomas; Cotton, David; Benveniste, Jerome; Dinardo Dinardo, Salvatore
2013-04-01
The CryoSat Plus for Oceans (CP4O) project is an ESA initiative carried out by a European wide consortium of altimetry experts. It aims to build a sound scientific basis for new scientific and operational applications of data coming from CryoSat-2 over the open ocean, polar ocean, coastal seas and for seafloor mapping. It also generates and evaluates new methods and products that will enable the full exploitation of the capabilities of the CryoSat-2 SIRAL altimeter, and extend their application beyond the initial mission objectives. It therefore also acts as a preparation for the upcoming Sentinel and Jason SAR enabled altimetry missions. In this paper we address the review of the CryoSat state-of-the-art, relevant current initiatives, algorithms, models and Earth Observation based products and datasets that are relevant in the Cryosat+ ocean theme. Compared to conventional (pulse-limited) altimeter missions, Cryosat-2 is not a dedicated platform for ocean research: typically the microwave radiometer (MWR) for wet tropospheric corrections is lacking, as is the direct measurement of the first order ionospheric effect by means of a dual-frequency altimeter. Also the orbit of Cryosat-2 has a rather long repetition period, unsuited for collinear tracks analyses. These three particular features have been studied already in the HERACLES project on the eve of the first CryoSat launch. We revisit the outcome of this study, update to current understanding and perception, and ultimately develop what was, is and will be proposed in these problem areas. Clearly, we question the standard ionosphere corrections, the wet troposphere corrections and the accuracy of the mean sea surface (MSS) underlying the accuracy of derived sea level anomalies. In addition, Cryosat-2 provides the first innovative altimeter with SAR and SARIn modes. This raises the direct problem of "how to process these data", simply because this has not been done before. Compared to pulse-limited altimetry it is a totally different branch of sport. In our CP4O project we try to answer this. We build on the results that have come out of the SAMOSA study, which was initiated to investigate the improvements that SAR mode altimetry can offer in measurements over ocean, coastal and inland water surfaces, developing practical implementation of new theoretical models for the SAR echo waveform. It is clear that having specific processing for SAR and SARIn raises a number of new issues to be studied, such as RDSAR (reducing SAR to pseudo LRM data), sea state bias (SSB) in SAR mode, and land contamination, to name a few. The outcome of the analysis of the state-of-the-art culminates in the delivery of the Preliminary Analysis Report and the Development and Validation Plan (DVP). We present the summary of these documents.
Herbst, Karen L; Ussery, Christopher; Eekema, Alyna
2017-09-20
Background Lipedema is a common painful subcutaneous adipose tissue (SAT) disorder in women affecting the limbs. SAT therapy is a manual therapy to improve soft tissue quality. Objective Determine if SAT therapy improves pain and structure of lipedema SAT. Design Single arm prospective pilot study. Setting Academic medical center. Patients Seven women, 46 ± 5 years, weight 90 ± 19 kg, with lipedema. Intervention Twelve 90-min SAT therapy sessions over 4 weeks. Outcomes Dual X-ray absorptiometry (DXA) scans, SAT ultrasound (Vevo 2100), leg volumetrics, skin caliper assessment, tissue exam, weight, resting metabolic rate, pain assessment, lower extremity functional scale (LEFS) and body shape questionnaire (BSQ) at baseline and end of study. Results Weight, resting metabolic rate and BSQ did not change significantly. Limb fat over total body fat mass (p = 0.08) and trunk fat over total body mass trended down from baseline (p = 0.08) by DXA. Leg volume and caliper assessments in eight of nine areas (p < 0.007), LEFS (p = 0.002) and average pain (p = 0.007) significantly decreased from baseline. Fibrosis significantly decreased in the nodules, hips and groin. Ultrasound showed improved SAT structure in some subjects. Side effects included pain, bruising, itching, swelling and gastroesophageal reflux disease. All women said they would recommend SAT therapy to other women with lipedema. Limitations Small number of subjects. Conclusion SAT therapy in 4 weeks improved tissue structure, perceived leg function, and volume although shape was not affected. While side effects of SAT therapy were common, all women felt the therapy was beneficial.
NASA Astrophysics Data System (ADS)
Yamada, Katsuhiko; Jikuya, Ichiro
2014-09-01
Singularity analysis and the steering logic of pyramid-type single gimbal control moment gyros are studied. First, a new concept of directional passability in a specified direction is introduced to investigate the structure of an elliptic singular surface. The differences between passability and directional passability are discussed in detail and are visualized for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering logic for passing the singular surface, is investigated. The algorithm is based on the quadratic constrained quadratic optimization problem and is reduced to the Newton method by using Gröbner bases. The proposed steering logic is demonstrated through numerical simulations for both constant torque maneuvering examples and attitude control examples.
A logic-based method for integer programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooker, J.; Natraj, N.R.
1994-12-31
We propose a logic-based approach to integer programming that replaces traditional branch-and-cut techniques with logical analogs. Integer variables are regarded as atomic propositions. The constraints give rise to logical formulas that are analogous to separating cuts. No continuous relaxation is used. Rather, the cuts are selected so that they can be easily solved as a discrete relaxation. (In fact, defining a relaxation and generating cuts are best seen as the same problem.) We experiment with relaxations that have a k-tree structure and can be solved by nonserial dynamic programming. We also present logic-based analogs of facet-defining cuts, Chv{acute a}tal rank,more » etc. We conclude with some preliminary computational results.« less
NASA Astrophysics Data System (ADS)
Zhou, J.; Ding, L.
2017-12-01
Land surface air temperature (SAT) is an important parameter in the modeling of radiation balance and energy budget of the earth surface. Generally, SAT is measured at ground meteorological stations; then SAT mapping is possible though a spatial interpolation process. The interpolated SAT map relies on the spatial distribution of ground stations, the terrain, and many other factors; thus, it has great uncertainties in regions with complicated terrain. Instead, SAT map can also be obtained through physical modeling of interactions between the land surface and the atmosphere. Such dataset generally has coarse spatial resolution (e.g. coarser than 0.1°) and cannot satisfy the applications at fine scales, e.g. 1 km. This presentation reports the reconstruction of a three hourly 1-km SAT dataset from 2001 to 2015 over the Qinghai-Tibet Plateau. The terrain in the Qinghai-Tibet Plateau, especially in the eastern part, is extremely complicated. Two SAT datasets with good qualities are used in this study. The first one is from the 3h China Meteorological Forcing Dataset with a 0.1° resolution released by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (Yang et al., 2010); the second one is from the ERA-Interim product with the same temporal resolution and a 0.125° resolution. A statistical approach is developed to downscale the spatial resolution of the derived SAT to 1-km. The elevation and the normalized difference vegetation index (NDVI) are selected as two scaling factors in the downscaling approach. Results demonstrate there is significantly negative correlation between the SAT and elevation in all seasons; there is also significantly negative correlation between the SAT and NDVI in the vegetation growth seasons, while the correlation decreases in the other seasons. Therefore, a temporally dynamic downscaling approach is feasible to enhance the spatial resolution of the SAT. Compared with the SAT at the 0.1° or 0.125°, the reconstructed 1-km SAT can provide much more spatial details in areas with complicated terrain. Additionally, the 1-km SAT agrees well with the ground measured air temperatures as well as the SAT before downscaling. The reconstructed SAT will be beneficial for the modeling of surface radiation balance and energy budget over the Qinghai-Tibet Plateau.
Efficient dynamic optimization of logic programs
NASA Technical Reports Server (NTRS)
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes
Chaves, Raquel; Ferreira, Daniela; Mendes-da-Silva, Ana; Meles, Susana; Adega, Filomena
2017-01-01
Abstract In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes. PMID:29608678
NASA Astrophysics Data System (ADS)
Kamide, Norihiro; Kaneiwa, Ken
An extended full computation-tree logic, CTLS*, is introduced as a Kripke semantics with a sequence modal operator. This logic can appropriately represent hierarchical tree structures where sequence modal operators in CTLS* are applied to tree structures. An embedding theorem of CTLS* into CTL* is proved. The validity, satisfiability and model-checking problems of CTLS* are shown to be decidable. An illustrative example of biological taxonomy is presented using CTLS* formulas.
Solution to the satisfiability problem using a complete Grover search with trapped ions
NASA Astrophysics Data System (ADS)
Yang, Wan-Li; Wei, Hua; Zhou, Fei; Chang, Weng-Long; Feng, Mang
2009-07-01
The main idea in the original Grover search (1997 Phys. Rev. Lett. 79 325) is to single out a target state containing the solution to a search problem by amplifying the amplitude of the state, following the Oracle's job, i.e., a black box giving us information about the target state. We design quantum circuits to accomplish a complete Grover search involving both the Oracle's job and the amplification of the target state, which are employed to solve satisfiability (SAT) problems. We explore how to carry out the quantum circuits with currently available ion-trap quantum computing technology.
On Reformulating Planning as Dynamic Constraint Satisfaction
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari K.; Morris, Paul; Koga, Dennis (Technical Monitor)
2000-01-01
In recent years, researchers have reformulated STRIPS planning problems as SAT problems or CSPs. In this paper, we discuss the Constraint-Based Interval Planning (CBIP) paradigm, which can represent planning problems incorporating interval time and resources. We describe how to reformulate mutual exclusion constraints for a CBIP-based system, the Extendible Uniform Remote Operations Planner Architecture (EUROPA). We show that reformulations involving dynamic variable domains restrict the algorithms which can be used to solve the resulting DCSP. We present an alternative formulation which does not employ dynamic domains, and describe the relative merits of the different reformulations.
NASA Astrophysics Data System (ADS)
Park, Daeil; Miyata, Kikuko; Nagano, Hosei
2017-07-01
This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.
Brain Stretchers Book 4--Advanced.
ERIC Educational Resources Information Center
Anderson, Carolyn
This book provides puzzles, games, and mathematical activities for students in elementary grades. Number concepts and arithmetic are common topics. These classic math, logic, and word-problem activities encourage students to become flexible, creative thinkers while teaching them to draw valid conclusions based on logic and evidence. Each activity…
On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)
2003-01-01
Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.
HaloSat- A CubeSat to Study the Hot Galactic Halo
NASA Astrophysics Data System (ADS)
Kaaret, Philip
We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.
TechEdSat Nano-Satellite Series Fact Sheet
NASA Technical Reports Server (NTRS)
Murbach, Marcus; Martinez, Andres; Guarneros Luna, Ali
2014-01-01
TechEdSat-3p is the second generation in the TechEdSat-X series. The TechEdSat Series uses the CubeSat standards established by the California Polytechnic State University Cal Poly), San Luis Obispo. With typical blocks being constructed from 1-unit (1U 10x10x10 cm) increments, the TechEdSat-3p has a 3U volume with a 30 cm length. The project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience lasting 1-2 semesters.The TechEdSat Nano-Satellite Series provides a rapid platform for testing technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management.
Fuzzy logic and causal reasoning with an 'n' of 1 for diagnosis and treatment of the stroke patient.
Helgason, Cathy M; Jobe, Thomas H
2004-03-01
The current scientific model for clinical decision-making is founded on binary or Aristotelian logic, classical set theory and probability-based statistics. Evidence-based medicine has been established as the basis for clinical recommendations. There is a problem with this scientific model when the physician must diagnose and treat the individual patient. The problem is a paradox, which is that the scientific model of evidence-based medicine is based upon a hypothesis aimed at the group and therefore, any conclusions cannot be extrapolated but to a degree to the individual patient. This extrapolation is dependent upon the expertise of the physician. A fuzzy logic multivalued-based scientific model allows this expertise to be numerically represented and solves the clinical paradox of evidence-based medicine.
Rhetoric, logic, and experiment in the quantum nonlocality debate
NASA Astrophysics Data System (ADS)
Graft, Donald A.
2017-09-01
This paper argues that quantum nonlocality (QNL) has not been rigorously proven, despite the existence of recent Einstein-Podolsky-Rosen-Bohm (EPRB) experiments that are claimed to be `loophole-free'. First, readers are alerted to rhetorical arguments, which are unfortunately often appealed to in the QNL debate, to empower readers to identify and reject such arguments. Second, logical problems in QNL proofs are described and exemplified by a discussion of the projection postulate problem. Third, experimental issues are described and exemplified by a discussion of the postselection problem. The paper concludes that QNL has not been proven and that locality cannot be excluded.
Developing and Planning a Texas Based Homeschool Curriculum
ERIC Educational Resources Information Center
Terry, Bobby K.
2011-01-01
Texas has some of the lowest SAT scores in the nation. They are ranked 36th nationwide in graduation rates and teacher salaries rank at number 33. The public school system in Texas has problems with overcrowding, violence, and poor performance on standardized testing. Currently 300,000 families have opted out of the public school system in order…
ERIC Educational Resources Information Center
Patterson, Brian F.; Mattern, Krista D.
2011-01-01
The findings for the 2008 sample are largely consistent with the previous reports. SAT scores were found to be correlated with FYGPA (r = 0.54), with a magnitude similar to HSGPA (r = 0.56). The best set of predictors of FYGPA remains SAT scores and HSGPA (r = 0.63), as the addition of the SAT sections to the correlation of HSGPA alone with FYGPA…
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Wekesa, Sabenzia Nabalayo; Sangula, Abraham Kiprotich; Belsham, Graham J; Tjornehoj, Kirsten; Muwanika, Vincent B; Gakuya, Francis; Mijele, Dominic; Siegismund, Hans Redlef
2015-02-03
Understanding the epidemiology of foot-and-mouth disease (FMD), including roles played by different hosts, is essential for improving disease control. The African buffalo (Syncerus caffer) is a reservoir for the SAT serotypes of FMD virus (FMDV). Large buffalo populations commonly intermingle with livestock in Kenya, yet earlier studies have focused on FMD in the domestic livestock, hence the contribution of buffalo to disease in livestock is largely unknown. This study analysed 47 epithelia collected from FMD outbreaks in Kenyan cattle between 2008 and 2012, and 102 probang and serum samples collected from buffalo in three different Kenyan ecosystems; Maasai-Mara (MME) (n = 40), Tsavo (TSE) (n = 33), and Meru (ME) (n = 29). Antibodies against FMDV non-structural proteins were found in 65 of 102 (64%) sera from buffalo with 44/102 and 53/102 also having neutralising antibodies directed against FMDV SAT 1 and SAT 2, respectively. FMDV RNA was detected in 42% of the buffalo probang samples by RT-qPCR (Cycle Threshold (Ct) ≤32). Two buffalo probang samples were positive by VI and were identified as FMDV SAT 1 and SAT 2 by Ag-ELISA, while the latter assay detected serotypes O (1), A (20), SAT 1 (7) and SAT 2 (19) in the 47 cattle epithelia. VP1 coding sequences were generated for two buffalo and 21 cattle samples. Phylogenetic analyses revealed SAT 1 and SAT 2 virus lineages within buffalo that were distinct from those detected in cattle. We found that FMDV serotypes O, A, SAT 1 and SAT 2 were circulating among cattle in Kenya and cause disease, but only SAT 1 and SAT 2 viruses were successfully isolated from clinically normal buffalo. The buffalo isolates were genetically distinct from isolates obtained from cattle. Control efforts should focus primarily on reducing FMDV circulation among livestock and limiting interaction with buffalo. Comprehensive studies incorporating additional buffalo viruses are recommended.
Extended-range forecasting of Chinese summer surface air temperature and heat waves
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Li, Tim
2018-03-01
Because of growing demand from agricultural planning, power management and activity scheduling, extended-range (5-30-day lead) forecasting of summer surface air temperature (SAT) and heat waves over China is carried out in the present study via spatial-temporal projection models (STPMs). Based on the training data during 1960-1999, the predictability sources are found to propagate from Europe, Northeast Asia, and the tropical Pacific, to influence the intraseasonal 10-80 day SAT over China. STPMs are therefore constructed using the projection domains, which are determined by these previous predictability sources. For the independent forecast period (2000-2013), the STPMs can reproduce EOF-filtered 30-80 day SAT at all lead times of 5-30 days over most part of China, and observed 30-80 and 10-80 day SAT at 25-30 days over eastern China. Significant pattern correlation coefficients account for more than 50% of total forecasts at all 5-30-day lead times against EOF-filtered and observed 30-80 day SAT, and at a 20-day lead time against observed 10-80 day SAT. The STPMs perform poorly in reproducing 10-30 day SAT. Forecasting for the first two modes of 10-30 day SAT only shows useful skill within a 15-day lead time. Forecasting for the third mode of 10-30 day SAT is useless after a 10-day lead time. The forecasted heat waves over China are determined by the reconstructed SAT which is the summation of the forecasted 10-80 day SAT and the lower frequency (longer than 80-day) climatological SAT. Over a large part of China, the STPMs can forecast more than 30% of heat waves within a 15-day lead time. In general, the STPMs demonstrate the promising skill for extended-range forecasting of Chinese summer SAT and heat waves.
Logic models as a tool for sexual violence prevention program development.
Hawkins, Stephanie R; Clinton-Sherrod, A Monique; Irvin, Neil; Hart, Laurie; Russell, Sarah Jane
2009-01-01
Sexual violence is a growing public health problem, and there is an urgent need to develop sexual violence prevention programs. Logic models have emerged as a vital tool in program development. The Centers for Disease Control and Prevention funded an empowerment evaluation designed to work with programs focused on the prevention of first-time male perpetration of sexual violence, and it included as one of its goals, the development of program logic models. Two case studies are presented that describe how significant positive changes can be made to programs as a result of their developing logic models that accurately describe desired outcomes. The first case study describes how the logic model development process made an organization aware of the importance of a program's environmental context for program success; the second case study demonstrates how developing a program logic model can elucidate gaps in organizational programming and suggest ways to close those gaps.
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.
Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.
Coloured Logic Petri Nets and analysis of their reachable trees
NASA Astrophysics Data System (ADS)
Wang, Jing; Du, YuYue; Yu, ShuXia
2015-11-01
Logic Petri nets (LPNs) can describe and analyse the batch processing function and passing value indeterminacy in cooperative systems, and alleviate the state space explosion problem. However, the indeterminate data of logical output transitions cannot be described explicitly in LPNs. Therefore, Coloured Logic Petri nets (CLPNs) are defined in this paper. It can determine the indeterminate data of logic output transitions in LPNs, i.e., the indeterminate data can be represented definitely in CLPNs. A vector matching method is proposed to judge the enabling transitions and analyse CLPNs. From the marking equation and the proposed reachable tree generation algorithm of CLPNs, a reachable tree can be built, and reachable markings are calculated. The advantage of CLPNs can be shown based on the number of leaf nodes of the reachability tree, and CLPNs can solve the indeterminate data of logical output transitions. Finally, an example shows that CLPNs can further reduce the dimensionality of reachable markings.
Fuzzy logic applications to control engineering
NASA Astrophysics Data System (ADS)
Langari, Reza
1993-12-01
This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.
NASA Astrophysics Data System (ADS)
Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre
We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.
Betancourt, Mónica; Fraile, Aurora; Milgroom, Michael G; García-Arenal, Fernando
2016-06-01
The satellite RNAs of cucumber mosaic virus (CMV) that induce systemic necrosis in tomato plants (N-satRNA) multiply to high levels in the infected host while severely depressing CMV accumulation and, hence, its aphid transmission efficiency. As N-satRNAs are transmitted into CMV particles, the conditions for N-satRNA emergence are not obvious. Model analyses with realistic parameter values have predicted that N-satRNAs would invade CMV populations only when transmission rates are high. Here, we tested this hypothesis experimentally by passaging CMV or CMV+N-satRNAs at low or high aphid densities (2 or 8 aphids/plant). As predicted, high aphid densities were required for N-satRNA emergence. The results showed that at low aphid densities, random effects due to population bottlenecks during transmission dominate the epidemiological dynamics of CMV/CMV+N-satRNA. The results suggest that maintaining aphid populations at low density will prevent the emergence of highly virulent CMV+N-satRNA isolates.
Reprogrammable logic in memristive crossbar for in-memory computing
NASA Astrophysics Data System (ADS)
Cheng, Long; Zhang, Mei-Yun; Li, Yi; Zhou, Ya-Xiong; Wang, Zhuo-Rui; Hu, Si-Yu; Long, Shi-Bing; Liu, Ming; Miao, Xiang-Shui
2017-12-01
Memristive stateful logic has emerged as a promising next-generation in-memory computing paradigm to address escalating computing-performance pressures in traditional von Neumann architecture. Here, we present a nonvolatile reprogrammable logic method that can process data between different rows and columns in a memristive crossbar array based on material implication (IMP) logic. Arbitrary Boolean logic can be executed with a reprogrammable cell containing four memristors in a crossbar array. In the fabricated Ti/HfO2/W memristive array, some fundamental functions, such as universal NAND logic and data transfer, were experimentally implemented. Moreover, using eight memristors in a 2 × 4 array, a one-bit full adder was theoretically designed and verified by simulation to exhibit the feasibility of our method to accomplish complex computing tasks. In addition, some critical logic-related performances were further discussed, such as the flexibility of data processing, cascading problem and bit error rate. Such a method could be a step forward in developing IMP-based memristive nonvolatile logic for large-scale in-memory computing architecture.
Using Symbolic-Logic Matrices To Improve Confirmatory Factor Analysis Techniques.
ERIC Educational Resources Information Center
Creighton, Theodore B.; Coleman, Donald G.; Adams, R. C.
A continuing and vexing problem associated with survey instrument development is the creation of items, initially, that correlate favorably a posteriori with constructs being measured. This study tests the use of symbolic-logic matrices developed by D. G. Coleman (1979) in creating factorially "pure" statistically discrete constructs in…
ERIC Educational Resources Information Center
Straumanis, Joan
A major problem in teaching symbolic logic is that of providing individualized and early feedback to students who are learning to do proofs. To overcome this difficulty, a computer program was developed which functions as a line-by-line proof checker in Sentential Calculus. The program, DEMON, first evaluates any statement supplied by the student…
Some Personality Correlates of Logical Reasoning Ability.
ERIC Educational Resources Information Center
Ross, G. Robert, Jr.; Fletcher, Harold J.
Four-hundred and nine students (grades 8, 10, 12 and 14) were given logical syllogism problems of the form "If p...then q" along with tests of dogmatism and intolerance of ambiguity. Aptitude scores were also obtained. Major results indicated that expressed dogmatism and intolerance of ambiguity were negatively correlated with syllogistic…
Efficient G(sup 4)FET-Based Logic Circuits
NASA Technical Reports Server (NTRS)
Vatan, Farrokh
2008-01-01
A total of 81 optimal logic circuits based on four-gate field-effect transistors (G(sup 4)4FETs) have been designed to implement all Boolean functions of up to three variables. The purpose of this development was to lend credence to the expectation that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. A G(sup 4)FET a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G(sup 4)FET can also be regarded as a single device having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of a silicon-on-insulator substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. One such option is to design a G(sup 4)FET to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. Optimal NOT-majority-gate, G(sup 4)FET-based logic-circuit designs were obtained in a comparative study that also included formulation of functionally equivalent logic circuits based on NOR and NAND gates implemented by use of conventional transistors. In the study, the problem of finding the optimal design for each logic function and each transistor type was solved as an integer-programming optimization problem. Considering all 81 non-equivalent Boolean functions included in the study, it was found that in 63% of the cases, fewer logic gates (and, hence, fewer transistors) would be needed in the G(sup 4)FET-based implementations.
NASA Technical Reports Server (NTRS)
Berg, Jared J.
2014-01-01
Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.
Yang, Jingjie; Leen, Eoin N.; Maree, Francois F.
2016-01-01
The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A—one of the seven serotypes of FMDV—adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3Cpro amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3Cpro from SAT2/GHA/8/91. PMID:27168976
Dalíková, Martina; Zrzavá, Magda; Kubíčková, Svatava; Marec, František
2017-10-01
The W chromosome of most lepidopteran species represents the largest heterochromatin entity in the female genome. Although satellite DNA is a typical component of constitutive heterochromatin, there are only a few known satellite DNAs (satDNAs) located on the W chromosome in moths and butterflies. In this study, we isolated and characterized new satDNA (PiSAT1) from microdissected W chromosomes of the Indian meal moth, Plodia interpunctella. Even though the PiSAT1 is mainly localized near the female-specific segment of the W chromosome, short arrays of this satDNA also occur on autosomes and/or the Z chromosome. Probably due to the predominant location in the non-recombining part of the genome, PiSAT1 exhibits a relatively large nucleotide variability in its monomers. However, at least a part of all predicted functional motifs is located in conserved regions. Moreover, we detected polyadenylated transcripts of PiSAT1 in all developmental stages and in both sexes (female and male larvae, pupae and adults). Our results suggest a potential structural and functional role of PiSAT1 in the P. interpunctella genome, which is consistent with accumulating evidence for the important role of satDNAs in eukaryotic genomes.
Achieving Science with CubeSats: Thinking Inside the Box
NASA Astrophysics Data System (ADS)
Zurbuchen, Thomas H.; Lal, Bhavya
2017-01-01
We present the results of a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years.We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements.Finally, we will summarize our conclusions and recommendations from this study; especially those focused on nearterm investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities’ use of CubeSats.
Achieving Science with CubeSats: Thinking Inside the Box
NASA Astrophysics Data System (ADS)
Lal, B.; Zurbuchen, T.
2016-12-01
In this paper, we present a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years. We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements. Finally, we will summarize our conclusions and recommendations from this study; especially those focused on near-term investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities' use of CubeSats.
