Sample records for logistic network construction

  1. Reverse logistics in the Brazilian construction industry.

    PubMed

    Nunes, K R A; Mahler, C F; Valle, R A

    2009-09-01

    In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.

  2. Research on reverse logistics location under uncertainty environment based on grey prediction

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Congwei, Zhu; Yuqin, Zhao; Quanke, Pan

    This article constructs reverse logistic network based on uncertain environment, integrates the reverse logistics network and distribution network, and forms a closed network. An optimization model based on cost is established to help intermediate center, manufacturing center and remanufacturing center make location decision. A gray model GM (1, 1) is used to predict the product holdings of the collection points, and then prediction results are carried into the cost optimization model and a solution is got. Finally, an example is given to verify the effectiveness and feasibility of the model.

  3. Chimera states in networks of logistic maps with hierarchical connectivities

    NASA Astrophysics Data System (ADS)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  4. Peculiarities of solving the problems of modern logistics in high-rise construction and industrial production

    NASA Astrophysics Data System (ADS)

    Rubtsov, Anatoliy E.; Ushakova, Elena V.; Chirkova, Tamara V.

    2018-03-01

    Basing on the analysis of the enterprise (construction organization) structure and infrastructure of the entire logistics system in which this enterprise (construction organization) operates, this article proposes an approach to solve the problems of structural optimization and a set of calculation tasks, based on customer orders as well as on the required levels of insurance stocks, transit stocks and other types of stocks in the distribution network, modes of operation of the in-company transport and storage complex and a number of other factors.

  5. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.

    PubMed

    Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q

    2017-03-01

    Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.

  6. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  7. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network

    PubMed Central

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz

    2012-01-01

    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins. PMID:27418910

  9. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network.

    PubMed

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz

    2012-01-01

    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.

  10. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  11. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  12. An improved advertising CTR prediction approach based on the fuzzy deep neural network

    PubMed Central

    Gao, Shu; Li, Mingjiang

    2018-01-01

    Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise. PMID:29727443

  13. An improved advertising CTR prediction approach based on the fuzzy deep neural network.

    PubMed

    Jiang, Zilong; Gao, Shu; Li, Mingjiang

    2018-01-01

    Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.

  14. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.

    PubMed

    Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack

    2011-01-01

    Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues.

    PubMed

    Wang, Wei; Huang, Li; Liang, Xuedong

    2018-01-06

    This paper investigates the reliability of complex emergency logistics networks, as reliability is crucial to reducing environmental and public health losses in post-accident emergency rescues. Such networks' statistical characteristics are analyzed first. After the connected reliability and evaluation indices for complex emergency logistics networks are effectively defined, simulation analyses of network reliability are conducted under two different attack modes using a particular emergency logistics network as an example. The simulation analyses obtain the varying trends in emergency supply times and the ratio of effective nodes and validates the effects of network characteristics and different types of attacks on network reliability. The results demonstrate that this emergency logistics network is both a small-world and a scale-free network. When facing random attacks, the emergency logistics network steadily changes, whereas it is very fragile when facing selective attacks. Therefore, special attention should be paid to the protection of supply nodes and nodes with high connectivity. The simulation method provides a new tool for studying emergency logistics networks and a reference for similar studies.

  16. On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues

    PubMed Central

    Wang, Wei; Huang, Li; Liang, Xuedong

    2018-01-01

    This paper investigates the reliability of complex emergency logistics networks, as reliability is crucial to reducing environmental and public health losses in post-accident emergency rescues. Such networks’ statistical characteristics are analyzed first. After the connected reliability and evaluation indices for complex emergency logistics networks are effectively defined, simulation analyses of network reliability are conducted under two different attack modes using a particular emergency logistics network as an example. The simulation analyses obtain the varying trends in emergency supply times and the ratio of effective nodes and validates the effects of network characteristics and different types of attacks on network reliability. The results demonstrate that this emergency logistics network is both a small-world and a scale-free network. When facing random attacks, the emergency logistics network steadily changes, whereas it is very fragile when facing selective attacks. Therefore, special attention should be paid to the protection of supply nodes and nodes with high connectivity. The simulation method provides a new tool for studying emergency logistics networks and a reference for similar studies. PMID:29316614

  17. An exploration of the Facebook social networks of smokers and non-smokers.

    PubMed

    Fu, Luella; Jacobs, Megan A; Brookover, Jody; Valente, Thomas W; Cobb, Nathan K; Graham, Amanda L

    2017-01-01

    Social networks influence health behavior, including tobacco use and cessation. To date, little is known about whether and how the networks of online smokers and non-smokers may differ, or the potential implications of such differences with regards to intervention efforts. Understanding how social networks vary by smoking status could inform public health efforts to accelerate cessation or slow the adoption of tobacco use. These secondary analyses explore the structure of ego networks of both smokers and non-smokers collected as part of a randomized control trial conducted within Facebook. During the trial, a total of 14,010 individuals installed a Facebook smoking cessation app: 9,042 smokers who were randomized in the trial, an additional 2,881 smokers who did not meet full eligibility criteria, and 2,087 non-smokers. The ego network for all individuals was constructed out to second-degree connections. Four kinds of networks were constructed: friendship, family, photo, and group networks. From these networks we measured edges, isolates, density, mean betweenness, transitivity, and mean closeness. We also measured diameter, clustering, and modularity without ego and isolates. Logistic regressions were performed with smoking status as the response and network metrics as the primary independent variables and demographics and Facebook utilization metrics as covariates. The four networks had different characteristics, indicated by different multicollinearity issues and by logistic regression output. Among Friendship networks, the odds of smoking were higher in networks with lower betweenness (p = 0.00), lower transitivity (p = 0.00), and larger diameter (p = 0.00). Among Family networks, the odds of smoking were higher in networks with more vertices (p = .01), less transitivity (p = .04), and fewer isolates (p = .01). Among Photo networks, none of the network metrics were predictive of smoking status. Among Group networks, the odds of smoking were higher when diameter was smaller (p = .04). Together, these findings suggested that compared to non-smokers, smokers in this sample had less connected, more dispersed Facebook Friendship networks; larger but more fractured Family networks with fewer isolates; more compact Group networks; and Photo networks that were similar in network structure to those of non-smokers. This study illustrates the importance of examining structural differences in online social networks as a critical component for network-based interventions and lays the foundation for future research that examines the ways that social networks differ based on individual health behavior. Interventions that seek to target the behavior of individuals in the context of their social environment would be well served to understand social network structures of participants.

  18. An exploration of the Facebook social networks of smokers and non-smokers

    PubMed Central

    2017-01-01

    Background Social networks influence health behavior, including tobacco use and cessation. To date, little is known about whether and how the networks of online smokers and non-smokers may differ, or the potential implications of such differences with regards to intervention efforts. Understanding how social networks vary by smoking status could inform public health efforts to accelerate cessation or slow the adoption of tobacco use. Objectives These secondary analyses explore the structure of ego networks of both smokers and non-smokers collected as part of a randomized control trial conducted within Facebook. Methods During the trial, a total of 14,010 individuals installed a Facebook smoking cessation app: 9,042 smokers who were randomized in the trial, an additional 2,881 smokers who did not meet full eligibility criteria, and 2,087 non-smokers. The ego network for all individuals was constructed out to second-degree connections. Four kinds of networks were constructed: friendship, family, photo, and group networks. From these networks we measured edges, isolates, density, mean betweenness, transitivity, and mean closeness. We also measured diameter, clustering, and modularity without ego and isolates. Logistic regressions were performed with smoking status as the response and network metrics as the primary independent variables and demographics and Facebook utilization metrics as covariates. Results The four networks had different characteristics, indicated by different multicollinearity issues and by logistic regression output. Among Friendship networks, the odds of smoking were higher in networks with lower betweenness (p = 0.00), lower transitivity (p = 0.00), and larger diameter (p = 0.00). Among Family networks, the odds of smoking were higher in networks with more vertices (p = .01), less transitivity (p = .04), and fewer isolates (p = .01). Among Photo networks, none of the network metrics were predictive of smoking status. Among Group networks, the odds of smoking were higher when diameter was smaller (p = .04). Together, these findings suggested that compared to non-smokers, smokers in this sample had less connected, more dispersed Facebook Friendship networks; larger but more fractured Family networks with fewer isolates; more compact Group networks; and Photo networks that were similar in network structure to those of non-smokers. Conclusions This study illustrates the importance of examining structural differences in online social networks as a critical component for network-based interventions and lays the foundation for future research that examines the ways that social networks differ based on individual health behavior. Interventions that seek to target the behavior of individuals in the context of their social environment would be well served to understand social network structures of participants. PMID:29095958

  19. A new method for constructing networks from binary data

    NASA Astrophysics Data System (ADS)

    van Borkulo, Claudia D.; Borsboom, Denny; Epskamp, Sacha; Blanken, Tessa F.; Boschloo, Lynn; Schoevers, Robert A.; Waldorp, Lourens J.

    2014-08-01

    Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.

  20. In Silico Syndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine

    PubMed Central

    Lu, Peng; Chen, Jianxin; Zhao, Huihui; Gao, Yibo; Luo, Liangtao; Zuo, Xiaohan; Shi, Qi; Yang, Yiping; Yi, Jianqiang; Wang, Wei

    2012-01-01

    Coronary artery disease (CAD) is the leading causes of deaths in the world. The differentiation of syndrome (ZHENG) is the criterion of diagnosis and therapeutic in TCM. Therefore, syndrome prediction in silico can be improving the performance of treatment. In this paper, we present a Bayesian network framework to construct a high-confidence syndrome predictor based on the optimum subset, that is, collected by Support Vector Machine (SVM) feature selection. Syndrome of CAD can be divided into asthenia and sthenia syndromes. According to the hierarchical characteristics of syndrome, we firstly label every case three types of syndrome (asthenia, sthenia, or both) to solve several syndromes with some patients. On basis of the three syndromes' classes, we design SVM feature selection to achieve the optimum symptom subset and compare this subset with Markov blanket feature select using ROC. Using this subset, the six predictors of CAD's syndrome are constructed by the Bayesian network technique. We also design Naïve Bayes, C4.5 Logistic, Radial basis function (RBF) network compared with Bayesian network. In a conclusion, the Bayesian network method based on the optimum symptoms shows a practical method to predict six syndromes of CAD in TCM. PMID:22567030

  1. Navy Irregular Warfare and Counterterrorism Operations: Background and Issues for Congress

    DTIC Science & Technology

    2016-05-27

    ordnance disposal (counter- IED), combat construction engineering , cargo handling, combat logistics, maritime security, detainee operations, customs...Rutherford, “Navy’s Maritime Domain Awareness System ‘Up And Running’,” Defense Daily, September 4, 2008; and Dan Taylor , “New Network Allows Navy To...with twin diesel engines and water jets. It has a range of 600 nautical miles. 34 Other Organizational Initiatives Other Navy initiatives in recent

  2. Supply Chain Engineering and the Use of a Supporting Knowledge Management Application

    NASA Astrophysics Data System (ADS)

    Laakmann, Frank

    The future competition in markets will happen between logistics networks and no longer between enterprises. A new approach for supporting the engineering of logistics networks is developed by this research as a part of the Collaborative Research Centre (SFB) 559: "Modeling of Large Networks in Logistics" at the University of Dortmund together with the Fraunhofer-Institute of Material Flow and Logistics founded by Deutsche Forschungsgemeinschaft (DFG). Based on a reference model for logistics processes, the process chain model, a guideline for logistics engineers is developed to manage the different types of design tasks of logistics networks. The technical background of this solution is a collaborative knowledge management application. This paper will introduce how new Internet-based technologies support supply chain design projects.

  3. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    NASA Astrophysics Data System (ADS)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  4. Risk assessment of logistics outsourcing based on BP neural network

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Tian, Zi-you

    The purpose of this article is to evaluate the risk of the enterprises logistics outsourcing. To get this goal, the paper first analysed he main risks existing in the logistics outsourcing, and then set up a risk evaluation index system of the logistics outsourcing; second applied BP neural network into the logistics outsourcing risk evaluation and used MATLAB to the simulation. It proved that the network error is small and has strong practicability. And this method can be used by enterprises to evaluate the risks of logistics outsourcing.

  5. Application of wireless sensor network technology in logistics information system

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  6. Prediction of Emergency Department Hospital Admission Based on Natural Language Processing and Neural Networks.

    PubMed

    Zhang, Xingyu; Kim, Joyce; Patzer, Rachel E; Pitts, Stephen R; Patzer, Aaron; Schrager, Justin D

    2017-10-26

    To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements. Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient's reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model. Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.731- 0.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN. The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient's reason for visit regardless of modeling approach. Natural language processing and neural networks that incorporate patient-reported outcome free text may increase predictive accuracy for hospital admission.

  7. Strategies on the Implementation of China's Logistics Information Network

    NASA Astrophysics Data System (ADS)

    Dong, Yahui; Li, Wei; Guo, Xuwen

    The economic globalization and trend of e-commerce network have determined that the logistics industry will be rapidly developed in the 21st century. In order to achieve the optimal allocation of resources, a worldwide rapid and sound customer service system should be established. The establishment of a corresponding modern logistics system is the inevitable choice of this requirement. It is also the inevitable choice for the development of modern logistics industry in China. The perfect combination of modern logistics and information network can better promote the development of the logistics industry. Through the analysis of Status of Logistics Industry in China, this paper summed up the domestic logistics enterprise logistics information system in the building of some common problems. According to logistics information systems planning methods and principles set out logistics information system to optimize the management model.

  8. Reverse logistics in the construction industry.

    PubMed

    Hosseini, M Reza; Rameezdeen, Raufdeen; Chileshe, Nicholas; Lehmann, Steffen

    2015-06-01

    Reverse logistics in construction refers to the movement of products and materials from salvaged buildings to a new construction site. While there is a plethora of studies looking at various aspects of the reverse logistics chain, there is no systematic review of literature on this important subject as applied to the construction industry. Therefore, the objective of this study is to integrate the fragmented body of knowledge on reverse logistics in construction, with the aim of promoting the concept among industry stakeholders and the wider construction community. Through a qualitative meta-analysis, the study synthesises the findings of previous studies and presents some actions needed by industry stakeholders to promote this concept within the real-life context. First, the trend of research and terminology related with reverse logistics is introduced. Second, it unearths the main advantages and barriers of reverse logistics in construction while providing some suggestions to harness the advantages and mitigate these barriers. Finally, it provides a future research direction based on the review. © The Author(s) 2015.

  9. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  10. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  11. Development of the TLALOCNet GPS-Met Network in Northwestern Mexico: Supporting Continuous Water Vapor Observations of the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Galetzka, J.; Feaux, K.; Cabral, E.; Salazar-Tlaczani, L.; Adams, D. K.; Serra, Y. L.; Mattioli, G. S.; Miller, M. M.

    2014-12-01

    TLALOCNet is a combined atmospheric and tectonic cGPS-Met network in Mexico designed for the investigation of climate, atmospheric processes, the earthquake cycle, and tectonics. While EarthScope-Plate Boundary Observatory (conterminous US, Alaska, Puerto Rico) is among the networks poised to become a nucleus for hemisphere-scale GPS observations, the completion of TLALOCNet at the end of 2015 will close a gap between PBO and other Latin American GPS networks that include COCONet (Central America, Caribbean, and Northern South America), CAnTO, CAP, and IGS extending from Alaska to Patagonia. The National Science Foundation funded the construction and operation of TLALOCNet, with significant matching funds and resources provided by the Universidad Nacional Autónoma de México (UNAM). The project will involve the construction or refurbishment of 38 cGPS-Met stations in Mexico built to PBO standards. The first three TLALOCNet stations were installed in the northern Mexican states of Sonora and Chihuahua in July 2014, following the North American Monsoon GPS Transect Experiment 2013. Together these observations better characterize critical components of water transport in the region. Data from these stations are now available through the UNAVCO data archive and can be downloaded from http://facility.unavco.org/data/dai2/app/dai2.html#. By the end of 2014, TLALOCNet data, together with complementary data from other regional cGPS networks in Mexico, will also be openly available through a Mexico-based data center. We will present the status of the project to date, including an overview of the station hardware, data communications, data flow, construction schedule, and science objectives. We will also present some of the challenges encountered, including regional logistics, shipping and importation, site security, and other issues associated with the construction and operation of a large continuous GPS network.

  12. Joint optimization of logistics infrastructure investments and subsidies in a regional logistics network with CO 2 emission reduction targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche

    This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less

  13. Joint optimization of logistics infrastructure investments and subsidies in a regional logistics network with CO 2 emission reduction targets

    DOE PAGES

    Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche; ...

    2016-03-14

    This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less

  14. Research on robust optimization of emergency logistics network considering the time dependence characteristic

    NASA Astrophysics Data System (ADS)

    WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun

    2017-06-01

    Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.

  15. Secure chaotic map based block cryptosystem with application to camera sensor networks.

    PubMed

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.

  16. Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks

    PubMed Central

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network. PMID:22319371

  17. Determine the optimal carrier selection for a logistics network based on multi-commodity reliability criterion

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2013-05-01

    From the perspective of supply chain management, the selected carrier plays an important role in freight delivery. This article proposes a new criterion of multi-commodity reliability and optimises the carrier selection based on such a criterion for logistics networks with routes and nodes, over which multiple commodities are delivered. Carrier selection concerns the selection of exactly one carrier to deliver freight on each route. The capacity of each carrier has several available values associated with a probability distribution, since some of a carrier's capacity may be reserved for various orders. Therefore, the logistics network, given any carrier selection, is a multi-commodity multi-state logistics network. Multi-commodity reliability is defined as a probability that the logistics network can satisfy a customer's demand for various commodities, and is a performance indicator for freight delivery. To solve this problem, this study proposes an optimisation algorithm that integrates genetic algorithm, minimal paths and Recursive Sum of Disjoint Products. A practical example in which multi-sized LCD monitors are delivered from China to Germany is considered to illustrate the solution procedure.

  18. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  19. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.

  20. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Longkun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Wu, Xiaoqun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Lu, Jun-an, E-mail: jalu@whu.edu.cn

    2015-03-15

    Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) Themore » coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay.« less

  1. Earthworks logistics in the high density urban development conditions - case study

    NASA Astrophysics Data System (ADS)

    Sobotka, A.; Blajer, M.

    2017-10-01

    Realisation of the construction projects on highly urbanised areas carries many difficulties and logistic problems. Earthworks conducted in such conditions constitute a good example of how important it is to properly plan the works and use the technical means of the logistics infrastructure. The construction processes on the observed construction site, in combination with their external logistics service are a complex system, difficult for mathematical modelling and achievement of appropriate data for planning the works. The paper shows describe and analysis of earthworks during construction of the Centre of Power Engineering of AGH in Krakow for two stages of a construction project. At the planning stage in the preparatory phase (before realization) and in the implementation phase of construction works (foundation). In the first case, an example of the use of queuing theory for prediction of excavation time under random work conditions of the excavator and the associated trucks is provided. In the second case there is a change of foundation works technology resulting as a consequence of changes in logistics earthworks. Observation of the construction has confirmed that the use of appropriate methods of construction works management, and in this case agile management, the time and cost of the project have not been exceeded. The success of a project depends on the ability of the contractor to react quickly when changes occur in the design, technology, environment, etc.

  2. Determinants of Distribution Logistics in the Construction Industry

    NASA Astrophysics Data System (ADS)

    Bukova, Bibiana; Brumercikova, Eva; Kondek, Pavol

    2017-03-01

    Global business is currently still influenced by the economic crisis and the economic development in each country of the EU. The construction sector is among the most affected sectors of the national economies. The production of building material is a part of the construction industry. Several companies of this sector in the European Union use business logistics effectively. The overall efficiency of the company is influenced by many various external and internal determinants, especially the distribution logistics.

  3. Structure-preserving model reduction of large-scale logistics networks. Applications for supply chains

    NASA Astrophysics Data System (ADS)

    Scholz-Reiter, B.; Wirth, F.; Dashkovskiy, S.; Makuschewitz, T.; Schönlein, M.; Kosmykov, M.

    2011-12-01

    We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.

  4. Logistics Solution for Choosing Location of Production of Road Construction Enterprise

    NASA Astrophysics Data System (ADS)

    Gavrilina, I.; Bondar, A.

    2017-11-01

    The current state of construction of highways indicates that not all the resources of the construction organization are implemented and supported by the modern approaches in logistics problems solving. This article deals with the solution of these problems and considers the features of basic road linear works organization, their large extent and different locations of enterprises. Analyzing these data, it is proposed to simulate the logistics processes and substantiate the methods of transport operations organizing by linking the technology and the organization road construction materials delivery which allows one to optimize the construction processes, to choose the most economically advantageous options, and also to monitor the quality of work.

  5. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming

    PubMed Central

    Huang, Hui; Li, Yuyu; Huang, Bo; Pi, Xing

    2015-01-01

    In order to recycle and dispose of all people’s expired drugs, the government should design a subsidy policy to stimulate users to return their expired drugs, and drug-stores should take the responsibility of recycling expired drugs, in other words, to be recycling stations. For this purpose it is necessary for the government to select the right recycling stations and treatment stations to optimize the expired drug recycling logistics network and minimize the total costs of recycling and disposal. This paper establishes a tri-level programming model to study how the government can optimize an expired drug recycling logistics network and the appropriate subsidy policies. Furthermore, a Hybrid Genetic Simulated Annealing Algorithm (HGSAA) is proposed to search for the optimal solution of the model. An experiment is discussed to illustrate the good quality of the recycling logistics network and government subsides obtained by the HGSAA. The HGSAA is proven to have the ability to converge on the global optimal solution, and to act as an effective algorithm for solving the optimization problem of expired drug recycling logistics network and government subsidies. PMID:26184252

  6. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming.

    PubMed

    Huang, Hui; Li, Yuyu; Huang, Bo; Pi, Xing

    2015-07-09

    In order to recycle and dispose of all people's expired drugs, the government should design a subsidy policy to stimulate users to return their expired drugs, and drug-stores should take the responsibility of recycling expired drugs, in other words, to be recycling stations. For this purpose it is necessary for the government to select the right recycling stations and treatment stations to optimize the expired drug recycling logistics network and minimize the total costs of recycling and disposal. This paper establishes a tri-level programming model to study how the government can optimize an expired drug recycling logistics network and the appropriate subsidy policies. Furthermore, a Hybrid Genetic Simulated Annealing Algorithm (HGSAA) is proposed to search for the optimal solution of the model. An experiment is discussed to illustrate the good quality of the recycling logistics network and government subsides obtained by the HGSAA. The HGSAA is proven to have the ability to converge on the global optimal solution, and to act as an effective algorithm for solving the optimization problem of expired drug recycling logistics network and government subsidies.

  7. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    PubMed Central

    Zhang, Dezhi; Li, Shuangyan

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  8. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    PubMed

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  9. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  10. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  11. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Integer Optimization Model for a Logistic System based on Location-Routing Considering Distance and Chosen Route

    NASA Astrophysics Data System (ADS)

    Mulyasari, Joni; Mawengkang, Herman; Efendi, Syahril

    2018-02-01

    In a distribution network it is important to decide the locations of facilities that impacts not only the profitability of an organization but the ability to serve customers.Generally the location-routing problem is to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some restrictions. In this paper we impose restriction on the route that should be passed for delivery. We use integer programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model.

  13. A multimodal logistics service network design with time windows and environmental concerns

    PubMed Central

    Zhang, Dezhi; He, Runzhong; Wang, Zhongwei

    2017-01-01

    The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained. PMID:28934272

  14. A multimodal logistics service network design with time windows and environmental concerns.

    PubMed

    Zhang, Dezhi; He, Runzhong; Li, Shuangyan; Wang, Zhongwei

    2017-01-01

    The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained.

  15. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less

  16. Reverse logistics system planning for recycling computers hardware: A case study

    NASA Astrophysics Data System (ADS)

    Januri, Siti Sarah; Zulkipli, Faridah; Zahari, Siti Meriam; Shamsuri, Siti Hajar

    2014-09-01

    This paper describes modeling and simulation of reverse logistics networks for collection of used computers in one of the company in Selangor. The study focuses on design of reverse logistics network for used computers recycling operation. Simulation modeling, presented in this work allows the user to analyze the future performance of the network and to understand the complex relationship between the parties involved. The findings from the simulation suggest that the model calculates processing time and resource utilization in a predictable manner. In this study, the simulation model was developed by using Arena simulation package.

  17. Social Network Type and Subjective Well-being in a National Sample of Older Americans

    PubMed Central

    Litwin, Howard; Shiovitz-Ezra, Sharon

    2011-01-01

    Purpose: The study considers the social networks of older Americans, a population for whom there have been few studies of social network type. It also examines associations between network types and well-being indicators: loneliness, anxiety, and happiness. Design and Methods: A subsample of persons aged 65 years and older from the first wave of the National Social Life, Health, and Aging Project was employed (N = 1,462). We applied K-means cluster analysis to derive social network types using 7 criterion variables. In the multivariate stage, the well-being outcomes were regressed on the network type construct and on background and health characteristics by means of logistic regression. Results: Five social network types were derived: “diverse,” “friend,” “congregant,” “family,” and “restricted.” Social network type was found to be associated with each of the well-being indicators after adjusting for demographic and health confounders. Respondents embedded in network types characterized by greater social capital tended to exhibit better well-being in terms of less loneliness, less anxiety, and greater happiness. Implications: Knowledge about differing network types should make gerontological practitioners more aware of the varying interpersonal milieus in which older people function. Adopting network type assessment as an integral part of intake procedures and tracing network shifts over time can serve as a basis for risk assessment as well as a means for determining the efficacy of interventions. PMID:21097553

  18. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  19. Organizational Analysis of Energy Manpower Requirements in the United States Navy

    DTIC Science & Technology

    2013-06-01

    ix LIST OF FIGURES Figure 1.  A 1.5 Megawatt wind turbine set up at the Marine Corps Logistics Base in Barstow, CA. (From Flores, 2010...Figure 1. A 1.5 Megawatt wind turbine set up at the Marine Corps Logistics Base in Barstow, CA. (From Flores, 2010) 9 In an effort to capture...electronic and information warfare systems ) (h ) Network Engineering (including wireless networks, sensor networks, high speed data networking, and

  20. Development of a web service for analysis in a distributed network.

    PubMed

    Jiang, Xiaoqian; Wu, Yuan; Marsolo, Keith; Ohno-Machado, Lucila

    2014-01-01

    We describe functional specifications and practicalities in the software development process for a web service that allows the construction of the multivariate logistic regression model, Grid Logistic Regression (GLORE), by aggregating partial estimates from distributed sites, with no exchange of patient-level data. We recently developed and published a web service for model construction and data analysis in a distributed environment. This recent paper provided an overview of the system that is useful for users, but included very few details that are relevant for biomedical informatics developers or network security personnel who may be interested in implementing this or similar systems. We focus here on how the system was conceived and implemented. We followed a two-stage development approach by first implementing the backbone system and incrementally improving the user experience through interactions with potential users during the development. Our system went through various stages such as concept proof, algorithm validation, user interface development, and system testing. We used the Zoho Project management system to track tasks and milestones. We leveraged Google Code and Apache Subversion to share code among team members, and developed an applet-servlet architecture to support the cross platform deployment. During the development process, we encountered challenges such as Information Technology (IT) infrastructure gaps and limited team experience in user-interface design. We figured out solutions as well as enabling factors to support the translation of an innovative privacy-preserving, distributed modeling technology into a working prototype. Using GLORE (a distributed model that we developed earlier) as a pilot example, we demonstrated the feasibility of building and integrating distributed modeling technology into a usable framework that can support privacy-preserving, distributed data analysis among researchers at geographically dispersed institutes.

  1. Development of a Web Service for Analysis in a Distributed Network

    PubMed Central

    Jiang, Xiaoqian; Wu, Yuan; Marsolo, Keith; Ohno-Machado, Lucila

    2014-01-01

    Objective: We describe functional specifications and practicalities in the software development process for a web service that allows the construction of the multivariate logistic regression model, Grid Logistic Regression (GLORE), by aggregating partial estimates from distributed sites, with no exchange of patient-level data. Background: We recently developed and published a web service for model construction and data analysis in a distributed environment. This recent paper provided an overview of the system that is useful for users, but included very few details that are relevant for biomedical informatics developers or network security personnel who may be interested in implementing this or similar systems. We focus here on how the system was conceived and implemented. Methods: We followed a two-stage development approach by first implementing the backbone system and incrementally improving the user experience through interactions with potential users during the development. Our system went through various stages such as concept proof, algorithm validation, user interface development, and system testing. We used the Zoho Project management system to track tasks and milestones. We leveraged Google Code and Apache Subversion to share code among team members, and developed an applet-servlet architecture to support the cross platform deployment. Discussion: During the development process, we encountered challenges such as Information Technology (IT) infrastructure gaps and limited team experience in user-interface design. We figured out solutions as well as enabling factors to support the translation of an innovative privacy-preserving, distributed modeling technology into a working prototype. Conclusion: Using GLORE (a distributed model that we developed earlier) as a pilot example, we demonstrated the feasibility of building and integrating distributed modeling technology into a usable framework that can support privacy-preserving, distributed data analysis among researchers at geographically dispersed institutes. PMID:25848586

  2. Using artificial intelligence to predict the risk for posterior capsule opacification after phacoemulsification.

    PubMed

    Mohammadi, Seyed-Farzad; Sabbaghi, Mostafa; Z-Mehrjardi, Hadi; Hashemi, Hassan; Alizadeh, Somayeh; Majdi, Mercede; Taee, Farough

    2012-03-01

    To apply artificial intelligence models to predict the occurrence of posterior capsule opacification (PCO) after phacoemulsification. Farabi Eye Hospital, Tehran, Iran. Clinical-based cross-sectional study. The posterior capsule status of eyes operated on for age-related cataract and the need for laser capsulotomy were determined. After a literature review, data polishing, and expert consultation, 10 input variables were selected. The QUEST algorithm was used to develop a decision tree. Three back-propagation artificial neural networks were constructed with 4, 20, and 40 neurons in 2 hidden layers and trained with the same transfer functions (log-sigmoid and linear transfer) and training protocol with randomly selected eyes. They were then tested on the remaining eyes and the networks compared for their performance. Performance indices were used to compare resultant models with the results of logistic regression analysis. The models were trained using 282 randomly selected eyes and then tested using 70 eyes. Laser capsulotomy for clinically significant PCO was indicated or had been performed 2 years postoperatively in 40 eyes. A sample decision tree was produced with accuracy of 50% (likelihood ratio 0.8). The best artificial neural network, which showed 87% accuracy and a positive likelihood ratio of 8, was achieved with 40 neurons. The area under the receiver-operating-characteristic curve was 0.71. In comparison, logistic regression reached accuracy of 80%; however, the likelihood ratio was not measurable because the sensitivity was zero. A prototype artificial neural network was developed that predicted posterior capsule status (requiring capsulotomy) with reasonable accuracy. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Variation in hospital mortality in an Australian neonatal intensive care unit network.

    PubMed

    Abdel-Latif, Mohamed E; Nowak, Gen; Bajuk, Barbara; Glass, Kathryn; Harley, David

    2018-07-01

    Studying centre-to-centre (CTC) variation in mortality rates is important because inferences about quality of care can be made permitting changes in practice to improve outcomes. However, comparisons between hospitals can be misleading unless there is adjustment for population characteristics and severity of illness. We sought to report the risk-adjusted CTC variation in mortality among preterm infants born <32 weeks and admitted to all eight tertiary neonatal intensive care units (NICUs) in the New South Wales and the Australian Capital Territory Neonatal Network (NICUS), Australia. We analysed routinely collected prospective data for births between 2007 and 2014. Adjusted mortality rates for each NICU were produced using a multiple logistic regression model. Output from this model was used to construct funnel plots. A total of 7212 live born infants <32 weeks gestation were admitted consecutively to network NICUs during the study period. NICUs differed in their patient populations and severity of illness.The overall unadjusted hospital mortality rate for the network was 7.9% (n=572 deaths). This varied from 5.3% in hospital E to 10.4% in hospital C. Adjusted mortality rates showed little CTC variation. No hospital reached the +99.8% control limit level on adjusted funnel plots. Characteristics of infants admitted to NICUs differ, and comparing unadjusted mortality rates should be avoided. Logistic regression-derived risk-adjusted mortality rates plotted on funnel plots provide a powerful visual graphical tool for presenting quality performance data. CTC variation is readily identified, permitting hospitals to appraise their practices and start timely intervention. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The association between social network relationships and depressive symptoms among older Americans: what matters most?

