Sample records for logistic regression methods

  1. Sample size determination for logistic regression on a logit-normal distribution.

    PubMed

    Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance

    2017-06-01

    Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.

  2. Fungible weights in logistic regression.

    PubMed

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun

    2014-12-01

    Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.

  4. Robust mislabel logistic regression without modeling mislabel probabilities.

    PubMed

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  5. The crux of the method: assumptions in ordinary least squares and logistic regression.

    PubMed

    Long, Rebecca G

    2008-10-01

    Logistic regression has increasingly become the tool of choice when analyzing data with a binary dependent variable. While resources relating to the technique are widely available, clear discussions of why logistic regression should be used in place of ordinary least squares regression are difficult to find. The current paper compares and contrasts the assumptions of ordinary least squares with those of logistic regression and explains why logistic regression's looser assumptions make it adept at handling violations of the more important assumptions in ordinary least squares.

  6. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  7. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  8. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    NASA Astrophysics Data System (ADS)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  9. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.

    PubMed

    Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L

    2017-02-06

    Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.

  10. London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure

    PubMed Central

    Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith

    2017-01-01

    Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343

  11. Preserving Institutional Privacy in Distributed binary Logistic Regression.

    PubMed

    Wu, Yuan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.

  12. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  13. Controlling Type I Error Rates in Assessing DIF for Logistic Regression Method Combined with SIBTEST Regression Correction Procedure and DIF-Free-Then-DIF Strategy

    ERIC Educational Resources Information Center

    Shih, Ching-Lin; Liu, Tien-Hsiang; Wang, Wen-Chung

    2014-01-01

    The simultaneous item bias test (SIBTEST) method regression procedure and the differential item functioning (DIF)-free-then-DIF strategy are applied to the logistic regression (LR) method simultaneously in this study. These procedures are used to adjust the effects of matching true score on observed score and to better control the Type I error…

  14. PARAMETRIC AND NON PARAMETRIC (MARS: MULTIVARIATE ADDITIVE REGRESSION SPLINES) LOGISTIC REGRESSIONS FOR PREDICTION OF A DICHOTOMOUS RESPONSE VARIABLE WITH AN EXAMPLE FOR PRESENCE/ABSENCE OF AMPHIBIANS

    EPA Science Inventory

    The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...

  15. Analyzing Student Learning Outcomes: Usefulness of Logistic and Cox Regression Models. IR Applications, Volume 5

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2005-01-01

    Logistic and Cox regression methods are practical tools used to model the relationships between certain student learning outcomes and their relevant explanatory variables. The logistic regression model fits an S-shaped curve into a binary outcome with data points of zero and one. The Cox regression model allows investigators to study the duration…

  16. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    ERIC Educational Resources Information Center

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  17. The cross-validated AUC for MCP-logistic regression with high-dimensional data.

    PubMed

    Jiang, Dingfeng; Huang, Jian; Zhang, Ying

    2013-10-01

    We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.

  18. Selecting risk factors: a comparison of discriminant analysis, logistic regression and Cox's regression model using data from the Tromsø Heart Study.

    PubMed

    Brenn, T; Arnesen, E

    1985-01-01

    For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.

  19. Epidemiologic programs for computers and calculators. A microcomputer program for multiple logistic regression by unconditional and conditional maximum likelihood methods.

    PubMed

    Campos-Filho, N; Franco, E L

    1989-02-01

    A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.

  20. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

    Treesearch

    Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen Fitzgerald

    2012-01-01

    Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...

  1. Differentially private distributed logistic regression using private and public data.

    PubMed

    Ji, Zhanglong; Jiang, Xiaoqian; Wang, Shuang; Xiong, Li; Ohno-Machado, Lucila

    2014-01-01

    Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee.

  2. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    PubMed Central

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  3. A deeper look at two concepts of measuring gene-gene interactions: logistic regression and interaction information revisited.