An Arbitrary First Order Theory Can Be Represented by a Program: A Theorem
NASA Technical Reports Server (NTRS)
Hosheleva, Olga
1997-01-01
How can we represent knowledge inside a computer? For formalized knowledge, classical logic seems to be the most adequate tool. Classical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence. There is only one serious problem with classical logic: due to the famous Godel's theorem, classical logic is algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements, it is very difficult to check whether, based on this statement, a given query is true or not. To make knowledge representations more algorithmic, a special field of logic programming was invented. An important portion of logic programming is algorithmically decidable. To cover knowledge that cannot be represented in this portion, several extensions of the decidable fragments have been proposed. In the spirit of logic programming, these extensions are usually introduced in such a way that even if a general algorithm is not available, good heuristic methods exist. It is important to check whether the already proposed extensions are sufficient, or further extensions is necessary. In the present paper, we show that one particular extension, namely, logic programming with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable sense) an arbitrary first order logical theory.
Précis of bayesian rationality: The probabilistic approach to human reasoning.
Oaksford, Mike; Chater, Nick
2009-02-01
According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer, deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules of logic--the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on comparing human reasoning against logical standards. Bayesian Rationality argues that rationality is defined instead by the ability to reason about uncertainty. Although people are typically poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic reasoning. In Chapters 1-4 of Bayesian Rationality (Oaksford & Chater 2007), the case is made that cognition in general, and human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters 5-7 the psychology of "deductive" reasoning is tackled head-on: It is argued that purportedly "logical" reasoning problems, revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning, Wason's selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of this work, and the wider "probabilistic turn" in cognitive science and artificial intelligence, for understanding human rationality.
ERIC Educational Resources Information Center
Fodor, Jerry A.
1981-01-01
Describes several different philosophies of mind with each philosophy's explanation of the mind-body problem. Philosophies discussed include dualism, materialism, functionalism, radical behaviorism, logical behaviorism and central-state identity. (DS)
2014-05-01
UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a
Nathan, Liz; Stackhouse, Joy; Goulandris, Nata; Snowling, Margaret J
2004-06-01
Children with speech difficulties may have associated educational problems. This paper reports a study examining the educational attainment of children at Key Stage 1 of the National Curriculum who had previously been identified with a speech difficulty. (1) To examine the educational attainment at Key Stage 1 of children diagnosed with speech difficulties two/three years prior to the present study. (2) To compare the Key Stage 1 assessment results of children whose speech problems had resolved at the time of assessment with those whose problems persisted. Data were available from 39 children who had an earlier diagnosis of speech difficulties at age 4/5 (from an original cohort of 47) at the age of 7. A control group of 35 children identified and matched at preschool on age, nonverbal ability and gender provided comparative data. Results of Statutory Assessment Tests (SATs) in reading, reading comprehension, spelling, writing and maths, administered to children at the end of Year 2 of school were analysed. Performance across the two groups was compared. Performance was also compared to published statistics on national levels of attainment. Children with a history of speech difficulties performed less well than controls on reading, spelling and maths. However, children whose speech problems had resolved by the time of assessment performed no differently to controls. Children with persisting speech problems performed less well than controls on tests of literacy and maths. Spelling performance was a particular area of difficulty for children with persisting speech problems. Children with speech difficulties are likely to perform less well than expected on literacy and maths SAT's at age 7. Performance is related to whether the speech problem resolves early on and whether associated language problems exist. Whilst it is unclear whether poorer performance on maths is because of the language components of this task, the results indicate that speech problems, especially persisting ones, can affect the ability to access the National Curriculum to expected levels.
Overestimation Bias in Self-Reported SAT Scores
ERIC Educational Resources Information Center
Mayer, Richard E.; Stull, Andrew T.; Campbell, Julie; Almeroth, Kevin; Bimber, Bruce; Chun, Dorothy; Knight, Allan
2007-01-01
The authors analyzed self-reported SAT scores and actual SAT scores for five different samples of college students (N = 650). Students overestimated their actual SAT scores by an average of 25 points (SD = 81, d = 0.31), with 10% under-reporting, 51% reporting accurately, and 39% over-reporting, indicating a systematic bias towards over-reporting.…
ERIC Educational Resources Information Center
Kennon, Tillman; Roberts, Ed; Fuller, Teresa
2008-01-01
Space travel, even low Earth orbit, is probably several years away for most of us; however, students and teachers can research the edge of space by participating in the BalloonSat program. BalloonSat is an offshoot of the Space Grant Consortium's very successful RocketSat program. The Arkansas BalloonSat program consists of teacher-initiated…
TechEdSat 5 PhoneSat 5 Team Photo
2016-07-28
TechEdSat 5 PhoneSat 5 Team photo on July 26, 2016. Taken in fron of the 1/3 scale Shuttle Orbiter Model, in front of the Parade Ground on Clark Road at NASA Research Park. Mark Murbach Sarosh Hussain Ali Guarneros Luna David Handy Jonathan Hanson Jakqueline Granillo Sarah Chu Alejandro Sales
NASA Technical Reports Server (NTRS)
Sims, William H.
2015-01-01
This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
Guan, Xiaodan; Huang, Jianping; Guo, Ruixia; Lin, Pu
2015-01-01
Since the slowing of the trend of increasing surface air temperature (SAT) in the late 1990 s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. Although several explanations have been proposed for the warming-trend slowdown (WTS), none has been generally accepted. We investigate the WTS using a recently developed methodology that can successfully identify and separate the dynamically induced and radiatively forced SAT changes from raw SAT data. The dynamically induced SAT changes exhibited an obvious cooling effect relative to the warming effect of the adjusted SAT in the hiatus process. A correlation analysis suggests that the changes are dominated primarily by the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Our results confirm that dynamically induced variability caused the WTS. The radiatively forced SAT changes are determined mainly by anthropogenic forcing, indicating the warming influence of greenhouse gases (GHGs), which reached levels of 400 ppm during the hiatus period. Therefore, the global SAT will not remain permanently neutral. The increased radiatively forced SAT will be amplified by increased dynamically induced SAT when the natural mode returns to a warming phase in the next period. PMID:26223491
Measurement of subcutaneous adipose tissue development in children by the optical device LIPOMETER
NASA Astrophysics Data System (ADS)
Moeller, Reinhard; Horejsi, Renate; Sudi, Karl; Berg, Aloys; Reibnegger, Gilbert; Tafeit, Erwin
2001-10-01
The new optical device LIPOMETER enables the non-invasive, quick and save determination of the thickness of subcutantous adipose tissue (SAT) layers (in nm) at any site of the human body. The topographic specification of 15 evenly distributed body sites allows the precise measurement of subcutaneous body fat distribution, so called subcutaneous adipose tissue topopgraphy (SAT-Top). SAT-Top was determined in more than 1000 children aging from 7 to 21 yr. We describe the SAT-Top development of these subjects through different age groups and the differences between male and female SAT-Top development in each age group. SAT layer profiles (medians of the 15 body sites) for boys and girls in age group (7-9 yr) show a very similar pattern for both sexes, followed by decreasing SAT layer thicknesses in boys and increasing values in girls in the subsequent age groups. Between age group 3 (11-13 yr) and age group 7 (19- 21 yr) male and female SAT-Top is significantly different in (almost) all body sites. We present a precise description of SAT-Top development in boys and girls, providing a basis for further investigations in different fields such as obesity, sport sciences or metabolic disorders, and suggesting the LIPOMETER technique as an appropriate measurement tool.
NASA Technical Reports Server (NTRS)
Amason, David L.
2008-01-01
The goal of the Solar Dynamics Observatory (SDO) is to understand and, ideally, predict the solar variations that influence life and society. It's instruments will measure the properties of the Sun and will take hifh definition images of the Sun every few seconds, all day every day. The FlatSat is a high fidelity electrical and functional representation of the SDO spacecraft bus. It is a high fidelity test bed for Integration & Test (I & T), flight software, and flight operations. For I & T purposes FlatSat will be a driver to development and dry run electrical integration procedures, STOL test procedures, page displays, and the command and telemetry database. FlatSat will also serve as a platform for flight software acceptance and systems testing for the flight software system component including the spacecraft main processors, power supply electronics, attitude control electronic, gimbal control electrons and the S-band communications card. FlatSat will also benefit the flight operations team through post-launch flight software code and table update development and verification and verification of new and updated flight operations products. This document highlights the benefits of FlatSat; describes the building of FlatSat; provides FlatSat facility requirements, access roles and responsibilities; and, and discusses FlatSat mechanical and electrical integration and functional testing.
Programmable hardware for reconfigurable computing systems
NASA Astrophysics Data System (ADS)
Smith, Stephen
1996-10-01
In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.
Logical Aspects of Question-Answering by Computer.
ERIC Educational Resources Information Center
Kuhns, J. L.
The problem of computerized question-answering is discussed in this paper from the point of view of certain technical, although elementary, notions of logic. Although the work reported herein has general application to the design of information systems, it is specifically motivated by the RAND Relational Data File. This system, for which a…
The Relationships Among Logical and Spatial Skills and Understanding Genetics Concepts and Problems.
ERIC Educational Resources Information Center
Costello, Sandra Judith
The purpose of this study was to determine whether relationships occur among spatial skills, logical reasoning, and various genetic concepts. Twenty-one students enrolled in an undergraduate genetics course in a northern New Jersey institution completed a series of tests and tasks designed to measure flexibility of closure, visualization,…
ERIC Educational Resources Information Center
Waisman, Ilana; Leikin, Mark; Leikin, Roza
2016-01-01
Mathematical processing associated with solving short geometry problems requiring logical inference was examined among students who differ in their levels of general giftedness (G) and excellence in mathematics (EM) using ERP research methodology. Sixty-seven male adolescents formed four major research groups designed according to various…
Reusable rocket engine turbopump health monitoring system, part 3
NASA Technical Reports Server (NTRS)
Perry, John G.
1989-01-01
Degradation mechanisms and sensor identification/selection resulted in a list of degradation modes and a list of sensors that are utilized in the diagnosis of these degradation modes. The sensor list is divided into primary and secondary indicators of the corresponding degradation modes. The signal conditioning requirements are discussed, describing the methods of producing the Space Shuttle Main Engine (SSME) post-hot-fire test data to be utilized by the Health Monitoring System. Development of the diagnostic logic and algorithms is also presented. The knowledge engineering approach, as utilized, includes the knowledge acquisition effort, characterization of the expert's problem solving strategy, conceptually defining the form of the applicable knowledge base, and rule base, and identifying an appropriate inferencing mechanism for the problem domain. The resulting logic flow graphs detail the diagnosis/prognosis procedure as followed by the experts. The nature and content of required support data and databases is also presented. The distinction between deep and shallow types of knowledge is identified. Computer coding of the Health Monitoring System is shown to follow the logical inferencing of the logic flow graphs/algorithms.
Quantum Weak Values and Logic: An Uneasy Couple
NASA Astrophysics Data System (ADS)
Svensson, Bengt E. Y.
2017-03-01
Quantum mechanical weak values of projection operators have been used to answer which-way questions, e. g. to trace which arms in a multiple Mach-Zehnder setup a particle may have traversed from a given initial to a prescribed final state. I show that this procedure might lead to logical inconsistencies in the sense that different methods used to answer composite questions, like "Has the particle traversed the way X or the way Y?", may result in different answers depending on which methods are used to find the answer. I illustrate the problem by considering some examples: the "quantum pigeonhole" framework of Aharonov et al., the three-box problem, and Hardy's paradox. To prepare the ground for my main conclusion on the incompatibility in certain cases of weak values and logic, I study the corresponding situation for strong/projective measurements. In this case, no logical inconsistencies occur provided one is always careful in specifying exactly to which ensemble or sample space one refers. My results cast doubts on the utility of quantum weak values in treating cases like the examples mentioned.
NASA Astrophysics Data System (ADS)
Bian, Tao; Ren, Guoyu
2017-11-01
Based on a homogenized data set of monthly mean temperature, minimum temperature, and maximum temperature at Shijiazhuang City Meteorological Station (Shijiazhuang station) and four rural meteorological stations selected applying a more sophisticated methodology, we reanalyzed the urbanization effects on annual, seasonal, and monthly mean surface air temperature (SAT) trends for updated time period 1960-2012 at the typical urban station in North China. The results showed that (1) urbanization effects on the long-term trends of annual mean SAT, minimum SAT, and diurnal temperature range (DTR) in the last 53 years reached 0.25, 0.47, and - 0.50 °C/decade, respectively, all statistically significant at the 0.001 confidence level, with the contributions from urbanization effects to the overall long-term trends reaching 67.8, 78.6, and 100%, respectively; (2) the urbanization effects on the trends of seasonal mean SAT, minimum SAT, and DTR were also large and statistically highly significant. Except for November and December, the urbanization effects on monthly mean SAT, minimum SAT, and DTR were also all statistically significant at the 0.05 confidence level; and (3) the annual, seasonal, and monthly mean maximum SAT series at the urban station registered a generally weaker and non-significant urbanization effect. The updated analysis evidenced that our previous work for this same urban station had underestimated the urbanization effect and its contribution to the overall changes in the SAT series. Many similar urban stations were being included in the current national and regional SAT data sets, and the results of this paper further indicated the importance and urgency for paying more attention to the urbanization bias in the monitoring and detection of global and regional SAT change based on the data sets.
Massively Clustered CubeSats NCPS Demo Mission
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike
2013-01-01
Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.
Horejsi, R; Möller, R; Rackl, S; Giuliani, A; Freytag, U; Crailsheim, K; Sudi, K; Tafeit, E
2004-07-01
The new optical device, the lipometer, enables the noninvasive, quick, safe, and precise determination of the thickness of subcutaneous adipose tissue (SAT) layers at any given site of the human body. Fifteen anatomically well-defined body sites from neck to calf describe a SAT topography (SAT-Top) like an individual "fingerprint" of a subject. This SAT-Top was examined in 16 women with polycystic ovary syndrome (PCOS) and compared to the body fat distribution of 87 age-matched healthy controls and 20 type-2 diabetic women. SAT-Top differences of these three groups were described and, to render the possibility of visual comparison, the 15-dimensional body fat information was condensed to a two-dimensional factor plot by factor analysis. All PCOS patients had an android body fat distribution with significantly thinner SAT layers on the legs as compared to healthy controls. Moreover, a hierarchical cluster analysis resulted in two distinctly different groups of PCOS women, a lean (PCOSL) and an obese (PCOSO) cluster: compared to healthy women, lean PCOS patients had significantly lower total SAT development, even though height, weight, and body mass index did not deviate significantly. Especially on the legs, their SAT layers were significantly lowered, indicating a more "apple-like" fat distribution type. Obese PCOS women showed a SAT-Top pattern very similar to that of women with type-2 diabetes, although the mean age difference between these groups was more than 30 years. Compared to healthy controls, the SAT-Top of these obese PCOS patients was strongly shifted into the android direction, appearing as "super-apples" with a significantly increased upper trunk obesity to 237.8% and a significantly decreased leg SAT development to 79.8%. Copyright 2004 Wiley-Liss, Inc.
Burckhardt, Rachel M; Escalante-Semerena, Jorge C
2017-11-01
Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its mechanism of catalysis. Copyright © 2017 American Society for Microbiology.
Burckhardt, Rachel M.
2017-01-01
ABSTRACT Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for streptothricin acetyltransferase A, formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA+ restored streptothricin resistance to B. subtilis satA (BsSatA) strains. Purified BsSatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity (Kd [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA+ in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis. This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis. The initial characterization of the enzyme provides insights into its mechanism of catalysis. PMID:28842538
NASA Astrophysics Data System (ADS)
Cotton, D.; Garcia, P. N.; Cancet, M.; Andersen, O.; Stenseng, L.; Martin, F.; Cipollini, P.; Calafat, F. M.; Passaro, M.; Restano, M.; Ambrozio, A.; Benveniste, J.
2016-08-01
The ESA CryoSat-2 mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat-2 mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat-2 SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "CryoSat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of CryoSat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: to build a sound scientific basis for new oceanographic applications of CryoSat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the CryoSat-2 SIRAL altimeter, and to ensure that the scientific return of the CryoSat-2 mission is maximised. Cotton et al, (2015) is the final report on this work.However, whilst the results from CP4O were highly promising and confirmed the potential of SAR altimetry to support new scientific and operational oceanographic applications, it was also apparent that further work was needed in some key areas to fully realise the original project objectives. Thus additional work in four areas has been supported by ESA under a Contract Change Notice:• Developments in SARin data processing for Coastal Altimetry (isardSAT).• Implementation of a Regional Tidal Atlas for the Arctic Ocean (Noveltis and DTU Space).• Improvements to the SAMOSA re-tracker: Implementation and Evaluation- Optimised Thermal Noise Estimation. (Starlab and SatOC).• Extended evaluation of CryoSat-2 SAR data for Coastal Applications (NOC).This work was managed by SatOC. The results of this work are summarized here. Detailed information regarding the CP4O project can be found at: http://www.satoc.eu/projects/CP4O/
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.
Substance abuse treatment in an urban HIV clinic: who enrolls and what are the benefits?
Pisu, Maria; Cloud, Gretchen; Austin, Shamly; Raper, James L; Stewart, Katharine E; Schumacher, Joseph E
2010-03-01
Substance abuse treatment (SAT) is important for HIV medical care. Characteristics of those who choose SAT and effects of SAT on HIV clinical outcomes are not understood. We compared patients who enrolled and did not enroll in a SAT program offered within an HIV clinic, and evaluated the effect of SAT on CD4 T-cell counts and HIV plasma viral load (VL). Subjects were assessed and invited to enroll in SAT. Enrollees chose to receive psychological and psychiatric treatment, or motivational enhancement and relapse prevention, or residential SAT. We used logistic regressions to determine factors associated with enrollment (age, race, sex, HIV transmission risk factors, CD4 T-cell counts, and VL at assessment). A two-period (assessment and six months after SAT) data analysis was used to analyze the effect of SAT on CD4 T-cell count and log VL controlling for changes in HIV therapy. We find that, compared to Decliners (N=76), Enrollees (N=78) were more likely to be females (29.5% vs. 6.6%, OR=5.32, 95% CI 1.61-17.6), and to report injection drug use (IDU) as the HIV transmission risk factor (23.1% vs. 9.2%, OR=3.92, CI 1.38-11.1). Age (37.2 vs. 38.4), CD4 T-cell count (377.3 vs. 409.2), and log VL (3.21 vs. 2.99) at assessment were similar across the two groups (p>0.05). After six months, Enrollees and Decliners' CD4 T-cell counts increased and log VL decreased. SAT did not affect the change in CD4 T-cell count (p=0.51) or log VL (p=0.73). Similar results were found for patients with CD4 T-cell count < or =350 at assessment. In this small sample of HIV-infected patients with a limited follow-up period, women were more likely to enroll in SAT than men, and SAT reached those who needed it, e.g., IDUs. We did not find an effect of SAT on HIV clinical outcomes.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
CubeSats for Astrophysics: The Current Perspective
NASA Astrophysics Data System (ADS)
Ardila, David R.; Shkolnik, Evgenya; Gorjian, Varoujan
2017-01-01
Cubesats are small satellites built to multiples of 1U (1000 cm3). The 2016 NRC Report “Achieving Science with CubeSats” indicates that between 2013 and 2018 NASA and NSF sponsored 104 CubeSats. Of those, only one is devoted to astrophysics: HaloSat (PI: P. Kaaret), a 6U CubeSat with an X-ray payload to study the hot galactic halo.Despite this paucity of missions, CubeSats have a lot of potential for astrophysics. To assess the science landscape that a CubeSat astrophysics mission may occupy, we consider the following parameters:1-Wavelength: CubeSats are not competitive in the visible, unless the application (e.g. high precision photometry) is difficult to do from the ground. Thermal IR science is limited by the lack of low-power miniaturized cryocoolers and by the large number of infrared astrophysical missions launched or planned. In the UV, advances in δ-doping processes result in larger sensitivity with smaller apertures. Commercial X-ray detectors also allow for competitive science.2-Survey vs. Pointed observations: All-sky surveys have been done at most wavelengths from X-rays to Far-IR and CubeSats will not be able to compete in sensitivity with them. CubeSat science should then center on specific objects or object classes. Due to poor attitude control, unresolved photometry is scientifically more promising that extended imaging.3-Single-epoch vs. time domain: CubeSat apertures cannot compete in sensitivity with big satellites when doing single-epoch observations. However, time-domain astrophysics is an area in which CubeSats can provide very valuable science return.Technologically, CubeSat astrophysics is limited by:1-Lack of large apertures: The largest aperture CubeSat launched is ~10 cm, although deployable apertures as large as 20 cm could be fitted to 6U buses.2-Poor attitude control: State-of-the-art systems have demonstrated jitter of ~10” on timescales of seconds. Jitter imposes limits on image quality and, coupled with detector errors, limits the S/N.Other technology limitations include the lack of high-bandwidth communication and low-power miniaturized cryocoolers. However, even with today’s technological limitations, astrophysics applications of CubeSats are only limited by our imagination.
Near Earth Network (NEN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), HEO (Highly Elliptical Orbit), lunar and L1-L2 orbits. The NEN's future mission set includes and will continue to include CubeSat missions. The first NEN-supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into LEO in 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground-based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL)-developed IRIS (Satellite Communication for Air Traffic Management) radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 (Exploration Mission-1) lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NEN's mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1-L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott H.
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
CubeSat Integration into the Space Situational Awareness Architecture
NASA Astrophysics Data System (ADS)
Morris, K.; Wolfson, M.; Brown, J.
2013-09-01
Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of the GEO belt, process out the stars, and then downlink the data to the ground. This data can then be combined with the existing metric track data to enhance the coverage and timeliness. With the current capability of CubeSats and their payloads, along with the launch constraints, the near term focus is to integrate into existing architectures by reducing technology risks, understanding unique phenomenology, and augment mission collection capability. Understanding the near term benefits of utilizing CubeSats will better inform the SSA mission developers how to integrate CubeSats into the next generation of architectures from the start.
Exploring Our Solar System with CubeSats and NanoSats
NASA Technical Reports Server (NTRS)
Freeman, Anthony; Norton, Charles
2015-01-01
The Jet Propulsion Laboratory (JPL) is NASA's lead center for robotic exploration of our solar system. We are known for our large, flagship missions, such as Voyager, which gave humanity its first close look at Jupiter and Saturn; and the Mars Rovers, which have excited millions worldwide with their daring landing exploits. Less familiar to those outside NASA may be our role in developing the Kepler mission, which has discovered more than 2000 planets around other stars; or the recently launched Soil Moisture Active Passive (SMAP) mission, one of many JPL Earth Science missions. A recent JPL initiative has emphasized low cost missions that use rapidly evolving technology developed for CubeSats and NanoSat s to explore our solar system. Costs are significantly lower (by one or two orders of magnitude) than for conventional JPL missions, and development time is also significantly shorter. At present 21 such CubeSat flight projects are under way at the laboratory with various partners : some in flight, some in development, some in advanced formulation. Four are planned as deep space missions. To succeed in exploring deep space CubeSat/NanoSat missions have to address several challenges: the more severe radiation environment, communications and navigation at a distance, propulsion, and packaging of instruments that can return valuable science into a compact volume/mass envelope. Instrument technologies, including cameras, magnetometers, spectrometers, radiometers, and even radars are undergoing miniaturization to fit on these smaller platforms. Other key technologies are being matured for smallsats and NanoSats in deep space, including micro -electric propulsion, compact radio (and optical) communications, and onboard data reduction. This paper will describe missions that utilize these developments including the first two deep space CubeSats (INSPIRE), planned for launch in 2017; the first pair of CubeSats to be sent to another planet (MARCO), manifested with the InSight Mars lander launch in March of 2016; a helicopter "drone" on Mars to extend the reach of future rovers; plans for a Lunar Flashlight mission to shine a light on the permanently shadowed craters of the Moon's poles; a Near Earth Asteroid CubeSat missio n; and a CubeSat constellation to demonstrate time series measurements of storm systems on Earth. From these beginnings, the potential for CubeSats and NanoSats to add to our knowledge of the solar system could easily grow exponentially. Imagine if every deep space mission carried one or more CubeSats that could operate independently (even for a brief period) on arrival at their target body. At only incremental additional cost, such spacecraft could go closer, probe deeper, and provide science measurements that we would not risk with the host spacecraft. This paper will describe examples including a NanoSat to probe the composition of Venus' atmosphere, impactors and close flybys of Europa, lunar probes, and soft landers for the moons of Mars. Low cost access to deep space also offers the potential for independent CubeSat/NanoSat missions - allowing us to characterize the population of near Earth asteroids for example, deploy a constellation around Venus, or take closer looks at the asteroid belt.
Satisfiability modulo theory and binary puzzle
NASA Astrophysics Data System (ADS)
Utomo, Putranto
2017-06-01
The binary puzzle is a sudoku-like puzzle with values in each cell taken from the set {0, 1}. We look at the mathematical theory behind it. A solved binary puzzle is an n × n binary array where n is even that satisfies the following conditions: (1) No three consecutive ones and no three consecutive zeros in each row and each column, (2) Every row and column is balanced, that is the number of ones and zeros must be equal in each row and in each column, (3) Every two rows and every two columns must be distinct. The binary puzzle had been proven to be an NP-complete problem [5]. Research concerning the satisfiability of formulas with respect to some background theory is called satisfiability modulo theory (SMT). An SMT solver is an extension of a satisfiability (SAT) solver. The notion of SMT can be used for solving various problem in mathematics and industries such as formula verification and operation research [1, 7]. In this paper we apply SMT to solve binary puzzles. In addition, we do an experiment in solving different sizes and different number of blanks. We also made comparison with two other approaches, namely by a SAT solver and exhaustive search.
