Sample records for logically rectangular grids

  1. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOEpatents

    Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  2. Sampling Scattered Data Onto Rectangular Grids for Volume Visualization

    DTIC Science & Technology

    1989-12-01

    30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising

  3. ESMPy and OpenClimateGIS: Python Interfaces for High Performance Grid Remapping and Geospatial Dataset Manipulation

    NASA Astrophysics Data System (ADS)

    O'Kuinghttons, Ryan; Koziol, Benjamin; Oehmke, Robert; DeLuca, Cecelia; Theurich, Gerhard; Li, Peggy; Jacob, Joseph

    2016-04-01

    The Earth System Modeling Framework (ESMF) Python interface (ESMPy) supports analysis and visualization in Earth system modeling codes by providing access to a variety of tools for data manipulation. ESMPy started as a Python interface to the ESMF grid remapping package, which provides mature and robust high-performance and scalable grid remapping between 2D and 3D logically rectangular and unstructured grids and sets of unconnected data. ESMPy now also interfaces with OpenClimateGIS (OCGIS), a package that performs subsetting, reformatting, and computational operations on climate datasets. ESMPy exposes a subset of ESMF grid remapping utilities. This includes bilinear, finite element patch recovery, first-order conservative, and nearest neighbor grid remapping methods. There are also options to ignore unmapped destination points, mask points on source and destination grids, and provide grid structure in the polar regions. Grid remapping on the sphere takes place in 3D Cartesian space, so the pole problem is not an issue as it can be with other grid remapping software. Remapping can be done between any combination of 2D and 3D logically rectangular and unstructured grids with overlapping domains. Grid pairs where one side of the regridding is represented by an appropriate set of unconnected data points, as is commonly found with observational data streams, is also supported. There is a developing interoperability layer between ESMPy and OpenClimateGIS (OCGIS). OCGIS is a pure Python, open source package designed for geospatial manipulation, subsetting, and computation on climate datasets stored in local NetCDF files or accessible remotely via the OPeNDAP protocol. Interfacing with OCGIS has brought GIS-like functionality to ESMPy (i.e. subsetting, coordinate transformations) as well as additional file output formats (i.e. CSV, ESRI Shapefile). ESMPy is distinguished by its strong emphasis on open source, community governance, and distributed development. The user base has grown quickly, and the package is integrating with several other software tools and frameworks. These include the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT), Iris, PyFerret, cfpython, and the Community Surface Dynamics Modeling System (CSDMS). ESMPy minimum requirements include Python 2.6, Numpy 1.6.1 and an ESMF installation. Optional dependencies include NetCDF and OCGIS-related dependencies: GDAL, Shapely, and Fiona. ESMPy is regression tested nightly, and supported on Darwin, Linux and Cray systems with the GNU compiler suite and MPI communications. OCGIS is supported on Linux, and also undergoes nightly regression testing. Both packages are installable from Anaconda channels. Upcoming development plans for ESMPy involve development of a higher order conservative grid remapping method. Future OCGIS development will focus on mesh and location stream interoperability and streamlined access to ESMPy's MPI implementation.

  4. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.

  5. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  6. A computer program for converting rectangular coordinates to latitude-longitude coordinates

    USGS Publications Warehouse

    Rutledge, A.T.

    1989-01-01

    A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)

  7. Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, Christopher M.

    2012-08-13

    How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less

  8. The GeoClaw software for depth-averaged flows with adaptive refinement

    USGS Publications Warehouse

    Berger, M.J.; George, D.L.; LeVeque, R.J.; Mandli, Kyle T.

    2011-01-01

    Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw. ?? 2011.

  9. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Almgren, A.; Bell, J.

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less

  10. Self-similar grid patterns in free-space shuffle-exchange networks

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    1993-12-01

    Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.

  11. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  12. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study.

    PubMed

    Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir

    2013-12-01

    Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .

  13. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  14. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  15. Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear Explosions

    DTIC Science & Technology

    2017-05-31

    SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave

  16. On solving three-dimensional open-dimension rectangular packing problems

    NASA Astrophysics Data System (ADS)

    Junqueira, Leonardo; Morabito, Reinaldo

    2017-05-01

    In this article, a recently proposed three-dimensional open-dimension rectangular packing problem is considered, in which the objective is to find a minimal volume rectangular container that packs a set of rectangular boxes. The literature has tackled small-sized instances of this problem by means of optimization solvers, position-free mixed-integer programming (MIP) formulations and piecewise linearization approaches. In this study, the problem is alternatively addressed by means of grid-based position MIP formulations, whereas still considering optimization solvers and the same piecewise linearization techniques. A comparison of the computational performance of both models is then presented, when tested with benchmark problem instances and with new instances, and it is shown that the grid-based position MIP formulation can be competitive, depending on the characteristics of the instances. The grid-based position MIP formulation is also embedded with real-world practical constraints, such as cargo stability, and results are additionally presented.

  17. Switching Logic for Converting Off-grid PV Customers to On-grid by Utilizing Off-grid Inverter and Battery

    NASA Astrophysics Data System (ADS)

    Anishkumar, A. R.; Sreejaya, P.

    2016-12-01

    Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.

  18. Detector shape in hexagonal sampling grids

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele

    2001-12-01

    Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.

  19. Quasi-optical grids with thin rectangular patch/aperture elements

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao

    1993-01-01

    Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.

  20. Lattice Boltzmann Equation On a 2D Rectangular Grid

    NASA Technical Reports Server (NTRS)

    Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

  1. netCDF Operators for Rapid Analysis of Measured and Modeled Swath-like Data

    NASA Astrophysics Data System (ADS)

    Zender, C. S.

    2015-12-01

    Swath-like data (hereafter SLD) are defined by non-rectangular and/or time-varying spatial grids in which one or more coordinates are multi-dimensional. It is often challenging and time-consuming to work with SLD, including all Level 2 satellite-retrieved data, non-rectangular subsets of Level 3 data, and model data on curvilinear grids. Researchers and data centers want user-friendly, fast, and powerful methods to specify, extract, serve, manipulate, and thus analyze, SLD. To meet these needs, large research-oriented agencies and modeling center such as NASA, DOE, and NOAA increasingly employ the netCDF Operators (NCO), an open-source scientific data analysis software package applicable to netCDF and HDF data. NCO includes extensive, fast, parallelized regridding features to facilitate analysis and intercomparison of SLD and model data. Remote sensing, weather and climate modeling and analysis communities face similar problems in handling SLD including how to easily: 1. Specify and mask irregular regions such as ocean basins and political boundaries in SLD (and rectangular) grids. 2. Bin, interpolate, average, or re-map SLD to regular grids. 3. Derive secondary data from given quality levels of SLD. These common tasks require a data extraction and analysis toolkit that is SLD-friendly and, like NCO, familiar in all these communities. With NCO users can 1. Quickly project SLD onto the most useful regular grids for intercomparison. 2. Access sophisticated statistical and regridding functions that are robust to missing data and allow easy specification of quality control metrics. These capabilities improve interoperability, software-reuse, and, because they apply to SLD, minimize transmission, storage, and handling of unwanted data. While SLD analysis still poses many challenges compared to regularly gridded, rectangular data, the custom analyses scripts SLD once required are now shorter, more powerful, and user-friendly.

  2. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  3. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  4. Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.

    PubMed

    Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-03

    The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.

  5. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Rizk, Y. M.

    1985-01-01

    An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.

  6. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  7. Use of rectangular grid miniplates for fracture fixation at the mandibular angle.

    PubMed

    Hochuli-Vieira, Eduardo; Ha, Thi Khanh Linh; Pereira-Filho, Valfrido Antonio; Landes, Constantin Alexander

    2011-05-01

    The aim of this study was to evaluate the clinical outcome of patients with mandibular angle fractures treated by intraoral access and a rectangular grid miniplate with 4 holes and stabilized with monocortical screws. This study included 45 patients with mandibular angle fractures from the Department of Oral and Maxillofacial Surgery São Paulo State University, Araraquara, Brazil, and from the Clinic of Oral and Maxillofacial Surgery at the University of Frankfurt, Germany. The 45 fractures of the mandibular angle were treated with a rectangular grid miniplate of a 2.0-mm system by an intraoral approach with monocortical screws. Clinical evaluations were postoperatively performed at 15 and 30 days and 3 and 6 months, and the complications encountered were recorded and treated. The infection rate was 4.44% (2 patients), and in 1 patient it was necessary to replace hardware. This patient also had a fracture of the left mandibular body; 3 patients (6.66%) had minor occlusal changes that have been resolved with small occlusal adjustments. Before surgery, 15 patients (33.33%) presented with hypoesthesia of the inferior alveolar nerve; 4 (8.88%) had this change until the last clinical control, at 6 months. The rectangular grid miniplate used in this study was stable for the treatment of simple mandibular angle fractures through intraoral access, with low complication rates, easy handling, and easy adjustment, with a low cost. Concomitant mandibular fracture may increase the rate of complications. This plate should be indicated in fractures with sufficient interfragmentary contact. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Zaman, Khairul B.

    2010-01-01

    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.

  9. Use of Fuzzy Logic Systems for Assessment of Primary Faults

    NASA Astrophysics Data System (ADS)

    Petrović, Ivica; Jozsa, Lajos; Baus, Zoran

    2015-09-01

    In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.

  10. Program EAGLE User’s Manual. Volume 3. Grid Generation Code

    DTIC Science & Technology

    1988-09-01

    15 1. ompps.te Grid Structure ..... .. .................. . 15 2. Block Interfaces ......... ...................... . 18 3. Fundmental ...in principle it is possible to establish a correspondence between any physical region and a single empty rectangular block for general three...differences. Since this second surrounding layer is not involved in the grid generation, no further account will be taken of its presence in the present

  11. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  12. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  13. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  14. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  15. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  16. Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Sinha, N.; Dash, S. M.

    1988-01-01

    Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.

  17. The architecture of a virtual grid GIS server

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Fang, Yu; Chen, Bin; Wu, Xi; Tian, Xiaoting

    2008-10-01

    The grid computing technology provides the service oriented architecture for distributed applications. The virtual Grid GIS server is the distributed and interoperable enterprise application GIS architecture running in the grid environment, which integrates heterogeneous GIS platforms. All sorts of legacy GIS platforms join the grid as members of GIS virtual organization. Based on Microkernel we design the ESB and portal GIS service layer, which compose Microkernel GIS. Through web portals, portal GIS services and mediation of service bus, following the principle of SoC, we separate business logic from implementing logic. Microkernel GIS greatly reduces the coupling degree between applications and GIS platforms. The enterprise applications are independent of certain GIS platforms, and making the application developers to pay attention to the business logic. Via configuration and orchestration of a set of fine-grained services, the system creates GIS Business, which acts as a whole WebGIS request when activated. In this way, the system satisfies a business workflow directly and simply, with little or no new code.

  18. Stability Test for Transient-Temperature Calculations

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1984-01-01

    Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.

  19. Implicit finite difference methods on composite grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  20. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  1. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  2. Numerical simulation of a hovering rotor using embedded grids

    NASA Technical Reports Server (NTRS)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  3. Recombination of the steering vector of the triangle grid array in quaternions and the reduction of the MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Bai, Chen; Han, Dongjuan

    2018-04-01

    MUSIC is widely used on DOA estimation. Triangle grid is a common kind of the arrangement of array, but it is more complicated than rectangular array in calculation of steering vector. In this paper, the quaternions algorithm can reduce dimension of vector and make the calculation easier.

  4. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  5. A 5 x 40 cm rectangular-beam multipole ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.

    1981-01-01

    A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.

  6. S3D: An interactive surface grid generation tool

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1992-01-01

    S3D, an interactive software tool for surface grid generation, is described. S3D provides the means with which a geometry definition based either on a discretized curve set or a rectangular set can be quickly processed towards the generation of a surface grid for computational fluid dynamics (CFD) applications. This is made possible as a result of implementing commonly encountered surface gridding tasks in an environment with a highly efficient and user friendly graphical interface. Some of the more advanced features of S3D include surface-surface intersections, optimized surface domain decomposition and recomposition, and automated propagation of edge distributions to surrounding grids.

  7. GAMERA - The New Magnetospheric Code

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.

    2017-12-01

    The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.

  8. Improvements to Earthquake Location with a Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Gökalp, Hüseyin

    2018-01-01

    In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.

  9. Distributed strain measurement in a rectangular plate using an array of optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1984-01-01

    Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.

  10. Setting Up a Grid-CERT: Experiences of an Academic CSIRT

    ERIC Educational Resources Information Center

    Moller, Klaus

    2007-01-01

    Purpose: Grid computing has often been heralded as the next logical step after the worldwide web. Users of grids can access dynamic resources such as computer storage and use the computing resources of computers under the umbrella of a virtual organisation. Although grid computing is often compared to the worldwide web, it is vastly more complex…

  11. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  12. 77 FR 29905 - Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... a bottom-opening, straight-bar grid with 2-inch bar spacing installed at an angle of 55 degrees. As...: Using \\1/4\\ inch (0.63 cm) thick and 1\\1/2\\ inch (3.8 cm) deep flat bar, and rectangular and oval pipe... currently-approved TED grids; increasing maximum mesh size on escape flaps from 1\\5/8\\ to 2 inches (4.1 to 5...

  13. Elliptic generation of composite three-dimensional grids about realistic aircraft

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  14. Conservative boundary conditions for 3D gas dynamics problems

    NASA Technical Reports Server (NTRS)

    Gerasimov, B. P.; Karagichev, A. B.; Semushin, S. A.

    1986-01-01

    A method is described for 3D-gas dynamics computer simulation in regions of complicated shape by means of nonadjusted rectangular grids providing unified treatment of various problems. Some test problem computation results are given.

  15. SAR image formation with azimuth interpolation after azimuth transform

    DOEpatents

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  16. 75 FR 18819 - Second DRAFT NIST Interagency Report (NISTIR) 7628, Smart Grid Cyber Security Strategy and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ...-0143-01] Second DRAFT NIST Interagency Report (NISTIR) 7628, Smart Grid Cyber Security Strategy and... (NIST) seeks comments on the second draft of NISTIR 7628, Smart Grid Cyber Security Strategy and..., vulnerability categories, bottom-up analysis, individual logical interface diagrams, and the cyber security...

  17. Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur

    1996-01-01

    Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.

  18. Advanced Computing Architectures for Cognitive Processing

    DTIC Science & Technology

    2009-07-01

    Evolution ................................................................................. 20  Figure 9: Logic diagram smart block-based neuron...48  Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid

  19. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  20. PLOT3D- DRAWING THREE DIMENSIONAL SURFACES

    NASA Technical Reports Server (NTRS)

    Canright, R. B.

    1994-01-01

    PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.

  1. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  2. Simple scale interpolator facilitates reading of graphs

    NASA Technical Reports Server (NTRS)

    Fazio, A.; Henry, B.; Hood, D.

    1966-01-01

    Set of cards with scale divisions and a scale finder permits accurate reading of the coordinates of points on linear or logarithmic graphs plotted on rectangular grids. The set contains 34 different scales for linear plotting and 28 single cycle scales for log plots.

  3. File Specification for the 7-km GEOS-5 Nature Run, Ganymed Release Non-Hydrostatic 7-km Global Mesoscale Simulation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Putman, William; Nattala, J.

    2014-01-01

    This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.

  4. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less

  5. Entanglement manipulation by a magnetic pulse in Gd3N@C80 endohedral metallofullerenes on a Cu(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Gritzaenko, Vyacheslav S.

    2018-04-01

    In this paper we present the results of theoretical calculation of entanglement within a spin structure of Gd3N@C80 under the influence of rectangular impulses. Research is conducted using general spin Hamiltonian within SSNQ (spin system of N-qubits). The calculations of entanglement with various impulses are performed using the time-dependent Landau-Lifshitz-Gilbert equation with spin-spin correlation function. We show that long rectangular impulse (t = 850 ps) can be used for sustaining entanglement value. This allows us to offer a new algorithm which can be used to solve the problem of decoherence in the logical scheme optimization.

  6. Random pulse generator

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1975-01-01

    An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.

  7. Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1980-01-01

    A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).

  8. A DYNAMIC SIMULATOR OF ENVIRONMENTAL CHEMICAL PARTITIONING

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  9. Modeling Vortex Generators in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  10. Defect inspection of periodic patterns with low-order distortions

    NASA Astrophysics Data System (ADS)

    Khalaj, Babak H.; Aghajan, Hamid K.; Paulraj, Arogyaswami; Kailath, Thomas

    1994-03-01

    A self-reliance technique is developed for detecting defects in repeated pattern wafers and masks with low-order distortions. If the patterns are located on a perfect rectangular grid, it is possible to estimate the period of repeated patterns in both directions, and then produce a defect-free reference image for making comparison with the actual image. But in some applications, the repeated patterns are somehow shifted from their desired position on a rectangular grid, and the aforementioned algorithm cannot be directly applied. In these situations, to produce a defect-free reference image and locate the defected cells, it is necessary to estimate the amount of misalignment of each cell beforehand. The proposed technique first estimates the misalignment of repeated patterns in each row and column. After estimating the location of all cells in the image, a defect-free reference image is generated by averaging over all the cells and is compared with the input image to localize the possible defects.

  11. Hybrid LES/RANS simulation of a turbulent boundary layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Haering, Sigfried; Oliver, Todd; Moser, Robert

    2016-11-01

    We report numerical investigations of a turbulent boundary layer over a rectangular cavity using a new hybrid RANS/LES model and the traditional Detached Eddy Simulation (DES). Our new hybrid method aims to address many of the shortcomings from the traditional DES. In the new method, RANS/LES blending controlled by a parameter that measures the ratio of the modeled subgrid kinetic energy to an estimate of the subgrid energy based on the resolved scales. The result is a hybrid method automatically resolves as much turbulence as can be supported by the grid and transitions appropriately from RANS to LES without the need for ad hoc delaying functions that are often required for DES. Further, the new model is designed to improve upon DES by accounting for the effects of grid anisotropy and inhomogeneity in the LES region. We present comparisons of the flow features inside the cavity and the pressure time history and spectra as computed using the new hybrid model and DES.

  12. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  13. SMART Grid Evaluation Using Fuzzy Numbers and TOPSIS

    NASA Astrophysics Data System (ADS)

    El Alaoui, Mohammed

    2018-05-01

    In recent advent of smart grids, the end-users aims to satisfy simultaneously low electricity bills, with a reasonable level of comfort. While cost evaluation appears to be an easy task, capturing human preferences seems to be more challenging. Here we propose the use of fuzzy logic and a modified version of the TOPSIS method, to quantify end-users’ preferences in a smart grid. While classical smart grid focus only on the technological side, it is proven that smart grid effectiveness is hugely linked to end-users’ behaviours. The main objective here, is to involve smart grid users in order to get maximum satisfaction, preserving classical smart grid objectives.

  14. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  15. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  16. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Molecular imaging by mass spectrometry (MS) is emerging as a tool to determine the distribution of proteins, lipids and metabolites in tissues. The existing imaging methods, however, rely on predefined typically rectangular grids for sampling that ignore the natural cellular organization of the tiss...

  17. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  18. Polyomino Problems to Confuse Computers

    ERIC Educational Resources Information Center

    Coffin, Stewart

    2009-01-01

    Computers are very good at solving certain types combinatorial problems, such as fitting sets of polyomino pieces into square or rectangular trays of a given size. However, most puzzle-solving programs now in use assume orthogonal arrangements. When one departs from the usual square grid layout, complications arise. The author--using a computer,…

  19. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    NASA Astrophysics Data System (ADS)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  20. Understanding the Impacts of Quality Assessment: An Exploratory Use of Cultural Theory

    ERIC Educational Resources Information Center

    Veiga, Amelia; Rosa, Maria Joao; Amaral, Alberto

    2011-01-01

    Cultural theory is tentatively used to understand how far quality assessment affects institutions by influencing the group and grid dimensions. This paper argues that the self-assessment phase of the Portuguese system, in use until recently, promoted the egalitarian (logic of mistrusting power and expertise) and the individualist (logic of freedom…

  1. Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.

    2000-01-01

    Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.

  2. Scattering from arbitrarily shaped microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.

    1992-01-01

    The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.

  3. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  4. Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2012-01-01

    The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

  5. Numerical Modeling of Poroelastic-Fluid Systems Using High-Resolution Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Lemoine, Grady

    Poroelasticity theory models the mechanics of porous, fluid-saturated, deformable solids. It was originally developed by Maurice Biot to model geophysical problems, such as seismic waves in oil reservoirs, but has also been applied to modeling living bone and other porous media. Poroelastic media often interact with fluids, such as in ocean bottom acoustics or propagation of waves from soft tissue into bone. This thesis describes the development and testing of high-resolution finite volume numerical methods, and simulation codes implementing these methods, for modeling systems of poroelastic media and fluids in two and three dimensions. These methods operate on both rectilinear grids and logically rectangular mapped grids. To allow the use of these methods, Biot's equations of poroelasticity are formulated as a first-order hyperbolic system with a source term; this source term is incorporated using operator splitting. Some modifications are required to the classical high-resolution finite volume method. Obtaining correct solutions at interfaces between poroelastic media and fluids requires a novel transverse propagation scheme and the removal of the classical second-order correction term at the interface, and in three dimensions a new wave limiting algorithm is also needed to correctly limit shear waves. The accuracy and convergence rates of the methods of this thesis are examined for a variety of analytical solutions, including simple plane waves, reflection and transmission of waves at an interface between different media, and scattering of acoustic waves by a poroelastic cylinder. Solutions are also computed for a variety of test problems from the computational poroelasticity literature, as well as some original test problems designed to mimic possible applications for the simulation code.

  6. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  7. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  8. An overview of controls research on the NASA Langley Research Center grid

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.

    1987-01-01

    The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area.

  9. Mathematical modeling of polymer flooding using the unstructured Voronoi grid

    NASA Astrophysics Data System (ADS)

    Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.

    2017-12-01

    Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.

  10. Area of Lattice Polygons

    ERIC Educational Resources Information Center

    Scott, Paul

    2006-01-01

    A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

  11. Parametrics on 2D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Saunders, J. D.

    1995-01-01

    The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.

  12. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  13. Computational models for the analysis of three-dimensional internal and exhaust plume flowfields

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Delguidice, P. D.

    1977-01-01

    This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.

  14. Crew Earth Observations (CEO) taken during Expedition 9

    NASA Image and Video Library

    2004-06-07

    ISS009-E-10382 (7 June 2004) --- Tucson, Arizona is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). Tucson lies between the forested Catalina Mountains and the Tucson Mountains (dark reddish brown at left). The typical western North American cityscape is a pattern of regular north-south aligned rectangles outlined by major streets set one mile apart. Tucson’s Randolph golf course is the large rectangular dark zone in the image center. The striking contrast between the golf course and its surroundings is due to dense grass cover maintained by frequent watering. The rectangular grid pattern disappears in the small streets of the original city center, situated along the Santa Cruz River (enters the view lower left and exits in the top left corner). Newer and less densely built-up neighborhoods in the foothills of the Catalina Mountains are designed to incorporate natural landscape features, and retain major washes with natural vegetation. This portion of the cityscape seen from space is consequently quite different from the main city grid. The foothills afford views of the city to the south and the mountains to the north and are major areas of development. Large white dots within the urban grid are the reflective rooftops of shopping malls. Tucson enjoys an important position along several major crossroads. Interstate highway I-10, which connects southern California to Florida, appears as a straight line running parallel with the Santa Cruz River northwest from Tucson in the direction of Phoenix. The I-10 traverses a well-marked alluvial fan that extends from the Santa Rita Mountains to the southeast (fine drainage pattern lower center) and exits the view lower right. Highway I-19 is the straight line (lower left) leading south from the city center, between the Santa Cruz River and rectangular spoil heaps of nearby copper mines. The I-19 connects Tucson with Nogales on the Mexican border.

  15. Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence

    NASA Astrophysics Data System (ADS)

    Ferko, Kevin; Lachendro, David; Chiappazzi, Nick; Danesh-Yazdi, Amir H.

    2018-03-01

    While the vast majority of the literature in energy harvesting is dedicated to resonant harvesters, non-resonant harvesters, especially those that use turbulence-induced vibration to generate energy, have not been studied in as much detail. This is especially true for grid-generated turbulence. In this paper, the interaction of two side-by-side fluidic harvesters from a passive fractal grid-generated turbulent flow is considered. The fractal grid has been shown to significantly increase the turbulence generated in the flow which is the source of the vibration of the piezoelectric beams. In this experimental study, the influence of four parameters has been investigated: Beam lengths and configurations, mean flow velocity, distance from the grid and gap between the two beams. Experimental results show that the piezoelectric harvesters in fractal grid turbulence are capable of producing at least the same amount of power as those placed in passive rectangular grids with a larger pressure loss, allowing for a potentially significant increase in the efficiency of the energy conversion process, even though more experiments are required to study the behavior of the beams in homogeneous, fractal grid-generated turbulence.

  16. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  17. Direct numerical simulations of fluid flow, heat transfer and phase changes

    NASA Technical Reports Server (NTRS)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  18. A locally refined rectangular grid finite element method - Application to computational fluid dynamics and computational physics

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1991-01-01

    The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.

  19. Scalable global grid catalogue for Run3 and beyond

    NASA Astrophysics Data System (ADS)

    Martinez Pedreira, M.; Grigoras, C.; ALICE Collaboration

    2017-10-01

    The AliEn (ALICE Environment) file catalogue is a global unique namespace providing mapping between a UNIX-like logical name structure and the corresponding physical files distributed over 80 storage elements worldwide. Powerful search tools and hierarchical metadata information are integral parts of the system and are used by the Grid jobs as well as local users to store and access all files on the Grid storage elements. The catalogue has been in production since 2005 and over the past 11 years has grown to more than 2 billion logical file names. The backend is a set of distributed relational databases, ensuring smooth growth and fast access. Due to the anticipated fast future growth, we are looking for ways to enhance the performance and scalability by simplifying the catalogue schema while keeping the functionality intact. We investigated different backend solutions, such as distributed key value stores, as replacement for the relational database. This contribution covers the architectural changes in the system, together with the technology evaluation, benchmark results and conclusions.

  20. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  1. Radiation pattern synthesis of planar antennas using the iterative sampling method

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  2. Polarization Sensitive QWIP Thermal Imager

    DTIC Science & Technology

    2000-03-01

    array (FPA) with peak responsivity in the long-wave infrared ( LWIR ) spectral band near 9 µm. Polarization-dependent responsivity is achieved by...demonstrated in various combinations: MWIR/ LWIR (using rectangular grid gratings), MWIR/MWIR, and LWIR / LWIR . The FPA described here was fabricated with a...CCA supports the nonuniformity correction, global gain and level control, failed pixel substitution, dynamic range reduction, BIT status and serial

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, D.W.; Yu-Jiuan Chen

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.