    PubMed

    Litwin, Howard

    2011-08-01

    Although social network relationships are linked to mental health in late life, it is still unclear whether it is the structure of social networks or their perceived quality that matters. The current study regressed a dichotomous 8-item version of the Center for Epidemiological Studies Depression Scale (CESD-8) score on measures of social network relationships among Americans, aged 65-85 years, from the first wave of the National Social Life, Health and Aging Project. The network indicators included a structural variable - social network type - and a series of relationship quality indicators: perceived positive and negative ties with family, friends and spouse/ partner. Multivariate logistic regression analyses controlled for age, gender, education, income, race/ethnicity, religious affiliation, functional health and physical health. The perceived social network quality variables were unrelated to the presence of a high level of depressive symptoms, but social network type maintained an association with this mental health outcome even after controlling for confounders. Respondents embedded in resourceful social network types in terms of social capital--"diverse," "friend" and "congregant" networks--reported less presence of depressive symptoms, to varying degrees. The results show that the structure of the network seems to matter more than the perceived quality of the ties as an indicator of depressive symptoms. Moreover, the composite network type variable stands out in capturing the differences in mental state. The construct of network type should be incorporated in mental health screening among older people who reside in the community. One's social network type can be an important initial indicator that one is at risk.

  5. Phase-synchronisation in continuous flow models of production networks

    NASA Astrophysics Data System (ADS)

    Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael

    2006-04-01

    To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.

  6. A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features

    USGS Publications Warehouse

    Robinson, G.R.; Kapo, K.E.

    2004-01-01

    Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features. The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations. Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile 2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate. Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative to transportation network and population distribution data. The models can be used on a regional scale to quickly map the relative site suitability for a RAP or RPCC aggregate recycling operation in a particular area based on transportation network and population parameters. The results can be used to identify general areas to be further evaluated on a site-specific basis using more detailed marketplace information. As transportation or population features change due to planning or actual development, the models can be easily revised to reflect these changes. ?? 2004 Elsevier B.V. All rights reserved.

  7. [The discussion of the infiltrative model of chemical knowledge stepping into genetics teaching in agricultural institute or university].

    PubMed

    Zou, Ping; Luo, Pei-Gao

    2010-05-01

    Chemistry is an important group of basic courses, while genetics is one of the important major-basic courses in curriculum of many majors in agricultural institutes or universities. In order to establish the linkage between the major course and the basic course, the ability of application of the chemical knowledge previously learned in understanding genetic knowledge in genetics teaching is worthy of discussion for genetics teachers. In this paper, the authors advocate to apply some chemical knowledge previously learned to understand genetic knowledge in genetics teaching with infiltrative model, which could help students learn and understand genetic knowledge more deeply. Analysis of the intrinsic logistic relationship among the knowledge of different courses and construction of the integral knowledge network are useful for students to improve their analytic, comprehensive and logistic abilities. By this way, we could explore a new teaching model to develop the talents with new ideas and comprehensive competence in agricultural fields.

  8. Learning a Health Knowledge Graph from Electronic Medical Records.

    PubMed

    Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David

    2017-07-20

    Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).

  9. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  10. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  11. Developing weighted criteria to evaluate lean reverse logistics through analytical network process

    NASA Astrophysics Data System (ADS)

    Zagloel, Teuku Yuri M.; Hakim, Inaki Maulida; Krisnawardhani, Rike Adyartie

    2017-11-01

    Reverse logistics is a part of supply chain that bring materials from consumers back to manufacturer in order to gain added value or do a proper disposal. Nowadays, most companies are still facing several problems on reverse logistics implementation which leads to high waste along reverse logistics processes. In order to overcome this problem, Madsen [Framework for Reverse Lean Logistics to Enable Green Manufacturing, Eco Design 2009: 6th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Sapporo, 2009] has developed a lean reverse logistics framework as a step to eliminate waste by implementing lean on reverse logistics. However, the resulted framework sets aside criteria used to evaluate its performance. This research aims to determine weighted criteria that can be used as a base on reverse logistics evaluation by considering lean principles. The resulted criteria will ensure reverse logistics are kept off from waste, thus implemented efficiently. Analytical Network Process (ANP) is used in this research to determine the weighted criteria. The result shows that criteria used for evaluation lean reverse logistics are Innovation and Learning (35%), Economic (30%), Process Flow Management (14%), Customer Relationship Management (13%), Environment (6%), and Social (2%).

  12. Blackmail propagation on small-world networks

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Jian-Ping Sang; Zou, Xian-Wu; Tan, Zhi-Jie; Jin, Zhun-Zhi

    2005-06-01

    The dynamics of the blackmail propagation model based on small-world networks is investigated. It is found that for a given transmitting probability λ the dynamical behavior of blackmail propagation transits from linear growth type to logistical growth one with the network randomness p increases. The transition takes place at the critical network randomness pc=1/N, where N is the total number of nodes in the network. For a given network randomness p the dynamical behavior of blackmail propagation transits from exponential decrease type to logistical growth one with the transmitting probability λ increases. The transition occurs at the critical transmitting probability λc=1/, where is the average number of the nearest neighbors. The present work will be useful for understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  13. Scenario analysis and disaster preparedness for port and maritime logistics risk management.

    PubMed

    Kwesi-Buor, John; Menachof, David A; Talas, Risto

    2016-08-01

    System Dynamics (SD) modelling is used to investigate the impacts of policy interventions on industry actors' preparedness to mitigate risks and to recover from disruptions along the maritime logistics and supply chain network. The model suggests a bi-directional relation between regulation and industry actors' behaviour towards Disaster Preparedness (DP) in maritime logistics networks. The model also showed that the level of DP is highly contingent on forecast accuracy, technology change, attitude to risk prevention, port activities, and port environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Logistics Knowledge Portal: Gateway to More Individualized Learning in Logistics.

    ERIC Educational Resources Information Center

    Neumann, Gaby; Krzyzaniak, Stanislaw; Lassen, Carl Christian

    This paper describes a research and development project initiated by a network of European logistics educators to promote all types, forms, and levels of logistics education by benefiting from the educational potential of multimedia/hypermedia as well as information technology and telecommunications. The main outcome of this project will be a…

  15. Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm

    PubMed Central

    Wang, Shuai; Liu, Jing

    2017-01-01

    The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314

  16. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.

    PubMed

    Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A

    2013-08-01

    As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.

  17. 75 FR 76037 - HAVI Logistics, North America a Subsidiary of HAVI Group, LP Including On-Site Leased Workers of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Logistics, North America a Subsidiary of HAVI Group, LP Including On-Site Leased Workers of Express Personnel Services and the La Salle Network, Bloomingdale, IL; Havi Logistics, North America, Lisle, IL..., applicable to workers of HAVI Logistics, North America, a subsidiary of HAVI Group, LP, including on-site...

  18. Social Networks as the Context for Understanding Employment Services Utilization among Homeless Youth

    PubMed Central

    Barman-Adhikari, Anamika; Rice, Eric

    2014-01-01

    Little is known about the factors associated with use of employment services among homeless youth. Social network characteristics have been known to be influential in motivating people's decision to seek services. Traditional theoretical frameworks applied to studies of service use emphasize individual factors over social contexts and interactions. Using key social network, social capital, and social influence theories, this paper developed an integrated theoretical framework that could capture the social network processes that act as barriers or facilitators of use of employment services by homeless youth, and understand empirically, the salience of each of these constructs in influencing the use of employment services among homeless youth. We used the “Event based-approach” strategy to recruit a sample of 136 homeless youth at one drop-in agency serving homeless youth in Los Angeles, California in 2008. The participants were queried regarding their individual and network characteristics. Data were entered into NetDraw 2.090 and the spring embedder routine was used to generate the network visualizations. Logistic regression was used to assess the influence of the network characteristics on use of employment services. The study findings suggest that social capital is more significant in understanding why homeless youth use employment services, relative to network structure and network influence. In particular, bonding and bridging social capital were found to have differential effects on use of employment services among this population. The results from this study provide specific directions for interventions aimed to increase use of employment services among homeless youth. PMID:24780279

  19. Social networks as the context for understanding employment services utilization among homeless youth.

    PubMed

    Barman-Adhikari, Anamika; Rice, Eric

    2014-08-01

    Little is known about the factors associated with use of employment services among homeless youth. Social network characteristics have been known to be influential in motivating people's decision to seek services. Traditional theoretical frameworks applied to studies of service use emphasize individual factors over social contexts and interactions. Using key social network, social capital, and social influence theories, this paper developed an integrated theoretical framework that capture the social network processes that act as barriers or facilitators of use of employment services by homeless youth, and understand empirically, the salience of each of these constructs in influencing the use of employment services among homeless youth. We used the "Event based-approach" strategy to recruit a sample of 136 homeless youth at one drop-in agency serving homeless youth in Los Angeles, California in 2008. The participants were queried regarding their individual and network characteristics. Data were entered into NetDraw 2.090 and the spring embedder routine was used to generate the network visualizations. Logistic regression was used to assess the influence of the network characteristics on use of employment services. The study findings suggest that social capital is more significant in understanding why homeless youth use employment services, relative to network structure and network influence. In particular, bonding and bridging social capital were found to have differential effects on use of employment services among this population. The results from this study provide specific directions for interventions aimed to increase use of employment services among homeless youth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evolution dynamics modeling and simulation of logistics enterprise's core competence based on service innovation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Tong, Yuting

    2017-04-01

    With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.

  1. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    PubMed

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  2. Dynamic Network Logistic Regression: A Logistic Choice Analysis of Inter- and Intra-Group Blog Citation Dynamics in the 2004 US Presidential Election

    PubMed Central

    2013-01-01

    Methods for analysis of network dynamics have seen great progress in the past decade. This article shows how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data context. We also provide practical heuristics for model building and assessment. We illustrate the power of these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential election cycle. This is a particularly interesting case because it marks the debut of Internet-based media such as blogs and social networking web sites as institutionally recognized features of the American political landscape. Using a longitudinal sample of all Democratic National Convention/Republican National Convention–designated blog citation networks, we are able to test the influence of various strategic, institutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political events on the propensity of blogs to cite one another over time. Using a combination of deviance-based model selection criteria and simulation-based model adequacy tests, we identify the combination of processes that best characterizes the choice behavior of the contending blogs. PMID:24143060

  3. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Treesearch

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  4. 76 FR 5578 - PetroLogistics Natural Gas Storage Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-50-000] PetroLogistics... construction and operation of facilities by PetroLogistics Natural Gas Storage Company, LLC (PetroLogistics) in... to comment on their areas of concern. If you are a landowner receiving this notice, you may be...

  5. Analysis of Friendship Network and its Role in Explaining Obesity

    PubMed Central

    Marathe, Achla; Pan, Zhengzheng; Apolloni, Andrea

    2013-01-01

    We employ Add Health data to show that friendship networks, constructed from mutual friendship nominations, are important in building weight perception, setting weight goals and measuring social marginalization among adolescents and young adults. We study the relationship between individuals’ perceived weight status, actual weight status, weight status relative to friends’ weight status and weight goals. This analysis helps us understand how individual weight perceptions might be formed, what these perceptions do to the weight goals, and how does friends’ relative weight affect weight perception and weight goals. Combining this information with individuals’ friendship network helps determine the influence of social relationships on weight related variables. Multinomial logistic regression results indicate that relative status is indeed a significant predictor of perceived status, and perceived status is a significant predictor of weight goals. We also address the issue of causality between actual weight status and social marginalization (as measured by the number of friends) and show that obesity precedes social marginalization in time rather than the other way around. This lends credence to the hypothesis that obesity leads to social marginalization not vice versa. Attributes of friendship network can provide new insights into effective interventions for combating obesity since adolescent friendships provide an important social context for weight related behaviors. PMID:25328818

  6. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  7. Neural network modeling for surgical decisions on traumatic brain injury patients.

    PubMed

    Li, Y C; Liu, L; Chiu, W T; Jian, W S

    2000-01-01

    Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a better solution for complex, non-linear medical decision support systems than conventional statistical techniques such as logistic regression.

  8. The power of (Mis)perception: Rethinking suicide contagion in youth friendship networks.

    PubMed

    Zimmerman, Gregory M; Rees, Carter; Posick, Chad; Zimmerman, Lori A

    2016-05-01

    Suicide is a leading cause of death among youth. In the wake of peer suicide, youth are vulnerable to suicide contagion. But, questions remain about the mechanisms through which suicide spreads and the accuracy of youths' estimates of friends' suicidal behaviors. This study addresses these questions within school-aged youths' friendship networks. Social network data were drawn from two schools in the National Longitudinal Study of Adolescent to Adult Health, from which 2180 youth in grades 7-12 nominated up to ten friends. A measure of "perceived" friends' attempted suicide was constructed based on respondents' reports of their friends' attempted suicide. This measure was broader than a "true" measure of friends' attempted suicide, constructed from self-reports of nominated friends who attended respondents' schools. Sociograms graphically represented the accuracy with which suicide attempters estimated friends' suicide attempts. Results from cross-tabulation with Chi-square analysis indicated that approximately 4% of youth (88/2180) attempted suicide, and these youth disproportionately misperceived (predominantly overestimated) friends' suicidal behaviors, compared to non-suicide-attempters. Penalized logistic regression models indicated that friends' self-reported attempted suicide was unrelated to respondent attempted suicide. But, the odds of respondent attempted suicide were 2.54 times higher (95% CI, 1.06-6.10) among youth who accurately perceived friends' attempted suicide, and 5.40 times higher (95% CI, 3.34-8.77) among youth who overestimated friends' attempted suicide. The results suggest that at-risk youth overestimate their friends' suicidal behaviors, which exacerbates their own risk of suicidal behavior. Methodologically, this suggests that a continued collaboration among network scientists, suicide researchers, and medical providers is necessary to further examine the mechanisms surrounding this phenomenon. Practically, it is important to screen at-risk youth for exposure to peer suicide and to use the social environment created by adolescent friendship networks to empower and support youth who are susceptible to suicidal thoughts and behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Science of Test Research Consortium: Year Two Final Report

    DTIC Science & Technology

    2012-10-02

    July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7

  10. The S-curve for forecasting waste generation in construction projects.

    PubMed

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Artificial neural networks in gynaecological diseases: current and potential future applications.

    PubMed

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  12. Network Metamodeling: The Effect of Correlation Metric Choice on Phylogenomic and Transcriptomic Network Topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weighill, Deborah A; Jacobson, Daniel A

    We explore the use of a network meta-modeling approach to compare the effects of similarity metrics used to construct biological networks on the topology of the resulting networks. This work reviews various similarity metrics for the construction of networks and various topology measures for the characterization of resulting network topology, demonstrating the use of these metrics in the construction and comparison of phylogenomic and transcriptomic networks.

  13. A new algorithm to construct phylogenetic networks from trees.

    PubMed

    Wang, J

    2014-03-06

    Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.

  14. Application of statistical distribution theory to launch-on-time for space construction logistic support

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  15. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    PubMed Central

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  17. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    NASA Astrophysics Data System (ADS)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  18. 78 FR 57845 - Notice of Availability (NOA) for Strategic Network Optimization (SNO) Program Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... (NOA) for Strategic Network Optimization (SNO) Program Environmental Assessment AGENCY: Defense Logistics Agency, DoD. ACTION: Notice of Availability (NOA) for Strategic Network Optimization (SNO) Program... implement the SNO initiative for improvements to material distribution network for the Department of Defense...

  19. The Dropout Learning Algorithm

    PubMed Central

    Baldi, Pierre; Sadowski, Peter

    2014-01-01

    Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879

  20. Demand Analysis of Logistics Information Matching Platform: A Survey from Highway Freight Market in Zhejiang Province

    NASA Astrophysics Data System (ADS)

    Chen, Daqiang; Shen, Xiahong; Tong, Bing; Zhu, Xiaoxiao; Feng, Tao

    With the increasing competition in logistics industry and promotion of lower logistics costs requirements, the construction of logistics information matching platform for highway transportation plays an important role, and the accuracy of platform design is the key to successful operation or not. Based on survey results of logistics service providers, customers and regulation authorities to access to information and in-depth information demand analysis of logistics information matching platform for highway transportation in Zhejiang province, a survey analysis for framework of logistics information matching platform for highway transportation is provided.

  1. An informatics project and online "Knowledge Centre" supporting modern genotype-to-phenotype research.

    PubMed

    Webb, Adam J; Thorisson, Gudmundur A; Brookes, Anthony J

    2011-05-01

    Explosive growth in the generation of genotype-to-phenotype (G2P) data necessitates a concerted effort to tackle the logistical and informatics challenges this presents. The GEN2PHEN Project represents one such effort, with a broad strategy of uniting disparate G2P resources into a hybrid centralized-federated network. This is achieved through a holistic strategy focussed on three overlapping areas: data input standards and pipelines through which to submit and collect data (data in); federated, independent, extendable, yet interoperable database platforms on which to store and curate widely diverse datasets (data storage); and data formats and mechanisms with which to exchange, combine, and extract data (data exchange and output). To fully leverage this data network, we have constructed the "G2P Knowledge Centre" (http://www.gen2phen.org). This central platform provides holistic searching of the G2P data domain allied with facilities for data annotation and user feedback, access to extensive G2P and informatics resources, and tools for constructing online working communities centered on the G2P domain. Through the efforts of GEN2PHEN, and through combining data with broader community-derived knowledge, the Knowledge Centre opens up exciting possibilities for organizing, integrating, sharing, and interpreting new waves of G2P data in a collaborative fashion. © 2011 Wiley-Liss, Inc.

  2. From disaster to development: a systematic review of community-driven humanitarian logistics.

    PubMed

    Bealt, Jennifer; Mansouri, S Afshin

    2018-01-01

    A plethora of untapped resources exist within disaster-affected communities that can be used to address relief and development concerns. A systematic review of the literature relating to community participation in humanitarian logistics activities revealed that communities are able to form ad hoc networks that have the ability to meet a wide range of disaster management needs. These structures, characterised as Collaborative Aid Networks (CANs), have demonstrated efficient logistical capabilities exclusive of humanitarian organisations. This study proposes that CANs, as a result of their unique characteristics, present alternatives to established humanitarian approaches to logistics, while also mitigating the challenges commonly faced by traditional humanitarian organisations. Furthermore, CANs offer a more holistic, long-term approach to disaster management, owing to their impact on development through their involvement in humanitarian logistics. This research provides the foundation for further theoretical analysis of effective and efficient disaster management, and details opportunities for policy and practice. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  3. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality.

    PubMed

    Lee, Christine K; Hofer, Ira; Gabel, Eilon; Baldi, Pierre; Cannesson, Maxime

    2018-04-17

    The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality. The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index. In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99). Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.

  4. Final Environmental Assessment for Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana

    DTIC Science & Technology

    2008-02-01

    FINAL ENVIRONMENTAL ASSESSMENT February 2008 Malmstrom ® AFB WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE...Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana 5a. CONTRACT NUMBER 5b. GRANT...SIGNIFICANT IMPACT WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE MALMSTROM AIR FORCE BASE, MONTANA The

  5. Design of cold chain logistics remote monitoring system based on ZigBee and GPS location

    NASA Astrophysics Data System (ADS)

    Zong, Xiaoping; Shao, Heling

    2017-03-01

    This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.

  6. Taxonomies of networks from community structure

    PubMed Central

    Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2014-01-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977

  7. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  8. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables.

    PubMed

    Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero

    2016-05-01

    The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.

  9. The role of logistic constraints in termite construction of chambers and tunnels.

    PubMed

    Ladley, Dan; Bullock, Seth

    2005-06-21

    In previous models of the building behaviour of termites, physical and logistic constraints that limit the movement of termites and pheromones have been neglected. Here, we present an individual-based model of termite construction that includes idealized constraints on the diffusion of pheromones, the movement of termites, and the integrity of the architecture that they construct. The model allows us to explore the extent to which the results of previous idealized models (typically realised in one or two dimensions via a set of coupled partial differential equations) generalize to a physical, 3-D environment. Moreover we are able to investigate new processes and architectures that rely upon these features. We explore the role of stigmergic recruitment in pillar formation, wall building, and the construction of royal chambers, tunnels and intersections. In addition, for the first time, we demonstrate the way in which the physicality of partially built structures can help termites to achieve efficient tunnel structures and to establish and maintain entrances in royal chambers. As such we show that, in at least some cases, logistic constraints can be important or even necessary in order for termites to achieve efficient, effective constructions.

  10. Artificial neural network in predicting craniocervical junction injury: an alternative approach to trauma patients.

    PubMed

    Bektaş, Frat; Eken, Cenker; Soyuncu, Secgin; Kilicaslan, Isa; Cete, Yildiray

    2008-12-01

    The aim of this study is to determine the efficiency of artificial intelligence in detecting craniocervical junction injuries by using an artificial neural network (ANN) that may be applicable in future studies of different traumatic injuries. Major head trauma patients with Glasgow Coma Scale

  11. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  12. Logistic growth for the Nuzi cuneiform tablets: Analyzing family networks in ancient Mesopotamia

    NASA Astrophysics Data System (ADS)

    Ueda, Sumie; Makino, Kumi; Itoh, Yoshiaki; Tsuchiya, Takashi

    2015-03-01

    We reconstruct the published year of each cuneiform tablet of the Nuzi society in ancient Mesopotamia. The tablets are on land transaction, marriage, loan, slavery contracts, etc. The number of tablets seems to increase by logistic growth. It may show the dynamics of concentration of lands or other properties into few powerful families in a period of about sixty years and most of them are in about thirty years. We reconstruct family trees and social networks of Nuzi and estimate the published years of cuneiform tablets consistently with the trees and networks, formulating least squares problems with linear inequality constraints.

  13. Comparisons of topological properties in autism for the brain network construction methods

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hee; Kim, Dong Youn; Lee, Sang Hyeon; Kim, Jin Uk; Chung, Moo K.

    2015-03-01

    Structural brain networks can be constructed from the white matter fiber tractography of diffusion tensor imaging (DTI), and the structural characteristics of the brain can be analyzed from its networks. When brain networks are constructed by the parcellation method, their network structures change according to the parcellation scale selection and arbitrary thresholding. To overcome these issues, we modified the Ɛ -neighbor construction method proposed by Chung et al. (2011). The purpose of this study was to construct brain networks for 14 control subjects and 16 subjects with autism using both the parcellation and the Ɛ-neighbor construction method and to compare their topological properties between two methods. As the number of nodes increased, connectedness decreased in the parcellation method. However in the Ɛ-neighbor construction method, connectedness remained at a high level even with the rising number of nodes. In addition, statistical analysis for the parcellation method showed significant difference only in the path length. However, statistical analysis for the Ɛ-neighbor construction method showed significant difference with the path length, the degree and the density.

  14. Improvement of logistics education from the point of view environmental management

    NASA Astrophysics Data System (ADS)

    Bányai, Á.

    2009-04-01

    The paper briefly presents the influence of environmental management on the improvement of the logistics education and research structure of the Department of Materials Handling and Logistics at the University of Miskolc, Hungary. The logistics, as an integrated science offers a very good possibility to demonstrate the effect of new innovative knowledge on the migration of the priorities of education and research of sciences. The importance of logistics in the field of recycling (or in wider sense in the field of environmental management) can be justified by the high proportion of logistic costs (as investment and operation costs) and these costs show that optimum logistic solutions are able to decrease the financial outcomes and lead to the establishment of a profitable system. Technological change constantly creates new demands on both education and research. The most important objective of the department is to create a unique logistics education in the country. For this reason the department offered up-to-date integrated knowledge at all level: undergraduate, master degree and PhD education. The integration of logistics means traditionally the joint use of technology of material handling, method of material flow, technology method of traffic, information technology, management sciences, production technology, marketing, market research, technology of services, mathematics and optimization, communication technology, system engineering, electronics and automation, mechatronics [1, 3]. The education and research portfolio of the department followed this tradition till 1993. The new lectures in the field of sustainability (logistics of recycling, logistics of quality management and recycling, closed loop economy, EU logistics or global logistics) became more and more important in the logistics education. The results of fast developments in closed loop economy, recycling, waste management, environmental protection are more and more used in the industry and this effected a revolutionary change in the education and research structure of logistics [2]. The European Community policy in the environment sectors aims at a high level of protection. Four principles were defined: the precautionary principle, the principle that preventive action should be taken, that environmental damages should as a priority be rectified at source and that the polluter should pay. All of these four principles have a very strong logistics background, especially in the field of import/export operations, traffic/transportation, inventory control, materials handling, fleet operations, customer service, supply chain management, distribution, strategic planning, warehousing, information systems of logistics, purchasing. These facts effect the development of different topics of logistics in each field of the education of the department: collection logistics of used products (especially WEEE), optimization of collection systems, design and control of disassembly systems, distribution of fractions of disassembled used products, design and control of recycling parks, possibilities of virtual networks in the field of recycling logistics, integration of logistics, recycling and total quality management, identification systems and recycling, etc. Within the framework of different supports our department has the opportunity to take part in European networks and research projects in the field of sustainability, environmental protection, recycling and closed loop economy. One of the biggest networks was developed within the framework of a Brite-Euram project entitled ‘Closing the loop from the product design to the end of life technologies'. The importance of logistics is certified by the fact, that this network defined the milestones of the improvement of an economically beneficial closed loop economy as quality aspects, communication and marketing, logistics and qualification. Within the frame of this project the logistics focused on the improvement of technologies (disassembly, reuse, refurbishment, remanufacturing and recycling), collection systems, and development of the concept for collection logistics and pre-disassembly, market survey in waste management. The Regional Knowledge Centre of Mechatronics and Logistics Systems was established in 2005. The overall objective of Knowledge Centre is to develop knowledge-intensive mechatronics and logistics systems in the leading edge of the world and to integrate the results in the economy and society through utilising the knowledge. The realisation of the objective requires the establishment and operation of a networking system of relations between those involved in sciences, the economy and society. The knowledge centre is a "knowledge integration tool" of the university in the field of mechanical engineering, and plays an important part in the intensification of the integration of the philosophy of sustainability into the related sciences. The program of the knowledge centre is focused on three well definable strategic fields, which are the vertical elements of the model. These are the R&D programs: world of products, materials and technologies, and integrated systems. The programs cover the implementation of seven, internationally competitive, application-oriented part tasks. These seven part tasks and the sustainability are closely related. The realisation of the part tasks through networking offers considerable results and economical-ecological benefits, forth for the participants and the region. The activities include basic and applied research, experimental development, technology transfer, as well as education and training and preparing the new scientific generation. The horizontal elements of the model are given by the utilisation of knowledge that can be interpreted in different dimensions: technical/engineering, legal, sustainability, economic, and social. The program relies on the continuation of existing relations in networks, and its regional nature is embodied in the cooperation of the higher education institutes and companies of the three counties. This publication was supported by the National Office for Research and Technology within the frame of Pázmány Péter programme. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Office for Research and Technology. Literature: [1] J. Cselényi, Gy. Fischer, J. Murvai, B. Mang: Typical models of the recycling logistics of worn out product. Proceedings of XIV. International Conference on Material Handling and Warehousing in Belgrade, 1996. pp. 138-143. [2] R. Knoth, M. Hoffmann, B. Kopacek, P. Kopacek: A logistic concept to improve the re-usability of electric and electronic equipment, Electronics and the Environment, 2001. Proceedings of the 2001 IEEE International Symposium. 2001. pp. 115 - 118. [3] L. Cser, B. Mang: Cleaner Technologies and Recycling in Hungary. Proceedings of Int. Workshop on Environmental Conscious Manufacturing in Hertogenbosch, The Netherlands, 1997. pp. 48-56.

  15. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. Specifications of a Simulation Model for a Local Area Network Design in Support of Stock Point Logistics Integrated Communications Environment (SPLICE).

    DTIC Science & Technology

    1982-10-01

    class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October

  17. Transport spatial model for the definition of green routes for city logistics centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs

    This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less

  18. Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure

    NASA Astrophysics Data System (ADS)

    Ghezavati, V. R.; Beigi, M.

    2016-12-01

    During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among established facilities and existing demand points. In this paper, the location-routing problem with time window (LRPTW) and homogeneous fleet type and designing a multi-echelon, and capacitated reverse logistics network, are considered which may arise in many real-life situations in logistics management. Our proposed RL network consists of hybrid collection/inspection centers, recovery centers and disposal centers. Here, we present a new bi-objective mathematical programming (BOMP) for LRPTW in reverse logistic. Since this type of problem is NP-hard, the non-dominated sorting genetic algorithm II (NSGA-II) is proposed to obtain the Pareto frontier for the given problem. Several numerical examples are presented to illustrate the effectiveness of the proposed model and algorithm. Also, the present work is an effort to effectively implement the ɛ-constraint method in GAMS software for producing the Pareto-optimal solutions in a BOMP. The results of the proposed algorithm have been compared with the ɛ-constraint method. The computational results show that the ɛ-constraint method is able to solve small-size instances to optimality within reasonable computing times, and for medium-to-large-sized problems, the proposed NSGA-II works better than the ɛ-constraint.

  19. Detecting Anomalies in Process Control Networks

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Kang, Kyoung-Don

    This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.

  20. The challenge of logistics facilities development

    NASA Technical Reports Server (NTRS)

    Davis, James R.

    1987-01-01

    The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.

  1. Analysing the New Taliban Code of Conduct (Layeha): An Assessment of Changing Perspectives and Strategies of the Afghan Taliban

    DTIC Science & Technology

    2012-03-01

    Regarding Spies; 4. Enemy’s Logistics and Construction Activities; 5. Captured Enemy Equipment (War Booty ); 6. Regarding Commissions (i.e., Mujahedeen...Ordering fighters to blend in with the local population † Properly dividing war booty † Construction and logistics activities † Decision making on captured...detailed rules for pris- oners, the creation of provincial commissions and dividing war booty ) – also warrants a close examination. Actions prohibited by

  2. SIMS: addressing the problem of heterogeneity in databases

    NASA Astrophysics Data System (ADS)

    Arens, Yigal

    1997-02-01

    The heterogeneity of remotely accessible databases -- with respect to contents, query language, semantics, organization, etc. -- presents serious obstacles to convenient querying. The SIMS (single interface to multiple sources) system addresses this global integration problem. It does so by defining a single language for describing the domain about which information is stored in the databases and using this language as the query language. Each database to which SIMS is to provide access is modeled using this language. The model describes a database's contents, organization, and other relevant features. SIMS uses these models, together with a planning system drawing on techniques from artificial intelligence, to decompose a given user's high-level query into a series of queries against the databases and other data manipulation steps. The retrieval plan is constructed so as to minimize data movement over the network and maximize parallelism to increase execution speed. SIMS can recover from network failures during plan execution by obtaining data from alternate sources, when possible. SIMS has been demonstrated in the domains of medical informatics and logistics, using real databases.

  3. [Methodological approach to the use of artificial neural networks for predicting results in medicine].

    PubMed

    Trujillano, Javier; March, Jaume; Sorribas, Albert

    2004-01-01

    In clinical practice, there is an increasing interest in obtaining adequate models of prediction. Within the possible available alternatives, the artificial neural networks (ANN) are progressively more used. In this review we first introduce the ANN methodology, describing the most common type of ANN, the Multilayer Perceptron trained with backpropagation algorithm (MLP). Then we compare the MLP with the Logistic Regression (LR). Finally, we show a practical scheme to make an application based on ANN by means of an example with actual data. The main advantage of the RN is its capacity to incorporate nonlinear effects and interactions between the variables of the model without need to include them a priori. As greater disadvantages, they show a difficult interpretation of their parameters and large empiricism in their process of construction and training. ANN are useful for the computation of probabilities of a given outcome based on a set of predicting variables. Furthermore, in some cases, they obtain better results than LR. Both methodologies, ANN and LR, are complementary and they help us to obtain more valid models.

  4. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    PubMed Central

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005

  5. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network.

    PubMed

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  6. Digging into construction: social networks and their potential impact on knowledge transfer.