DebriSat Project Update and Planning
NASA Technical Reports Server (NTRS)
Sorge, M.; Krisko, P. H.
2016-01-01
DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.
Logic Design Pathology and Space Flight Electronics
NASA Technical Reports Server (NTRS)
Katz, Richard; Barto, Rod L.; Erickson, K.
1997-01-01
Logic design errors have been observed in space flight missions and the final stages of ground test. The technologies used by designers and their design/analysis methodologies will be analyzed. This will give insight to the root causes of the failures. These technologies include discrete integrated circuit based systems, systems based on field and mask programmable logic, and the use computer aided engineering (CAE) systems. State-of-the-art (SOTA) design tools and methodologies will be analyzed with respect to high-reliability spacecraft design and potential pitfalls are discussed. Case studies of faults from large expensive programs to "smaller, faster, cheaper" missions will be used to explore the fundamental reasons for logic design problems.
Towards An Engineering Discipline of Computational Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mili, Ali; Sheldon, Frederick T; Jilani, Lamia Labed
2007-01-01
George Boole ushered the era of modern logic by arguing that logical reasoning does not fall in the realm of philosophy, as it was considered up to his time, but in the realm of mathematics. As such, logical propositions and logical arguments are modeled using algebraic structures. Likewise, we submit that security attributes must be modeled as formal mathematical propositions that are subject to mathematical analysis. In this paper, we approach this problem by attempting to model security attributes in a refinement-like framework that has traditionally been used to represent reliability and safety claims. Keywords: Computable security attributes, survivability, integrity,more » dependability, reliability, safety, security, verification, testing, fault tolerance.« less
Weighted Description Logics Preference Formulas for Multiattribute Negotiation
NASA Astrophysics Data System (ADS)
Ragone, Azzurra; di Noia, Tommaso; Donini, Francesco M.; di Sciascio, Eugenio; Wellman, Michael P.
We propose a framework to compute the utility of an agreement w.r.t a preference set in a negotiation process. In particular, we refer to preferences expressed as weighted formulas in a decidable fragment of First-order Logic and agreements expressed as a formula. We ground our framework in Description Logics (DL) endowed with disjunction, to be compliant with Semantic Web technologies. A logic based approach to preference representation allows, when a background knowledge base is exploited, to relax the often unrealistic assumption of additive independence among attributes. We provide suitable definitions of the problem and present algorithms to compute utility in our setting. We also validate our approach through an experimental evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, Thomas E.; Deshpande, Ashok W.
2004-06-14
In modeling complex environmental problems, we often fail to make precise statements about inputs and outcome. In this case the fuzzy logic method native to the human mind provides a useful way to get at these problems. Fuzzy logic represents a significant change in both the approach to and outcome of environmental evaluations. Risk assessment is currently based on the implicit premise that probability theory provides the necessary and sufficient tools for dealing with uncertainty and variability. The key advantage of fuzzy methods is the way they reflect the human mind in its remarkable ability to store and process informationmore » which is consistently imprecise, uncertain, and resistant to classification. Our case study illustrates the ability of fuzzy logic to integrate statistical measurements with imprecise health goals. But we submit that fuzzy logic and probability theory are complementary and not competitive. In the world of soft computing, fuzzy logic has been widely used and has often been the ''smart'' behind smart machines. But it will require more effort and case studies to establish its niche in risk assessment or other types of impact assessment. Although we often hear complaints about ''bright lines,'' could we adapt to a system that relaxes these lines to fuzzy gradations? Would decision makers and the public accept expressions of water or air quality goals in linguistic terms with computed degrees of certainty? Resistance is likely. In many regions, such as the US and European Union, it is likely that both decision makers and members of the public are more comfortable with our current system in which government agencies avoid confronting uncertainties by setting guidelines that are crisp and often fail to communicate uncertainty. But some day perhaps a more comprehensive approach that includes exposure surveys, toxicological data, epidemiological studies coupled with fuzzy modeling will go a long way in resolving some of the conflict, divisiveness, and controversy in the current regulatory paradigm.« less
The SAT Gender Gap: Identifying the Causes.
ERIC Educational Resources Information Center
Rosser, Phyllis
Questions on the Scholastic Aptitude Test (SAT) with the largest score differences between women and men of all racial and ethnic groups were identified. Patterns of difficulty that would explain the SAT's continuing underprediction of female first-year college performance were studied. An item analysis of one form of the June 1986 SAT for 1,112…
College Math Assessment: SAT Scores vs. College Math Placement Scores
ERIC Educational Resources Information Center
Foley-Peres, Kathleen; Poirier, Dawn
2008-01-01
Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…
HaloSat - A CubeSat to Study the Hot Galactic Halo
NASA Astrophysics Data System (ADS)
Kaaret, Philip
2017-01-01
Observations of the nearby universe fail to locate about half of the baryons observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.
Preliminary Analysis: Am-241 RHU/TEG Electric Power Source for Nanosatellites
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Young, David; Cunningham, Karen; Kim, Tony; Ambrosi, Richard M.; Williams, Hugo R.
2014-01-01
The Februay 2013 Space Works Commercial report indicates a strong increase in nano/microsatellite (1-50 kg) launch demand globally in future years. Nanosatellites (NanoSats) are small spacecraft in the 1-10 kg range, which present a simple, low-cost option for developing quickly-deployable satellites. CubeSats, a special category of NanoSats, are even being considered for interplanetary missions. However, the small dimensions of CubeSats and the limited mass of the NanoSat class in general place limits of capability on their electrical power systems (especially where typical power sources such as solar panels are considered) and stored energy reserves; restricting the power budget and overall functionality. For example, leveraging NanoSat clusters for computationally intensive problems that are solved collectively becomes more challenging with power related restrictions on communication and data-processing. Further, interplanetary missions that would take NanoSats far from the sun, make the use of solar panels less effective as a power source as their required area would become quite large. To overcome these limitations, americium 241 (Am-241) has been suggested as a low power source option. The Idaho National Laboratory, Center for Space Nuclear Research reports that: ? (Production) requires small quantities of isotope - 62.5 g of Pu-238; 250 g Am- 241 (for 5 We); Am-241 is available at around 1 kg/yr commercially; Am-241 produces 59 kev gammas which are stopped readily by tungsten so the radiation field is very low. Whereby, an Am-241 source could be placed in among the instruments and the waste heat used to heat the platform; and ? amounts of isotope are so low that launch approval may be easier, especially with tungsten encapsulation. As further reported, Am-241 has a half-life that is approximately five times greater than that of Pu- 238 and it has been determined that the neutron yield of a 241-AmO(sub 2) source is approximately an order of magnitude lower than that of a 238-PuO(sub 2) source of equal mass and degree of (sup 16)O enrichment. Also it has been demonstrated that shielded heat sources fuelled by oxygen-enriched 238-PuO(sub 2) have masses that are up to 10 times greater than those fuelled by oxygenenriched 241-AmO(sub 2) with equivalent thermal power outputs and neutron dose rates at 1 m radii. For these reasons, Am-241 is well suited to missions that demand long duration electrical power output, such as deep spaceflight missions and similar missions that use radiation-hard electronics and instrumentation that are less susceptible to neutron radiation damage.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
The complex spine: the multidimensional system of causal pathways for low-back disorders.
Marras, William S
2012-12-01
The aim of this study was to examine the logic behind the knowledge of low-back problem causal pathways. Low-back pain and low-back disorders (LBDs) continue to represent the major musculoskeletal risk problem in the workplace,with the prevalence and costs of such disorders increasing over time. In recent years, there has been much criticism of the ability of ergonomics methods to control the risk of LBDs. Logical assessment of the systems logic associated with our understanding and prevention of LBDs. Current spine loading as well as spine tolerance research efforts are bringing the field to the point where there is a better systems understanding of the inextricable link between the musculoskeletal system and the cognitive system. Loading is influenced by both the physical environment factors as well as mental demands, whereas tolerances are defined by both physical tissue tolerance and biochemically based tissue sensitivities to pain. However, the logic used in many low-back risk assessment tools may be overly simplistic, given what is understood about causal pathways. Current tools typically assess only load or position in a very cursory manner. Efforts must work toward satisfying both the physical environment and the cognitive environment for the worker if one is to reliably lower the risk of low-back problems. This systems representation of LBD development may serve as a guide to identify gaps in our understanding of LBDs.
Generalized Nanosatellite Avionics Testbed Lab
NASA Technical Reports Server (NTRS)
Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt
2015-01-01
The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.
How CubeSats contribute to Science and Technology in Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian
2017-01-01
CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.
Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform
NASA Technical Reports Server (NTRS)
Cudmore, Alan
2015-01-01
Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.
Chang, Chih-Hao; Lee, Shu-Chuan; Lo, Yih-Shan; Wang, Jiun-Da; Shaw, Jane; Chang, Ban-Yang
2016-01-01
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. PMID:27702772
Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T
1999-11-05
The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.
A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes)
Utsunomia, Ricardo; Ruiz-Ruano, Francisco J.; Silva, Duílio M. Z. A.; Serrano, Érica A.; Rosa, Ivana F.; Scudeler, Patrícia E. S.; Hashimoto, Diogo T.; Oliveira, Claudio; Camacho, Juan Pedro M.; Foresti, Fausto
2017-01-01
Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants. PMID:28855916
Abo Enin, Hadel A; Abdel-Bar, Hend Mohamed
2016-11-01
This study aims to illustrate the applicability of solid supersaturated self-nanoemulsifying drug delivery system (sat-SNEDDS) for the improvement of rosuvastatin calcium (RC) oral bioavailability. Different sat-SNEDDS were prepared by incorporating different ratios of RC into SNEDDS using tween80/PEG400 (77.2%) as surfactant/cosurfactant mixture and garlic /olive oil (22.8%) as oil phase. The prepared systems were characterized viz; size, zeta potential, TEM and stability. Various hydrophilic and hydrophobic carriers were employed to solidify the optimized RC sat-SNEDDS. The influence of the carrier was investigated by SEM, XRPD, DSC, flow properties, in vitro precipitation, drug release and oral bioavailability study. The adsorption of the stable positively charged nanocarrier RC sat-SNEDDS onto solid carriers provided free flowing amorphous powder. The carrier could amend the morphological architecture and in vitro release of the RC solid sat-SNEDDS. Hydrophobic carriers as microcrystalline cellulose 102 (MCC) showed superior physical characters and higher dissolution rate over hydrophilic carriers as maltodextrin with respective T 100% 30 min and 45 min. The rapid spontaneous emulsification, the positively nanosized MCC-sat-SNEDDS improved oral bioavailability of RC by 2.1-fold over commercial tablets. Solid MCC-sat-SNEDDS combined dual benefits of sat-SNEDDS and solid dosage form was successfully optimized to improve RC oral bioavailability.
Performance of Quantum Annealers on Hard Scheduling Problems
NASA Astrophysics Data System (ADS)
Pokharel, Bibek; Venturelli, Davide; Rieffel, Eleanor
Quantum annealers have been employed to attack a variety of optimization problems. We compared the performance of the current D-Wave 2X quantum annealer to that of the previous generation D-Wave Two quantum annealer on scheduling-type planning problems. Further, we compared the effect of different anneal times, embeddings of the logical problem, and different settings of the ferromagnetic coupling JF across the logical vertex-model on the performance of the D-Wave 2X quantum annealer. Our results show that at the best settings, the scaling of expected anneal time to solution for D-WAVE 2X is better than that of the DWave Two, but still inferior to that of state of the art classical solvers on these problems. We discuss the implication of our results for the design and programming of future quantum annealers. Supported by NASA Ames Research Center.
A study of fuzzy logic ensemble system performance on face recognition problem
NASA Astrophysics Data System (ADS)
Polyakova, A.; Lipinskiy, L.
2017-02-01
Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2014-01-01
Closing Remarks: ?(1) SmallSats hold significant potential for future low cost high value missions; (2) Propulsion remains a key limiting capability for SmallSats that Iodine can address: High ISP * Density for volume constrained spacecraft; Indefinite quiescence, unpressurized and non-hazardous as a secondary payload; (3) Iodine enables MicroSat and SmallSat maneuverability: Enables transfer into high value orbits, constellation deployment and deorbit; (4) Iodine may enable a new class of planetary and exploration class missions: Enables GTO launched secondary spacecraft to transit to the moon, asteroids, and other interplanetary destinations for approximately 150 million dollars full life cycle cost including the launch; (5) ESPA based OTVs are also volume constrained and a shift from xenon to iodine can significantly increase the transfer vehicle change in volume capability including transfers from GTO to a range of Lunar Orbits; (6) The iSAT project is a fast pace high value iodine Hall technology demonstration mission: Partnership with NASA GRC and NASA MSFC with industry partner - Busek; (7) The iSAT mission is an approved project with PDR in November of 2014 and is targeting a flight opportunity in FY17.
Interplanetary CubeSat Navigational Challenges
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.
2015-01-01
CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.
Survey on the implementation and reliability of CubeSat electrical bus interfaces
NASA Astrophysics Data System (ADS)
Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard
2017-06-01
This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed amore » new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.« less
The neural correlates of belief-bias inhibition: the impact of logic training.
Luo, Junlong; Tang, Xiaochen; Zhang, Entao; Stupple, Edward J N
2014-12-01
Functional Magnetic Resonance Imaging (fMRI) was used to investigate the brain activity associated with response change in a belief bias paradigm before and after logic training. Participants completed two sets of belief biased reasoning tasks. In the first set they were instructed to respond based on their empirical beliefs, and in the second - following logic training - they were instructed to respond logically. The comparison between conflict problems in the second scan versus in the first scan revealed differing activation for the left inferior frontal gyrus, left middle frontal gyrus, cerebellum, and precuneus. The scan was time locked to the presentation of the minor premise, and thus demonstrated effects of belief-logic conflict on neural activation earlier in the time course than has previously been shown in fMRI. These data, moreover, indicated that logical training results in changes in brain activity associated with cognitive control processing. Copyright © 2014 Elsevier B.V. All rights reserved.
Foot-and-mouth disease virus serotype SAT1 in cattle, Nigeria.
Ehizibolo, D O; Haegeman, A; De Vleeschauwer, A R; Umoh, J U; Kazeem, H M; Okolocha, E C; Van Borm, S; De Clercq, K
2017-06-01
The knowledge of foot-and-mouth disease virus (FMDV) dynamics and epidemiology in Nigeria and the West Africa subregion is important to support local and regional control plans and international risk assessment. Foot-and-mouth disease virus serotype South African territories (SAT)1 was isolated, identified and characterized from an FMD outbreak in cattle in Nigeria in 2015, 35 years after the last report of FMDV SAT1 in West Africa. The VP1 coding sequence of the Nigerian 2015 SAT1 isolates diverges from reported SAT1 topotypes resulting in a separate topotype. The reporting of a novel FMDV SAT1 strain in the virus pool 5 (West and Central Africa) highlights the dynamic and complex nature of FMDV in this region of Africa. Sustained surveillance is needed to understand the origin, the extent and distribution of this novel SAT1 topotype in the region as well as to detect and monitor the occurrence of (re-)emerging FMDV strains. © 2017 Blackwell Verlag GmbH.
ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee
2011-01-01
One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly-Picosatellite Orbital Deployer (P-POD), was developed and built by students at California Polytechnic State University (Cal Poly). Integrating a P-POD on a NASA ELV was not an easy task. The creation of new processes and requirements as well as numerous reviews and approvals were necessary within NASA before the first ELaNa mission could be attached to a NASA launch vehicle (LV). One of the key objectives placed on an ELaNa mission is that the CubeSat and PPOD does not increase the baseline risk to the primary mission and launch vehicle. The ELaNa missions achieve this objective by placing a rigorous management and engineering process on both the LV and CubeSat teams. So, what is the future of ELaNa? Currently there are 16 P-POD missions manifested across four launch vehicles to support educational CubeSats selected under the NASA CubeSat Initiative. From this initiative, a rigorous selection process produced 22-student CubeSat missions that are scheduled to fly before the end of 2012. For the initiative to continue, organizations need to submit proposals to the annual CubeSat initiative call so they have the opportunity to be manifested and launched.
Boggle Logic Puzzles: Minimal Solutions
ERIC Educational Resources Information Center
Needleman, Jonathan
2013-01-01
Boggle logic puzzles are based on the popular word game Boggle played backwards. Given a list of words, the problem is to recreate the board. We explore these puzzles on a 3 x 3 board and find the minimum number of three-letter words needed to create a puzzle with a unique solution. We conclude with a series of open questions.
Proof and Proving: Logic, Impasses, and the Relationship to Problem Solving
ERIC Educational Resources Information Center
Savic, Milos
2012-01-01
Becoming a skillful prover is critical for success in advanced undergraduate and graduate mathematics courses. In this dissertation, I report my investigations of proof and the proving process in three separate studies. In the first study, I examined the amount of logic used in student-constructed proofs to help in the design of…
The Logic of Evaluative Argument. CSE Monograph Series in Evaluation, 7.
ERIC Educational Resources Information Center
House, Ernest R.
Evaluation is an act of persuasion directed to a specific audience concerning the solution of a problem. The process of evaluation is prescribed by the nature of knowledge--which is generally complex, always uncertain (in varying degrees), and not always propositional--and by the nature of logic, which is always selective. In the process of…
Matrix Tests as a Means of the Students' Level of Logical Thinking Diagnosis
ERIC Educational Resources Information Center
Roman, Yavich; Gein, Alexander; Gerkerova, Alexandra
2017-01-01
Nowadays pedagogical testing technology has become the basic tool for diagnosis and assessment of the level of students' mastery of learning material. Primarily they allow testing the acquired knowledge and skills in their use as a technology of the definite types of problems solution. Thus, the level of logical reasoning development plays a…
2015-02-27
ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.
Science-Driven NanoSats Design for Deep Space
NASA Astrophysics Data System (ADS)
Klesh, A. T.; Castillo, J. C.
2012-12-01
CubeSat-based exploration of Earth has driven the development of miniaturized systems and research-grade instruments. The current performance of CubeSats raises the question of their potential contribution to planetary exploration. Two possible applications can be foreseen. One would take advantage of the readily availability of the CubeSat deployer Poly Picosatellite Orbital Deployer (P-POD) for planetary-related observations around Earth (e.g., O/OREOS mission, ExoPlanetSat), and, when propulsion systems develop, for interplanetary exploration. However, the CubeSat formfactor restricts payloads to be in an undeployed volume of 10x10x10 (1U) to 10x20x30 (6U) cm, based on the qualified and accepted P-POD. As a possible alternative, one may leverage the CubeSat-tailored subsystems to operate that platform as a secondary payload on a deep space mission. Whether the CubeSat formfactor constraint might be adjusted to accommodate a broader range of science applications or specific tailoring is required remains to be quantified. Through consultation with a wide range of scientists and engineers, we have examined the possible applications of secondary deep space NanoSats, and what derived requirements stem from these missions. Applications and requirements, together with existing technology, inform on common formfactors that could be useful for future planetary missions. By examining these formfactors, we have identified different categories of NanoSat explorer (additionally imposing discrete requirements on the mothership) that directly support scientific endeavors. In this paper, we outline some of the scientific applications that would drive the NanoSat formfactor design, as well as describe how the requirements affect programmatic issues. Several mission types are considered: passive deployment, active propulsion, targeted landing, and sample return. Each scenario changes the risk posture, and can impose additional considerations. Our goal has been to identify appropriate science driven designs that might serve a similar purpose to the "CubeSat standard", but not bound by the current specification adopted for launch vehicles. Additionally we consider the various technologies needed to successfully carry out deep space NanoSat missions including communication infrastructure (either direct-to-Earth or via relay), navigation / position determination, and avionics survivability. A brief survey of existing systems is presented, with recommendations for development toward future needs. As CubeSats demonstrate greater and greater science capability in low-Earth orbit, it is only natural to attempt to use this technology-driven formfactor to investigate the solar system. Here we merge desired science applications with existing CubeSat lessons-learned and technological ability to determine how we might explore intelligently and efficiently, yet not lose the wisdom we have gained from "thinking inside the box". Acknowledgement: This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
Satisfiability of logic programming based on radial basis function neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged
2014-07-10
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We appliedmore » the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.« less
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
The following problems are considered: (1) methods for development of logic design together with algorithms, so that it is possible to compute a test for any failure in the logic design, if such a test exists, and developing algorithms and heuristics for the purpose of minimizing the computation for tests; and (2) a method of design of logic for ultra LSI (large scale integration). It was discovered that the so-called quantum calculus can be extended to render it possible: (1) to describe the functional behavior of a mechanism component by component, and (2) to compute tests for failures, in the mechanism, using the diagnosis algorithm. The development of an algorithm for the multioutput two-level minimization problem is presented and the program MIN 360 was written for this algorithm. The program has options of mode (exact minimum or various approximations), cost function, cost bound, etc., providing flexibility.
Heuristic thinking and human intelligence: a commentary on Marewski, Gaissmaier and Gigerenzer.
Evans, Jonathan St B T; Over, David E
2010-05-01
Marewski, Gaissmaier and Gigerenzer (2009) present a review of research on fast and frugal heuristics, arguing that complex problems are best solved by simple heuristics, rather than the application of knowledge and logical reasoning. We argue that the case for such heuristics is overrated. First, we point out that heuristics can often lead to biases as well as effective responding. Second, we show that the application of logical reasoning can be both necessary and relatively simple. Finally, we argue that the evidence for a logical reasoning system that co-exists with simpler heuristic forms of thinking is overwhelming. Not only is it implausible a priori that we would have evolved such a system that is of no use to us, but extensive evidence from the literature on dual processing in reasoning and judgement shows that many problems can only be solved when this form of reasoning is used to inhibit and override heuristic thinking.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community, including streamlining the compatibility testing, planning and scheduling associated with CubeSat missions. Because of the lower cost, opportunity for simultaneous multipoint observations, it is inevitable that CubeSats will continue to increase in popularity for not only LEO missions, but for lunar and L1/L2 missions as well. The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable. Advancements in flight hardware and ground infrastructure will ease the burden.
ERIC Educational Resources Information Center
Mattern, Krista D.; Patterson, Brian F.
2011-01-01
This report presents the findings from a replication of the analyses from the report, "Is Performance on the SAT Related to College Retention?" (Mattern & Patterson, 2009). The tables presented herein are based on the 2007 sample and the findings are largely the same as those presented in the original report, and show SAT scores are…
ERIC Educational Resources Information Center
Mattern, Krista D.; Patterson, Brian F.
2006-01-01
The College Board formed a research consortium with four-year colleges and universities to build a national higher education database with the primary goal of validating the SAT®, which is used in college admission and consists of three sections: critical reading (SAT-CR), mathematics (SAT-M) and writing (SAT-W). This report builds on a body of…
ERIC Educational Resources Information Center
Mattern, Krista D.; Patterson, Brian F.
2012-01-01
The College Board formed a research consortium with four-year colleges and universities to build a national higher education database with the primary goal of validating the revised SAT®, which consists of three sections: critical reading (SAT-CR), mathematics (SAT-M), and writing (SAT-W), for use in college admission. A study by Mattern and…
CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions
NASA Astrophysics Data System (ADS)
Poghosyan, Armen; Golkar, Alessandro
2017-01-01
Traditionally, the space industry produced large and sophisticated spacecraft handcrafted by large teams of engineers and budgets within the reach of only a few large government-backed institutions. However, over the last decade, the space industry experienced an increased interest towards smaller missions and recent advances in commercial-off-the-shelf (COTS) technology miniaturization spurred the development of small spacecraft missions based on the CubeSat standard. CubeSats were initially envisioned primarily as educational tools or low cost technology demonstration platforms that could be developed and launched within one or two years. Recently, however, more advanced CubeSat missions have been developed and proposed, indicating that CubeSats clearly started to transition from being solely educational and technology demonstration platforms to offer opportunities for low-cost real science missions with potential high value in terms of science return and commercial revenue. Despite the significant progress made in CubeSat research and development over the last decade, some fundamental questions still habitually arise about the CubeSat capabilities, limitations, and ultimately about their scientific and commercial value. The main objective of this review is to evaluate the state of the art CubeSat capabilities with a special focus on advanced scientific missions and a goal of assessing the potential of CubeSat platforms as capable spacecraft. A total of over 1200 launched and proposed missions have been analyzed from various sources including peer-reviewed journal publications, conference proceedings, mission webpages as well as other publicly available satellite databases and about 130 relatively high performance missions were downselected and categorized into six groups based on the primary mission objectives including "Earth Science and Spaceborne Applications", "Deep Space Exploration", "Heliophysics: Space Weather", "Astrophysics", "Spaceborne In Situ Laboratory", and "Technology Demonstration" for in-detail analysis. Additionally, the evolution of CubeSat enabling technologies are surveyed for evaluating the current technology state of the art as well as identifying potential areas that will benefit the most from further technology developments for enabling high performance science missions based on CubeSat platforms.
NASA Astrophysics Data System (ADS)
Barker, H. W.; Korolev, A. V.; Hudak, D. R.; Strapp, J. W.; Strawbridge, K. B.; Wolde, M.