    PubMed

    Mielniczuk, Jan; Teisseyre, Paweł

    2018-03-01

    Detection of gene-gene interactions is one of the most important challenges in genome-wide case-control studies. Besides traditional logistic regression analysis, recently the entropy-based methods attracted a significant attention. Among entropy-based methods, interaction information is one of the most promising measures having many desirable properties. Although both logistic regression and interaction information have been used in several genome-wide association studies, the relationship between them has not been thoroughly investigated theoretically. The present paper attempts to fill this gap. We show that although certain connections between the two methods exist, in general they refer two different concepts of dependence and looking for interactions in those two senses leads to different approaches to interaction detection. We introduce ordering between interaction measures and specify conditions for independent and dependent genes under which interaction information is more discriminative measure than logistic regression. Moreover, we show that for so-called perfect distributions those measures are equivalent. The numerical experiments illustrate the theoretical findings indicating that interaction information and its modified version are more universal tools for detecting various types of interaction than logistic regression and linkage disequilibrium measures. © 2017 WILEY PERIODICALS, INC.

  4. Use and interpretation of logistic regression in habitat-selection studies

    USGS Publications Warehouse

    Keating, Kim A.; Cherry, Steve

    2004-01-01

     Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.

  5. Logistic regression for circular data

    NASA Astrophysics Data System (ADS)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  6. Logistic regression applied to natural hazards: rare event logistic regression with replications

    NASA Astrophysics Data System (ADS)

    Guns, M.; Vanacker, V.

    2012-06-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  7. Large unbalanced credit scoring using Lasso-logistic regression ensemble.

    PubMed

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.

  8. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Differentially private distributed logistic regression using private and public data

    PubMed Central

    2014-01-01

    Background Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. Methodology In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. Experiments and results We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Conclusion Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee. PMID:25079786

  10. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Estimating interaction on an additive scale between continuous determinants in a logistic regression model.

    PubMed

    Knol, Mirjam J; van der Tweel, Ingeborg; Grobbee, Diederick E; Numans, Mattijs E; Geerlings, Mirjam I

    2007-10-01

    To determine the presence of interaction in epidemiologic research, typically a product term is added to the regression model. In linear regression, the regression coefficient of the product term reflects interaction as departure from additivity. However, in logistic regression it refers to interaction as departure from multiplicativity. Rothman has argued that interaction estimated as departure from additivity better reflects biologic interaction. So far, literature on estimating interaction on an additive scale using logistic regression only focused on dichotomous determinants. The objective of the present study was to provide the methods to estimate interaction between continuous determinants and to illustrate these methods with a clinical example. and results From the existing literature we derived the formulas to quantify interaction as departure from additivity between one continuous and one dichotomous determinant and between two continuous determinants using logistic regression. Bootstrapping was used to calculate the corresponding confidence intervals. To illustrate the theory with an empirical example, data from the Utrecht Health Project were used, with age and body mass index as risk factors for elevated diastolic blood pressure. The methods and formulas presented in this article are intended to assist epidemiologists to calculate interaction on an additive scale between two variables on a certain outcome. The proposed methods are included in a spreadsheet which is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.

  12. Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.

    PubMed

    Zhang, Jianguang; Jiang, Jianmin

    2018-02-01

    While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.

  13. Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble

    PubMed Central

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988

  14. Three methods to construct predictive models using logistic regression and likelihood ratios to facilitate adjustment for pretest probability give similar results.

    PubMed

    Chan, Siew Foong; Deeks, Jonathan J; Macaskill, Petra; Irwig, Les

    2008-01-01

    To compare three predictive models based on logistic regression to estimate adjusted likelihood ratios allowing for interdependency between diagnostic variables (tests). This study was a review of the theoretical basis, assumptions, and limitations of published models; and a statistical extension of methods and application to a case study of the diagnosis of obstructive airways disease based on history and clinical examination. Albert's method includes an offset term to estimate an adjusted likelihood ratio for combinations of tests. Spiegelhalter and Knill-Jones method uses the unadjusted likelihood ratio for each test as a predictor and computes shrinkage factors to allow for interdependence. Knottnerus' method differs from the other methods because it requires sequencing of tests, which limits its application to situations where there are few tests and substantial data. Although parameter estimates differed between the models, predicted "posttest" probabilities were generally similar. Construction of predictive models using logistic regression is preferred to the independence Bayes' approach when it is important to adjust for dependency of tests errors. Methods to estimate adjusted likelihood ratios from predictive models should be considered in preference to a standard logistic regression model to facilitate ease of interpretation and application. Albert's method provides the most straightforward approach.

  15. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis

    PubMed Central

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655

  16. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

    PubMed

    Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H

    2016-01-01

    Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.

  17. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  18. Advanced colorectal neoplasia risk stratification by penalized logistic regression.