    PubMed

    Carlan, N A; Kramer, D M; Bigelow, P; Wells, R; Garritano, E; Vi, P

    2012-01-01

    A six-year study is exploring the most effective ways to disseminate ideas to reduce musculoskeletal disorders (MSDs) in the construction sector. The sector was targeted because MSDs account for 35% of all lost time injuries. This paper reports on the organization of the construction sector, and maps potential pathways of communication, including social networks, to set the stage for future dissemination. The managers, health and safety specialists, union health and safety representatives, and 28 workers from small, medium and large construction companies participated. Over a three-year period, data were collected from 47 qualitative interviews. Questions were guided by the PARIHS (Promoting Action on Research Implementation in Health Services) knowledge-transfer conceptual framework and adapted for the construction sector. The construction sector is a complex and dynamic sector, with non-linear reporting relationships, and divided and diluted responsibilities. Four networks were identified that can potentially facilitate the dissemination of new knowledge: worksite-project networks; union networks; apprenticeship program networks; and networks established by the Construction Safety Association/Infrastructure Health and Safety Association. Flexible and multi-directional lines of communication must be used in this complex environment. This has implications for the future choice of knowledge transfer strategies.

  7. Networks’ Characteristics Matter for Systems Biology

    PubMed Central

    Rider, Andrew K.; Milenković, Tijana; Siwo, Geoffrey H.; Pinapati, Richard S.; Emrich, Scott J.; Ferdig, Michael T.; Chawla, Nitesh V.

    2015-01-01

    A fundamental goal of systems biology is to create models that describe relationships between biological components. Networks are an increasingly popular approach to this problem. However, a scientist interested in modeling biological (e.g., gene expression) data as a network is quickly confounded by the fundamental problem: how to construct the network? It is fairly easy to construct a network, but is it the network for the problem being considered? This is an important problem with three fundamental issues: How to weight edges in the network in order to capture actual biological interactions? What is the effect of the type of biological experiment used to collect the data from which the network is constructed? How to prune the weighted edges (or what cut-off to apply)? Differences in the construction of networks could lead to different biological interpretations. Indeed, we find that there are statistically significant dissimilarities in the functional content and topology between gene co-expression networks constructed using different edge weighting methods, data types, and edge cut-offs. We show that different types of known interactions, such as those found through Affinity Capture-Luminescence or Synthetic Lethality experiments, appear in significantly varying amounts in networks constructed in different ways. Hence, we demonstrate that different biological questions may be answered by the different networks. Consequently, we posit that the approach taken to build a network can be matched to biological questions to get targeted answers. More study is required to understand the implications of different network inference approaches and to draw reliable conclusions from networks used in the field of systems biology. PMID:26500772

  8. Influence of the time scale on the construction of financial networks.

    PubMed

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-09-30

    In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

  9. Multiplex congruity: friendship networks and perceived popularity as correlates of adolescent alcohol use.

    PubMed

    Fujimoto, Kayo; Valente, Thomas W

    2015-01-01

    Adolescents interact with their peers in multiple social settings and form various types of peer relationships that affect drinking behavior. Friendship and popularity perceptions constitute critical relationships during adolescence. These two relations are commonly measured by asking students to name their friends, and this network is used to construct drinking exposure and peer status variables. This study takes a multiplex network approach by examining the congruity between friendships and popularity as correlates of adolescent drinking. Using data on friendship and popularity nominations among high school adolescents in Los Angeles, California (N = 1707; five schools), we examined the associations between an adolescent's drinking and drinking by (a) their friends only; (b) multiplexed friendships, friends also perceived as popular; and (c) congruent, multiplexed-friends, close friends perceived as popular. Logistic regression results indicated that friend-only drinking, but not multiplexed-friend drinking, was significantly associated with self-drinking (AOR = 3.51, p < 0.05). However, congruent, multiplexed-friend drinking also was associated with self-drinking (AOR = 3.10, p < 0.05). This study provides insight into how adolescent health behavior is predicated on the multiplexed nature of peer relationships. The results have implications for the design of health promotion interventions for adolescent drinking. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Multiplex congruity: Friendship networks and perceived popularity as correlates of adolescent alcohol use

    PubMed Central

    Fujimoto, Kayo; Valente, Thomas W.

    2014-01-01

    Adolescents interact with their peers in multiple social settings and form various types of peer relationships that affect drinking behavior. Friendship and popularity perceptions constitute critical relationships during adolescence. These two relations are commonly measured by asking students to name their friends, and this network is used to construct drinking exposure and peer status variables. This study takes a multiplex network approach by examining the congruity between friendships and popularity as correlates of adolescent drinking. Using data on friendship and popularity nominations among high school adolescents in Los Angeles, California (N = 1707; five schools), we examined the associations between an adolescent's drinking and drinking by (a) their friends only; (b) multiplexed friendships, friends also perceived as popular; and (c) congruent, multiplexed-friends, close friends perceived as popular. Logistic regression results indicated that friend-only drinking, but not multiplexed-friend drinking, was significantly associated with self-drinking (AOR = 3.51, p < 0.05). However, congruent, multiplexed-friend drinking also was associated with self-drinking (AOR = 3.10, p < 0.05). This study provides insight into how adolescent health behavior is predicated on the multiplexed nature of peer relationships. The results have implications for the design of health promotion interventions for adolescent drinking. PMID:24913275

  11. Connecting Land-Based Networks to Ships

    DTIC Science & Technology

    2013-06-01

    multipoint wireless broadband systems, and WiMAX networks were initially deployed for fixed and nomadic (portable) applications. These standards...CAPABILITIES OF SHIP-TO-SHORE COMMUNICATIONS A. US Navy Automated Digital Network System (ADNS) The U.S. Navy’s Automated Digital Network System (ADNS...submit digitally any necessary documents to the terminal operators, contact their logistics providers, access tidal information and receive

  12. Properties of healthcare teaming networks as a function of network construction algorithms.

    PubMed

    Zand, Martin S; Trayhan, Melissa; Farooq, Samir A; Fucile, Christopher; Ghoshal, Gourab; White, Robert J; Quill, Caroline M; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy

    2017-01-01

    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106-108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and Florida, likely due to seasonal residence patterns of Medicare beneficiaries. We conclude that the choice of network construction algorithm is critical for healthcare network analysis, and discuss the implications of our findings for selecting the algorithm best suited to the type of analysis to be performed.

  13. Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences.

    PubMed

    Zhong, Suyu; He, Yong; Gong, Gaolang

    2015-05-01

    Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley Periodicals, Inc.

  14. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  15. Flexible use and technique extension of logistics management

    NASA Astrophysics Data System (ADS)

    Xiong, Furong

    2011-10-01

    As we all know, the origin of modern logistics was in the United States, developed in Japan, became mature in Europe, and expanded in China. This is a historical development of the modern logistics recognized track. Due to China's economic and technological development, and with the construction of Shanghai International Shipping Center and Shanghai Yangshan International Deepwater development, China's modern logistics industry will attain a leap-forward development of a strong pace, and will also catch up with developed countries in the Western modern logistics level. In this paper, the author explores the flexibility of China's modern logistics management techniques to extend the use, and has certain practical and guidance significances.

  16. Interacting Parallel Constructions of Knowledge in a CAS Context

    ERIC Educational Resources Information Center

    Kidron, Ivy; Dreyfus, Tommy

    2010-01-01

    We consider the influence of a CAS context on a learner's process of constructing a justification for the bifurcations in a logistic dynamical process. We describe how instrumentation led to cognitive constructions and how the roles of the learner and the CAS intertwine, especially close to the branching and combining of constructing actions. The…

  17. Logistic Regression in the Identification of Hazards in Construction

    NASA Astrophysics Data System (ADS)

    Drozd, Wojciech

    2017-10-01

    The construction site and its elements create circumstances that are conducive to the formation of risks to safety during the execution of works. Analysis indicates the critical importance of these factors in the set of characteristics that describe the causes of accidents in the construction industry. This article attempts to analyse the characteristics related to the construction site, in order to indicate their importance in defining the circumstances of accidents at work. The study includes sites inspected in 2014 - 2016 by the employees of the District Labour Inspectorate in Krakow (Poland). The analysed set of detailed (disaggregated) data includes both quantitative and qualitative characteristics. The substantive task focused on classification modelling in the identification of hazards in construction and identifying those of the analysed characteristics that are important in an accident. In terms of methodology, resource data analysis using statistical classifiers, in the form of logistic regression, was the method used.

  18. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.

  19. BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.

    PubMed

    Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu

    2013-09-15

    Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.

  20. Remote sensing of an agricultural soil moisture network in Walnut Creek, Iowa

    USDA-ARS?s Scientific Manuscript database

    The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Usually soil moisture sensors are added to existing precipitation networks which have as a singular requiremen...

  1. The US Strategic Logistics Plan In The CBI Theater And Its Contemporary Significance

    DTIC Science & Technology

    2016-05-26

    SUBJECT TERMS CBI Theater, Logistics, Lend-Lease Aid, LOC Network, Ledo Road, Burma Road, The Hump, AMMISCA 16. SECURITY CLASSIFICATION OF: a...19 Stilwell versus Chennault………………………………………………….………………………….......26 Efficiency of the LOC Network... LOC Line of Communication NATO North Atlantic Treaty Organization SLOC Sea Line of Communication SME Subject Matter Expert SOS Services of Supply SPOD

  2. Department of Defense In-Transit Visibility Modifications

    DTIC Science & Technology

    2013-05-23

    theorists from medieval through modern times emphasize the magnitude of a responsive logistical system. Sun Bin was a military philosopher during the...Logistics Agency (DLA) provides armed services with food, clothing , textiles, medicines, medical equipment, and construction supplies. DLA performs an

  3. Scale-free effect of substitution networks

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Yu, Zhouyu; Xi, Lifeng

    2018-02-01

    In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.

  4. Influence of the Time Scale on the Construction of Financial Networks

    PubMed Central

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-01-01

    Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124

  5. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems

    DTIC Science & Technology

    2007-05-03

    34Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Porne ", Parameter estimation for 3-parameter log-logistic distribu- tion...section V we physical security, air traffic control, traffic monitoring, andvidefaconu s cribedy. video surveillance, industrial automation etc. Each

  6. Advanced construction management for lunar base construction - Surface operations planner

    NASA Technical Reports Server (NTRS)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  7. Utilization of social media and web forums by HIV patients - A cross-sectional study on adherence and reported anxiety level.

    PubMed

    Longinetti, Elisa; Manoharan, Vinoth; Ayoub, Hala; Surkan, Pamela J; El-Khatib, Ziad

    2017-06-01

    Due to the high stigma surrounding the Human Immunodeficiency Virus (HIV), people living with HIV (PLWH) often reach out peers over the Internet for emotional and social support. The purpose of this study was to assess the characteristics of PLWH who use HIV internet forums. A cross-sectional study was conducted using an online survey investigating demographic characteristics of PLWH, level of satisfaction of the HIV Internet forums, time living with HIV, forum users' anxiety levels, self-reported adherence to antiretroviral treatment (ART), and reasons for missing pills (n = 222). Logistic regression models were constructed to compare the use of general HIV forums with social networking sites, general HIV forums with group emails, and social networking sites with group emails. Two hundred and twenty-two patients responded to the survey. Social networking sites were used by recently diagnosed PLWH who were on antiretroviral treatment (ART) > 1 year. Young patients (≤ 40 years) and those diagnosed < 1 year before, tended to use social networking sites, while older patients (> 40 years), those diagnosed > 5 years, and from low- and middle-income countries, were more likely to use emailing lists. There was no significant difference between PLWH's adherence to treatment and anxiety levels and the usage of different Internet forums. PLWH's Internet resource choice varied depending on the availability of Internet and illness duration. Different segments of the population could be reached via social networking sites versus group emails to provide HIV information.

  8. [Treatment of acute ST Elevation myocardial infarction in a regional network ("Drip & Ship Network Rostock")].

    PubMed

    Schneider, Henrik; Ince, Hüseyin; Rehders, Tim; Körber, Thomas; Weber, Frank; Kische, Stephan; Chatterjee, Tuchaar; Nienaber, Christoph A

    2007-12-01

    Management of acute ST elevation myocardial infarction (STEMI) demands rapid and complete reperfusion of the infarct-related artery (IRA). With postinfarction prognosis depending on time delay from onset of symptoms to complete reperfusion (TIMI 3 flow) of the IRA, primary percutaneous coronary intervention (PPCI) performed by an experienced team has been shown to be superior to thrombolytic therapy with lower mortality, less frequent occurrence of nonfatal reinfarction and stroke, and thus represents the preferred treatment strategy according to the national and international guidelines. For regional implementation of PPCI, particularly in rural areas, information and transfer logistics within networks of care and direct transport of an infarction patient to a PCI hospital rather than to the closest hospital are a challenge. With successful implementation of network logistics and standardized therapeutic pathways, current guidelines and requested timelines versus thrombolysis could be met. The implemented logistics comprised 24 h/7 days stand-by services of an experienced PCI team, direct telephone hotline contact between rescue service/emergency physician and interventional cardiologist on call, and direct open access to a catheterization laboratory at any time. Within the Drip&Ship network Rostock, to date (July 2007) 1,022 consecutive patients with PCI for STEMI were documented and analyzed over 5 years; of these, 490 patients were transferred from a community hospital to the PCI center and 532 patients were admitted directly to the interventional center. In 95.1% of all transferred and in 94.8% of all directly admitted patients, PCI was successfully accomplished upon arrival. A normalized flow to the IRA after PCI was documented in 96% of both groups, no patient was subjected to thrombolytic therapy. At 12-month follow-up, there were no differences between both groups with respect to infarct size and mortality. Moreover, there was no evidence of differences in left ventricular ejection fraction between groups. Thus, transportation of STEMI patients within an established PCI network did not result in any prognostic disadvantage. Efficient network logistics with transportation for PPCI in acute STEMI ensure both safety and outcome profiles similar to patients treated by PCI in metropolitan areas.

  9. Use of Ubiquitous Technologies in Military Logistic System in Iran

    NASA Astrophysics Data System (ADS)

    Jafari, P.; Sadeghi-Niaraki, A.

    2013-09-01

    This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies) from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.

  10. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  11. A development of logistics management models for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Carrillo, M. J.; Jacobsen, S. E.; Abell, J. B.; Lippiatt, T. F.

    1983-01-01

    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support.

  12. Properties of healthcare teaming networks as a function of network construction algorithms

    PubMed Central

    Trayhan, Melissa; Farooq, Samir A.; Fucile, Christopher; Ghoshal, Gourab; White, Robert J.; Quill, Caroline M.; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy

    2017-01-01

    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106–108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and Florida, likely due to seasonal residence patterns of Medicare beneficiaries. We conclude that the choice of network construction algorithm is critical for healthcare network analysis, and discuss the implications of our findings for selecting the algorithm best suited to the type of analysis to be performed. PMID:28426795

  13. On the Reliability of Individual Brain Activity Networks.

    PubMed

    Cassidy, Ben; Bowman, F DuBois; Rae, Caroline; Solo, Victor

    2018-02-01

    There is intense interest in fMRI research on whole-brain functional connectivity, and however, two fundamental issues are still unresolved: the impact of spatiotemporal data resolution (spatial parcellation and temporal sampling) and the impact of the network construction method on the reliability of functional brain networks. In particular, the impact of spatiotemporal data resolution on the resulting connectivity findings has not been sufficiently investigated. In fact, a number of studies have already observed that functional networks often give different conclusions across different parcellation scales. If the interpretations from functional networks are inconsistent across spatiotemporal scales, then the whole validity of the functional network paradigm is called into question. This paper investigates the consistency of resting state network structure when using different temporal sampling or spatial parcellation, or different methods for constructing the networks. To pursue this, we develop a novel network comparison framework based on persistent homology from a topological data analysis. We use the new network comparison tools to characterize the spatial and temporal scales under which consistent functional networks can be constructed. The methods are illustrated on Human Connectome Project data, showing that the DISCOH 2 network construction method outperforms other approaches at most data spatiotemporal resolutions.

  14. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    PubMed

    Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie

    2015-01-01

    Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  15. Reliability assessment of a multistate freight network for perishable merchandise with multiple suppliers and buyers

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta; Huang, Cheng-Fu

    2017-01-01

    This study develops a multistate freight network for single and perishable merchandise to assess the freight performance, where a node denotes a supplier, a distribution centre, or a buyer, while a logistics company providing a freight traffic service is denoted by an edge. For each logistics company, carrying capacity should be multistate since partial capacity may be reserved by some customers. The merchandise may perish or be perished during conveyance because of disadvantageous weather or collision in carrying such that the number of intact cargoes may be insufficient for the buyers. Hence, according to the perspective of supply chain management, the reliability, a probability of the network to successfully deliver the cargoes from the suppliers to the buyers subject to a budget, is proposed to be a performance index, where the suppliers and buyers are not the previous customers. An algorithm in terms of minimal paths to assess the reliability is developed. A fruit logistics case is adopted to explore the managerial implications of the reliability using sensitivity analysis.

  16. Physical-enhanced secure strategy in an OFDM-PON.

    PubMed

    Zhang, Lijia; Xin, Xiangjun; Liu, Bo; Yu, Jianjun

    2012-01-30

    The physical layer of optical access network is vulnerable to various attacks. As the dramatic increase of users and network capacity, the issue of physical-layer security becomes more and more important. This paper proposes a physical-enhanced secure strategy for orthogonal frequency division multiplexing passive optical network (OFDM-PON) by employing frequency domain chaos scrambling. The Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can dynamically allocate the scrambling matrices for different OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. A mathematical model of this secure system is derived firstly, which achieves a secure transmission at physical layer in OFDM-PON. The results from experimental implementation using Logistic mapped chaos scrambling are also given to further demonstrate the efficiency of this secure strategy. An 10.125 Gb/s 64QAM-OFDM data with Logistic mapped chaos scrambling are successfully transmitted over 25-km single mode fiber (SMF), and the experimental results show that proposed security scheme can protect the system from eavesdropper and attacker, while keep a good performance for the legal ONU.

  17. Transcriptome profiling analysis reveals biomarkers in colon cancer samples of various differentiation

    PubMed Central

    Yu, Tonghu; Zhang, Huaping; Qi, Hong

    2018-01-01

    The aim of the present study was to investigate more colon cancer-related genes in different stages. Gene expression profile E-GEOD-62932 was extracted for differentially expressed gene (DEG) screening. Series test of cluster analysis was used to obtain significant trending models. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, functional and pathway enrichment analysis were processed and a pathway relation network was constructed. Gene co-expression network and gene signal network were constructed for common DEGs. The DEGs with the same trend were clustered and in total, 16 clusters with statistical significance were obtained. The screened DEGs were enriched into small molecule metabolic process and metabolic pathways. The pathway relation network was constructed with 57 nodes. A total of 328 common DEGs were obtained. Gene signal network was constructed with 71 nodes. Gene co-expression network was constructed with 161 nodes and 211 edges. ABCD3, CPT2, AGL and JAM2 are potential biomarkers for the diagnosis of colon cancer. PMID:29928385

  18. Research on logistics scheduling based on PSO

    NASA Astrophysics Data System (ADS)

    Bao, Huifang; Zhou, Linli; Liu, Lei

    2017-08-01

    With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.

  19. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  20. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  1. Lunar and Planetary Bases, Habitats, and Colonies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the design and construction of lunar and Mars bases, habitats, and settlements; construction materials and equipment; life support systems; base operations and logistics; thermal management and power systems; and robotic systems.

  2. Generalized logistic map and its application in chaos based cryptography

    NASA Astrophysics Data System (ADS)

    Lawnik, M.

    2017-12-01

    The logistic map is commonly used in, for example, chaos based cryptography. However, its properties do not render a safe construction of encryption algorithms. Thus, the scope of the paper is a proposal of generalization of the logistic map by means of a wellrecognized family of chaotic maps. In the next step, an analysis of Lyapunov exponent and the distribution of the iterative variable are studied. The obtained results confirm that the analyzed model can safely and effectively replace a classic logistic map for applications involving chaotic cryptography.

  3. Construction of stable capillary networks using a microfluidic device.

    PubMed

    Sudo, Ryo

    2015-01-01

    Construction of stable capillary networks is required to provide sufficient oxygen and nutrients to the deep region of thick tissues, which is important in the context of 3D tissue engineering. Although conventional in vitro culture models have been used to investigate the mechanism of capillary formation, recent advances in microfluidics technologies allowed us to control biophysical and biochemical culture environments more precisely, which led to the construction of functional and stable capillary networks. In this study, endothelial cells and mesenchymal stem cells were co-cultured in microfluidic devices to construct stable capillary networks, which resulted in the construction of luminal structures covered by pericytes. Interactions between endothelial cells and mesenchymal stem cells are also discussed in the context of capillary formation.

  4. [Research of regional medical consumables reagent logistics system in the modern hospital].

    PubMed

    Wu, Jingjiong; Zhang, Yanwen; Luo, Xiaochen; Zhang, Qing; Zhu, Jianxin

    2013-09-01

    To explore the modern hospital and regional medical consumable reagents logistics system management. The characteristics of regional logistics, through cooperation between medical institutions within the region, and organize a wide range of special logistics activities, to make reasonable of the regional medical consumable reagents logistics. To set the regional management system, dynamic management systems, supply chain information management system, after-sales service system and assessment system. By the research of existing medical market and medical resources, to establish the regional medical supplies reagents directory and the initial data. The emphasis is centralized dispatch of medical supplies reagents, to introduce qualified logistics company for dispatching, to improve the modern hospital management efficiency, to costs down. Regional medical center and regional community health service centers constitute a regional logistics network, the introduction of medical consumable reagents logistics services, fully embodies integrity level, relevance, purpose, environmental adaptability of characteristics by the medical consumable reagents regional logistics distribution. Modern logistics distribution systems can increase the area of medical consumables reagent management efficiency and reduce costs.

  5. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability.

    PubMed

    Kim, Sun Mi; Han, Heon; Park, Jeong Mi; Choi, Yoon Jung; Yoon, Hoi Soo; Sohn, Jung Hee; Baek, Moon Hee; Kim, Yoon Nam; Chae, Young Moon; June, Jeon Jong; Lee, Jiwon; Jeon, Yong Hwan

    2012-10-01

    To determine which Breast Imaging Reporting and Data System (BI-RADS) descriptors for ultrasound are predictors for breast cancer using logistic regression (LR) analysis in conjunction with interobserver variability between breast radiologists, and to compare the performance of artificial neural network (ANN) and LR models in differentiation of benign and malignant breast masses. Five breast radiologists retrospectively reviewed 140 breast masses and described each lesion using BI-RADS lexicon and categorized final assessments. Interobserver agreements between the observers were measured by kappa statistics. The radiologists' responses for BI-RADS were pooled. The data were divided randomly into train (n = 70) and test sets (n = 70). Using train set, optimal independent variables were determined by using LR analysis with forward stepwise selection. The LR and ANN models were constructed with the optimal independent variables and the biopsy results as dependent variable. Performances of the models and radiologists were evaluated on the test set using receiver-operating characteristic (ROC) analysis. Among BI-RADS descriptors, margin and boundary were determined as the predictors according to stepwise LR showing moderate interobserver agreement. Area under the ROC curves (AUC) for both of LR and ANN were 0.87 (95% CI, 0.77-0.94). AUCs for the five radiologists ranged 0.79-0.91. There was no significant difference in AUC values among the LR, ANN, and radiologists (p > 0.05). Margin and boundary were found as statistically significant predictors with good interobserver agreement. Use of the LR and ANN showed similar performance to that of the radiologists for differentiation of benign and malignant breast masses.

  6. Multi-Purpose Logistics Module Briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Silvanna Rabbi, MPLM Program Manager, Italian Space Agency, gives an overview of the Multi-Purpose Logistics Module (MPLM) in a prelaunch press conference. She describes the objectives, construction, specifications, and purpose of the three Italian-built modules, Leonardo, Rafaello, and Donatello. Ms. Rabbi then answers questions from the press.

  7. Systems for the Intermodal Routing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K; Liu, Cheng

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less

  8. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  9. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.

    PubMed

    Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B

    2018-05-22

    RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.

  10. [Strategic thinking of the construction of national schistosomiasis laboratory network in China].

    PubMed

    Qin, Zhi-Qiang; Xu, Jing; Feng, Ting; Zhu, Hong-Qing; Li, Shi-Zhu; Xiao, Ning; Zhou, Xiao-Nong

    2013-08-01

    A schistosomiasis laboratory network and its quality assurance system have been built and will be more and more perfect in China. This paper introduces the present situation of schistosomiasis diagnosis in China and expounds the basic ideas and the progress in the construction of schistosomiasis network platform. Furthermore, the face of schistosomiasis diagnosis network platform construction and operation of the challenge and the future work will be put forward in the latter part of this paper.

  11. Cold-Chain Logistics: A Study of the Department of the Defense OCONUS Pre-Pandemic Influenza Vaccine Distribution Network

    DTIC Science & Technology

    2007-12-01

    AUTHOR( S ) LT Daniel “Travis” Jones LT Christopher “Craig” Tecmire 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ...NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are...merchandise, and not necessarily in the warehousing and the internal logistics associated with the production. The typical logistics manager of the 70’ s and

  12. Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige

    Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.

  13. 78 FR 65300 - Notice of Availability (NOA) for General Purpose Warehouse and Information Technology Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... (NOA) for General Purpose Warehouse and Information Technology Center Construction (GPW/IT)--Tracy Site-- Environmental Assessment AGENCY: Defense Logistics Agency, DoD. ACTION: Notice of Availability (NOA) for GPW/IT--Tracy Site-- Environmental Assessment. SUMMARY: The Defense Logistics Agency (DLA) announces the...

  14. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.

    PubMed

    Cai, Binghuang; Jiang, Xia

    2014-04-01

    Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Space construction system analysis. Part 2: Cost and programmatics

    NASA Technical Reports Server (NTRS)

    Vonflue, F. W.; Cooper, W.

    1980-01-01

    Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.

  16. Interplanetary Supply Chain Risk Management

    NASA Technical Reports Server (NTRS)

    Galluzzi, Michael C.

    2018-01-01

    Emphasis on KSC ground processing operations, reduced spares up-mass lift requirements and campaign-level flexible path perspective for space systems support as Regolith-based ISM is achieved by; Network modeling for sequencing space logistics and in-space logistics nodal positioning to include feedstock. Economic modeling to assess ISM 3D printing adaption and supply chain risk.

  17. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    NASA Astrophysics Data System (ADS)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  18. Use of neural networks to model complex immunogenetic associations of disease: human leukocyte antigen impact on the progression of human immunodeficiency virus infection.

    PubMed

    Ioannidis, J P; McQueen, P G; Goedert, J J; Kaslow, R A

    1998-03-01

    Complex immunogenetic associations of disease involving a large number of gene products are difficult to evaluate with traditional statistical methods and may require complex modeling. The authors evaluated the performance of feed-forward backpropagation neural networks in predicting rapid progression to acquired immunodeficiency syndrome (AIDS) for patients with human immunodeficiency virus (HIV) infection on the basis of major histocompatibility complex variables. Networks were trained on data from patients from the Multicenter AIDS Cohort Study (n = 139) and then validated on patients from the DC Gay cohort (n = 102). The outcome of interest was rapid disease progression, defined as progression to AIDS in <6 years from seroconversion. Human leukocyte antigen (HLA) variables were selected as network inputs with multivariate regression and a previously described algorithm selecting markers with extreme point estimates for progression risk. Network performance was compared with that of logistic regression. Networks with 15 HLA inputs and a single hidden layer of five nodes achieved a sensitivity of 87.5% and specificity of 95.6% in the training set, vs. 77.0% and 76.9%, respectively, achieved by logistic regression. When validated on the DC Gay cohort, networks averaged a sensitivity of 59.1% and specificity of 74.3%, vs. 53.1% and 61.4%, respectively, for logistic regression. Neural networks offer further support to the notion that HIV disease progression may be dependent on complex interactions between different class I and class II alleles and transporters associated with antigen processing variants. The effect in the current models is of moderate magnitude, and more data as well as other host and pathogen variables may need to be considered to improve the performance of the models. Artificial intelligence methods may complement linear statistical methods for evaluating immunogenetic associations of disease.

  19. Mortality Predicted Accuracy for Hepatocellular Carcinoma Patients with Hepatic Resection Using Artificial Neural Network

    PubMed Central

    Chiu, Herng-Chia; Ho, Te-Wei; Lee, King-Teh; Chen, Hong-Yaw; Ho, Wen-Hsien

    2013-01-01

    The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC) patients undergoing resection between artificial neural network (ANN) and logistic regression (LR) models and secondly to evaluate the predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434 patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-, and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR in all the training sets and most of the validation sets. The study demonstrated that ANN not only had a great number of predictors of mortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation. PMID:23737707

  20. Construction of road network vulnerability evaluation index based on general travel cost

    NASA Astrophysics Data System (ADS)

    Leng, Jun-qiang; Zhai, Jing; Li, Qian-wen; Zhao, Lin

    2018-03-01

    With the development of China's economy and the continuous improvement of her urban road network, the vulnerability of the urban road network has attracted increasing attention. Based on general travel cost, this work constructs the vulnerability evaluation index for the urban road network, and evaluates the vulnerability of the urban road network from the perspective of user generalised travel cost. Firstly, the generalised travel cost model is constructed based on vehicle cost, travel time, and traveller comfort. Then, the network efficiency index is selected as an evaluation index of vulnerability: the network efficiency index is composed of the traffic volume and the generalised travel cost, which are obtained from the equilibrium state of the network. In addition, the research analyses the influence of traffic capacity decrease, road section attribute value, and location of road section, on vulnerability. Finally, the vulnerability index is used to analyse the local area network of Harbin and verify its applicability.

  1. Complex network construction based on user group attention sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Gaowei; Xu, Lingyu; Wang, Lei

    2018-04-01

    In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.

  2. Integrated Sensor Architecture (ISA) for Live Virtual Constructive (LVC) Environments

    DTIC Science & Technology

    2014-03-01

    connect, publish their needs and capabilities, and interact with other systems even on disadvantaged networks. Within the ISA project, three levels of...constructive, disadvantaged network, sensor 1. INTRODUCTION In 2003 the Networked Sensors for the Future Force (NSFF) Advanced Technology Demonstration...While this combination is less optimal over disadvantaged networks, and we do not recommend it there, TCP and TLS perform adequately over networks with

  3. Haughton-Mars Project Expedition 2005

    NASA Technical Reports Server (NTRS)

    deWeck, Olivier; Simchi-Levi, David

    2006-01-01

    The 2005 expedition to the Haughton-Mars Project (HMP) research station on Devon Island was part of a NASA-funded project on Space Logistics. A team of nine r&searchers from MIT went to the Canadian Arctic to participate in the annual I-IMP field campaign from July 8 to August 12, 2005. We investigated the applicability of the HMP research station as an analogue for planetary macro- and micro-logistics to the Moon and Mars, and began collecting data for modeling purposes. We also tested new technologies and procedures to enhance the ability of humans and robots to jointly explore remote environments. The expedition had four main objectives. We briefly summarize our key findings in each of these areas. 1. Classes of Supply: First, we wanted to understand what supply items existed at the HMP research station in support of planetary science and exploration research at and around the Haughton Crater. We also wanted to quantify the total amount of imported mass at HMP and compare this with predictions from existing parametric lunar base demand models. 2. Macro-Logistics Transportation Network: Our second objective was to understand the nodes, transportation routes, vehicles, capacities and crew and cargo mass flow rates required to support the HMP logistics network. 3. Agent and Asset Tracking: Since the current inventory management system on ISS relies heavily on barcodes and manual tracking, we wanted to test new automated technologies and procedures such as radio frequency identification RFID) to support exploration logistics. 4. Micro-Logistics (EVA): Finally, we wanted to understand the micro-logistical requirements of conducting both short (<1 day) and long traverses in the Mars-analog terrain on Devon Island. Micro-logistics involves the movement of surface vehicles, people and supplies from base to various exploration sites over short distances (<100 km).

  4. Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases.

    PubMed

    Masías, Víctor Hugo; Valle, Mauricio; Morselli, Carlo; Crespo, Fernando; Vargas, Augusto; Laengle, Sigifredo

    2016-01-01

    Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers-Logistic Regression, Naïve Bayes and Random Forest-with a range of social network measures and the necessary databases to model the verdicts in two real-world cases: the U.S. Watergate Conspiracy of the 1970's and the now-defunct Canada-based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures.