2008-04-01
Reflectivities recorded by the W-band Cloud Profiling Radar (CPR) aboard NASA's CloudSat satellite and some of CloudSat's retrieval products are compared to Ka-band radar reflectivities and in situ cloud properties gathered by instrumentation on the NRC's Convair-580 aircraft. On 20 February 2007, the Convair flew several transects along a 60 nautical mile stretch of CloudSat's afternoon ground track over southern Quebec. On one of the transects it was well within CloudSat's radar's footprint while in situ sampling a mixed phase boundary layer cloud. A cirrus cloud was also sampled before and after overpass. Air temperature and humidity profiles from ECMWF reanalyses, as employed in CloudSat's retrieval stream, agree very well with those measured by the Convair. The boundary layer cloud was clearly visible, to the eye and lidar, and dominated the region's solar radiation budget. It was, however, often below or near the Ka-band's distance-dependent minimum detectable signal. In situ samples at overpass revealed it to be composed primarily of small, supercooled droplets at the south end and increasingly intermixed with ice northward. Convair and CloudSat CPR reflectivities for the low cloud agree well, but while CloudSat properly ascribed it as overcast, mixed phase, and mostly liquid near the south end, its estimates of liquid water content LWC (and visible extinction coefficient κ) and droplet effective radii are too small and large, respectively. The cirrus consisted largely of irregular crystals with typical effective radii ˜150 μm. While both CPR reflectivities agree nicely, CloudSat's estimates of crystal number concentrations are too large by a factor of 5. Nevertheless, distributions of ice water content and κ deduced from in situ data agree quite well with values retrieved from CloudSat algorithms.
Namatovu, Alice; Tjørnehøj, Kirsten; Belsham, Graham J.; Dhikusooka, Moses T.; Wekesa, Sabenzia N.; Muwanika, Vincent B.; Siegismund, Hans R.; Ayebazibwe, Chrisostom
2015-01-01
To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda’s cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012–2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered. PMID:25664876
Application of Dynamic Logic Algorithm to Inverse Scattering Problems Related to Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Perlovsky, L.; Deming, R. W.; Sotnikov, V.
2010-11-01
In plasma diagnostics scattering of electromagnetic waves is widely used for identification of density and wave field perturbations. In the present work we use a powerful mathematical approach, dynamic logic (DL), to identify the spectra of scattered electromagnetic (EM) waves produced by the interaction of the incident EM wave with a Langmuir soliton in the presence of noise. The problem is especially difficult since the spectral amplitudes of the noise pattern are comparable with the amplitudes of the scattered waves. In the past DL has been applied to a number of complex problems in artificial intelligence, pattern recognition, and signal processing, resulting in revolutionary improvements. Here we demonstrate its application to plasma diagnostic problems. [4pt] Perlovsky, L.I., 2001. Neural Networks and Intellect: using model-based concepts. Oxford University Press, New York, NY.
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Do institutional logics predict interpretation of contract rules at the dental chair-side?
Harris, Rebecca; Brown, Stephen; Holt, Robin; Perkins, Elizabeth
2014-01-01
In quasi-markets, contracts find purchasers influencing health care providers, although problems exist where providers use personal bias and heuristics to respond to written agreements, tending towards the moral hazard of opportunism. Previous research on quasi-market contracts typically understands opportunism as fully rational, individual responses selecting maximally efficient outcomes from a set of possibilities. We take a more emotive and collective view of contracting, exploring the influence of institutional logics in relation to the opportunistic behaviour of dentists. Following earlier qualitative work where we identified four institutional logics in English general dental practice, and six dental contract areas where there was scope for opportunism; in 2013 we surveyed 924 dentists to investigate these logics and whether they had predictive purchase over dentists' chair-side behaviour. Factor analysis involving 300 responses identified four logics entwined in (often technical) behaviour: entrepreneurial commercialism, duty to staff and patients, managerialism, public good. PMID:25441320
Fuzzy logic applied to prospecting for areas for installation of wood panel industries.
Dos Santos, Alexandre Rosa; Paterlini, Ewerthon Mattos; Fiedler, Nilton Cesar; Ribeiro, Carlos Antonio Alvares Soares; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Juvanhol, Ronie Silva; Branco, Elvis Ricardo Figueira; Mota, Pedro Henrique Santos; da Silva, Lilianne Gomes; Pirovani, Daiani Bernardo; de Jesus, Waldir Cintra; Santos, Ana Carolina de Albuquerque; Leite, Helio Garcia; Iwakiri, Setsuo
2017-05-15
Prospecting for suitable areas for forestry operations, where the objective is a reduction in production and transportation costs, as well as the maximization of profits and available resources, constitutes an optimization problem. However, fuzzy logic is an alternative method for solving this problem. In the context of prospecting for suitable areas for the installation of wood panel industries, we propose applying fuzzy logic analysis for simulating the planting of different species and eucalyptus hybrids in Espírito Santo State, Brazil. The necessary methodological steps for this study are as follows: a) agriclimatological zoning of different species and eucalyptus hybrids; b) the selection of the vector variables; c) the application of the Euclidean distance to the vector variables; d) the application of fuzzy logic to matrix variables of the Euclidean distance; and e) the application of overlap fuzzy logic to locate areas for installation of wood panel industries. Among all the species and hybrids, Corymbia citriodora showed the highest percentage values for the combined very good and good classes, with 8.60%, followed by Eucalyptus grandis with 8.52%, Eucalyptus urophylla with 8.35% and Urograndis with 8.34%. The fuzzy logic analysis afforded flexibility in prospecting for suitable areas for the installation of wood panel industries in the Espírito Santo State can bring great economic and social benefits to the local population with the generation of jobs, income, tax revenues and GDP increase for the State and municipalities involved. The proposed methodology can be adapted to other areas and agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disassembling the Model Minority: Asian Pacific Islander Identities and Their Schooling Experiences
ERIC Educational Resources Information Center
Empleo, Arlene C.
2006-01-01
When I was in kindergarten, I was always in trouble. During recess I either sat on the benches or stood up against the wall. I had few friends; I always seemed to get into arguments with my classmates no matter if they were Filipino American like me, or European American, or African American, or Latinos. I always caused problems for my teacher.…
ERIC Educational Resources Information Center
Tatum, Jerry L.; Foubert, John D.
2009-01-01
Male perpetrated sexual aggression has long been recognized as a serious problem on college campuses. The purpose of this multiple regression correlation study was to assess the relationship between levels of moral development (measured by the Defining Issues Test) and the degree to which first-year college men (N = 161) ascribed to rape…
ERIC Educational Resources Information Center
Sankar, Chetan S.; Raju, P. K.; Alur, Ramachandriah; Venkateswaran, Rajan; Elangovan, Rajasekar
2011-01-01
The architect for the Mauritius Auditorium project sat in his office at Larsen & Toubro's headquarters in Chennai, India, pondering the phone call he had just received from the vice president, Mr. K.P. Raghavan. The polyvalent hall of the conference center was about to be used to host its first rock concert in February 2005, but during a…
Tilman, Gaëlle; Arnoult, Nausica; Lenglez, Sandrine; Van Beneden, Amandine; Loriot, Axelle; De Smet, Charles; Decottignies, Anabelle
2012-08-01
Epigenetic dysfunctions, including DNA methylation alterations, play major roles in cancer initiation and progression. Although it is well established that gene promoter demethylation activates transcription, it remains unclear whether hypomethylation of repetitive heterochromatin similarly affects expression of non-coding RNA from these loci. Understanding how repetitive non-coding RNAs are transcriptionally regulated is important given that their established upregulation by the heat shock (HS) pathway suggests important functions in cellular response to stress, possibly by promoting heterochromatin reconstruction. We found that, although pericentromeric satellite 2 (Sat2) DNA hypomethylation is detected in a majority of cancer cell lines of various origins, DNA methylation loss does not constitutively hyperactivate Sat2 expression, and also does not facilitate Sat2 transcriptional induction upon heat shock. In melanoma tumor samples, our analysis revealed that the HS response, frequently upregulated in tumors, is probably the main determinant of Sat2 RNA expression in vivo. Next, we tested whether HS pathway hyperactivation may drive Sat2 demethylation. Strikingly, we found that both hyperthermia and hyperactivated RasV12 oncogene, another potent inducer of the HS pathway, reduced Sat2 methylation levels by up to 27% in human fibroblasts recovering from stress. Demethylation occurred locally on Sat2 repeats, resulting in a demethylation signature that was also detected in cancer cell lines with moderate genome-wide hypomethylation. We therefore propose that upregulation of Sat2 transcription in response to HS pathway hyperactivation during tumorigenesis may promote localized demethylation of the locus. This, in turn, may contribute to tumorigenesis, as demethylation of Sat2 was previously reported to favor chromosomal rearrangements.
Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms
NASA Astrophysics Data System (ADS)
DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.
2015-04-01
One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.
Spatial pattern of foot-and-mouth disease virus serotypes in North Central Nigeria
Wungak, Yiltawe Simwal; Ishola, Olayinka O.; Olugasa, Babasola O.; Lazarus, David D.; Ehizibolo, David O.; Ularamu, Hussaini G.
2017-01-01
Aim: This study aimed to determine the foot-and-mouth disease virus (FMDV) serotypes circulating, the prevalence of FMDV serotypes, and the spatial distribution of FMDV among sedentary and pastoral cattle herds in the North-Central Nigeria. Materials and Methods: A cross-sectional study was undertaken, during which a total of 155 sera that tested positive for foot-and-mouth disease (FMD) 3ABC non-structural protein antibodies were selected and screened for FMD structural protein serotypes, A, O, SAT 1, and SAT 2 using a solid-phase competitive enzyme-linked immunosorbent assay (ELISA). Epithelial tissue specimens were collected during outbreak investigations which were tested for FMD using an antigen capture ELISA for serotype A, O, SAT 1, and SAT 2. Results: An overall serotype-specific prevalence of 79.35 (95% confidence interval [CI]: 72.4-85.18) was recorded for serotype O, 65.2% (95% CI: 57.41-72.3) for serotype A, 52.9% (95% CI: 45.03-60.67) for SAT 2, and 33.55% (95% CI: 26.45-41.26) for SAT 1. Evidence of exposure to multiple FMDV serotypes showed that 12.26% of the sera samples had antibodies against four serotypes circulating, 30.97% had antibodies against three serotypes circulating, 22.58% had antibodies against two serotypes, and 17% showed exposure to only one serotype. Clinical specimens (epithelial tissue) collected during outbreak investigations showed that serotype O has the highest proportion of 50% with serotype A - 25%; SAT 2 - 20.8%; and SAT 1 - 4.1%. Conclusion: The study detected diffuse and co-circulation of serotypes A, O, SAT 1, and SAT 2 within the study area, and hence the need for the appropriately matched multivalent vaccine is strongly advocated for FMD control in Nigeria. PMID:28507418
Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing
2017-09-19
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
El-Shehawy, Laila I; Abu-Elnaga, Hany I; Rizk, Sonia A; Abd El-Kreem, Ahmed S; Mohamed, A A; Fawzy, Hossam G
2014-03-01
In February 2012, a massive new foot-and-mouth disease (FMD) outbreak struck Egypt. In this work, one-step RT-PCR assays were used for in-house detection and differentiation of foot-and-mouth disease virus (FMDV) in Egypt in this year using pan-serotypic and serotype-targeting sequence primers. FMDV SAT2 was the dominant virus in the examined isolates from the epidemic. The complete VP1 coding regions of two isolates were sequenced. The two isolates had 99.2 % sequence identity to most contemporary Egyptian SAT2 reference viruses, whereas they had 89.7-90.1 % identity to the SAT2/EGY/2/2012 isolate, which was collected from Alexandria, Egypt, and previously sequenced by WRLFMD. Phylogenetic analysis showed that Egypt had one topotype and two lineage of FMDV SAT2 in 2012. The Egyptian and the Palestinian 2012 strains were associated mainly with topotype VII, lineage SAT2/VII/Ghb-12, while the virus isolated from Alexandria Governorate belonged to the SAT2/VII/Alx-12 lineage. Topotype VII also comprised lineages that included strains isolated from Libya in 2012 and 2003. Furthermore, within the same topotype, the Egyptian SAT2/2012 isolates were related to strains from Saudi Arabia, Sudan, Eritrea, Cameroon and Nigeria. Nevertheless, more epidemiological work with neighboring countries is needed to prevent cross-border spread of disease and to reach a precise conclusion about the origin of the 2012 FMDV SAT2 emergency in the Middle East.
NASA Astrophysics Data System (ADS)
Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina; Madsen, Henrik; Bauer-Gottwein, Peter
2018-02-01
Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2 and in situ observations was found to be 0.38 meters. CryoSat-2 was also shown to be useful for channel roughness calibration in a hydrodynamic model of the Po River. The small across-track distance of CryoSat-2 means that observations are distributed almost continuously along the river. This allowed resolving channel roughness with higher spatial resolution than possible with in situ or virtual station altimetry data. Despite the Po River being extensively monitored, CryoSat-2 still provides added value thanks to its unique spatio-temporal sampling pattern.
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-01
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation. Electronic supplementary information (ESI) available: Additional figures (Tables S1-S3 and Fig. S1-S6). See DOI: 10.1039/c6nr01072e
Using Synchronous Boolean Networks to Model Several Phenomena of Collective Behavior
Kochemazov, Stepan; Semenov, Alexander
2014-01-01
In this paper, we propose an approach for modeling and analysis of a number of phenomena of collective behavior. By collectives we mean multi-agent systems that transition from one state to another at discrete moments of time. The behavior of a member of a collective (agent) is called conforming if the opinion of this agent at current time moment conforms to the opinion of some other agents at the previous time moment. We presume that at each moment of time every agent makes a decision by choosing from the set (where 1-decision corresponds to action and 0-decision corresponds to inaction). In our approach we model collective behavior with synchronous Boolean networks. We presume that in a network there can be agents that act at every moment of time. Such agents are called instigators. Also there can be agents that never act. Such agents are called loyalists. Agents that are neither instigators nor loyalists are called simple agents. We study two combinatorial problems. The first problem is to find a disposition of instigators that in several time moments transforms a network from a state where the majority of simple agents are inactive to a state with the majority of active agents. The second problem is to find a disposition of loyalists that returns the network to a state with the majority of inactive agents. Similar problems are studied for networks in which simple agents demonstrate the contrary to conforming behavior that we call anticonforming. We obtained several theoretical results regarding the behavior of collectives of agents with conforming or anticonforming behavior. In computational experiments we solved the described problems for randomly generated networks with several hundred vertices. We reduced corresponding combinatorial problems to the Boolean satisfiability problem (SAT) and used modern SAT solvers to solve the instances obtained. PMID:25526612
ERIC Educational Resources Information Center
McLoughlin, M. Padraig M. M.; Bluford, Dontrell A.
2004-01-01
This study investigated the predictive validity of the Descriptive Tests of Mathematical Skills (DTMS) and the SAT-Mathematics (SAT-M) tests as placement tools for entering students in a small, liberal arts, historically black institution (HBI) using regression analysis. The placement schema is four-tiered: for a remedial algebra course, college…
NASA Technical Reports Server (NTRS)
Hudson, Jennifer; Martinez, Andres; Petro, Andrew
2015-01-01
The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.
2011 Behavioral Health Risk Assessment Data Report (BH-RADR)
2015-09-01
additional self-reported recent stressors, sleep deprivation , and current medication usage and the SAT II contained the full length PTSD and depression...being incorporated. The SAT I contained additional self-reported recent stressors, sleep deprivation , and current medication usage and the SAT II...PHQ)-2 on the PDHA and PDHRA and the self-reported information on the SAT I such as recent stressors, sleep deprivation , and current medication
ERIC Educational Resources Information Center
Mattern, Krista D.; Patterson, Brian F.
2012-01-01
The College Board formed a research consortium with four-year colleges and universities to build a national higher education database with the primary goal of validating the revised SAT for use in college admission. A study by Mattern and Patterson (2009) examined the relationship between SAT scores and retention to the second year of college. The…
MethaneSat: Detecting Methane Emissions in the Barnett Shale Region
NASA Astrophysics Data System (ADS)
Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.
2017-12-01
In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.
High-throughput analysis of the satellitome illuminates satellite DNA evolution
NASA Astrophysics Data System (ADS)
Ruiz-Ruano, Francisco J.; López-León, María Dolores; Cabrero, Josefa; Camacho, Juan Pedro M.
2016-07-01
Satellite DNA (satDNA) is a major component yet the great unknown of eukaryote genomes and clearly underrepresented in genome sequencing projects. Here we show the high-throughput analysis of satellite DNA content in the migratory locust by means of the bioinformatic analysis of Illumina reads with the RepeatExplorer and RepeatMasker programs. This unveiled 62 satDNA families and we propose the term “satellitome” for the whole collection of different satDNA families in a genome. The finding that satDNAs were present in many contigs of the migratory locust draft genome indicates that they show many genomic locations invisible by fluorescent in situ hybridization (FISH). The cytological pattern of five satellites showing common descent (belonging to the SF3 superfamily) suggests that non-clustered satDNAs can become into clustered through local amplification at any of the many genomic loci resulting from previous dissemination of short satDNA arrays. The fact that all kinds of satDNA (micro- mini- and satellites) can show the non-clustered and clustered states suggests that all these elements are mostly similar, except for repeat length. Finally, the presence of VNTRs in bacteria, showing similar properties to non-clustered satDNAs in eukaryotes, suggests that this kind of tandem repeats show common properties in all living beings.
Evaluation of Greenland near surface air temperature datasets
Reeves Eyre, J. E. Jack; Zeng, Xubin
2017-07-05
Near-surface air temperature (SAT) over Greenland has important effects on mass balance of the ice sheet, but it is unclear which SAT datasets are reliable in the region. Here extensive in situ SAT measurements ( ∼ 1400 station-years) are used to assess monthly mean SAT from seven global reanalysis datasets, five gridded SAT analyses, one satellite retrieval and three dynamically downscaled reanalyses. Strengths and weaknesses of these products are identified, and their biases are found to vary by season and glaciological regime. MERRA2 reanalysis overall performs best with mean absolute error less than 2 °C in all months. Ice sheet-average annual mean SAT frommore » different datasets are highly correlated in recent decades, but their 1901–2000 trends differ even in sign. Compared with the MERRA2 climatology combined with gridded SAT analysis anomalies, thirty-one earth system model historical runs from the CMIP5 archive reach ∼ 5 °C for the 1901–2000 average bias and have opposite trends for a number of sub-periods.« less
Evaluation of Greenland near surface air temperature datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves Eyre, J. E. Jack; Zeng, Xubin
Near-surface air temperature (SAT) over Greenland has important effects on mass balance of the ice sheet, but it is unclear which SAT datasets are reliable in the region. Here extensive in situ SAT measurements ( ∼ 1400 station-years) are used to assess monthly mean SAT from seven global reanalysis datasets, five gridded SAT analyses, one satellite retrieval and three dynamically downscaled reanalyses. Strengths and weaknesses of these products are identified, and their biases are found to vary by season and glaciological regime. MERRA2 reanalysis overall performs best with mean absolute error less than 2 °C in all months. Ice sheet-average annual mean SAT frommore » different datasets are highly correlated in recent decades, but their 1901–2000 trends differ even in sign. Compared with the MERRA2 climatology combined with gridded SAT analysis anomalies, thirty-one earth system model historical runs from the CMIP5 archive reach ∼ 5 °C for the 1901–2000 average bias and have opposite trends for a number of sub-periods.« less
Using Additive Manufacturing to Print a CubeSat Propulsion System
NASA Technical Reports Server (NTRS)
Marshall, William M.
2015-01-01
CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.
Braun, Niclas; Debener, Stefan; Sölle, Ariane; Kranczioch, Cornelia; Hildebrandt, Helmut
2015-01-01
Deficits in sustaining attention are common in various organic brain diseases. A recent study proposed self-alert training (SAT) as a technique to improve sustained attention. In the SAT, individuals learn to gain volitional control over their own state of arousal by means of electrodermal biofeedback. In this study, we investigated the behavioral, electrodermal, and electroencephalogram correlates of the SAT with a blinded, randomized, and active-controlled pre-post study design. Sustained attention capacity was assessed with the Sustained Attention to Response Task (SART). The SAT resulted in strong phasic increases in skin conductance response (SCR), but endogenous control of SCR without feedback was problematic. Electroencephalogram analysis revealed stronger alpha reduction during SART for the SAT than for the control group. Behaviorally, the SAT group performed more accurately and more slowly after intervention than the control group. The study provides further evidence that SAT helps to maintain SART accuracy over prolonged periods of time. Whether this accuracy is more related to sustained attention or response inhibition is discussed.
Comparing IceBridge and CryoSat-2 sea ice observations over the Arctic and the Southern Ocean
NASA Astrophysics Data System (ADS)
Yi, D.; Kurtz, N. T.; Harbeck, J.; Hofton, M. A.; Manizade, S.; Cornejo, H.
2016-12-01
From 2009 to 2015, CryoSat-2 and IceBridge had 34 coincident lines over sea ice, 23 over the Arctic (20 with ATM, 2 with LVIS, and 1 with both ATM and LVIS) and 11 over the Southern Ocean (9 with ATM and 2 with both ATM and LVIS). In this study, we will compare both surface elevation and sea ice freeboard from CryoSat-2, ATM, and LVIS. We will apply identical ellipsoid, geoid, tide models, and atmospheric corrections to CryoSat-2, ATM, and LVIS data. For CryoSat-2, we will use surface elevation and sea ice freeboard both in the standard CryoSat-2 data product and calculated through a waveform fitting method. For ATM and LVIS, we will use surface elevation and sea ice freeboard in the OIB data product and the elevation and sea ice freeboard calculated through Gaussian waveform fitting method. The results of this study are important for using ATM and LVIS to calibrate/validate CryoSat-2 results and bridging the data gap between ICESat and ICESat-2.
Missing Data: Discovering the Private Logic of Adult-Wary Youth
ERIC Educational Resources Information Center
Seita, John
2010-01-01
In his classic book, "The Problem Child," Alfred Adler (1930) noted that if educators do not understand the "private logic" and goals of a young person, their interventions may do more harm than good. But it is not a natural process to empathize with persons who fight their well-intended efforts to help. Adults and young people are often pitted as…
Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression
Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi
2013-01-01
Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382
[New horizons in medicine. The application of "fuzzy logic" in clinical and experimental medicine].
Guarini, G
1994-06-01
In medicine, the study of physiological and physiopathological problems is generally programmed by elaborating models which respond to the principals of formal logic. This gives the advantage of favouring the transformation of the formal model into a mathematical model of reference which responds to the principles of the set theories. All this is in the utopian wish to obtain as a result of each research, a net answer whether positive or negative, according to the Aristotelian principal of tertium non datur. Taking this into consideration, the A. briefly traces the principles of modal logic and, in particular, those of fuzzy logic, proposing that the latter substitute the actual definition of "logic with more truth values", with that perhaps more pertinent of "logic of conditioned possibilities". After a brief synthesis on the state of the art on the application of fuzzy logic, the A. reports an example of graphic expression of fuzzy logic by demonstrating how the basic glycemic data (expressed by the vectors magnitude) revealed in a sample of healthy individuals, constituted on the whole an unbroken continuous stream of set partials. The A. calls attention to fuzzy logic as a useful instrument to elaborate in a new way the analysis of scenario qualified to acquire the necessary information to single out the critical points which characterize the potential development of any biological phenomenon.
Opperman, Pamela A.; Rotherham, Lia S.; Esterhuysen, Jan; Charleston, Bryan; Juleff, Nicholas; Capozzo, Alejandra V.; Theron, Jacques
2014-01-01
ABSTRACT Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible βG-βH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the βG-βH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been identified. We have followed a unique approach using an infectious SAT2 cDNA genome-length clone. Ten structurally surface-exposed, highly varied loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of the SAT2/ZIM/7/83 virus. These regions were replaced with the corresponding regions of an antigenically disparate virus, SAT2/KNP/19/89. Antigenic profiling of the epitope-replaced and parental viruses with SAT2-specific MAbs led to the identification of two unique antibody-binding footprints on the SAT2 capsid. In this report, evidence for the structural engineering of antigenic sites of a SAT2 capsid to broaden cross-reactivity with antisera is provided. PMID:24829347
A Linguistic Truth-Valued Temporal Reasoning Formalism and Its Implementation
NASA Astrophysics Data System (ADS)
Lu, Zhirui; Liu, Jun; Augusto, Juan C.; Wang, Hui
Temporality and uncertainty are important features of many real world systems. Solving problems in such systems requires the use of formal mechanism such as logic systems, statistical methods or other reasoning and decision-making methods. In this paper, we propose a linguistic truth-valued temporal reasoning formalism to enable the management of both features concurrently using a linguistic truth valued logic and a temporal logic. We also provide a backward reasoning algorithm which allows the answering of user queries. A simple but realistic scenario in a smart home application is used to illustrate our work.
NASA Technical Reports Server (NTRS)
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.
2007-01-01
In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.
NASA Astrophysics Data System (ADS)
Morino, I.; Velazco, V. A.; Schwandner, F. M.; Macatangay, R. C.; Griffith, D. W. T.