    PubMed

    Lin, Yunzhi; Yu, Menggang; Wang, Sijian; Chappell, Richard; Imperiale, Thomas F

    2016-08-01

    Colorectal cancer is the second leading cause of death from cancer in the United States. To facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal cancer among the 90% of US residents who are considered "average risk." In this article, we investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and advanced, precancerous polyps). We use a recently completed large cohort study of subjects who underwent a first screening colonoscopy. Logistic regression models have been used in the literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. However, logistic regression may be prone to overfitting and instability in variable selection. Since most of the risk factors in our study have several categories, it was tempting to collapse these categories into fewer risk groups. We propose a penalized logistic regression method that automatically and simultaneously selects variables, groups categories, and estimates their coefficients by penalizing the [Formula: see text]-norm of both the coefficients and their differences. Hence, it encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, i.e. variable selection. We apply the penalized logistic regression method to our data. The important variables are selected, with close categories simultaneously grouped, by penalized regression models with and without the interactions terms. The models are validated with 10-fold cross-validation. The receiver operating characteristic curves of the penalized regression models dominate the receiver operating characteristic curve of naive logistic regressions, indicating a superior discriminative performance. © The Author(s) 2013.

  19. A comparison of three methods of assessing differential item functioning (DIF) in the Hospital Anxiety Depression Scale: ordinal logistic regression, Rasch analysis and the Mantel chi-square procedure.

    PubMed

    Cameron, Isobel M; Scott, Neil W; Adler, Mats; Reid, Ian C

    2014-12-01

    It is important for clinical practice and research that measurement scales of well-being and quality of life exhibit only minimal differential item functioning (DIF). DIF occurs where different groups of people endorse items in a scale to different extents after being matched by the intended scale attribute. We investigate the equivalence or otherwise of common methods of assessing DIF. Three methods of measuring age- and sex-related DIF (ordinal logistic regression, Rasch analysis and Mantel χ(2) procedure) were applied to Hospital Anxiety Depression Scale (HADS) data pertaining to a sample of 1,068 patients consulting primary care practitioners. Three items were flagged by all three approaches as having either age- or sex-related DIF with a consistent direction of effect; a further three items identified did not meet stricter criteria for important DIF using at least one method. When applying strict criteria for significant DIF, ordinal logistic regression was slightly less sensitive. Ordinal logistic regression, Rasch analysis and contingency table methods yielded consistent results when identifying DIF in the HADS depression and HADS anxiety scales. Regardless of methods applied, investigators should use a combination of statistical significance, magnitude of the DIF effect and investigator judgement when interpreting the results.

  20. Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.

    PubMed

    Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai

    2017-04-01

    This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.

  1. Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis

    ERIC Educational Resources Information Center

    Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John

    2012-01-01

    Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…

  2. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    PubMed

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  3. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Mei, Zhixiong; Wu, Hao; Li, Shiyun

    2018-06-01

    The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.

  4. Racial/ethnic and educational differences in the estimated odds of recent nitrite use among adult household residents in the United States: an illustration of matching and conditional logistic regression.

    PubMed

    Delva, J; Spencer, M S; Lin, J K

    2000-01-01

    This article compares estimates of the relative odds of nitrite use obtained from weighted unconditional logistic regression with estimates obtained from conditional logistic regression after post-stratification and matching of cases with controls by neighborhood of residence. We illustrate these methods by comparing the odds associated with nitrite use among adults of four racial/ethnic groups, with and without a high school education. We used aggregated data from the 1994-B through 1996 National Household Survey on Drug Abuse (NHSDA). Difference between the methods and implications for analysis and inference are discussed.

  5. Nonconvex Sparse Logistic Regression With Weakly Convex Regularization

    NASA Astrophysics Data System (ADS)

    Shen, Xinyue; Gu, Yuantao

    2018-06-01

    In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.

  6. Comparison of cranial sex determination by discriminant analysis and logistic regression.

    PubMed

    Amores-Ampuero, Anabel; Alemán, Inmaculada

    2016-04-05

    Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

  7. Clustering performance comparison using K-means and expectation maximization algorithms.

    PubMed

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  8. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography.