  4. Compositional Reservoir Simulation of Highly Heterogeneous and Anisotropic Fractured Media in 2D and 3D Unstructured Gridding

    NASA Astrophysics Data System (ADS)

    Zidane, A.; Firoozabadi, A.

    2017-12-01

    We present an efficient and accurate numerical model for multicomponent compressible single-phase flow in 2D and 3D fractured media based on higher-order discretization. The numerical model accounts for heterogeneity and anisotropy in unstructured gridding with low mesh dependency. The efficiency of our model is demonstrated by having comparable CPU time between fractured and unfractured media. The fracture cross-flow equilibrium approach (FCFE) is applied on triangular finite elements (FE) in 2D. This allows simulating fractured reservoirs with all possible orientations of fractures as opposed to rectangular FE. In 3D we apply the FCFE approach on the prism FE. The prism FE with FCFE allows simulating realistic fractured domains compared to hexahedron FE. In addition, when using FCFE on triangular and prism FE there is no limitation on the number of intersecting fractures, whereas in rectangular and hexahedron FE the number is limited to 2 in 2D and 3 in 3D. To generate domains with complicated boundaries, we have developed a computer-aided design (CAD) interface in our model. The advances introduced in this work are demonstrated through various examples.

  5. Pressurized security barrier and alarm system

    DOEpatents

    Carver, Don W.

    1995-01-01

    A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder's making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed.

  6. Large reflector antenna study

    NASA Technical Reports Server (NTRS)

    Christodoulou, C. G.

    1986-01-01

    In some applications, the wires used to construct the grids are plated over with highly conducting materials such as gold or silver. In those cases, depending on the frequency of operation, the coating may not be thick enough to prevent currents from flowing in the substrate. The conjugate gradient method, in conjunction with the fast Fourier transform is employed to solve the problem of scattering from such rectangular grids. An internal impedance is utilized to account for the effects of the substrate conductivity on the induced current densities. Calculated values of the reflection coefficient and induced currents from different coating thicknesses, angles of incidence and polarizations are presented and discussed.

  7. Pressurized security barrier and alarm system

    DOEpatents

    Carver, D.W.

    1995-04-11

    A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder`s making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed. 7 figures.

  8. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  9. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  10. Semantics-enabled service discovery framework in the SIMDAT pharma grid.

    PubMed

    Qu, Cangtao; Zimmermann, Falk; Kumpf, Kai; Kamuzinzi, Richard; Ledent, Valérie; Herzog, Robert

    2008-03-01

    We present the design and implementation of a semantics-enabled service discovery framework in the data Grids for process and product development using numerical simulation and knowledge discovery (SIMDAT) Pharma Grid, an industry-oriented Grid environment for integrating thousands of Grid-enabled biological data services and analysis services. The framework consists of three major components: the Web ontology language (OWL)-description logic (DL)-based biological domain ontology, OWL Web service ontology (OWL-S)-based service annotation, and semantic matchmaker based on the ontology reasoning. Built upon the framework, workflow technologies are extensively exploited in the SIMDAT to assist biologists in (semi)automatically performing in silico experiments. We present a typical usage scenario through the case study of a biological workflow: IXodus.

  11. Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Modiano, David; Colella, Phillip

    1994-01-01

    A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.

  12. Assessment and modification of an ion source grid design in KSTAR neutral beam system.

    PubMed

    Lee, Dong Won; Shin, Kyu In; Jin, Hyung Gon; Choi, Bo Guen; Kim, Tae-Seong; Jeong, Seung Ho

    2014-02-01

    A new 2 MW NB (Neutral Beam) ion source for supplying 3.5 MW NB heating for the KSTAR campaign was developed in 2012 and its grid was made from OFHC (Oxygen Free High Conductivity) copper with rectangular cooling channels. However, the plastic deformation such as a bulging in the plasma grid of the ion source was found during the overhaul period after the 2012 campaign. A thermal-hydraulic and a thermo-mechanical analysis using the conventional code, ANSYS, were carried out and the thermal fatigue life assessment was evaluated. It was found that the thermal fatigue life of the OFHC copper grid was about 335 cycles in case of 0.165 MW/m(2) heat flux and it gave too short fatigue life to be used as a KSTAR NB ion source grid. To overcome the limited fatigue life of the current design, the following methods were proposed in the present study: (1) changing the OHFC copper to CuCrZr, copper-alloy or (2) adopting a new design with a pure Mo metal grid and CuCrZr tubes. It is confirmed that the proposed methods meet the requirements by performing the same assessment.

  13. Adaptive hierarchical grid model of water-borne pollutant dispersion

    NASA Astrophysics Data System (ADS)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  14. Trust Management and Security in Satellite Telecommand Processing

    DTIC Science & Technology

    2011-03-24

    include XREP, NICE, and P- Grid . These systems aggregate the perception of entities in the system to calculate a local reputation value for a specific...peripheral used is a Universal Asynchronous Receiver Transmitter ( UART ) which is connected to a Recommended Standard 232 (RS232) transceiver onboard [49...satellite, a logic analyzer was connected to monitor UART signals on the test board. The logic analyzer used for this testing was a USBee ZX module

  15. Testability Design Rating System: Testability Handbook. Volume 1

    DTIC Science & Technology

    1992-02-01

    4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory

  16. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.

  17. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    NASA Astrophysics Data System (ADS)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  18. Application of finite difference techniques to noise propagation in jet engine ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1973-01-01

    A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be used in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross-section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.

  19. Application of finite difference techniques to noise propagation in jet engine ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1973-01-01

    A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be useful in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.

  20. Euler solutions to nonlinear acoustics of non-lifting rotor blades

    NASA Technical Reports Server (NTRS)

    Baeder, J. D.

    1991-01-01

    For the first time a computational fluid dynamics (CFD) method is used to calculate directly the high-speed impulsive (HSI) noise of a non-lifting hovering rotor blade out to a distance of over three rotor radii. In order to accurately propagate the acoustic wave in a stable and efficient manner, an implicit upwind-biased Euler method is solved on a grid with points clustered along the line of propagation. A detailed validation of the code is performed for a rectangular rotor blade at tip Mach numbers ranging from 0.88 to 0.92. The agreement with experiment is excellent at both the sonic cylinder and at 2.18 rotor radii. The agreement at 3.09 rotor radii is still very good, showing improvements over the results from the best previous method. Grid sensitivity studies indicate that with special attention to the location of the boundaries a grid with approximately 60,000 points is adequate. This results in a computational time of approximately 40 minutes on a Cray-XMP. The practicality of the method to calculate HSI noise is demonstrated by expanding the scope of the investigation to examine the rectangular blade as well as a highly swept and tapered blade over a tip Mach number range of 0.80 to 0.95. Comparisons with experimental data are excellent and the advantages of planform modifications are clearly evident. New insight is gained into the mechanisms of nonlinear propagation and the minimum distance at which a valid comparison of different rotors can be made: approximately two rotor radii from the center of rotation.

  1. Euler solutions to nonlinear acoustics of non-lifting hovering rotor blades

    NASA Technical Reports Server (NTRS)

    Baeder, J. D.

    1991-01-01

    For the first time a computational fluid dynamics (CFD) method is used to calculate directly the high-speed impulsive (HSI) noise of a non-lifting hovering rotor blade out to a distance of over three rotor radii. In order to accurately propagate the acoustic wave in a stable and efficient manner, an implicit upwind-biased Euler method is solved on a grid with points clustered along the line of propagation. A detailed validation of the code is performed for a rectangular rotor blade at tip Mach numbers ranging from 0.88 to 0.92. The agreement with experiment is excellent at both the sonic cylinder and at 2.18 rotor radii. The agreement at 3.09 rotor radii is still very good, showing improvements over the results from the best previous method. Grid sensitivity studies indicate that with special attention to the location of the boundaries a grid with approximately 60,000 points is adequate. This results in a computational time of approximately 40 minutes on a Cray-XMP. The practicality of the method to calculate HSI noise is demonstrated by expanding the scope of the investigation to examine the rectangular blade as well as a highly swept and tapered blade over a tip Mach number range of 0.80 to 0.95. Comparisons with experimental data are excellent and the advantages of planform modifications are clearly evident. New insight is gained into the mechanisms of nonlinear propagation and the minimum distance at which a valid comparison of different rotors can be made: approximately two rotor radii from the center of rotation.

  2. Fuzzy logic controller to improve powerline communication

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore

    2015-12-01

    The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

  3. An effective XML based name mapping mechanism within StoRM

    NASA Astrophysics Data System (ADS)

    Corso, E.; Forti, A.; Ghiselli, A.; Magnoni, L.; Zappi, R.

    2008-07-01

    In a Grid environment the naming capability allows users to refer to specific data resources in a physical storage system using a high level logical identifier. This logical identifier is typically organized in a file system like structure, a hierarchical tree of names. Storage Resource Manager (SRM) services map the logical identifier to the physical location of data evaluating a set of parameters as the desired quality of services and the VOMS attributes specified in the requests. StoRM is a SRM service developed by INFN and ICTP-EGRID to manage file and space on standard POSIX and high performing parallel and cluster file systems. An upcoming requirement in the Grid data scenario is the orthogonality of the logical name and the physical location of data, in order to refer, with the same identifier, to different copies of data archived in various storage areas with different quality of service. The mapping mechanism proposed in StoRM is based on a XML document that represents the different storage components managed by the service, the storage areas defined by the site administrator, the quality of service they provide and the Virtual Organization that want to use the storage area. An appropriate directory tree is realized in each storage component reflecting the XML schema. In this scenario StoRM is able to identify the physical location of a requested data evaluating the logical identifier and the specified attributes following the XML schema, without querying any database service. This paper presents the namespace schema defined, the different entities represented and the technical details of the StoRM implementation.

  4. Application of the RNS3D Code to a Circular-Rectangular Transition Duct With and Without Inlet Swirl and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Cavicchi, Richard H.

    1999-01-01

    Circular-rectangular transition ducts are used between engine exhausts and nozzles with rectangular cross sections that are designed for high performance aircraft. NASA Glenn Research Center has made experimental investigations of a series of circular-rectangular transition ducts to provide benchmark flow data for comparison with numerical calculations. These ducts are all designed with superellipse cross sections to facilitate grid generation. In response to this challenge, the three-dimensional RNS3D code has been applied to one of these transition ducts. This particular duct has a length-to-inlet diameter ratio of 1.5 and an exit-plane aspect ratio of 3.0. The inlet Mach number is 0.35. Two GRC experiments and the code were run for this duct without inlet swirl. One GRC experiment and the code were also run with inlet swirl. With no inlet swirl the code was successful in predicting pressures and secondary flow conditions, including a pair of counter-rotating vortices at both sidewalls of the exit plane. All these phenomena have been reported from the two GRC experiments. However, these vortices were suppressed in the one experiment when inlet swirl was used; whereas the RNS3D code still predicted them. The experiment was unable to provide data near the sidewalls, the very region where the vortices were predicted.

  5. Grid workflow job execution service 'Pilot'

    NASA Astrophysics Data System (ADS)

    Shamardin, Lev; Kryukov, Alexander; Demichev, Andrey; Ilyin, Vyacheslav

    2011-12-01

    'Pilot' is a grid job execution service for workflow jobs. The main goal for the service is to automate computations with multiple stages since they can be expressed as simple workflows. Each job is a directed acyclic graph of tasks and each task is an execution of something on a grid resource (or 'computing element'). Tasks may be submitted to any WS-GRAM (Globus Toolkit 4) service. The target resources for the tasks execution are selected by the Pilot service from the set of available resources which match the specific requirements from the task and/or job definition. Some simple conditional execution logic is also provided. The 'Pilot' service is built on the REST concepts and provides a simple API through authenticated HTTPS. This service is deployed and used in production in a Russian national grid project GridNNN.

  6. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  7. Dose calculation algorithm of fast fine-heterogeneity correction for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-04-01

    This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method referred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Formal Specifications for an Electrical Power Grid System Stability and Reliability

    DTIC Science & Technology

    2015-09-01

    expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB...analyze the power grid system requirements and express the critical runtime behavior using first-order logic. First, we identify observable...Verification System, and Type systems to name a few [5]. Theorem proving’s specification dimension is dependent on the expressive power of the formal

  9. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations

    PubMed Central

    Wang, Ming; Zhong, Lin

    2015-01-01

    In this paper, we consider the use of H(div) elements in the velocity–pressure formulation to discretize Stokes equations in two dimensions. We address the error estimate of the element pair RT0–P0, which is known to be suboptimal, and render the error estimate optimal by the symmetry of the grids and by the superconvergence result of Lagrange inter-polant. By enlarging RT0 such that it becomes a modified BDM-type element, we develop a new discretization BDM1b–P0. We, therefore, generalize the classical MAC scheme on rectangular grids to triangular grids and retain all the desirable properties of the MAC scheme: exact divergence-free, solver-friendly, and local conservation of physical quantities. Further, we prove that the proposed discretization BDM1b–P0 achieves the optimal convergence rate for both velocity and pressure on general quasi-uniform grids, and one and half order convergence rate for the vorticity and a recovered pressure. We demonstrate the validity of theories developed here by numerical experiments. PMID:26041948

  10. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  11. Computer-Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1979-07-01

    equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last

  12. The Role of Civil Preparedness in Nuclear Terrorism Mitigation Planning.

    DTIC Science & Technology

    1979-09-01

    for this case. Several data sources have been used . 10 C) 0 Many agencies have provided policy and planning documents, many of which remain in...universally condemning the use of chemical and biological weapons. * Nuclear threats can be made which cover many levels of potential severity. To this...people. Specifically, the street and avenue pattern of Manhattan has been used for the rectangular grid in the blast attenuation calculation. Alternatively

  13. Modified Method of Adaptive Artificial Viscosity for Solution of Gas Dynamics Problems on Parallel Computer Systems

    NASA Astrophysics Data System (ADS)

    Popov, Igor; Sukov, Sergey

    2018-02-01

    A modification of the adaptive artificial viscosity (AAV) method is considered. This modification is based on one stage time approximation and is adopted to calculation of gasdynamics problems on unstructured grids with an arbitrary type of grid elements. The proposed numerical method has simplified logic, better performance and parallel efficiency compared to the implementation of the original AAV method. Computer experiments evidence the robustness and convergence of the method to difference solution.

  14. The Wilson’s Creek Staff Ride and Battlefield Tour

    DTIC Science & Technology

    1993-03-01

    Stands and grid numbers for the staff ride or battlefield tour . . .,........................*...r....l.* 30 vii _I___-.-.--. - BLES rtillery...rn t lving fle. B h eld i lery ively Wilson’s , the armies ielding tal irty- cannons of o calibers (6- g n 12-pound witzers, e st these guns...Visitor’s Center [inside], grid 627076) SE&&ion: The Wilson’s Creek Visit&s Center is a logical place to begin a staff ride or battlefield tour because a

  15. Laboratory glassware rack for seismic safety

    NASA Technical Reports Server (NTRS)

    Cohen, M. M. (Inventor)

    1985-01-01

    A rack for laboratory bottles and jars for chemicals and medicines has been designed to provide the maximum strength and security to the glassware in the event of a significant earthquake. The rack preferably is rectangular and may be made of a variety of chemically resistant materials including polypropylene, polycarbonate, and stainless steel. It comprises a first plurality of parallel vertical walls, and a second plurality of parallel vertical walls, perpendicular to the first. These intersecting vertical walls comprise a self-supporting structure without a bottom which sits on four legs. The top surface of the rack is formed by the top edges of all the vertical walls, which are not parallel but are skewed in three dimensions. These top edges form a grid matrix having a number of intersections of the vertical walls which define a number of rectangular compartments having varying widths and lengths and varying heights.

  16. Electron lithography STAR design guidelines. Part 3: The mosaic transistor array applied to custom microprocessors. Part 4: Stores logic arrays, SLAs implemented with clocked CMOS

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.

    1982-01-01

    The Mosaic Transistor Array is an extension of the STAR system developed by NASA which has dedicated field cells designed to be specifically used in semicustom microprocessor applications. The Sandia radiation hard bulk CMOS process is utilized in order to satisfy the requirements of space flights. A design philosophy is developed which utilizes the strengths and recognizes the weaknesses of the Sandia process. A style of circuitry is developed which incorporates the low power and high drive capability of CMOS. In addition the density achieved is better than that for classic CMOS, although not as good as for NMOS. The basic logic functions for a data path are designed with compatible interface to the STAR grid system. In this manner either random logic or PLA type structures can be utilized for the control logic.

  17. Volume change and energy exchange: How they affect symmetry in the Noh problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vachal, Pavel; Wendroff, Burton

    The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.

  18. Volume change and energy exchange: How they affect symmetry in the Noh problem

    DOE PAGES

    Vachal, Pavel; Wendroff, Burton

    2018-03-14

    The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.

  19. SST Technology Follow-On Program-Phase 2, Noise Suppressor/Nozzle Development. Volume 2. Noise Technology

    DTIC Science & Technology

    1975-03-01

    Loss Relationships 199 109 37-Tube, 4.5 Area Ratio Nozzle, Premergcd Jet Turbulence Noise 200 110 37-Tube Nozzle Premerged Jet Noise Peak...were obtained with the tunnel oil and at 165 knots. The tunnel air flows through a large , rectangular bell-mouth inlet, a (low straightening grid... ratio conditions on a fourteen-track annlog tape recorder for subsecjuent analysis after test com- pletion. Basic analysis of the recorded acoustic

  20. Methods for Data-based Delineation of Spatial Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, John E.

    In data analysis, it is often useful to delineate or segregate areas of interest from the general population of data in order to concentrate further analysis efforts on smaller areas. Three methods are presented here for automatically generating polygons around spatial data of interest. Each method addresses a distinct data type. These methods were developed for and implemented in the sample planning tool called Visual Sample Plan (VSP). Method A is used to delineate areas of elevated values in a rectangular grid of data (raster). The data used for this method are spatially related. Although VSP uses data from amore » kriging process for this method, it will work for any type of data that is spatially coherent and appears on a regular grid. Method B is used to surround areas of interest characterized by individual data points that are congregated within a certain distance of each other. Areas where data are “clumped” together spatially will be delineated. Method C is used to recreate the original boundary in a raster of data that separated data values from non-values. This is useful when a rectangular raster of data contains non-values (missing data) that indicate they were outside of some original boundary. If the original boundary is not delivered with the raster, this method will approximate the original boundary.« less

  1. Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations

    NASA Astrophysics Data System (ADS)

    Zlotnik, A. A.

    2017-04-01

    The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier-Stokes equations of a viscous compressible heat-conducting gas.

  2. CFD modelling of Po River morphodynamics affected by bridge piers

    NASA Astrophysics Data System (ADS)

    Nones, Michael; Guerrero, Massimo; Ruther, Nils; Baranya, Sandor

    2017-04-01

    The paper presents the numerical modelling of the hydromorphological evolution of a 10-km reach of the Po River close to Ostiglia in Italy, affected by the presence of a railway bridge. The 3D simulation is performed using the freely available code SSIIM, developed at the University of Science and Technology in Trondheim in Norway. The domain consists of an unstructured grid with rectangular meshes having a dimension of 50x50 meters, with a nested detailed grid (5x5 m) around the piers. Preliminary results show the capability of the model in reproducing the behaviour of the reach, both in terms of liquid flow and morphodynamics, if compared with historical data measured along this watercourse. For the future, as a part of the Italian national project INFRASAFE, additional simulations will be performed to calibrate the model, changing the analyzed domain and used grids, and imposing, as boundary conditions, new data measured directly on the field with traditional and innovative techniques.

  3. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  4. A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    2008-01-01

    One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.

  5. User guide for MODPATH Version 7—A particle-tracking model for MODFLOW

    USGS Publications Warehouse

    Pollock, David W.

    2016-09-26

    MODPATH is a particle-tracking post-processing program designed to work with MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. MODPATH version 7 is the fourth major release since its original publication. Previous versions were documented in USGS Open-File Reports 89–381 and 94–464 and in USGS Techniques and Methods 6–A41.MODPATH version 7 works with MODFLOW-2005 and MODFLOW–USG. Support for unstructured grids in MODFLOW–USG is limited to smoothed, rectangular-based quadtree and quadpatch grids.A software distribution package containing the computer program and supporting documentation, such as input instructions, output file descriptions, and example problems, is available from the USGS over the Internet (http://water.usgs.gov/ogw/modpath/).

  6. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.

  7. Combinatorial-topological framework for the analysis of global dynamics.

    PubMed

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  8. Combinatorial-topological framework for the analysis of global dynamics

    NASA Astrophysics Data System (ADS)

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  9. AIC Computations Using Navier-Stokes Equations on Single Image Supercomputers For Design Optimization

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2004-01-01

    A procedure to accurately generate AIC using the Navier-Stokes solver including grid deformation is presented. Preliminary results show good comparisons between experiment and computed flutter boundaries for a rectangular wing. A full wing body configuration of an orbital space plane is selected for demonstration on a large number of processors. In the final paper the AIC of full wing body configuration will be computed. The scalability of the procedure on supercomputer will be demonstrated.

  10. Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi

    1996-01-01

    An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.

  11. Effective Simulation Strategy of Multiscale Flows using a Lattice Boltzmann model with a Stretched Lattice

    NASA Astrophysics Data System (ADS)

    Yahia, Eman; Premnath, Kannan

    2017-11-01

    Resolving multiscale flow physics (e.g. for boundary layer or mixing layer flows) effectively generally requires the use of different grid resolutions in different coordinate directions. Here, we present a new formulation of a multiple relaxation time (MRT)-lattice Boltzmann (LB) model for anisotropic meshes. It is based on a simpler and more stable non-orthogonal moment basis while the use of MRT introduces additional flexibility, and the model maintains a stream-collide procedure; its second order moment equilibria are augmented with additional velocity gradient terms dependent on grid aspect ratio that fully restores the required isotropy of the transport coefficients of the normal and shear stresses. Furthermore, by introducing additional cubic velocity corrections, it maintains Galilean invariance. The consistency of this stretched lattice based LB scheme with the Navier-Stokes equations is shown via a Chapman-Enskog expansion. Numerical study for a variety of benchmark flow problems demonstrate its ability for accurate and effective simulations at relatively high Reynolds numbers. The MRT-LB scheme is also shown to be more stable compared to prior LB models for rectangular grids, even for grid aspect ratios as small as 0.1 and for Reynolds numbers of 10000.

  12. Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, I; Pember, R; Greenough, J

    2005-10-18

    We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less

  13. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    NASA Astrophysics Data System (ADS)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.

    2016-07-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  14. Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands

    NASA Astrophysics Data System (ADS)

    Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.

    2017-05-01

    The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.

  15. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    PubMed

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Christopher; Randall, David

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restrictedmore » to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Lastly, detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.« less

  17. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids

    PubMed Central

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951

  18. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    PubMed

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  19. Treatment of late time instabilities in finite-difference EMP scattering codes

    NASA Astrophysics Data System (ADS)

    Simpson, L. T.; Holland, R.; Arman, S.

    1982-12-01

    Constraints applicable to a finite difference mesh for solution of Maxwell's equations are defined. The equations are applied in the time domain for computing electromagnetic coupling to complex structures, e.g., rectangular, cylindrical, or spherical. In a spatially varying grid, the amplitude growth of high frequency waves becomes exponential through multiple reflections from the outer boundary in cases of late-time solution. The exponential growth of the numerical noise exceeds the value of the real signal. The correction technique employs an absorbing surface and a radiating boundary, along with tailored selection of the grid mesh size. High frequency noise is removed through use of a low-pass digital filter, a linear least squares fit is made to thy low frequency filtered response, and the original, filtered, and fitted data are merged to preserve the high frequency early-time response.

  20. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Popov, Valentin L.

    2018-03-01

    Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.

  1. Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods

    NASA Astrophysics Data System (ADS)

    Ullrich, P. A.; Guerra, J. E.

    2014-12-01

    The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.

  2. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrouazin, A., E-mail: derrsid@gmail.com; Université de Lorraine, LMOPS, EA 4423, 57070 Metz; CentraleSupélec, LMOPS, 57070 Metz

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitationmore » of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.« less

  3. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  4. Provably secure time distribution for the electric grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  5. Design, manufacturing and measurement of a PV miniconcentrator for front point-contact silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pérez, D.; Miñano, J. C.; Benítez, P.; Muñoz, F.; Mohedano, R.

    2005-08-01

    A novel photovoltaic concentrator has been developed in the framework of the European project "High efficiency silicon solar cells concentrator". In this project, front-contacted silicon solar cell have also been designed and manufactured by the project leader (the French LETI). This silicon cell concept is potentially capable to perform well (24% efficiency has been predicted) for much higher concentration levels than the back-contacted cells (and, of course, than the two-side contacted cells). The concentrator is formed by one lens of squared contour with flat entry surface and large-facet Fresnel exit surface, and a secondary that encapsulates the solar cell. On the contrary to the conventional Fresnel lens plus nonimaging secondary concentrators, the primary and secondary are designed simultaneously, leading to better concentration-acceptance angle product without compromise with the compactness. The grid lines in the front-contacted cells are aluminium prisms (which contact the p+ and n+ emitters, alternatively), acting as a linear cone concentrator that concentrates Cg =1.52× in the cross sectional dimension of the prisms. The secondary concentrator has a refractive rotational symmetric top surface that is crossed with two linear flow-line TIR mirror. Then, in the cross section normal to the aluminium prisms, the secondary provides a 2D concentration of Cg =12×, while in the cross section parallel to the prisms it provides a 2D concentration of Cg =24.16× as the grid lines in this dimension. Therefore, the cell is rectangular (1:2.08 aspect ratio), being the grid lines parallel to the shorter rectangle side. The total 3D geometrical concentration is 24.16×(12×1.52) = 455× for the square aperture and rectangular cell, and gets a design acceptance angle α=+/-1.8 degrees. Injection moulded prototypes are have been manufactured and measured, proving an optical efficiency of 79%. Computer modelling of the concentrator performance will also be presented.

  6. Generalization techniques to reduce the number of volume elements for terrain effect calculations in fully analytical gravitational modelling

    NASA Astrophysics Data System (ADS)

    Benedek, Judit; Papp, Gábor; Kalmár, János

    2018-04-01

    Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable situation without the loss of reliability of the calculated gravity field parameters.

  7. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  8. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  9. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  10. Third International Kharkov Symposium "Physics and Engineering of Millimeter and Submillimeter Waves" MSMW󈨦 Symposium Proceedings, Volume 1,

    DTIC Science & Technology

    1998-09-01

    potential of the surface wave electromagnetic field; ea is the unit of the polarization vectors : ex = ela. = e2x= (qx/\\q\\)\\/L\\q\\/(ei + e0), ely... polarization basis of the incident wave: EB°=eB^(/kr), (1) where e„ is the cyclic unit vector , n = ±1, k is the wave vector . The equation describing...rectangular grid. From the direction determined by wave vector k0, the plane electromagnetic wave of linear polarization incidents onto the array. It

  11. Deterministic seismic hazard macrozonation of India

    NASA Astrophysics Data System (ADS)

    Kolathayar, Sreevalsa; Sitharam, T. G.; Vipin, K. S.