2015-12-01
TCCON (Total Carbon Column Observing Network) measurements of CO2 and CH4 have been and are currently used extensively and globally for satellite validation, for comparison with atmospheric chemistry models and to study atmosphere-biosphere exchanges of carbon. With the global effort to cap greenhouse gas emissions, TCCON has become vital for validating satellite-based greenhouse gas data from past, current and future missions like Japanese GOSAT (Greenhouse Gas Observing SATellite) and GOSAT-2, NASA's OCO-2 (Orbiting Carbon Observatory-2) and OCO-3, ESA's Carbon Monitoring Satellite (CarbonSat), Chinese TanSat, and others. The lack of reliable validation data for the satellite-based greenhouse gas observing missions in the tropical regions is a common limitation in global carbon-cycle modeling studies that have a tropical component. The international CO2 modeling community have specified a requirement for "expansion of the CO2 observation network within the tropics" to reduce uncertainties in regional estimates of CO2 sources and sinks using atmospheric transport models. A TCCON site in the western tropical Pacific is a logical next step in obtaining additional knowledge that would greatly contribute to the understanding of the Earth's atmosphere and better constraining a major tropical region experiencing tremendous economic and population growth. Here, we present a complete site assessment for a possible TCCON site in the Philippines and our decision on the site where a new TCCON FTS will be installed. This site assessment was conducted in cooperation with the Energy Development Corporation (EDC, Philippines), National Institute for Environmental Studies (NIES, Japan), University of Wollongong (UoW, Australia), NASA's Jet Propulsion Laboratory (JPL), the University of the Philippines (UP-IESM), the TCCON science team, and the GOSAT-2 science team.
Yes, the SAT Does Help Colleges.
ERIC Educational Resources Information Center
Hanford, George H.
1985-01-01
Discusses the Scholastic Aptitude Test (SAT) and its importance to colleges in admissions decisions. The author describes the admissions process, the role of test scores, and the relationships of class ranks and SAT scores to outcomes in college. (CT)
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2016-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.
ERIC Educational Resources Information Center
Keels, Crystal L.
2004-01-01
Parents are an essential component in their children's SAT success, says Starlett Craig, director of outreach and enrichment programs at Clemson University in South Carolina. Clemson is home to a successful two-week SAT summer camp, where students are immersed in workshops that prepare them for the exam. But whether a child goes to a SAT camp or…
Power generation and solar panels for an MSU CubeSat
NASA Astrophysics Data System (ADS)
Sassi, Soundouss
This thesis is a power generation study of a proposed CubeSat at Mississippi State University (MSU). CubeSats are miniaturized satellites of 10 x 10 x 10 cm in dimension. Their power source once in orbit is the sun during daylight and the batteries during eclipse. MSU CubeSat is equipped with solar panels. This effort will discuss two types of cells: Gallium Arsenide and Silicon; and which one will suit MSU CubeSat best. Once the cell type is chosen, another decision regarding the electrical power subsystem will be made. Solar array design can only be done once the choice of the electrical power subsystem and the solar cells is made. Then the power calculation for different mission durations will start along with the sizing of the solar arrays. In the last part the batteries are introduced and discussed in order to choose one type of batteries for MSU CubeSat.
ELaNa - Educational Launch of Nanosatellite Providing Routine RideShare Opportunities
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee; Coelho, Roland
2012-01-01
Since the creation of the NASA CubeSat Launch Initiative (NCSLI), the need for CubeSat rideshares has dramatically increased. After only three releases of the initiative, a total of 66 CubeSats now await launch opportunities. So, how is this challenge being resolved? NASA's Launch Services Program (LSP) has studied how to integrate PPODs on Athena, Atlas V, and Delta IV launch vehicles and has been instrumental in developing several carrier systems to support CubeSats as rideshares on NASA missions. In support of the first two ELaNa missions the Poly-Picosatellite Orbital Deployer (P-POD) was adapted for use on a Taurus XL (ELaNa I) and a Delta n (ELaNa III). Four P-PODs, which contained a total eight CubeSats, were used on these first ELaNa missions. Next up is ELaNa VI, which will launch on an Atlas V in August 2012. The four ELaNa VI CubeSats, in three P-PODs, are awaiting launch, having been integrated in the NPSCuLite. To increase rideshare capabilities, the Launch Services Program (LSP) is working to integrate P-PODs on Falcon 9 missions. The proposed Falcon 9 manifest will provide greater opportunities for the CubeSat community. For years, the standard CubeSat size was 1 U to 3U. As the desire to include more science in each cube grows, so does the standard CubeSat size. No longer is a 1 U, 1.5U, 2U or 3U CubeSat the only option available; the new CubeSat standard will include 6U and possibly even 12U. With each increase in CubeSat size, the CubeSat community is pushing the capability of the current P-POD design. Not only is the carrier system affected, but integration to the Launch Vehicle is also a concern. The development of a system to accommodate not only the 3U P-POD but also carriers for larger CubeSats is ongoing. LSP considers payloads in the lkg to 180 kg range rideshare or small/secondary payloads. As new and emerging small payloads are developed, rideshare opportunities and carrier systems need to be identified and secured. The development of a rideshare carrier system is not always cost effective. Sometimes a launch vehicle with an excellent performance record appears to be a great rideshare candidate however, after completing a feasibility study, LSP may determine that the cost of the rideshare carrier system is too great and, due to budget constraints, the development cannot go forward. With the current budget environment, one cost effective way to secure rideshare opportunities is to look for synergy with other government organizations that share the same interest.
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2005-01-01
We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.
NASA Astrophysics Data System (ADS)
Mascio, J.; Mace, G. G.
2015-12-01
CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.
Nanosatellite constellation deployment using on-board magnetic torquer interaction with space plasma
NASA Astrophysics Data System (ADS)
Park, Ji Hyun; Matsuzawa, Shinji; Inamori, Takaya; Jeung, In-Seuck
2018-04-01
One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3 U (1-3 kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.
Logic, beliefs, and instruction: a test of the default interventionist account of belief bias.
Handley, Simon J; Newstead, Stephen E; Trippas, Dries
2011-01-01
According to dual-process accounts of thinking, belief-based responses on reasoning tasks are generated as default but can be intervened upon in favor of logical responding, given sufficient time, effort, or cognitive resource. In this article, we present the results of 5 experiments in which participants were instructed to evaluate the conclusions of logical arguments on the basis of either their logical validity or their believability. Contrary to the predictions arising from these accounts, the logical status of the presented conclusion had a greater impact on judgments concerning its believability than did the believability of the conclusion on judgments about whether it followed logically. This finding was observed when instructional set was presented as a between-participants factor (Experiment 1), when instruction was indicated prior to problem presentation by a cue (Experiment 2), and when the cue appeared simultaneously with conclusion presentation (Experiments 3 and 4). The finding also extended to a range of simple and more complex argument forms (Experiment 5). In these latter experiments, belief-based judgments took significantly longer than those made under logical instructions. We discuss the implications of these findings for default interventionist accounts of belief bias.
Phonesat In-flight Experience Results
NASA Technical Reports Server (NTRS)
Attai, Watson; Guillen, Salas Alberto; Oyadomari, Ken Yuji; Priscal, Cedric; Shimmin, Rogan Stuart; Gazulla, Oriol Tintore; Wolfe, Jasper Lewis
2014-01-01
Consumer technology, over the last decade, has begun to encompass devices that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. Once separate consumer products such as GPS units, digital cameras and mobile phones are now combined into the modern day Smartphone. Since these capabilities are remarkably similar to those required for the multi-million dollar satellites - so why not use a multihundred dollar Smartphone instead? The PhoneSat project of NASA Ames Research Center is developing technology demonstrations utilizing these extraordinary advances to show just how simple and cheap Space can be. The style of development revolves around the "release early, release often" Silicon Valley mentality. PhoneSat is a series of 1U CubeSat size spacecrafts that use an off-the-shelf Smartphone as their onboard computer. By doing so, PhoneSat takes advantage of the high computational capability, large memory as well as ultra-tiny sensors like high-resolution cameras and navigation devices that Smartphones offer. Along with a Smartphone, PhoneSat is equipped with other commercially available technology products, such as medical brushless motors that are used as reaction wheels. Over the four years that NASA Ames Research Center has been developing the PhoneSat project, different suborbital and orbital flight activities have proven the validity of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning Smartphone based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In late 2013, the PhoneSat project launched an improved version of its bus to a higher altitude orbit which provided data about the overall system's tolerance to the space environment. In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented. NASA Ames Research Center is carrying on its effort to bring a paradigm shift in the way we conceive Space exploration, this new approach is certainly incarnated by PhoneSat. A set of eight PhoneSat-based CubeSats is manifested to launch in 2014 with the purpose of demonstrating new technical capabilities and being a pathfinder for future Spacecraft technology missions.
Fitness Probability Distribution of Bit-Flip Mutation.
Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique
2015-01-01
Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.
CubeSat Artist Rendering and NASA M-Cubed/COVE
2012-02-14
The image on the left is an artist rendering of Montana State University Explorer 1 CubeSat; at right is a CubeSat created by the University of Michigan designated the Michigan Mulitpurpose Mini-satellite, or M-Cubed.
Achievements and Future Plan of Interplanetary CubeSats and Micro-Sats in Japan
NASA Astrophysics Data System (ADS)
Funase, Ryu
2016-07-01
This paper introduces Japanese achievements and future plans of CubeSats and Micro-Sats for deep space exploration. As the first step toward deep space mission by such tiny spacecraft, University of Tokyo and Japan Aerospace Exploration Agency (JAXA) developed the world's first deep space micro-spacecraft PROCYON (Proximate Object Close flYby with Optical Navigation). Its mission objective is to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. PROCYON was launched into the Earth departure trajectory on December 3, 2014 together with Japanese asteroid sample return mission Hayabusa-2. PROCYON successfully completed the bus system demonstration mission in its interplanetary flight. Currently, Japan is not only pursuing the improvement and utilization of the demonstrated micro-sat deep space bus system with a weight of tens of kg or more for more practical scientific deep space missions, but also trying to develop smaller spacecraft with a weight of less than tens of kg, namely CubeSats, for deep space exploration. We are proposing a self-contained 6U CubeSat mission for the rideshare opportunity on the USA's SLS EM-1 mission, which will fly to a libration orbit around Earth-Moon L2 point and perform scientific observations of the Earth and the Moon. We are also seeking the possibility of CubeSats which is carried by a larger spacecraft to the destination and supports the mission by taking advantage of its low-cost and risk-tolerable feature. As an example of such style of CubeSat missions, we are studying a CubeSat for close observations of an asteroid, which will be carried to the target asteroid by a larger mother spacecraft. This CubeSat is released from the mother spacecraft to make a close flyby for scientific observations, which is difficult to be performed by the mother spacecraft if we consider the risk of the collision to the target asteroid or dust particles ejected from the asteroid. In order to utilize the large deep space maneuverability of the mother spacecraft, the CubeSat is retrieved by the mother spacecraft after the close flyby observation and it is carried to the next target asteroid to realize multiple asteroids flyby exploration.
Learning stoichiometry: A comparison of text and multimedia instructional formats
NASA Astrophysics Data System (ADS)
Evans, Karen L.
Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.
Human Problem Solving in Fault Diagnosis Tasks
1986-04-01
Troubleshooting by Application of Structural Knowledge (TASK) . . . . . . . . . . . . . . . * 3 Framwork for Aiding the Understanding of Logical...focused subsequent investigations. Further, the models contributed to building an overall conceptual view of human problem solving. The aj JL BmnA in
Thermal radiation analysis system TRASYS 2. Appendix H: User's manual
NASA Technical Reports Server (NTRS)
Goble, R. G.; Jensen, C. L.
1980-01-01
The user is provided the powerful options of writing his own executive, or driver logic and choosing, among several available options, the most desirable solution techniques for the problem at hand. Sample problems are presented.
Elements of orbit-determination theory - Textbook
NASA Technical Reports Server (NTRS)
Solloway, C. B.
1971-01-01
Text applies to solution of various optimization problems. Concepts are logically introduced and refinements and complexities for computerized numerical solutions are avoided. Specific topics and essential equivalence of several different approaches to various aspects of the problem are given.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
NASA Astrophysics Data System (ADS)
van Aalsvoort, Joke
In a previous article, the problem of chemistry's lack of relevance in secondary chemical education was analysed using logical positivism as a tool. This article starts with the hypothesis that the problem can be addressed by means of activity theory, one of the important theories within the sociocultural school. The reason for this expectation is that, while logical positivism creates a divide between science and society, activity theory offers a model of society in which science and society are related. With the use of this model, a new course for grade nine has been constructed. This results in a confirmation of the hypothesis, at least at a theoretical level. A comparison with the Salters' approach is made in order to demonstrate the relative merits of a mediated way of dealing with the problem of the lack of relevance of chemistry in chemical education.
Evolutionary fuzzy modeling human diagnostic decisions.
Peña-Reyes, Carlos Andrés
2004-05-01
Fuzzy CoCo is a methodology, combining fuzzy logic and evolutionary computation, for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying reasoning. Fuzzy logic provides a formal framework for constructing systems exhibiting both good numeric performance (accuracy) and linguistic representation (interpretability). However, fuzzy modeling--meaning the construction of fuzzy systems--is an arduous task, demanding the identification of many parameters. To solve it, we use evolutionary computation techniques (specifically cooperative coevolution), which are widely used to search for adequate solutions in complex spaces. We have successfully applied the algorithm to model the decision processes involved in two breast cancer diagnostic problems, the WBCD problem and the Catalonia mammography interpretation problem, obtaining systems both of high performance and high interpretability. For the Catalonia problem, an evolved system was embedded within a Web-based tool-called COBRA-for aiding radiologists in mammography interpretation.
NPS CubeSat Launcher Design, Process and Requirements
2009-06-01
Soviet era ICBM. The first Dnepr launch in July 2006 consisted of fourteen CubeSats in five P-PODs, while the second in April 2007 consisted of...Regulations (ITAR). ITAR restricts the export of defense-related products and technology on the United States Munitions List. Although one might not...think that CubeSat technology would fall under ITAR, in fact a large amount of Aerospace technology , including some that could be used on CubeSats is
Sat1 is dispensable for active oxalate secretion in mouse duodenum
Ko, Narae; Knauf, Felix; Jiang, Zhirong; Markovich, Daniel
2012-01-01
Mice deficient for the apical membrane oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium oxalate stones due to a defect in intestinal oxalate secretion. However, the nature of the basolateral membrane oxalate transport process that operates in series with SLC26A6 to mediate active oxalate secretion in the intestine remains unknown. Sulfate anion transporter-1 (Sat1 or SLC26A1) is a basolateral membrane anion exchanger that mediates intestinal oxalate transport. Moreover, Sat1-deficient mice also have a phenotype of hyperoxalemia, hyperoxaluria, and calcium oxalate stones. We, therefore, tested the role of Sat1 in mouse duodenum, a tissue with Sat1 expression and SLC26A6-dependent oxalate secretion. Although the active secretory flux of oxalate across mouse duodenum was strongly inhibited (>90%) by addition of the disulfonic stilbene DIDS to the basolateral solution, secretion was unaffected by changes in medium concentrations of sulfate and bicarbonate, key substrates for Sat1-mediated anion exchange. Inhibition of intracellular bicarbonate production by acetazolamide and complete removal of bicarbonate from the buffer also produced no change in oxalate secretion. Finally, active oxalate secretion was not reduced in Sat1-null mice. We conclude that a DIDS-sensitive basolateral transporter is involved in mediating oxalate secretion across mouse duodenum, but Sat1 itself is dispensable for this process. PMID:22517357
Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases
NASA Astrophysics Data System (ADS)
Merrifield, A.; Xie, S. P.
2016-02-01
This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental U.S. in the Coupled Model Intercomparison Project (CMIP5) Atmospheric Model Intercomparison Project (AMIP). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-year period (1979-2008). In observations, regions of high SAT variability are closely associated with midtropospheric highs and subsidence, consistent with adiabatic theory (Meehl and Tebaldi 2004, Lau and Nath 2012). Preliminary analysis shows the majority of the AMIP models feature high SAT variability over the central U.S., displaced south and/or west of observed centers of action (COAs). SAT COAs in models tend to be concomitant with regions of high sensible heat flux variability, suggesting an excessive land surface feedback in these models modulate U.S. summer SAT. Additionally, tropical sea surface temperatures (SSTs) play a role in forcing the leading EOF mode for summer SAT, in concert with internal atmospheric variability. There is evidence that models respond to different SST patterns than observed. Addressing issues with the bulk land surface feedback and the SST-forced component of atmospheric variability may be key to improving model skill in simulating summer SAT variability over the U.S.
SATS HVO Concept Validation Experiment
NASA Technical Reports Server (NTRS)
Consiglio, Maria; Williams, Daniel; Murdoch, Jennifer; Adams, Catherine
2005-01-01
A human-in-the-loop simulation experiment was conducted at the NASA Langley Research Center s (LaRC) Air Traffic Operations Lab (ATOL) in an effort to comprehensively validate tools and procedures intended to enable the Small Aircraft Transportation System, Higher Volume Operations (SATS HVO) concept of operations. The SATS HVO procedures were developed to increase the rate of operations at non-towered, non-radar airports in near all-weather conditions. A key element of the design is the establishment of a volume of airspace around designated airports where pilots accept responsibility for self-separation. Flights operating at these airports, are given approach sequencing information computed by a ground based automated system. The SATS HVO validation experiment was conducted in the ATOL during the spring of 2004 in order to determine if a pilot can safely and proficiently fly an airplane while performing SATS HVO procedures. Comparative measures of flight path error, perceived workload and situation awareness were obtained for two types of scenarios. Baseline scenarios were representative of today s system utilizing procedure separation, where air traffic control grants one approach or departure clearance at a time. SATS HVO scenarios represented approaches and departure procedures as described in the SATS HVO concept of operations. Results from the experiment indicate that low time pilots were able to fly SATS HVO procedures and maintain self-separation as safely and proficiently as flying today's procedures.
Identification and characterization of a subtelomeric satellite DNA in Callitrichini monkeys.
Araújo, Naiara Pereira; de Lima, Leonardo Gomes; Dias, Guilherme Borges; Kuhn, Gustavo Campos Silva; de Melo, Alan Lane; Yonenaga-Yassuda, Yatiyo; Stanyon, Roscoe; Svartman, Marta
2017-08-01
Repetitive DNAs are abundant fast-evolving components of eukaryotic genomes, which often possess important structural and functional roles. Despite their ubiquity, repetitive DNAs are poorly studied when compared with the genic fraction of genomes. Here, we took advantage of the availability of the sequenced genome of the common marmoset Callithrix jacchus to assess its satellite DNAs (satDNAs) and their distribution in Callitrichini. After clustering analysis of all reads and comparisons by similarity, we identified a satDNA composed by 171 bp motifs, named MarmoSAT, which composes 1.09% of the C. jacchus genome. Fluorescent in situ hybridization on chromosomes of species from the genera Callithrix, Mico and Callimico showed that MarmoSAT had a subtelomeric location. In addition to the common monomeric, we found that MarmoSAT was also organized in higher-order repeats of 338 bp in Callimico goeldii. Our phylogenetic analyses showed that MarmoSAT repeats from C. jacchus lack chromosome-specific features, suggesting exchange events among subterminal regions of non-homologous chromosomes. MarmoSAT is transcribed in several tissues of C. jacchus, with the highest transcription levels in spleen, thymus and heart. The transcription profile and subtelomeric location suggest that MarmoSAT may be involved in the regulation of telomerase and modulation of telomeric chromatin. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Murabito, Joanne M.; Pedley, Alison; Massaro, Joseph M.; Vasan, Ramachandran S.; Esliger, Dale; Blease, Susan J.; Hoffman, Udo; Fox, Caroline S.
2015-01-01
Background We examined the relation between objectively measured physical activity with accelerometry and subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in a community‐based sample. Methods and Results We evaluated 1249 participants of the Framingham Third Generation and Omni II cohorts (mean age 51.7 years, 47% women) who underwent assessment of moderate‐to‐vigorous physical activity (MVPA) with accelerometry over 5 to 7 days, and multi‐detector computed tomography for measurement of SAT and VAT volume; fat attenuation was estimated by SAT and VAT hounsfield units (HU). In women, higher levels of MVPA were associated with decreased SAT (P<0.0001) and VAT volume (P<0.0001). The average decrement in VAT per 30 minute/day increase in MVPA was −453 cm3 (95% CI −574, −331). The association was attenuated but persisted upon adjustment for BMI (−122 cm3, P=0.002). Higher levels of MVPA were associated with higher SAT HU (all P≤0.01), a marker of fat quality, even after adjustment for SAT volume. Similar findings were observed in men but the magnitude of the association was less. Sedentary time was not associated with SAT or VAT volume or quality in men or women. Conclusions MVPA was associated with less VAT and SAT and better fat quality. PMID:25736442
Ribeiro, Tiago; Marques, André; Novák, Petr; Schubert, Veit; Vanzela, André L L; Macas, Jiri; Houben, Andreas; Pedrosa-Harand, Andrea
2017-03-01
Satellite DNA repeats (or satDNA) are fast-evolving sequences usually associated with condensed heterochromatin. To test whether the chromosomal organisation of centromeric and non-centromeric satDNA differs in species with holocentric chromosomes, we identified and characterised the major satDNA families in the holocentric Cyperaceae species Rhynchospora ciliata (2n = 10), R. globosa (2n = 50) and R. tenuis (2n = 2x = 4 and 2n = 4x = 8). While conserved centromeric repeats (present in R. ciliata and R. tenuis) revealed linear signals at both chromatids, non-centromeric, species-specific satDNAs formed distinct clusters along the chromosomes. Colocalisation of both repeat types resulted in a ladder-like hybridisation pattern at mitotic chromosomes. In interphase, the centromeric satDNA was dispersed while non-centromeric satDNA clustered and partly colocalised to chromocentres. Despite the banding-like hybridisation patterns of the clustered satDNA, the identification of chromosome pairs was impaired due to the irregular hybridisation patterns of the homologues in R. tenuis and R. ciliata. These differences are probably caused by restricted or impaired meiotic recombination as reported for R. tenuis, or alternatively by complex chromosome rearrangements or unequal condensation of homologous metaphase chromosomes. Thus, holocentricity influences the chromosomal organisation leading to differences in the distribution patterns and condensation dynamics of centromeric and non-centromeric satDNA.
Computational logic with square rings of nanomagnets
NASA Astrophysics Data System (ADS)
Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.
2018-06-01
Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
Optimization of topological quantum algorithms using Lattice Surgery is hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon
The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.
Robotics and Children: Science Achievement and Problem Solving.
ERIC Educational Resources Information Center
Wagner, Susan Preston
1999-01-01
Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…
Artificial Intelligence and the Education of the Learning Disabled.
ERIC Educational Resources Information Center
Halpern, Noemi
1984-01-01
Computer logic is advised for teaching learning disabled children because the computer reduces complicated problems to series of subproblems, then combines solutions of subproblems to solve the initial problem. Seven examples for using the technique are given, including solving verbal math problems. Encourages teachers to learn computer…
Identification of Knowledge, Skills, and Abilities for Army Design
2014-04-01
the problem. Ntuen and Leedom (2007) emphasized that an agile and adaptive commander regularly engages in metacognitive processes to assess whether the...described reflective thinking and metacognition as vital components of design. They described reflective thinking as involving self-awareness of...and evolutionary. It wasn’t like we sat down to write a battalion operations order.” Finally, the ability to hold and consider two distinct, and
Acquisition of Space Systems. Volume 7. Past Problems and Future Challenges
2015-01-01
Mbps megabits per second MDAP Major Defense Acquisition Program MILSATCOM military satellite communications MOU memorandum of understanding NASA ...Although the National Aeronautics and Space Administration ( NASA ) and the National Reconnaissance Office (NRO) also buy sat- ellites, both buy systems...has gotten to any given TRL does not guar- antee that it will ever get to a higher TRL. 7 GAO, 2009b. Several NASA satellites were experiencing
Teaching Fifth Grade Mathematical Concepts: Effects of Word Problems Used with Traditional Methods.
ERIC Educational Resources Information Center
Coy, Jessica
The view of the researcher is that students in the upper elementary to middle school range need to increase their problem-solving skills by making logical deductions and organizing and structuring their thoughts through the use of word problems. Giving children a daily word problem challenged and introduced them to the lesson. This activity…
Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szűcs, Dénes
2013-07-01
This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized that the development of mathematical skills is closely related to the development of logical abilities, a domain-general skill. In particular, we expected a close link between mathematical skills and the ability to reason independently of one's beliefs. Our results showed that this was indeed the case, with children with DD performing more poorly than controls, and high maths ability children showing outstanding skills in logical reasoning about belief-laden problems. Nevertheless, all groups performed poorly on structurally equivalent problems with belief-neutral content. This is in line with suggestions that abstract reasoning skills (i.e. the ability to reason about content without real-life referents) develops later than the ability to reason about belief-inconsistent fantasy content.A video abstract of this article can be viewed at http://www.youtube.com/watch?v=90DWY3O4xx8. © 2013 Blackwell Publishing Ltd.
Computer Aided Instruction for a Course in Boolean Algebra and Logic Design. Final Report (Revised).