    PubMed

    Kim, Sun Mi; Kim, Yongdai; Jeong, Kuhwan; Jeong, Heeyeong; Kim, Jiyoung

    2018-01-01

    The aim of this study was to compare the performance of image analysis for predicting breast cancer using two distinct regression models and to evaluate the usefulness of incorporating clinical and demographic data (CDD) into the image analysis in order to improve the diagnosis of breast cancer. This study included 139 solid masses from 139 patients who underwent a ultrasonography-guided core biopsy and had available CDD between June 2009 and April 2010. Three breast radiologists retrospectively reviewed 139 breast masses and described each lesion using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We applied and compared two regression methods-stepwise logistic (SL) regression and logistic least absolute shrinkage and selection operator (LASSO) regression-in which the BI-RADS descriptors and CDD were used as covariates. We investigated the performances of these regression methods and the agreement of radiologists in terms of test misclassification error and the area under the curve (AUC) of the tests. Logistic LASSO regression was superior (P<0.05) to SL regression, regardless of whether CDD was included in the covariates, in terms of test misclassification errors (0.234 vs. 0.253, without CDD; 0.196 vs. 0.258, with CDD) and AUC (0.785 vs. 0.759, without CDD; 0.873 vs. 0.735, with CDD). However, it was inferior (P<0.05) to the agreement of three radiologists in terms of test misclassification errors (0.234 vs. 0.168, without CDD; 0.196 vs. 0.088, with CDD) and the AUC without CDD (0.785 vs. 0.844, P<0.001), but was comparable to the AUC with CDD (0.873 vs. 0.880, P=0.141). Logistic LASSO regression based on BI-RADS descriptors and CDD showed better performance than SL in predicting the presence of breast cancer. The use of CDD as a supplement to the BI-RADS descriptors significantly improved the prediction of breast cancer using logistic LASSO regression.

  9. Logistic regression for risk factor modelling in stuttering research.

    PubMed

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Logistic regression for dichotomized counts.

    PubMed

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  11. A regularization corrected score method for nonlinear regression models with covariate error.

    PubMed

    Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna

    2013-03-01

    Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.

  12. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  13. An empirical study of statistical properties of variance partition coefficients for multi-level logistic regression models

    USGS Publications Warehouse

    Li, Ji; Gray, B.R.; Bates, D.M.

    2008-01-01

    Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.

  14. Estimating the exceedance probability of rain rate by logistic regression

    NASA Technical Reports Server (NTRS)

    Chiu, Long S.; Kedem, Benjamin

    1990-01-01

    Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.

  15. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  16. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.

    PubMed

    Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong

    2017-12-28

    Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which obtained the highest precision. All adjustment strategies through logistic regression were biased for causal effect estimation, while IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus, IPW-based-MSM was recommended to adjust for confounders set.

  17. Predictors of course in obsessive-compulsive disorder: logistic regression versus Cox regression for recurrent events.

    PubMed

    Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M

    2007-09-01

    Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.

  18. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  19. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  20. A Note on Three Statistical Tests in the Logistic Regression DIF Procedure

    ERIC Educational Resources Information Center

    Paek, Insu

    2012-01-01

    Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…

  1. Label-noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study.

    PubMed

    Lee, Seokho; Shin, Hyejin; Lee, Sang Han

    2016-12-01

    Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD-CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed-form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI. © 2016, The International Biometric Society.

  2. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    PubMed

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  3. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  4. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    PubMed

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  6. Ensemble of trees approaches to risk adjustment for evaluating a hospital's performance.

    PubMed

    Liu, Yang; Traskin, Mikhail; Lorch, Scott A; George, Edward I; Small, Dylan

    2015-03-01

    A commonly used method for evaluating a hospital's performance on an outcome is to compare the hospital's observed outcome rate to the hospital's expected outcome rate given its patient (case) mix and service. The process of calculating the hospital's expected outcome rate given its patient mix and service is called risk adjustment (Iezzoni 1997). Risk adjustment is critical for accurately evaluating and comparing hospitals' performances since we would not want to unfairly penalize a hospital just because it treats sicker patients. The key to risk adjustment is accurately estimating the probability of an Outcome given patient characteristics. For cases with binary outcomes, the method that is commonly used in risk adjustment is logistic regression. In this paper, we consider ensemble of trees methods as alternatives for risk adjustment, including random forests and Bayesian additive regression trees (BART). Both random forests and BART are modern machine learning methods that have been shown recently to have excellent performance for prediction of outcomes in many settings. We apply these methods to carry out risk adjustment for the performance of neonatal intensive care units (NICU). We show that these ensemble of trees methods outperform logistic regression in predicting mortality among babies treated in NICU, and provide a superior method of risk adjustment compared to logistic regression.