  5. Ensemble of ground subsidence hazard maps using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  6. Design of Tactical Support Strategies in Military Logistics: Trade-offs Between Efficiency and Effectiveness. A Column and Cut Generation Modeling Methods

    DTIC Science & Technology

    2011-12-01

    problems need to be addressed in the design of military logis- tics networks. The design problem includes strategic decisions, such as the location of...military strategic logistics [11–13]. In this study, we focus on the design of tactical logistics strategies, which achieve different optimal balances...is clear that our problem is N P−Hard 1 since it generalizes the CVPR and the BPP . Different solutions to handle the loading and routing of

  7. Using an Adaptive Logistics Network in Africa: How Much and How Far

    DTIC Science & Technology

    2009-06-01

    the United States. Arlington, Virginia, 9 May 2005. http://www.fas.org/irp/agency/dod/obc.pdf Coyle, John J ., Edward J . Bardi , and Robert A . Novack... J ” logistics integration (Lyden, 2008). Whereas the term “joint” in a military context signifies more than one branch of military service, Admiral...Conference and Exhibition, 13 March 2008. www.dtic.mil/ndia/2008logistics/Lyden.pdf McKinzie, Kaye LtCol. and J . Wesley Barnes. “ A Review of Strategic

  8. Equal Area Logistic Estimation for Item Response Theory

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li

    2009-08-01

    Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.

  9. Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data.

    PubMed

    Sun, Hokeun; Wang, Shuang

    2013-05-30

    The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Perspectives of construction robots

    NASA Astrophysics Data System (ADS)

    Stepanov, M. A.; Gridchin, A. M.

    2018-03-01

    This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.

  11. Learning Instance-Specific Predictive Models

    PubMed Central

    Visweswaran, Shyam; Cooper, Gregory F.

    2013-01-01

    This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algorithm learns Markov blanket models, carries out Bayesian model averaging over a set of models to predict a target variable of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable models to average over. We call this method the instance-specific Markov blanket (ISMB) algorithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance measures and its performance was compared to that of several commonly used predictive algorithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm performed better on average on all performance measures against all the comparison algorithms. PMID:25045325

  12. Integrated cellular network of transcription regulations and protein-protein interactions

    PubMed Central

    2010-01-01

    Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology. PMID:20211003

  13. Integrated cellular network of transcription regulations and protein-protein interactions.

    PubMed

    Wang, Yu-Chao; Chen, Bor-Sen

    2010-03-08

    With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.

  14. Post-installation activities in the Comprehensive Nuclear Test Ban Treaty (CTBT) International Monitoring System (IMS) infrasound network

    NASA Astrophysics Data System (ADS)

    Vivas Veloso, J. A.; Christie, D. R.; Hoffmann, T. L.; Campus, P.; Bell, M.; Langlois, A.; Martysevich, P.; Demirovik, E.; Carvalho, J.; Kramer, A.; Wu, Sean F.

    2002-11-01

    The provisional operation and maintenance of IMS infrasound stations after installation and subsequent certification has the objective to prepare the infrasound network for entry into force of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The goal is to maintain and fine tune the technical capabilities of the network, to repair faulty equipment, and to ensure that stations continue to meet the minimum specifications through evaluation of data quality and station recalibration. Due to the globally dispersed nature of the network, this program constitutes a significant undertaking that requires careful consideration of possible logistic approaches and their financial implications. Currently, 11 of the 60 IMS infrasound stations are transmitting data in the post-installation Testing & Evaluation mode. Another 5 stations are under provisional operation and are maintained in post-certification mode. It is expected that 20% of the infrasound network will be certified by the end of 2002. This presentation will focus on the different phases of post-installation activities of the IMS infrasound program and the logistical challenges to be tackled to ensure a cost-efficient management of the network. Specific topics will include Testing & Evaluation and Certification of Infrasound Stations, as well as Configuration Management and Network Sustainment.

  15. The Course as Token: A Construction of/by Networks.

    ERIC Educational Resources Information Center

    Gaskell, Jim; Hepburn, Gary

    1998-01-01

    Describes the way in which a new applied-physics course introduced in British Columbia as part of a program in applied academics can be seen to construct different networks in different contexts. Employs actor network theory (ANT). Contains 20 references. (DDR)

  16. Structure and formation of ant transportation networks

    PubMed Central

    Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine

    2011-01-01

    Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958

  17. 48 CFR 801.602-78 - Processing solicitations and contract documents for legal or technical review-Veterans Health...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Central Office (except Office of Construction and Facilities Management), the National Acquisition Center, and the Denver Acquisition and Logistics Center. 801.602-78 Section 801.602-78 Federal Acquisition... Acquisition Center, and the Denver Acquisition and Logistics Center. (a) If legal or technical review is...

  18. 48 CFR 801.602-78 - Processing solicitations and contract documents for legal or technical review-Veterans Health...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Central Office (except Office of Construction and Facilities Management), the National Acquisition Center, and the Denver Acquisition and Logistics Center. 801.602-78 Section 801.602-78 Federal Acquisition... Acquisition Center, and the Denver Acquisition and Logistics Center. (a) If legal or technical review is...

  19. 48 CFR 801.602-78 - Processing solicitations and contract documents for legal or technical review-Veterans Health...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Central Office (except Office of Construction and Facilities Management), the National Acquisition Center, and the Denver Acquisition and Logistics Center. 801.602-78 Section 801.602-78 Federal Acquisition... Acquisition Center, and the Denver Acquisition and Logistics Center. (a) If legal or technical review is...

  20. Item Vector Plots for the Multidimensional Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Bryant, Damon; Davis, Larry

    2011-01-01

    This brief technical note describes how to construct item vector plots for dichotomously scored items fitting the multidimensional three-parameter logistic model (M3PLM). As multidimensional item response theory (MIRT) shows promise of being a very useful framework in the test development life cycle, graphical tools that facilitate understanding…

  1. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks

    PubMed Central

    Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-01-01

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. PMID:29642483

  2. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.

    PubMed

    Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-04-08

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.

  3. Re-Purposing Google Maps Visualisation for Teaching Logistics Systems

    ERIC Educational Resources Information Center

    Cheong, France; Cheong, Christopher; Jie, Ferry

    2012-01-01

    Routing is the process of selecting appropriate paths and ordering waypoints in a network. It plays an important part in logistics and supply chain management as choosing the optimal route can minimise distribution costs. Routing optimisation, however, is a difficult problem to solve and computer software is often used to determine the best route.…

  4. Air Mobility Command’s En Route Support Infrastructure: A Construct of Aircraft Type and Geographic Location Utilized to Assess En Route Aircraft Logistic Support

    DTIC Science & Technology

    2007-06-01

    or JTF air mobility operations (AFDC, 2000). As stated in the following definition, the NAMS integrates the primary functions of airlift, air...control, and communications (C3), logistics support, and aerial port functions . The goal of the en route is to minimize delays for AMC mission...process. The resulting data was used to perform a statistical analysis of AMC off-station aircraft logistic support records for AMC’s six primary

  5. Architectural Guidelines for Multimedia and Hypermedia Data Interchange: Computer Aided Acquisition and Logistics Support/Concurrent Engineering (CALS/ CE) and Electronic Commerce/Electronic Data Interchange (EC/EDI)

    DTIC Science & Technology

    1991-09-01

    other networks . 69 For example, E-mail can be sent to an SNA network through a Softswitch gateway, but at a very slow rate. As discussed in Chapter III...10 6. Communication Protocols ..................... 10 D. NEW INFRASTRUCTURES ....................... 11 1. CALS Test Network (CTN...11 2. Industrial Networks ......................... 12 3. FTS-2000 and ISDN ........................ 12 4. CALS Operational Resource

  6. Mitigating TCP Degradation over Intermittent Link Failures using Intermediate Buffers

    DTIC Science & Technology

    2006-06-01

    signal strength [10]. The Preemptive routing in ad hoc networks [10] attempts to predict that a route will fail by looking at the signal power of the...when the error rate is high there are non -optimal back offs in the Retransmission Timeout. And third, in the high error situation the slow start...network storage follows. In Beck et. al. [3], Logistical Networking is outlined as a means of storing data throughout the network. End to end

  7. Methods for inferring health-related social networks among coworkers from online communication patterns.

    PubMed

    Matthews, Luke J; DeWan, Peter; Rula, Elizabeth Y

    2013-01-01

    Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network.

  8. Methods for Inferring Health-Related Social Networks among Coworkers from Online Communication Patterns

    PubMed Central

    Matthews, Luke J.; DeWan, Peter; Rula, Elizabeth Y.

    2013-01-01

    Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network. PMID:23418436

  9. Intelligent Resource Management for Local Area Networks: Approach and Evolution

    NASA Technical Reports Server (NTRS)

    Meike, Roger

    1988-01-01

    The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

  10. A Study on the Application of the Extended Matrices Based on TRIZ in Constructing a Collaborative Model of Enterprise Network

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Shao, Yunfei; Tang, Xiaowo

    Based on mass related literature on enterprise network, the key influence factors are reduced to Trust, Control, Relationship and Interaction. Meanwhile, the specific contradiction matrices, judgment matrices and strategy collections based on TRIZ are constructed which make the connotation of contradiction matrices in TRIZ extended. Finally they are applied to the construction of the collaborative model on enterprise network based on Multi Agent System (MAS).

  11. Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases

    PubMed Central

    2016-01-01

    Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a range of social network measures and the necessary databases to model the verdicts in two real–world cases: the U.S. Watergate Conspiracy of the 1970’s and the now–defunct Canada–based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures. PMID:26824351

  12. 78 FR 65975 - Notice of Availability (NOA) for Strategic Network Optimization (SNO) Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Impact (FONSI) AGENCY: Defense Logistics Agency, DoD. ACTION: Notice of Availability (NOA) for Strategic Network Optimization (SNO) Environmental Assessment (EA) Finding of No Significant Impact (FONSI). SUMMARY... impacts on the human environment are associated with this decision. FOR FURTHER INFORMATION CONTACT: Ann...

  13. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  14. Network characteristics and patent value-Evidence from the Light-Emitting Diode industry.

    PubMed

    Huang, Way-Ren; Hsieh, Chia-Jen; Chang, Ke-Chiun; Kiang, Yen-Jo; Yuan, Chien-Chung; Chu, Woei-Chyn

    2017-01-01

    This study proposes a different angle to social network analysis that evaluates patent value and explores its influencing factors using the network centrality and network position. This study utilizes a logistic regression model to explore the relationships in the LED industry between patent value and network centrality as measured from out-degree centrality, in-degree centrality, in-closeness centrality, and network position, which is measured from effect size. The empirical result shows that out-degree centrality and in-degree centrality have significant positive effects on patent value and that effect size has a significant negative effect on patent value.

  15. Estimating peer density effects on oral health for community-based older adults.

    PubMed

    Chakraborty, Bibhas; Widener, Michael J; Mirzaei Salehabadi, Sedigheh; Northridge, Mary E; Kum, Susan S; Jin, Zhu; Kunzel, Carol; Palmer, Harvey D; Metcalf, Sara S

    2017-12-29

    As part of a long-standing line of research regarding how peer density affects health, researchers have sought to understand the multifaceted ways that the density of contemporaries living and interacting in proximity to one another influence social networks and knowledge diffusion, and subsequently health and well-being. This study examined peer density effects on oral health for racial/ethnic minority older adults living in northern Manhattan and the Bronx, New York, NY. Peer age-group density was estimated by smoothing US Census data with 4 kernel bandwidths ranging from 0.25 to 1.50 mile. Logistic regression models were developed using these spatial measures and data from the ElderSmile oral and general health screening program that serves predominantly racial/ethnic minority older adults at community centers in northern Manhattan and the Bronx. The oral health outcomes modeled as dependent variables were ordinal dentition status and binary self-rated oral health. After construction of kernel density surfaces and multiple imputation of missing data, logistic regression analyses were performed to estimate the effects of peer density and other sociodemographic characteristics on the oral health outcomes of dentition status and self-rated oral health. Overall, higher peer density was associated with better oral health for older adults when estimated using smaller bandwidths (0.25 and 0.50 mile). That is, statistically significant relationships (p < 0.01) between peer density and improved dentition status were found when peer density was measured assuming a more local social network. As with dentition status, a positive significant association was found between peer density and fair or better self-rated oral health when peer density was measured assuming a more local social network. This study provides novel evidence that the oral health of community-based older adults is affected by peer density in an urban environment. To the extent that peer density signifies the potential for social interaction and support, the positive significant effects of peer density on improved oral health point to the importance of place in promoting social interaction as a component of healthy aging. Proximity to peers and their knowledge of local resources may facilitate utilization of community-based oral health care.

  16. Common quandaries and their practical solutions in Bayesian network modeling

    Treesearch

    Bruce G. Marcot

    2017-01-01

    Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...

  17. Logistics and Strategy

    DTIC Science & Technology

    2014-12-04

    noncombat arms functions. They consolidated all support activities, e.g. signal, engineering , etc., under logistics. This implied a robust organization that...facilities stateside, the Corps of Engineers constructed new airfields and bases overseas in countries such as Australia and North Africa, which...Heritage Command (Washington, DC: Washington Navy Yard, 2013). 52 Hugh J. Casey, Organization, Soldiers, and Training. Engineers of the Southwest

  18. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    PubMed

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.

  19. Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses

    NASA Astrophysics Data System (ADS)

    Lungsi Sharma, B.

    2016-07-01

    The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.

  20. Construction of regulatory networks using expression time-series data of a genotyped population.

    PubMed

    Yeung, Ka Yee; Dombek, Kenneth M; Lo, Kenneth; Mittler, John E; Zhu, Jun; Schadt, Eric E; Bumgarner, Roger E; Raftery, Adrian E

    2011-11-29

    The inference of regulatory and biochemical networks from large-scale genomics data is a basic problem in molecular biology. The goal is to generate testable hypotheses of gene-to-gene influences and subsequently to design bench experiments to confirm these network predictions. Coexpression of genes in large-scale gene-expression data implies coregulation and potential gene-gene interactions, but provide little information about the direction of influences. Here, we use both time-series data and genetics data to infer directionality of edges in regulatory networks: time-series data contain information about the chronological order of regulatory events and genetics data allow us to map DNA variations to variations at the RNA level. We generate microarray data measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected to a drug perturbation. We develop a Bayesian model averaging regression algorithm that incorporates external information from diverse data types to infer regulatory networks from the time-series and genetics data. Our algorithm is capable of generating feedback loops. We show that our inferred network recovers existing and novel regulatory relationships. Following network construction, we generate independent microarray data on selected deletion mutants to prospectively test network predictions. We demonstrate the potential of our network to discover de novo transcription-factor binding sites. Applying our construction method to previously published data demonstrates that our method is competitive with leading network construction algorithms in the literature.

  1. A Comparison of Logistic Regression, Neural Networks, and Classification Trees Predicting Success of Actuarial Students

    ERIC Educational Resources Information Center

    Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard

    2010-01-01

    The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…

  2. Rapid Network Design

    DTIC Science & Technology

    2013-09-01

    control GCE ground combat element LCE logistics combat element MAGTF Marine Air Ground Task Force MWCS Marine Wing Communications Squadron NPS Naval...elements: command element (CE), ground combat el- ement ( GCE ), aviation combat element (ACE), and logistics combat element (LCE). Each ele- ment...This layer provides unimpeded high-speed connectivity between remote sites and the Internet. Limited security policies are applied at this level to

  3. Optimizing biomass feedstock logistics for forest residue processing and transportation on a tree-shaped road network

    Treesearch

    Hee Han; Woodam Chung; Lucas Wells; Nathaniel Anderson

    2018-01-01

    An important task in forest residue recovery operations is to select the most cost-efficient feedstock logistics system for a given distribution of residue piles, road access, and available machinery. Notable considerations include inaccessibility of treatment units to large chip vans and frequent, long-distance mobilization of forestry equipment required to process...

  4. CTN summary of DSREDS, EDCARS, EDMICS CALS readiness testing. [Computer-aided Acquisition and Logistic Support (CALS) CALS Test Network (CTN), Digital Storage Retrieval Eng. Data System (DSREDS), Eng. Data Computer Assisted Retrieval System (EDCARS), Eng. Data Management Information and Control System (EDMICS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitschkowetz, N.; Vickers, D.L.

    This report provides a summary of the Computer-aided Acquisition and Logistic Support (CALS) Test Network (CTN) Laboratory Acceptance Test (LAT) and User Application Test (UAT) activities undertaken to evaluate the CALS capabilities being implemented as part of the Department of Defense (DOD) engineering repositories. Although the individual testing activities provided detailed reports for each repository, a synthesis of the results, conclusions, and recommendations is offered to provide a more concise presentation of the issues and the strategies, as viewed from the CTN perspective.

  5. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.

    PubMed

    Feltus, F Alex; Ficklin, Stephen P; Gibson, Scott M; Smith, Melissa C

    2013-06-05

    In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired.

  6. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study

    PubMed Central

    2013-01-01

    Background In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. Results A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Conclusions Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired. PMID:23738693

  7. Composing Music with Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  8. Relationship between microscopic dynamics in traffic flow and complexity in networks.

    PubMed

    Li, Xin-Gang; Gao, Zi-You; Li, Ke-Ping; Zhao, Xiao-Mei

    2007-07-01

    Complex networks are constructed in the evolution process of traffic flow, and the states of traffic flow are represented by nodes in the network. The traffic dynamics can then be studied by investigating the statistical properties of those networks. According to Kerner's three-phase theory, there are two different phases in congested traffic, synchronized flow and wide moving jam. In the framework of this theory, we study different properties of synchronized flow and moving jam in relation to complex network. Scale-free network is constructed in stop-and-go traffic, i.e., a sequence of moving jams [Chin. Phys. Lett. 10, 2711 (2005)]. In this work, the networks generated in synchronized flow are investigated in detail. Simulation results show that the degree distribution of the networks constructed in synchronized flow has two power law regions, so the distinction in topological structure can really reflect the different dynamics in traffic flow. Furthermore, the real traffic data are investigated by this method, and the results are consistent with the simulations.

  9. Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses.

    PubMed

    Mathur, Rinku; Adlakha, Neeru

    2014-06-01

    Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.

  10. Developing a Workflow Composite Score to Measure Clinical Information Logistics. A Top-down Approach.

    PubMed

    Liebe, J D; Hübner, U; Straede, M C; Thye, J

    2015-01-01

    Availability and usage of individual IT applications have been studied intensively in the past years. Recently, IT support of clinical processes is attaining increasing attention. The underlying construct that describes the IT support of clinical workflows is clinical information logistics. This construct needs to be better understood, operationalised and measured. It is therefore the aim of this study to propose and develop a workflow composite score (WCS) for measuring clinical information logistics and to examine its quality based on reliability and validity analyses. We largely followed the procedural model of MacKenzie and colleagues (2011) for defining and conceptualising the construct domain, for developing the measurement instrument, assessing the content validity, pretesting the instrument, specifying the model, capturing the data and computing the WCS and testing the reliability and validity. Clinical information logistics was decomposed into the descriptors data and information, function, integration and distribution, which embraced the framework validated by an analysis of the international literature. This framework was refined selecting representative clinical processes. We chose ward rounds, pre- and post-surgery processes and discharge as sample processes that served as concrete instances for the measurements. They are sufficiently complex, represent core clinical processes and involve different professions, departments and settings. The score was computed on the basis of data from 183 hospitals of different size, ownership, location and teaching status. Testing the reliability and validity yielded encouraging results: the reliability was high with r(split-half) = 0.89, the WCS discriminated between groups; the WCS correlated significantly and moderately with two EHR models and the WCS received good evaluation results by a sample of chief information officers (n = 67). These findings suggest the further utilisation of the WCS. As the WCS does not assume ideal workflows as a gold standard but measures IT support of clinical workflows according to validated descriptors a high portability of the WCS to other hospitals in other countries is very likely. The WCS will contribute to a better understanding of the construct clinical information logistics.

  11. Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.

    PubMed

    Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing

    2017-01-01

    Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.

  12. Complex network structure of musical compositions: Algorithmic generation of appealing music

    NASA Astrophysics Data System (ADS)

    Liu, Xiao Fan; Tse, Chi K.; Small, Michael

    2010-01-01

    In this paper we construct networks for music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurring connections. We analyze classical music from Bach, Mozart, Chopin, as well as other types of music such as Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. We conjecture that preserving the universal network properties is a necessary step in artificial composition of music. Power-law exponents of node degree, node strength and/or edge weight distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be composed artificially using a controlled random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. By generating a large number of compositions, we find that this algorithm generates music which has the necessary qualities to be subjectively judged as appealing.

  13. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks.

    PubMed

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-05-12

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity.

  14. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks

    PubMed Central

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-01-01

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity. PMID:29757244

  15. A computational geometry approach to pore network construction for granular packings

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  16. Enhancement of COPD biological networks using a web-based collaboration interface

    PubMed Central

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C.; Schlage, Walter K.; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V.; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C.; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks. PMID:25767696

  17. Enhancement of COPD biological networks using a web-based collaboration interface.

    PubMed

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C; Schlage, Walter K; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.

  18. Developing a common framework for evaluating the implementation of genomic medicine interventions in clinical care: the IGNITE Network's Common Measures Working Group.

    PubMed

    Orlando, Lori A; Sperber, Nina R; Voils, Corrine; Nichols, Marshall; Myers, Rachel A; Wu, R Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D; Levy, Mia; Pollin, Toni I; Guan, Yue; Horowitz, Carol R; Ramos, Michelle; Kimmel, Stephen E; McDonough, Caitrin W; Madden, Ebony B; Damschroder, Laura J

    2018-06-01

    PurposeImplementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing Genomics in Practice (IGNITE) Network's efforts to promote (i) a broader understanding of genomic medicine implementation research and (ii) the sharing of knowledge generated in the network.MethodsTo facilitate this goal, the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide its approach to identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross-network analyses.ResultsCMG identified 10 high-priority CFIR constructs as important for genomic medicine. Of those, eight did not have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model.ConclusionWe developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field.

  19. Differential Engagement of Brain Regions within a "Core" Network during Scene Construction

    ERIC Educational Resources Information Center

    Summerfield, Jennifer J.; Hassabis, Demis; Maguire, Eleanor A.

    2010-01-01

    Reliving past events and imagining potential future events engages a well-established "core" network of brain areas. How the brain constructs, or reconstructs, these experiences or scenes has been debated extensively in the literature, but remains poorly understood. Here we designed a novel task to investigate this (re)constructive process by…

  20. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  1. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  2. Constructing Neuronal Network Models in Massively Parallel Environments.

    PubMed

    Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.

  3. Constructing Neuronal Network Models in Massively Parallel Environments

    PubMed Central

    Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808

  4. Massive-scale gene co-expression network construction and robustness testing using random matrix theory.

    PubMed

    Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.

  5. Validation of in situ networks via field sampling: case study in the South Fork Experimental Watershed

    USDA-ARS?s Scientific Manuscript database

    The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Therefore, these stations are located along field boundaries or in non-representative sites with regards to so...

  6. A Comparison of Alternative Methods of Obtaining Defense Logistics Agency (DLA) Cognizance Spare Parts for Contractor Furnished Equipment (CFE) during Initial Outfitting of New Construction U.S. Navy Ships

    DTIC Science & Technology

    1991-12-01

    database, the Real Time Operation Management Information System (ROMIS), and Fitting Out Management Information System (FOMIS). These three configuration...Codes ROMIS Real Time Operation Management Information System SCLSIS Ship’s Configuration and Logistics Information System SCN Shipbuilding and

  7. The Logistical Tracking System (LTS) Five Years Later: What Has Been Accomplished?

    ERIC Educational Resources Information Center

    Valcik, Nicolas A.

    2007-01-01

    The purpose of this research is to discuss development of the Logistical Tracking System (LTS)1 and evaluate the changes in processes and procedures at the University of Texas-Dallas (UT-Dallas) that were due to implementation of a new type of technology. The chapter elaborates on the positive and negative aspects of designing and constructing a…

  8. Regional Alignment: Phase Zero Logistics Implications

    DTIC Science & Technology

    2014-05-01

    Brigade TDC Theater Distribution Center TPFDL Time Phased Force Deployment List TSC Theater Sustainment Command v INTRODUCTION Not only are...Center ( TDC ) capability in response to the backlog of supplies and equipment required during major combat operation. The TDC was a contracted...organization, constructed to support units based on amount personnel and equipment. This TDC concept was a part of the logistics concept that supported

  9. Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton.

    PubMed

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-12-01

    Aquatic bacterial communities harbour thousands of coexisting taxa. To meet the challenge of discriminating between a 'core' and a sporadically occurring 'random' component of these communities, we explored the spatial abundance distribution of individual bacterioplankton taxa across 198 boreal lakes and their associated fluvial networks (188 rivers). We found that all taxa could be grouped into four distinct categories based on model statistical distributions (normal like, bimodal, logistic and lognormal). The distribution patterns across lakes and their associated river networks showed that lake communities are composed of a core of taxa whose distribution appears to be linked to in-lake environmental sorting (normal-like and bimodal categories), and a large fraction of mostly rare bacteria (94% of all taxa) whose presence appears to be largely random and linked to downstream transport in aquatic networks (logistic and lognormal categories). These rare taxa are thus likely to reflect species sorting at upstream locations, providing a perspective of the conditions prevailing in entire aquatic networks rather than only in lakes. © 2016 John Wiley & Sons Ltd/CNRS.

  10. Understanding Chinese Developmental Dyslexia: Morphological Awareness as a Core Cognitive Construct

    ERIC Educational Resources Information Center

    Shu, Hua; McBride-Chang, Catherine; Wu, Sina; Liu, Hongyun

    2006-01-01

    Tasks representing 9 cognitive constructs of potential importance to understanding Chinese reading development and impairment were administered to 75 children with dyslexia and 77 age-matched children without reading difficulties in 5th and 6th grade. Logistic regression analyses revealed that dyslexic readers were best distinguished from…

  11. Construction and manipulation of functional three-dimensional droplet networks.

    PubMed

    Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha; Hill, Jamie; Bayley, Hagan; Sapra, K Tanuj

    2014-01-28

    Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues.

  12. It's Easy To Be Wise after the Event: Concepts for Redesigning an Educational System on Logistics Derived from Reflecting Its Development and Use.

    ERIC Educational Resources Information Center

    Neumann, Gaby; Ziems, Dietrich; Hopner, Christian

    This paper introduces a multimedia-based educational system on logistics developed at the University of Magdeburg (Germany), reports on development and implementation of the prototype, and discusses ideas for redesign. The system was tested, used, and evaluated at the university and within a European network of 24 universities, colleges, and…

  13. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  14. USMC Logistics Resource Allocation Optimization Tool

    DTIC Science & Technology

    2015-12-01

    Virtual Warehouse Concept ..........................................12  3.  New Models in Logistics Network Design and Implications for Third Party...is the smallest DD activity in terms of manpower , but due to its proximity to USMC units, stocks a much greater quantity of USMC-demanded materiel...salient conclusion to reference with respect to this thesis. 12 2. Inventory Management of Repairables in the U.S. Marine Corps— A Virtual Warehouse

  15. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    NASA Astrophysics Data System (ADS)

    Hendrickson, Thomas P.; Kavvada, Olga; Shah, Nihar; Sathre, Roger; Scown, Corinne D.

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23-45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6-56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.

  16. A long non-coding RNA expression profile can predict early recurrence in hepatocellular carcinoma after curative resection.

    PubMed

    Lv, Yufeng; Wei, Wenhao; Huang, Zhong; Chen, Zhichao; Fang, Yuan; Pan, Lili; Han, Xueqiong; Xu, Zihai

    2018-06-20

    The aim of this study was to develop a novel long non-coding RNA (lncRNA) expression signature to accurately predict early recurrence for patients with hepatocellular carcinoma (HCC) after curative resection. Using expression profiles downloaded from The Cancer Genome Atlas database, we identified multiple lncRNAs with differential expression between early recurrence (ER) group and non-early recurrence (non-ER) group of HCC. Least absolute shrinkage and selection operator (LASSO) for logistic regression models were used to develop a lncRNA-based classifier for predicting ER in the training set. An independent test set was used to validated the predictive value of this classifier. Futhermore, a co-expression network based on these lncRNAs and its highly related genes was constructed and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of genes in the network were performed. We identified 10 differentially expressed lncRNAs, including 3 that were upregulated and 7 that were downregulated in ER group. The lncRNA-based classifier was constructed based on 7 lncRNAs (AL035661.1, PART1, AC011632.1, AC109588.1, AL365361.1, LINC00861 and LINC02084), and its accuracy was 0.83 in training set, 0.87 in test set and 0.84 in total set. And ROC curve analysis showed the AUROC was 0.741 in training set, 0.824 in the test set and 0.765 in total set. A functional enrichment analysis suggested that the genes of which is highly related to 4 lncRNAs were involved in immune system. This 7-lncRNA expression profile can effectively predict the early recurrence after surgical resection for HCC. This article is protected by copyright. All rights reserved.

  17. Holding-based network of nations based on listed energy companies: An empirical study on two-mode affiliation network of two sets of actors

    NASA Astrophysics Data System (ADS)

    Li, Huajiao; Fang, Wei; An, Haizhong; Gao, Xiangyun; Yan, Lili

    2016-05-01

    Economic networks in the real world are not homogeneous; therefore, it is important to study economic networks with heterogeneous nodes and edges to simulate a real network more precisely. In this paper, we present an empirical study of the one-mode derivative holding-based network constructed by the two-mode affiliation network of two sets of actors using the data of worldwide listed energy companies and their shareholders. First, we identify the primitive relationship in the two-mode affiliation network of the two sets of actors. Then, we present the method used to construct the derivative network based on the shareholding relationship between two sets of actors and the affiliation relationship between actors and events. After constructing the derivative network, we analyze different topological features on the node level, edge level and entire network level and explain the meanings of the different values of the topological features combining the empirical data. This study is helpful for expanding the usage of complex networks to heterogeneous economic networks. For empirical research on the worldwide listed energy stock market, this study is useful for discovering the inner relationships between the nations and regions from a new perspective.

  18. Discovering Implicit Entity Relation with the Gene-Citation-Gene Network

    PubMed Central

    Song, Min; Han, Nam-Gi; Kim, Yong-Hwan; Ding, Ying; Chambers, Tamy

    2013-01-01

    In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG) network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG) network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner. PMID:24358368

  19. Constructive autoassociative neural network for facial recognition.

    PubMed

    Fernandes, Bruno J T; Cavalcanti, George D C; Ren, Tsang I

    2014-01-01

    Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.

  20. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  1. Network characteristics and patent value—Evidence from the Light-Emitting Diode industry

    PubMed Central

    Huang, Way-Ren; Hsieh, Chia-Jen; Chang, Ke-Chiun; Kiang, Yen-Jo; Yuan, Chien-Chung; Chu, Woei-Chyn

    2017-01-01

    This study proposes a different angle to social network analysis that evaluates patent value and explores its influencing factors using the network centrality and network position. This study utilizes a logistic regression model to explore the relationships in the LED industry between patent value and network centrality as measured from out-degree centrality, in-degree centrality, in-closeness centrality, and network position, which is measured from effect size. The empirical result shows that out-degree centrality and in-degree centrality have significant positive effects on patent value and that effect size has a significant negative effect on patent value. PMID:28817587

  2. Building a Solar System Internet

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J.

    2018-01-01

    This presentation is expected to be given during the scheduled Communications Technology and Development discussion in the University Student Design Challenge (2). It is an introduction to various challenges inherent to the construction of networks in space. The presentation also includes both an overview of networking in general, as well as approaches taken to the construction of delay- and disruption- tolerant networks.

  3. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection.

    PubMed

    Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe

    2018-05-08

    Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.

  4. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  5. MOCASSIN-prot software

    USDA-ARS?s Scientific Manuscript database

    MOCASSIN-prot is a software, implemented in Perl and Matlab, for constructing protein similarity networks to classify proteins. Both domain composition and quantitative sequence similarity information are utilized in constructing the directed protein similarity networks. For each reference protein i...

  6. Automatic Detection of Nausea Using Bio-Signals During Immerging in A Virtual Reality Environment

    DTIC Science & Technology

    2001-10-25

    reduce the redundancy in those parameters, and constructed an artificial neural network with those principal components. Using the network we constructed, we could partially detect nausea in real time.

  7. Simulation model for port shunting yards

    NASA Astrophysics Data System (ADS)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  8. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  9. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    PubMed

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  10. Scale-invariance underlying the logistic equation and its social applications

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Plastino, A.

    2013-01-01

    On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.

  11. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients.

    PubMed

    Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min

    2015-01-01

    The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

  12. Research on public logistics centers of Zhenzhou city based on GIS

    NASA Astrophysics Data System (ADS)

    Zeng, Yuhuai; Chen, Shuisen; Tian, Zhihui; Miao, Quansheng

    2008-10-01

    The regional public logistics center (PLC) is the intermedium that transports goods or commodity from producer to wholesaler, retailer and end consumer through whole supply chains. According to the Central Place Theory, the PLC should be multi-centric and of more kinds of graded degrees. From the road network planning discipline, an unique index---Importance Degree, is presented to measure the capacity of a PLC. The Importance Degree selects three township criteria: total population, gross industry product and budget income as weights to calculate the weighted vectors by principle component analysis method. Finally, through the clustering analysis, we can get the graded degrees of PLCs. It proves that that this research method is very effective for the road network planning of Zhengzhou City.