    2012-10-01

    Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6°-38°N and 68°-98°E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1° (approximately 10 × 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.

  12. A robust adaptive load frequency control for micro-grids.

    PubMed

    Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav

    2016-11-01

    The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties

    NASA Astrophysics Data System (ADS)

    Eldred, Christopher; Randall, David

    2017-02-01

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.

  14. Computation of Transverse Injection Into Supersonic Crossflow With Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert; Engblom, William A.

    2003-01-01

    Computational results are presented for the performance and flow behavior of various injector geometries employed in transverse injection into a non-reacting Mach 1.2 flow. 3-D Reynolds-Averaged Navier Stokes (RANS) results are obtained for the various injector geometries using the Wind code with the Mentor s Shear Stress Transport turbulence model in both single and multi-species modes. Computed results for the injector mixing, penetration, and induced wall forces are presented. In the case of rectangular injectors, those longer in the direction of the freestream flow are predicted to generate the most mixing and penetration of the injector flow into the primary stream. These injectors are also predicted to provide the largest discharge coefficients and induced wall forces. Minor performance differences are indicated among diamond, circle, and square orifices. Grid sensitivity study results are presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid fineness.

  15. Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Healy, John J.; Muniraj, Inbarasan; Cui, Xiao-Guang; Malallah, Ra'ed; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.

  16. Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.

    PubMed

    Poletti, Mark A; Svensson, U Peter

    2008-07-01

    Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.

  17. Experimental investigation of the noise emission of axial fans under distorted inflow conditions

    NASA Astrophysics Data System (ADS)

    Zenger, Florian J.; Renz, Andreas; Becher, Marcus; Becker, Stefan

    2016-11-01

    An experimental investigation on the noise emission of axial fans under distorted inflow conditions was conducted. Three fans with forward-skewed fan blades and three fans with backward-skewed fan blades and a common operating point were designed with a 2D element blade method. Two approaches were adopted to modify the inflow conditions: first, the inflow turbulence intensity was increased by two different rectangular grids and second, the inflow velocity profile was changed to an asymmetric characteristic by two grids with a distinct bar stacking. An increase in the inflow turbulence intensity affects both tonal and broadband noise, whereas a non-uniform velocity profile at the inlet influences mainly tonal components. The magnitude of this effect is not the same for all fans but is dependent on the blade skew. The impact is greater for the forward-skewed fans than for the backward-skewed and thus directly linked to the fan blade geometry.

  18. Efficient geometric rectification techniques for spectral analysis algorithm

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Pang, S. S.; Curlander, J. C.

    1992-01-01

    The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.

  19. CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies

    NASA Astrophysics Data System (ADS)

    Delzanno, G.; Camporeale, E.; Moulton, J. D.; Borovsky, J. E.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    We present a recently developed Particle-In-Cell (PIC) code in curvilinear geometry called CPIC (Curvilinear PIC) [1], where the standard PIC algorithm is coupled with a grid generation/adaptation strategy. Through the grid generator, which maps the physical domain to a logical domain where the grid is uniform and Cartesian, the code can simulate domains of arbitrary complexity, including the interaction of complex objects with a plasma. At present the code is electrostatic. Poisson's equation (in logical space) can be solved with either an iterative method based on the Conjugate Gradient (CG) or the Generalized Minimal Residual (GMRES) coupled with a multigrid solver used as a preconditioner, or directly with multigrid. The multigrid strategy is critical for the solver to perform optimally or nearly optimally as the dimension of the problem increases. CPIC also features a hybrid particle mover, where the computational particles are characterized by position in logical space and velocity in physical space. The advantage of a hybrid mover, as opposed to more conventional movers that move particles directly in the physical space, is that the interpolation of the particles in logical space is straightforward and computationally inexpensive, since one does not have to track the position of the particle. We will present our latest progress on the development of the code and document the code performance on standard plasma-physics tests. Then we will present the (preliminary) application of the code to a basic dynamic-charging problem, namely the charging and shielding of a spherical spacecraft in a magnetized plasma for various level of magnetization and including the pulsed emission of an electron beam from the spacecraft. The dynamical evolution of the sheath and the time-dependent current collection will be described. This study is in support of the ConnEx mission concept to use an electron beam from a magnetospheric spacecraft to trace magnetic field lines from the magnetosphere to the ionosphere [2]. [1] G.L. Delzanno, E. Camporeale, "CPIC: a new Particle-in-Cell code for plasma-material interaction studies", in preparation (2012). [2] J.E. Borovsky, D.J. McComas, M.F. Thomsen, J.L. Burch, J. Cravens, C.J. Pollock, T.E. Moore, and S.B. Mende, "Magnetosphere-Ionosphere Observatory (MIO): A multisatellite mission designed to solve the problem of what generates auroral arcs," Eos. Trans. Amer. Geophys. Union 79 (45), F744 (2000).

  20. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2016-11-01

    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  1. Psyplot: Visualizing rectangular and triangular Climate Model Data with Python

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp

    2016-04-01

    The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.

  2. A time-efficient algorithm for implementing the Catmull-Clark subdivision method

    NASA Astrophysics Data System (ADS)

    Ioannou, G.; Savva, A.; Stylianou, V.

    2015-10-01

    Splines are the most popular methods in Figure Modeling and CAGD (Computer Aided Geometric Design) in generating smooth surfaces from a number of control points. The control points define the shape of a figure and splines calculate the required number of points which when displayed on a computer screen the result is a smooth surface. However, spline methods are based on a rectangular topological structure of points, i.e., a two-dimensional table of vertices, and thus cannot generate complex figures, such as the human and animal bodies that their complex structure does not allow them to be defined by a regular rectangular grid. On the other hand surface subdivision methods, which are derived by splines, generate surfaces which are defined by an arbitrary topology of control points. This is the reason that during the last fifteen years subdivision methods have taken the lead over regular spline methods in all areas of modeling in both industry and research. The cost of executing computer software developed to read control points and calculate the surface is run-time, due to the fact that the surface-structure required for handling arbitrary topological grids is very complicate. There are many software programs that have been developed related to the implementation of subdivision surfaces however, not many algorithms are documented in the literature, to support developers for writing efficient code. This paper aims to assist programmers by presenting a time-efficient algorithm for implementing subdivision splines. The Catmull-Clark which is the most popular of the subdivision methods has been employed to illustrate the algorithm.

  3. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  4. Considerations for fine hole patterning for the 7nm node

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei

    2016-03-01

    One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.

  5. Real power regulation for the utility power grid via responsive loads

    DOEpatents

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  6. On the electromagnetic scattering from infinite rectangular conducting grids

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1985-01-01

    The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.

  7. VAC: Versatile Advection Code

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Keppens, Rony

    2012-07-01

    The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

  8. Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic.

    PubMed

    Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Maiheu, Bino; De Ridder, Koen; Daglis, Ioannis A; Manunta, Paolo; Paganini, Marc

    2013-10-01

    The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.

  9. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods $-$ Part 1: Derivation and properties

    DOE PAGES

    Eldred, Christopher; Randall, David

    2017-02-17

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restrictedmore » to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Lastly, detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.« less

  10. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  11. Exploring identity within the recovery process of people with serious mental illnesses.

    PubMed

    Buckley-Walker, Kellie; Crowe, Trevor; Caputi, Peter

    2010-01-01

    To examine self-identity within the recovery processes of people with serious mental illnesses using a repertory grid methodology. Cross-sectional study involving 40 mental health service consumers. Participants rated different "self" and "other" elements on the repertory grid against constructs related to recovery, as well as other recovery focused measures. Perceptions of one's "ideal self" represented more advanced recovery in contrast to perceptions of "a person mentally unwell." Current perceptions of self were most similar to perceptions of "usual self" and least similar to "a person who is mentally unwell." Increased identification with one's "ideal self" reflected increased hopefulness in terms of recovery. The recovery repertory grid shows promise in clinical practice, in terms of exploring identity as a key variable within mental health recovery processes. Distance measures of similarity between various self-elements, including perceptions of others, maps logically against the recovery process of hope.

  12. Uncertainty in benefit cost analysis of smart grid demonstration-projects in the U.S., China, and Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Flego, Gianluca; Yu, Jiancheng

    Given the substantial investments required, there has been keen interest in conducting benefits analysis, i.e., quantifying, and often monetizing, the performance of smart grid technologies. In this study, we compare two different approaches; (1) Electric Power Research Institute (EPRI)’s benefits analysis method and its adaptation to the European contexts by the European Commission, Joint Research Centre (JRC), and (2) the Analytic Hierarchy Process (AHP) and fuzzy logic decision making method. These are applied to three case demonstration projects executed in three different countries; the U.S., China, and Italy, considering uncertainty in each case. This work is conducted under the U.S.more » (United States)-China Climate Change Working Group, smart grid, with an additional major contribution by the European Commission. The following is a brief description of the three demonstration projects.« less

  13. Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes

    NASA Astrophysics Data System (ADS)

    Kim, Ki Wan; Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Lee, Eui Chul; Park, Kang Ryoung

    2015-03-01

    The classification of eye openness and closure has been researched in various fields, e.g., driver drowsiness detection, physiological status analysis, and eye fatigue measurement. For a classification with high accuracy, accurate segmentation of the eye region is required. Most previous research used the segmentation method by image binarization on the basis that the eyeball is darker than skin, but the performance of this approach is frequently affected by thick eyelashes or shadows around the eye. Thus, we propose a fuzzy-based method for classifying eye openness and closure. First, the proposed method uses I and K color information from the HSI and CMYK color spaces, respectively, for eye segmentation. Second, the eye region is binarized using the fuzzy logic system based on I and K inputs, which is less affected by eyelashes and shadows around the eye. The combined image of I and K pixels is obtained through the fuzzy logic system. Third, in order to reflect the effect by all the inference values on calculating the output score of the fuzzy system, we use the revised weighted average method, where all the rectangular regions by all the inference values are considered for calculating the output score. Fourth, the classification of eye openness or closure is successfully made by the proposed fuzzy-based method with eye images of low resolution which are captured in the environment of people watching TV at a distance. By using the fuzzy logic system, our method does not require the additional procedure of training irrespective of the chosen database. Experimental results with two databases of eye images show that our method is superior to previous approaches.

  14. Achieving Congestion Mitigation Using Distributed Power Control for Spectrum Sensor Nodes in Sensor Network-Aided Cognitive Radio Ad Hoc Networks

    PubMed Central

    Zhuo, Fan; Duan, Hucai

    2017-01-01

    The data sequence of spectrum sensing results injected from dedicated spectrum sensor nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network congestion may occur at a SU acting as fusion center when the offered data load exceeds its available capacity, which degrades network performance. In this paper, we present an effective approach to mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier (IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy consumption. In particular, we firstly devise two pricing factors by considering stability of local spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility function of this power control problem is formulated by jointly taking into account the revenue of power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the utility function maximization and linear differential equation constraint of energy consumption, we further formulate the power control problem as a differential game model under a cooperation or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived by alleviating the buffer load over their internal buffers. Simulation results are presented to show the effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario. PMID:28914803

  15. Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.

    2002-01-01

    Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.

  16. Documentation for subroutine REDUC3, an algorithm for the linear filtering of gridded magnetic data

    USGS Publications Warehouse

    Blakely, Richard J.

    1977-01-01

    Subroutine REDUC3 transforms a total field anomaly h1(x,y) , measured on a horizontal and rectangular grid, into a new anomaly h2(x,y). This new anomaly is produced by the same source as h1(x,y) , but (1) is observed at a different elevation, (2) has a source with a different direction of magnetization, and/or (3) has a different direction of residual field. Case 1 is tantamount to upward or downward continuation. Cases 2 and 3 are 'reduction to the pole', if the new inclinations of both the magnetization and regional field are 90 degrees. REDUC3 is a filtering operation applied in the wave-number domain. It first Fourier transforms h1(x,y) , multiplies by the appropriate filter, and inverse Fourier transforms the result to obtain h2(x,y). No assumptions are required about the shape of the source or how the intensity of magnetization varies within it.

  17. Nonlinear ship waves and computational fluid dynamics

    PubMed Central

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139

  18. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  19. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.

  20. An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Pappa, R. S.

    1985-01-01

    A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.

  1. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  2. Regional and seasonal estimates of fractional storm coverage based on station precipitation observations

    NASA Technical Reports Server (NTRS)

    Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.

    1994-01-01

    Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.

  3. Ceramic ball grid array package stress analysis

    NASA Astrophysics Data System (ADS)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  4. Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.; Smith, C. Frederic

    1990-01-01

    Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.

  5. Groundspeed filtering for CTAS

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.

    1994-01-01

    Ground speed is one of the radar observables which is obtained along with position and heading from NASA Ames Center radar. Within the Center TRACON Automation System (CTAS), groundspeed is converted into airspeed using the wind speeds which CTAS obtains from the NOAA weather grid. This airspeed is then used in the trajectory synthesis logic which computes the trajectory for each individual aircraft. The time history of the typical radar groundspeed data is generally quite noisy, with high frequency variations on the order of five knots, and occasional 'outliers' which can be significantly different from the probable true speed. To try to smooth out these speeds and make the ETA estimate less erratic, filtering of the ground speed is done within CTAS. In its base form, the CTAS filter is a 'moving average' filter which averages the last ten radar values. In addition, there is separate logic to detect and correct for 'outliers', and acceleration logic which limits the groundspeed change in adjacent time samples. As will be shown, these additional modifications do cause significant changes in the actual groundspeed filter output. The conclusion is that the current ground speed filter logic is unable to track accurately the speed variations observed on many aircraft. The Kalman filter logic however, appears to be an improvement to the current algorithm used to smooth ground speed variations, while being simpler and more efficient to implement. Additional logic which can test for true 'outliers' can easily be added by looking at the difference in the a priori and post priori Kalman estimates, and not updating if the difference in these quantities is too large.

  6. Determination analaysis of the power losses of transformers with continuously transpored conductors (CTC) based fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kaloko, Bambang Sri; Atsari, Erinna Dyah

    2017-03-01

    Electric motive force which flows into the iron core continuously on a plate - plate iron isolated may cause heat posed by current eddy (eddy current). No water loss occurs due to detainees on the circuit at the the flow of current load because this loss happened on the entanglement of the transformer is made of copper. Continuously Transposed Conductors (CTC) consist of a number of enameled rectangular wires (5-84 strands) made into an assembly. Each strand is transposed in turn to each position in the cable and is then covered with layers of insulation paper. Continuously Transposed Conductors are used in winding wires for medium and ultra high power transformers. CTC is manufactured by OFHC copper and indeed, is able to supply polyester roped. CTC which has been designed to reduce production cost, oil pocket and improve cooling efficiency. Hardened type CTC (CPR1, CPR2, and CPR3: BS1432) and Self-bonding CTC which can be used to improve mechanical and electrical strength are also available. This analysis is performed using the methods of fuzzy logic in taking account of the resources.

  7. High Frontier: The Journal for Space and Cyberspace Professionals. Volume 6, Number 4, August 2010

    DTIC Science & Technology

    2010-08-01

    information that warfighters rely on is likely to be useless (a three-way disaster is, anyway, logically impossible; if the global information grid...processing, exploitation, and dissemination (TCPED) of information . Space and cyber systems collectively provide the core functionality of the TCPED...rather than crisis management procedures. Space and cyber operations have several similarities dur- ing and can be extremely useful for informing Phase

  8. Displaying CFD Solution Parameters on Arbitrary Cut Planes

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    2008-01-01

    USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.

  9. A virtual data language and system for scientific workflow management in data grid environments

    NASA Astrophysics Data System (ADS)

    Zhao, Yong

    With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.

  10. Efficient three-dimensional Poisson solvers in open rectangular conducting pipe

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2016-06-01

    Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.

  11. Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria

    2015-11-01

    The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.

  12. WE-AB-207A-10: Transmission Characteristics of a Two Dimensional Antiscatter Grid Prototype for CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altunbas, C; Kavanagh, B; Miften, M

    2016-06-15

    Purpose: Scattered radiation remains to be a major contributor to image quality degradation in CBCT. To address the scatter problem, a focused, 2D antiscatter grid (2DASG) prototype was designed, and fabricated using additive manufacturing processes. Its scatter and primary transmission properties were characterized using a linac mounted CBCT system. Methods: The prototype 2DASG was composed of rectangular grid holes separated by tungsten septa, and has a grid pitch of 2.91 mm, grid ratio of 8, and a septal thickness of 0.1 mm. Each grid hole was aligned or focused towards the x-ray source in half-fan (i.e. offset detector) geometry ofmore » the Varian TrueBeam CBCT system. Scatter and primary transmission experiments were performed by using acrylic blocks and the beam-stop method. Transmission properties of a radiographic ASG (1DASG) (grid ratio of 10) was also performed by using the identical setup. Results: At 30 cm phantom thickness, scatter to primary ratio (SPR) was 4.51 without any ASG device. SPR was reduced to 1.28 with 1DASG, and it was further reduced to 0.28 with 2DASG. Scatter transmission fraction (Ts) of 1DASG was 21%, and Ts was reduced to 5.8% with 2DASG. The average primary transmission fraction (Tp) of 1DASG was 70.6%, whereas Tp increased to 85.1% with 2DASG. Variation of Tp across 40 cm length (the long axis of flat panel detector) was 2.6%. Conclusion: When compared to conventional ASGs, the focused 2DASG can vastly improve scatter suppression and primary transmission performance. Due to precise alignment of 2DASG’s grid holes with respect to beam divergence, high degree of primary transmission through the 2DASG was maintained across the full length of the prototype. We strongly believe that robust scatter rejection and primary transmission characteristics of our 2DASG can translate into both improved quantitative accuracy and soft tissue resolution in linac mounted CBCT systems.« less

  13. Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements

    NASA Astrophysics Data System (ADS)

    Smith, Robert David

    As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

  14. Bridges and Ladders: Building the Logic and Structure for Cyberspace

    DTIC Science & Technology

    2012-06-01

    control model defends and attacks from the GIG . By comparing and contrasting the three models, the author makes a recommendation for a hybrid model to...operations in cyberspace. The directive was clear in its direction for USCYBERCOM, through USSTRATCOM, to secure the DoD global information grid ( GIG ) and...capabilities and potential breakthroughs. The GIG is comprised of 7 million devices spread across 15,000 networks that are attacked “hundreds of

  15. Benefits Analysis of Smart Grid Projects. White paper, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Liu, Liping; Yu, JianCheng

    Smart grids are rolling out internationally, with the United States (U.S.) nearing completion of a significant USD4-plus-billion federal program funded under the American Recovery and Reinvestment Act (ARRA-2009). The emergence of smart grids is widespread across developed countries. Multiple approaches to analyzing the benefits of smart grids have emerged. The goals of this white paper are to review these approaches and analyze examples of each to highlight their differences, advantages, and disadvantages. This work was conducted under the auspices of a joint U.S.-China research effort, the Climate Change Working Group (CCWG) Implementation Plan, Smart Grid. We present comparative benefits assessmentsmore » (BAs) of smart grid demonstrations in the U.S. and China along with a BA of a pilot project in Europe. In the U.S., we assess projects at two sites: (1) the University of California, Irvine campus (UCI), which consists of two distinct demonstrations: Southern California Edison’s (SCE) Irvine Smart Grid Demonstration Project (ISGD) and the UCI campus itself; and (2) the Navy Yard (TNY) area in Philadelphia, which has been repurposed as a mixed commercial-industrial, and possibly residential, development. In China, we cover several smart-grid aspects of the Sino-Singapore Tianjin Eco-city (TEC) and the Shenzhen Bay Technology and Ecology City (B-TEC). In Europe, we look at a BA of a pilot smart grid project in the Malagrotta area west of Rome, Italy, contributed by the Joint Research Centre (JRC) of the European Commission. The Irvine sub-project BAs use the U.S. Department of Energy (U.S. DOE) Smart Grid Computational Tool (SGCT), which is built on methods developed by the Electric Power Research Institute (EPRI). The TEC sub-project BAs apply Smart Grid Multi-Criteria Analysis (SG-MCA) developed by the State Grid Corporation of China (SGCC) based on the analytic hierarchy process (AHP) with fuzzy logic. The B-TEC and TNY sub-project BAs are evaluated using new approaches developed by those project teams. JRC has adopted an approach similar to EPRI’s but tailored to the Malagrotta distribution grid.« less

  16. CMOS-compatible spintronic devices: a review

    NASA Astrophysics Data System (ADS)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  17. An exploratory drilling exhaustion sequence plot program

    USGS Publications Warehouse

    Schuenemeyer, J.H.; Drew, L.J.

    1977-01-01

    The exhaustion sequence plot program computes the conditional area of influence for wells in a specified rectangular region with respect to a fixed-size deposit. The deposit is represented by an ellipse whose size is chosen by the user. The area of influence may be displayed on computer printer plots consisting of a maximum of 10,000 grid points. At each point, a symbol is presented that indicates the probability of that point being exhausted by nearby wells with respect to a fixed-size ellipse. This output gives a pictorial view of the manner in which oil fields are exhausted. In addition, the exhaustion data may be used to estimate the number of deposits remaining in a basin. ?? 1977.

  18. Finite element concepts in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.

  19. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  20. Numerical Study of Boundary Layer Interaction with Shocks: Method Improvement and Test Computation

    NASA Technical Reports Server (NTRS)

    Adams, N. A.

    1995-01-01

    The objective is the development of a high-order and high-resolution method for the direct numerical simulation of shock turbulent-boundary-layer interaction. Details concerning the spatial discretization of the convective terms can be found in Adams and Shariff (1995). The computer code based on this method as introduced in Adams (1994) was formulated in Cartesian coordinates and thus has been limited to simple rectangular domains. For more general two-dimensional geometries, as a compression corner, an extension to generalized coordinates is necessary. To keep the requirements or limitations for grid generation low, the extended formulation should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, periodicity can be assumed in one cross-flow direction. For easy vectorization, the compact-ENO coupling algorithm as used in Adams (1994) treated whole planes normal to the derivative direction with the ENO scheme whenever at least one point of this plane satisfied the detection criterion. This is apparently too restrictive for more general geometries and more complex shock patterns. Here we introduce a localized compact-ENO coupling algorithm, which is efficient as long as the overall number of grid points treated by the ENO scheme is small compared to the total number of grid points. Validation and test computations with the final code are performed to assess the efficiency and suitability of the computer code for the problems of interest. We define a set of parameters where a direct numerical simulation of a turbulent boundary layer along a compression corner with reasonably fine resolution is affordable.

  1. The 3-dimensional grid: a novel approach to stereoelectroencephalography.

    PubMed

    Munyon, Charles; Sweet, Jennifer; Luders, Hans; Lhatoo, Samden; Miller, Jonathan

    2015-03-01

    Successful surgical treatment of epilepsy requires accurate definition of areas of ictal onset and eloquent brain. Although invasive monitoring can help, subdural grids cannot sample sulci or subcortical tissue; traditional stereoelectroencephalography depth electrodes are usually placed too far apart to provide sufficient resolution for mapping. To report a strategy of depth electrode placement in a dense array to allow precise anatomic localization of epileptic and eloquent cortex. Twenty patients with medically intractable epilepsy either poorly localized or found to arise adjacent to eloquent areas underwent placement of arrays of depth electrodes into and around the putative area of seizure onset with the use of framed stereotaxy. Each array consisted of a "grid" of parallel electrodes in a rectangular pattern with 1 cm between entry sites. In a subset of patients, a few electrodes were placed initially, with additional electrodes placed in a second stage. Trajectories were modified to avoid cortical vessels defined on magnetic resonance imaging. Patients were monitored for 4 to 21 days to establish the precise location of seizure onset. Stimulation was performed to map cortical and subcortical eloquent regions. Electrode locations were coregistered for frameless stereotaxy during subsequent resection of seizure focus. Two hundred fifty-four electrodes were implanted. Discrete regions of seizure onset and functional cortex were identified, which were used during resection to remove epileptogenic tissue while preserving eloquent areas. There were no hemorrhagic or infectious complications; no patient suffered permanent neurological deficit. The 3-dimensional intraparenchymal grid is useful for identifying the location and extent of epileptic and eloquent brain.

  2. Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Wood, E. F.

    1994-01-01

    To relate general circulation model (GCM) hydrologic output to readily available river hydrographic data, a runoff routing scheme that routes gridded runoffs through regional- or continental-scale river drainage basins is developed. By following the basin overland flow paths, the routing model generates river discharge hydrographs that can be compared to observed river discharges, thus allowing an analysis of the GCM representation of monthly, seasonal, and annual water balances over large regions. The runoff routing model consists of two linear reservoirs, a surface reservoir and a groundwater reservoir, which store and transport water. The water transport mechanisms operating within these two reservoirs are differentiated by their time scales; the groundwater reservoir transports water much more slowly than the surface reservior. The groundwater reservior feeds the corresponding surface store, and the surface stores are connected via the river network. The routing model is implemented over the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project Mississippi River basin on a rectangular grid of 2 deg X 2.5 deg. Two land surface hydrology parameterizations provide the gridded runoff data required to run the runoff routing scheme: the variable infiltration capacity model, and the soil moisture component of the simple biosphere model. These parameterizations are driven with 4 deg X 5 deg gridded climatological potential evapotranspiration and 1979 First Global Atmospheric Research Program (GARP) Global Experiment precipitation. These investigations have quantified the importance of physically realistic soil moisture holding capacities, evaporation parameters, and runoff mechanisms in land surface hydrology formulations.

  3. Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel

    NASA Astrophysics Data System (ADS)

    Fouladi, Fama

    This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.

  4. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M.; Tacchi, S.

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements hasmore » been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.« less

  5. Unstable bidimensional grids of liquid filaments: Drop pattern after breakups

    NASA Astrophysics Data System (ADS)

    Diez, Javier; Cuellar, Ingrith; Ravazzoli, Pablo; Gonzalez, Alejandro

    2017-11-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops. We acknowledge support from CONICET-Argentina (Grant PIP 844/2012) and ANPCyT-Argentina (Grant PICT 931/2012).