  7. Separation in Logistic Regression: Causes, Consequences, and Control.

    PubMed

    Mansournia, Mohammad Ali; Geroldinger, Angelika; Greenland, Sander; Heinze, Georg

    2018-04-01

    Separation is encountered in regression models with a discrete outcome (such as logistic regression) where the covariates perfectly predict the outcome. It is most frequent under the same conditions that lead to small-sample and sparse-data bias, such as presence of a rare outcome, rare exposures, highly correlated covariates, or covariates with strong effects. In theory, separation will produce infinite estimates for some coefficients. In practice, however, separation may be unnoticed or mishandled because of software limits in recognizing and handling the problem and in notifying the user. We discuss causes of separation in logistic regression and describe how common software packages deal with it. We then describe methods that remove separation, focusing on the same penalized-likelihood techniques used to address more general sparse-data problems. These methods improve accuracy, avoid software problems, and allow interpretation as Bayesian analyses with weakly informative priors. We discuss likelihood penalties, including some that can be implemented easily with any software package, and their relative advantages and disadvantages. We provide an illustration of ideas and methods using data from a case-control study of contraceptive practices and urinary tract infection.

  8. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    PubMed

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  9. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    USGS Publications Warehouse

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  10. Prescription-drug-related risk in driving: comparing conventional and lasso shrinkage logistic regressions.

    PubMed

    Avalos, Marta; Adroher, Nuria Duran; Lagarde, Emmanuel; Thiessard, Frantz; Grandvalet, Yves; Contrand, Benjamin; Orriols, Ludivine

    2012-09-01

    Large data sets with many variables provide particular challenges when constructing analytic models. Lasso-related methods provide a useful tool, although one that remains unfamiliar to most epidemiologists. We illustrate the application of lasso methods in an analysis of the impact of prescribed drugs on the risk of a road traffic crash, using a large French nationwide database (PLoS Med 2010;7:e1000366). In the original case-control study, the authors analyzed each exposure separately. We use the lasso method, which can simultaneously perform estimation and variable selection in a single model. We compare point estimates and confidence intervals using (1) a separate logistic regression model for each drug with a Bonferroni correction and (2) lasso shrinkage logistic regression analysis. Shrinkage regression had little effect on (bias corrected) point estimates, but led to less conservative results, noticeably for drugs with moderate levels of exposure. Carbamates, carboxamide derivative and fatty acid derivative antiepileptics, drugs used in opioid dependence, and mineral supplements of potassium showed stronger associations. Lasso is a relevant method in the analysis of databases with large number of exposures and can be recommended as an alternative to conventional strategies.

  11. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  12. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network

    PubMed Central

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz

    2012-01-01

    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins. PMID:27418910

  13. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network.

    PubMed

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz

    2012-01-01

    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.

  14. Applications of statistics to medical science, III. Correlation and regression.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    In this third part of a series surveying medical statistics, the concepts of correlation and regression are reviewed. In particular, methods of linear regression and logistic regression are discussed. Arguments related to survival analysis will be made in a subsequent paper.

  15. Computing group cardinality constraint solutions for logistic regression problems.

    PubMed

    Zhang, Yong; Kwon, Dongjin; Pohl, Kilian M

    2017-01-01

    We derive an algorithm to directly solve logistic regression based on cardinality constraint, group sparsity and use it to classify intra-subject MRI sequences (e.g. cine MRIs) of healthy from diseased subjects. Group cardinality constraint models are often applied to medical images in order to avoid overfitting of the classifier to the training data. Solutions within these models are generally determined by relaxing the cardinality constraint to a weighted feature selection scheme. However, these solutions relate to the original sparse problem only under specific assumptions, which generally do not hold for medical image applications. In addition, inferring clinical meaning from features weighted by a classifier is an ongoing topic of discussion. Avoiding weighing features, we propose to directly solve the group cardinality constraint logistic regression problem by generalizing the Penalty Decomposition method. To do so, we assume that an intra-subject series of images represents repeated samples of the same disease patterns. We model this assumption by combining series of measurements created by a feature across time into a single group. Our algorithm then derives a solution within that model by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The minimum to the smooth and convex logistic regression problem is determined via gradient descent while we derive a closed form solution for finding a sparse approximation of that minimum. We apply our method to cine MRI of 38 healthy controls and 44 adult patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. Our method correctly identifies regions impacted by TOF and generally obtains statistically significant higher classification accuracy than alternative solutions to this model, i.e., ones relaxing group cardinality constraints. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluating the perennial stream using logistic regression in central Taiwan

    NASA Astrophysics Data System (ADS)

    Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.