  13. Depth optimal sorting networks resistant to k passive faults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrow, M.

    In this paper, we study the problem of constructing a sorting network that is tolerant to faults and whose running time (i.e. depth) is as small as possible. We consider the scenario of worst-case comparator faults and follow the model of passive comparator failure proposed by Yao and Yao, in which a faulty comparator outputs directly its inputs without comparison. Our main result is the first construction of an N-input, k-fault-tolerant sorting network that is of an asymptotically optimal depth {theta}(log N+k). That improves over the recent result of Leighton and Ma, whose network is of depth O(log N +more » k log log N/log k). Actually, we present a fault-tolerant correction network that can be added after any N-input sorting network to correct its output in the presence of at most k faulty comparators. Since the depth of the network is O(log N + k) and the constants hidden behind the {open_quotes}O{close_quotes} notation are not big, the construction can be of practical use. Developing the techniques necessary to show the main result, we construct a fault-tolerant network for the insertion problem. As a by-product, we get an N-input, O(log N)-depth INSERT-network that is tolerant to random faults, thereby answering a question posed by Ma in his PhD thesis. The results are based on a new notion of constant delay comparator networks, that is, networks in which each register is used (compared) only in a period of time of a constant length. Copies of such networks can be put one after another with only a constant increase in depth per copy.« less

  14. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport.

    PubMed

    Xiong, Qingrong; Baychev, Todor G; Jivkov, Andrey P

    2016-09-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Multilevel regularized regression for simultaneous taxa selection and network construction with metagenomic count data.

    PubMed

    Liu, Zhenqiu; Sun, Fengzhu; Braun, Jonathan; McGovern, Dermot P B; Piantadosi, Steven

    2015-04-01

    Identifying disease associated taxa and constructing networks for bacteria interactions are two important tasks usually studied separately. In reality, differentiation of disease associated taxa and correlation among taxa may affect each other. One genus can be differentiated because it is highly correlated with another highly differentiated one. In addition, network structures may vary under different clinical conditions. Permutation tests are commonly used to detect differences between networks in distinct phenotypes, and they are time-consuming. In this manuscript, we propose a multilevel regularized regression method to simultaneously identify taxa and construct networks. We also extend the framework to allow construction of a common network and differentiated network together. An efficient algorithm with dual formulation is developed to deal with the large-scale n ≪ m problem with a large number of taxa (m) and a small number of samples (n) efficiently. The proposed method is regularized with a general Lp (p ∈ [0, 2]) penalty and models the effects of taxa abundance differentiation and correlation jointly. We demonstrate that it can identify both true and biologically significant genera and network structures. Software MLRR in MATLAB is available at http://biostatistics.csmc.edu/mlrr/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    PubMed Central

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  17. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  18. Dynamics of a stochastic HIV-1 infection model with logistic growth

    NASA Astrophysics Data System (ADS)

    Jiang, Daqing; Liu, Qun; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed; Xia, Peiyan

    2017-03-01

    This paper is concerned with a stochastic HIV-1 infection model with logistic growth. Firstly, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the HIV-1 infection model. Then we obtain sufficient conditions for extinction of the infection. The stationary distribution shows that the infection can become persistent in vivo.

  19. Logistics Integration: Closing the Gap

    DTIC Science & Technology

    2012-05-18

    explain how a common understanding occurs as part of JOPP. More importantly, the structure of JOPP Jacks a specific process of collaboration between...create unity of effort. Flexibility is how logistic structures and procedures improvise and adapt to the chaos of the battlefield. This requires... prefabricated harbors or artificial ports.26 The two prefabricated harbors were to be constructed as soon as the beachheads were secured utilizing the

  20. Using long-term datasets to study exotic plant invasions on rangelands in the western United States

    Treesearch

    C. Morris; L. R. Morris; A. J. Leffler; C. D. Holifield Collins; A. D. Forman; M. A. Weltz; S. G. Kitchen

    2013-01-01

    Invasions by exotic species are generally described using a logistic growth curve divided into three phases: introduction, expansion and saturation. This model is constructed primarily from regional studies of plant invasions based on historical records and herbarium samples. The goal of this study is to compare invasion curves at the local scale to the logistic growth...

  1. Public Private Business Models for Defence Acquisition

    DTIC Science & Technology

    2014-04-30

    Initiatives (PFIs), franchising , concessions, Joint Ventures (JVs) and outright privatisation (Grimsey & Lewis, 2004, p. 54); Off-The-Shelf (OTS...Design (D), Finance (F), Buy (B)/Rent (R)/Lease (L), Construct (C) (Build (B)), Develop (D), Own (O), Operate (O), Manage (M), Maintain (M) and Transfer...Logistics Logistics Infrastructure, and Locistics Other affected None None Equipment Eql..ipment OLoOs Finance- Buy - Desig~ - Buy - Private sector

  2. Enhancement of the Logistics Battle Command Model: Architecture Upgrades and Attrition Module Development

    DTIC Science & Technology

    2017-01-05

    module. 15. SUBJECT TERMS Logistics, attrition, discrete event simulation, Simkit, LBC 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION...stochastics, and discrete event model programmed in Java building largely on the Simkit library. The primary purpose of the LBC model is to support...equations makes them incompatible with the discrete event construct of LBC. Bullard further advances this methodology by developing a stochastic

  3. The interplay between cognitive risk and resilience factors in remitted depression: A network analysis.

    PubMed

    Hoorelbeke, Kristof; Marchetti, Igor; De Schryver, Maarten; Koster, Ernst H W

    2016-05-01

    Individuals in remission from depression are at increased risk for developing future depressive episodes. Several cognitive risk- and resilience factors have been suggested to account for this vulnerability. In the current study we explored how risk- and protective factors such as cognitive control, adaptive and maladaptive emotion regulation, residual symptomatology, and resilience relate to one another in a remitted depressed (RMD) sample. We examined the relationships between these constructs in a cross-sectional dataset of 69 RMD patients using network analyses in order to obtain a comprehensive, data-driven view on the interplay between these constructs. We subsequently present an association network, a concentration network, and a relative importance network. In all three networks resilience formed the central hub, connecting perceived cognitive control (i.e., working memory complaints), emotion regulation, and residual symptomatology. The contribution of the behavioral measure for cognitive control in the network was negligible. Moreover, the directed relative importance network indicates bidirectional influences between these constructs, with all indicators of centrality suggesting a key role of resilience in remission from depression. The presented findings are cross-sectional and networks are limited to a fixed set of key constructs in the literature pertaining cognitive vulnerability for depression. These findings indicate the importance of resilience to successfully cope with stressors following remission from depression. Further in-depth studies will be essential to identify the specific underlying resilience mechanisms that may be key to successful remission from depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Study of Personalized Network Tutoring System Based on Emotional-cognitive Interaction

    NASA Astrophysics Data System (ADS)

    Qi, Manfei; Ma, Ding; Wang, Wansen

    Aiming at emotion deficiency in present Network tutoring system, a lot of negative effects is analyzed and corresponding countermeasures are proposed. The model of Personalized Network tutoring system based on Emotional-cognitive interaction is constructed in the paper. The key techniques of realizing the system such as constructing emotional model and adjusting teaching strategies are also introduced.

  5. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  6. Sense and Respond Logistics: Integrating Prediction, Responsiveness, and Control Capabilities

    DTIC Science & Technology

    2006-01-01

    logistics SAR sense and respond SCM Supply Chain Management SCN Supply Chain Network SIDA sense, interpret, decide, act SOS source of supply TCN...commodity supply chain management ( SCM ), will have WS- SCMs that focus on integrating information for a particular MDS. 8 In the remainder of this...developed applications of ABMs for SCM .21 Applications of Agents and Agent-Based Modeling Agents have been used in telecommunications, e-commerce

  7. Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi

    Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.

  8. Logic Analysis of Painting Modeling Rules and Avoiding Narrative Viewing

    ERIC Educational Resources Information Center

    Zhu, Feng; Shao, Jie

    2009-01-01

    Painting modeling rules are constructed based on objective representing with material substances as the main body and the construction methods and orders are mostly limited to narrative viewing and expression, which, obviously, is not the best method. Logistic thinking in virtue of modeling art could gender a more "painting-like"…

  9. Sex differences in how social networks and relationship quality influence experimental pain sensitivity.

    PubMed

    Vigil, Jacob M; Rowell, Lauren N; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David

    2013-01-01

    This is the first study to examine how both structural and functional components of individuals' social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one's significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual's social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed.

  10. Sex Differences in How Social Networks and Relationship Quality Influence Experimental Pain Sensitivity

    PubMed Central

    Vigil, Jacob M.; Rowell, Lauren N.; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David

    2013-01-01

    This is the first study to examine how both structural and functional components of individuals’ social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one’s significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual’s social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed. PMID:24223836

  11. Latent Constructs in Psychosocial Factors Associated with Cardiovascular Disease: An Examination by Race and Sex

    PubMed Central

    Clark, Cari Jo; Henderson, Kimberly M.; de Leon, Carlos F. Mendes; Guo, Hongfei; Lunos, Scott; Evans, Denis A.; Everson-Rose, Susan A.

    2012-01-01

    This study examines race and sex differences in the latent structure of 10 psychosocial measures and the association of identified factors with self-reported history of coronary heart disease (CHD). Participants were 4,128 older adults from the Chicago Health and Aging Project. Exploratory factor analysis (EFA) with oblique geomin rotation was used to identify latent factors among the psychosocial measures. Multi-group comparisons of the EFA model were conducted using exploratory structural equation modeling to test for measurement invariance across race and sex subgroups. A factor-based scale score was created for invariant factor(s). Logistic regression was used to test the relationship between the factor score(s) and CHD adjusting for relevant confounders. Effect modification of the relationship by race–sex subgroup was tested. A two-factor model fit the data well (comparative fit index = 0.986; Tucker–Lewis index = 0.969; root mean square error of approximation = 0.039). Depressive symptoms, neuroticism, perceived stress, and low life satisfaction loaded on Factor I. Social engagement, spirituality, social networks, and extraversion loaded on Factor II. Only Factor I, re-named distress, showed measurement invariance across subgroups. Distress was associated with a 37% increased odds of self-reported CHD (odds ratio: 1.37; 95% confidence intervals: 1.25, 1.50; p-value < 0.0001). This effect did not differ by race or sex (interaction p-value = 0.43). This study identified two underlying latent constructs among a large range of psychosocial variables; only one, distress, was validly measured across race–sex subgroups. This construct was robustly related to prevalent CHD, highlighting the potential importance of latent constructs as predictors of cardiovascular disease. PMID:22347196

  12. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    PubMed Central

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  13. BioNSi: A Discrete Biological Network Simulator Tool.

    PubMed

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-05

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.

  14. Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng

    2018-01-01

    We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.

  15. A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Pal, Ranadip; Ivanov, Ivan; Bittner, Michael; Dougherty, Edward R

    2004-11-22

    We have hypothesized that the construction of transcriptional regulatory networks using a method that optimizes connectivity would lead to regulation consistent with biological expectations. A key expectation is that the hypothetical networks should produce a few, very strong attractors, highly similar to the original observations, mimicking biological state stability and determinism. Another central expectation is that, since it is expected that the biological control is distributed and mutually reinforcing, interpretation of the observations should lead to a very small number of connection schemes. We propose a fully Bayesian approach to constructing probabilistic gene regulatory networks (PGRNs) that emphasizes network topology. The method computes the possible parent sets of each gene, the corresponding predictors and the associated probabilities based on a nonlinear perceptron model, using a reversible jump Markov chain Monte Carlo (MCMC) technique, and an MCMC method is employed to search the network configurations to find those with the highest Bayesian scores to construct the PGRN. The Bayesian method has been used to construct a PGRN based on the observed behavior of a set of genes whose expression patterns vary across a set of melanoma samples exhibiting two very different phenotypes with respect to cell motility and invasiveness. Key biological features have been faithfully reflected in the model. Its steady-state distribution contains attractors that are either identical or very similar to the states observed in the data, and many of the attractors are singletons, which mimics the biological propensity to stably occupy a given state. Most interestingly, the connectivity rules for the most optimal generated networks constituting the PGRN are remarkably similar, as would be expected for a network operating on a distributed basis, with strong interactions between the components.

  16. A character network study of two Sci-Fi TV series

    NASA Astrophysics Data System (ADS)

    Tan, M. S. A.; Ujum, E. A.; Ratnavelu, K.

    2014-03-01

    This work is an analysis of the character networks in two science fiction television series: Stargate and Star Trek. These networks are constructed on the basis of scene co-occurrence between characters to indicate the presence of a connection. Global network structure measures such as the average path length, graph density, network diameter, average degree, median degree, maximum degree, and average clustering coefficient are computed as well as individual node centrality scores. The two fictional networks constructed are found to be quite similar in structure which is astonishing given that Stargate only ran for 18 years in comparison to the 48 years for Star Trek.

  17. Transmission Risks of Schistosomiasis Japonica: Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model

    PubMed Central

    Xu, Jun-Fang; Xu, Jing; Li, Shi-Zhu; Jia, Tia-Wu; Huang, Xi-Bao; Zhang, Hua-Ming; Chen, Mei; Yang, Guo-Jing; Gao, Shu-Jing; Wang, Qing-Yun; Zhou, Xiao-Nong

    2013-01-01

    Background The transmission of schistosomiasis japonica in a local setting is still poorly understood in the lake regions of the People's Republic of China (P. R. China), and its transmission patterns are closely related to human, social and economic factors. Methodology/Principal Findings We aimed to apply the integrated approach of artificial neural network (ANN) and logistic regression model in assessment of transmission risks of Schistosoma japonicum with epidemiological data collected from 2339 villagers from 1247 households in six villages of Jiangling County, P.R. China. By using the back-propagation (BP) of the ANN model, 16 factors out of 27 factors were screened, and the top five factors ranked by the absolute value of mean impact value (MIV) were mainly related to human behavior, i.e. integration of water contact history and infection history, family with past infection, history of water contact, infection history, and infection times. The top five factors screened by the logistic regression model were mainly related to the social economics, i.e. village level, economic conditions of family, age group, education level, and infection times. The risk of human infection with S. japonicum is higher in the population who are at age 15 or younger, or with lower education, or with the higher infection rate of the village, or with poor family, and in the population with more than one time to be infected. Conclusion/Significance Both BP artificial neural network and logistic regression model established in a small scale suggested that individual behavior and socioeconomic status are the most important risk factors in the transmission of schistosomiasis japonica. It was reviewed that the young population (≤15) in higher-risk areas was the main target to be intervened for the disease transmission control. PMID:23556015

  18. Design and Construction of a High-speed Network Connecting All the Protein Crystallography Beamlines at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki

    2007-01-19

    A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings.

  19. Predicting The Type Of Pregnancy Using Flexible Discriminate Analysis And Artificial Neural Networks: A Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooman, A.; Mohammadzadeh, M

    Some medical and epidemiological surveys have been designed to predict a nominal response variable with several levels. With regard to the type of pregnancy there are four possible states: wanted, unwanted by wife, unwanted by husband and unwanted by couple. In this paper, we have predicted the type of pregnancy, as well as the factors influencing it using three different models and comparing them. Regarding the type of pregnancy with several levels, we developed a multinomial logistic regression, a neural network and a flexible discrimination based on the data and compared their results using tow statistical indices: Surface under curvemore » (ROC) and kappa coefficient. Based on these tow indices, flexible discrimination proved to be a better fit for prediction on data in comparison to other methods. When the relations among variables are complex, one can use flexible discrimination instead of multinomial logistic regression and neural network to predict the nominal response variables with several levels in order to gain more accurate predictions.« less

  20. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  1. Brain-Inspired Constructive Learning Algorithms with Evolutionally Additive Nonlinear Neurons

    NASA Astrophysics Data System (ADS)

    Fang, Le-Heng; Lin, Wei; Luo, Qiang

    In this article, inspired partially by the physiological evidence of brain’s growth and development, we developed a new type of constructive learning algorithm with evolutionally additive nonlinear neurons. The new algorithms have remarkable ability in effective regression and accurate classification. In particular, the algorithms are able to sustain a certain reduction of the loss function when the dynamics of the trained network are bogged down in the vicinity of the local minima. The algorithm augments the neural network by adding only a few connections as well as neurons whose activation functions are nonlinear, nonmonotonic, and self-adapted to the dynamics of the loss functions. Indeed, we analytically demonstrate the reduction dynamics of the algorithm for different problems, and further modify the algorithms so as to obtain an improved generalization capability for the augmented neural networks. Finally, through comparing with the classical algorithm and architecture for neural network construction, we show that our constructive learning algorithms as well as their modified versions have better performances, such as faster training speed and smaller network size, on several representative benchmark datasets including the MNIST dataset for handwriting digits.

  2. A prospective examination of online social network dynamics and smoking cessation

    PubMed Central

    Zhao, Kang; Papandonatos, George D.; Erar, Bahar; Wang, Xi; Amato, Michael S.; Cha, Sarah; Cohn, Amy M.; Pearson, Jennifer L.

    2017-01-01

    Introduction Use of online social networks for smoking cessation has been associated with abstinence. Little is known about the mechanisms through which the formation of social ties in an online network may influence smoking behavior. Using dynamic social network analysis, we investigated how temporal changes of an individual’s number of social network ties are prospectively related to abstinence in an online social network for cessation. In a network where quitting is normative and is the focus of communications among members, we predicted that an increasing number of ties would be positively associated with abstinence. Method Participants were N = 2,657 adult smokers recruited to a randomized cessation treatment trial following enrollment on BecomeAnEX.org, a longstanding Internet cessation program with a large and mature online social network. At 3-months post-randomization, 30-day point prevalence abstinence was assessed and website engagement metrics were extracted. The social network was constructed with clickstream data to capture the flow of information among members. Two network centrality metrics were calculated at weekly intervals over 3 months: 1) in-degree, defined as the number of members whose posts a participant read; and 2) out-degree-aware, defined as the number of members who read a participant’s post and commented, which was subsequently viewed by the participant. Three groups of users were identified based on social network engagement patterns: non-users (N = 1,362), passive users (N = 812), and active users (N = 483). Logistic regression modeled 3-month abstinence by group as a function of baseline variables, website utilization, and network centrality metrics. Results Abstinence rates varied by group (non-users = 7.7%, passive users = 10.7%, active users = 20.7%). Significant baseline predictors of abstinence were age, nicotine dependence, confidence to quit, and smoking temptations in social situations among passive users (ps < .05); age and confidence to quit among active users. Among centrality metrics, positive associations with abstinence were observed for in-degree increases from Week 2 to Week 12 among passive and active users, and for out-degree-aware increases from Week 2 to Week 12 among active users (ps < .05). Conclusions This study is the first to demonstrate that increased tie formation among members of an online social network for smoking cessation is prospectively associated with abstinence. It also highlights the value of using individuals’ activities in online social networks to predict their offline health behaviors. PMID:28832621

  3. Soft-Input Soft-Output Modules for the Construction and Distributed Iterative Decoding of Code Networks

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1998-01-01

    Soft-input soft-output building blocks (modules) are presented to construct and iteratively decode in a distributed fashion code networks, a new concept that includes, and generalizes, various forms of concatenated coding schemes.

  4. Visual Representations of Microcosm in Textbooks of Chemistry: Constructing a Systemic Network for Their Main Conceptual Framework

    ERIC Educational Resources Information Center

    Papageorgiou, George; Amariotakis, Vasilios; Spiliotopoulou, Vasiliki

    2017-01-01

    The main objective of this work is to analyse the visual representations (VRs) of the microcosm depicted in nine Greek secondary chemistry school textbooks of the last three decades in order to construct a systemic network for their main conceptual framework and to evaluate the contribution of each one of the resulting categories to the network.…

  5. An integrated and dynamic optimisation model for the multi-level emergency logistics network in anti-bioterrorism system

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zhao, Lindu

    2012-08-01

    Demand for emergency resources is usually uncertain and varies quickly in anti-bioterrorism system. Besides, emergency resources which had been allocated to the epidemic areas in the early rescue cycle will affect the demand later. In this article, an integrated and dynamic optimisation model with time-varying demand based on the epidemic diffusion rule is constructed. The heuristic algorithm coupled with the MATLAB mathematical programming solver is adopted to solve the optimisation model. In what follows, the application of the optimisation model as well as a short sensitivity analysis of the key parameters in the time-varying demand forecast model is presented. The results show that both the model and the solution algorithm are useful in practice, and both objectives of inventory level and emergency rescue cost can be controlled effectively. Thus, it can provide some guidelines for decision makers when coping with emergency rescue problem with uncertain demand, and offers an excellent reference when issues pertain to bioterrorism.

  6. Telestroke network fundamentals.

    PubMed

    Meyer, Brett C; Demaerschalk, Bart M

    2012-10-01

    The objectives of this manuscript are to identify key components to maintaining the logistic and/or operational sustainability of a telestroke network, to identify best practices to be considered for assessment and management of acute stroke when planning for and developing a telestroke network, to show practical steps to enable progress toward implementing a telestroke solution for optimizing acute stroke care, to incorporate evidence-based practice guidelines and care pathways into a telestroke network, to emphasize technology variables and options, and to propose metrics to use when determining the performance, outcomes, and quality of a telestroke network. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  8. Acting discursively: the development of UK organic food and farming policy networks.

    PubMed

    TOMLINSON, Isobel Jane

    2010-01-01

    This paper documents the early evolution of UK organic food and farming policy networks and locates this empirical focus in a theoretical context concerned with understanding the contemporary policy-making process. While policy networks have emerged as a widely acknowledged empirical manifestation of governance, debate continues as to the concept's explanatory utility and usefulness in situations of network and policy transformation since, historically, policy networks have been applied to "static" circumstances. Recognizing this criticism, and in drawing on an interpretivist perspective, this paper sees policy networks as enacted by individual actors whose beliefs and actions construct the nature of the network. It seeks to make links between the characteristics of the policy network and the policy outcomes through the identification of discursively constructed "storylines" that form a tool for consensus building in networks. This study analyses the functioning of the organic policy networks through the discursive actions of policy-network actors.

  9. SPD-based Logistics Management Model of Medical Consumables in Hospitals.

    PubMed

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei; Yang, Shanlin

    2016-10-01

    With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China.

  10. Single-subject structural networks with closed-form rotation invariant matching mprove power in developmental studies of the cortex.

    PubMed

    Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B

    2014-01-01

    Although much attention has recently been focused on single-subject functional networks, using methods such as resting-state functional MRI, methods for constructing single-subject structural networks are in their infancy. Single-subject cortical networks aim to describe the self-similarity across the cortical structure, possibly signifying convergent developmental pathways. Previous methods for constructing single-subject cortical networks have used patch-based correlations and distance metrics based on curvature and thickness. We present here a method for constructing similarity-based cortical structural networks that utilizes a rotation-invariant representation of structure. The resulting graph metrics are closely linked to age and indicate an increasing degree of closeness throughout development in nearly all brain regions, perhaps corresponding to a more regular structure as the brain matures. The derived graph metrics demonstrate a four-fold increase in power for detecting age as compared to cortical thickness. This proof of concept study indicates that the proposed metric may be useful in identifying biologically relevant cortical patterns.

  11. Three methods to construct predictive models using logistic regression and likelihood ratios to facilitate adjustment for pretest probability give similar results.

    PubMed

    Chan, Siew Foong; Deeks, Jonathan J; Macaskill, Petra; Irwig, Les

    2008-01-01

    To compare three predictive models based on logistic regression to estimate adjusted likelihood ratios allowing for interdependency between diagnostic variables (tests). This study was a review of the theoretical basis, assumptions, and limitations of published models; and a statistical extension of methods and application to a case study of the diagnosis of obstructive airways disease based on history and clinical examination. Albert's method includes an offset term to estimate an adjusted likelihood ratio for combinations of tests. Spiegelhalter and Knill-Jones method uses the unadjusted likelihood ratio for each test as a predictor and computes shrinkage factors to allow for interdependence. Knottnerus' method differs from the other methods because it requires sequencing of tests, which limits its application to situations where there are few tests and substantial data. Although parameter estimates differed between the models, predicted "posttest" probabilities were generally similar. Construction of predictive models using logistic regression is preferred to the independence Bayes' approach when it is important to adjust for dependency of tests errors. Methods to estimate adjusted likelihood ratios from predictive models should be considered in preference to a standard logistic regression model to facilitate ease of interpretation and application. Albert's method provides the most straightforward approach.

  12. A statistical analysis of UK financial networks

    NASA Astrophysics Data System (ADS)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  13. New machine-learning algorithms for prediction of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit; Sairam, N.

    2014-03-01

    This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.

  14. Centralized versus decentralized decision-making for recycled material flows.

    PubMed

    Hong, I-Hsuan; Ammons, Jane C; Realff, Matthew J

    2008-02-15

    A reverse logistics system is a network of transportation logistics and processing functions that collect, consolidate, refurbish, and demanufacture end-of-life products. This paper examines centralized and decentralized models of decision-making for material flows and associated transaction prices in reverse logistics networks. We compare the application of a centralized model for planning reverse production systems, where a single planner is acquainted with all of the system information and has the authority to determine decision variables for the entire system, to a decentralized approach. In the decentralized approach, the entities coordinate between tiers of the system using a parametrized flow function and compete within tiers based on reaching a price equilibrium. We numerically demonstrate the increase in the total net profit of the centralized system relative to the decentralized one. This implies that one may overestimate the system material flows and profit if the system planner utilizes a centralized viewto predict behaviors of independent entities in the system and that decentralized contract mechanisms will require careful design to avoid losses in the efficiency and scope of these systems.

  15. Microvascular Guidance: A Challenge to Support the Development of Vascularised Tissue Engineering Construct

    PubMed Central

    Sukmana, Irza

    2012-01-01

    The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined. PMID:22623881

  16. Mobile Support For Logistics

    DTIC Science & Technology

    2016-03-01

    Infrastructure to Support Mobile Devices (Takai, 2012, p. 2). The objectives needed in order to meet this goal are to: evolve spectrum management, expand... infrastructure to support wireless capabilities, and establish a mobile device security architecture (Takai, 2012, p. 2). By expanding infrastructure to...often used on Mobile Ad-Hoc Networks (MANETs). MANETS are infrastructure -less networks that include, but are not limited to, mobile devices. These

  17. Impact of trucking network flow on preferred biorefinery locations in the southern United States

    Treesearch

    Timothy M. Young; Lee D. Han; James H. Perdue; Stephanie R. Hargrove; Frank M. Guess; Xia Huang; Chung-Hao Chen

    2017-01-01

    The impact of the trucking transportation network flow was modeled for the southern United States. The study addresses a gap in existing research by applying a Bayesian logistic regression and Geographic Information System (GIS) geospatial analysis to predict biorefinery site locations. A one-way trucking cost assuming a 128.8 km (80-mile) haul distance was estimated...

  18. 48 CFR 801.670-4 - National Cemetery Administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Authority, and Responsibilities 801.670-4 National Cemetery Administration. The Director of Logistics Management Service, the Centralized Contracting Division, and the Construction Support Division are...

  19. Evolutionary biosemiotics and multilevel construction networks.

    PubMed

    Sharov, Alexei A

    2016-12-01

    In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition . Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.

  20. Evolutionary biosemiotics and multilevel construction networks

    PubMed Central

    Sharov, Alexei A.

    2016-01-01

    In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents. PMID:28163801

  1. Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

    PubMed Central

    2014-01-01

    Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614

  2. A Simulation Based Approach for Contingency Planning for Aircraft Turnaround Operation System Activities in Airline Hubs

    NASA Technical Reports Server (NTRS)

    Adeleye, Sanya; Chung, Christopher

    2006-01-01

    Commercial aircraft undergo a significant number of maintenance and logistical activities during the turnaround operation at the departure gate. By analyzing the sequencing of these activities, more effective turnaround contingency plans may be developed for logistical and maintenance disruptions. Turnaround contingency plans are particularly important as any kind of delay in a hub based system may cascade into further delays with subsequent connections. The contingency sequencing of the maintenance and logistical turnaround activities were analyzed using a combined network and computer simulation modeling approach. Experimental analysis of both current and alternative policies provides a framework to aid in more effective tactical decision making.

  3. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack-From a Green Operation Perspective.

    PubMed

    Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao

    2018-05-10

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.

  4. Probabilistic mapping of descriptive health status responses onto health state utilities using Bayesian networks: an empirical analysis converting SF-12 into EQ-5D utility index in a national US sample.

    PubMed

    Le, Quang A; Doctor, Jason N

    2011-05-01

    As quality-adjusted life years have become the standard metric in health economic evaluations, mapping health-profile or disease-specific measures onto preference-based measures to obtain quality-adjusted life years has become a solution when health utilities are not directly available. However, current mapping methods are limited due to their predictive validity, reliability, and/or other methodological issues. We employ probability theory together with a graphical model, called a Bayesian network, to convert health-profile measures into preference-based measures and to compare the results to those estimated with current mapping methods. A sample of 19,678 adults who completed both the 12-item Short Form Health Survey (SF-12v2) and EuroQoL 5D (EQ-5D) questionnaires from the 2003 Medical Expenditure Panel Survey was split into training and validation sets. Bayesian networks were constructed to explore the probabilistic relationships between each EQ-5D domain and 12 items of the SF-12v2. The EQ-5D utility scores were estimated on the basis of the predicted probability of each response level of the 5 EQ-5D domains obtained from the Bayesian inference process using the following methods: Monte Carlo simulation, expected utility, and most-likely probability. Results were then compared with current mapping methods including multinomial logistic regression, ordinary least squares, and censored least absolute deviations. The Bayesian networks consistently outperformed other mapping models in the overall sample (mean absolute error=0.077, mean square error=0.013, and R overall=0.802), in different age groups, number of chronic conditions, and ranges of the EQ-5D index. Bayesian networks provide a new robust and natural approach to map health status responses into health utility measures for health economic evaluations.

  5. Genonets server-a web server for the construction, analysis and visualization of genotype networks.

    PubMed

    Khalid, Fahad; Aguilar-Rodríguez, José; Wagner, Andreas; Payne, Joshua L

    2016-07-08

    A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Characterizing system dynamics with a weighted and directed network constructed from time series data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaoran, E-mail: sxr0806@gmail.com; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009; Small, Michael, E-mail: michael.small@uwa.edu.au

    In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the timemore » series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.« less

  7. Association of childhood abuse with homeless women's social networks.

    PubMed

    Green, Harold D; Tucker, Joan S; Wenzel, Suzanne L; Golinelli, Daniela; Kennedy, David P; Ryan, Gery W; Zhou, Annie J

    2012-01-01

    Childhood abuse has been linked to negative sequelae for women later in life including drug and alcohol use and violence as victim or perpetrator and may also affect the development of women's social networks. Childhood abuse is prevalent among at-risk populations of women (such as the homeless) and thus may have a stronger impact on their social networks. We conducted a study to: (a) develop a typology of sheltered homeless women's social networks; (b) determine whether childhood abuse was associated with the social networks of sheltered homeless women; and (c) determine whether those associations remained after accounting for past-year substance abuse and recent intimate partner abuse. A probability sample of 428 homeless women from temporary shelter settings in Los Angeles County completed a personal network survey that provided respondent information as well as information about their network members' demographics and level of interaction with each other. Cluster analyses identified groups of women who shared specific social network characteristics. Multinomial logistic regressions revealed variables associated with group membership. We identified three groups of women with differing social network characteristics: low-risk networks, densely connected risky networks (dense, risky), and sparsely connected risky networks (sparse, risky). Multinomial logistic regressions indicated that membership in the sparse, risky network group, when compared to the low-risk group, was associated with history of childhood physical abuse (but not sexual or emotional abuse). Recent drug abuse was associated with membership in both risky network groups; however, the association of childhood physical abuse with sparse, risky network group membership remained. Although these findings support theories proposing that the experience of childhood abuse can shape women's social networks, they suggest that it may be childhood physical abuse that has the most impact among homeless women. The effects of childhood physical abuse should be more actively investigated in clinical settings, especially those frequented by homeless women, particularly with respect to the formation of social networks in social contexts that may expose these women to greater risks. Copyright © 2012. Published by Elsevier Ltd.