  6. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Byrd, D; Bowen, S

    2015-06-15

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolutionmore » of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter-institution studies attempting to validate prognostic values of PET texture features in cancer treatment.« less

  7. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    NASA Astrophysics Data System (ADS)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  8. Velocity field calculation for non-orthogonal numerical grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less

  9. Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas

    NASA Astrophysics Data System (ADS)

    Ramsdale, Jason D.; Balme, Matthew R.; Conway, Susan J.; Gallagher, Colman; van Gasselt, Stephan A.; Hauber, Ernst; Orgel, Csilla; Séjourné, Antoine; Skinner, James A.; Costard, Francois; Johnsson, Andreas; Losiak, Anna; Reiss, Dennis; Swirad, Zuzanna M.; Kereszturi, Akos; Smith, Isaac B.; Platz, Thomas

    2017-06-01

    The increased volume, spatial resolution, and areal coverage of high-resolution images of Mars over the past 15 years have led to an increased quantity and variety of small-scale landform identifications. Though many such landforms are too small to represent individually on regional-scale maps, determining their presence or absence across large areas helps form the observational basis for developing hypotheses on the geological nature and environmental history of a study area. The combination of improved spatial resolution and near-continuous coverage significantly increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre and decametre-scale landforms. Here, we describe an approach for mapping small features (from decimetre to kilometre scale) across large areas, formulated for a project to study the northern plains of Mars, and provide context on how this method was developed and how it can be implemented. Rather than ;mapping; with points and polygons, grid-based mapping uses a ;tick box; approach to efficiently record the locations of specific landforms (we use an example suite of glacial landforms; including viscous flow features, the latitude dependant mantle and polygonised ground). A grid of squares (e.g. 20 km by 20 km) is created over the mapping area. Then the basemap data are systematically examined, grid-square by grid-square at full resolution, in order to identify the landforms while recording the presence or absence of selected landforms in each grid-square to determine spatial distributions. The result is a series of grids recording the distribution of all the mapped landforms across the study area. In some ways, these are equivalent to raster images, as they show a continuous distribution-field of the various landforms across a defined (rectangular, in most cases) area. When overlain on context maps, these form a coarse, digital landform map. We find that grid-based mapping provides an efficient solution to the problems of mapping small landforms over large areas, by providing a consistent and standardised approach to spatial data collection. The simplicity of the grid-based mapping approach makes it extremely scalable and workable for group efforts, requiring minimal user experience and producing consistent and repeatable results. The discrete nature of the datasets, simplicity of approach, and divisibility of tasks, open up the possibility for citizen science in which crowdsourcing large grid-based mapping areas could be applied.

  10. Linear and nonlinear properties of numerical methods for the rotating shallow water equations

    NASA Astrophysics Data System (ADS)

    Eldred, Chris

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal-pentagonal icosahedral grids and cubed-sphere grids are presented. Finally, some remarks and thoughts about the suitability of these two schemes as the basis for atmospheric dynamical development are given.

  11. Periodic shunted arrays for the control of noise radiation in an enclosure

    NASA Astrophysics Data System (ADS)

    Casadei, Filippo; Dozio, Lorenzo; Ruzzene, Massimo; Cunefare, Kenneth A.

    2010-08-01

    This work presents numerical and experimental investigations of the application of a periodic array of resistive-inductive (RL) shunted piezoelectric patches for the attenuation of broadband noise radiated by a flexible plate in an enclosed cavity. A 4×4 lay-out of piezoelectric patches is bonded to the surface of a rectangular plate fully clamped to the top face of a rectangular cavity. Each piezo-patch is shunted through a single RL circuit, and all shunting circuits are tuned at the same frequency. The response of the resulting periodic structure is characterized by frequency bandgaps where vibrations and associated noise are strongly attenuated. The location and extent of induced bandgaps are predicted by the application of Bloch theorem on a unit cell of the periodic assembly, and they are controlled by proper selection of the shunting circuit impedance. A coupled piezo-structural-acoustic finite element model is developed to evaluate the noise reduction performance. Strong attenuation of multiple panel-controlled modes is observed over broad frequency bands. The proposed concept is tested on an aluminum plate mounted in a wooden box and driven by a shaker. Experimental results are presented in terms of pressure responses recorded using a grid of microphones placed inside the acoustic box.

  12. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  13. A hollow cathode neutralizer for a 30-cm diameter bombardment thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.

    1973-01-01

    Recent improvements in overall thrustor performance have imposed new constraints on neutralizer performance. The use of compensated grid extraction system requires a re-evaluation of neutralizer position. In addition a suitable control logic for the neutralizer has proven difficult. A series of tests were conducted to determine what effect neutralizer cathode geometry has on performance. The parameters investigated included orifice diameter and length, and cathode diameter. Similar tests investigated open and enclosed keeper geometries. Neutralizer position tests with compensated grids suggest positions approximately 10 cm from the accelerator and radially out of the beam envelope should result in satisfactory performance and long life. Finally operation at keeper currents of 1.5 amp has resulted in lower total neutralizer power, the elimination of tip heater power, and suitable closed loop control of the neutralizer vaporizer.

  14. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.

  15. DEC Ada interface to Screen Management Guidelines (SMG)

    NASA Technical Reports Server (NTRS)

    Laomanachareon, Somsak; Lekkos, Anthony A.

    1986-01-01

    DEC's Screen Management Guidelines are the Run-Time Library procedures that perform terminal-independent screen management functions on a VT100-class terminal. These procedures assist users in designing, composing, and keeping track of complex images on a video screen. There are three fundamental elements in the screen management model: the pasteboard, the virtual display, and the virtual keyboard. The pasteboard is like a two-dimensional area on which a user places and manipulates screen displays. The virtual display is a rectangular part of the terminal screen to which a program writes data with procedure calls. The virtual keyboard is a logical structure for input operation associated with a physical keyboard. SMG can be called by all major VAX languages. Through Ada, predefined language Pragmas are used to interface with SMG. These features and elements of SMG are briefly discussed.

  16. Study and Construction of Electrostatic Biprisms Useful in Corpuscular Optics; ETUDE ET REALISATION DE BIPRISMES ELECTROSTATIQUES UTILISABLES EN OPTIQUE CORPUSCULAIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Septier, A.

    1960-03-01

    In the simultaneous injection of two beams identical except in direction in an FFAG cyclotron, two beams of equal intensity and energy are needed. The two beams can be produced either by alternating the direction of a single beam by very short, rectangular, high-voltage pulses fed to a deflector, or by chopping the beam with a static apparatus. The second method was investigated because of its simplicity. The principles and properties of the electrostatic biprism are presented. Three cases are then considered: a wire stretched between two plates, a grid between two plates, and a plate between two flat conductors.more » (T.R.H.)« less

  17. Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer

    NASA Technical Reports Server (NTRS)

    Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.

    1993-01-01

    We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.

  18. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  19. Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface

    NASA Astrophysics Data System (ADS)

    Coco, Armando; Russo, Giovanni

    2018-05-01

    In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.

  20. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    PubMed

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. Smart Grid Information Clearinghouse (SGIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.« less

  2. Intelligent Patching of Conceptual Geometry for CFD Analysis

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2010-01-01

    The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect the second surface. No two intersection relationships will result in a common intersection point of three surfaces. The output files of iPatch are IGES, d3m, and mapbc files that define the CFD geometry in VGRID format. The IGES file gives the NURBS definition of the outer mold line in the geometry. The d3m file defines how the outer mold line is broken into surface patches whose boundary curves are defined by points. The mapbc file specifies what the boundary condition is on each patch and the corresponding NURBS surface definition of each non-planar patch in the IGES file.

  3. 2.5D complex resistivity modeling and inversion using unstructured grids

    NASA Astrophysics Data System (ADS)

    Xu, Kaijun; Sun, Jie

    2016-04-01

    The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are segmented with fine grids and the background zones are segmented with big grid, the method can reduce the grid amounts of inversion, it is very helpful to improve the computational efficiency. The inversion results verify the validity and stability of conjugate gradient inversion algorithm. The results of theoretical calculation indicate that the modeling and inversion of 2.5D complex resistivity using unstructured grids are feasible. Using unstructured grids can improve the accuracy of modeling, but the large number of grids inversion is extremely time-consuming, so the parallel computation for the inversion is necessary. Acknowledgments: We thank to the support of the National Natural Science Foundation of China(41304094).

  4. Efficient parallel seismic simulations including topography and 3-D material heterogeneities on locally refined composite grids

    NASA Astrophysics Data System (ADS)

    Petersson, Anders; Rodgers, Arthur

    2010-05-01

    The finite difference method on a uniform Cartesian grid is a highly efficient and easy to implement technique for solving the elastic wave equation in seismic applications. However, the spacing in a uniform Cartesian grid is fixed throughout the computational domain, whereas the resolution requirements in realistic seismic simulations usually are higher near the surface than at depth. This can be seen from the well-known formula h ≤ L-P which relates the grid spacing h to the wave length L, and the required number of grid points per wavelength P for obtaining an accurate solution. The compressional and shear wave lengths in the earth generally increase with depth and are often a factor of ten larger below the Moho discontinuity (at about 30 km depth), than in sedimentary basins near the surface. A uniform grid must have a grid spacing based on the small wave lengths near the surface, which results in over-resolving the solution at depth. As a result, the number of points in a uniform grid is unnecessarily large. In the wave propagation project (WPP) code, we address the over-resolution-at-depth issue by generalizing our previously developed single grid finite difference scheme to work on a composite grid consisting of a set of structured rectangular grids of different spacings, with hanging nodes on the grid refinement interfaces. The computational domain in a regional seismic simulation often extends to depth 40-50 km. Hence, using a refinement ratio of two, we need about three grid refinements from the bottom of the computational domain to the surface, to keep the local grid size in approximate parity with the local wave lengths. The challenge of the composite grid approach is to find a stable and accurate method for coupling the solution across the grid refinement interface. Of particular importance is the treatment of the solution at the hanging nodes, i.e., the fine grid points which are located in between coarse grid points. WPP implements a new, energy conserving, coupling procedure for the elastic wave equation at grid refinement interfaces. When used together with our single grid finite difference scheme, it results in a method which is provably stable, without artificial dissipation, for arbitrary heterogeneous isotropic elastic materials. The new coupling procedure is based on satisfying the summation-by-parts principle across refinement interfaces. From a practical standpoint, an important advantage of the proposed method is the absence of tunable numerical parameters, which seldom are appreciated by application experts. In WPP, the composite grid discretization is combined with a curvilinear grid approach that enables accurate modeling of free surfaces on realistic (non-planar) topography. The overall method satisfies the summation-by-parts principle and is stable under a CFL time step restriction. A feature of great practical importance is that WPP automatically generates the composite grid based on the user provided topography and the depths of the grid refinement interfaces. The WPP code has been verified extensively, for example using the method of manufactured solutions, by solving Lamb's problem, by solving various layer over half- space problems and comparing to semi-analytic (FK) results, and by simulating scenario earthquakes where results from other seismic simulation codes are available. WPP has also been validated against seismographic recordings of moderate earthquakes. WPP performs well on large parallel computers and has been run on up to 32,768 processors using about 26 Billion grid points (78 Billion DOF) and 41,000 time steps. WPP is an open source code that is available under the Gnu general public license.

  5. Optimize of shrink process with X-Y CD bias on hole pattern

    NASA Astrophysics Data System (ADS)

    Koike, Kyohei; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Oyama, Kenichi; Yaegashi, Hidetami

    2017-03-01

    Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][4] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. We tried to cure hole pattern roughness to use additional process such as Line smoothing[5] . Each smoothing process showed different effect. As the result, CDx shrink amount is smaller than CDy without one additional process. In this paper, we will report the pattern controllability comparison of EUV and 193-immersion. And we will discuss optimum method about CD bias on hole pattern.

  6. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    NASA Astrophysics Data System (ADS)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  7. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  8. LHCb experience with LFC replication

    NASA Astrophysics Data System (ADS)

    Bonifazi, F.; Carbone, A.; Perez, E. D.; D'Apice, A.; dell'Agnello, L.; Duellmann, D.; Girone, M.; Re, G. L.; Martelli, B.; Peco, G.; Ricci, P. P.; Sapunenko, V.; Vagnoni, V.; Vitlacil, D.

    2008-07-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  9. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousbie, Thierry, E-mail: tsousbie@gmail.com; Department of Physics, The University of Tokyo, Tokyo 113-0033; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033

    2016-09-15

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the bestmore » way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.« less

  10. A random spatial network model based on elementary postulates

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  11. Analysis of sound propagation in ducts using the wave envelope concept

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1974-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.

  12. Assessing Multiple Methods for Determining Active Source Travel Times in a Dense Array

    NASA Astrophysics Data System (ADS)

    Parker, L.; Zeng, X.; Thurber, C. H.; Team, P.

    2016-12-01

    238 three-component nodal seismometers were deployed at the Brady Hot Springs geothermal field in Nevada to characterize changes in the subsurface as a result of changes in pumping conditions. The array consisted of a 500 meter by 1600 meter irregular grid with 50 meter spacing centered in an approximately rectangular 1200 meter by 1600 meter grid with 200 meter spacing. A large vibroseis truck (T-Rex) was deployed as an active seismic source at 216 locations. Over the course of 15 days, the truck occupied each location up to four times. At each location a swept-frequency source between 5 and 80 Hz over 20 seconds was produced using three vibration modes: longitudinal S-wave, transverse S-wave, and P-wave. Seismic wave arrivals were identified using three methods: cross-correlation, deconvolution, and Wigner-Ville distribution (WVD) plus the Hough Transform (HT). Surface wave arrivals were clear for all three modes of vibration using all three methods. Preliminary tomographic models will be presented, using the arrivals of the identified phases. This analysis is part of the PoroTomo project: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology; http://geoscience.wisc.edu/feigl/porotomo.

  13. Xgrid admin guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Charlie E M

    2010-01-01

    Xgrid, with a capital-X is the name for Apple's grid computing system. With a lower case x, xgrid is the name of the command line utility that clients can use, among other ways, to submit jobs to a controller. An Xgrid divides into three logical components: Agent, Controller and Client. Client computers submit jobs (a set of tasks) they want run to a Controller computer. The Controller queues the Client jobs and distributes tasks to Agent computers. Agent computers run the tasks and report their output and status back to the controller where it is stored until deleted by themore » Client. The Clients can asynchronously query the controller about the status of a job and the results. Any OSX computer can be any of these. A single mac can be more than one: it's possible to be Agent, Controller and Client at the same time. There is one Controller per Grid. Clients can submit jobs to Controllers of different grids. Agents can work for more than one grid. Xgrid's setup has a pleasantly small palette of choices. The first two decisions to make are the kind of authentication & authorization to use and if a shared file system is needed. A shared file system that all the agents can access can be very beneficial for many computing problems, but it is not appropriate for every network.« less

  14. Design and performance analysis of generalised integrator-based controller for grid connected PV system

    NASA Astrophysics Data System (ADS)

    Saxena, Hemant; Singh, Alka; Rai, J. N.

    2018-07-01

    This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.

  15. Stability assessment of structures under earthquake hazard through GRID technology

    NASA Astrophysics Data System (ADS)

    Prieto Castrillo, F.; Boton Fernandez, M.

    2009-04-01

    This work presents a GRID framework to estimate the vulnerability of structures under earthquake hazard. The tool has been designed to cover the needs of a typical earthquake engineering stability analysis; preparation of input data (pre-processing), response computation and stability analysis (post-processing). In order to validate the application over GRID, a simplified model of structure under artificially generated earthquake records has been implemented. To achieve this goal, the proposed scheme exploits the GRID technology and its main advantages (parallel intensive computing, huge storage capacity and collaboration analysis among institutions) through intensive interaction among the GRID elements (Computing Element, Storage Element, LHC File Catalogue, federated database etc.) The dynamical model is described by a set of ordinary differential equations (ODE's) and by a set of parameters. Both elements, along with the integration engine, are encapsulated into Java classes. With this high level design, subsequent improvements/changes of the model can be addressed with little effort. In the procedure, an earthquake record database is prepared and stored (pre-processing) in the GRID Storage Element (SE). The Metadata of these records is also stored in the GRID federated database. This Metadata contains both relevant information about the earthquake (as it is usual in a seismic repository) and also the Logical File Name (LFN) of the record for its later retrieval. Then, from the available set of accelerograms in the SE, the user can specify a range of earthquake parameters to carry out a dynamic analysis. This way, a GRID job is created for each selected accelerogram in the database. At the GRID Computing Element (CE), displacements are then obtained by numerical integration of the ODE's over time. The resulting response for that configuration is stored in the GRID Storage Element (SE) and the maximum structure displacement is computed. Then, the corresponding Metadata containing the response LFN, earthquake magnitude and maximum structure displacement is also stored. Finally, the displacements are post-processed through a statistically-based algorithm from the available Metadata to obtain the probability of collapse of the structure for different earthquake magnitudes. From this study, it is possible to build a vulnerability report for the structure type and seismic data. The proposed methodology can be combined with the on-going initiatives to build a European earthquake record database. In this context, Grid enables collaboration analysis over shared seismic data and results among different institutions.

  16. Eigensolution of finite element problems in a completely connected parallel architecture

    NASA Technical Reports Server (NTRS)

    Akl, F.; Morel, M.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm is successfully implemented on a tightly coupled MIMD parallel processor. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts, and the dimension of the subspace on the performance of the algorithm is investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18, and 3.61 are achieved on two, four, six, and eight processors, respectively.

  17. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Shi, Ruchao; Batra, Romesh C.

    2018-02-01

    We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.

  18. Crystal defects in solar cells produced by the method of thermomigration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozovskii, V. N.; Lomov, A. A.; Lunin, L. S.

    2017-03-15

    The results of studying the crystal structure of regions in silicon, recrystallized during the course of thermomigration of the liquid Si–Al zone in the volume of the silicon substrate, are reported (similar regions doped with an acceptor impurity are used to obtain high-voltage solar cells). X-ray methods (including measurements of both diffraction-reflection curves and topograms) and also high-resolution electron microscopy indicate that single-crystal regions in the form of a series of thin strips or rectangular grids are formed as a result of the thermomigration of liquid zones. Dislocation half-loops are detected in the surface layers of the front and backmore » surfaces of the substrate. (311)-type defects are observed in the recrystallized regions.« less

  19. A MISO UCA Beamforming Dimmable LED System for Indoor Positioning

    PubMed Central

    Taparugssanagorn, Attaphongse; Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos

    2014-01-01

    The use of a multiple input single output (MISO) transmit beamforming system using dimmable light emitting arrays (LEAs) in the form of a uniform circular array (UCA) of transmitters is proposed in this paper. With this technique, visible light communications between a transmitter and a receiver (LED reader) can be achieved with excellent performance and the receiver's position can be estimated. A hexagonal lattice alignment of LED transmitters is deployed to reduce the coverage holes and the areas of overlapping radiation. As a result, the accuracy of the position estimation is better than when using a typical rectangular grid alignment. The dimming control is done with pulse width modulation (PWM) to obtain an optimal closed loop beamforming and minimum energy consumption with acceptable lighting. PMID:24481234

  20. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-08-23

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz.

  1. Sensitivity of Tsunami Waves and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction zone

    NASA Astrophysics Data System (ADS)

    Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.

    2015-12-01

    Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high-resolution bathymetric/topographic computational grids to identify accurate tsunami impact and flooding limits for the west of USA.

  2. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  3. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Tushita, E-mail: tp3rn@virginia.edu; Peppard, Heather; Williams, Mark B.

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less

  4. 76 FR 9547 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... light-walled rectangular pipe and tube from Mexico. See Light-Walled Rectangular Pipe and Tube From...

  5. Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments

    NASA Astrophysics Data System (ADS)

    Cuellar, Ingrith; Ravazzoli, Pablo D.; Diez, Javier A.; González, Alejandro G.

    2017-10-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops, and its predictions are successfully compared with the experimental data as well as with numerical simulations of the full Navier-Stokes equation that provide a detailed time evolution of the dewetting motion of the filament till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing theories for infinite ones.

  6. An Evaluation of Frangible Materials as Veneers on Vented Structural Member Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jameson, Kevin Jay

    2015-10-01

    Literature shows there has been extensive research and testing done in the area of wall panels and frangible materials. There is evidence from past research that shows it is possible to vent a structure that has had an accidental internal explosion [1]. The reviewed literature shows that most designs vent the entire wall panel versus a frangible material attached to the wall panel. The frangible material attachment points are important to determine the overall loading of the wall panel structure [2]. The materials used in the reviewed literature were securely attached as well as strong enough to remain intact duringmore » the pressure loading to move the entire wall panel. Since the vented wall panel was the weakest part of the overall structure, the other walls of the structure were substantially larger. The structure was usually built from concrete and large amounts of steel with dirt and sand over the top of the structure.The study will be conducted at Sandia National Laboratories located in Albuquerque New Mexico. The skeletal structural design for evaluation is a rectangular frame with a square grid pattern constructed from steel. The skeletal structure has been given to the researcher as a design requirement. The grid pattern will be evaluated strictly on plastic deformation and the loading that is applied from the frangible material. The frangible material tested will either fit into the grid or will be a veneer lightly attached to the structure frame. The frangible material may be required on both sides of the structure to adequately represent the application.« less

  7. Deformable image registration with a featurelet algorithm: implementation as a 3D-slicer extension and validation

    NASA Astrophysics Data System (ADS)

    Renner, A.; Furtado, H.; Seppenwoolde, Y.; Birkfellner, W.; Georg, D.

    2016-03-01

    A radiotherapy (RT) treatment can last for several weeks. In that time organ motion and shape changes introduce uncertainty in dose application. Monitoring and quantifying the change can yield a more precise irradiation margin definition and thereby reduce dose delivery to healthy tissue and adjust tumor targeting. Deformable image registration (DIR) has the potential to fulfill this task by calculating a deformation field (DF) between a planning CT and a repeated CT of the altered anatomy. Application of the DF on the original contours yields new contours that can be used for an adapted treatment plan. DIR is a challenging method and therefore needs careful user interaction. Without a proper graphical user interface (GUI) a misregistration cannot be easily detected by visual inspection and the results cannot be fine-tuned by changing registration parameters. To provide a DIR algorithm with such a GUI available for everyone, we created the extension Featurelet-Registration for the open source software platform 3D Slicer. The registration logic is an upgrade of an in-house-developed DIR method, which is a featurelet-based piecewise rigid registration. The so called "featurelets" are equally sized rectangular subvolumes of the moving image which are rigidly registered to rectangular search regions on the fixed image. The output is a deformed image and a deformation field. Both can be visualized directly in 3D Slicer facilitating the interpretation and quantification of the results. For validation of the registration accuracy two deformable phantoms were used. The performance was benchmarked against a demons algorithm with comparable results.

  8. Spectral Properties of Dirac Billiards at the van Hove Singularities.

    PubMed

    Dietz, B; Klaus, T; Miski-Oglu, M; Richter, A; Wunderle, M; Bouazza, C

    2016-01-15

    We study distributions of the ratios of level spacings of rectangular and Africa-shaped superconducting microwave resonators containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs). The high-precision measurements allowed the determination of, respectively, all 1651 and 1823 eigenfrequencies in the first two bands. The resonance densities are similar to that of graphene. They exhibit two sharp peaks at the van Hove singularities which separate the band structure into regions with a linear and a quadratic dispersion relation, respectively. In the vicinity of the van Hove singularities we observe rapid changes in, e.g., the wave function structure. Accordingly, we question whether the spectral properties are there still determined by the shapes of the DBs. The commonly used statistical measures are no longer applicable; however, we demonstrate in this Letter that the ratio distributions provide suitable measures.

  9. A Boundary Delineation System for the Bureau of Ocean Energy Management

    NASA Astrophysics Data System (ADS)

    Vandegraft, Douglas L.

    2018-05-01

    Federal government mapping of the offshore areas of the United States in support of the development of oil and gas resources began in 1954. The first mapping system utilized a network of rectangular blocks defined by State Plane coordinates which was later revised to utilize the Universal Transverse Mercator grid. Creation of offshore boundaries directed by the Submerged Lands Act and Outer Continental Shelf Lands Act were mathematically determined using early computer programs that performed the required computations, but required many steps. The Bureau of Ocean Energy Management has revised these antiquated methods using GIS technology which provide the required accuracy and produce the mapping products needed for leasing of energy resources, including renewable energy projects, on the outer continental shelf. (Note: this is an updated version of a paper of the same title written and published in 2015).

  10. Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.; Schaubert, D. H.

    1984-01-01

    A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.

  11. The CRONOS Code for Astrophysical Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kissmann, R.; Kleimann, J.; Krebl, B.; Wiengarten, T.

    2018-06-01

    We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space-physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem in hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the code’s potential through several (M)HD test problems and some astrophysical applications.

  12. On the electromagnetic scattering from infinite rectangular grids with finite conductivity

    NASA Technical Reports Server (NTRS)

    Christodoulou, C. G.; Kauffman, J. F.

    1986-01-01

    A variety of methods can be used in constructing solutions to the problem of mesh scattering. However, each of these methods has certain drawbacks. The present paper is concerned with a new technique which is valid for all spacings. The new method involved, called the fast Fourier transform-conjugate gradient method (FFT-CGM), represents an iterative technique which employs the conjugate gradient method to improve upon each iterate, utilizing the fast Fourier transform. The FFT-CGM method provides a new accurate model which can be extended and applied to the more difficult problems of woven mesh surfaces. The formulation of the FFT-conjugate gradient method for aperture fields and current densities for a planar periodic structure is considered along with singular operators, the formulation of the FFT-CG method for thin wires with finite conductivity, and reflection coefficients.

  13. Earth observation

    NASA Image and Video Library

    2014-09-06

    ISS040-E-124198 (6 Sept. 2014) --- Puget Sound is partly reflecting the sun in this detailed image taken by an Expedition 40 crew member on the International Space Station. Patterns of boat wakes are prominent in the sun’s partial reflection zone. The difference between the boat wakes in this view relates to the speed of the boat and the particular patterns (of several) that happen to be captured in the specific light reflection angles at the time the image was taken. The land areas show parts of Seattle. The darkest areas with rectangular grids are suburbs richly covered with trees. The broadly gray zones of the central city (bottom center) are brighter where structures are lower, as in the harbor zone (Harbor Island), and darker where the shadows of high-rise buildings downtown cast black shadows. Interstate Highway 5 bisects downtown.