    2014-12-01

    This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.

  17. A general framework for the use of logistic regression models in meta-analysis.

    PubMed

    Simmonds, Mark C; Higgins, Julian Pt

    2016-12-01

    Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.

  18. New machine-learning algorithms for prediction of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit; Sairam, N.

    2014-03-01

    This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.

  19. A Comparison of the Logistic Regression and Contingency Table Methods for Simultaneous Detection of Uniform and Nonuniform DIF

    ERIC Educational Resources Information Center

    Guler, Nese; Penfield, Randall D.

    2009-01-01

    In this study, we investigate the logistic regression (LR), Mantel-Haenszel (MH), and Breslow-Day (BD) procedures for the simultaneous detection of both uniform and nonuniform differential item functioning (DIF). A simulation study was used to assess and compare the Type I error rate and power of a combined decision rule (CDR), which assesses DIF…

  20. Complementary nonparametric analysis of covariance for logistic regression in a randomized clinical trial setting.

    PubMed

    Tangen, C M; Koch, G G

    1999-03-01

    In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.

  1. Comparison of four methods for deriving hospital standardised mortality ratios from a single hierarchical logistic regression model.

    PubMed

    Mohammed, Mohammed A; Manktelow, Bradley N; Hofer, Timothy P

    2016-04-01

    There is interest in deriving case-mix adjusted standardised mortality ratios so that comparisons between healthcare providers, such as hospitals, can be undertaken in the controversial belief that variability in standardised mortality ratios reflects quality of care. Typically standardised mortality ratios are derived using a fixed effects logistic regression model, without a hospital term in the model. This fails to account for the hierarchical structure of the data - patients nested within hospitals - and so a hierarchical logistic regression model is more appropriate. However, four methods have been advocated for deriving standardised mortality ratios from a hierarchical logistic regression model, but their agreement is not known and neither do we know which is to be preferred. We found significant differences between the four types of standardised mortality ratios because they reflect a range of underlying conceptual issues. The most subtle issue is the distinction between asking how an average patient fares in different hospitals versus how patients at a given hospital fare at an average hospital. Since the answers to these questions are not the same and since the choice between these two approaches is not obvious, the extent to which profiling hospitals on mortality can be undertaken safely and reliably, without resolving these methodological issues, remains questionable. © The Author(s) 2012.

  2. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  3. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    PubMed

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of more than 10% over the standard classification models, which can be translated to correct labeling of additional 400 - 500 readmissions for heart failure patients in the state of California over a year. Lastly, several key predictor identified from the HCUP data include the disposition location from discharge, the number of chronic conditions, and the number of acute procedures. It would be beneficial to apply simple decision rules obtained from the decision tree in an ad-hoc manner to guide the cohort stratification. It could be potentially beneficial to explore the effect of pairwise interactions between influential predictors when building the logistic regression models for different data strata. Judicious use of the ad-hoc CLR models developed offers insights into future development of prediction models for hospital readmissions, which can lead to better intuition in identifying high-risk patients and developing effective post-discharge care strategies. Lastly, this paper is expected to raise the awareness of collecting data on additional markers and developing necessary database infrastructure for larger-scale exploratory studies on readmission risk prediction.