  8. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  9. An analysis of respondent-driven sampling with injecting drug users in a high HIV prevalent state of India.

    PubMed

    Phukan, Sanjib Kumar; Medhi, Gajendra Kumar; Mahanta, Jagadish; Adhikary, Rajatashuvra; Thongamba, Gay; Paranjape, Ramesh S; Akoijam, Brogen S

    2017-07-03

    Personal networks are significant social spaces to spread of HIV or other blood-borne infections among hard-to-reach population, viz., injecting drug users, female sex workers, etc. Sharing of infected needles or syringes among drug users is one of the major routes of HIV transmission in Manipur, a high HIV prevalence state in India. This study was carried out to describe the network characteristics and recruitment patterns of injecting drug users and to assess the association of personal network with injecting risky behaviors in Manipur. A total of 821 injecting drug users were recruited into the study using respondent-driven sampling (RDS) from Bishnupur and Churachandpur districts of Manipur; data on demographic characteristics, HIV risk behaviors, and network size were collected from them. Transition probability matrices and homophily indices were used to describe the network characteristics, and recruitment patterns of injecting drug users. Univariate and multivariate binary logistic regression models were performed to analyze the association between the personal networks and sharing of needles or syringes. The average network size was similar in both the districts. Recruitment analysis indicates injecting drug users were mostly engaged in mixed age group setting for injecting practice. Ever married and new injectors showed lack of in-group ties. Younger injecting drug users had mainly recruited older injecting drug users from their personal network. In logistic regression analysis, higher personal network was found to be significantly associated with increased likelihood of injecting risky behaviors. Because of mixed personal network of new injectors and higher network density associated with HIV exposure, older injecting drug users may act as a link for HIV transmission or other blood-borne infections to new injectors and also to their sexual partners. The information from this study may be useful to understanding the network pattern of injecting drug users for enriching the HIV prevention in this region.

  10. Cross over of recurrence networks to random graphs and random geometric graphs

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2017-02-01

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.

  11. Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs

    PubMed Central

    Bertassoni, Luiz E.; Cecconi, Martina; Manoharan, Vijayan; Nikkhah, Mehdi; Hjortnaes, Jesper; Cristino, Ana Luiza; Barabaschi, Giada; Demarchi, Danilo; Dokmeci, Mehmet R.; Yang, Yunzhi; Khademhosseini, Ali

    2014-01-01

    Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photo cross linkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly (ethylene glycol-co-lactide) acrylate (SPELA), poly (ethylene glycol) dimethacrylate (PEGDMA) and poly (ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip. PMID:24860845

  12. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  13. Tree tensor network approach to simulating Shor's algorithm

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Eugene

    2017-12-01

    Constructively simulating quantum systems furthers our understanding of qualitative and quantitative features which may be analytically intractable. In this paper, we directly simulate and explore the entanglement structure present in the paradigmatic example for exponential quantum speedups: Shor's algorithm. To perform our simulation, we construct a dynamic tree tensor network which manifestly captures two salient circuit features for modular exponentiation. These are the natural two-register bipartition and the invariance of entanglement with respect to permutations of the top-register qubits. Our construction help identify the entanglement entropy properties, which we summarize by a scaling relation. Further, the tree network is efficiently projected onto a matrix product state from which we efficiently execute the quantum Fourier transform. Future simulation of quantum information states with tensor networks exploiting circuit symmetries is discussed.

  14. Constructive thinking, rational intelligence and irritable bowel syndrome.

    PubMed

    Rey, Enrique; Moreno Ortega, Marta; Garcia Alonso, Monica-Olga; Diaz-Rubio, Manuel

    2009-07-07

    To evaluate rational and experiential intelligence in irritable bowel syndrome (IBS) sufferers. We recruited 100 subjects with IBS as per Rome II criteria (50 consulters and 50 non-consulters) and 100 healthy controls, matched by age, sex and educational level. Cases and controls completed a clinical questionnaire (including symptom characteristics and medical consultation) and the following tests: rational-intelligence (Wechsler Adult Intelligence Scale, 3rd edition); experiential-intelligence (Constructive Thinking Inventory); personality (NEO personality inventory); psychopathology (MMPI-2), anxiety (state-trait anxiety inventory) and life events (social readjustment rating scale). Analysis of variance was used to compare the test results of IBS-sufferers and controls, and a logistic regression model was then constructed and adjusted for age, sex and educational level to evaluate any possible association with IBS. No differences were found between IBS cases and controls in terms of IQ (102.0 +/- 10.8 vs 102.8 +/- 12.6), but IBS sufferers scored significantly lower in global constructive thinking (43.7 +/- 9.4 vs 49.6 +/- 9.7). In the logistic regression model, global constructive thinking score was independently linked to suffering from IBS [OR 0.92 (0.87-0.97)], without significant OR for total IQ. IBS subjects do not show lower rational intelligence than controls, but lower experiential intelligence is nevertheless associated with IBS.

  15. Physician-based activity counseling: intervention effects on mediators of motivational readiness for physical activity.

    PubMed

    Pinto, B M; Lynn, H; Marcus, B H; DePue, J; Goldstein, M G

    2001-01-01

    In theory-based interventions for behavior change, there is a need to examine the effects of interventions on the underlying theoretical constructs and the mediating role of such constructs. These two questions are addressed in the Physically Active for Life study, a randomized trial of physician-based exercise counseling for older adults. Three hundred fifty-five patients participated (intervention n = 181, control n = 174; mean age = 65.6 years). The underlying theories used were the Transtheoretical Model, Social Cognitive Theory and the constructs of decisional balance (benefits and barriers), self-efficacy, and behavioral and cognitive processes of change. Motivational readiness for physical activity and related constructs were assessed at baseline, 6 weeks, and 8 months. Linear or logistic mixed effects models were used to examine intervention effects on the constructs, and logistic mixed effects models were used for mediator analyses. At 6 weeks, the intervention had significant effects on decisional balance, self-efficacy, and behavioral processes, but these effects were not maintained at 8 months. At 6 weeks, only decisional balance and behavioral processes were identified as mediators of motivational readiness outcomes. Results suggest that interventions of greater intensity and duration may be needed for sustained changes in mediators and motivational readiness for physical activity among older adults.

  16. Differential diagnosis of degenerative dementias using basic neuropsychological tests: multivariable logistic regression analysis of 301 patients.

    PubMed

    Jiménez-Huete, Adolfo; Riva, Elena; Toledano, Rafael; Campo, Pablo; Esteban, Jesús; Barrio, Antonio Del; Franch, Oriol

    2014-12-01

    The validity of neuropsychological tests for the differential diagnosis of degenerative dementias may depend on the clinical context. We constructed a series of logistic models taking into account this factor. We retrospectively analyzed the demographic and neuropsychological data of 301 patients with probable Alzheimer's disease (AD), frontotemporal degeneration (FTLD), or dementia with Lewy bodies (DLB). Nine models were constructed taking into account the diagnostic question (eg, AD vs DLB) and subpopulation (incident vs prevalent). The AD versus DLB model for all patients, including memory recovery and phonological fluency, was highly accurate (area under the curve = 0.919, sensitivity = 90%, and specificity = 80%). The results were comparable in incident and prevalent cases. The FTLD versus AD and DLB versus FTLD models were both inaccurate. The models constructed from basic neuropsychological variables allowed an accurate differential diagnosis of AD versus DLB but not of FTLD versus AD or DLB. © The Author(s) 2014.

  17. Construction of Multimodal Transport Information Platform

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Cheng, Yu; Zhao, Zhi

    2018-06-01

    With the rapid development of economy, the volume of transportation in China is increasing, the opening process of the market is accelerating, the scale of enterprises is expanding, the service quality is being improved, and the container multimodal transport is developing continuously.The hardware infrastructure of container multimodal transport is improved obviously, but the network platform construction of multimodal transport is still insufficient.Taking Shandong region of China as an example, the present situation of container multimodal transport in Shandong area can no longer meet the requirement of rapid development of container, and the construction of network platform needs to be solved urgently. Therefore, this paper will briefly describe the conception of construction of multimodal transport network platform in Shandong area.In order to achieve the rapid development of multimodal transport.

  18. Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview.

    PubMed

    Skinner, Jeff; Kotliarov, Yuri; Varma, Sudhir; Mine, Karina L; Yambartsev, Anatoly; Simon, Richard; Huyen, Yentram; Morgun, Andrey

    2011-07-14

    DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.

  19. Improving the Efficiency and Effectiveness of Community Detection via Prior-Induced Equivalent Super-Network.

    PubMed

    Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise

    2017-03-29

    Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.

  20. Pan- and core- network analysis of co-expression genes in a model plant

    DOE PAGES

    He, Fei; Maslov, Sergei

    2016-12-16

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ andmore » ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. Here, we showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.« less

  1. Pan- and core- network analysis of co-expression genes in a model plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Fei; Maslov, Sergei

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ andmore » ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. Here, we showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.« less

  2. [Construction and optimization of ecological network for nature reserves in Fujian Province, China].

    PubMed

    Gu, Fan; Huang, Yi Xiong; Chen, Chuan Ming; Cheng, Dong Liang; Guo, Jia Lei

    2017-03-18

    The nature reserve is very important to biodiversity maintenance. However, due to the urbanization, the nature reserve has been fragmented with reduction in area, leading to the loss of species diversity. Establishing ecological network can effectively connect the fragmented habitats and plays an important role in species conversation. In this paper, based on deciding habitat patches and the landscape cost surface in ArcGIS, a minimum cumulative resistance model was used to simulate the potential ecological network of Fujian provincial nature reserves. The connectivity and importance of network were analyzed and evaluated based on comparison of connectivity indices (including the integral index of connectivity and probability of connectivity) and gravity model both before and after the potential ecological network construction. The optimum ecological network optimization measures were proposed. The result demonstrated that woodlands, grasslands and wetlands together made up the important part of the nature reserve ecological network. The habitats with large area had a higher degree of importance in the network. After constructing the network, the connectivity level was significantly improved. Although interaction strength between different patches va-ried greatly, the corridors between patches with large interaction were very important. The research could provide scientific reference and basis for nature protection and planning in Fujian Province.

  3. Maintenance and Logistics Support for the International Monitoring System Network of the CTBTO

    NASA Astrophysics Data System (ADS)

    Haslinger, F.; Brely, N.; Akrawy, M.

    2007-05-01

    The global network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), once completed, will consist of 321 monitoring facilities of four different technologies: hydroacoustic, seismic, infrasonic, and radionuclide. As of today, about 65% of the installations are completed and contribute data to the products issued by the International Data Centre (IDC) of the CTBTO. In order to accomplish the task to reliably collect evidence for any potential nuclear test explosion anywhere on the planet, all stations are required to perform to very high data availability requirements (at least 98% data availability over a 12-month period). To enable reaching this requirement, a three-layer concept has been developed to allow efficient support of the IMS stations: Operations, Maintenance and Logistics, and Engineering. Within this concept Maintenance and Logistics provide second level support of the stations, whereby problems arising at the station are assigned through the IMS ticket system to Maintenance if they cannot be resolved on the Operations level. Maintenance will then activate the required resources to appropriately address and ultimately resolve the problem. These resources may be equipment support contracts, other third party contracts, or the dispatch of a maintenance team. Engineering Support will be activated if the problem requires redesign of the station or after catastrophic failures when a total rebuild of a station may be necessary. In this model, Logistics Support is responsible for parts replenishment and support contract management. Logistics Support also collects and analyzes relevant failure mode and effect information, develops supportability models, and has the responsibility for document management, obsolescence, risk & quality, and configuration management, which are key elements for efficient station support. Maintenance Support in addition is responsible for maintenance strategies, for planning and oversight of the execution of preventive maintenance programs by the Station Operators, and for review of operational troubleshooting procedures used in first level support. Particular challenges for the efficient and successful Maintenance and Logistics Support of the IMS network lie in the specific political boundary conditions regulating its implementation, in the fact that all IMS facilities and their equipment are owned by the respective host countries, and in finding the appropriate balance between outsourcing services and retaining essential in-house expertise.

  4. NASA Experimental Program to Stimulate Competitive Research: South Carolina

    NASA Technical Reports Server (NTRS)

    Sutton, Michael A.

    2004-01-01

    The use of an appropriate relationship model is critical for reliable prediction of future urban growth. Identification of proper variables and mathematic functions and determination of the weights or coefficients are the key tasks for building such a model. Although the conventional logistic regression model is appropriate for handing land use problems, it appears insufficient to address the issue of interdependency of the predictor variables. This study used an alternative approach to simulation and modeling urban growth using artificial neural networks. It developed an operational neural network model trained using a robust backpropagation method. The model was applied in the Myrtle Beach region of South Carolina, and tested with both global datasets and areal datasets to examine the strength of both regional models and areal models. The results indicate that the neural network model not only has many theoretic advantages over other conventional mathematic models in representing the complex urban systems, but also is practically superior to the logistic model in its capability to predict urban growth with better - accuracy and less variation. The neural network model is particularly effective in terms of successfully identifying urban patterns in the rural areas where the logistic model often falls short. It was also found from the area-based tests that there are significant intra-regional differentiations in urban growth with different rules and rates. This suggests that the global modeling approach, or one model for the entire region, may not be adequate for simulation of a urban growth at the regional scale. Future research should develop methods for identification and subdivision of these areas and use a set of area-based models to address the issues of multi-centered, intra- regionally differentiated urban growth.

  5. A Novel College Network Resource Management Method using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Lin, Chen

    At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.

  6. [Research on the Application of Lean Management in Medical Consumables Material Logistics Management].

    PubMed

    Yang, Chai; Zhang, Wei; Gu, Wei; Shen, Aizong

    2016-11-01

    Solve the problems of high cost, low utilization rate of resources, low medical care quality problem in medical consumables material logistics management for scientific of medical consumables management. Analysis of the problems existing in the domestic medical consumables material logistics management in hospital, based on lean management method, SPD(Supply, Processing, Distribution) for specific applications, combined HBOS(Hospital Business Operation System), HIS (Hospital Information System) system for medical consumables material management. Achieve the lean management in medical consumables material purchase, warehouse construction, push, clinical use and retrospect. Lean management in medical consumables material can effectively control the cost in logistics management, optimize the alocation of resources, liberate unnecessary time of medical staff, improve the quality of medical care. It is a scientific management method.

  7. Operation CASTLE. Report of the Manager Santa Fe Operations. Extracted Version.

    DTIC Science & Technology

    Nuclear explosion testing, *Test facilities, *Management planning and control, Pacific Ocean, Eniwetok Atoll, Bikini Atoll, Marshall Islands , Organizations, Construction, Operation, Management, Logistics support, Costs

  8. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    PubMed

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for phenotypic change.

  9. Military versus Private Sector Construction Costs.

    DTIC Science & Technology

    1985-03-01

    use for Government purposes, permission to quote from or reproduce por- tions of this document must be obtained from the Logistics Management ...Institute. go DTIC ELECTE LOGISTICS MANAGEMENT INSTITUTE JUN 1 11985 Bethesda, MD 20817-5886 I L- T RS-j UT- -N3T A T EM ENT A ALpprovgd tot public veaWuj...general-purpose warehouses, barracks, wheeled vehicle mainte- nance shops, and family housing units -- DoD MILCON costs are generally . equivalent to

  10. A Constructive Neural-Network Approach to Modeling Psychological Development

    ERIC Educational Resources Information Center

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  11. Natural Hazards and Supply Chain Disruptions

    NASA Astrophysics Data System (ADS)

    Haraguchi, M.

    2016-12-01

    Natural hazards distress the global economy through disruptions in supply chain networks. Moreover, despite increasing investment to infrastructure for disaster risk management, economic damages and losses caused by natural hazards are increasing. Manufacturing companies today have reduced inventories and streamlined logistics in order to maximize economic competitiveness. As a result, today's supply chains are profoundly susceptible to systemic risks, which are the risk of collapse of an entire network caused by a few node of the network. For instance, the prolonged floods in Thailand in 2011 caused supply chain disruptions in their primary industries, i.e. electronic and automotive industries, harming not only the Thai economy but also the global economy. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and the Earthquake in Kumamoto Japan in 2016. This study attempts to discover what kind of effective measures are available for private companies to manage supply chain disruptions caused by floods. It also proposes a method to estimate potential risks using a Bayesian network. The study uses a Bayesian network to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains such as logistics, multiple layers of suppliers, warehouses, and consumer markets. Considering situations across different times, our study shows desirable data requirements for the analysis and effective measures to improve Value at Risk (VaR) for private enterprises and supply chains.

  12. USAF Logistics Process Optimization Study for the Aircraft Asset Sustainment Process. Volume 1.

    DTIC Science & Technology

    1998-12-31

    solely to have a record that could be matched with the CMOS receipt data. (This problem is caused by DLA systems that currently do not populate CMOS with...unable to obtain passwords to the Depot D035 systems. Figure 16 shows daily savings as of 30 September 1998 (current time frame ) and projects savings...Engineering, modeling, and systems/software development company LAN Local Area Network LFA Large Frame Aircraft LMA Logistics Management Agency LMR

  13. Technogeopologistics: Supply Networks and Military Power in the Industrial Age

    DTIC Science & Technology

    2012-06-01

    communication ( LOCs ) to the battlefield in ever more complex ways. Thus, logistics exhibit sensitivity to technological change. Logistics also have...War will serve as a lens for sea versus land LOCs . With the addition of the air LOC under the inter-war airpower thinkers Giulio Douhet and Billy...Mitchell, the Second World War will be a testing ground for all three domains. The interaction among sea, land, and air LOCs with both the industrial

  14. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  15. Genetic prediction of type 2 diabetes using deep neural network.

    PubMed

    Kim, J; Kim, J; Kwak, M J; Bajaj, M

    2018-04-01

    Type 2 diabetes (T2DM) has strong heritability but genetic models to explain heritability have been challenging. We tested deep neural network (DNN) to predict T2DM using the nested case-control study of Nurses' Health Study (3326 females, 45.6% T2DM) and Health Professionals Follow-up Study (2502 males, 46.5% T2DM). We selected 96, 214, 399, and 678 single-nucleotide polymorphism (SNPs) through Fisher's exact test and L1-penalized logistic regression. We split each dataset randomly in 4:1 to train prediction models and test their performance. DNN and logistic regressions showed better area under the curve (AUC) of ROC curves than the clinical model when 399 or more SNPs included. DNN was superior than logistic regressions in AUC with 399 or more SNPs in male and 678 SNPs in female. Addition of clinical factors consistently increased AUC of DNN but failed to improve logistic regressions with 214 or more SNPs. In conclusion, we show that DNN can be a versatile tool to predict T2DM incorporating large numbers of SNPs and clinical information. Limitations include a relatively small number of the subjects mostly of European ethnicity. Further studies are warranted to confirm and improve performance of genetic prediction models using DNN in different ethnic groups. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Product unit neural network models for predicting the growth limits of Listeria monocytogenes.

    PubMed

    Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G

    2007-08-01

    A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.

  17. Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer.

    PubMed

    Enshaei, A; Robson, C N; Edmondson, R J

    2015-11-01

    The ability to provide accurate prognostic and predictive information to patients is becoming increasingly important as clinicians enter an era of personalized medicine. For a disease as heterogeneous as epithelial ovarian cancer, conventional algorithms become too complex for routine clinical use. This study therefore investigated the potential for an artificial intelligence model to provide this information and compared it with conventional statistical approaches. The authors created a database comprising 668 cases of epithelial ovarian cancer during a 10-year period and collected data routinely available in a clinical environment. They also collected survival data for all the patients, then constructed an artificial intelligence model capable of comparing a variety of algorithms and classifiers alongside conventional statistical approaches such as logistic regression. The model was used to predict overall survival and demonstrated that an artificial neural network (ANN) algorithm was capable of predicting survival with high accuracy (93 %) and an area under the curve (AUC) of 0.74 and that this outperformed logistic regression. The model also was used to predict the outcome of surgery and again showed that ANN could predict outcome (complete/optimal cytoreduction vs. suboptimal cytoreduction) with 77 % accuracy and an AUC of 0.73. These data are encouraging and demonstrate that artificial intelligence systems may have a role in providing prognostic and predictive data for patients. The performance of these systems likely will improve with increasing data set size, and this needs further investigation.

  18. The guitar chord-generating algorithm based on complex network

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  19. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-04-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors.

  20. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    PubMed Central

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-01-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors. PMID:28393879

  1. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  2. A Scientific Understanding of Keystroke Dynamics

    DTIC Science & Technology

    2012-01-01

    keystroke- dynamics classifiers. Obaidat and Sadoun (1997) had 16 subjects type their own and each others’ user IDs. They constructed neural networks and a...puts are assigned high anomaly scores. In the training phase, the neural network is constructed with p input nodes and p out- put nodes (where p is...Berlin. S. Cho, C. Han, D. H. Han, and H.-I. Kim. Web- based keystroke dynamics identity ver- ification using neural network . Journal of Organizational

  3. Using algebra for massively parallel processor design and utilization

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Fellows, Michael R.

    1990-01-01

    This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.

  4. [Delineation of ecological security pattern based on ecological network].

    PubMed

    Fu, Qiang; Gu, Chao Lin

    2017-03-18

    Ecological network can be used to describe and assess the relationship between spatial organization of landscapes and species survival under the condition of the habitat fragmentation. Taking Qingdao City as the research area, woodland and wetland ecological networks in 2005 were simulated based on least cost path method, and the ecological networks were classified by their corridors' cumulative cost value. We made importance distinction of ecological network structure elements such as patches and corridors using betweenness centrality index and correlation length-percentage of importance of omitted patches index, and then created the structure system of ecological network. Considering the effects brought by the newly-added construction land from 2005 to 2013, we proposed the ecological security pattern for construction land change of Qingdao City. The results showed that based on ecological network framework, graph theory based methods could be used to quantify both attributes of specific ecological land (e.g., the area of an ecological network patch) and functional connection between ecological lands. Between 2005 and 2013, large area of wetlands had been destroyed by newly-added construction land, while the role of specific woodland and wetland played in the connection of the whole network had not been considered. The delineation of ecological security pattern based on ecological network could optimize regional ecological basis, provide accurate spatial explicit decision for ecological conservation and restoration, and meanwhile provide scientific and reasonable space guidance for urban spatial expansion.

  5. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.

  6. Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression

    ERIC Educational Resources Information Center

    Mason, Cindi; Twomey, Janet; Wright, David; Whitman, Lawrence

    2018-01-01

    As the need for engineers continues to increase, a growing focus has been placed on recruiting students into the field of engineering and retaining the students who select engineering as their field of study. As a result of this concentration on student retention, numerous studies have been conducted to identify, understand, and confirm…

  7. Value Engineering Points of Contact,

    DTIC Science & Technology

    1985-04-01

    17 Williams Research Corporation.................................... 17 McDonnell Douglas3 Corporation... Patterson AFBE............................................18s Oklahoma City Air Logistics Center ...................................18s Ogden Air... Williams International.............................................. 27 DEFENSE SUPPLY CENTERS Construction Center

  8. Basrah Children’s Hospital, Basrah, Iraq

    DTIC Science & Technology

    2009-07-28

    that 97% of urban and 79% of rural populations had access to health care, which included public health programs for malaria and tuberculosis control...construct the medical logistics warehouses landscaping install kitchen and laundry equipment medical equipment (medical waste autoclave, oxygen...addition, the SOW required the construction of supporting facilities to include the following: cafeteria and associated facilities (i.e. kitchen

  9. Independent Review of the Defense Logistics Agencys Roles and Missions

    DTIC Science & Technology

    2014-12-01

    remaining wholesale consumables missions of tires, packaged petroleum, oils , and lubricants, and gases and cylinders were transferred from the...housekeeping supplies and equipment. Class III: Petroleum, oils , and lubricants. Class IV: Construction materials. Class V: Ammunition. Class VI...own appropriated funds that are deposited 9 The Construction and Equipment program within DLA Troop Support provides some Class VII non- weapons

  10. Biomarker combinations for diagnosis and prognosis in multicenter studies: Principles and methods.

    PubMed

    Meisner, Allison; Parikh, Chirag R; Kerr, Kathleen F

    2017-01-01

    Many investigators are interested in combining biomarkers to predict a binary outcome or detect underlying disease. This endeavor is complicated by the fact that many biomarker studies involve data from multiple centers. Depending upon the relationship between center, the biomarkers, and the target of prediction, care must be taken when constructing and evaluating combinations of biomarkers. We introduce a taxonomy to describe the role of center and consider how a biomarker combination should be constructed and evaluated. We show that ignoring center, which is frequently done by clinical researchers, is often not appropriate. The limited statistical literature proposes using random intercept logistic regression models, an approach that we demonstrate is generally inadequate and may be misleading. We instead propose using fixed intercept logistic regression, which appropriately accounts for center without relying on untenable assumptions. After constructing the biomarker combination, we recommend using performance measures that account for the multicenter nature of the data, namely the center-adjusted area under the receiver operating characteristic curve. We apply these methods to data from a multicenter study of acute kidney injury after cardiac surgery. Appropriately accounting for center, both in construction and evaluation, may increase the likelihood of identifying clinically useful biomarker combinations.

  11. Moving Equipment and Workers to Mine Construction Site at a Logistically Challenged Area

    NASA Astrophysics Data System (ADS)

    Tikasz, Laszlo; Biroscak, Dennis; Pentiah, Scheale Duvah; McCulloch, Robert I.

    Social sensitivity of habitants, minimal impact on the environment, low-grade infrastructure, high altitude, frequent rock slides combined with expectations for the timely moving of equipment and workers are some of the challenges emerging from the current construction of a mine. Starting with traditional planning, and experiencing issues in the early phase of the construction, a traffic simulator was requested by the Procurement Department in order to validate daily-weekly schedules and predict likely delays or blockages on the long-term.

  12. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network

    NASA Astrophysics Data System (ADS)

    Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun

    2016-05-01

    Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 ;complex networks; articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.

  13. 47 CFR 54.636 - Eligible participant-constructed and owned network facilities for consortium applicants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Support for Health Care Providers Healthcare Connect Fund § 54.636 Eligible participant-constructed and... proposals. Requests for proposals must provide sufficient detail so that cost-effectiveness can be evaluated... its own network facilities is the most cost-effective option after competitive bidding, pursuant to...

  14. 47 CFR 54.636 - Eligible participant-constructed and owned network facilities for consortium applicants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Support for Health Care Providers Healthcare Connect Fund § 54.636 Eligible participant-constructed and... proposals. Requests for proposals must provide sufficient detail so that cost-effectiveness can be evaluated... its own network facilities is the most cost-effective option after competitive bidding, pursuant to...

  15. Making a Connection between Computational Modeling and Educational Research.

    ERIC Educational Resources Information Center

    Carbonaro, Michael

    2003-01-01

    Bruner, Goodnow, and Austin's (1956) research on concept development is reexamined from a connectionist perspective. A neural network was constructed which associates positive and negative instances of a concept with corresponding attribute values. Results suggest the simultaneous learning of attributes guided the network in constructing a faster…

  16. A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery - part II: an illustrative example.

    PubMed

    Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo

    2007-11-22

    Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.

  17. SPD-based Logistics Management Model of Medical Consumables in Hospitals

    PubMed Central

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei; YANG, Shanlin

    2016-01-01

    Background: With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. Methods: We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. Results: We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. Conclusion: The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China. PMID:27957435

  18. Effects of local and global network connectivity on synergistic epidemics

    NASA Astrophysics Data System (ADS)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  19. Effects of local and global network connectivity on synergistic epidemics.

    PubMed

    Broder-Rodgers, David; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  20. Parallel Mutual Information Based Construction of Genome-Scale Networks on the Intel® Xeon Phi™ Coprocessor.

    PubMed

    Misra, Sanchit; Pamnany, Kiran; Aluru, Srinivas

    2015-01-01

    Construction of whole-genome networks from large-scale gene expression data is an important problem in systems biology. While several techniques have been developed, most cannot handle network reconstruction at the whole-genome scale, and the few that can, require large clusters. In this paper, we present a solution on the Intel Xeon Phi coprocessor, taking advantage of its multi-level parallelism including many x86-based cores, multiple threads per core, and vector processing units. We also present a solution on the Intel® Xeon® processor. Our solution is based on TINGe, a fast parallel network reconstruction technique that uses mutual information and permutation testing for assessing statistical significance. We demonstrate the first ever inference of a plant whole genome regulatory network on a single chip by constructing a 15,575 gene network of the plant Arabidopsis thaliana from 3,137 microarray experiments in only 22 minutes. In addition, our optimization for parallelizing mutual information computation on the Intel Xeon Phi coprocessor holds out lessons that are applicable to other domains.

  1. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  2. An improved network model for railway traffic

    NASA Astrophysics Data System (ADS)

    Li, Keping; Ma, Xin; Shao, Fubo

    In railway traffic, safety analysis is a key issue for controlling train operation. Here, the identification and order of key factors are very important. In this paper, a new network model is constructed for analyzing the railway safety, in which nodes are regarded as causation factors and links represent possible relationships among those factors. Our aim is to give all these nodes an importance order, and to find the in-depth relationship among these nodes including how failures spread among them. Based on the constructed network model, we propose a control method to ensure the safe state by setting each node a threshold. As the results, by protecting the Hub node of the constructed network, the spreading of railway accident can be controlled well. The efficiency of such a method is further tested with the help of numerical example.

  3. Regenerating time series from ordinal networks.

    PubMed

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  4. Regenerating time series from ordinal networks

    NASA Astrophysics Data System (ADS)

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  5. 77 FR 22289 - Procurement List Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ...-McChord, WA. Stryker National Logistics Center, Building 2701 C Street SW., Auburn, WA. NPA: Skookum... Center, Construction Engineering Research Lab (ERDC-CERL), 2902 Newmark Drive, Champaign, IL. AT&T...

  6. A multivariate pattern analysis study of the HIV-related white matter anatomical structural connections alterations

    NASA Astrophysics Data System (ADS)

    Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie

    2017-03-01

    It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.

  7. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  8. Fishing in the Amazonian forest: a gendered social network puzzle

    PubMed Central

    Díaz-Reviriego, I.; Fernández-Llamazares, Á.; Howard, P.L; Molina, JL; Reyes-García, V

    2016-01-01

    We employ social network analysis (SNA) to describe the structure of subsistence fishing social networks and to explore the relation between fishers’ emic perceptions of fishing expertise and their position in networks. Participant observation and quantitative methods were employed among the Tsimane’ Amerindians of the Bolivian Amazonia. A multiple regression quadratic assignment procedure was used to explore the extent to which gender, kinship, and age homophilies influence the formation of fishing networks. Logistic regressions were performed to determine the association between the fishers’ expertise, their socio-demographic identities, and network centrality. We found that fishing networks are gendered and that there is a positive association between fishers’ expertise and centrality in networks, an association that is more striking for women than for men. We propose that a social network perspective broadens understanding of the relations that shape the intracultural distribution of fishing expertise as well as natural resource access and use. PMID:28479670

  9. Fishing in the Amazonian forest: a gendered social network puzzle.

    PubMed

    Díaz-Reviriego, I; Fernández-Llamazares, Á; Howard, P L; Molina, J L; Reyes-García, V

    2017-01-01

    We employ social network analysis (SNA) to describe the structure of subsistence fishing social networks and to explore the relation between fishers' emic perceptions of fishing expertise and their position in networks. Participant observation and quantitative methods were employed among the Tsimane' Amerindians of the Bolivian Amazonia. A multiple regression quadratic assignment procedure was used to explore the extent to which gender, kinship, and age homophilies influence the formation of fishing networks. Logistic regressions were performed to determine the association between the fishers' expertise, their socio-demographic identities, and network centrality. We found that fishing networks are gendered and that there is a positive association between fishers' expertise and centrality in networks, an association that is more striking for women than for men. We propose that a social network perspective broadens understanding of the relations that shape the intracultural distribution of fishing expertise as well as natural resource access and use.