  14. Results of the radiological survey at 31 Lily Street, Albany, New York (AL171)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espergren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 31 Lily Street in Albany, New York was the subject of a radiological investigation initiated July 19, 1986. The residential property consists of a one-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 4-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/18 m wide by 25 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  15. Results of the radiological survey at 23 Lily Street, Albany, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.; Carrier, R.F.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 23 Lily Street in Albany, New York (AL174), was the subject of a radiological investigation initiated July 21, 1986. The residential property consists of a two-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 5-m grid network established for measurements outside the house is shown. The lotmore » included in the radiological survey was /approximately/20 m wide by 30 m deep. Front and side views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  16. Results of the radiological survey at 20 Lily Street, Albany, New York (AL168)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 20 Lily Street in Albany, New York, was the subject of a radiological investigation initiated July 18, 1986. The residential property consists of a two-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 5-m grid network established for measurements outside the house is shown. the lot includedmore » in the radiological survey was /approximately/14 m wide by 37 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  17. Results of the radiological survey at 22 Lily Street, Albany, New York (AL169)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 22 Lily Street in Albany, New York, was the subject of a radiological investigation initiated July 18, 1986. The residential property consists of a two-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 4-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/11 m wide by 30 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  18. Results of the radiological survey at 21 Lily Street, Albany, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 21 Lily Street in Albany, New York (AL164) was the subject of a radiological investigation initiated July 16, 1986. The residential property consists of a two-story frame house located on a rectangular lot. A gravel drive is located on the lot. A diagram of the property showing the approximate boundaries and the 5-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/21 m wide by 26 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  19. Results of the radiological survey at 18 Lily Street, Albany, New York (AL167)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 18 Lily Street in Albany, New York was the subject of a radiological investigation initiated July 18, 1986. The residential property consists of a two-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 5-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/15 m wide by 37 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  20. Results of the radiological survey at 15 Lily Street, Albany, New York (AL165)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 15 Lily Street in Albany, New York was the subject of a radiological investigation initiated July 17, 1986. The residential property consists of a one-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 4-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/20 m wide by 26 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  1. Results of the radiological survey at 27 Lily Street, Albany, New York (AL172)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.; Carrier, R.F.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 27 Lily Street in Albany, New York, was the subject of a radiological investigation initiated July 19, 1986. The residential property consists of a two-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 5-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/20 m wide by 34 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  2. Results of the radiological survey at 26 Lily Street, Albany, New York (AL170)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espegren, M.L.; Marley, J.L.

    1987-12-01

    A number of properties in the Albany/Colonie area have been identified as being potentially contaminated with uranium originating from the former National Lead Company's uranium forming plant in Colonie, New York. The property at 26 Lily Street in Albany, New York, was the subject of a radiological investigation initiated July 18, 1986. The residential property consists of a two-story frame house located on a rectangular lot. An asphalt driveway connects the house to the street. A diagram of the property showing the approximate boundaries and the 10-m grid network established for measurements outside the house is shown. The lot includedmore » in the radiological survey was /approximately/29 m wide by 74 m deep. Front and rear views of the property are shown. 13 refs., 5 figs., 5 tabs.« less

  3. Lithospheric thickness variations across the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Cornwell, D. G.; Houseman, G.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Kahraman, M.; Gulen, L.; Utkucu, M.; Williams, J. R.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault zone, similar in size and scale to the San Andreas system, that extends 1200km across Turkey. These type of faults may broaden significantly with depth or penetrate as narrow features all the way to the lithosphere-asthenosphere boundary (LAB), potentially providing pathways for fluids and magma to shallower levels. The Dense Array for North Anatolia (DANA) was a 73 station broadband seismic network arranged in a rectangular grid (7km station spacing) deployed to image the deep structure of the fault zone. We present here new S-receiver function images that map out both the depth to the Moho and to negative velocity gradients commonly ascribed to the LAB, with preliminary results suggesting lithospheric thicknesses on the order of 80-100km for the region.

  4. Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain)

    NASA Astrophysics Data System (ADS)

    Martínez, J.; Rey, J.; Gutiérrez, L. M.; Novo, A.; Ortiz, A. J.; Alejo, M.; Galdón, J. M.

    2015-12-01

    The Giribaile archaeological site is one of the most important Iberian enclaves of the Alto Guadalquivir (Southern Spain). However, to date, only minimal excavation work has been performed at the site. Evaluation requires a preliminary, non-destructive general analysis to determine high-interest areas. This stage required a geophysical survey. Specifically, a 100 m2 grid was selected, where an initial campaign of nine electrical resistivity imaging (ERI) profiles was performed, where each profile was 111 m in length; these profiles were previously located using a detailed topographical survey. A total of 112 electrodes were used for each profile, spaced at 1 m apart with a Wenner-Schlumberger configuration. Secondly, 201 GPR profiles were created using a 500 MHz antenna. The 100 m long profiles were spaced 0.5 m apart and parallel to one another. The present research analyses the efficiency of each of these geophysical tools in supporting archaeological research. Using these methodologies, the position, morphology, and depth of different buried structures can be determined. 3D interpretation of the geophysical survey in 100 × 100 m grid allowed to differentiate structures square and rectangular, interesting buildings in a semicircle (interpreted as ovens) plus delineate different streets. From the geophysical survey follows the Carthaginian presence inside this ancient Iberian enclave.

  5. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  6. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, P.; Neuberg, J.

    2003-04-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on rheological magma properties and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2D finite difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a 2D homogeneous viscoelastic medium with topography. Topography is introduced by using a mapping procedure that stretches the computational rectangular grid into a grid which follows the topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid for seismic frequencies (i.e., above 2 Hz). Results demonstrate that attenuation modifies both amplitude and dispersive characteristics of low-frequency earthquakes. Low-frequency events are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  7. Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Milanič, Matija; Premru, Jan

    2015-01-01

    In three-dimensional (3-D) modeling of light transport in heterogeneous biological structures using the Monte Carlo (MC) approach, space is commonly discretized into optically homogeneous voxels by a rectangular spatial grid. Any round or oblique boundaries between neighboring tissues thus become serrated, which raises legitimate concerns about the realism of modeling results with regard to reflection and refraction of light on such boundaries. We analyze the related effects by systematic comparison with an augmented 3-D MC code, in which analytically defined tissue boundaries are treated in a rigorous manner. At specific locations within our test geometries, energy deposition predicted by the two models can vary by 10%. Even highly relevant integral quantities, such as linear density of the energy absorbed by modeled blood vessels, differ by up to 30%. Most notably, the values predicted by the customary model vary strongly and quite erratically with the spatial discretization step and upon minor repositioning of the computational grid. Meanwhile, the augmented model shows no such unphysical behavior. Artifacts of the former approach do not converge toward zero with ever finer spatial discretization, confirming that it suffers from inherent deficiencies due to inaccurate treatment of reflection and refraction at round tissue boundaries.

  8. Rectangularization of the survival curve in The Netherlands, 1950-1992.

    PubMed

    Nusselder, W J; Mackenbach, J P

    1996-12-01

    In this article we determine whether rectangularization of the survival curve occurred in the Netherlands in the period 1950-1992. Rectangularization is defined as a trend toward a more rectangular shape of the survival curve due to increased survival and concentration of deaths around the mean age at death. We distinguish between absolute and relative rectangularization, depending on whether an increase in life expectancy is accompanied by concentration of deaths into a smaller age interval or into a smaller proportion of total life expectancy. We used measures of variability based on Keyfitz' H and the standard deviation, both life table-based. Our results show that absolute and relative rectangularization of the entire survival curve occurred in both sexes and over the complete period (except for the years 1955-1959 and 1965-1969 in men). At older ages, results differ between sexes, periods, and an absolute versus a relative definition of rectangularization. Above age 60 1/2, relative rectangularization occurred in women over the complete period and in men since 1975-1979 only, whereas absolute rectangularization occurred in both sexes since the period of 1980-1984. The implications of the recent rectangularization at older ages for achieving compression of morbidity are discussed.

  9. A Vectorized ’Nearest-Neighbors’ Algorithm of Order N Using a Monotonic Logical Grid

    DTIC Science & Technology

    1985-05-29

    Computational Phy’sics 0 4 May 29 , 1985 This work was supported by the Office of Naval Research. . ~ Q~JUN 1719851- * NAVAL RESEARCH LABORATORY * lit...YE ’.ARK:NGS UNCLASSIFIED_______________ _____ K -. A R, ~ CA7,ON 4, 71CO1, 3 :)-S7R,9U-ON AdA,.A3:L ’Y OF REPOR7Io - EC..ASi.’ CA27 ON., DOWNGAZING...Year. Month. Day) 5 PAGE COUNT Interim FROM -____ Toi__ 1985 May 29 50 𔄀 SuPPILSMENTARY NOTATION This work was supported by the Office of Naval

  10. The 2002 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Bland, J. (Compiler)

    2003-01-01

    Contents include the following: System Identification of X-33. Neural Network Advanced Ceramic Technology for Space Applications at NASA MSFC. Developing a MATLAB-Based Tool for Visualization and Transformation. Subsurface Stress Fields in Single Crystal (Anisotropic). Contacts Our Space Future: A Challenge to the Conceptual Artist Concept Art for Presentation and Education. Identification and Characterization of Extremophile Microorganisms. Significant to Astrobiology. Mathematical Investigation of Gamma Ray and Neutron. Absorption Grid Patterns for Homeland Defense-Related Fourier Imaging Systems. The Potential of Microwave Radiation for Processing Martian Soil. Fuzzy Logic Trajectory Design and Guidance for Terminal Area.

  11. Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Zhang, Lei

    2006-07-01

    A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.

  12. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  13. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Milos Manic

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less

  14. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  15. Extending OPeNDAP's Data-Access Protocol to Include Enhanced Pre-Retrieval Operations

    NASA Astrophysics Data System (ADS)

    Fulker, D. W.

    2013-12-01

    We describe plans to extend OPeNDAP's Web-services protocol as a Building Block for NSF's EarthCube initiative. Though some data-access services have offered forms of subset-selection for decades, other pre-retrieval operations have been unavailable, in part because their benefits (over equivalent post-retrieval actions) are only now becoming fully evident. This is due in part to rapid growth in the volumes of data that are pertinent to the geosciences, exacerbated by limitations such as Internet speeds and latencies as well as pressures toward data usage on ever-smaller devices. In this context, as recipients of a "Building Blocks" award from the most recent round of EarthCube funding, we are launching the specification and prototype implementation of a new Open Data Services Invocation Protocol (ODSIP), by which clients may invoke a newly rich set of data-acquisition services, ranging from statistical summarization and criteria-driven subsetting to re-gridding/resampling. ODSIP will be an extension to DAP4, the latest version of OPeNDAP's widely used data access protocol, which underpins a number of open-source, multilingual, client-server systems (offering data access as a Web service), including THREDDS, PyDAP, GrADS, ERDAP and FERRET, as well as OPeNDAP's own Hyrax servers. We are motivated by the idea that key parts of EarthCube can be built effectively around clients and servers that employ a common and conceptually rich protocol for data acquisition. This concept extends 'data provision' to include pre-retrieval operations that, even when invoked by remote clients, exhibit efficiencies of data-proximate computation. Our aim for ODSIP is to embed a largely domain-neutral algebra of server functions that, despite being deliberately compact, can fulfill a broad range of user needs for pre-retrieval operations. To that end, our approach builds upon languages and tools that have proven effective in multi-domain contexts, and we will employ a user-centered design process built around three science scenarios: 1) accelerated visualization/analysis of model outputs on non-rectangular meshes (over coastal North Carolina); 2) dynamic downscaling of climate predictions for regional utility (over Hawaii); and 3) feature-oriented retrievals of satellite imagery (focusing on satellite-derived sea-surface-temperature fronts). These scenarios will test important aspects of the server-function algebra: * The Hawaii climate study requires coping with issues of scale on rectangular grids, placing strong emphasis on statistical functions. * The east-coast storm-surge study requires irregular grids, thus exploring mathematical challenges that have been addressed in many domains via the GridFields library, which we will employ. We think important classes of geoscience problems in multiple domains--where dealing with discontinuities, for example--are essentially intractable without polygonal meshes. * The sea-surface fronts study integrates vector-style features with array-style coverages, thus touching on the kinds of mathematics that arise when mixing Eulerian and Lagrangian frameworks. Our presentation will sketch the context for ODSIP, our process for a user-centered design, and our hopes for how ODSIP, as an emerging cyberinfrastructure concept for the Geosciences, may serve as a fundamental building block for EarthCube.

  16. Biography of a technology: North America's power grid through the twentieth century

    NASA Astrophysics Data System (ADS)

    Cohn, Julie A.

    North Americans are among the world's most intense consumers of electricity. The vast majority in the United States and Canada access power from a network of transmission lines that stretch from the East Coast to the West Coast and from Canada to the Mexican Baja. This network, known as the largest interconnected machine in the world, evolved during the first two thirds of the twentieth century. With the very first link-ups occurring at the end of the 1890s, a wide variety of public and private utilities extended power lines to reach markets, access and manage energy resources, balance loads, realize economies of scale, provide backup power, and achieve economic stability. In 1967, utility managers and the Bureau of Reclamation connected the expansive eastern and western power pools to create the North American grid. Unlike other power grids around the world, built by single, centrally controlled entities, this large technological system emerged as the result of multiple decisions across eighty-five years of development, and negotiations for control at the economic, political, and technological levels. This dissertation describes the process of building the North American grid and the paradoxes the resulting system represents. While the grid functions as a single machine moving electricity across the continent, it is owned by many independent entities. Smooth operations suggest that the grid is a unified system; however, it operates under shared management and divided authority. In addition, although a single power network seems the logical outcome of electrification, in fact it was assembled through aggregation, not planning. Interconnections intentionally increase the robustness of individual sub-networks, yet the system itself is fragile, as demonstrated by major cascading power outages. Finally, the transmission network facilitates increased use of energy resources and consumption of power, but at certain points in the past, it also served as a technology of conservation. While this project explores the history of how and why North America has a huge interconnected power system, it also offers insights into the challenges the grid poses for our energy future.

  17. Evaluation of automated global mapping of Reference Soil Groups of WRB2015

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria

    2017-04-01

    SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992

  18. Reduced dynamical model of the vibrations of a metal plate

    NASA Astrophysics Data System (ADS)

    Moreno, D.; Barrientos, Bernardino; Perez-Lopez, Carlos; Mendoza-Santoyo, Fernando; Guerrero, J. A.; Funes, M.

    2005-02-01

    The Proper Orthogonal Decomposition (POD) method is applied to the vibrations analysis of a metal plate. The data obtained from the metal plate under vibrations were measured with a laser vibrometer. The metal plate was subject to vibrations with an electrodynamical shaker in a range of frequencies from 100 to 5000 Hz. The deformation measurements were taken on a quarter of the plate in a rectangular grid of 7 x 8 points. The plate deformation measurements were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total energy of the deformation is contained within the first six POD modes. The essential features of the deformation are thus described by only the six first eigenfunctions. A reduced order model for the dynamical behavior is then constructed using Galerkin projection of the equation of motion for the vertical displacement of a plate.

  19. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  20. A fully vectorized numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Patel, N.

    1983-01-01

    A vectorizable algorithm is presented for the implicit finite difference solution of the incompressible Navier-Stokes equations in general curvilinear coordinates. The unsteady Reynolds averaged Navier-Stokes equations solved are in two dimension and non-conservative primitive variable form. A two-layer algebraic eddy viscosity turbulence model is used to incorporate the effects of turbulence. Two momentum equations and a Poisson pressure equation, which is obtained by taking the divergence of the momentum equations and satisfying the continuity equation, are solved simultaneously at each time step. An elliptic grid generation approach is used to generate a boundary conforming coordinate system about an airfoil. The governing equations are expressed in terms of the curvilinear coordinates and are solved on a uniform rectangular computational domain. A checkerboard SOR, which can effectively utilize the computer architectural concept of vector processing, is used for iterative solution of the governing equations.

  1. Experimental study of strained and destrained turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Meneveau, Charles; Katz, Joseph

    2003-11-01

    Planar Particle Image Velocimetry measurements are performed in a water tank facility in which high Reynolds number turbulence is generated by an array of spinning grids. Straining fields are applied using a piston with rectangular cross-section which is pushed towards the bottom of the tank, setting up a planar straining field there. The facility can also be used to reverse the distortion ("destraining'') by pulling the piston upwards. We present calibration tests characterizing the flow in the facility. The initial turbulent state is characterized by means of ditributions of rms values and energy spectra, and corresponds closely to isotropic, homogeneous turbulence. The applied straining is characterized using high-speed camera and PIV measurements of the mean flow without turbulence. Initial results of turbulence subjected to a sequence of straining and destraining motions are presented, with particular emphasis on the flux of kinetic energy from large to small scales and possible backscatter during destraining.

  2. Entomologic and serologic evidence of zoonotic transmission of Babesia microti, eastern Switzerland.

    PubMed

    Foppa, Ivo M; Krause, Peter J; Spielman, Andrew; Goethert, Heidi; Gern, Lise; Brand, Brigit; Telford, Sam R

    2002-07-01

    We evaluated human risk for infection with Babesia microti at a site in eastern Switzerland where several B. microti-infected nymphal Ixodes ricinus ticks had been found. DNA from pooled nymphal ticks amplified by polymerase chain reaction was highly homologous to published B. microti sequences. More ticks carried babesial infection in the lower portion of the rectangular 0.7-ha grid than in the upper (11% vs. 0.8%). In addition, we measured seroprevalence of immunoglobulin (Ig) G antibodies against B. microti antigen in nearby residents. Serum from 1.5% of the 396 human residents of the region reacted to B. microti antigen (>1:64), as determined by indirect immunofluorescence assay (IgG). These observations constitute the first report demonstrating B. microti in a human-biting vector, associated with evidence of human exposure to this agent in a European site.

  3. Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashwani; Chandramohan, V. P.

    2018-04-01

    A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.

  4. 77 FR 1915 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... period of review (POR) from August 1, 2009, through July 31, 2010. \\1\\ See Light-Walled Rectangular Pipe...

  5. 75 FR 55559 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... administrative review of the antidumping duty order on light-walled rectangular pipe and tube (LWRPT) from Mexico... Light-Walled Rectangular Pipe and Tube from Mexico, the People's Republic of China, and the Republic of...

  6. Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Hall, John M.

    2002-01-01

    A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.

  7. Collaborative Access Control For Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Baina, Amine; El Kalam, Anas Abou; Deswarte, Yves; Kaaniche, Mohamed

    A critical infrastructure (CI) can fail with various degrees of severity due to physical and logical vulnerabilities. Since many interdependencies exist between CIs, failures can have dramatic consequences on the entire infrastructure. This paper focuses on threats that affect information and communication systems that constitute the critical information infrastructure (CII). A new collaborative access control framework called PolyOrBAC is proposed to address security problems that are specific to CIIs. The framework offers each organization participating in a CII the ability to collaborate with other organizations while maintaining control of its resources and internal security policy. The approach is demonstrated on a practical scenario involving the electrical power grid.

  8. TFSSRA - THICK FREQUENCY SELECTIVE SURFACE WITH RECTANGULAR APERTURES

    NASA Technical Reports Server (NTRS)

    Chen, J. C.

    1994-01-01

    Thick Frequency Selective Surface with Rectangular Apertures (TFSSRA) was developed to calculate the scattering parameters for a thick frequency selective surface with rectangular apertures on a skew grid at oblique angle of incidence. The method of moments is used to transform the integral equation into a matrix equation suitable for evaluation on a digital computer. TFSSRA predicts the reflection and transmission characteristics of a thick frequency selective surface for both TE and TM orthogonal linearly polarized plane waves. A model of a half-space infinite array is used in the analysis. A complete set of basis functions with unknown coefficients is developed for the waveguide region (waveguide modes) and for the free space region (Floquet modes) in order to represent the electromagnetic fields. To ensure the convergence of the solutions, the number of waveguide modes is adjustable. The method of moments is used to compute the unknown mode coefficients. Then, the scattering matrix of the half-space infinite array is calculated. Next, the reference plane of the scattering matrix is moved half a plate thickness in the negative z-direction, and a frequency selective surface of finite thickness is synthesized by positioning two plates of half-thickness back-to-back. The total scattering matrix is obtained by cascading the scattering matrices of the two half-space infinite arrays. TFSSRA is written in FORTRAN 77 with single precision. It has been successfully implemented on a Sun4 series computer running SunOS, an IBM PC compatible running MS-DOS, and a CRAY series computer running UNICOS, and should run on other systems with slight modifications. Double precision is recommended for running on a PC if many modes are used or if high accuracy is required. This package requires the LINPACK math library, which is included. TFSSRA requires 1Mb of RAM for execution. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992 and is a copyrighted work with all copyright vested in NASA.

  9. Community Digital Library Requirements for the Southern California Earthquake Center Community Modeling Environment (SCEC/CME)

    NASA Astrophysics Data System (ADS)

    Moore, R.; Faerman, M.; Minster, J.; Day, S. M.; Ely, G.

    2003-12-01

    A community digital library provides support for ingestion, organization, description, preservation, and access of digital entities. The technologies that traditionally provide these capabilities are digital libraries (ingestion, organization, description), persistent archives (preservation) and data grids (access). We present a design for the SCEC community digital library that incorporates aspects of all three systems. Multiple groups have created integrated environments that sustain large-scale scientific data collections. By examining these projects, the following stages of implementation can be identified: \\begin{itemize} Definition of semantic terms to associate with relevant information. This includes definition of uniform content descriptors to describe physical quantities relevant to the scientific discipline, and creation of concept spaces to define how the uniform content descriptors are logically related. Organization of digital entities into logical collections that make it simple to browse and manage related material. Definition of services that are used to access and manipulate material in the collection. Creation of a preservation environment for the long-term management of the collection. Each community is faced with heterogeneity that is introduced when data is distributed across multiple sites, or when multiple sets of collection semantics are used, and or when multiple scientific sub-disciplines are federated. We will present the relevant standards that simplify the implementation of the SCEC community library, the resource requirements for different types of data sets that drive the implementation, and the digital library processes that the SCEC community library will support. The SCEC community library can be viewed as the set of processing steps that are required to build the appropriate SCEC reference data sets (SCEC approved encoding format, SCEC approved descriptive metadata, SCEC approved collection organization, and SCEC managed storage location). Each digital entity that is ingested into the SCEC community library is processed and validated for conformance to SCEC standards. These steps generate provenance, descriptive, administrative, structural, and behavioral metadata. Using data grid technology, the descriptive metadata can be registered onto a logical name space that is controlled and managed by the SCEC digital library. A version of the SCEC community digital library is being implemented in the Storage Resource Broker. The SRB system provides almost all the features enumerated above. The peer-to-peer federation of metadata catalogs is planned for release in September, 2003. The SRB system is in production use in multiple projects, from high-energy physics, to astronomy, to earth systems science, to bio-informatics. The SCEC community library will be based on the definition of standard metadata attributes, the creation of logical collections within the SRB, the creation of access services, and the demonstration of a preservation environment. The use of the SRB for the SCEC digital library will sustain the expected collection size and collection capabilities.

  10. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    DOEpatents

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  11. The Multigrid-Mask Numerical Method for Solution of Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ku, Hwar-Ching; Popel, Aleksander S.

    1996-01-01

    A multigrid-mask method for solution of incompressible Navier-Stokes equations in primitive variable form has been developed. The main objective is to apply this method in conjunction with the pseudospectral element method solving flow past multiple objects. There are two key steps involved in calculating flow past multiple objects. The first step utilizes only Cartesian grid points. This homogeneous or mask method step permits flow into the interior rectangular elements contained in objects, but with the restriction that the velocity for those Cartesian elements within and on the surface of an object should be small or zero. This step easily produces an approximate flow field on Cartesian grid points covering the entire flow field. The second or heterogeneous step corrects the approximate flow field to account for the actual shape of the objects by solving the flow field based on the local coordinates surrounding each object and adapted to it. The noise occurring in data communication between the global (low frequency) coordinates and the local (high frequency) coordinates is eliminated by the multigrid method when the Schwarz Alternating Procedure (SAP) is implemented. Two dimensional flow past circular and elliptic cylinders will be presented to demonstrate the versatility of the proposed method. An interesting phenomenon is found that when the second elliptic cylinder is placed in the wake of the first elliptic cylinder a traction force results in a negative drag coefficient.

  12. A Handheld Open-Field Infant Keratometer (An American Ophthalmological Society Thesis)

    PubMed Central

    Miller, Joseph M.

    2010-01-01

    Purpose: To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). Methods: The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results: Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. Conclusion: The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation. PMID:21212850

  13. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-12-06

    ISS018-E-011174 (6 Dec. 2008) --- The City of Thunder Bay, Ontario, Canada is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Located on the shores of Lake Superior, the metropolitan area of Thunder Bay is one of the largest in the Province of Ontario. It is also the major port providing access to the Great Lakes for central Canada?s grain products. The City of Thunder Bay is relatively new ? it was incorporated in 1970 by combining the cities of Fort William (depicted in this astronaut photograph) and Port Arthur with the townships of Neebing and McIntyre. While the growth and merging of separate municipalities into a larger contiguous metropolitan area is common (a process called agglomeration by urban geographers), it is less common for distinct cities to also merge into a new political entity. This detailed view is centered on the southern portion of Thunder Bay, comprised of the older city of Fort William. Winter snows outline the street grid of the city, while park areas interspersed throughout the street grid appear as roughly rectangular areas of unbroken white snow. Built materials appear light gray, while vegetated areas and rock outcrop near Mount McKay are dark green to dark gray. The Kam River to the south of Fort William is ice-covered, and has a homogeneous covering of snow that traces the river channel.

  14. A handheld open-field infant keratometer (an american ophthalmological society thesis).

    PubMed

    Miller, Joseph M

    2010-12-01

    To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation.

  15. High order solution of Poisson problems with piecewise constant coefficients and interface jumps

    NASA Astrophysics Data System (ADS)

    Marques, Alexandre Noll; Nave, Jean-Christophe; Rosales, Rodolfo Ruben

    2017-04-01

    We present a fast and accurate algorithm to solve Poisson problems in complex geometries, using regular Cartesian grids. We consider a variety of configurations, including Poisson problems with interfaces across which the solution is discontinuous (of the type arising in multi-fluid flows). The algorithm is based on a combination of the Correction Function Method (CFM) and Boundary Integral Methods (BIM). Interface and boundary conditions can be treated in a fast and accurate manner using boundary integral equations, and the associated BIM. Unfortunately, BIM can be costly when the solution is needed everywhere in a grid, e.g. fluid flow problems. We use the CFM to circumvent this issue. The solution from the BIM is used to rewrite the problem as a series of Poisson problems in rectangular domains-which requires the BIM solution at interfaces/boundaries only. These Poisson problems involve discontinuities at interfaces, of the type that the CFM can handle. Hence we use the CFM to solve them (to high order of accuracy) with finite differences and a Fast Fourier Transform based fast Poisson solver. We present 2-D examples of the algorithm applied to Poisson problems involving complex geometries, including cases in which the solution is discontinuous. We show that the algorithm produces solutions that converge with either 3rd or 4th order of accuracy, depending on the type of boundary condition and solution discontinuity.

  16. Mitigating crack propagation in a highly maneuverable flight vehicle using life extending control logic

    NASA Astrophysics Data System (ADS)

    Elshabasy, Mohamed Mostafa Yousef Bassyouny

    In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft's service life, without incurring significant loss of vehicle dynamic performance. The value of the control-surface deflection angle is modulated so that the created overstress is sufficiently below the yield stress of the panel material. The results show that extension in crack length was reduced by 40% to 75% with an absence of damage mitigation logic. Moreover, the desired structural integrity is satisfied without affecting the air vehicle dynamic performance.