  4. Access disparities to Magnet hospitals for patients undergoing neurosurgical operations

    PubMed Central

    Missios, Symeon; Bekelis, Kimon

    2017-01-01

    Background Centers of excellence focusing on quality improvement have demonstrated superior outcomes for a variety of surgical interventions. We investigated the presence of access disparities to hospitals recognized by the Magnet Recognition Program of the American Nurses Credentialing Center (ANCC) for patients undergoing neurosurgical operations. Methods We performed a cohort study of all neurosurgery patients who were registered in the New York Statewide Planning and Research Cooperative System (SPARCS) database from 2009–2013. We examined the association of African-American race and lack of insurance with Magnet status hospitalization for neurosurgical procedures. A mixed effects propensity adjusted multivariable regression analysis was used to control for confounding. Results During the study period, 190,535 neurosurgical patients met the inclusion criteria. Using a multivariable logistic regression, we demonstrate that African-Americans had lower admission rates to Magnet institutions (OR 0.62; 95% CI, 0.58–0.67). This persisted in a mixed effects logistic regression model (OR 0.77; 95% CI, 0.70–0.83) to adjust for clustering at the patient county level, and a propensity score adjusted logistic regression model (OR 0.75; 95% CI, 0.69–0.82). Additionally, lack of insurance was associated with lower admission rates to Magnet institutions (OR 0.71; 95% CI, 0.68–0.73), in a multivariable logistic regression model. This persisted in a mixed effects logistic regression model (OR 0.72; 95% CI, 0.69–0.74), and a propensity score adjusted logistic regression model (OR 0.72; 95% CI, 0.69–0.75). Conclusions Using a comprehensive all-payer cohort of neurosurgery patients in New York State we identified an association of African-American race and lack of insurance with lower rates of admission to Magnet hospitals. PMID:28684152

  5. Logistic regression trees for initial selection of interesting loci in case-control studies

    PubMed Central

    Nickolov, Radoslav Z; Milanov, Valentin B

    2007-01-01

    Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557

  6. 4D-Fingerprint Categorical QSAR Models for Skin Sensitization Based on Classification Local Lymph Node Assay Measures

    PubMed Central

    Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.

    2008-01-01

    Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934

  7. The logistic model for predicting the non-gonoactive Aedes aegypti females.

    PubMed

    Reyes-Villanueva, Filiberto; Rodríguez-Pérez, Mario A

    2004-01-01

    To estimate, using logistic regression, the likelihood of occurrence of a non-gonoactive Aedes aegypti female, previously fed human blood, with relation to body size and collection method. This study was conducted in Monterrey, Mexico, between 1994 and 1996. Ten samplings of 60 mosquitoes of Ae. aegypti females were carried out in three dengue endemic areas: six of biting females, two of emerging mosquitoes, and two of indoor resting females. Gravid females, as well as those with blood in the gut were removed. Mosquitoes were taken to the laboratory and engorged on human blood. After 48 hours, ovaries were dissected to register whether they were gonoactive or non-gonoactive. Wing-length in mm was an indicator for body size. The logistic regression model was used to assess the likelihood of non-gonoactivity, as a binary variable, in relation to wing-length and collection method. Of the 600 females, 164 (27%) remained non-gonoactive, with a wing-length range of 1.9-3.2 mm, almost equal to that of all females (1.8-3.3 mm). The logistic regression model showed a significant likelihood of a female remaining non-gonoactive (Y=1). The collection method did not influence the binary response, but there was an inverse relationship between non-gonoactivity and wing-length. Dengue vector populations from Monterrey, Mexico display a wide-range body size. Logistic regression was a useful tool to estimate the likelihood for an engorged female to remain non-gonoactive. The necessity for a second blood meal is present in any female, but small mosquitoes are more likely to bite again within a 2-day interval, in order to attain egg maturation. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.

  8. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  9. Estimating Contraceptive Prevalence Using Logistics Data for Short-Acting Methods: Analysis Across 30 Countries

    PubMed Central

    Cunningham, Marc; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana

    2015-01-01

    Background: Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Methods: Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. Results: For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Conclusions: Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. PMID:26374805

  10. The effect of high leverage points on the logistic ridge regression estimator having multicollinearity

    NASA Astrophysics Data System (ADS)

    Ariffin, Syaiba Balqish; Midi, Habshah

    2014-06-01

    This article is concerned with the performance of logistic ridge regression estimation technique in the presence of multicollinearity and high leverage points. In logistic regression, multicollinearity exists among predictors and in the information matrix. The maximum likelihood estimator suffers a huge setback in the presence of multicollinearity which cause regression estimates to have unduly large standard errors. To remedy this problem, a logistic ridge regression estimator is put forward. It is evident that the logistic ridge regression estimator outperforms the maximum likelihood approach for handling multicollinearity. The effect of high leverage points are then investigated on the performance of the logistic ridge regression estimator through real data set and simulation study. The findings signify that logistic ridge regression estimator fails to provide better parameter estimates in the presence of both high leverage points and multicollinearity.