ERIC Educational Resources Information Center
Roy, Rob
The use of computers to prepare deficient college and graduate students for courses that build upon previously acquired information would solve the growing problem of professors who must spend up to one third of their class time in review of material. But examination of students who were taught Boolean Algebra and Logic Design by means of Computer…
Chang, Chuchun L; Torrejon, Claudia; Jung, Un Ju; Graf, Kristin; Deckelbaum, Richard J
2014-06-01
Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Big Software for SmallSats: Adapting CFS to CubeSat Missions
NASA Technical Reports Server (NTRS)
Cudmore, Alan P.; Crum, Gary; Sheikh, Salman; Marshall, James
2015-01-01
Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS. Large parts of cFS are now open source, which has spurred adoption outside of NASA. This paper reports on the experiences of two teams using cFS for current CubeSat missions. The performance overheads of cFS are quantified, and the reusability of code between missions is discussed. The analysis shows that cFS is well suited to use on CubeSats and demonstrates the portability and modularity of cFS code.
Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny
2010-01-01
Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.
2016-09-15
Investigative Questions This research will quantitatively address the impact of proposed benefits of a 3D printed satellite architecture on the...subsystems of a CubeSat. The objective of this research is to bring a quantitative analysis to the discussion of whether a fully 3D printed satellite...manufacturers to quantitatively address what impact the architecture would have on the subsystems of a CubeSat. Summary of Research Gap, Research Questions, and
2014-06-01
release is controlled by a non-explosive actuator (NEA). Once the NEA is actuated, it releases the P-POD door, which springs open due to torsion ...deemed to be undesirable to OSL as it limited flexibility in final CubeSat position choices on NPSCuL. 24 Building on the lessons learned from the...OUTSat mission that included maintaining flexibility of CubeSat positions on NPSCuL, it was decided that the option to proto-qualify a CubeSat on the
PhoneSat - The Smartphone Nanosatellite
NASA Technical Reports Server (NTRS)
Cockrell, James J.; Yost, Bruce; Petro, Andrew
2013-01-01
NASAs PhoneSat project will test whether spacecraft can be built using smartphones to launch the lowest-cost satellites ever flown in space. Each PhoneSat nanosatellite is one cubesat unit - a satellite in a 10 cm (approx. 4 inches) cube or about the size of a tissue box - and weighs approximately three pounds. Engineers believe PhoneSat technology will enable NASA to launch multiple new satellites capable of conducting science and exploration missions at a small fraction of the cost of conventional satellites.
PhoneSat - The Smartphone Nanosatellite
NASA Technical Reports Server (NTRS)
Cockrell, James J.; Yost, Bruce; Petro, Andrew
2013-01-01
NASA's PhoneSat project tests whether spacecraft can be built using smartphones to launch the lowest-cost satellites ever flown in space. Each PhoneSat nanosatellite is one cubesat unit - a satellite in a 10 cm (approx. 4 inches) cube or about the size of a tissue box - and weighs approximately 1 kg (2.2 pounds). Engineers believe PhoneSat technology will enable NASA to launch multiple new satellites capable of conducting science and exploration missions at a small fraction of the cost of conventional satellites.
State-of-the-Art for Small Satellite Propulsion Systems
NASA Technical Reports Server (NTRS)
Parker, Khary I.
2016-01-01
SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.
The polyamine catabolic enzymeSAT1 modulates tumorigenesis and radiation response in GBM
Brett-Morris, Adina; Wright, Bradley M.; Seo, Yuji; Pasupuleti, Vinay; Zhang, Junran; Lu, Jun; Spina, Raffaella; Bar, Eli E.; Gujrati, Maneesh; Schur, Rebecca; Lu, Zheng-Rong; Welford, Scott M.
2015-01-01
Glioblastoma multiforme (GBM) is the most common and severe form of brain cancer. The median survival time of patients is approximately 12 months due to poor responses to surgery and chemoradiation. In order to understand the mechanisms involved in radioresistance, we conducted a genetic screen using an shRNA library to identify genes whose inhibition would sensitize cells to radiation. The results were cross-referenced with the Oncomine and Rembrandt databases to focus on genes that are highly expressed in GBM tumors and associated with poor patient outcomes. Spermidine/spermine-N1-acetyltransferase 1 (SAT1), an enzyme involved in polyamine catabolism, was identified as a gene that promotes resistance to ionizing radiation (IR), is overexpressed in brain tumors, and correlates with poor outcomes. Knockdown of SAT1 using shRNA and siRNA approaches in multiple cell and neurosphere lines resulted in sensitization of GBM cells to radiation in colony formation assays and tumors, and decreased tumorigenesis in vivo. Radiosensitization occurred specifically in G2/M and S phases, suggesting a role for SAT1 in homologous recombination (HR) that was confirmed in a DR-GFP reporter system. Mechanistically, we found that SAT1 promotes acetylation of histone H3, suggesting a new role of SAT1 in chromatin remodeling and regulation of gene expression. In particular, SAT1 depletion led to a dramatic reduction in BRCA1 expression, explaining decreased HR capacity. Our findings suggest that the biological significance of elevated SAT1 expression in GBM lies in its contribution to cell radioresistance and that SAT1 may potentially be a therapeutic target to sensitize GBM to cancer therapies. PMID:25277523
NASA Astrophysics Data System (ADS)
Liu, Jiping; Zhang, Zhanhai; Hu, Yongyun; Chen, Liqi; Dai, Yongjiu; Ren, Xiaobo
2008-05-01
The surface air temperature (SAT) over the Arctic Ocean in reanalyses and global climate model simulations was assessed using the International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES) observations for the period 1979-1999. The reanalyses, including the National Centers for Environmental Prediction Reanalysis II (NCEP2) and European Centre for Medium-Range Weather Forecast 40-year Reanalysis (ERA40), show encouraging agreement with the IABP/POLES observations, although some spatiotemporal discrepancies are noteworthy. The reanalyses have warm annual mean biases and underestimate the observed interannual SAT variability in summer. Additionally, NCEP2 shows an excessive warming trend. Most model simulations (coordinated by the International Panel on Climate Change for its Fourth Assessment Report) reproduce the annual mean, seasonal cycle, and trend of the observed SAT reasonably well, particularly the multi-model ensemble mean. However, large discrepancies are found. Some models have the annual mean SAT biases far exceeding the standard deviation of the observed interannul SAT variability and the across-model standard deviation. Spatially, the largest inter-model variance of the annual mean SAT is found over the North Pole, Greenland Sea, Barents Sea and Baffin Bay. Seasonally, a large spread of the simulated SAT among the models is found in winter. The models show interannual variability and decadal trend of various amplitudes, and can not capture the observed dominant SAT mode variability and cooling trend in winter. Further discussions of the possible attributions to the identified SAT errors for some models suggest that the model's performance in the sea ice simulation is an important factor.
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.;
2001-01-01
CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.
NASA Technical Reports Server (NTRS)
Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer;
2017-01-01
Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.
Zhang, Chao; Luo, Hao; Gao, Feng; Zhang, Chun-Ting; Zhang, Ren
2015-06-01
Adiponectin, an insulin-sensitizing adipokine, confers protection against type 2 diabetes. Although adiponectin is secreted exclusively from fat, contributions of visceral adipose tissue (VAT) versus subcutaneous adipose tissue (SAT) to adiponectin levels have not been fully understood. We aimed to examine correlations between changes in VAT and SAT volumes and changes in adiponectin levels. Here, we have investigated the correlations between ΔVAT and ΔSAT with Δadiponectin in participants of the Diabetes Prevention Program, a clinical trial investigating the effects of lifestyle changes and metformin versus placebo on the rate of developing type 2 diabetes. Data on VAT and SAT volumes, measured by computed tomography, and on adiponectin levels at both baseline and 1-year follow-up were available in 321 men and 626 women. In men, Δadiponectin was highly significantly correlated with both ΔSAT (r s = -0.329) and ΔVAT (r s = -0.413). Likewise, in women, Δadiponectin was correlated with both ΔSAT (r s = -0.294) and ΔVAT (r s = -0.348). In the lifestyle arm, Δadiponectin remained highly significantly correlated with ΔSAT and ΔVAT in men (r s = -0.399 and r s = -0.460, respectively), and in women (r s = -0.372 and r s = -0.396, respectively), with P < 0.001 for all above correlations. We conclude that for both men and women, adiponectin changes are highly significantly correlated with changes in both SAT and VAT and that exercise- and weight-loss-induced reduction in both SAT and VAT contributes to the increased adiponectin.
Study of LEO-SAT microwave link for broad-band mobile satellite communication system
NASA Technical Reports Server (NTRS)
Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko
1993-01-01
In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.
Seven, Ekim; Thuesen, Betina H; Linneberg, Allan; Jeppesen, Jørgen L
2016-11-01
Abdominal obesity is a major risk factor for hypertension. However, different distributions of abdominal adipose tissue may affect hypertension risk differently. The main purpose of this study was to explore the association of subcutaneous abdominal adipose tissue (SAT) and visceral adipose tissue (VAT) with incident hypertension in a population-based setting. We hypothesized that VAT, rather than SAT, would be associated with incident hypertension. VAT and SAT were determined by ultrasound imagining in 3363 randomly selected Danes (mean age 49 years, 56% women, mean body mass index 25.8 kg/m 2 ). We constructed multiple logistic regression models to compute standardized odds ratios with 95% confidence intervals per SD increase in SAT and VAT. Of the 2119 normotensive participants at baseline, 1432, with mean SAT of 2.8 cm and mean VAT of 5.7 cm, returned 5 years later for a follow-up examination and among them 203 had developed hypertension. In models including both VAT and SAT, the Framingham Hypertension Risk Score variables (age, sex, smoking status, family history of hypertension, and baseline blood pressure) and glycated hemoglobin, odds ratio (95% confidence interval) for incident hypertension for 1 SD increase in VAT and SAT was 1.27 (1.08-1.50, P=0.004) and 0.97 (0.81-1.15, P=0.70), respectively. Adjusting for body mass index instead of SAT attenuated the association between VAT and incident hypertension, but it was still significant (odds ratio, 1.22 [1.01-1.48, P=0.041] for each SD increase in VAT). In conclusion, ultrasound-determined VAT, but not SAT, was associated with incident hypertension in a random sample of Danish adults. © 2016 American Heart Association, Inc.
An event-based architecture for solving constraint satisfaction problems
Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo
2015-01-01
Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed. PMID:26642827
NASA Astrophysics Data System (ADS)
Schulte, Peter Z.; Spencer, David A.
2016-01-01
This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using decision logic to autonomously determine when actions should be performed. The complexity of this decision logic is the primary challenge of the automated process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual hardware and software components. Once the integrated simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. Hardware-in-the-loop testing provides validation of the Guidance, Navigation, & Control subsystem performance.
Writing Chinese and mathematics achievement: A study with Chinese-American undergraduates
NASA Astrophysics Data System (ADS)
Li, Chieh; Nuttall, Ronald
2001-04-01
Two recent studies indicated that writing Chinese is correlated to Chinese-American (CA) students' spatial skills. The current study investigated whether writing Chinese would have the same relationship to mathematics skills. The Scholastic Assessment Test—Mathematics (SAT-Math) scores were analysed for 150 CA undergraduates: 42 writers of Chinese and 108 non-writers of Chinese. The results suggested a strong correlation between writing Chinese and success on SAT-Math. An underlying mechanism may be the common cognitive components that encompass writing Chinese, spatial tasks, and SAT-Math. Contrary to previous findings with other populations in the USA, CA females scored slightly higher on SAT-Math than males. The finding supports the cultural relativity theory of gender difference on SAT-Math.
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-28
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.
EMC Test Report: StangSat - CubeSat Program
NASA Technical Reports Server (NTRS)
Carmody, Lynne M.; Aragona, Peter S.
2013-01-01
This report documents the Electromagnetic Interference E M I testing performed on the StangSat; the unit under test (UUT). Testing was per the requirements of MIL STD-461F. The UUT was characterized and passed the radiated emissions (RE102 limit for Spacecraft) testing.
A surface-associated activity trap for capturing water surface and aquatic invertebrates in wetlands
Hanson, Mark A.; Roy, Christiane C.; Euliss, Ned H.; Zimmer, Kyle D.; Riggs, Michael R.; Butler, Malcolm G.
2000-01-01
We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.
A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands
Hanson, M.A.; Roy, C.C.; Euliss, N.H.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.
2000-01-01
We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.
A Grey Fuzzy Logic Approach for Cotton Fibre Selection
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati
2017-06-01
It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.
A psychological rationale for the use of nitrous oxide psychosedation for children.
Pruhs, R J; Williams, D L
1978-01-01
N2O is, perhaps, the best adjunct, available today, in the management of emotional factors which influence problem behavior. It is not panacea, however, and should be used only in conjunction with sound psychological methods. The use of N2O must not be thought of as a method by which dentists can elude their responsibility to deal logically with the fears and anxieties of the patient. The fears and anxieties are frequently the result of rational mental functions flowing logically from the individual's previous dental history and learning experience. Viewed thusly, patients can be assisted to overcome the problems at a logical level, and N2O or other sedatives may be mere tools to assist the patient in overcoming the emotional elements of the situation. The real worth of N2O can only be evaluated intelligently by those who learn to "demand and to expect rational explanation in addition to empirical discovery".
Simple online recognition of optical data strings based on conservative optical logic
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Shamir, Joseph; Zavalin, Andrey I.; Silberman, Enrique; Qian, Lei; Vikram, Chandra S.
2006-06-01
Optical packet switching relies on the ability of a system to recognize header information on an optical signal. Unless the headers are very short with large Hamming distances, optical correlation fails and optical logic becomes attractive because it can handle long headers with Hamming distances as low as 1. Unfortunately, the only optical logic gates fast enough to keep up with current communication speeds involve semiconductor optical amplifiers and do not lend themselves to the incorporation of large numbers of elements for header recognition and would consume a lot of power as well. The ideal system would operate at any bandwidth with no power consumption. We describe how to design and build such a system by using passive optical logic. This too leads to practical problems that we discuss. We show theoretically various ways to use optical interferometric logic for reliable recognition of long data streams such as headers in optical communication. In addition, we demonstrate one particularly simple experimental approach using interferometric coinc gates.
Do institutional logics predict interpretation of contract rules at the dental chair-side?
Harris, Rebecca; Brown, Stephen; Holt, Robin; Perkins, Elizabeth
2014-12-01
In quasi-markets, contracts find purchasers influencing health care providers, although problems exist where providers use personal bias and heuristics to respond to written agreements, tending towards the moral hazard of opportunism. Previous research on quasi-market contracts typically understands opportunism as fully rational, individual responses selecting maximally efficient outcomes from a set of possibilities. We take a more emotive and collective view of contracting, exploring the influence of institutional logics in relation to the opportunistic behaviour of dentists. Following earlier qualitative work where we identified four institutional logics in English general dental practice, and six dental contract areas where there was scope for opportunism; in 2013 we surveyed 924 dentists to investigate these logics and whether they had predictive purchase over dentists' chair-side behaviour. Factor analysis involving 300 responses identified four logics entwined in (often technical) behaviour: entrepreneurial commercialism, duty to staff and patients, managerialism, public good. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
The (dis)unity of nursing science.
Bluhm, Robyn L
2014-10-01
This paper looks at the implications of contemporary work in philosophy of science for nursing science. Early work on the nature of theories in nursing was strongly influenced by logical empiricism, and this influence remains even long after nurse scholars have come to reject logical empiricism as an adequate philosophy of science. Combined with the need to establish nursing as an autonomous profession, nursing theory's use of logical empiricism has led to serious conceptual problems. Philosophers of science have also rejected many of the central tenets of logical empiricism, including its focus on the logical justification of theories and the idea that science is, or should be, unified. Instead, there has been an increasing focus on the practice of science, which in turn has led to a pluralist understanding of science that emphasizes the construction of scientific models that are appropriate for certain purposes or in certain contexts. I suggest that this approach to philosophy of science may provide better resources for nursing science. © 2014 John Wiley & Sons Ltd.
Palacios-Gimenez, Octavio Manuel; Dias, Guilherme Borges; de Lima, Leonardo Gomes; Kuhn, Gustavo Campos E Silva; Ramos, Érica; Martins, Cesar; Cabral-de-Mello, Diogo Cavalcanti
2017-07-25
Satellite DNAs (satDNAs) constitute large portion of eukaryote genomes, comprising non-protein-coding sequences tandemly repeated. They are mostly found in heterochromatic regions of chromosomes such as around centromere or near telomeres, in intercalary heterochromatin, and often in non-recombining segments of sex chromosomes. We examined the satellitome in the cricket Eneoptera surinamensis (2n = 9, neo-X 1 X 2 Y, males) to characterize the molecular evolution of its neo-sex chromosomes. To achieve this, we analyzed illumina reads using graph-based clustering and complementary analyses. We found an unusually high number of 45 families of satDNAs, ranging from 4 bp to 517 bp, accounting for about 14% of the genome and showing different modular structures and high diversity of arrays. FISH mapping revealed that satDNAs are located mostly in C-positive pericentromeric regions of the chromosomes. SatDNAs enrichment was also observed in the neo-sex chromosomes in comparison to autosomes. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. Our results suggest possible involvement of satDNAs in genome increasing and in molecular differentiation of the neo-sex chromosomes in this species, contributing to the understanding of sex chromosome composition and evolution in Orthoptera.
Anand, Vivek
2007-08-01
This study analyzes the correlation between video game usage and academic performance. Scholastic Aptitude Test (SAT) and grade-point average (GPA) scores were used to gauge academic performance. The amount of time a student spends playing video games has a negative correlation with students' GPA and SAT scores. As video game usage increases, GPA and SAT scores decrease. A chi-squared analysis found a p value for video game usage and GPA was greater than a 95% confidence level (0.005 < p < 0.01). This finding suggests that dependence exists. SAT score and video game usage also returned a p value that was significant (0.01 < p < 0.05). Chi-squared results were not significant when comparing time spent studying and an individual's SAT score. This research suggests that video games may have a detrimental effect on an individual's GPA and possibly on SAT scores. Although these results show statistical dependence, proving cause and effect remains difficult, since SAT scores represent a single test on a given day. The effects of video games maybe be cumulative; however, drawing a conclusion is difficult because SAT scores represent a measure of general knowledge. GPA versus video games is more reliable because both involve a continuous measurement of engaged activity and performance. The connection remains difficult because of the complex nature of student life and academic performance. Also, video game usage may simply be a function of specific personality types and characteristics.
Paolone, Giovanna; Lee, Theresa M.; Sarter, Martin
2012-01-01
Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred irrespective of whether the SAT was practiced during the light or dark phase or in constant light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark period but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed time performance and, if practiced during the light phase, contributes to a diurnal activity pattern. PMID:22933795
Paolone, Giovanna; Lee, Theresa M; Sarter, Martin
2012-08-29
Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed-time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here, we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred regardless of whether the SAT was practiced during the light or dark phase or in constant-light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark phase but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed-time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed-time performance and, if practiced during the light phase, contributes to a diurnal activity pattern.
Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Semenov, V. A.
2017-11-01
For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.
Logic programming and metadata specifications
NASA Technical Reports Server (NTRS)
Lopez, Antonio M., Jr.; Saacks, Marguerite E.
1992-01-01
Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.
2014-02-11
ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Applications of Nano-Satellites and Cube-Satellites in Microwave and RF Domain
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita
2015-01-01
This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.
Applications of Nano-satellites and Cube-satellites in Microwave and RF Domain
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita
2015-01-01
This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.
End-of-Mission Planning Challenges for a Satellite in a Constellation
NASA Technical Reports Server (NTRS)
Boain, Ronald J.
2013-01-01
At the end of a mission, satellites embedded in a constellation must first perform propulsive maneuvers to safely exit the constellation before they can begin with the usual end-of-mission activities: deorbit, passivation, and decommissioning. The target orbit for these exit maneuvers must be sufficiently below the remaining constellation satellites such that, once achieved, there is no longer risk of close conjunctions. Yet, the exit maneuvers must be done based on the spacecraft's state of health and operational capability when the decision to end the mission is made. This paper focuses on the recently developed exit strategy for the CloudSat mission to highlight problems and issues, which forced the discarding of CloudSat's original EoM Plan and its replacement with a new plan consistent with changes to the spacecraft's original operational mode. The analyses behind and decisions made in formulating this new exit strategy will be of interest to other missions in a constellation currently preparing to update their End-of-Mission Plan.
ERIC Educational Resources Information Center
Koberg, Don; Bagnall, Jim
This publication provides an organizational scheme for a creative problem solving process. The authors indicate that all problems can benefit from the same logical and orderly process now employed to solve many complex problems. The principles remain constant; only specific methods change. Chapter 1 analyzes the development of creativity and fear…
The Relationships between Logical Thinking, Gender, and Kinematics Graph Interpretation Skills
ERIC Educational Resources Information Center
Bektasli, Behzat; White, Arthur L.
2012-01-01
Problem Statement: Kinematics is one of the topics in physics where graphs are used broadly. Kinematics includes many abstract formulas, and students usually try to solve problems with those formulas. However, using a kinematics graph instead of formulas might be a better option for problem solving in kinematics. Graphs are abstract…
NASA Astrophysics Data System (ADS)
Ghosh, B.; Hazra, S.; Haldar, N.; Roy, D.; Patra, S. N.; Swarnakar, J.; Sarkar, P. P.; Mukhopadhyay, S.
2018-03-01
Since last few decades optics has already proved its strong potentiality for conducting parallel logic, arithmetic and algebraic operations due to its super-fast speed in communication and computation. So many different logical and sequential operations using all optical frequency encoding technique have been proposed by several authors. Here, we have keened out all optical dibit representation technique, which has the advantages of high speed operation as well as reducing the bit error problem. Exploiting this phenomenon, we have proposed all optical frequency encoded dibit based XOR and XNOR logic gates using the optical switches like add/drop multiplexer (ADM) and reflected semiconductor optical amplifier (RSOA). Also the operations of these gates have been verified through proper simulation using MATLAB (R2008a).
LOGIC NETS, THEIR CHARACTERIZATION, RELIABILITY, AND EFFICIENT SYNTHESIS.
The report consists of two parts. The first discusses a problem in the dual-support approach to network synthesis using threshold gates, gives new...asymptotic results on the number of threshold gates and the size of threshold gate networks, and summarizes the work in threshold logic supported by...this contract, including programs to facilitate experimentation in the design of networks of threshold gates. The second summarizes CDL1 - Computer
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
Knauff, Markus; Budeck, Claudia; Wolf, Ann G; Hamburger, Kai
2010-10-18
Explanations for the current worldwide financial crisis are primarily provided by economists and politicians. However, in the present work we focus on the psychological-cognitive factors that most likely affect the thinking of people on the economic stage and thus might also have had an effect on the progression of the crises. One of these factors might be the effect of prior beliefs on reasoning and decision-making. So far, this question has been explored only to a limited extent. We report two experiments on logical reasoning competences of nineteen stock-brokers with long-lasting vocational experiences at the stock market. The premises of reasoning problems concerned stock trading and the experiments varied whether or not their conclusions--a proposition which is reached after considering the premises--agreed with the brokers' prior beliefs. Half of the problems had a conclusion that was highly plausible for stock-brokers while the other half had a highly implausible conclusion. The data show a strong belief bias. Stock-brokers were strongly biased by their prior knowledge. Lowest performance was found for inferences in which the problems caused a conflict between logical validity and the experts' belief. In these cases, the stock-brokers tended to make logically invalid inferences rather than give up their existing beliefs. Our findings support the thesis that cognitive factors have an effect on the decision-making on the financial market. In the present study, stock-brokers were guided more by past experience and existing beliefs than by logical thinking and rational decision-making. They had difficulties to disengage themselves from vastly anchored thinking patterns. However, we believe, that it is wrong to accuse the brokers for their "malfunctions", because such hard-wired cognitive principles are difficult to suppress even if the person is aware of them.
Could less be more when assessing patient-rated outcome in spinal stenosis?
Mannion, Anne F; Fekete, Tamas F; Wertli, Maria M; Mattle, Michele; Nauer, Selina; Kleinstück, Frank S; Jeszenszky, Dezsö; Haschtmann, Daniel; Becker, Hans-Jürgen; Porchet, François
2015-05-15
Longitudinal study of the measurement properties of a brief outcome instrument. In patients undergoing surgery for lumbar spinal stenosis, we compared the responsiveness of the Core Outcome Measures Index (COMI) with that of the condition-specific Swiss Spinal Stenosis Measure (SSM), an instrument developed to assess patients with neurogenic claudication. The COMI is a validated multidimensional questionnaire for assessing the key outcomes of importance to patients with back problems. Being brief, it is associated with minimal respondent burden and high completion rates. However, for a given pathology, intuitively it may be expected to be less responsive than a condition-specific instrument. A total of 91 patients (73±8 yr; 53% males) completed the following questionnaires before surgery: COMI, SSM, Roland Morris Disability Questionnaire, back trouble "Feeling Thermometer," pain numeric rating scale, EuroQoL-visual analogue scale. Twelve months postoperatively, 78/91 (86%) completed all the questionnaires again; they also rated the "global treatment outcome" (GTO; rated 1-5) and SSM "satisfaction with treatment result" (SSM-sat; rated 1-4), which were used as external criteria of treatment success. Scores for the external criteria of success (GTO/SSM-sat) correlated with the change scores (baseline to 12 mo) in COMI (r=0.57) and SSM (r=0.54) to a similar extent. Using receiver operating characteristics, with GTO or SSM-sat dichotomized as external criterion, the area under the curve was similar for the COMI change score (0.86-0.90) and the SSM (sub)scales (0.80-0.90). With either SSM-sat or GTO serving as the external criterion, COMI was as responsive as the SSM. The COMI is well able to detect important change in lumbar spinal stenosis and has the added benefit of reducing the response burden for the patient and facilitating outcome comparisons with other spinal pathologies. 2.
Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center
NASA Astrophysics Data System (ADS)
Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.
2016-12-01
Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that have been realized, the difficulties that were encountered and issues that still exist.
Computer as a Tool in SAT Preparation.
ERIC Educational Resources Information Center
Coffin, Gregory C.
Two experimental programs, designed to increase Scholastic Aptitude Test (SAT) scores of inner city, low achieving students by using computer-assisted SAT preparation, produced differing results. Forty volunteers from a nearby high school were assigned to two groups of 20 each--one experimental and one control group. The first program provided six…
Preparing Students for College Admissions Tests
ERIC Educational Resources Information Center
Appelrouth, Jed I.; Zabrucky, Karen M.; Moore, DeWayne
2017-01-01
Attaining successful outcomes on the SAT can have profound educational and financial consequences for college-bound students. Using archival data from a private tutoring centre, we investigated variables we hypothesised to contribute to SAT score increases. Our analyses revealed significant effects of time on task and rate of SAT homework…
ERIC Educational Resources Information Center
McDermott, Ann
2008-01-01
Scholastic Aptitude Test (SAT) scores still wield a mighty force in American culture and in the psyches of teenagers, even though 760 American colleges and universities have made standardized testing an optional part of the admissions process. Three years ago, after the new writing portion of the SAT was unveiled, the author's college, the College…
PhoneSat 2.4 Launches to Orbit aboard Minotaur-1 Rocket (Reporter Package)
2013-11-21
On November 19, NASA's PhoneSat 2.4 successfully launched into space on board a Minotaur-1 rocket from the Wallops Flight Facility in Virginia. Built at NASA's Ames Research Center, the smartphone-based cubesat is an improved version of the previous PhoneSat satellites.
Big Software for SmallSats: Adapting cFS to CubeSat Missions
NASA Technical Reports Server (NTRS)
Cudmore, Alan P.; Crum, Gary Alex; Sheikh, Salman; Marshall, James
2015-01-01
Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS.
What's the Cube Quest Challenge?
NASA Technical Reports Server (NTRS)
Cockrell, Jim
2016-01-01
Cube Quest Challenge, sponsored by Space Technology Mission Directorates Centennial Challenges program, is NASAs first in-space prize competition. Cube Quest is open to any U.S.-based, non-government CubeSat developer. Entrants will compete for one of three available 6U CubeSat dispenser slots on the EM-1 mission the first un-crewed lunar flyby of the Orion spacecraft launched by the Space Launch System in early 2018. The Cube Quest Challenge will award up to $5M in prizes. The advanced CubeSat technologies demonstrated by Cube Quest winners will enable NASA, universities, and industry to more quickly and affordably accomplish science and exploration objectives. This paper describes the teams, their novel CubeSat designs, and the emerging technologies for CubeSat operations in deep space environment.
NASA Technical Reports Server (NTRS)
Jenkins, Kenneth T., Jr.
2012-01-01
CUBES stands for Creating Understanding and Broadening Education through Satellites. The goal of the project is to allow high school students to build a small satellite, or CubeSat. Merritt Island High School (MIHS) was selected to partner with NASA, and California Polytechnic State University (Cal-Poly}, to build a CubeSat. The objective of the mission is to collect flight data to better characterize maximum predicted environments inside the CubeSat launcher, Poly-Picosatellite Orbital Deplorer (P-POD), while attached to the launch vehicle. The MIHS CubeSat team will apply to the NASA CubeSat Launch Initiative, which provides opportunities for small satellite development teams to secure launch slots on upcoming expendable launch vehicle missions. The MIHS team is working to achieve a test launch, or proof of concept flight aboard a suborbital launch vehicle in early 2013.
PhoneSat In-flight Experience Results
NASA Technical Reports Server (NTRS)
Salas, Alberto Guillen; Attai, Watson; Oyadomari, Ken Y.; Priscal, Cedric; Schimmin, Rogan S.; Gazulla, Oriol Tintore; Wolfe, Jasper L.
2014-01-01
Over the last decade, consumer technology has vastly improved its performances, become more affordable and reduced its size. Modern day smartphones offer capabilities that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. These capabilities are remarkably similar to those required for multi-million dollar satellites. The PhoneSat project at NASA Ames Research Center is building a series of CubeSat-size spacecrafts using an off-the-shelf smartphone as its on-board computer with the goal of showing just how simple and cheap space can be. Since the PhoneSat project started, different suborbital and orbital flight activities have proven the viability of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning smartphone-based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented.
AstroSat: From Inception to Realization and Launch
NASA Astrophysics Data System (ADS)
Agrawal, P. C.
2017-06-01
The origin of the idea of AstroSat multi wavelength satellite mission and how it evolved over the next 15 years from a concept to the successful development of instruments for giving concrete shape to this mission, is recounted in this article. AstroSat is the outcome of intense deliberations in the Indian astronomy community leading to a consensus for a multi wavelength Observatory having broad spectral coverage over five decades in energy covering near-UV, far-UV, soft X-ray and hard X-ray bands. The multi wavelength observation capability of AstroSat with a suite of 4 co-aligned instruments and an X-ray sky monitor on a single satellite platform, imparts a unique character to this mission. AstroSat owes its realization to the collaborative efforts of the various ISRO centres, several Indian institutions, and a few institutions abroad which developed the 5 instruments and various sub systems of the satellite. AstroSat was launched on September 28, 2015 from India in a near equatorial 650 km circular orbit. The instruments are by and large working as planned and in the past 14 months more than 200 X-ray and UV sources have been studied with it. The important characteristics of AstroSat satellite and scientific instruments will be highlighted.
Making every gram count - Big measurements from tiny platforms (Invited)
NASA Astrophysics Data System (ADS)
Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.
2013-12-01
The most significant advances in Earth, solar, and space physics over the next decades will originate from new, system-level observational techniques. The most promising technique to still be fully developed and exploited requires conducting multi-point or distributed constellation-based observations. This system-level observational approach is required to understand the 'big picture' coupling between disparate regions such as the solar-wind, magnetosphere, ionosphere, upper atmosphere, land, and ocean. The national research council, NASA science mission directorate, and the larger heliophysics community have repeatedly identified the pressing need for multipoint scientific investigations to be implemented via satellite constellations. The NASA Solar Terrestrial Probes Magnetospheric Multiscale (MMS) mission and NASA Earth Science Division's 'A-train', consisting of the AQUA, CloudSat, CALIPSO and AURA satellites, are examples of such constellations. However, the costs to date of these and other similar proposed constellations have been prohibitive given the 'large satellite' architectures and the multiple launch vehicles required for implementing the constellations. Financially sustainable development and deployment of multi-spacecraft constellations can only be achieved through the use of small spacecraft that allow for multiple hostings per launch vehicle. The revolution in commercial mobile and other battery powered consumer technology has helped enable researchers in recent years to build and fly very small yet capable satellites, principally CubeSats. A majority of the CubeSat activity and development to date has come from international academia and the amateur radio satellite community, but several of the typical large-satellite vendors have developed CubeSats as well. Recent government-sponsored CubeSat initiatives, such as the NRO Colony, NSF CubeSat Space Weather, NASA Office of Chief Technologist Edison and CubeSat Launch Initiative (CSLI) Educational Launch of Nanosatellites Educational Launch of Nano-satellites (ELaNa), the Air Force Space Environmental NanoSat Experiment (SENSE), and the ESA QB50 programs have spurred the development of very proficient miniature space sensors and technologies that enable technology demonstration, space and earth science research, and operational CubeSat based missions. In this paper we will review many of the small, low cost sensor and instrumentation technologies that have been developed to date as part of the CubeSat movement and examine how these new CubeSat based technologies are helping us do more with less.
Tint, Mya Thway; Fortier, Marielle V; Godfrey, Keith M; Shuter, Borys; Kapur, Jeevesh; Rajadurai, Victor S; Agarwal, Pratibha; Chinnadurai, Amutha; Niduvaje, Krishnamoorthy; Chan, Yiong-Huak; Aris, Izzuddin Bin Mohd; Soh, Shu-E; Yap, Fabian; Saw, Seang-Mei; Kramer, Michael S; Gluckman, Peter D; Chong, Yap-Seng; Lee, Yung-Seng
2016-05-01
A susceptibility to metabolic diseases is associated with abdominal adipose tissue distribution and varies between ethnic groups. The distribution of abdominal adipose tissue at birth may give insights into whether ethnicity-associated variations in metabolic risk originate partly in utero. We assessed the influence of ethnicity on abdominal adipose tissue compartments in Asian neonates in the Growing Up in Singapore Toward Healthy Outcomes mother-offspring cohort. MRI was performed at ≤2 wk after birth in 333 neonates born at ≥34 wk of gestation and with birth weights ≥2000 g. Abdominal superficial subcutaneous tissue (sSAT), deep subcutaneous tissue (dSAT), and internal adipose tissue (IAT) compartment volumes (absolute and as a percentage of the total abdominal volume) were quantified. In multivariate analyses that were controlled for sex, age, and parity, the absolute and percentage of dSAT and the percentage of sSAT (but not absolute sSAT) were greater, whereas absolute IAT (but not the percentage of IAT) was lower, in Indian neonates than in Chinese neonates. Compared with Chinese neonates, Malay neonates had greater percentages of sSAT and dSAT but similar percentages of IAT. Marginal structural model analyses largely confirmed the results on the basis of volume percentages with controlled direct effects of ethnicity on abdominal adipose tissue; dSAT was significantly greater (1.45 mL; 95% CI: 0.49, 2.41 mL, P = 0.003) in non-Chinese (Indian or Malay) neonates than in Chinese neonates. However, ethnic differences in sSAT and IAT were NS [3.06 mL (95% CI:-0.27, 6.39 mL; P = 0.0712) for sSAT and -1.30 mL (95% CI: -2.64, 0.04 mL; P = 0.057) for IAT in non-Chinese compared with Chinese neonates, respectively]. Indian and Malay neonates have a greater dSAT volume than do Chinese neonates. This finding supports the notion that in utero influences may contribute to higher cardiometabolic risk observed in Indian and Malay persons in our population. If such differences persist in the longitudinal tracking of adipose tissue growth, these differences may contribute to the ethnic disparities in risks of cardiometabolic diseases. This trial was registered at clinicaltrials.gov as NCT01174875. © 2016 American Society for Nutrition.
Houston prefreshman enrichment program (Houston PREP). Final report, June 10, 1996--August 1, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The 1996 Houston Pre-freshman Enrichment Program (PREP) was conducted on the campus of the University of Houston-Downtown from June 10 to August 1, 1996. Program Participants were recruited from the Greater Houston area. All participants were identified as high achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Crockett, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 197 students starting the program, 170 completed, 142 students were from economically and socially disadvantage groups underrepresented in the engineering and science professions, and 121 of the 197 were female. Our First Year group for 1996 composed of 96% minority and women students. Our Second and Third Year students were 100% and 93.75% minority or women respectively. This gave an overall minority and female population of 93.75%. This year, special efforts were again made to recruit students from minority groups, which caused a significant increase in qualified applicants. However, due to space limitations, 140 applicants were rejected. Investigative and discovery learning were key elements of PREP. The academic components of the program included Algebraic Structures, Engineering, Introduction to Computer Science, Introduction to Physics, Logic and Its Application to Mathematics, Probability and Statistics, Problem Solving Seminar using computers and PLATO software, SAT Preparatory Seminars, and Technical Writing.« less
Whiteboarding: A Tool for Moving Classroom Discourse from Answer-Making to Sense-Making
ERIC Educational Resources Information Center
Megowan-Romanowicz, Colleen
2016-01-01
In 1998 I had been teaching science for 13 years. I was a good teacher: I had the plaques and certificates to prove it. But often I felt like an impostor (which I have since learned is not unusual--70% of all people feel like a fake at one time or another). While my students could solve problems and ace tests, every June when I sat down to look at…
CryoSat Plus For Oceans: an ESA Project for CryoSat-2 Data Exploitation Over Ocean
NASA Astrophysics Data System (ADS)
Benveniste, J.; Cotton, D.; Clarizia, M.; Roca, M.; Gommenginger, C. P.; Naeije, M. C.; Labroue, S.; Picot, N.; Fernandes, J.; Andersen, O. B.; Cancet, M.; Dinardo, S.; Lucas, B. M.
2012-12-01
The ESA CryoSat-2 mission is the first space mission to carry a space-borne radar altimeter that is able to operate in the conventional pulsewidth-limited (LRM) mode and in the novel Synthetic Aperture Radar (SAR) mode. Although the prime objective of the Cryosat-2 mission is dedicated to monitoring land and marine ice, the SAR mode capability of the Cryosat-2 SIRAL altimeter also presents the possibility of demonstrating significant potential benefits of SAR altimetry for ocean applications, based on expected performance enhancements which include improved range precision and finer along track spatial resolution. With this scope in mind, the "CryoSat Plus for Oceans" (CP4O) Project, dedicated to the exploitation of CryoSat-2 Data over ocean, supported by the ESA STSE (Support To Science Element) programme, brings together an expert European consortium comprising: DTU Space, isardSAT, National Oceanography Centre , Noveltis, SatOC, Starlab, TU Delft, the University of Porto and CLS (supported by CNES),. The objectives of CP4O are: - to build a sound scientific basis for new scientific and operational applications of Cryosat-2 data over the open ocean, polar ocean, coastal seas and for sea-floor mapping. - to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter , and extend their application beyond the initial mission objectives. - to ensure that the scientific return of the Cryosat-2 mission is maximised. In particular four themes will be addressed: -Open Ocean Altimetry: Combining GOCE Geoid Model with CryoSat Oceanographic LRM Products for the retrieval of CryoSat MSS/MDT model over open ocean surfaces and for analysis of mesoscale and large scale prominent open ocean features. Under this priority the project will also foster the exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to detect short spatial scale open ocean features. -High Resolution Polar Ocean Altimetry: Combination of GOCE Geoid Model with CryoSat Oceanographic SAR Products over polar oceans for the retrieval of CryoSat MSS/MDT and currents circulations system improving the polar tides models and studying the coupling between blowing wind and current pattern. -High Resolution Coastal Zone Altimetry: Exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to get the radar altimetry closer to the shore exploiting the SARIn mode for the discrimination of off-nadir land targets (e.g. steep cliffs) in the radar footprint from nadir sea return. -High Resolution Sea-Floor Altimetry: Exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to resolve the weak short-wavelength sea surface signals caused by sea-floor topography elements and to map uncharted sea-mounts/trenches. One of the first project activities is the consolidation of preliminary scientific requirements for the four themes under investigation. This paper will present the CP4O project content and objectives and will address the first initial results from the on-going work to define the scientific requirements.
Wicked problems: policy contradictions in publicly financed dental care.
Quiñonez, Carlos
2012-01-01
To review two policy issues that define publicly financed dental care as a "wicked policy problem." Historical review. By demonstrating how governments have shifted their funding focus from direct delivery care, to public third-party financing arrangements in private dental offices, and by their willingness to fund composite restorations in public fee schedules, it is clear that the logic and sustainability of public programming needs reconsideration. The current contradictions in public dental care programs speak to the need for policy makers to reassess their goals, and ask whether decisions are based more on political necessity than on a logical evidence-informed approach to the delivery of publicly financed dental care. © 2012 American Association of Public Health Dentistry.
The ANMLite Language and Logic for Specifying Planning Problems
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Siminiceanu, Radu I.; Munoz, Cesar A.
2007-01-01
We present the basic concepts of the ANMLite planning language. We discuss various aspects of specifying a plan in terms of constraints and checking the existence of a solution with the help of a model checker. The constructs of the ANMLite language have been kept as simple as possible in order to reduce complexity and simplify the verification problem. We illustrate the language with a specification of the space shuttle crew activity model that was constructed under the Spacecraft Autonomy for Vehicles and Habitats (SAVH) project. The main purpose of this study was to explore the implications of choosing a robust logic behind the specification of constraints, rather than simply proposing a new planning language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, N.; Koller, D.; Halpern, J.Y.
Conditional logics play an important role in recent attempts to investigate default reasoning. This paper investigates first-order conditional logic. We show that, as for first-order probabilistic logic, it is important not to confound statistical conditionals over the domain (such as {open_quotes}most birds fly{close_quotes}), and subjective conditionals over possible worlds (such as I believe that Tweety is unlikely to fly). We then address the issue of ascribing semantics to first-order conditional logic. As in the propositional case, there are many possible semantics. To study the problem in a coherent way, we use plausibility structures. These provide us with a general frameworkmore » in which many of the standard approaches can be embedded. We show that while these standard approaches are all the same at the propositional level, they are significantly different in the context of a first-order language. We show that plausibilities provide the most natural extension of conditional logic to the first-order case: We provide a sound and complete axiomatization that contains only the KLM properties and standard axioms of first-order modal logic. We show that most of the other approaches have additional properties, which result in an inappropriate treatment of an infinitary version of the lottery paradox.« less
NASA Astrophysics Data System (ADS)
Picot, N.; Boy, F.; Desjonqueres, J.
2012-12-01
Like CryoSat, Sentinel3 embarks a doppler altimeter. While there is a long experience of LRM processing, SAR nadir looking data are new and will need in depth validation. Thanks to CryoSat data, the processing of SAR data can be experienced in orbit. The continuity to current altimeter data set (based on LRM acquisitions) has also to be analysed with details. A Cryosat Processing Prototype (C2P) has been developed on CNES side to prepare the CNES SAR ocean retracking study. this prototype allows to process SAR data in order to generate LRM like echoes on ground. Those CryoSat ocean products are routinely processed on CNES side and ingested in the SALP/DUACS system. CryoSat data have proved to be very accurate and very valuable for the ocean user community in the past monthes. For example, it has allowed to largely reduce the impact of the lost of the ESA ENVISAT mission as well as the long non availability of Jason-1 data. This paper will describe the system set up in place early 2012 to feed CryoSat data in the SALP/DUACS products and will present the routine data analysis . C2P CryoSat products will be compared with DUACS SLA estimates and a specific focus will be given over high latitudes knowing that CryoSat is the oinly mission providing sea surface estimates over latitudes above 66 degrees since the lost of the ESA ENVISAT mission.
CubeSat Material Limits For Design for Demise
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.
2014-01-01
The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.
CubeSat Material Limits for Design for Demise
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.
2014-01-01
The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.
An Econometric Model of the Scholastic Aptitude Test Performance of State Educational Systems.
ERIC Educational Resources Information Center
Hashway, Robert M.; And Others
1991-01-01
Nationwide data were partitioned into wealth, fiscal policy, fiscal orientation, and Scholastic Aptitude Test (SAT) performance and participation. Largest between-group differences show that low SAT achieving states have a larger percentage of seniors taking the SAT, along with higher per capita income, per pupil expenditures, and teacher…
Preparing for the SAT: A Review
ERIC Educational Resources Information Center
Appelrouth, Jed I.; Zabrucky, Karen M.
2017-01-01
In 2016, more than 1.6 million students took the Scholastic Aptitude Test (SAT), a standardized college admissions test (College Board 2016a). Researchers have estimated that 33 percent of students who take the SAT participate in some mode of formal test preparation, such as private tutoring or classes, to prepare for the exam (Buchmann, Condron…
2014-02-13
ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-13
ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
JPL-20180416-INSIGHf-0001-Marco Media Reel 1
2018-04-16
Mars Cube One is a Mars flyby mission consisting of two CubeSats that is planned for launch alongside NASA's InSight Mars lander mission. This will be the first interplanetary CubeSat mission. If successful, the CubeSats will relay entry, descent, and landing (EDL) data to Earth during InSight's landing.
ERIC Educational Resources Information Center
Meierding, Loren
2005-01-01
Many students are not accepted in to certain colleges and universities because of low SAT scores. Loren Meierding has written Ace the Verbal on the SAT to help students with minimal preparation do well by improving their vocabulary and use better techniques for finding the answers to the questions. This book provides strategies needed to score…
ERIC Educational Resources Information Center
Wiley, Edward W.; Shavelson, Richard J.; Kurpius, Amy A.
2014-01-01
The name "SAT" has become synonymous with college admissions testing; it has been dubbed "the gold standard." Numerous studies on its reliability and predictive validity show that the SAT predicts college performance beyond high school grade point average. Surprisingly, studies of the factorial structure of the current version…
Student Ranking Differences within Institutions Using Old and New SAT Scores
ERIC Educational Resources Information Center
Marini, Jessica P.; Beard, Jonathan; Shaw, Emily J.
2018-01-01
Admission offices at colleges and universities often use SAT® scores to make decisions about applicants for their incoming class. Many institutions use prediction models to quantify a student's potential for success using various measures, including SAT scores (NACAC, 2016). In March 2016, the College Board introduced a redesigned SAT that better…
CloudSat Preps for Launch at Vandenberg Air Force Base, CA
NASA Technical Reports Server (NTRS)
2005-01-01
The CloudSat spacecraft sits encapsulated within its Boeing Delta launch vehicle dual payload attach fitting at Vandenberg Air Force Base, Calif. CloudSat will share its ride to orbit late next month with NASA's CALIPSO spacecraft. The two spacecraft are designed to reveal the secrets of clouds and aerosols.2013-09-01
Nitinol antennae are stowed in a shallow groove along the equator of SpinSat. Each antenna is 7.5” long from the tip to the surface of SpinSat and is...antenna material is made of nitinol , a flexible metal alloy that can maintain a straight shape and can be stowed with tight bends. The antennas will be
ERIC Educational Resources Information Center
Malveaux, Julianne
2004-01-01
Some say the new SAT is an improved version of the old one. It adds more math, especially advanced algebra, an essay section and testing on grammar, according to some reports. Supposedly, it will rely less on rote reasoning and more on critical thinking. Will it give college admissions officers better information? Because no matter what the SAT…
Gum chewing improves adolescents’ math performance in an SAT preparatory course
USDA-ARS?s Scientific Manuscript database
The purpose of the current study was to determine the effect of gum chewing on students’ performance in a preparatory course for the Scholastic Aptitude Test (SAT). A total of 182 adolescents enrolled in an SAT preparatory class were randomized into one of two treatments: 1) gum chewing condition (G...
Body fat distribution of overweight females with a history of weight cycling.
Wallner, S J; Luschnigg, N; Schnedl, W J; Lahousen, T; Sudi, K; Crailsheim, K; Möller, R; Tafeit, E; Horejsi, R
2004-09-01
Weight cycling may cause a redistribution of body fat to the upper body fat compartments. We investigated the distribution of subcutaneous adipose tissue (SAT) in 30 overweight women with a history of weight-cycling and age-matched controls (167 normal weight and 97 overweight subjects). Measurements of SAT were performed using an optical device, the Lipometer. The SAT topography describes the thicknesses of SAT layers at 15 anatomically well-defined body sites from neck to calf. The overweight women with a history of weight cycling had significantly thicker SAT layers on the upper body compared to the overweight controls, but even thinner SAT layers on their legs than the normal weight women. An android fat pattern was attributed to overweight females and, even more pronounced, to the weight cyclers. The majority of normal weight women showed a gynoid fat pattern. Using stepwise discriminant analysis, 89.0% of all weight cyclers and overweight controls could be classified correctly into the two groups. These findings show the importance of normal weight maintenance as a health-promoting factor.
On the verge of an astronomy CubeSat revolution
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2018-05-01
CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.
Carter, M; Zhu, F; Kotanko, P; Kuhlmann, M; Ramirez, L; Heymsfield, S B; Handelman, G; Levin, N W
2009-01-01
This study used multi-frequency bioimpedance spectroscopy (BIS) of the arm and whole body to estimate muscle mass (MM) and subcutaneous adipose tissue (SAT) in 31 hemodialysis (HD) patients comparing these results with magnetic resonance imaging (MRI) and body potassium ((40)K) as gold standards. Total body and arm MM (MM(MRI)) and SAT (SAT(MRI)) were measured by MRI. All measurements were made before dialysis treatment. Regression models with the arm (aBIS) and whole body (wBIS) resistances were established. Correlations between gold standards and the BIS model were high for the arm SAT (r(2) = 0.93, standard error of estimate (SEE) = 3.6 kg), and whole body SAT (r(2) = 0.92, SEE = 3.5 kg), and for arm MM (r(2) = 0.84, SEE = 2.28 kg) and whole body MM (r(2) = 0.86, SEE = 2.28 kg). Total body MM and SAT can be accurately predicted by arm BIS models with advantages of convenience and portability, and it should be useful to assess nutritional status in HD patients. Copyright (c) 2009 S. Karger AG, Basel.
Results of the Software Process Improvement Efforts of the Early Adopters in NAVAIR 4.0
2007-12-01
and customer satisfaction. AIRSpeed utilizes a structured, problem solving methodology called DMAIC (Define, Measure, Analyze, Improve, Control...widely used in business. DMAIC leads project teams through the logical steps from problem definition to problem resolution. Each phase has a specific set...costs and improving productivity and customer satisfaction. AIRSpeed utilizes the DMAIC (Define, Measure, Analyze, Improve, Control) structured problem
CloudSat Anomaly and Return to the A-Train: Lessons Learned for Satellite Constellations
NASA Technical Reports Server (NTRS)
Vane, Deborah
2015-01-01
In April 2011, CloudSat suffered a severe battery anomaly, leaving the space-craft in emergency mode without the ability to command or maneuver the spacecraft. Before the team was able to recover spacecraft operability, CloudSat passed close to the Aqua satellite in the A-Train and then exited the A-Train. A new mode of operations, termed Daylight Only Operations (DO-Op) mode was developed to enable CloudSat to resume science operations in an orbit under the A-Train by November 2011, and in July 2012 CloudSat re-entered the A-Train. This paper describes challenges and lessons-learned during the anomaly, the exit from the A-Train and the return to the A-Train. These lessons-learned may ap-ply to other current and future satellite constellations in Earth orbit.