  17. A combinatorial model for dentate gyrus sparse coding

    DOE PAGES

    Severa, William; Parekh, Ojas; James, Conrad D.; ...

    2016-12-29

    The dentate gyrus forms a critical link between the entorhinal cortex and CA3 by providing a sparse version of the signal. Concurrent with this increase in sparsity, a widely accepted theory suggests the dentate gyrus performs pattern separation—similar inputs yield decorrelated outputs. Although an active region of study and theory, few logically rigorous arguments detail the dentate gyrus’s (DG) coding. We suggest a theoretically tractable, combinatorial model for this action. The model provides formal methods for a highly redundant, arbitrarily sparse, and decorrelated output signal.To explore the value of this model framework, we assess how suitable it is for twomore » notable aspects of DG coding: how it can handle the highly structured grid cell representation in the input entorhinal cortex region and the presence of adult neurogenesis, which has been proposed to produce a heterogeneous code in the DG. We find tailoring the model to grid cell input yields expansion parameters consistent with the literature. In addition, the heterogeneous coding reflects activity gradation observed experimentally. Lastly, we connect this approach with more conventional binary threshold neural circuit models via a formal embedding.« less

  18. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-06-25

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.

  19. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element approach on different CPU-GPU system configurations. The algorithm calculates the expected gravity at station locations where the observed gravity and FTG data were acquired. This algorithm can be used for all fast forward model calculations of 3D geologic interpretations for data from airborne, space and submarine gravity, and FTG instrumentation.

  20. Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yinger, Robert; Irwin, Mark

    ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number ofmore » energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.« less

  1. An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids

    NASA Astrophysics Data System (ADS)

    English, R. Elliot; Qiu, Linhai; Yu, Yue; Fedkiw, Ronald

    2013-12-01

    We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.

  2. Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.

    PubMed

    Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue

    2017-01-01

    Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.

  3. Propagation of THz pulses in rectangular subwavelength dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun

    2018-06-01

    Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.

  4. Interaction of grid generated turbulence with expansion waves

    NASA Astrophysics Data System (ADS)

    Xanthos, Savvas Steliou

    2004-11-01

    The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.

  5. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common in industrial environments (borehole casing, pipes, railroad tracks). Present efforts are oriented toward calculating the EM responses of these objects via a First Born Approximation approach. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Bend losses in rectangular culverts.

    DOT National Transportation Integrated Search

    2008-09-01

    This study investigated bend losses for open channel flow in rectangular channels or culverts. Laboratory experiments were performed for sub-critical flow in rectangular channels with abrupt bends. Bend angles of approximately 30, 45, 60, 75 and 90 d...

  7. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  8. Analysis of junior high school students' difficulty in resolving rectangular conceptual problems

    NASA Astrophysics Data System (ADS)

    Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar

    2017-08-01

    Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.

  9. Parametric design and gridding through relational geometry

    NASA Technical Reports Server (NTRS)

    Letcher, John S., Jr.; Shook, D. Michael

    1995-01-01

    Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented design flexibility by supporting a rich variety of useful curve and surface entities. During the design process, many qualitative and quantitative relationships between elementary objects may be captured and retained in a data structure equivalent to a directed graph, such that they can be utilized for automatically updating the complete model geometry following changes in the shape or location of an underlying object. Capture of relationships enables many new possibilities for parametric variations and optimization. Examples are given of panelization applications for submarines, sailing yachts, offshore structures, and propellers.

  10. Method and structure for cache aware transposition via rectangular subsections

    DOEpatents

    Gustavson, Fred Gehrung; Gunnels, John A

    2014-02-04

    A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.

  11. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  12. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  13. Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Russell

    This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first sectionmore » of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.« less

  14. Dynamic Event Tree advancements and control logic improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less

  15. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2007-01-01

    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  16. Inverse current source density method in two dimensions: inferring neural activation from multielectrode recordings.

    PubMed

    Łęski, Szymon; Pettersen, Klas H; Tunstall, Beth; Einevoll, Gaute T; Gigg, John; Wójcik, Daniel K

    2011-12-01

    The recent development of large multielectrode recording arrays has made it affordable for an increasing number of laboratories to record from multiple brain regions simultaneously. The development of analytical tools for array data, however, lags behind these technological advances in hardware. In this paper, we present a method based on forward modeling for estimating current source density from electrophysiological signals recorded on a two-dimensional grid using multi-electrode rectangular arrays. This new method, which we call two-dimensional inverse Current Source Density (iCSD 2D), is based upon and extends our previous one- and three-dimensional techniques. We test several variants of our method, both on surrogate data generated from a collection of Gaussian sources, and on model data from a population of layer 5 neocortical pyramidal neurons. We also apply the method to experimental data from the rat subiculum. The main advantages of the proposed method are the explicit specification of its assumptions, the possibility to include system-specific information as it becomes available, the ability to estimate CSD at the grid boundaries, and lower reconstruction errors when compared to the traditional approach. These features make iCSD 2D a substantial improvement over the approaches used so far and a powerful new tool for the analysis of multielectrode array data. We also provide a free GUI-based MATLAB toolbox to analyze and visualize our test data as well as user datasets.

  17. The method of lines in analyzing solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.

    1990-01-01

    A semi-numerical method is reviewed for solving a set of coupled partial differential equations subject to mixed and possibly coupled boundary conditions. The line method of analysis is applied to the Navier-Cauchy equations of elastic and elastoplastic equilibrium to calculate the displacement distributions in various, simple geometry bodies containing cracks. The application of this method to the appropriate field equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. When decoupling of the equations and their boundary conditions is not possible, the use of a successive approximation procedure permits the analytical solution of the resulting ordinary differential equations. The use of this method is illustrated by reviewing and presenting selected solutions of mixed boundary value problems in three dimensional fracture mechanics. These solutions are of great importance in fracture toughness testing, where accurate stress and displacement distributions are required for the calculation of certain fracture parameters. Computations obtained for typical flawed specimens include that for elastic as well as elastoplastic response. Problems in both Cartesian and cylindrical coordinate systems are included. Results are summarized for a finite geometry rectangular bar with a central through-the-thickness or rectangular surface crack under remote uniaxial tension. In addition, stress and displacement distributions are reviewed for finite circular bars with embedded penny-shaped cracks, and rods with external annular or ring cracks under opening mode tension. The results obtained show that the method of lines presents a systematic approach to the solution of some three-dimensional mechanics problems with arbitrary boundary conditions. The advantage of this method over other numerical solutions is that good results are obtained even from the use of a relatively coarse grid.

  18. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2018-02-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  19. ILT optimization of EUV masks for sub-7nm lithography

    NASA Astrophysics Data System (ADS)

    Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin

    2017-06-01

    The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

  20. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward solver is implemented within the framework of the modular system for EM inversion (ModEM by G. Egbert, A. Kelbert, N. Meqbel), using the ModEM 3D finite difference staggered grid forward solver (second order PDE in the electric field, with divergence correction) as a starting point for our development. The first 3D inversion model for the crust and upper mantle shows the highly conducting bodies in the crust which can be interpreted as alum shales. The eastern and central parts are presented by resistive Precambrian rocks of the Svecofennian and Archaean domains. The upper mantle is resistive and relates to the Baltica basement. We also compare 3D inversion model with the results of 2D inversion along several profiles. We are able to explain some of the features in the data (out of quadrant phase) with 3D model, thus providing more reliable results compared to routine 2D approach.

  1. 76 FR 64105 - Light-Walled Rectangular Pipe From Taiwan; Scheduling of an Expedited Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-410 (Third Review)] Light-Walled... Order on Light-Walled Rectangular Pipe From Taiwan AGENCY: United States International Trade Commission... determine whether revocation of the antidumping duty order on light-walled rectangular pipe from Taiwan...

  2. 77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-410 (Third Review)] Light-Walled... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or... views of the Commission are contained in USITC Publication 4301 (January 2012), Light-Walled Rectangular...

  3. Effective way of reducing coupling loss between rectangular microwaveguide and fiber.

    PubMed

    Zhou, Hang; Chen, Zilun; Xi, Xiaoming; Hou, Jing; Chen, Jinbao

    2012-01-20

    We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved. © 2012 Optical Society of America

  4. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  5. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  6. BBC users manual. [In LRLTRAN for CDC 7600 and STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ltterst, R. F.; Sutcliffe, W. G.; Warshaw, S. I.

    1977-11-01

    BBC is a two-dimensional, multifluid Eulerian hydro-radiation code based on KRAKEN and some subsequent ideas. It was developed in the explosion group in T-Division as a basic two-dimensional code to which various types of physics can be added. For this reason BBC is a FORTRAN (LRLTRAN) code. In order to gain the 2-to-1 to 4-to-1 speed advantage of the STACKLIB software on the 7600's and to be able to execute at high speed on the STAR, the vector extensions of LRLTRAN (STARTRAN) are used throughout the code. Either cylindrical- or slab-type problems can be run on BBC. The grid ismore » bounded by a rectangular band of boundary zones. The interfaces between the regular and boundary zones can be selected to be either rigid or nonrigid. The setup for BBC problems is described in the KEG Manual and LEG Manual. The difference equations are described in BBC Hydrodynamics. Basic input and output for BBC are described.« less

  7. Los Angeles, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-227-050 (9-20 April 1994) --- A low altitude, and unusually clear air, provided perhaps the most detailed view of Los Angeles, California ever obtained during a shuttle flight. Orient with the bulk of the ocean to the lower left. Then Long Beach is in the lower right, just east of the Palos Verdes Hills that extend into the Pacific Ocean. Marina del Rey is cut into the straight segment of beach, with Los Angeles International Airport (LAX) clearly visible to the southeast. Downtown Los Angeles is the light-toned sprawl in the upper right, with the rectangular grid pattern of Pasadena extending out of the picture. The Santa Monica Mountains to the upper left extend east-west, separating the San Fernando Valley (epicenter of the 1993 earthquake) from the Los Angeles Basin proper. It is impossible to determine by photo interpretation whether or not the de-vegetated scars along the southern edge of the mountains represent man-made features (real-estate development) or wildfires.

  8. Computer simulation and evaluation of edge detection algorithms and their application to automatic path selection

    NASA Technical Reports Server (NTRS)

    Longendorfer, B. A.

    1976-01-01

    The construction of an autonomous roving vehicle requires the development of complex data-acquisition and processing systems, which determine the path along which the vehicle travels. Thus, a vehicle must possess algorithms which can (1) reliably detect obstacles by processing sensor data, (2) maintain a constantly updated model of its surroundings, and (3) direct its immediate actions to further a long range plan. The first function consisted of obstacle recognition. Obstacles may be identified by the use of edge detection techniques. Therefore, the Kalman Filter was implemented as part of a large scale computer simulation of the Mars Rover. The second function consisted of modeling the environment. The obstacle must be reconstructed from its edges, and the vast amount of data must be organized in a readily retrievable form. Therefore, a Terrain Modeller was developed which assembled and maintained a rectangular grid map of the planet. The third function consisted of directing the vehicle's actions.

  9. Predicting Turbulent Convective Heat Transfer in Three-Dimensional Duct Flows

    NASA Technical Reports Server (NTRS)

    Rokni, M.; Gatski, T. B.

    1999-01-01

    The performance of an explicit algebraic stress model is assessed in predicting the turbulent flow and forced heat transfer in straight ducts, with square, rectangular, trapezoidal and triangular cross-sections, under fully developed conditions over a range of Reynolds numbers. Iso-thermal conditions are imposed on the duct walls and the turbulent heat fluxes are modeled by gradient-diffusion type models. At high Reynolds numbers (>/= 10(exp 5)), wall functions are used for the velocity and temperature fields; while at low Reynolds numbers damping functions are introduced into the models. Hydraulic parameters such as friction factor and Nusselt number are well predicted even when damping functions are used, and the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Comparison between the models is presented in terms of the hydraulic parameters, friction factor and Nusselt number, as well as in terms of the secondary flow patterns occurring within the ducts.

  10. Computational compliance criteria in water hammer modelling

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Kamil

    2017-10-01

    Among many numerical methods (finite: difference, element, volume etc.) used to solve the system of partial differential equations describing unsteady pipe flow, the method of characteristics (MOC) is most appreciated. With its help, it is possible to examine the effect of numerical discretisation carried over the pipe length. It was noticed, based on the tests performed in this study, that convergence of the calculation results occurred on a rectangular grid with the division of each pipe of the analysed system into at least 10 elements. Therefore, it is advisable to introduce computational compliance criteria (CCC), which will be responsible for optimal discretisation of the examined system. The results of this study, based on the assumption of various values of the Courant-Friedrichs-Levy (CFL) number, indicate also that the CFL number should be equal to one for optimum computational results. Application of the CCC criterion to own written and commercial computer programmes based on the method of characteristics will guarantee fast simulations and the necessary computational coherence.

  11. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the installed nacelles to be determined. Isolated nacelle mm were made at M=0.9 and M=1.1 for both the supersonic and transonic nozzle settings. AU of the isolated nacelle cases were run at alpha=0. Full configuration runs were to be made at Mach numbers of 0.9, 1.1, and 2.4 (the same as the wing/body and isolated nacelles). Both the isolated nacelles and installed nacelles were run with inlet conditions designed to give zero spillage. This was to be done in order to isolate the boattail effects as much as possible. Full configuration runs with the supersonic nozzles were completed for M=0.9 and 1.1 at a=4.0 and 6.0 (4 runs total) and with the transonic nozzles at M=0.9 and 1.1 at a=2.0, 4.0 and 6.0 (6 runs total). Drag breakdowns were completed for the M=0.9 and M= 1.1 showing favorable interference drag for both cases.

  12. Integrating TITAN2D Geophysical Mass Flow Model with GIS

    NASA Astrophysics Data System (ADS)

    Namikawa, L. M.; Renschler, C.

    2005-12-01

    TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate slope and curvature from elevation, the selected one is based on estimation by a third-order finite difference method, which has shown to perform better or with minimal difference when compared to more computationally expensive methods. Derivatives are estimated using weighted sum of 8 grid neighbor values. The method was implemented and simulation results compared to derivatives estimated by a simplified version of the method (uses only 4 neighbor cells) and proven to perform better. TITAN2D uses an adaptative mesh grid, where resolution (grid cell size) is not constant, and visualization tools also uses texture with varying resolutions for efficient display. The API supports different resolutions applying bilinear interpolation when elevation, slope and curvature are required at a resolution higher (smaller cell size) than the original and using a nearest cell approach for elevations with lower resolution (larger) than the original. For material information nearest neighbor method is used since interpolation on categorical data has no meaning. Low fidelity characteristic of visualization allows use of nearest neighbor method for texture. Bilinear interpolation estimates the value at a point as the distance-weighted average of values at the closest four cell centers, and interpolation performance is just slightly inferior compared to more computationally expensive methods such as bicubic interpolation and kriging.

  13. Integrated multidisciplinary design optimization using discrete sensitivity analysis for geometrically complex aeroelastic configurations

    NASA Astrophysics Data System (ADS)

    Newman, James Charles, III

    1997-10-01

    The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.

  14. A novel grid-based mesoscopic model for evacuation dynamics

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Lee, Eric Wai Ming; Ma, Yi

    2018-05-01

    This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.

  15. Wind Wave Climate of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Medvedeva, Alisa

    2017-04-01

    Storms in the Baltic Sea in autumn and winter are very frequent. In this research the goal is to estimate decadal and interannual changes of the wave fields for the entire Baltic Sea. The wave parameters, such as significant wave heights and periods, were simulated for the period 1979-2015 years based on NCEP/CFSR Reanalysis data fields and for the period 1948-2010 years based on NCEP/NCAR Reanalysis data. For accuracy estimation of the model the statistical characteristics, such as correlation coefficient, bias, scatter index and RMSE were calculated. Also two computational meshes were compared: rectangular and triangulated. In this study the third generation spectral wind-wave model SWAN was used for simulations. For wind input data two types of wind reanalysis were chosen: NCEP/CFSR with 1-hour time step and NCEP/NCAR with time step of 6 hours. The final computational grid for rectangular mesh for the Baltic Sea is 0.05×0.05°. The simulated data were compared with instrumental data of the Sweden buoys and of the acoustic wave recorder fixed at the Russian oil platform. The results reveal that for the Baltic Sea it is more efficient to use rectangular mesh for the deep open area and irregular mesh near the coast. Simulations using wind data from NCEP/NCAR significantly decreases the quality of the results compared with NCEP/CFSR wind data: Bias increases in 10 times (-0.730), RMSE - in 2-3 times (0.89). The following results of numerical modeling using NCEP/NCAR the storm situations, when the significant wave height exceeded 2 meters, were identified for the 63-year period. An average of about 50 storms per year happened in the Baltic Sea in this time period. The storminess of the Baltic Sea tends to increase. The twenty-year periodicity with the increase in the 70-s and 90-s years of XX century was revealed. The average yearly significant wave height increases in the second part of the century too and differs from 2.4 to 3.3 m. Storm cyclones are connected with the global atmosphere circulation patterns. According to similar research of the other west seas of Russia by the analogous methods, such kind of twenty-year periodicity was identified for the Caspian Sea and the Sea of Azov, but the storminess there for the period from 1948 to 2010 decreases.

  16. Teaching Hyporheic and Groundwater Flow Concepts Using an Interactive Computer Simulation

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.

    2016-12-01

    We built an educational flow simulator with an interactive web-based interface that allows students to investigate the effects of arbitrary head functions on water flowing through various configurations of permeable/impermeable sediments. The domain consists of a 24 by 48 rectangular grid of sediments with no-flow bottom and side boundaries and a constant head surface water-groundwater (SWGW) interface boundary. The SWGW interface head function can be drawn freehand with the mouse or specified to be a step function, a sine curve, or a zig-zag function, where the amplitude and wavenumber parameters of the head functions are chosen by the user. The subsurface domain may be modified by drawing no-flow (impermeable) barriers in the sediment, changing any number of the 1152 grid cells into no flow cells. The program iteratively solves the Laplace equation to calculate head values at each grid cell within the sediment. Users can then start water particles along the SWGW interface and track their paths through the system to visualize the head-induced flow. Sediment cells can be color coded by head values or water speed. Exploring these systems with the simulator allows users to improve their understanding of the relationship between head and velocity as well as how the position of no-flow barriers impacts water flow in saturated sediments. These learning objectives are amenable to our target audience of undergraduate students, but younger (middle/high school) students may also be able to absorb key concepts by playing with the simulation. The structure of the simulation itself highlights the broader idea of simulation of natural processes through the discretization of continuous environments. The simulation was developed using the NetLogo platform and runs embedded in a webpage: http://susa.stonedahl.com/swgwsimulator. The simulation source code is available and can readily be modified by other educators (or students) to create additional features and options.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermalmore » vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.« less

  18. 78 FR 54864 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results and Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... the antidumping duty order on light-walled rectangular pipe and tube (LWR pipe and tube) from Mexico... The merchandise subject to the order is certain welded carbon- quality light-walled steel pipe and...

  19. Experimental Modal Analysis of Rectangular and Circular Beams

    ERIC Educational Resources Information Center

    Emory, Benjamin H.; Zhu, Wei Dong

    2006-01-01

    Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…

  20. 77 FR 4278 - Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limits for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limits for Preliminary Results of Antidumping Duty..., light- walled rectangular pipe and tube from Turkey for the May 1, 2010, through April 30, 2011, period...

  1. 76 FR 57953 - Light-Walled Rectangular Pipe and Tube From Turkey; Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Pipe and Tube From Turkey; Notice of Final Results of Antidumping Duty Administrative Review AGENCY... pipe and tube from Turkey. See Light-Walled Rectangular Pipe and Tube From Turkey; Notice of... order covering light- walled rectangular pipe and tube from Turkey. See Preliminary Results. The...

  2. 78 FR 74161 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... Turkey AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The Commission... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...

  3. Factorization of differential expansion for non-rectangular representations

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2018-04-01

    Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.

  4. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  5. A New Seamless Transfer Control Strategy of the Microgrid

    PubMed Central

    Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe

    2014-01-01

    A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described. PMID:24967431

  6. A new seamless transfer control strategy of the microgrid.

    PubMed

    Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe

    2014-01-01

    A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described.

  7. The Moment of Inertia of a Rectangular Rod

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takao

    2007-11-01

    Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.

  8. All-fiber optical filter with an ultranarrow and rectangular spectral response.

    PubMed

    Zou, Xihua; Li, Ming; Pan, Wei; Yan, Lianshan; Azaña, José; Yao, Jianping

    2013-08-15

    Optical filters with an ultranarrow and rectangular spectral response are highly desired for high-resolution optical/electrical signal processing. An all-fiber optical filter based on a fiber Bragg grating with a large number of phase shifts is designed and fabricated. The measured spectral response shows a 3 dB bandwidth of 650 MHz and a rectangular shape factor of 0.513 at the 25 dB bandwidth. This is the narrowest rectangular bandpass response ever reported for an all-fiber filter, to the best of our knowledge. The filter has also the intrinsic advantages of an all-fiber implementation.

  9. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    NASA Astrophysics Data System (ADS)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  10. 78 FR 1199 - Light-Walled Rectangular Pipe and Tube From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... order on light-walled rectangular pipe and tube (LWR pipe and tube) from Mexico. This review covers two... but received no such comments. We also did not receive a request for a hearing. \\1\\ See Light-Walled...

  11. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... in coils) and without patterns in relief), of iron or non-alloy quality steel; and (2) flat-rolled... rectangular or non-rectangular cross section where such non-rectangular cross-section is achieved subsequent... characteristics that are painted, varnished, or coated with plastic or other non-metallic substances are included...

  12. 78 FR 42546 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to... institution from the Government of Turkey, the Commission found that the respondent interested party group...

  13. 75 FR 33779 - Light-Walled Rectangular Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping Duty Administrative Review... review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey. Atlas Tube... the antidumping duty order on light-walled rectangular ripe and tube from Turkey on May 30, 2008. See...

  14. 77 FR 55455 - Light-Walled Rectangular Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty Administrative Review AGENCY... administrative review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey.\\1\\ The... entitled ``Final Results of Review'' below. \\1\\ See Light-Walled Rectangular Pipe and Tube from Turkey...

  15. Computer code for the prediction of nozzle admittance

    NASA Technical Reports Server (NTRS)

    Nguyen, Thong V.

    1988-01-01

    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.

  16. Energy Center Structure Optimization by using Smart Technologies in Process Control System

    NASA Astrophysics Data System (ADS)

    Shilkina, Svetlana V.

    2018-03-01

    The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.

  17. Wi-Fi location fingerprinting using an intelligent checkpoint sequence

    NASA Astrophysics Data System (ADS)

    Retscher, Günther; Hofer, Hannes

    2017-09-01

    For Wi-Fi positioning location fingerprinting is very common but has the disadvantage that it is very labour consuming for the establishment of a database (DB) with received signal strength (RSS) scans measured on a large number of known reference points (RPs). To overcome this drawback a novel approach is developed which uses a logical sequence of intelligent checkpoints (iCPs) instead of RPs distributed in a regular grid. The iCPs are the selected RPs which have to be passed along the way for navigation from a start point A to the destination B. They are twofold intelligent because of the fact that they depend on their meaningful selection and because of their logical sequence in their correct order. Thus, always the following iCP is known due to a vector graph allocation in the DB and only a small limited number of iCPs needs to be tested when matching the current RSS scans. This reduces the required processing time significantly. It is proven that the iCP approach achieves a higher success rate than conventional approaches. In average correct matching results of 90.0% were achieved using a joint DB including RSS scans of all employed smartphones. An even higher success rate is achieved if the same mobile device is used in both the training and positioning phase.

  18. Parallel grid library for rapid and flexible simulation development

    NASA Astrophysics Data System (ADS)

    Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.

    2013-04-01

    We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.

  19. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  20. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  1. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    PubMed

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  2. Middle school students' understanding of time: Implications for the National Science Education Standards

    NASA Astrophysics Data System (ADS)

    Reinemann, Deborah Jean

    2000-10-01

    Measures of time are essential to human life, especially in the Western world. Human understanding of time develops from the preschool stages of using "before" and "after" to an adult understanding and appreciation of time. Previous researchers (for example, Piaget, Friedman) have investigated and described stages of time development. Time, as it was investigated here, can be classified as conventional, logical or experiential. Conventional time is the ordered representation of time; the days of the week, the months of the year, or clock time: seconds and hours. Logical time is the deduction of duration based on regular events; for example, calculating the passage of time based on two separate events. Experiential time involves the duration of events and estimating intervals. With the recent production of the National Science Education Standards (NSES), many schools are aligning their science curriculum with the NSES. Time appears both implicitly and explicitly in the NSES. Do Middle School students possess the understanding of time necessary to meet the recommendations of the NSES? An interview protocol of four sessions was developed to investigate middle school students understanding of time. The four sessions included: building and testing water clocks; an interview about water clocks and time intervals; a laserdisc presentation about relative time spans; and a mind mapping session. Students were also given the GALT test of Logical Thinking. The subjects of the study were interviewed; eleven eighth grade students and thirteen sixth grade students. The data was transcribed and coded, and a rubric was developed to evaluate students based on their responses to the four sessions. The Time Analysis Rubric is a grid of the types of time: conventional, logical and experiential time versus the degree of understanding of time. Student results were assigned to levels of understanding based on the Time Analysis Rubric. There was a relationship (although not significant) between the students' GALT score and the Time Analysis Rubric results. There was no difference in Time Analysis levels between sixth and eighth grade students. On the basis of this study, Middle School students' level of understanding of time appears to be sufficient to master the requirements of the NSES.

  3. High-Energy 3D Calorimeter for Use in Gamma-Ray Astronomy Based on Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Moiseev, A.; Bolotnikov, A.; DeGeronimo, G.; Hays, E.; James, R.; Thompson, D.; Vernon, E.

    2017-01-01

    We will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from approximately 100 keV to 20 - 50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5 x 5 to 7 x 7 mm2 and length of 2 - 4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., greater than 1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of gamma rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of gamma ray lines from nuclear decays.

  4. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  5. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE PAGES

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.; ...

    2017-12-19

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  6. Can contaminant transport models predict breakthrough?

    USGS Publications Warehouse

    Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.

    2000-01-01

    A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.

  7. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli

    NASA Astrophysics Data System (ADS)

    Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory

    2014-02-01

    Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.

  8. High-Throughput Computation and the Applicability of Monte Carlo Integration in Fatigue Load Estimation of Floating Offshore Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Stewart, Gordon; Lackner, Matthew

    Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, whichmore » is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.« less

  9. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves

    NASA Astrophysics Data System (ADS)

    Tessendorf, Jerry

    2010-11-01

    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.

  10. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 1: Results and discussion

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. The conclusions derived were: (1) intrusive probes can produce significant errors in the measurements of the velocity of jets if they are large in diameter and penetrate beyond the jet center; (2) rectangular jets without tabs, compared to circular jets of the same exit area, provide faster jet mixing; and (3) further mixing enhancement is possible by using mechanical tabs.