  10. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  11. Evaluating the Impacts of Health, Social Network and Capital on Craft Efficiency and Productivity: A Case Study of Construction Workers in China

    PubMed Central

    Yi, Wen; Miao, Mengyi; Zhang, Lei

    2018-01-01

    The construction industry has been recognized, for many years, as among those having a high likelihood of accidents, injuries and occupational illnesses. Such risks of construction workers can lead to low productivity and social problems. As a result, construction workers’ well-being should be highly addressed to improve construction workers’ efficiency and productivity. Meanwhile, the social support from a social network and capital (SNC) of construction workers has been considered as an effective approach to promote construction workers’ physical and mental health (P&M health), as well as their work efficiency and productivity. Based on a comprehensive literature review, a conceptual model, which aims to improve construction workers’ efficiency and productivity from the perspective of health and SNC, was proposed. A questionnaire survey was conducted to investigate the construction workers’ health, SNC and work efficiency and productivity in Nanjing, China. A structural equation model (SEM) was employed to test the three hypothetical relationships among construction workers’ P&M health, SNC and work efficiency and productivity. The results indicated that the direct impacts from construction workers’ P&M health on work efficiency and productivity were more significant than that from the SNC. In addition, the construction workers’ social capital and the network can indirectly influence the work efficiency and productivity by affecting the construction workers’ P&M health. Therefore, strategies for enhancing construction workers’ efficiency and productivity were proposed. Furthermore, many useable suggestions can be drawn from the research findings from the perspective of a government. The identified indicators and relationships would contribute to the construction work efficiency and productivity assessment and health management from the perspective of the construction workers. PMID:29462861

  12. Evaluating the Impacts of Health, Social Network and Capital on Craft Efficiency and Productivity: A Case Study of Construction Workers in China.

    PubMed

    Yuan, Jingfeng; Yi, Wen; Miao, Mengyi; Zhang, Lei

    2018-02-15

    The construction industry has been recognized, for many years, as among those having a high likelihood of accidents, injuries and occupational illnesses. Such risks of construction workers can lead to low productivity and social problems. As a result, construction workers' well-being should be highly addressed to improve construction workers' efficiency and productivity. Meanwhile, the social support from a social network and capital (SNC) of construction workers has been considered as an effective approach to promote construction workers' physical and mental health (P&M health), as well as their work efficiency and productivity. Based on a comprehensive literature review, a conceptual model, which aims to improve construction workers' efficiency and productivity from the perspective of health and SNC, was proposed. A questionnaire survey was conducted to investigate the construction workers' health, SNC and work efficiency and productivity in Nanjing, China. A structural equation model (SEM) was employed to test the three hypothetical relationships among construction workers' P&M health, SNC and work efficiency and productivity. The results indicated that the direct impacts from construction workers' P&M health on work efficiency and productivity were more significant than that from the SNC. In addition, the construction workers' social capital and the network can indirectly influence the work efficiency and productivity by affecting the construction workers' P&M health. Therefore, strategies for enhancing construction workers' efficiency and productivity were proposed. Furthermore, many useable suggestions can be drawn from the research findings from the perspective of a government. The identified indicators and relationships would contribute to the construction work efficiency and productivity assessment and health management from the perspective of the construction workers.

  13. Systematic construction and control of stereo nerve vision network in intelligent manufacturing

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Wang, Helong; Guo, Chunjie; Ding, Quanxin; Zhou, Liwei

    2017-10-01

    A system method of constructing stereo vision by using neural network is proposed, and the operation and control mechanism in actual operation are proposed. This method makes effective use of the neural network in learning and memory function, by after training with samples. Moreover, the neural network can learn the nonlinear relationship in the stereoscopic vision system and the internal and external orientation elements. These considerations are Worthy of attention, which includes limited constraints, the scientific of critical group, the operating speed and the operability in technical aspects. The results support our theoretical forecast.

  14. A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru

    1993-01-01

    A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.

  15. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    NASA Astrophysics Data System (ADS)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  16. The network of concepts in written texts

    NASA Astrophysics Data System (ADS)

    Caldeira, S. M. G.; Petit Lobão, T. C.; Andrade, R. F. S.; Neme, A.; Miranda, J. G. V.

    2006-02-01

    Complex network theory is used to investigate the structure of meaningful concepts in written texts of individual authors. Networks have been constructed after a two phase filtering, where words with less meaning contents are eliminated and all remaining words are set to their canonical form, without any number, gender or time flexion. Each sentence in the text is added to the network as a clique. A large number of written texts have been scrutinised, and it is found that texts have small-world as well as scale-free structures. The growth process of these networks has also been investigated, and a universal evolution of network quantifiers have been found among the set of texts written by distinct authors. Further analyses, based on shuffling procedures taken either on the texts or on the constructed networks, provide hints on the role played by the word frequency and sentence length distributions to the network structure.

  17. Study on the construction of Intelligent Courier Station Model

    NASA Astrophysics Data System (ADS)

    zhao, Ce; lu, Jia xin; li, Zhuang zhuang; shao, Zi rong; pi, Kun yi

    2018-06-01

    Campus Express is an important window to observe the city consumption logistics service "last kilometer".The research on Campus Express service is not only conducive to campus environment improvement and service quality promotion, but also provides all types of community, agglomeration areas such as urban terminal "last kilometer" logistics with reference.This article first proposed the main problems of campus express service,analyzed the mode of smart express station and finally built a smart express station.

  18. Robot Competence Development by Constructive Learning

    NASA Astrophysics Data System (ADS)

    Meng, Q.; Lee, M. H.; Hinde, C. J.

    This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

  19. Robot Competence Development by Constructive Learning

    NASA Astrophysics Data System (ADS)

    Meng, Q.; Lee, M. H.; Hinde, C. J.

    This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system's adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

  20. NDIA 34th Annual National Logistics Forum: Logistics Innovation to Ensure Global Readiness. Held in Tampa, Florida on 15-16 May 2018

    DTIC Science & Technology

    2018-05-16

    KEYNOTE ADDRESS BAYSHORE 1-3 Ward Heinke Vice President, Strategic Alliances, Government Markets , Forcepoint 9:45 – 10:15 am NETWORKING BREAK GALLERIA B 6...or conditions of sale (including allowances, credit terms, and warranties); allocation of markets or customers or division of territories; or refusals...Army War College. 11 WARD HEINKE Vice President, Strategic Alliances, Government Markets Forcepoint Ward is VP for Strategic Alliances, Government

  1. A Collection of Technical Studies Completed for the Computer-Aided Acquisition and Logistic Support (CALS) Program Fiscal Year 1988. Volume 1. Text, Security and Data Management

    DTIC Science & Technology

    1991-03-01

    management methodologies claim to be "expert systems" with security intelligence built into them to I derive a body of both facts and speculative data ... Data Administration considerations . III -21 IV. ARTIFICIAL INTELLIGENCE . .. .. .. . .. IV - 1 A. Description of Technologies . . . . . .. IV - 1 1...as intelligent gateways, wide area networks, and distributed databases for the distribution of logistics products. The integrity of CALS data and the

  2. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    PubMed

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  3. Reverse bifurcation and fractal of the compound logistic map

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Liang, Qingyong

    2008-07-01

    The nature of the fixed points of the compound logistic map is researched and the boundary equation of the first bifurcation of the map in the parameter space is given out. Using the quantitative criterion and rule of chaotic system, the paper reveal the general features of the compound logistic map transforming from regularity to chaos, the following conclusions are shown: (1) chaotic patterns of the map may emerge out of double-periodic bifurcation and (2) the chaotic crisis phenomena and the reverse bifurcation are found. At the same time, we analyze the orbit of critical point of the compound logistic map and put forward the definition of Mandelbrot-Julia set of compound logistic map. We generalize the Welstead and Cromer's periodic scanning technology and using this technology construct a series of Mandelbrot-Julia sets of compound logistic map. We investigate the symmetry of Mandelbrot-Julia set and study the topological inflexibility of distributing of period region in the Mandelbrot set, and finds that Mandelbrot set contain abundant information of structure of Julia sets by founding the whole portray of Julia sets based on Mandelbrot set qualitatively.

  4. Simulation-based modeling of building complexes construction management

    NASA Astrophysics Data System (ADS)

    Shepelev, Aleksandr; Severova, Galina; Potashova, Irina

    2018-03-01

    The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.

  5. Understanding and Influencing Teaching and Learning Cultures at University: A Network Approach

    ERIC Educational Resources Information Center

    Roxa, Torgny; Martensson, Katarina; Alveteg, Mattias

    2011-01-01

    Academic cultures might be perceived as conservative, at least in terms of development of teaching and learning. Through a lens of network theory this conceptual article analyses the pattern of pathways in which culture is constructed through negotiation of meaning. The perspective contributes to an understanding of culture construction and…

  6. Going the Extra Mile: Enabling Joint Logistics for the Tactical War Fighter

    DTIC Science & Technology

    2010-05-04

    few of the links when relocating hubs. Chains v. Networks Supply Chain Too brittle , long CPL, low clustering, simple pattern, simple control...Mass Service Perspective Efficiency Highly Optimized Brittle , Rigid Supply Chains vs Networked Cross-Service Mutual Support Cross-Enterprise...Storage and Distribution Centei\\" Army Logistician 39, no. 6 (November-December 2007): 40. 68 Glen R Dowling, "Army and Marine Joint Ammunition

  7. Supporting Regularized Logistic Regression Privately and Efficiently.

    PubMed

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.

  8. Supporting Regularized Logistic Regression Privately and Efficiently

    PubMed Central

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738

  9. The social network index and its relation to later-life depression among the elderly aged ≥80 years in Northern Thailand.

    PubMed

    Aung, Myo Nyein; Moolphate, Saiyud; Aung, Thin Nyein Nyein; Katonyoo, Chitima; Khamchai, Songyos; Wannakrairot, Pongsak

    2016-01-01

    Having a diverse social network is considered to be beneficial to a person's well-being. The significance, however, of social network diversity in the geriatric assessment of people aged ≥80 years has not been adequately investigated within the Southeast Asian context. This study explored the social networks belonging to the elderly aged ≥80 years and assessed the relation of social network and geriatric depression. This study was a community-based cross-sectional survey conducted in Chiang Mai Province, Northern Thailand. A representative sample of 435 community residents, aged ≥80 years, were included in a multistage sample. The participants' social network diversity was assessed by applying Cohen's social network index (SNI). The geriatric depression scale and activities of daily living measures were carried out during home visits. Descriptive analyses revealed the distribution of SNI, while the relationship between the SNI and the geriatric depression scale was examined by ordinal logistic regression models controlling possible covariants such as age, sex, and educational attainment. The median age of the sample was 83 years, with females comprising of 54.94% of the sample. The participants' children, their neighbors, and members of Buddhist temples were reported as the most frequent contacts of the study participants. Among the 435 participants, 25% were at risk of social isolation due to having a "limited" social network group (SNI 0-3), whereas 37% had a "medium" social network (SNI 4-5), and 38% had a "diverse" social network (SNI ≥6). The SNI was not different among the two sexes. Activities of daily living scores in the diverse social network group were significantly higher than those in the limited social network group. Multivariate ordinal logistic regression analysis models revealed a significant negative association between social network diversity and geriatric depression. Regular and frequent contact with various social contacts may safeguard common geriatric depression among persons aged ≥80 years. As a result, screening those at risk of social isolation is recommended to be integrated into routine primary health care-based geriatric assessment and intervention programs.

  10. A fault-tolerant small world topology control model in ad hoc networks for search and rescue

    NASA Astrophysics Data System (ADS)

    Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing

    2018-02-01

    Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.

  11. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

  12. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack—From a Green Operation Perspective

    PubMed Central

    Fu, Zhuo; Wang, Jiangtao

    2018-01-01

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics. PMID:29747469

  13. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings.

    PubMed

    Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay

    2009-06-03

    Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.

  14. Artificial Neural Network with Hardware Training and Hardware Refresh

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor)

    2003-01-01

    A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network s coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.

  15. Constructive thinking, rational intelligence and irritable bowel syndrome

    PubMed Central

    Rey, Enrique; Ortega, Marta Moreno; Alonso, Monica Olga Garcia; Diaz-Rubio, Manuel

    2009-01-01

    AIM: To evaluate rational and experiential intelligence in irritable bowel syndrome (IBS) sufferers. METHODS: We recruited 100 subjects with IBS as per Rome II criteria (50 consulters and 50 non-consulters) and 100 healthy controls, matched by age, sex and educational level. Cases and controls completed a clinical questionnaire (including symptom characteristics and medical consultation) and the following tests: rational-intelligence (Wechsler Adult Intelligence Scale, 3rd edition); experiential-intelligence (Constructive Thinking Inventory); personality (NEO personality inventory); psychopathology (MMPI-2), anxiety (state-trait anxiety inventory) and life events (social readjustment rating scale). Analysis of variance was used to compare the test results of IBS-sufferers and controls, and a logistic regression model was then constructed and adjusted for age, sex and educational level to evaluate any possible association with IBS. RESULTS: No differences were found between IBS cases and controls in terms of IQ (102.0 ± 10.8 vs 102.8 ± 12.6), but IBS sufferers scored significantly lower in global constructive thinking (43.7 ± 9.4 vs 49.6 ± 9.7). In the logistic regression model, global constructive thinking score was independently linked to suffering from IBS [OR 0.92 (0.87-0.97)], without significant OR for total IQ. CONCLUSION: IBS subjects do not show lower rational intelligence than controls, but lower experiential intelligence is nevertheless associated with IBS. PMID:19575489

  16. A Method of DTM Construction Based on Quadrangular Irregular Networks and Related Error Analysis

    PubMed Central

    Kang, Mengjun

    2015-01-01

    A new method of DTM construction based on quadrangular irregular networks (QINs) that considers all the original data points and has a topological matrix is presented. A numerical test and a real-world example are used to comparatively analyse the accuracy of QINs against classical interpolation methods and other DTM representation methods, including SPLINE, KRIGING and triangulated irregular networks (TINs). The numerical test finds that the QIN method is the second-most accurate of the four methods. In the real-world example, DTMs are constructed using QINs and the three classical interpolation methods. The results indicate that the QIN method is the most accurate method tested. The difference in accuracy rank seems to be caused by the locations of the data points sampled. Although the QIN method has drawbacks, it is an alternative method for DTM construction. PMID:25996691

  17. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  18. [Construction of automatic elucidation platform for mechanism of traditional Chinese medicine].

    PubMed

    Zhang, Bai-xia; Luo, Si-jun; Yan, Jing; Gu, Hao; Luo, Ji; Zhang, Yan-ling; Tao, Ou; Wang, Yun

    2015-10-01

    Aim at the two problems in the field of traditional Chinese medicine (TCM) mechanism elucidation, one is the lack of detailed biological processes information, next is the low efficient in constructing network models, we constructed an auxiliary elucidation system for the TCM mechanism and realize the automatic establishment of biological network model. This study used the Entity Grammar Systems (EGS) as the theoretical framework, integrated the data of formulae, herbs, chemical components, targets of component, biological reactions, signaling pathways and disease related proteins, established the formal models, wrote the reasoning engine, constructed the auxiliary elucidation system for the TCM mechanism elucidation. The platform provides an automatic modeling method for biological network model of TCM mechanism. It would be benefit to perform the in-depth research on TCM theory of natures and combination and provides the scientific references for R&D of TCM.

  19. Dynamic Construction Scheme for Virtualization Security Service in Software-Defined Networks

    PubMed Central

    Lin, Zhaowen; Tao, Dan; Wang, Zhenji

    2017-01-01

    For a Software Defined Network (SDN), security is an important factor affecting its large-scale deployment. The existing security solutions for SDN mainly focus on the controller itself, which has to handle all the security protection tasks by using the programmability of the network. This will undoubtedly involve a heavy burden for the controller. More devastatingly, once the controller itself is attacked, the entire network will be paralyzed. Motivated by this, this paper proposes a novel security protection architecture for SDN. We design a security service orchestration center in the control plane of SDN, and this center physically decouples from the SDN controller and constructs SDN security services. We adopt virtualization technology to construct a security meta-function library, and propose a dynamic security service composition construction algorithm based on web service composition technology. The rule-combining method is used to combine security meta-functions to construct security services which meet the requirements of users. Moreover, the RETE algorithm is introduced to improve the efficiency of the rule-combining method. We evaluate our solutions in a realistic scenario based on OpenStack. Substantial experimental results demonstrate the effectiveness of our solutions that contribute to achieve the effective security protection with a small burden of the SDN controller. PMID:28430155

  20. Dynamic Construction Scheme for Virtualization Security Service in Software-Defined Networks.

    PubMed

    Lin, Zhaowen; Tao, Dan; Wang, Zhenji

    2017-04-21

    For a Software Defined Network (SDN), security is an important factor affecting its large-scale deployment. The existing security solutions for SDN mainly focus on the controller itself, which has to handle all the security protection tasks by using the programmability of the network. This will undoubtedly involve a heavy burden for the controller. More devastatingly, once the controller itself is attacked, the entire network will be paralyzed. Motivated by this, this paper proposes a novel security protection architecture for SDN. We design a security service orchestration center in the control plane of SDN, and this center physically decouples from the SDN controller and constructs SDN security services. We adopt virtualization technology to construct a security meta-function library, and propose a dynamic security service composition construction algorithm based on web service composition technology. The rule-combining method is used to combine security meta-functions to construct security services which meet the requirements of users. Moreover, the RETE algorithm is introduced to improve the efficiency of the rule-combining method. We evaluate our solutions in a realistic scenario based on OpenStack. Substantial experimental results demonstrate the effectiveness of our solutions that contribute to achieve the effective security protection with a small burden of the SDN controller.

  1. A novel constructive-optimizer neural network for the traveling salesman problem.

    PubMed

    Saadatmand-Tarzjan, Mahdi; Khademi, Morteza; Akbarzadeh-T, Mohammad-R; Moghaddam, Hamid Abrishami

    2007-08-01

    In this paper, a novel constructive-optimizer neural network (CONN) is proposed for the traveling salesman problem (TSP). CONN uses a feedback structure similar to Hopfield-type neural networks and a competitive training algorithm similar to the Kohonen-type self-organizing maps (K-SOMs). Consequently, CONN is composed of a constructive part, which grows the tour and an optimizer part to optimize it. In the training algorithm, an initial tour is created first and introduced to CONN. Then, it is trained in the constructive phase for adding a number of cities to the tour. Next, the training algorithm switches to the optimizer phase for optimizing the current tour by displacing the tour cities. After convergence in this phase, the training algorithm switches to the constructive phase anew and is continued until all cities are added to the tour. Furthermore, we investigate a relationship between the number of TSP cities and the number of cities to be added in each constructive phase. CONN was tested on nine sets of benchmark TSPs from TSPLIB to demonstrate its performance and efficiency. It performed better than several typical Neural networks (NNs), including KNIES_TSP_Local, KNIES_TSP_Global, Budinich's SOM, Co-Adaptive Net, and multivalued Hopfield network as wall as computationally comparable variants of the simulated annealing algorithm, in terms of both CPU time and accuracy. Furthermore, CONN converged considerably faster than expanding SOM and evolved integrated SOM and generated shorter tours compared to KNIES_DECOMPOSE. Although CONN is not yet comparable in terms of accuracy with some sophisticated computationally intensive algorithms, it converges significantly faster than they do. Generally speaking, CONN provides the best compromise between CPU time and accuracy among currently reported NNs for TSP.

  2. Habitat and logistic support requirements for the initiation of a space manufacturing enterprise

    NASA Technical Reports Server (NTRS)

    Vajk, J. P.; Engel, J. H.; Shettler, J. A.

    1979-01-01

    A detailed scenario for the initiation of a space manufacturing enterprise using lunar materials to construct solar power satellites (SPS) was developed, with particular attention to habitat design and logistic support requirements. If SPS's can be constructed exclusively from lunar materials, the entire enterprise can be initiated in a 7 year period of launch activity (beginning as early as 1985) using the Space Shuttle and a low-cost, Shuttle-derived heavy lift vehicle. If additional chemical feedstocks must be imported from earth in significant quantities, it may be necessary to bring the next-generation launch vehicle (single-stage-to-orbit) into operation by 1991. The scenario presented features use of the mass-driver reaction engine for orbit-to-orbit transfer of cargos and makes extensive use of the expendable Shuttle external propellant tanks.

  3. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    NASA Astrophysics Data System (ADS)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  4. Constructing regional climate networks in the Amazonia during recent drought events.

    PubMed

    Guo, Heng; Ramos, Antônio M T; Macau, Elbert E N; Zou, Yong; Guan, Shuguang

    2017-01-01

    Climate networks are powerful approaches to disclose tele-connections in climate systems and to predict severe climate events. Here we construct regional climate networks from precipitation data in the Amazonian region and focus on network properties under the recent drought events in 2005 and 2010. Both the networks of the entire Amazon region and the extreme networks resulted from locations severely affected by drought events suggest that network characteristics show slight difference between the two drought events. Based on network degrees of extreme drought events and that without drought conditions, we identify regions of interest that are correlated to longer expected drought period length. Moreover, we show that the spatial correlation length to the regions of interest decayed much faster in 2010 than in 2005, which is because of the dual roles played by both the Pacific and Atlantic oceans. The results suggest that hub nodes in the regional climate network of Amazonia have fewer long-range connections when more severe drought conditions appeared in 2010 than that in 2005.

  5. Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children.

    PubMed

    Berchialla, Paola; Scarinzi, Cecilia; Snidero, Silvia; Gregori, Dario

    2016-08-01

    Risk Assessment is the systematic study of decisions subject to uncertain consequences. An increasing interest has been focused on modeling techniques like Bayesian Networks since their capability of (1) combining in the probabilistic framework different type of evidence including both expert judgments and objective data; (2) overturning previous beliefs in the light of the new information being received and (3) making predictions even with incomplete data. In this work, we proposed a comparison among Bayesian Networks and other classical Quantitative Risk Assessment techniques such as Neural Networks, Classification Trees, Random Forests and Logistic Regression models. Hybrid approaches, combining both Classification Trees and Bayesian Networks, were also considered. Among Bayesian Networks, a clear distinction between purely data-driven approach and combination of expert knowledge with objective data is made. The aim of this paper consists in evaluating among this models which best can be applied, in the framework of Quantitative Risk Assessment, to assess the safety of children who are exposed to the risk of inhalation/insertion/aspiration of consumer products. The issue of preventing injuries in children is of paramount importance, in particular where product design is involved: quantifying the risk associated to product characteristics can be of great usefulness in addressing the product safety design regulation. Data of the European Registry of Foreign Bodies Injuries formed the starting evidence for risk assessment. Results showed that Bayesian Networks appeared to have both the ease of interpretability and accuracy in making prediction, even if simpler models like logistic regression still performed well. © The Author(s) 2013.

  6. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  7. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models.

    PubMed

    Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan

    2010-03-01

    Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians Postgraduate Press, Inc.

  8. Assessment of U.S. Government and Coalition Efforts to Develop the Logistics Sustainment Capability of the Afghan National Army

    DTIC Science & Technology

    2011-12-09

    management are inadequate at some FSDs. • No one was held accountable when ANA vehicles and equipment were wrecked /damaged due to command/operator...regions, services provided, facilities constructed, etc. c. DCOM-Programs also hosts a biweekly review that is more of a deep dive contract...Number 37, for additional details.) • NTM-A/CSTC-A’s, “ANA Logistics Deep Dive ” briefing for DOD IG team, Director CJ4, April 28, 2011

  9. Designing Networks that are Capable of Self-Healing and Adapting

    DTIC Science & Technology

    2017-04-01

    from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we will undertake the fol

  10. FPGA implementation of motifs-based neuronal network and synchronization analysis

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Zhu, Zechen; Yang, Shuangming; Wei, Xile; Wang, Jiang; Yu, Haitao

    2016-06-01

    Motifs in complex networks play a crucial role in determining the brain functions. In this paper, 13 kinds of motifs are implemented with Field Programmable Gate Array (FPGA) to investigate the relationships between the networks properties and motifs properties. We use discretization method and pipelined architecture to construct various motifs with Hindmarsh-Rose (HR) neuron as the node model. We also build a small-world network based on these motifs and conduct the synchronization analysis of motifs as well as the constructed network. We find that the synchronization properties of motif determine that of motif-based small-world network, which demonstrates effectiveness of our proposed hardware simulation platform. By imitation of some vital nuclei in the brain to generate normal discharges, our proposed FPGA-based artificial neuronal networks have the potential to replace the injured nuclei to complete the brain function in the treatment of Parkinson's disease and epilepsy.

  11. Evidence reasoning method for constructing conditional probability tables in a Bayesian network of multimorbidity.

    PubMed

    Du, Yuanwei; Guo, Yubin

    2015-01-01

    The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.

  12. BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks

    PubMed Central

    Rialle, Stéphanie; Felicori, Liza; Dias-Lopes, Camila; Pérès, Sabine; El Atia, Sanaâ; Thierry, Alain R.; Amar, Patrick; Molina, Franck

    2010-01-01

    Motivation: Synthetic biology studies how to design and construct biological systems with functions that do not exist in nature. Biochemical networks, although easier to control, have been used less frequently than genetic networks as a base to build a synthetic system. To date, no clear engineering principles exist to design such cell-free biochemical networks. Results: We describe a methodology for the construction of synthetic biochemical networks based on three main steps: design, simulation and experimental validation. We developed BioNetCAD to help users to go through these steps. BioNetCAD allows designing abstract networks that can be implemented thanks to CompuBioTicDB, a database of parts for synthetic biology. BioNetCAD enables also simulations with the HSim software and the classical Ordinary Differential Equations (ODE). We demonstrate with a case study that BioNetCAD can rationalize and reduce further experimental validation during the construction of a biochemical network. Availability and implementation: BioNetCAD is freely available at http://www.sysdiag.cnrs.fr/BioNetCAD. It is implemented in Java and supported on MS Windows. CompuBioTicDB is freely accessible at http://compubiotic.sysdiag.cnrs.fr/ Contact: stephanie.rialle@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20628073

  13. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  14. Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units.

    PubMed

    Ren, Guo-Jian; Chang, Ze; Xu, Jian; Hu, Zhenpeng; Liu, Yan-Qing; Xu, Yue-Ling; Bu, Xian-He

    2016-02-04

    A novel decorated metal-organic polyhedron (MOP) based metal-organic framework with a unique 4,9-connected network is successfully constructed, which displays a relatively strong interaction toward H2 and CO2 probably due to the existence of open metal sites in the secondary building units.

  15. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks.

    PubMed

    Wei, Fangping; Chen, Bowen

    2012-03-01

    To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

  16. 3 CFR 8675 - Proclamation 8675 of May 13, 2011. National Defense Transportation Day and National...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ourselves for the next revolutionary breakthroughs in transportation technology. We must provide increased... world-class logistics network, create new jobs, and win the future for our children. In recognition of...

  17. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  18. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    PubMed

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  19. Optimising reverse logistics network to support policy-making in the case of Electrical and Electronic Equipment.

    PubMed

    Achillas, Ch; Vlachokostas, Ch; Aidonis, D; Moussiopoulos, N; Iakovou, E; Banias, G

    2010-12-01

    Due to the rapid growth of Waste Electrical and Electronic Equipment (WEEE) volumes, as well as the hazardousness of obsolete electr(on)ic goods, this type of waste is now recognised as a priority stream in the developed countries. Policy-making related to the development of the necessary infrastructure and the coordination of all relevant stakeholders is crucial for the efficient management and viability of individually collected waste. This paper presents a decision support tool for policy-makers and regulators to optimise electr(on)ic products' reverse logistics network. To that effect, a Mixed Integer Linear Programming mathematical model is formulated taking into account existing infrastructure of collection points and recycling facilities. The applicability of the developed model is demonstrated employing a real-world case study for the Region of Central Macedonia, Greece. The paper concludes with presenting relevant obtained managerial insights. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Statistical considerations in the development of injury risk functions.

    PubMed

    McMurry, Timothy L; Poplin, Gerald S

    2015-01-01

    We address 4 frequently misunderstood and important statistical ideas in the construction of injury risk functions. These include the similarities of survival analysis and logistic regression, the correct scale on which to construct pointwise confidence intervals for injury risk, the ability to discern which form of injury risk function is optimal, and the handling of repeated tests on the same subject. The statistical models are explored through simulation and examination of the underlying mathematics. We provide recommendations for the statistically valid construction and correct interpretation of single-predictor injury risk functions. This article aims to provide useful and understandable statistical guidance to improve the practice in constructing injury risk functions.

  1. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  2. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor

    PubMed Central

    Ball, Owen; Nguyen, Bao-Ngoc B.; Placone, Jesse K.; Fisher, John P.

    2016-01-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state. PMID:27272210

  3. Phylogenetic investigation of a statewide HIV-1 epidemic reveals ongoing and active transmission networks among men who have sex with men

    PubMed Central

    Chan, Philip A.; Hogan, Joseph W.; Huang, Austin; DeLong, Allison; Salemi, Marco; Mayer, Kenneth H.; Kantor, Rami

    2015-01-01

    Background Molecular epidemiologic evaluation of HIV-1 transmission networks can elucidate behavioral components of transmission that can be targets for intervention. Methods We combined phylogenetic and statistical approaches using pol sequences from patients diagnosed 2004-2011 at a large HIV center in Rhode Island, following 75% of the state’s HIV population. Phylogenetic trees were constructed using maximum likelihood and putative transmission clusters were evaluated using latent class analyses (LCA) to determine association of cluster size with underlying demographic/behavioral characteristics. A logistic growth model was used to assess intra-cluster dynamics over time and predict “active” clusters that were more likely to harbor undiagnosed infections. Results Of 1,166 HIV-1 subtype B sequences, 31% were distributed among 114 statistically-supported, monophyletic clusters (range: 2-15 sequences/cluster). Sequences from men who have sex with men (MSM) formed 52% of clusters. LCA demonstrated that sequences from recently diagnosed (2008-2011) MSM with primary HIV infection (PHI) and other sexually transmitted infections (STIs) were more likely to form larger clusters (Odds Ratio 1.62-11.25, p<0.01). MSM in clusters were more likely to have anonymous partners and meet partners at sex clubs and pornographic stores. Four large clusters with 38 sequences (100% male, 89% MSM) had a high-probability of harboring undiagnosed infections and included younger MSM with PHI and STIs. Conclusions In this first large-scale molecular epidemiologic investigation of HIV-1 transmission in New England, sexual networks among recently diagnosed MSM with PHI and concomitant STIs contributed to ongoing transmission. Characterization of transmission dynamics revealed actively growing clusters which may be targets for intervention. PMID:26258569

  4. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    PubMed

    Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong

    2017-11-01

    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

  5. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Duman, T. Y.; Can, T.; Gokceoglu, C.; Nefeslioglu, H. A.; Sonmez, H.

    2006-11-01

    As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.

  6. A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links

    NASA Astrophysics Data System (ADS)

    Türker, Ilker; Sulak, Eyüb Ekmel

    2018-02-01

    Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.

  7. 32 CFR 56.7 - Programs and activities subject to this part.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Title 16 U.S. Code, section 460d (1976): Construction and operation of public park and recreational... Logistics Agency loans of industrial equipment to educational institutions (Tools for Schools). (16) Title...

  8. 32 CFR 56.7 - Programs and activities subject to this part.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Title 16 U.S. Code, section 460d (1976): Construction and operation of public park and recreational... Logistics Agency loans of industrial equipment to educational institutions (Tools for Schools). (16) Title...

  9. 32 CFR 56.7 - Programs and activities subject to this part.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Title 16 U.S. Code, section 460d (1976): Construction and operation of public park and recreational... Logistics Agency loans of industrial equipment to educational institutions (Tools for Schools). (16) Title...

  10. 32 CFR 56.7 - Programs and activities subject to this part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Title 16 U.S. Code, section 460d (1976): Construction and operation of public park and recreational... Logistics Agency loans of industrial equipment to educational institutions (Tools for Schools). (16) Title...

  11. 32 CFR 56.7 - Programs and activities subject to this part.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Title 16 U.S. Code, section 460d (1976): Construction and operation of public park and recreational... Logistics Agency loans of industrial equipment to educational institutions (Tools for Schools). (16) Title...