NASA Astrophysics Data System (ADS)
Yoshihara, K.; van Mierlo, M.; Ng, A.; Shankar Kumar, B.; De Ruiter, A.; Komatsu, Y.; Horiguchi, H.; Hashimoto, H.
2008-08-01
This paper introduces the Japan Canada Joint Collaboration Satellites - Formation Flying (JC2Sat-FF) project. JC2Sat-FF is a joint project between the Canadian Space Agency (CSA) and the Japan Aerospace Exploration Agency (JAXA) with the end goal of building, launching and operating two 20kg- class nanosatellites for technical demonstration of formation flight (FF) using differential drag technique, relative navigation using commercial off-the-shelf (COTS) dual band GPS receivers and far infra-red radiance measurement. A unique aspect of this project is that the two JC2Sats are developed by a united small team consisting of engineers and researchers from both agencies. Technical exchange in this international team gives stimulation to the members and generates a synergistic effect for the project.
Faculty Perceptions of Problem-Based Learning in a Veterinary College
ERIC Educational Resources Information Center
Malinowski, Robert
2012-01-01
Problem-based learning (PBL) has been embraced by several veterinary colleges as one approach to manage the ever-growing body of knowledge in the profession. The goal is to foster the development of problem-solving and critical thinking skills in students, enabling them to make logical and informed decisions, rather than rely on the rote…
The CLEAR[TM] Problem-Solving Model: Discovering Strengths and Solutions
ERIC Educational Resources Information Center
Koehler, Nancy; Seger, Vikki
2011-01-01
This article introduces a unique team approach to planning and positive behavior support. The young person becomes a key participant in solving problems and setting goals for growth. The CLEAR Team Problem Solving model shifts the focus from deficits to strengths and solutions. The goal is to identify how a child's private logic and interpersonal…
ERIC Educational Resources Information Center
Ciborowski, Tom; Price-Williams, D.
The conceptual and problem solving skills of Hawaiian rural elementary school students in the Kamehameha Early Education Program were investigated by comparing the logical connecting rules of conjunction (red and triangle) to inclusive disjunction (red and/or triangle) with respect to Traditional problems (selection of attributes from 2 different…
Problem Behaviour at Early Age--Basis for Prediction of Asocial Behaviour
ERIC Educational Resources Information Center
Krneta, Dragoljub; Ševic, Aleksandra
2015-01-01
This paper analyzes the results of the study of prevalence of problem behaviour of students in primary and secondary schools. The starting point is that it is methodologically and logically justified to look for early forms of problem behaviour of students, because it is likely that adult convicted offenders at an early school age manifested forms…
Strategic Mobility 21: Modeling, Simulation, and Analysis
2010-04-14
using AnyLogic , which is a Java programmed, multi-method simulation modeling tool developed by XJ Technologies. The last section examines the academic... simulation model from an Arena platform to an AnyLogic based Web Service. MATLAB is useful for small problems with few nodes, but GAMS/CPLEX is better... Transportation Modeling Studio TM . The SCASN modeling and simulation program was designed to be generic in nature to allow for use by both commercial and
Logic, Probability, and Human Reasoning
2015-01-01
Reasoning with exceptions: an event-related brain potentials study. J. Cogn . Neurosci . 23, 471 480 40 Baggio, G. et al. (2014) Logic as Marr’s...Johnson-Laird, P.N. (2013) Strategic changes in problem solving. J. Cogn . Psychol. 25, 165 173 5 Khemlani, S.S. et al. (2013) Kinematic mental simulations...and its application to Boolean systems. J. Cogn . Psychol. 25, 365 389 7 Beth, E.W. and Piaget, J. (1966) Mathematical Epistemology and Psychology
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.
Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab
2016-12-01
Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a K m of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Gerilowski, Konstantin; Krings, Thomas; Reuter, Max; Burrows, John P.; Buchwitz, Michael; Bösch, Hartmut; Brunner, Dominik; Ciais, Philippe; Breon, Francois-Marie; Crisp, David; Dolman, Han; Hayman, Garry; Houweling, Sander; Lichtenberg, Günter; Ingmann, Paul; Meijer, Yasjka
2013-04-01
CarbonSat was selected by ESA as a candidate for the 8 Earth Explorer Opportunity (EE8). The objective of the CarbonSat mission is to determine natural and anthropogenic sources and sinks of the two most important greenhouse gases, carbon dioxide and methane. The unique features of the CarbonSat mission concept are that it offers a combination of high spatial resolution (2 x 2 km2) and broad swath (240 km) to provide global imaging of localised strong emission source areas such as large cities (Megacities), landfills, power plants, volcanoes, etc. and to be able to separate anthropogenic from natural fluxes. In addition, CarbonSat data will also quantify natural fluxes of CO2 and CH4 (biospheric CO2, wetland CH4 etc.) and their changes, to better understand these important sources and sinks and their sensitivity to a changing climate. CarbonSat aims to deliver global data sets of dry column mixing ratios of CO2 and CH4 with high precision (goal: CO2 < 1 ppm, CH4 < 9 ppb) and accuracy. Benefiting from its imaging capabilities, CarbonSat will provide an at least one order of magnitude larger number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO. The CarbonSat mission concept builds on the heritage and lessons learned from SCIAMACHY (2002-2012), GOSAT (2009-present) and OCO-2 (2014 onwards) to make scientifically and strategically important measurements of the amounts and distribution of CO2 and CH4 for biogeochemical and climate change research. CarbonSat entered industrial system feasibility activities in 2012, which are supported by scientific studies and campaigns. The current status of the mission concept and selected results from the scientific studies documenting the expected data quality and characteristics will be presented.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
3D Printing the Complete CubeSat
NASA Technical Reports Server (NTRS)
Kief, Craig
2015-01-01
The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.
A plan for structured management of the Systems Approach to Training (SAT) process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schurman, D.L.
1987-01-01
This paper describes the plan and accomplishments for development of a Systematic Management Plan for the Systems Approach to Training (SMPSAT). This project is sponsored by the United States Marine Corps Headquarters training policy branch (HQMC(TAP)). Purpose of this effort is to develop a comprehensive plan for management of the Systems Approach to Training (SAT) system in the USMC. This management plan will allow HQMC to monitor the SAT system in order to provide maximum support to the SAT system in both the formal schools and the Fleet Marine Force.
ERIC Educational Resources Information Center
Fahnestock, Jeanne; Secor, Marie
A genre approach to teaching the argumentative essay in composition classes has been developed. The need for this approach emanated from problems associated with the other methods of teaching persuasive discourse, such as the logical/analytic, content/problem solving, and rhetorical/generative approaches. The genre approach depends on the…
Microsupercomputers: Design and Implementation
1991-03-01
been ported to the DASH hardware. Hardware problems and software problems with DPV itself prevented its use as a debugging tool until recently. Both the...M.PD) [21]. an LU- decomposition program (LU). and a digita! logic simulation prgram 1 Introduction (PTHOR) [28]. The applcations are typical of those
Regulatory Anatomy: How "Safety Logics" Structure European Transplant Medicine.
Hoeyer, Klaus
2015-07-01
This article proposes the term "safety logics" to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, legal documents, technological devices, organizational structures, and work practices aimed at minimizing risk. I use this term to reorient the analytical attention with respect to safety regulation. Instead of evaluating whether safety is achieved, the point is to explore the types of "safety" produced through these logics as well as to consider the sometimes unintended consequences of such safety work. In fact, the EU rules have been giving rise to complaints from practitioners finding the directives problematic and inadequate. In this article, I explore the problems practitioners face and why they arise. In short, I expose the regulatory anatomy of the policy landscape.
Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.
2017-10-01
Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.
Vosloo, W; Swanepoel, S P; Bauman, M; Botha, B; Esterhuysen, J J; Boshoff, C I; Keet, D F; Dekker, A
2011-04-01
The potential role of giraffe (Giraffa camelopardalis) in the epidemiology and spread of foot-and-mouth disease (FMD) SAT types was investigated by experimental infection and detection of virus in excretions using virus isolation on primary pig kidney cell cultures. In two experiments separated by a period of 24 months, groups of four animals were needle infected with a SAT-1 or SAT-2 virus, respectively and two in-contact controls were kept with each group. Viraemia was detected 3-9 days post-infection and virus isolated from mouth washes and faeces only occasionally up to day 13. The SAT-1 virus was transmitted to only one in-contact control animal, probably via saliva that contained virus from vesicles in the mouth of a needle-infected animal. None of the animals infected with the SAT-2 virus had any vesicles in the mouth, and there was no evidence of transmission to the in-contact controls. No virus was detected in probang samples for the duration of the experiments (60 days post-infection), indicating that persistent infection probably did not establish with either of these isolates. Giraffe most likely do not play an important role in FMD dissemination. Transmission of infection would possibly occur only during close contact with other animals when mouth vesicles are evident. © 2010 Blackwell Verlag GmbH.
Johannesen, Jason K; Fiszdon, Joanna M; Weinstein, Andrea; Ciosek, David; Bell, Morris D
2018-04-01
The Social Attribution Task-Multiple Choice (SAT-MC) tests the ability to extract social themes from viewed object motion. This form of animacy perception is thought to aid the development of social inference, but appears impaired in schizophrenia. The current study was undertaken to examine psychometric equivalence of two forms of the SAT-MC and to compare their performance against social cognitive tests recommended for schizophrenia research. Thirty-two schizophrenia (SZ) and 30 substance use disorder (SUD) participants completed both SAT-MC forms, the Bell-Lysaker Emotion Recognition Task (BLERT), Hinting Task, The Awareness of Social Inference Test (TASIT), Ambiguous Intentions and Hostility Questionnaire (AIHQ) and questionnaire measures of interpersonal function. Test sensitivity, construct and external validity, test-retest reliability, and internal consistency were evaluated. SZ scored significantly lower than SUD on both SAT-MC forms, each classifying ~60% of SZ as impaired, compared with ~30% of SUD. SAT-MC forms demonstrated good test-retest and parallel form reliability, minimal practice effect, high internal consistency, and similar patterns of correlation with social cognitive and external validity measures. The SAT-MC compared favorably to recommended social cognitive tests across psychometric features and, with exception of TASIT, was most sensitive to impairment in schizophrenia when compared to a chronic substance use sample. Published by Elsevier B.V.
Fuzzy pharmacology: theory and applications.
Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan
2002-09-01
Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.
UTP and Temporal Logic Model Checking
NASA Astrophysics Data System (ADS)
Anderson, Hugh; Ciobanu, Gabriel; Freitas, Leo
In this paper we give an additional perspective to the formal verification of programs through temporal logic model checking, which uses Hoare and He Unifying Theories of Programming (UTP). Our perspective emphasizes the use of UTP designs, an alphabetised relational calculus expressed as a pre/post condition pair of relations, to verify state or temporal assertions about programs. The temporal model checking relation is derived from a satisfaction relation between the model and its properties. The contribution of this paper is that it shows a UTP perspective to temporal logic model checking. The approach includes the notion of efficiency found in traditional model checkers, which reduced a state explosion problem through the use of efficient data structures
PLQP & Company: Decidable Logics for Quantum Algorithms
NASA Astrophysics Data System (ADS)
Baltag, Alexandru; Bergfeld, Jort; Kishida, Kohei; Sack, Joshua; Smets, Sonja; Zhong, Shengyang
2014-10-01
We introduce a probabilistic modal (dynamic-epistemic) quantum logic PLQP for reasoning about quantum algorithms. We illustrate its expressivity by using it to encode the correctness of the well-known quantum search algorithm, as well as of a quantum protocol known to solve one of the paradigmatic tasks from classical distributed computing (the leader election problem). We also provide a general method (extending an idea employed in the decidability proof in Dunn et al. (J. Symb. Log. 70:353-359, 2005)) for proving the decidability of a range of quantum logics, interpreted on finite-dimensional Hilbert spaces. We give general conditions for the applicability of this method, and in particular we apply it to prove the decidability of PLQP.
2014-02-11
ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Adapting the Survey of Attitudes towards Statistics (SATS-36) for Estonian Secondary School Students
ERIC Educational Resources Information Center
Hommik, Carita; Luik, Piret
2017-01-01
The purpose of this study is to adapt the Survey of Attitudes Towards Statistics (SATS-36) for Estonian secondary school students in order to develop a valid instrument to measure students' attitudes within the Estonian educational context. The SATS-36 was administered to Estonian-speaking secondary school students before their compulsory…
Non-"g" Residuals of the SAT and ACT Predict Specific Abilities
ERIC Educational Resources Information Center
Coyle, Thomas R.; Purcell, Jason M.; Snyder, Anissa C.; Kochunov, Peter
2013-01-01
This research examined whether non-"g" residuals of the SAT and ACT subtests, obtained after removing g, predicted specific abilities. Non-"g" residuals of the verbal and math subtests of the SAT and ACT were correlated with academic (verbal and math) and non-academic abilities (speed and shop), both based on the Armed Services…
Colleges Making SAT Optional as Admissions Requirement
ERIC Educational Resources Information Center
Gilroy, Marilyn
2007-01-01
This article reports that more colleges are dropping the SAT as a requirement for admission and, in many cases, these institutions are attracting a larger and more diverse pool of applicants. According to the National Center for Fair & Open Testing (FairTest), 740 schools have made the SATs optional. The list includes some of the nation's most…
CloudSat Safety Operations at Vandenberg AFB
NASA Technical Reports Server (NTRS)
Greenberg, Steve
2006-01-01
CloudSat safety operations at Vendenberg AFB is given. The topics include: 1) CloudSat Project Overview; 2) Vandenberg Ground Operations; 3) Delta II Launch Vehicle; 4) The A-Train; 5) System Safety Management; 6) CALIPSO Hazards Assessment; 7) CALIPSO Supplemental Safeguards; 8) Joint System Safety Operations; 9) Extended Stand-down; 10) Launch Delay Safety Concerns; and 11) Lessons Learned.
USDA-ARS?s Scientific Manuscript database
The goal was to examine in obese young adults the influence of ethnicity and subcutaneous adipose tissue (SAT) inflammation on hepatic fat fraction (HFF), visceral adipose tissue (VAT) deposition, insulin sensitivity (SI), Beta-cell function, and SAT gene expression. SAT biopsies were obtained from...
SAT and ACT Predict College GPA after Removing "g"
ERIC Educational Resources Information Center
Coyle, Thomas R.; Pillow, David R.
2008-01-01
This research examined whether the SAT and ACT would predict college grade point average (GPA) after removing g from the tests. SAT and ACT scores and freshman GPAs were obtained from a university sample (N=161) and the 1997 National Longitudinal Study of Youth (N=8984). Structural equation modeling was used to examine relationships among g, GPA,…
Siting of Appropriated Fund Enlisted Dining Facilities
1989-03-01
Headcoum Burger 501 0600-2300 Sun-Thu King 0600-2400 Fn-Sat S 3,139.56 1060 Baskin 501 \\ 1100-2100 Mon-Fri Robbins ! ’ 1000-1700 Sat-Sun...1600 Sun 1 $ 18,946 Baskin Robbini 650 1000-1800 Mon-Fri 0900-1730 Sat 1100-1600 Sun S 7,395 i 56 Travis AFB NON-APPROPRIATED FUND FOOD
Effect of vaccination on cattle herds previously exposed to foot and mouth disease in Cameroon
USDA-ARS?s Scientific Manuscript database
Foot and mouth disease (FMD), caused by FMD virus (FMDV), is one of the most contagious and economically important livestock diseases worldwide. Four serotypes of FMDV are endemic in Cameroon (O, A, SAT1, SAT2), and a trivalent inactivated vaccine against the three most common serotypes (O, A, SAT2)...
The Determination of Remaining Satellite Propellant Using Measured Moments of Inertia
2006-06-01
Simulated Satellite (SimSat) were developed. These models were created using dynamic response analysis techniques on the reaction wheel and SimSat systems...Flowchart ......................................................... 5 Figure 2. Air Force Institute of Technology’s Simulated Satellite (SimSat...Determining Change in Satellite Fuel ............................... 88 xiv List of Symbols and Abbreviations ai Acceleration of a particle
NASA Astrophysics Data System (ADS)
Yanti, Y. R.; Amin, S. M.; Sulaiman, R.
2018-01-01
This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.
Mobile CubeSat Command and Control: Assembly and Lessons Learned
2011-09-01
station can operate completely unmanned; if there are any problems that normal troubleshooting procedures cannot solve, the MC3 will e-mail, text, and...replaced the old 16-port switch in the Netgear product lineup and in the MC3. There is no operational change since only 4 ports in the switch are used...a Colony II satellite to reach orbit to begin testing operational principles and procedures . The AMSAT community tracks over 25 satellites that
Madeira, Marta S; Rolo, Eva S; Alfaia, Cristina M; Pires, Virgínia R; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M
2016-03-28
The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT) were assessed. The experiment was performed on forty intact male pigs (Duroc×Large White×Landrace cross-breed) with initial and final live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16·0 % of crude protein (control), 13·0 % of crude protein (RPD), RPD supplemented with 0·33 % of betaine, RPD supplemented with 1·5 % of arginine and RPD supplemented with 0·33 % of betaine and 1·5 % of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.
Structural Plasticity and Rapid Evolution in a Viral RNA Revealed by In Vivo Genetic Selection▿ †
Guo, Rong; Lin, Wai; Zhang, Jiuchun; Simon, Anne E.; Kushner, David B.
2009-01-01
Satellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3′-half shares high sequence similarity with the TCV 3′ end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation. Two hairpins and two pseudoknots have been confirmed as important for satC replication. One portion of the related 3′ end of satC that remains poorly characterized corresponds to juxtaposed TCV hairpins H4a and H4b and pseudoknot ψ3, which are required for the TCV-specific requirement of translation (V. A. Stupina et al., RNA 14:2379-2393, 2008). Replacement of satC H4a with randomized sequence and scoring for fitness in plants by in vivo genetic selection (SELEX) resulted in winning sequences that contain an H4a-like stem-loop, which can have additional upstream sequence composing a portion of the stem. SELEX of the combined H4a and H4b region in satC generated three distinct groups of winning sequences. One group models into two stem-loops similar to H4a and H4b of TCV. However, the selected sequences in the other two groups model into single hairpins. Evolution of these single-hairpin SELEX winners in plants resulted in satC that can accumulate to wild-type (wt) levels in protoplasts but remain less fit in planta when competed against wt satC. These data indicate that two highly distinct RNA conformations in the H4a and H4b region can mediate satC fitness in protoplasts. PMID:19004956
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.
2012-01-01
DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.
Expanding CubeSat Capabilities with a Low Cost Transceiver
NASA Technical Reports Server (NTRS)
Palo, Scott; O'Connor, Darren; DeVito, Elizabeth; Kohnert, Rick; Schaire, Scott H.; Bundick, Steve; Crum, Gary; Altunc, Serhat; Winkert, Thomas
2014-01-01
CubeSats have developed rapidly over the past decade with the advent of a containerized deployer system and ever increasing launch opportunities. These satellites have moved from an educational tool to teach students about engineering challenges associated with satellite design, to systems that are conducting cutting edge earth, space and solar science. Early variants of the CubeSat had limited functionality and lacked sophisticated attitude control, deployable solar arrays and propulsion. This is no longer the case and as CubeSats mature, such systems are becoming commercially available. The result is a small satellite with sufficient power and pointing capabilities to support a high rate communication system. Communications systems have matured along with other CubeSat subsystems. Originally developed from amateur radio systems, CubeSats have generally operated in the VHF and UHF bands at data rates below 10 kbps (kilobits per second). More recently higher rate UHF systems have been developed, however these systems require a large collecting area on the ground to close the communications link at 3 Mbps (megabits per second). Efforts to develop systems that operate with similar throughput at S-Band (2-4 GHz (gigaherz)) and C-Band (4-8 GHz (gigaherz)) have also recently evolved. In this paper we outline an effort to develop a high rate CubeSat communication system that is compatible with the NASA Near Earth Network and can be accommodated by a CubeSat. The system will include a 200 kbps (kilobits per second) S-Band receiver and a 12.5 Mbps (megabits per second).X-Band transmitter. This paper will focus on our design approach and initial results associated with the 12.5 Mbps (megabits per second) X-band transmitter.
Retinal oximetry in patients with ischaemic retinal diseases.
Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob
2017-03-01
The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO 2 ) were associated with present as well as increasing levels of DR. Four of six studies also found increased retinal arterial oxygen saturation (raSatO 2 ) in patients with DR. In patients with central retinal vein occlusion (CRVO), all studies found that rvSatO 2 was reduced, but raSatO 2 remained unchanged. Branch retinal vein occlusion was not associated with changes in retinal oxygen saturation, but this was based on a single study. In conclusion, DR is associated with increased rvSatO 2 and might also be related to increased raSatO 2 . Central retinal vein occlusion (CRVO) is correlated with increased rvSatO 2 but unrelated to raSatO 2 . Prospective studies are needed to expand these findings. These would tell whether retinal oximetry could be a potential tool for screening or a biomarker of treatment outcome in patients with ischaemic retinal diseases. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Beyene, Mussie T.; Jain, Shaleen
2018-06-01
El Niño-Southern Oscillation (ENSO) teleconnections induced wintertime surface air temperature (SAT) anomalies over North America show inter-event variability, asymmetry, and nonlinearity. This diagnostic study appraises the assumption that ENSO-induced teleconnections are adequately characterized as symmetric shifts in the SAT probability distributions for North American locations. To this end, a new conditional quantile functional estimation approach presented here incorporates: (a) the detailed nature of location and amplitude of SST anomalies—in particular the Eastern Pacific (EP), Central Pacific (CP) ENSO events—based on its two leading principal components, and (b) over the entire range of SATs, characterize the differential sensitivity to ENSO. Statistical significance is assessed using a wild bootstrap approach. Conditional risk at upper and lower quartile SAT conditioned on archetypical ENSO states is derived. There is marked asymmetry in ENSO effects on the likelihood of upper and lower quartile winter SATs for most North American regions. CP El Niño patterns show 20-80% decrease in the likelihood of lower quartile SATs for Canada and US west coast and a 20-40% increase across southeastern US. However, the upper quartile SAT for large swathes of Canada shows no sensitivity to CP El Niño. Similarly, EP El Niño is linked to a 40-80% increase in the probability of upper quartile winter SATs for Canada and northern US and a 20% decrease for southern US and northern Mexico regions; however, little or no change in the risk of lower quartile winter temperatures for southern parts of North America. Localized estimate of ENSO-related risk are also presented.
Solar neutron observations with ChubuSat-2 satellite
NASA Astrophysics Data System (ADS)
Yamaoka, Kazutaka
2016-07-01
Solar neutron observation is a key in understanding of ion accerelation mechanism in the Sun surface since neutrons are hardly affected by magnetic field around the Sun and intersteller mediums unlike charged particles. However, there was only a few tenth detections so far since its discovery in 1982. Actually SEDA-AP Fiber detector (FIB) onboard the International Space Station (ISS) was suffered from a high neutron background produced by the ISS itself. ChubuSat is a series of 50-kg class microsatellite jointly depeloped by universities (Nagoya university and Daido university) and aerospace companies at the Chubu area of central Japan. The ChubuSat-2 is the second ChubuSat following the ChubuSat-1 which was launched by Russian DNEPR rocket on November 6, 2014. It was selected as one of four piggyback payloads of the X-ray astronomy satellite ASTRO-H in 2014 summer, and will be launched by the H-IIA launch vehcles from from JAXA Tanegashima Space Center (TNSC) in February 2016. The ChubuSat-2 carries a mission instrument, radiation detector (RD). The main mission of ChubuSat-2 is devoted for monitoring neutrons and gamma-rays which can be background source for ASTRO-H celestrial observations with the RD. The mission also involves a function of solar neutron observations which were originally proposed by graduate students who join the leadership development program for space exploration and research, program for leading graduate schools at Nagoya University. The RD has a similar detection area and efficiency to those of the SEDA-AP FIB, but is expected to have lower backgrounthan the ISS thanks to much smaller mass of the micro-satellite. In this paper, we will describe details of ChubuSat-2 satellite and RD, and in-orbit performance of RD.
A Complete OCR System for Tamil Magazine Documents
NASA Astrophysics Data System (ADS)
Kokku, Aparna; Chakravarthy, Srinivasa
We present a complete optical character recognition (OCR) system for Tamil magazines/documents. All the standard elements of OCR process like de-skewing, preprocessing, segmentation, character recognition, and reconstruction are implemented. Experience with OCR problems teaches that for most subtasks of OCR, there is no single technique that gives perfect results for every type of document image. We exploit the ability of neural networks to learn from experience in solving the problems of segmentation and character recognition. Text segmentation of Tamil newsprint poses a new challenge owing to its italic-like font type; problems that arise in recognition of touching and close characters are discussed. Character recognition efficiency varied from 94 to 97% for this type of font. The grouping of blocks into logical units and the determination of reading order within each logical unit helped us in reconstructing automatically the document image in an editable format.