  11. Scattered acoustic field above a grating of parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.

    2013-02-01

    The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.

  12. Rectangular optical filter based on high-order silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  13. A modal approach to piano soundboard vibroacoustic behavior.

    PubMed

    Trévisan, Benjamin; Ege, Kerem; Laulagnet, Bernard

    2017-02-01

    This paper presents an analytical method for modeling the vibro-acoustic behavior of ribbed non-rectangular orthotropic clamped plates. To do this, the non-rectangular plate is embedded in an extended rectangular simply supported plate on which a spring distribution is added, blocking the extended part of the surface, and allowing the description of any inner surface shapes. The acoustical radiation of the embedded plate is ensured using the radiation impedances of the extended rectangular simply supported plate. This method is applied to an upright piano soundboard: a non-rectangular orthotropic plate ribbed in both directions by several straight stiffeners. A modal decomposition is adopted on the basis of the rectangular extended simply supported plate modes, making it possible to calculate the modes of a piano soundboard in the frequency range [0;3000] Hz, showing the different associated mode families. Likewise, the acoustical radiation is calculated using the radiation impedances of a simply supported baffled plate, demonstrating the influence of the string coupling point positions on the acoustic radiated power. The paper ends with the introduction of indicators taking into account spatial and spectral variations of the excitation depending on the notes, which add to the accuracy of the study from the musical standpoint. A parametrical study, which includes several variations of soundboard design, highlights the complexity of rendering high-pitched notes homogeneous.

  14. Turbulence Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2015-01-01

    This paper covers particle image velocimetry measurements of a family of rectangular nozzles with aspect ratios 2, 4, and 8, in the high subsonic flow regime. Far-field acoustic results, presented previously, showed that increasing aspect ratios increased the high frequency noise, especially directed in the polar plane containing the minor axis of the nozzle. The measurements presented here have important implications in the modeling of turbulent sources for acoustic analogy theories. While the nonaxisymmetric mean flow from the rectangular nozzles can be studied reliably using computational solutions, the nonaxisymmetry of the turbulent fluctuations, particularly at the level of velocity components, cannot; only measurements such as these can determine the impact of nozzle geometry on acoustic source anisotropy. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. The paper first documents the velocity fields, mean and variance, from the round, rectangular, and beveled rectangular nozzles at high subsonic speeds. A second section introduces measures of the isotropy of the turbulence, such as component ratios and lengthscales, first by showing them for a round jet and then for the rectangular nozzles. From these measures the source models of acoustic analogy codes can be judged or modified to account for these anisotropies.

  15. Analysis of the rectangular resonator with butterfly MMI coupler using SOI

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan

    2018-02-01

    We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.

  16. A Theoretical Investigation of the Input Characteristics of a Rectangular Cavity-Backed Slot Antenna

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1975-01-01

    Equations which represent the magnetic and electric stored energies are derived for an infinite section of rectangular waveguide and a rectangular cavity. These representations which are referred to as being physically observable are obtained by considering the difference in the volume integrals appearing in the complex Poynting theorem. It is shown that the physically observable stored energies are determined by the field components that vanish in a reference plane outside the aperture. These physically observable representations are used to compute the input admittance of a rectangular cavity-backed slot antenna in which a single propagating wave is assumed to exist in the cavity. The slot is excited by a voltage source connected across its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations are compared with measured data. In addition, input-admittance curves as a function of electrical slot length are presented for several size cavities. For the rectangular cavity backed slot antenna, the quality factor and relative bandwidth were computed independently by using these energy relationships. It is shown that the asymptotic relationship which is usually assumed to exist between the quality bandwidth and the reciprocal of relative bandwidth is equally valid for the rectangular cavity backed slot antenna.

  17. Two-step fabrication of single-layer rectangular SnSe flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-06-01

    Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm  ×  50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.

  18. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  19. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  1. Runway Texture and Grid Pattern Effects on Rate-of-Descent Perception

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Dearing, M. G.; Sweet, B. T.; Kaiser, M. K.; Rutkowski, Mike (Technical Monitor)

    2001-01-01

    To date, perceptual errors occur in determining descent rate from a computer-generated image in flight simulation. Pilots tend to touch down twice as hard in simulation than in flight, and more training time is needed in simulation before reaching steady-state performance. Barnes suggested that recognition of range may be the culprit, and he cited that problems such as collimated objects, binocular vision, and poor resolution lead to poor estimation of the velocity vector. Brown's study essentially ruled out that the lack of binocular vision is the problem. Dorfel added specificity to the problem by showing that pilots underestimated range in simulated scenes by 50% when 800 ft from the runway threshold. Palmer and Petitt showed that pilots are able to distinguish between a 1.7 ft/sec and 2.9 ft/sec sink rate when passively observing sink rates in a night scene. Platform motion also plays a role, as previous research has shown that the addition of substantial platform motion improves pilot estimates of vertical velocity and results in simulated touchdown rates more closely resembling flight. This experiment examined how some specific variations in the visual scene properties affect a pilot's perception of sink rate. It extended another experiment that focused on the visual and motion cues necessary for helicopter autorotations. In that experiment, pilots performed steep approaches to a runway. The visual content of the runway and its surroundings varied in two ways: texture and rectangular grid spacing. Four textures, included a no-texture case, were evaluated. Three grid spacings, including a no-grid case, were evaluated. The results showed that pilot better controlled their vertical descent rates when good texture cues were present. No significant differences were found for the grid manipulation. Using those visual scenes a simple psychophysics, experiment was performed. The purpose was to determine if the variations in the visual scenes allowed pilots to better perceive vertical velocity. To determine that answer, pilots passively viewed a particular visual scene in which the vehicle was descending at two different rates. Pilots had to select which of the two rates they thought was the fastest rate. The difference between the two rates changed using a staircase method, depending on whether or not the pilot was correct, until a minimum threshold between the two descent rates was reached. This process was repeated for all of the visual scenes to decide whether or not the visual scenes did allow pilots to perceive vertical velocity better among them. All of the data have yet to be analyzed; however, neither the effects of grid nor texture revealed any statistically significant trends. On further examination of the staircase method employed, a possibility exists that the lack of an evident trend may be due to the exit criterion used during the study. As such, the experiment will be repeated with an improved exit criterion in February. Results of this study will be presented in the submitted paper.

  2. High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H 2 –O 2 –Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    DOE PAGES

    Deiterding, Ralf

    2011-01-01

    Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore » in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less

  3. Wood texture classification by fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Gonzaga, Adilson; de Franca, Celso A.; Frere, Annie F.

    1999-03-01

    The majority of scientific papers focusing on wood classification for pencil manufacturing take into account defects and visual appearance. Traditional methodologies are base don texture analysis by co-occurrence matrix, by image modeling, or by tonal measures over the plate surface. In this work, we propose to classify plates of wood without biological defects like insect holes, nodes, and cracks, by analyzing their texture. By this methodology we divide the plate image in several rectangular windows or local areas and reduce the number of gray levels. From each local area, we compute the histogram of difference sand extract texture features, given them as input to a Local Neuro-Fuzzy Network. Those features are from the histogram of differences instead of the image pixels due to their better performance and illumination independence. Among several features like media, contrast, second moment, entropy, and IDN, the last three ones have showed better results for network training. Each LNN output is taken as input to a Partial Neuro-Fuzzy Network (PNFN) classifying a pencil region on the plate. At last, the outputs from the PNFN are taken as input to a Global Fuzzy Logic doing the plate classification. Each pencil classification within the plate is done taking into account each quality index.

  4. Integration and management of massive remote-sensing data based on GeoSOT subdivision model

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li

    2016-07-01

    Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.

  5. Fluid-acoustic interactions in a low area ratio supersonic jet ejector

    NASA Technical Reports Server (NTRS)

    Krothapalli, Anjaneyulu; Ross, Christopher; Yamomoto, K.; Joshi, M. C.

    1994-01-01

    An experimental investigation carried out to determine aerodynamic and acoustic characteristics of a low area ratio rectangular jet ejector is reported. A supersonic primary jet issuing from a rectangular convergent-divergent nozzle of aspect ratio 4, into a rectangular duct of area ratio 3, was used. Improved performance was found when the ejector screech tone is most intense and appears to match the most unstable Strouhal number of the free rectangular jet. When the primary jet was operating at over and ideally expanded conditions, significant noise reduction was obtained with the ejector as compared to a corresponding free jet. Application of particle image velocimetry to high speed ejector flows was demonstrated through the measurement of instantaneous two dimensional velocity fields.

  6. Lightning Simulation and Design Program (LSDP)

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    This computer program simulates a user-defined lighting configuration. It has been developed as a tool to aid in the design of exterior lighting systems. Although this program is used primarily for perimeter security lighting design, it has potential use for any application where the light can be approximated by a point source. A data base of luminaire photometric information is maintained for use with this program. The user defines the surface area to be illuminated with a rectangular grid and specifies luminaire positions. Illumination values are calculated for regularly spaced points in that area and isolux contour plots are generated. The numerical and graphical output for a particular site mode are then available for analysis. The amount of time spent on point-to-point illumination computation with this progress is much less than that required for tedious hand calculations. The ease with which various parameters can be interactively modified with the progress also reduces the time and labor expended. Consequently, the feasibility of design ideas can be examined, modified, and retested more thoroughly, and overall design costs can be substantially lessened by using this progress as an adjunct to the design process.

  7. Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak

    2017-11-01

    We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.

  8. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.

    PubMed

    Amatore, Christian; Oleinick, Alexander; Klymenko, Oleksiy V; Svir, Irina

    2005-08-12

    Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.

  9. Design optimization of large-size format edge-lit light guide units

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original method of dot pattern generation dedicated to large-size format light guide plate (LGP) design optimization, such as photo-bioreactors, the number of dots greatly exceeds the maximum allowable number of optical objects supported by most common ray-tracing software. In the proposed method, in order to simplify the computational problem, the original optical system is replaced by an equivalent one. Accordingly, an original dot pattern is splitted into multiple small sections, inside which the dot size variation is less than the ink dots printing typical resolution. Then, these sections are replaced by equivalent cells with continuous diffusing film. After that, we adjust the TIS (Total Integrated Scatter) two-dimensional distribution over the grid of equivalent cells, using an iterative optimization procedure. Finally, the obtained optimal TIS distribution is converted into the dot size distribution by applying an appropriate conversion rule. An original semi-empirical equation dedicated to rectangular large-size LGPs is proposed for the initial guess of TIS distribution. It allows significantly reduce the total time needed to dot pattern optimization.

  10. Chincup treatment modifies the mandibular shape in children with prognathism.

    PubMed

    Alarcón, José Antonio; Bastir, Markus; Rosas, Antonio; Molero, Julia

    2011-07-01

    Although chincups are the preferred treatment for growing children with mandibular prognathism, the mechanism by which chincups improve this condition remains unclear. The aim of this study was to use geometric morphometrics to evaluate changes in the shape of the mandible of prognathic children treated with a chincup. Geometric morphometrics were used to evaluate the short-term mandibular shape changes in 50 prognathic children treated with chincups compared with 40 untreated matched controls. Twenty-one 2-dimensional mandibular landmarks from cephalograms taken before and after 36 months of treatment or observation were analyzed by Procrustes superimposition and thin plate spline. Permutation tests of the treated patients showed highly significant differences in the mandibular shapes before and after treatment, and compared with the control group after the observation period. The thin plate spline grid deformations indicated more rectangular mandibular configuration, forward condyle orientation, condyle neck compression, gonial area compression, and symphysis narrowing. Early chincup treatment widely modifies the mandibular shape of prognathic children to improve Class III malocclusion. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  12. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  13. Two new hybrid molybdenum arsenate derivative constructed from [As2Mo6O26]6- building: Synthesis, structural characterization and photocatalysis property

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie

    2017-08-01

    Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.

  14. A Dissipative Systems Theory for FDTD With Application to Stability Analysis and Subgridding

    NASA Astrophysics Data System (ADS)

    Bekmambetova, Fadime; Zhang, Xinyue; Triverio, Piero

    2017-02-01

    This paper establishes a far-reaching connection between the Finite-Difference Time-Domain method (FDTD) and the theory of dissipative systems. The FDTD equations for a rectangular region are written as a dynamical system having the magnetic and electric fields on the boundary as inputs and outputs. Suitable expressions for the energy stored in the region and the energy absorbed from the boundaries are introduced, and used to show that the FDTD system is dissipative under a generalized Courant-Friedrichs-Lewy condition. Based on the concept of dissipation, a powerful theoretical framework to investigate the stability of FDTD methods is devised. The new method makes FDTD stability proofs simpler, more intuitive, and modular. Stability conditions can indeed be given on the individual components (e.g. boundary conditions, meshes, embedded models) instead of the whole coupled setup. As an example of application, we derive a new subgridding method with material traverse, arbitrary grid refinement, and guaranteed stability. The method is easy to implement and has a straightforward stability proof. Numerical results confirm its stability, low reflections, and ability to handle material traverse.

  15. [Light response characteristics of photosynthesis and model comparison of Distylium chinense in different flooding durations].

    PubMed

    Liu, Ze-bin; Cheng, Rui-mei; Xiao, Wen-fa; Guo, Quan-shui; Wang, Na

    2015-04-01

    The light responses of photosynthesis of two-year-old Distytum chinense seedlings subjected to a simulated reservoir flooding environment in autumn and winter seasons were measured by using a Li-6400 XT portable photosynthesis system, and the light response curves were fitted and analyzed by three models of the rectangular hyperbola, non-rectangular hyperbola and modified rectangular hyperbola to investigate the applicability of different light response models for the D. chinense in different flooding durations and the adaption regulation of light response parameters to flooding stress. The results showed that the fitting effect of the non-rectangular hyperbola model for light response process of D. chinense under normal growth condition and under short-term flooding (15 days of flooding) was better than that of the other two models, while the fitting effect of the modified rectangular hyperbola model for light response process of D. chinense under longer-term flooding (30, 45 and 60 days of flooding) was better than that of the other two models. The modified rectangular hyperbola model gave the best fitted results of light compensation point (LCP) , maximum net photosynthetic rate (P(n max)) and light saturation point (LSP), and the non-rectangular hyperbola model gave the best fitted result of dark respiration rate (R(d)). The apparent quantum yield (Φ), P(n max) and LSP of D. chinense gradually decreased, and the LCP and R(d) of D. chinense gradually increased in early flooding (30 days), but D. chinense gradually produced adaptability for flooding as the flooding duration continued to increase, and various physiological indexes were gradually stabilized. Thus, this species has adaptability to some degree to the flooding environment.

  16. RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging

    DTIC Science & Technology

    2016-02-04

    coil with square -shaped overlapping turns along the 135mm length of the coil. This paper compares these two coils to determine which has a more...in which, the coil arrays consist of a few square or circular coils side-by-side or overlapping. Mobile unilateral NMR/MRI scanners were...magnetic field along the length of a normal rectangular coil (NRC) and a rectangular coil with overlapping square -shaped turns (RCOS). The RCOS coil is

  17. SU-E-T-598: The Effects of Arm Speed for Quality Assurance and Commissioning Measurements in Rectangular and Cylindrical Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiari, M; Schmitt, J

    2014-06-01

    Purpose: Cylindrical and rectangular scanning water tanks are examined with different scanning speeds to investigate the TG-106 criteria and the errors induced in the measurements. Methods: Beam profiles were measured in a depth of R50 for a low-energy electron beam (6 MeV) using rectangular and cylindrical tanks. The speeds of the measurements (arm movement) were varied in different profile measurements. Each profile was measured with a certain speed to obtain the average and standard deviation as a parameter for investigating the reproducibility and errors. Results: At arm speeds of ∼0.8 mm/s the errors were as large as 2% and 1%more » with rectangular and cylindrical tanks, respectively. The errors for electron beams and for photon beams in other depths were within the TG-106 criteria of 1% for both tank shapes. Conclusion: The measurements of low-energy electron beams in a depth of R50, as an extreme case scenario, are sensitive to the speed of the measurement arms for both rectangular and cylindrical tanks. The measurements in other depths, for electron beams and photon beams, with arm speeds of less than 1 cm/s are within the TG-106 criteria. An arm speed of 5 mm/s appeared to be optimal for fast and accurate measurements for both cylindrical and rectangular tanks.« less

  18. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  19. Simulation of multipactor on the rectangular grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-11-15

    Multipactor discharge on the rectangular grooved dielectric surface is simulated self-consistently by using a two-and-a-half dimensional (2.5 D) electrostatic particle-in-cell (PIC) code. Compared with the electromagnetic PIC code, the former can give much more accurate solution for the space charge field caused by the multipactor electrons and the deposited surface charge. According to the rectangular groove width and height, the multipactor can be divided into four models, the spatial distributions of the multipactor electrons and the space charge fields are presented for these models. It shows that the rectangular groove in different models gives very different suppression effect on themore » multipactor, effective and efficient suppression on the multipactor can only be reached with a proper groove size.« less

  20. Propellant Feed System for Swirl-Coaxial Injection

    NASA Technical Reports Server (NTRS)

    Reynolds, David Christopher (Inventor)

    2015-01-01

    A propellant feed system for swirl-coaxial injection of a liquid propellant includes a reservoir having a bottom plate and at least one tube originating in the bottom plate and extending therefrom. The tube has rectangular slits defined in and distributed tangentially and evenly about a portion of the tube that is disposed in the bottom plate. Drain holes are provided in the bottom plate and tunnels are defined in the bottom plate. Each tunnel fluidly couples one of the drain holes to a corresponding one of the rectangular slits. Each tunnel includes (i) a bend of at least 90.degree., and (ii) a straight portion leading to its corresponding rectangular slit wherein the straight portion is at least five times as long as a hydraulic diameter of the corresponding rectangular slit.

  1. Search of GRB with AGILE Minicalorimeter

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Labanti, C.; Galli, M.; Marisaldi, M.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Argan, A.; Del Monte, E.; Donnarumma, I.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Tavani, M.; Trois, A.

    2008-04-01

    AGILE, the small scientific mission of the Italian Space Agency devoted to Hard-X and Gamma-ray astrophysics, was successfully launched on April 23, 2007. The AGILE payload is composed of a tungsten-silicon tracker (ST), operating in the gamma-ray energy range 30 MeV 50 GeV; Super-AGILE, an X-ray imager operating in the energy range 15 45 keV; the Minicalorimeter (MCAL) and an Anticoincidence shield. MCAL is a detector of about 1400 cm2 sensitive in the range 0.3 200 MeV, that can be used both as a slave of the ST to contribute to the AGILE Gamma Ray imaging Detector (GRID operative mode) and autonomously for detection of transient events (BURST operative mode). MCAL is made of 30 CsI(Tl) bar-shaped scintillation detectors with photodiode readout at both ends, arranged in two orthogonal layers. Energy and position of interaction can be derived from a proper composition of the signals readout at the bar's ends, absolute time tagging can be achieved with a μs resolution. The Burst logic deals with various rate-meters on different time scales, energy bands, and MCAL spatial zones. Different algorithms can be chosen for Burst triggering considering also the contribution of other detectors like Super AGILE. In this paper the various trigger logic will be reviewed as well as their on-ground test performed with a dedicated experimental setup.

  2. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1992-01-01

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  3. Synchronizability of random rectangular graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Ernesto, E-mail: ernesto.estrada@strath.ac.uk; Chen, Guanrong

    2015-08-15

    Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.

  4. Computational Investigation and Validation of Twin-Tail Buffet Response Including Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.

  5. A fourth order Euler/Navier-Stokes prediction method for the aerodynamics and aeroelasticity of hovering rotor blades

    NASA Astrophysics Data System (ADS)

    Smith, Marilyn Jones

    Some of the computational issues relating to the development of a three-dimensional fourth-order compact Euler/Navier-Stokes methodology for rotary wing flows and its coupling with an elastic rotor blade beam structural model have been explored. The compact Euler/NavierStokes method is used to predict the aerodynamic loads on an isolated rotor blade. Because the scheme is fourth-order, fewer grid nodes are necessary to predict loads with the same accuracy as traditional second order methodologies on finer grids. Grid and numerical parameter optimizations were performed to examine the changes in the predictive capabilities of the higher-order scheme. Comparisons were made with experimental data for a rotor using NACA 0012 airfoil sections and a rectangular planform with no twist. Simulations for both lifting and non-lifting configurations at various tip Mach numbers were performed. This Euler/Navier-Stokes methodology can be applied to rotor blades with either rigid-blade or elastic-beam-structural models to determine the steady-state response in hovering flight. The blade is represented by a geometrically nonlinear beam model which accounts for coupled flap bending, lead-lag bending and torsion. Moderately large displacements and rotations due to structural deformations can be simulated. The analysis has been performed for blade configurations having uniform mass and stiffness, no twist, and no chordwise offsets of the elastic and tension axes, as well as the center of mass. The results are compared with a panel method coupled with the same structural dynamics model. Computations have been made to predict the aerodynamic deflections for the rotor in hover. A starting solution using initial deflections predicted by aeroelastic analyses with a two-dimensional aerodynamic model was investigated. The present Euler/Navier-Stokes method using a momentum wake and a contracting vortex wake shows the impact on the aeroelastic deflections of a three-dimensional aerodynamic module which includes rotational and viscous effects, particularly at higher collective pitch angles. The differences in the aeroelastic predictions using fully coupled and loosely coupled aerodynamic analyses are examined. The induced wake plays a critical role in determining the final equilibrium tip deflections.

  6. NASA GES DISC On-line Visualization and Analysis System for Gridded Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Berrick, S.; Rui, H.; Liu, Z.; Zhu, T.; Teng, W.; Shen, S.; Qin, J.

    2005-01-01

    The ability to use data stored in the current NASA Earth Observing System (EOS) archives for studying regional or global phenomena is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time-consuming task that must be undertaken before the core investigation can begin. This is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets that are usually of different formats, structures, and resolutions. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step towards meeting this challenge by developing an infrastructure with a Web interface that allows users to perform interactive analysis online without downloading any data, the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni." Giovanni provides interactive, online, analysis tools for data users to facilitate their research. There have been several instances of this interface created to serve TRMM users, Aerosol scientists, Ocean Color and Agriculture applications users. The first generation of these tools support gridded data only. The user selects geophysical parameters, area of interest, time period; and the system generates an output on screen in a matter of seconds. The currently available output options are: Area plot averaged or accumulated over any available data period for any rectangular area; Time plot time series averaged over any rectangular area; Hovmoller plots image view of any longitude-time and latitude-time cross sections; ASCII output for all plot types; Image animation for area plot. Another analysis suite deals with parameter intercomparison: scatter plots, temporal correlation maps, GIs-compatible outputs, etc. This allow user to focus on data content (i.e. science parameters) and eliminate the need for expensive learning, development and processing tasks that are redundantly incurred by an archive's user community. The current implementation utilizes the GrADS-DODS Server (GDS), and provides subsetting and analysis services across the Internet for any GrADS-readable dataset. The subsetting capability allows users to retrieve a specified temporal and/or spatial subdomain from a large dataset, eliminating the need to download everything simply to access a small relevant portion of a dataset. The analysis capability allows users to retrieve the results of an operation applied to one or more datasets on the server. We use this approach to read pre-processed binary files and/or to read and extract the needed parts directly from HDF or HDF-EOS files. These subsets then serve as inputs into GrADS analysis scripts. It can be used in a wide variety of Earth science applications: climate and weather events study and monitoring; modeling. It can be easily configured for new applications.

  7. Additive Manufacturing Consolidation of Low-Cost Water Atomized Steel Powder Using Micro-Induction Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; U

    ORNL worked with Grid Logic Inc to demonstrate micro induction sintering (MIS) and binder decomposition of steel powders. It was shown that MIS effectively emits spatially confined electromagnetic energy that is directly coupled to metallic powders resulting in resistive heating of individual particles. The non-uniformity of particle morphology and distribution of the water atomized steel powders resulted in inefficient transfer of energy. It was shown that adhering the particles together using polymer binders resulted in more efficient coupling. Using the MIS processes, debinding and sintering could be done in a single step. When combined with another system, such as binder-jet,more » this could reduce the amount of required post-processing. An invention disclosure was filed on hybrid systems that use MIS to reduce the amount of required post-processing.« less

  8. Optimal tracking and second order sliding power control of the DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Abdeddaim, S.; Betka, A.; Charrouf, O.

    2017-02-01

    In the present paper, an optimal operation of a grid-connected variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG) is presented. The proposed cascaded nonlinear controller is designed to perform two main objectives. In the outer loop, a maximum power point tracking (MPPT) algorithm based on fuzzy logic theory is designed to permanently extract the optimal aerodynamic energy, whereas in the inner loop, a second order sliding mode control (2-SM) is applied to achieve smooth regulation of both stator active and reactive powers quantities. The obtained simulation results show a permanent track of the MPP point regardless of the turbine power-speed slope moreover the proposed sliding mode control strategy presents attractive features such as chattering-free, compared to the conventional first order sliding technique (1-SM).

  9. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.

    PubMed

    Mahajan, Virendra N

    2010-12-20

    The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.

  10. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. This volume contains tabulated data for each of the data runs cited in Volume 1. Baseline characteristics, mixing modifications (subsonic and supersonic, heated and unheated) and miscellaneous charts are included.

  11. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-05-15

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier createdmore » in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.« less

  12. Functional form for the leading correction to the distribution of the largest eigenvalue in the GUE and LUE

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Trinh, Allan K.

    2018-05-01

    The neighbourhood of the largest eigenvalue λmax in the Gaussian unitary ensemble (GUE) and Laguerre unitary ensemble (LUE) is referred to as the soft edge. It is known that there exists a particular centring and scaling such that the distribution of λmax tends to a universal form, with an error term bounded by 1/N2/3. We take up the problem of computing the exact functional form of the leading error term in a large N asymptotic expansion for both the GUE and LUE—two versions of the LUE are considered, one with the parameter a fixed and the other with a proportional to N. Both settings in the LUE case allow for an interpretation in terms of the distribution of a particular weighted path length in a model involving exponential variables on a rectangular grid, as the grid size gets large. We give operator theoretic forms of the corrections, which are corollaries of knowledge of the first two terms in the large N expansion of the scaled kernel and are readily computed using a method due to Bornemann. We also give expressions in terms of the solutions of particular systems of coupled differential equations, which provide an alternative method of computation. Both characterisations are well suited to a thinned generalisation of the original ensemble, whereby each eigenvalue is deleted independently with probability (1 - ξ). In Sec. V, we investigate using simulation the question of whether upon an appropriate centring and scaling a wider class of complex Hermitian random matrix ensembles have their leading correction to the distribution of λmax proportional to 1/N2/3.