  12. Universal partitioning of the hierarchical fold network of 50-residue segments in proteins

    PubMed Central

    Ito, Jun-ichi; Sonobe, Yuki; Ikeda, Kazuyoshi; Tomii, Kentaro; Higo, Junichi

    2009-01-01

    Background Several studies have demonstrated that protein fold space is structured hierarchically and that power-law statistics are satisfied in relation between the numbers of protein families and protein folds (or superfamilies). We examined the internal structure and statistics in the fold space of 50 amino-acid residue segments taken from various protein folds. We used inter-residue contact patterns to measure the tertiary structural similarity among segments. Using this similarity measure, the segments were classified into a number (Kc) of clusters. We examined various Kc values for the clustering. The special resolution to differentiate the segment tertiary structures increases with increasing Kc. Furthermore, we constructed networks by linking structurally similar clusters. Results The network was partitioned persistently into four regions for Kc ≥ 1000. This main partitioning is consistent with results of earlier studies, where similar partitioning was reported in classifying protein domain structures. Furthermore, the network was partitioned naturally into several dozens of sub-networks (i.e., communities). Therefore, intra-sub-network clusters were mutually connected with numerous links, although inter-sub-network ones were rarely done with few links. For Kc ≥ 1000, the major sub-networks were about 40; the contents of the major sub-networks were conserved. This sub-partitioning is a novel finding, suggesting that the network is structured hierarchically: Segments construct a cluster, clusters form a sub-network, and sub-networks constitute a region. Additionally, the network was characterized by non-power-law statistics, which is also a novel finding. Conclusion Main findings are: (1) The universe of 50 residue segments found here was characterized by non-power-law statistics. Therefore, the universe differs from those ever reported for the protein domains. (2) The 50-residue segments were partitioned persistently and universally into some dozens (ca. 40) of major sub-networks, irrespective of the number of clusters. (3) These major sub-networks encompassed 90% of all segments. Consequently, the protein tertiary structure is constructed using the dozens of elements (sub-networks). PMID:19454039

  13. From standard alpha-stable Lévy motions to horizontal visibility networks: dependence of multifractal and Laplacian spectrum

    NASA Astrophysics Data System (ADS)

    Zou, Hai-Long; Yu, Zu-Guo; Anh, Vo; Ma, Yuan-Lin

    2018-05-01

    In recent years, researchers have proposed several methods to transform time series (such as those of fractional Brownian motion) into complex networks. In this paper, we construct horizontal visibility networks (HVNs) based on the -stable Lévy motion. We aim to study the relations of multifractal and Laplacian spectrum of transformed networks on the parameters and of the -stable Lévy motion. First, we employ the sandbox algorithm to compute the mass exponents and multifractal spectrum to investigate the multifractality of these HVNs. Then we perform least squares fits to find possible relations of the average fractal dimension , the average information dimension and the average correlation dimension against using several methods of model selection. We also investigate possible dependence relations of eigenvalues and energy on , calculated from the Laplacian and normalized Laplacian operators of the constructed HVNs. All of these constructions and estimates will help us to evaluate the validity and usefulness of the mappings between time series and networks, especially between time series of -stable Lévy motions and HVNs.

  14. Information and material flows in complex networks

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Armbruster, Dieter; Mikhailov, Alexander S.; Lefeber, Erjen

    2006-04-01

    In this special issue, an overview of the Thematic Institute (TI) on Information and Material Flows in Complex Systems is given. The TI was carried out within EXYSTENCE, the first EU Network of Excellence in the area of complex systems. Its motivation, research approach and subjects are presented here. Among the various methods used are many-particle and statistical physics, nonlinear dynamics, as well as complex systems, network and control theory. The contributions are relevant for complex systems as diverse as vehicle and data traffic in networks, logistics, production, and material flows in biological systems. The key disciplines involved are socio-, econo-, traffic- and bio-physics, and a new research area that could be called “biologistics”.

  15. Depression and Chronic Health Conditions Among Latinos: The Role of Social Networks.

    PubMed

    Soto, Sandra; Arredondo, Elva M; Villodas, Miguel T; Elder, John P; Quintanar, Elena; Madanat, Hala

    2016-12-01

    The purpose of this study was to examine the "buffering hypothesis" of social network characteristics in the association between chronic conditions and depression among Latinos. Cross-sectional self-report data from the San Diego Prevention Research Center's community survey of Latinos were used (n = 393). Separate multiple logistic regression models tested the role of chronic conditions and social network characteristics in the likelihood of moderate-to-severe depressive symptoms. Having a greater proportion of the network comprised of friends increased the likelihood of depression among those with high cholesterol. Having a greater proportion of women in the social network was directly related to the increased likelihood of depression, regardless of the presence of chronic health conditions. Findings suggest that network characteristics may play a role in the link between chronic conditions and depression among Latinos. Future research should explore strategies targeting the social networks of Latinos to improve health outcomes.

  16. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  17. Up the ANTe: Understanding Entrepreneurial Leadership Learning through Actor-Network Theory

    ERIC Educational Resources Information Center

    Smith, Sue; Kempster, Steve; Barnes, Stewart

    2017-01-01

    This article explores the role of educators in supporting the development of entrepreneurial leadership learning by creating peer learning networks of owner-managers of small businesses. Using actor-network theory, the authors think through the process of constructing and maintaining a peer learning network (conceived of as an actor-network) and…

  18. Delineating the Construct Network of the Personnel Reaction Blank: Associations with Externalizing Tendencies and Normal Personality

    PubMed Central

    Blonigen, Daniel M.; Patrick, Christopher J.; Gasperi, Marianna; Steffen, Benjamin; Ones, Deniz S.; Arvey, Richard D.; de Oliveira Baumgartl, Viviane; do Nascimento, Elizabeth

    2010-01-01

    Integrity testing has long been utilized in personnel selection to screen for tendencies toward counterproductive workplace behaviors. The construct of externalizing from the psychopathology literature represents a coherent spectrum marked by disinhibitory traits and behaviors. The present study used a sample of male and female undergraduates to examine the construct network of the Personnel Reaction Blank (PRB; Gough, Arvey, & Bradley, 2004), a measure of integrity, in relation to externalizing as well as normal-range personality constructs assessed by the Multidimensional Personality Questionnaire (MPQ; Tellegen & Waller, 2008). Results revealed moderate to strong associations between several PRB scales and externalizing, which were largely accounted for by MPQ traits subsumed by Negative Emotionality and Constraint. After accounting for MPQ traits in the prediction of externalizing, a modest predictive increment was achieved when adding the PRB scales, particularly biographical indicators from the Prosocial Background subscale. The findings highlight externalizing as a focal criterion for scale development in the integrity testing literature, and help delineate the construct network of the PRB within the domains of personality and psychopathology. PMID:21171783

  19. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    PubMed Central

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets. PMID:24904535

  20. Reverse preferential spread in complex networks

    NASA Astrophysics Data System (ADS)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  1. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  2. Effects of global financial crisis on network structure in a local stock market

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2014-08-01

    This study considers the effects of the 2008 global financial crisis on threshold networks of a local Korean financial market around the time of the crisis. Prices of individual stocks belonging to KOSPI 200 (Korea Composite Stock Price Index 200) are considered for three time periods, namely before, during, and after the crisis. Threshold networks are constructed from fully connected cross-correlation networks, and thresholds of cross-correlation coefficients are assigned to obtain threshold networks. At the high threshold, only one large cluster consisting of firms in the financial sector, heavy industry, and construction is observed during the crisis. However, before and after the crisis, there are several fragmented clusters belonging to various sectors. The power law of the degree distribution in threshold networks is observed within the limited range of thresholds. Threshold networks are fatter during the crisis than before or after the crisis. The clustering coefficient of the threshold network follows the power law in the scaling range.

  3. The networked student: A design-based research case study of student constructed personal learning environments in a middle school science course

    NASA Astrophysics Data System (ADS)

    Drexler, Wendy

    This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.

  4. Decision-making tools for distribution networks in disaster relief.

    DOT National Transportation Integrated Search

    2011-08-05

    The devastation caused by the 2010 earthquake in Haiti was compounded by the significant logistical : challenges of distributing relief to those in need. Unfortunately this is the case with many disasters. : Rapid and efficient distribution of water,...

  5. Geometric Assortative Growth Model for Small-World Networks

    PubMed Central

    2014-01-01

    It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs. PMID:24578661

  6. Current Status And Trends In Long Haul Fiber Optics Networks

    NASA Astrophysics Data System (ADS)

    Pyykkonen, Martin

    1986-01-01

    There have been many similar opinions expressed in recent months about there being an imminent bandwidth glut in the nation's long haul fiber optics network. These feelings are based largely on the vast magnitude of construction projects which are either in progress or completed by the major carriers, i.e., AT&T-Communications, MCI, NTN and US Sprint. Coupled with this advanced stage of construction and subsequent network operation, is the slowly developing demand for those applications which consume large amounts of bandwidth, namely those which are video-based.

  7. Competition of information channels in the spreading of innovations

    NASA Astrophysics Data System (ADS)

    Kocsis, Gergely; Kun, Ferenc

    2011-08-01

    We study the spreading of information on technological developments in socioeconomic systems where the social contacts of agents are represented by a network of connections. In the model, agents get informed about the existence and advantages of new innovations through advertising activities of producers, which are then followed by an interagent information transfer. Computer simulations revealed that varying the strength of external driving and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of innovations. The time evolution can be described analytically by an integral equation that captures the nucleation and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior with a crossover to a higher exponent when long-range social contacts are present in the system. Based on computer simulations we construct an approximate phase diagram of the model on a regular square lattice of agents.

  8. The Epidemiology of Social Isolation: National Health & Aging Trends Study.

    PubMed

    Cudjoe, Thomas K M; Roth, David L; Szanton, Sarah L; Wolff, Jennifer L; Boyd, Cynthia M; Thorpe, Roland J

    2018-03-26

    Social isolation among older adults is an important but under-recognized risk for poor health outcomes. Methods are needed to identify subgroups of older adults at risk for social isolation. We constructed a typology of social isolation using data from the National Health and Aging Trends Study (NHATS) and estimated the prevalence and correlates of social isolation among community-dwelling older adults. The typology was formed from four domains: living arrangement, core discussion network size, religious attendance, and social participation. In 2011, 24% of self-responding, community-dwelling older adults (65+ years), approximately 7.7 million people, were characterized as socially isolated, including 1.3 million (4%) who were characterized as severely socially isolated. Multinomial multivariable logistic regression indicated that being unmarried, male, having low education, and low income were all independently associated with social isolation. Black and Hispanic older adults had lower odds of social isolation compared to White older adults, after adjusting for covariates. Social isolation is an important and potentially modifiable risk that affects a significant proportion of the older adult population.

  9. Multiscale recurrence analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  10. Multiscale recurrence analysis of spatio-temporal data.

    PubMed

    Riedl, M; Marwan, N; Kurths, J

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  11. Examining the Disability Model From the International Classification of Functioning, Disability, and Health Using a Large Data Set of Community-Dwelling Malaysian Older Adults

    PubMed Central

    Loke, Seng Cheong; Lim, Wee Shiong; Someya, Yoshiko; Hamid, Tengku A.; Nudin, Siti S. H.

    2015-01-01

    Objective: This study examines the International Classification of Functioning, Disability, and Health model (ICF) using a data set of 2,563 community-dwelling elderly with disease-independent measures of mobility, physical activity, and social networking, to represent ICF constructs. Method: The relationship between chronic disease and disability (independent and dependent variables) was examined using logistic regression. To demonstrate variability in activity performance with functional impairment, graphing was used. The relationship between functional impairment, activity performance, and social participation was examined graphically and using ANOVA. The impact of cognitive deficits was quantified through stratifying by dementia. Results: Disability is strongly related to chronic disease (Wald 25.5, p < .001), functional impairment with activity performance (F = 34.2, p < .001), and social participation (F= 43.6, p < .001). With good function, there is considerable variability in activity performance (inter-quartile range [IQR] = 2.00), but diminishes with high impairment (IQR = 0.00) especially with cognitive deficits. Discussion: Environment modification benefits those with moderate functional impairment, but not with higher grades of functional loss. PMID:26472747

  12. Combining Benford's Law and machine learning to detect money laundering. An actual Spanish court case.

    PubMed

    Badal-Valero, Elena; Alvarez-Jareño, José A; Pavía, Jose M

    2018-01-01

    This paper is based on the analysis of the database of operations from a macro-case on money laundering orchestrated between a core company and a group of its suppliers, 26 of which had already been identified by the police as fraudulent companies. In the face of a well-founded suspicion that more companies have perpetrated criminal acts and in order to make better use of what are very limited police resources, we aim to construct a tool to detect money laundering criminals. We combine Benford's Law and machine learning algorithms (logistic regression, decision trees, neural networks, and random forests) to find patterns of money laundering criminals in the context of a real Spanish court case. After mapping each supplier's set of accounting data into a 21-dimensional space using Benford's Law and applying machine learning algorithms, additional companies that could merit further scrutiny are flagged up. A new tool to detect money laundering criminals is proposed in this paper. The tool is tested in the context of a real case. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Competition of information channels in the spreading of innovations.

    PubMed

    Kocsis, Gergely; Kun, Ferenc

    2011-08-01

    We study the spreading of information on technological developments in socioeconomic systems where the social contacts of agents are represented by a network of connections. In the model, agents get informed about the existence and advantages of new innovations through advertising activities of producers, which are then followed by an interagent information transfer. Computer simulations revealed that varying the strength of external driving and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of innovations. The time evolution can be described analytically by an integral equation that captures the nucleation and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior with a crossover to a higher exponent when long-range social contacts are present in the system. Based on computer simulations we construct an approximate phase diagram of the model on a regular square lattice of agents.

  14. Constructively determining the MBL spectrum using Tensor Networks

    NASA Astrophysics Data System (ADS)

    Clark, Bryan; Yu, Xiongjie; Pekker, David

    All the eigenstates of a many-body localized phase can be compactly represented in the tensor-network language. Current algorithms to find these states often only target single states and/or require difficult optimization to find. In this talk we will show how to generate every eigenstate in the spectrum constructively and discuss its implication for the properties of the MBL phase.

  15. A Networked Learning Model for Construction of Personal Learning Environments in Seventh Grade Life Science

    ERIC Educational Resources Information Center

    Drexler, Wendy

    2010-01-01

    The purpose of this design-based research case study was to apply a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. API widgets were…

  16. Construction of a multimedia application on public network

    NASA Astrophysics Data System (ADS)

    Liu, Jang; Wang, Chwan-Huei; Tseng, Ming-Yu; Hsiao, Sun-Lang; Luo, Wen-Hen; Tseng, Yung-Mean; Hung, Feng-Yue

    1994-04-01

    This paper describes our perception of current developments in networking, telecommunication and technology of multimedia. As such, we have taken a constructive view. From this standpoint, we devised a client server architecture that veils servers from their customers. It adheres to our conviction that network and location independence for serve access is a future trend. We have constructed an on-line KARAOKE on an existing CVS (Chinese Videotex System) to test the workability of this architecture and it works well. We are working on a prototype multimedia service network which is a miniature client server structure of our proposal. A specially designed protocol is described. Through this protocol, an one-to-many connection can be set up and to provide for multimedia applications, new connections can be established within a basic connection. So continuous media may have their own connections without being interrupted by other media, at least from the view of an application. We have advanced a constructive view which is not a framework itself. But it is tantamount to a framework, in building systems as assembly of methods, technics, designs, and ideas. This is what a framework does with more flexibility and availability.

  17. Recovering time-varying networks of dependencies in social and biological studies.

    PubMed

    Ahmed, Amr; Xing, Eric P

    2009-07-21

    A plausible representation of the relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network that is topologically rewiring and semantically evolving over time. Although there is a rich literature in modeling static or temporally invariant networks, little has been done toward recovering the network structure when the networks are not observable in a dynamic context. In this article, we present a machine learning method called TESLA, which builds on a temporally smoothed l(1)-regularized logistic regression formalism that can be cast as a standard convex-optimization problem and solved efficiently by using generic solvers scalable to large networks. We report promising results on recovering simulated time-varying networks and on reverse engineering the latent sequence of temporally rewiring political and academic social networks from longitudinal data, and the evolving gene networks over >4,000 genes during the life cycle of Drosophila melanogaster from a microarray time course at a resolution limited only by sample frequency.

  18. Evolutionary Construction of Block-Based Neural Networks in Consideration of Failure

    NASA Astrophysics Data System (ADS)

    Takamori, Masahito; Koakutsu, Seiichi; Hamagami, Tomoki; Hirata, Hironori

    In this paper we propose a modified gene coding and an evolutionary construction in consideration of failure in evolutionary construction of Block-Based Neural Networks. In the modified gene coding, we arrange the genes of weights on a chromosome in consideration of the position relation of the genes of weight and structure. By the modified gene coding, the efficiency of search by crossover is increased. Thereby, it is thought that improvement of the convergence rate of construction and shortening of construction time can be performed. In the evolutionary construction in consideration of failure, the structure which is adapted for failure is built in the state where failure occured. Thereby, it is thought that BBNN can be reconstructed in a short time at the time of failure. To evaluate the proposed method, we apply it to pattern classification and autonomous mobile robot control problems. The computational experiments indicate that the proposed method can improve convergence rate of construction and shorten of construction and reconstruction time.

  19. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    PubMed

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  20. Applications of Coding in Network Communications

    ERIC Educational Resources Information Center

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  1. [Optimization for MSW logistics of new Xicheng and new Dongcheng districts in Beijing based on the maximum capacity of transfer stations].

    PubMed

    Yuan, Jing; Li, Guo-xue; Zhang, Hong-yu; Luo, Yi-ming

    2013-09-01

    It is necessary to achieve the optimization for MSW logistics based on the new Xicheng (combining the former Xicheng and the former Xuanwu districts) and the new Dongcheng (combining the former Dongcheng and the former Chongwen districts) districts of Beijing. Based on the analysis of current MSW logistics system, transfer station's processing capacity and the terminal treatment facilities' conditions of the four former districts and other districts, a MSW logistics system was built by GIS methods considering transregional treatment. This article analyzes the MSW material balance of current and new logistics systems. Results show that the optimization scheme could reduce the MSW collection distance of the new Xicheng and the new Dongcheng by 9.3 x 10(5) km x a(-1), reduced by 10% compared with current logistics. Under the new logistics solution, considering transregional treatment, can reduce landfill treatment of untreated MSW about 28.3%. If the construction of three incineration plants finished based on the new logistics, the system's optimal ratio of incineration: biochemical treatment: landfill can reach 3.8 : 4.5 : 1.7 compared with 1 : 4.8 : 4.2, which is the ratio of current MSW logistics. The ratio of the amount of incineration: biochemical treatment: landfill approximately reach 4 : 3 : 3 which is the target for 2015. The research results are benefit in increasing MSW utilization and reduction rate of the new Dongcheng and Xicheng districts and nearby districts.

  2. Lunar Commercial Mining Logistics

    NASA Astrophysics Data System (ADS)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  3. Constructing an integrated gene similarity network for the identification of disease genes.

    PubMed

    Tian, Zhen; Guo, Maozu; Wang, Chunyu; Xing, LinLin; Wang, Lei; Zhang, Yin

    2017-09-20

    Discovering novel genes that are involved human diseases is a challenging task in biomedical research. In recent years, several computational approaches have been proposed to prioritize candidate disease genes. Most of these methods are mainly based on protein-protein interaction (PPI) networks. However, since these PPI networks contain false positives and only cover less half of known human genes, their reliability and coverage are very low. Therefore, it is highly necessary to fuse multiple genomic data to construct a credible gene similarity network and then infer disease genes on the whole genomic scale. We proposed a novel method, named RWRB, to infer causal genes of interested diseases. First, we construct five individual gene (protein) similarity networks based on multiple genomic data of human genes. Then, an integrated gene similarity network (IGSN) is reconstructed based on similarity network fusion (SNF) method. Finally, we employee the random walk with restart algorithm on the phenotype-gene bilayer network, which combines phenotype similarity network, IGSN as well as phenotype-gene association network, to prioritize candidate disease genes. We investigate the effectiveness of RWRB through leave-one-out cross-validation methods in inferring phenotype-gene relationships. Results show that RWRB is more accurate than state-of-the-art methods on most evaluation metrics. Further analysis shows that the success of RWRB is benefited from IGSN which has a wider coverage and higher reliability comparing with current PPI networks. Moreover, we conduct a comprehensive case study for Alzheimer's disease and predict some novel disease genes that supported by literature. RWRB is an effective and reliable algorithm in prioritizing candidate disease genes on the genomic scale. Software and supplementary information are available at http://nclab.hit.edu.cn/~tianzhen/RWRB/ .

  4. Identifying causal networks linking cancer processes and anti-tumor immunity using Bayesian network inference and metagene constructs.

    PubMed

    Kaiser, Jacob L; Bland, Cassidy L; Klinke, David J

    2016-03-01

    Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016. © 2016 American Institute of Chemical Engineers.

  5. Harmony search optimization algorithm for a novel transportation problem in a consolidation network

    NASA Astrophysics Data System (ADS)

    Davod Hosseini, Seyed; Akbarpour Shirazi, Mohsen; Taghi Fatemi Ghomi, Seyed Mohammad

    2014-11-01

    This article presents a new harmony search optimization algorithm to solve a novel integer programming model developed for a consolidation network. In this network, a set of vehicles is used to transport goods from suppliers to their corresponding customers via two transportation systems: direct shipment and milk run logistics. The objective of this problem is to minimize the total shipping cost in the network, so it tries to reduce the number of required vehicles using an efficient vehicle routing strategy in the solution approach. Solving several numerical examples confirms that the proposed solution approach based on the harmony search algorithm performs much better than CPLEX in reducing both the shipping cost in the network and computational time requirement, especially for realistic size problem instances.

  6. Application of two neural network paradigms to the study of voluntary employee turnover.

    PubMed

    Somers, M J

    1999-04-01

    Two neural network paradigms--multilayer perceptron and learning vector quantization--were used to study voluntary employee turnover with a sample of 577 hospital employees. The objectives of the study were twofold. The 1st was to assess whether neural computing techniques offered greater predictive accuracy than did conventional turnover methodologies. The 2nd was to explore whether computer models of turnover based on neural network technologies offered new insights into turnover processes. When compared with logistic regression analysis, both neural network paradigms provided considerably more accurate predictions of turnover behavior, particularly with respect to the correct classification of leavers. In addition, these neural network paradigms captured nonlinear relationships that are relevant for theory development. Results are discussed in terms of their implications for future research.

  7. Using Stormwater Detention Ponds for Aquatic Science Instruction.

    ERIC Educational Resources Information Center

    Cahoon, Lawrence B.

    1996-01-01

    Describes the use of recently constructed stormwater detention ponds to conduct a set of field and laboratory exercises in an undergraduate limnology course. Provides a number of logistical advantages that can benefit those teaching aquatic sciences. (JRH)

  8. Analysis of Informationization Construction of Business Financial Management under the Network Economy

    NASA Astrophysics Data System (ADS)

    Dong, Yahui; Zhang, Pengwei; Li, Wei

    To strengthen the informationization construction of the financial management has great significance to the achievement of business management informationization, and under the network economic environment, it is an important task of the financial management that how to conduct informationization construction of traditional financial management to provide true, reliable and complete financial information system for the business managers. This paper thoroughly researches the problem of financial information orientation management (FIOM) by taking the method of combining theory with practice. This paper puts forward the thinking method of financial information management, makes the new contents of E-finance. At last, this paper rebuilds the system of finance internal control from four aspects such as control of organization and management, system development control and safety control of network system.

  9. Racial/Ethnic Disparities in Depressive Symptoms Among Pregnant Women Vary by Income and Neighborhood Poverty.

    PubMed

    Cubbin, Catherine; Heck, Katherine; Powell, Tara; Marchi, Kristen; Braveman, Paula

    2015-01-01

    We examined racial/ethnic disparities in depressive symptoms during pregnancy among a population-based sample of childbearing women in California (N = 24,587). We hypothesized that these racial/ethnic disparities would be eliminated when comparing women with similar incomes and neighborhood poverty environments. Neighborhood poverty trajectory descriptions were linked with survey data measuring age, parity, race/ethnicity, marital status, education, income, and depressive symptoms. We constructed logistic regression models among the overall sample to examine both crude and adjusted racial/ethnic disparities in feeling depressed. Next, stratified adjusted logistic regression models were constructed to examine racial/ethnic disparities in feeling depressed among women of similar income levels living in similar neighborhood poverty environments. We found that racial/ethnic disparities in feeling depressed remained only among women who were not poor themselves and who lived in long-term moderate or low poverty neighborhoods.

  10. Multiple network-constrained regressions expand insights into influenza vaccination responses.

    PubMed

    Avey, Stefan; Mohanty, Subhasis; Wilson, Jean; Zapata, Heidi; Joshi, Samit R; Siconolfi, Barbara; Tsang, Sui; Shaw, Albert C; Kleinstein, Steven H

    2017-07-15

    Systems immunology leverages recent technological advancements that enable broad profiling of the immune system to better understand the response to infection and vaccination, as well as the dysregulation that occurs in disease. An increasingly common approach to gain insights from these large-scale profiling experiments involves the application of statistical learning methods to predict disease states or the immune response to perturbations. However, the goal of many systems studies is not to maximize accuracy, but rather to gain biological insights. The predictors identified using current approaches can be biologically uninterpretable or present only one of many equally predictive models, leading to a narrow understanding of the underlying biology. Here we show that incorporating prior biological knowledge within a logistic modeling framework by using network-level constraints on transcriptional profiling data significantly improves interpretability. Moreover, incorporating different types of biological knowledge produces models that highlight distinct aspects of the underlying biology, while maintaining predictive accuracy. We propose a new framework, Logistic Multiple Network-constrained Regression (LogMiNeR), and apply it to understand the mechanisms underlying differential responses to influenza vaccination. Although standard logistic regression approaches were predictive, they were minimally interpretable. Incorporating prior knowledge using LogMiNeR led to models that were equally predictive yet highly interpretable. In this context, B cell-specific genes and mTOR signaling were associated with an effective vaccination response in young adults. Overall, our results demonstrate a new paradigm for analyzing high-dimensional immune profiling data in which multiple networks encoding prior knowledge are incorporated to improve model interpretability. The R source code described in this article is publicly available at https://bitbucket.org/kleinstein/logminer . steven.kleinstein@yale.edu or stefan.avey@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. 47 CFR 54.639 - Ineligible expenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including the following: i. Computers, including servers, and related hardware (e.g., printers, scanners, laptops), unless used exclusively for network management, maintenance, or other network operations; ii... installation/construction; marketing studies, marketing activities, or outreach to potential network members...

  12. 47 CFR 54.639 - Ineligible expenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., including the following: i. Computers, including servers, and related hardware (e.g., printers, scanners, laptops), unless used exclusively for network management, maintenance, or other network operations; ii... installation/construction; marketing studies, marketing activities, or outreach to potential network members...

  13. Stretched exponential dynamics of coupled logistic maps on a small-world network

    NASA Astrophysics Data System (ADS)

    Mahajan, Ashwini V.; Gade, Prashant M.

    2018-02-01

    We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

  14. Empirical research on coordination evaluation and sustainable development mechanism of regional logistics and new-type urbanization: a panel data analysis from 2000 to 2015 for Liaoning Province in China.

    PubMed

    Sun, Qiang

    2017-06-01

    As the largest developing country in the world, China has witnessed fast-paced urbanization over the past three decades with rapid economic growth. In fact, urbanization has been not only shown to promote economic growth and improve the livelihood of people but also can increase demands of regional logistics. Therefore, a better understanding of the relationship between urbanization and regional logistics is important for China's future sustainable development. The development of urban residential area and heterogeneous, modern society as well regional logistics are running two abreast. The regional logistics can promote the development of new-type urbanization jointly by promoting industrial concentration and logistics demand, enhancing the residents' quality of life and improving the infrastructure and logistics technology. In this paper, the index system and evaluation model for evaluating the development of regional logistics and the new-type urbanization are constructed. Further, the econometric analysis is utilized such as correlation analysis, co-integration test, and error correction model to explore relationships of the new-type urbanization development and regional logistics development in Liaoning Province. The results showed that there was a long-term stable equilibrium relationship between the new-type urbanization and regional logistics. The findings have important implications for Chinese policymakers that on the path towards a sustainable urbanization and regional reverse, this must be taken into consideration. The paper concludes providing some strategies that might be helpful to the policymakers in formulating development policies for sustainable urbanization.

  15. The model of encryption algorithm based on non-positional polynomial notations and constructed on an SP-network

    NASA Astrophysics Data System (ADS)

    Kapalova, N.; Haumen, A.

    2018-05-01

    This paper addresses to structures and properties of the cryptographic information protection algorithm model based on NPNs and constructed on an SP-network. The main task of the research is to increase the cryptostrength of the algorithm. In the paper, the transformation resulting in the improvement of the cryptographic strength of the algorithm is described in detail. The proposed model is based on an SP-network. The reasons for using the SP-network in this model are the conversion properties used in these networks. In the encryption process, transformations based on S-boxes and P-boxes are used. It is known that these transformations can withstand cryptanalysis. In addition, in the proposed model, transformations that satisfy the requirements of the "avalanche effect" are used. As a result of this work, a computer program that implements an encryption algorithm model based on the SP-network has been developed.

  16. A Social Network System Based on an Ontology in the Korea Institute of Oriental Medicine

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyun; Han, Jeong-Min; Song, Mi-Young

    We in this paper propose a social network based on ontology in Korea Institute of Oriental Medicine (KIOM). By using the social network, researchers can find collaborators and share research results with others so that studies in Korean Medicine fields can be activated. For this purpose, first, personal profiles, scholarships, careers, licenses, academic activities, research results, and personal connections for all of researchers in KIOM are collected. After relationship and hierarchy among ontology classes and attributes of classes are defined through analyzing the collected information, a social network ontology are constructed using FOAF and OWL. This ontology can be easily interconnected with other social network by FOAF and provide the reasoning based on OWL ontology. In future, we construct the search and reasoning system using the ontology. Moreover, if the social network is activated, we will open it to whole Korean Medicine fields.

  17. Preserved Network Metrics across Translated Texts

    NASA Astrophysics Data System (ADS)

    Cabatbat, Josephine Jill T.; Monsanto, Jica P.; Tapang, Giovanni A.

    2014-09-01

    Co-occurrence language networks based on Bible translations and the Universal Declaration of Human Rights (UDHR) translations in different languages were constructed and compared with random text networks. Among the considered network metrics, the network size, N, the normalized betweenness centrality (BC), and the average k-nearest neighbors, knn, were found to be the most preserved across translations. Moreover, similar frequency distributions of co-occurring network motifs were observed for translated texts networks.

  18. Dissipation, Voltage Profile and Levy Dragon in a Special Ladder Network

    ERIC Educational Resources Information Center

    Ucak, C.

    2009-01-01

    A ladder network constructed by an elementary two-terminal network consisting of a parallel resistor-inductor block in series with a parallel resistor-capacitor block sometimes is said to have a non-dispersive dissipative response. This special ladder network is created iteratively by replacing the elementary two-terminal network in place of the…

  19. An assessment of the barriers to the consumers' uptake of genetically modified foods: a neural network analysis.

    PubMed

    Rodríguez-Entrena, Macario; Salazar-Ordóñez, Melania; Becerra-Alonso, David

    2016-03-30

    This paper studies which of the attitudinal, cognitive and socio-economic factors determine the willingness to purchase genetically modified (GM) food, enabling the forecasting of consumers' behaviour in Andalusia, southern Spain. This classification has been made by a standard multilayer perceptron neural network trained with extreme learning machine. Later, an ordered logistic regression was applied to determine whether the neural network can outperform this traditional econometric approach. The results show that the highest relative contributions lie in the variables related to perceived risks of GM food, while the perceived benefits have a lower influence. In addition, an innovative attitude towards food presents a strong link, as does the perception of food safety. The variables with the least relative contribution are subjective knowledge about GM food and the consumers' age. The neural network approach outperforms the correct classification percentage from the ordered logistic regression. The perceived risks must be considered as a critical factor. A strategy to improve the GM food acceptance is to develop a transparent and balanced information framework that makes the potential risk understandable by society, and make them aware of the risk assessments for GM food in the EU. For its success, it is essential to improve the trust in EU institutions and scientific regulatory authorities. © 2015 Society of Chemical Industry.

  20. Spectra of English evolving word co-occurrence networks

    NASA Astrophysics Data System (ADS)

    Liang, Wei

    2017-02-01

    Spectral analysis is a powerful tool that provides global measures of the network properties. In this paper, 200 English articles are collected. A word co-occurrence network is constructed from each single article (denoted by single network). Furthermore, 5 large English word co-occurrence networks are constructed (denoted by large network). Spectra of their adjacency matrices are computed. The largest eigenvalue, λ1, depends on the network size N and the number of edges E as λ1 ∝N0.66 and λ1 ∝E0.54, respectively. The number of different eigenvalues, Nλ, increase in the manner of Nλ ∝N0.58 and Nλ ∝E0.47. The middle part of the spectral distribution can be fitted by a line with slope - 0.01 in each of the large networks, whereas two segments with the same slope - 0.03 for 0 ≪ N < 260 and - 0.02 for 260 < N < 2800 are needed for the single networks. An "M"-shape distribution appears in each of the spectral densities of the large networks. These and other results can provide useful insight into the structural properties of English linguistic networks.

Top