  13. MODIS Data from the GES DISC DAAC: Moderate-Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) is responsible for the distribution of the Level 1 data, and the higher levels of all Ocean and Atmosphere products (Land products are distributed through the Land Processes (LP) DAAC DAAC, and the Snow and Ice products are distributed though the National Snow and Ice Data Center (NSIDC) DAAC). Ocean products include sea surface temperature (SST), concentrations of chlorophyll, pigment and coccolithophores, fluorescence, absorptions, and primary productivity. Atmosphere products include aerosols, atmospheric water vapor, clouds and cloud masks, and atmospheric profiles from 20 layers. While most MODIS data products are archived in the Hierarchical Data Format-Earth Observing System (HDF-EOS 2.7) format, the ocean binned products and primary productivity products (Level 4) are in the native HDF4 format. MODIS Level 1 and 2 data are of the Swath type and are packaged in files representing five minutes of Files for Level 3 and 4 are global products at daily, weekly, monthly or yearly resolutions. Apart from the ocean binned and Level 4 products, these are in Grid type, and the maps are in the Cylindrical Equidistant projection with rectangular grid. Terra viewing (scenes of approximately 2000 by 2330 km). MODIS data have several levels of maturity. Most products are released with a provisional level of maturity and only announced as validated after rigorous testing by the MODIS Science Teams. MODIS/Terra Level 1, and all MODIS/Terra 11 micron SST products are announced as validated. At the time of this publication, the MODIS Data Support Team (MDST) is working with the Ocean Science Team toward announcing the validated status of the remainder of MODIS/Terra Ocean products. MODIS/Aqua Level 1 and cloud mask products are released with provisional maturity.

  14. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  15. Sensorimotor-Conceptual Integration in Free Walking Enhances Divergent Thinking for Young and Older Adults

    PubMed Central

    Kuo, Chun-Yu; Yeh, Yei-Yu

    2016-01-01

    Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults. PMID:27790178

  16. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    NASA Astrophysics Data System (ADS)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  17. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    NASA Astrophysics Data System (ADS)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  18. A new metamaterial-based wideband rectangular invisibility cloak

    NASA Astrophysics Data System (ADS)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  19. Natural frequencies of thin rectangular plates clamped on contour using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    (Barboni Haţiegan, L.; Haţiegan, C.; Gillich, G. R.; Hamat, C. O.; Vasile, O.; Stroia, M. D.

    2018-01-01

    This paper presents the determining of natural frequencies of plates without and with damages using the finite element method of SolidWorks program. The first thirty natural frequencies obtained for thin rectangular rectangular plates clamped on contour without and with central damages a for different dimensions. The relative variation of natural frequency was determined and the obtained results by the finite element method (FEM) respectively relative variation of natural frequency, were graphically represented according to their vibration natural modes. Finally, the obtained results were compared.

  20. Extending the Fermi-LAT Data Processing Pipeline to the Grid

    NASA Astrophysics Data System (ADS)

    Zimmer, S.; Arrabito, L.; Glanzman, T.; Johnson, T.; Lavalley, C.; Tsaregorodtsev, A.

    2012-12-01

    The Data Handling Pipeline (“Pipeline”) has been developed for the Fermi Gamma-Ray Space Telescope (Fermi) Large Area Telescope (LAT) which launched in June 2008. Since then it has been in use to completely automate the production of data quality monitoring quantities, reconstruction and routine analysis of all data received from the satellite and to deliver science products to the collaboration and the Fermi Science Support Center. Aside from the reconstruction of raw data from the satellite (Level 1), data reprocessing and various event-level analyses are also reasonably heavy loads on the pipeline and computing resources. These other loads, unlike Level 1, can run continuously for weeks or months at a time. In addition it receives heavy use in performing production Monte Carlo tasks. In daily use it receives a new data download every 3 hours and launches about 2000 jobs to process each download, typically completing the processing of the data before the next download arrives. The need for manual intervention has been reduced to less than 0.01% of submitted jobs. The Pipeline software is written almost entirely in Java and comprises several modules. The software comprises web-services that allow online monitoring and provides charts summarizing work flow aspects and performance information. The server supports communication with several batch systems such as LSF and BQS and recently also Sun Grid Engine and Condor. This is accomplished through dedicated job control services that for Fermi are running at SLAC and the other computing site involved in this large scale framework, the Lyon computing center of IN2P3. While being different in the logic of a task, we evaluate a separate interface to the Dirac system in order to communicate with EGI sites to utilize Grid resources, using dedicated Grid optimized systems rather than developing our own. More recently the Pipeline and its associated data catalog have been generalized for use by other experiments, and are currently being used by the Enriched Xenon Observatory (EXO), Cryogenic Dark Matter Search (CDMS) experiments as well as for Monte Carlo simulations for the future Cherenkov Telescope Array (CTA).

  1. 25. DETAIL OF THE MASONRY ARCH OF A RECTANGULAR COKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL OF THE MASONRY ARCH OF A RECTANGULAR COKE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  2. VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT PIT IN BACKGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  3. Strength and stiffness of reinforced rectangular columns under biaxially eccentric thrust.

    DOT National Transportation Integrated Search

    1976-01-01

    Compression tests on nine reinforced concrete rectangular columns subjected to : constant thrust and biaxially eccentric moments were conducted at the off-campus : research facility of The University of Texas, The Civil Engineering Structures : Labor...

  4. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition

    NASA Technical Reports Server (NTRS)

    Smart, M. K.

    1998-01-01

    A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.

  5. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  6. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing

    2018-06-01

    Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.

  7. Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Feng, Li-Hao; Wang, Jin-Jun; Li, Tian

    2018-06-01

    An experimental study was conducted on the evolution of low-aspect-ratio (AR) rectangular synthetic jets using time-resolved two-dimensional particle image velocimetry and stereoscopic particle image velocimetry. Five orifice ARs ranging from 1 to 5 were found to have an obvious effect on the axis switching of vortex rings and the near-field flow physics at a uniform Reynolds number of 166 and non-dimensional stroke length of 4.5. Compared with conventional continuous jets, rectangular synthetic jets displayed more times of axis switching and the first axis-switching location was closer to the jet exit. Two types of different streamwise vortices, SV-I and SV-II, were detected in the near field as the characteristic products of axis switching. Influenced by the axis switching and streamwise vortices, significant entrainment and mixing enhancement was demonstrated for low-AR rectangular synthetic jets.

  8. Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N .; Pidugu, S. B.

    1999-01-01

    The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.

  9. Analysis and numerical simulation research of the heating process in the oven

    NASA Astrophysics Data System (ADS)

    Chen, Yawei; Lei, Dingyou

    2016-10-01

    How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven. For this intent, this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section. Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission, based on the idea of utilizing cellular automation to simulate heat transfer process, used ANSYS software to proceed the numerical simulation analysis to the rectangular, round-cornered rectangular, elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans. The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.

  10. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numericallymore » using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.« less

  11. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  12. 28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE INTERNAL STRUCTURE OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  13. Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates

    NASA Astrophysics Data System (ADS)

    dalaei, m.; kerr, a. d.

    The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.

  14. Numerical evaluation of the surface deformation of elastic solids subjected to a hertzian contact stress

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1974-01-01

    The elastic deformation of two ellipsoidal solids in contact and subjected to Hertzian stress distribution was evaluated numerically as part of a general study of the elastic deformation of such solids in elastohydrodynamic contacts. In the analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure is applied over each rectangular area. The influence of the size of the rectangular area upon accuracy was also studied. The results indicate the distance from the center of the contact at which elastic deformation becomes insignificant.

  15. Study of proton radiation effects among diamond and rectangular gate MOSFET layouts

    NASA Astrophysics Data System (ADS)

    Seixas, L. E., Jr.; Finco, S.; Silveira, M. A. G.; Medina, N. H.; Gimenez, S. P.

    2017-01-01

    This paper describes an experimental comparative study of proton ionizing radiation effects between the metal-oxide-semiconductor (MOS) Field Effect Transistors (MOSFETs) implemented with hexagonal gate shapes (diamond) and their respective counterparts designed with the classical rectangular ones, regarding the same gate areas, channel widths and geometrical ratios (W/L). The devices were manufactured by using the 350 nm bulk complementary MOS (CMOS) integrated circuits technology. The diamond MOSFET with α angles higher or equal to 90° tends to present a smaller vulnerability to the high doses ionizing radiation than those observed in the typical rectangular MOSFET counterparts.

  16. A design method for entrance sections of transonic wind tunnels with rectangular cross sections

    NASA Technical Reports Server (NTRS)

    Lionel, L.; Mcdevitt, J. B.

    1975-01-01

    A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.

  17. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOEpatents

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  18. Eigensolution of finite element problems in a completely connected parallel architecture

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.; Morel, Michael R.

    1989-01-01

    A parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi)=(M)(phi)(omega), where (K) and (M) are of order N, and (omega) is of order q is presented. The parallel algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple-instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro-tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are achieved on two, four, six and eight processors, respectively.

  19. Numerical modeling of crystal growth in Bridgman device

    NASA Astrophysics Data System (ADS)

    Vompe, Dmitry Aleksandrovich

    1997-12-01

    The standard model for the growth of a crystal from a pure substance or diluted binary mixture contains transport equations for heat and phase change conditions at the solidification front. A numerical method is constructed for simulations of crystal growth in a vertical Bridgman device. The method is based on a boundary fitting technique in which melted and solidified regions are mapped onto a fixed rectangular logical domain. The Alternating Directions scheme (ADI) is used to treat the diffusive terms implicitly, with explicit methods are used for the remaining terms in the mapped temperature equations with variable coefficients. The nonlinear equation for the solid/liquid interface motion is solved by the modified Euler technique. Results obtained from the calculations have been used to study the influence of various boundary conditions imposed on the sidewalls and the top and bottom of the ampoule. Conditions are identified that lead to a steadily growing crystal and results are compared with an asymptotic one- dimensional model. Criteria based on ampoule length and boundary conditions being derived and compared with a previously developed one-dimensional model. Various cases have been considered to determine conditions for maintaining a nearly flat interface. It was found that the interface amplitude can be decreased by a factor of 100 (even 1,000) by optimizing temperature boundary conditions.

  20. Rapid prototyping of update algorithm of discrete Fourier transform for real-time signal processing

    NASA Astrophysics Data System (ADS)

    Kakad, Yogendra P.; Sherlock, Barry G.; Chatapuram, Krishnan V.; Bishop, Stephen

    2001-10-01

    An algorithm is developed in the companion paper, to update the existing DFT to represent the new data series that results when a new signal point is received. Updating the DFT in this way uses less computation than directly evaluating the DFT using the FFT algorithm, This reduces the computational order by a factor of log2 N. The algorithm is able to work in the presence of data window function, for use with rectangular window, the split triangular, Hanning, Hamming, and Blackman windows. In this paper, a hardware implementation of this algorithm, using FPGA technology, is outlined. Unlike traditional fully customized VLSI circuits, FPGAs represent a technical break through in the corresponding industry. The FPGA implements thousands of gates of logic in a single IC chip and it can be programmed by users at their site in a few seconds or less depending on the type of device used. The risk is low and the development time is short. The advantages have made FPGAs very popular for rapid prototyping of algorithms in the area of digital communication, digital signal processing, and image processing. Our paper addresses the related issues of implementation using hardware descriptive language in the development of the design and the subsequent downloading on the programmable hardware chip.

  1. Liquid droplet radiator development status

    NASA Technical Reports Server (NTRS)

    White, K. Alan, III

    1987-01-01

    Development of the Liquid Droplet Radiator (LDR) is described. Significant published results of previous investigators are presented, and work currently in progress is discussed. Several proposed LDR configurations are described, and the rectangular and triangular configurations currently of most interest are examined. Development of the droplet generator, collector, and auxiliary components are discussed. Radiative performance of a droplet sheet is considered, and experimental results are seen to be in very good agreement with analytical predictions. The collision of droplets in the droplet sheet, the charging of droplets by the space plasma, and the effect of atmospheric drag on the droplet sheet are shown to be of little consequence, or can be minimized by proper design. The LDR is seen to be less susceptible than conventional technology to the effects of micrometeoroids or hostile threats. The identification of working fluids which are stable in the orbital environments of interest is also made. Methods for reducing spacecraft contamination from an LDR to an acceptable level are discussed. Preliminary results of microgravity testing of the droplet generator are presented. Possible future NASA and Air Force missions enhanced or enabled by a LDR are also discussed. System studies indicate that the LDR is potentially less massive than heat pipe radiators. Planned microgravity testing aboard the Shuttle or space station is seen to be a logical next step in LDR development.

  2. Politics of schism: routinization and social control in the International Socialists/Socialist Workers' Party

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rayner, S.

    1985-01-01

    The received wisdom of social science holds that voluntary organizations founded on egalitarian principles, can only survive by undergoing transformation into hierarchical systems. The underlying logic of Weber, Michels and Toennies' descriptions is that social organizations sustain themselves over time by generating increasingly complex systems of rules that become sources of inequality. This article argues that routinization in voluntary groups does not consist of a gradual accumulation of rules that promote internal inequality. Instead, two analytically distinct steps are proposed: (1) construction of a distinctive organizational boundary, which is a necessary condition for (2) the ultimate imposition of a complexmore » organizational hierarchy. The case used to illustrate this argument is drawn from the history of the British Trotskyist movement prior to 1978. The argument itself is framed within a formal model of the sociology of knowledge called grid/group analysis.« less

  3. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    NASA Astrophysics Data System (ADS)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  4. The caBIG Terminology Review Process

    PubMed Central

    Cimino, James J.; Hayamizu, Terry F.; Bodenreider, Olivier; Davis, Brian; Stafford, Grace A.; Ringwald, Martin

    2009-01-01

    The National Cancer Institute (NCI) is developing an integrated biomedical informatics infrastructure, the cancer Biomedical Informatics Grid (caBIG®), to support collaboration within the cancer research community. A key part of the caBIG architecture is the establishment of terminology standards for representing data. In order to evaluate the suitability of existing controlled terminologies, the caBIG Vocabulary and Data Elements Workspace (VCDE WS) working group has developed a set of criteria that serve to assess a terminology's structure, content, documentation, and editorial process. This paper describes the evolution of these criteria and the results of their use in evaluating four standard terminologies: the Gene Ontology (GO), the NCI Thesaurus (NCIt), the Common Terminology for Adverse Events (known as CTCAE), and the laboratory portion of the Logical Objects, Identifiers, Names and Codes (LOINC). The resulting caBIG criteria are presented as a matrix that may be applicable to any terminology standardization effort. PMID:19154797

  5. Entropic Barriers for Two-Dimensional Quantum Memories

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  6. Equivalent square formula for determining the surface dose of rectangular field from 6 MV therapeutic photon beam.

    PubMed

    Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn

    2013-09-06

    The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.

  7. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    PubMed

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  8. Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.

    DOT National Transportation Integrated Search

    2011-07-01

    Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...

  9. 75 FR 57456 - Light-Walled Rectangular Pipe and Tube from the People's Republic of China: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ...'') U.S. affiliated importer FitMAX Inc. (``FitMAX'') on June 2, 2010 and June 16, 2010. FitMAX... carbon- quality light-walled steel pipe and tube, of rectangular (including square) cross section, having...

  10. Whole article corrigendum: "Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating" [Optics Communications 322 (2014) 66-72

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Haosu; Zhu, Zhendong; Li, Qunqing; Jin, Guofan

    2017-02-01

    This article proposes a surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating. This structure contains a SiO2 film, an Ag film and a HfO2 film sequentially coated on the rectangularly-patterned p-GaN layer. The Ag film is used to enhance the internal quantum efficiency. The HfO2 cover-layer symmetrizes the distribution of refractive index besides the Ag film to improve the light extraction efficiency and surface-plasmon (SP) extraction efficiency. The inserted SiO2 layer is utilized to further improve the SP extraction efficiency. The properties of SP modes and Purcell effect in this structure are investigated. The photoluminescence experiments demonstrate that its peak intensity of top-emission is about 2.5 times greater than that from the reference structure covered by a single-layer Ag film on the rectangularly-patterned p-GaN layer.

  11. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  12. Free vibration of rectangular plates with a small initial curvature

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A. A.; Oyediran, A. A.

    1988-01-01

    The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.

  13. Evaluation of radiation exposure with Tru-Align intraoral rectangular collimation system using OSL dosimeters.

    PubMed

    Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C

    2011-03-01

    A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.

  14. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.

    PubMed

    Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.

  15. Enhancing wear resistance of working bodies of grinder through lining crushed material

    NASA Astrophysics Data System (ADS)

    Romanovich, A. A.; Annenko, D. M.; Romanovich, M. A.; Apukhtina, I. V.

    2018-03-01

    The article presents the analysis of directions of increasing wear resistance of working surfaces of rolls. A technical solution developed at the level of the invention is proposed, which is simple to implement in production conditions and which makes it possible to protect the roll surface from heavy wear due to surfacing of wear-resistant mesh material, cells of which are filling with grinding material in the process of work. Retaining them enables one to protect the roll surface from wear. The paper dwells on conditions of pressing materials in cells of eccentric rolls on the working surface with a grid of rectangular shape. The paper presents an equation for calculation of the cell dimension that provides the lining of the working surface by a mill material with respect to its properties. The article presents results of comparative studies on the grinding process of a press roller grinder (PRG) between rolls with and without a fusion-bonded mesh. It is clarified that the lining of rolls working surface slightly reduces the quality of the grinding, since the material thickness in the cell is small and has a finely divided and compacted structure with high strength.

  16. Analysis and synthesis of (SAR) waveguide phased array antennas

    NASA Astrophysics Data System (ADS)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  17. Spherical self-organizing map using efficient indexed geodesic data structure.

    PubMed

    Wu, Yingxin; Takatsuka, Masahiro

    2006-01-01

    The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the icosahedron-based geodesic dome. Vertices relationships are maintained by their positions in the data structure rather than by immediate neighbor pointers or an adjacency list. Increasing the number of neurons can be done efficiently because the overhead caused by pointer updates is reduced. Experiments show that the spherical SOM using our data structure, called a GeoSOM, runs with comparable speed to the conventional 2D SOM. The GeoSOM also reduces data distortion due to removal of the boundaries. Furthermore, we developed an interface to project the GeoSOM onto the 2D plane using a cartographic approach, which gives users a global view of the spherical data map. Users can change the center of the 2D data map interactively. In the end, we compare the GeoSOM to the other spherical SOMs by space complexity and time complexity.

  18. Three-dimensional steady flow computations in manifold-type junctions and a comparison with experiment

    NASA Astrophysics Data System (ADS)

    Kuo, Tang-Wei; Chang, Shengming

    Results of three-dimensional steady flow calculations are compared with existing pressure and velocity measurements of two manifold-type junctions. The junctions consist of a main duct and a side branch, both with the same rectangular cross section, with the side branch joining the main duct at an angle of either 90 or 45 degrees. Both combining and dividing flow configurations are considered for different total mass flow rates and different side-branch-to-main-duct mass flow ratios. One objective of this investigation was to assess the effects of numerical differencing scheme and mesh refinement on solution accuracy, and both parameters showed strong influences on the computed results. It is shown that calculations should be made with the highest possible level of numerical accuracy and grid resolution in regions of flow recirculation. Comparisons of computed and measured velocities, static pressures, and flow loss coefficients are presented in this paper. For most cases considered, the model predictions are in good agreement with the measurements. Results can be used as input loss coefficients to an engine-simulation code, in addition to being used to evaluate a specific junction design.

  19. One-dimensional ion-beam figuring for grazing-incidence reflective optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Lin; Idir, Mourad; Bouet, Nathalie

    2016-01-01

    One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick–Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experimentsmore » of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. In conclusion, the surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.« less

  20. Applications of wavelet-based compression to multidimensional Earth science data

    NASA Technical Reports Server (NTRS)

    Bradley, Jonathan N.; Brislawn, Christopher M.

    1993-01-01

    A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithms (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm are reported, as are signal-to-noise (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme. The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.

  1. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  2. Radial q-space sampling for DSI

    PubMed Central

    Baete, Steven H.; Yutzy, Stephen; Boada, Fernando, E.

    2015-01-01

    Purpose Diffusion Spectrum Imaging (DSI) has been shown to be an effective tool for non-invasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI (RDSI) is used to improve the angular resolution and accuracy of the reconstructed Orientation Distribution Functions (ODF). Methods Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the ODF at the same angular location by the Fourier slice theorem. Results Computer simulations and in vivo brain results demonstrate that RDSI correctly estimates the ODF when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. Conclusion The nominal angular resolution of RDSI depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. PMID:26363002

  3. A New Technique for System-to-system Transfer of Surface Data

    NASA Technical Reports Server (NTRS)

    Sterling, M. W.; Lucius, M. E.; Gordon, W. J.

    1985-01-01

    The purpose is to describe a recently developed technique aimed at providing a universal interface between surface types. In brief, a software package was developed which functions a common denominator of CAD/CAM surface types. This software enable one to convert from any given surface representation to any other target representation. The tiles maintain the same slope continuity as the target surface gram, bicubic patches are used since they allow one to match point, slope, and twist vectors to the target surface. Thus, slopes can be continuous or discontinuous as they are on the target surface. The patches can be of lower order if desired. For example, if only point information is available, the patches produced will be bilinear; however, the number of patches required is likely to increase correspondingly. The patches can be of higher order although many systems will not accept patches of more than order four. The final result of the program is a rectangular grid of bicubic patches. The patches fit the target surface exactly at their corners. Also, the patch corners have the same tangent and twist vectors. Adjacent patches will have slope continuity, unless a discontinuity was indicated by the target surface.

  4. Variation in flexural properties of photo-pultruded composite archwires: analyses of round and rectangular profiles.

    PubMed

    Fallis, D W; Kusy, R P

    2000-11-01

    Prototype continuous, unidirectional, fiber-reinforced composite archwires were manufactured into round and rectangular profiles utilizing a photo-pultrusion process. Both 0.022 inch (0.56 mm) diameter and 0.021 x 0.028 inch (0.53 x 0.71 mm) rectangular composites were formed utilizing commercially available S2-glass reinforcement within a polymeric matrix. Reinforcement was varied according to the number, denier and twists per inch (TPI) of four S2-glass yarns to volume levels of 32-74% for round and 41-61% for rectangular profiles. Cross-sectional geometry was evaluated via light microscopy to determine loading characteristics; whereas two flexural properties (the elastic moduli and flexural strengths) were determined by 3-point bending tests. Morphological evaluation of samples revealed that as the TPI increased from 1 to 8, the yarns were more separated from one another and distributed more peripherally within a profile. For round and rectangular profiles utilizing 1 TPI fibers, moduli increased with fiber content approaching theoretical values. For round profiles utilizing 1 TPI and 4 TPI fibers, flexural strengths increased until the loading geometry was optimized. In contrast, the flexural strengths of composites that were pultruded with 8 TPI fibers were not improved at any loading level. Doubling the denier of the yarn, without altering the loading, increased both the moduli and flexural strengths in rectangular samples; whereas, the increases observed in round samples were not statistically significant. At optimal loading the maximum mean moduli and strengths equaled 53.6 +/- 2.0 and 1.36 +/- 0.17 GPa for round wire and equaled 45.7 +/- 0.8 and 1.40 +/- 0.05 GPa for rectangular wires, respectively. These moduli were midway between that of martensitic NiTi (33.4 GPa) and beta-titanium (72.4 GPa), and produced about one-quarter the force of a stainless steel wire per unit of activation. Values of strengths placed this composite material in the range of published values for beta-titanium wires (1.3-1.5 GPa). Copyright 2000 Kluwer Academic Publishers

  5. High Quality Facade Segmentation Based on Structured Random Forest, Region Proposal Network and Rectangular Fitting

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Mayer, H.

    2018-05-01

    In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  6. Numerical calculation of flow fields about rectangular wings of finite thickness in supersonic flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1973-01-01

    The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.

  7. 27. VIEW LOOKING THROUGH A RECTANGULAR COKE OVEN. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW LOOKING THROUGH A RECTANGULAR COKE OVEN. NOTE THE USE OF BOTH BRICK AND STONE IN THE CONSTRUCTION OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  8. Reflections on the Gall-Peters Projection.

    ERIC Educational Resources Information Center

    Robinson, Arthur H.

    1987-01-01

    Explains the cartographic qualities of rectangular world maps and compares the merits of various projections such as the Mercator and the recently-created Gall-Peters. States that the Gall-Peters projection does not provide a reasonable base for a general world map; that no rectangular projection does. (JDH)

  9. 75 FR 1751 - Light-Walled Rectangular Pipe and Tube from Turkey: Extension of Time Limits for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube from Turkey: Extension of Time Limits for Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce...

  10. 76 FR 4289 - Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce...

  11. Method for exciting inductive-resistive loads with high and controllable direct current

    DOEpatents

    Hill, Jr., Homer M.

    1976-01-01

    Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.

  12. On the radiation impedance of a rectangular piston

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1982-01-01

    Single integral representations for the resistive and reactive components of the radiation impedance appropriate to a rectangular piston are established, thereby enabling a systematic refinement of estimates at both short and long wave lengths. Comparisons with previous analyses are made explicit as well as extensions and corrections thereto.

  13. 46 CFR 72.05-20 - Stairways, ladders, and elevators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...

  14. 46 CFR 72.05-20 - Stairways, ladders, and elevators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...

  15. Effect of wall roughness on liquid oscillations damping in rectangular tanks

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1970-01-01

    Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.

  16. Evaluation of a rectangular rapid flashing beacon system at the Belmont Ridge Road and W&OD Trail mid-block crosswalk.

    DOT National Transportation Integrated Search

    2015-05-01

    On April 8, 2013, the Virginia Department of Transportation (VDOT) installed a Rectangular Rapid Flashing Beacon : (RRFB) system at Belmont Ridge Road in Loudoun County that included two units at the Washington and Old Dominion : (W&OD) Trail crossin...

  17. Students' Reasoning about Invariance of Volume as a Quantity

    ERIC Educational Resources Information Center

    Kara, Melike

    2013-01-01

    The aims of this study were to investigate how upper-elementary-grade students compare the volume of rectangular prisms of equal volume (specifically, students' noticing and reasoning for invariance of volume and coordination of the three linear dimensions of rectangular prisms) and how students' levels of sophistication in volume measurement…

  18. Comparing the Volumes of Rectangular Prisms

    ERIC Educational Resources Information Center

    Assuah, Charles K.; Wiest, Lynda R.

    2010-01-01

    Can middle-grades students determine which of two rectangular prisms has a larger volume? Can they do so without using a formula? Geometry, and particularly the concept of volume, is important in many subjects, such as physics and chemistry. Students greatly enhance their mathematics knowledge when they make generalizations and construct arguments…

  19. New coplanar waveguide to rectangular waveguide end launcher

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1992-01-01

    A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.

  20. Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section

    NASA Astrophysics Data System (ADS)

    Boichuk, V. Yu.

    2001-05-01

    This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented

Top