  11. Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods

    NASA Astrophysics Data System (ADS)

    Erener, Arzu; Sivas, A. Abdullah; Selcuk-Kestel, A. Sevtap; Düzgün, H. Sebnem

    2017-07-01

    All of the quantitative landslide susceptibility mapping (QLSM) methods requires two basic data types, namely, landslide inventory and factors that influence landslide occurrence (landslide influencing factors, LIF). Depending on type of landslides, nature of triggers and LIF, accuracy of the QLSM methods differs. Moreover, how to balance the number of 0 (nonoccurrence) and 1 (occurrence) in the training set obtained from the landslide inventory and how to select which one of the 1's and 0's to be included in QLSM models play critical role in the accuracy of the QLSM. Although performance of various QLSM methods is largely investigated in the literature, the challenge of training set construction is not adequately investigated for the QLSM methods. In order to tackle this challenge, in this study three different training set selection strategies along with the original data set is used for testing the performance of three different regression methods namely Logistic Regression (LR), Bayesian Logistic Regression (BLR) and Fuzzy Logistic Regression (FLR). The first sampling strategy is proportional random sampling (PRS), which takes into account a weighted selection of landslide occurrences in the sample set. The second method, namely non-selective nearby sampling (NNS), includes randomly selected sites and their surrounding neighboring points at certain preselected distances to include the impact of clustering. Selective nearby sampling (SNS) is the third method, which concentrates on the group of 1's and their surrounding neighborhood. A randomly selected group of landslide sites and their neighborhood are considered in the analyses similar to NNS parameters. It is found that LR-PRS, FLR-PRS and BLR-Whole Data set-ups, with order, yield the best fits among the other alternatives. The results indicate that in QLSM based on regression models, avoidance of spatial correlation in the data set is critical for the model's performance.

  12. The arcsine is asinine: the analysis of proportions in ecology.

    PubMed

    Warton, David I; Hui, Francis K C

    2011-01-01

    The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.

  13. Prediction model for the return to work of workers with injuries in Hong Kong.

    PubMed

    Xu, Yanwen; Chan, Chetwyn C H; Lo, Karen Hui Yu-Ling; Tang, Dan

    2008-01-01

    This study attempts to formulate a prediction model of return to work for a group of workers who have been suffering from chronic pain and physical injury while also being out of work in Hong Kong. The study used Case-based Reasoning (CBR) method, and compared the result with the statistical method of logistic regression model. The database of the algorithm of CBR was composed of 67 cases who were also used in the logistic regression model. The testing cases were 32 participants who had a similar background and characteristics to those in the database. The methods of setting constraints and Euclidean distance metric were used in CBR to search the closest cases to the trial case based on the matrix. The usefulness of the algorithm was tested on 32 new participants, and the accuracy of predicting return to work outcomes was 62.5%, which was no better than the 71.2% accuracy derived from the logistic regression model. The results of the study would enable us to have a better understanding of the CBR applied in the field of occupational rehabilitation by comparing with the conventional regression analysis. The findings would also shed light on the development of relevant interventions for the return-to-work process of these workers.

  14. Matched samples logistic regression in case-control studies with missing values: when to break the matches.

    PubMed

    Hansson, Lisbeth; Khamis, Harry J

    2008-12-01

    Simulated data sets are used to evaluate conditional and unconditional maximum likelihood estimation in an individual case-control design with continuous covariates when there are different rates of excluded cases and different levels of other design parameters. The effectiveness of the estimation procedures is measured by method bias, variance of the estimators, root mean square error (RMSE) for logistic regression and the percentage of explained variation. Conditional estimation leads to higher RMSE than unconditional estimation in the presence of missing observations, especially for 1:1 matching. The RMSE is higher for the smaller stratum size, especially for the 1:1 matching. The percentage of explained variation appears to be insensitive to missing data, but is generally higher for the conditional estimation than for the unconditional estimation. It is particularly good for the 1:2 matching design. For minimizing RMSE, a high matching ratio is recommended; in this case, conditional and unconditional logistic regression models yield comparable levels of effectiveness. For maximizing the percentage of explained variation, the 1:2 matching design with the conditional logistic regression model is recommended.

  15. A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design.

    PubMed

    Staley, James R; Jones, Edmund; Kaptoge, Stephen; Butterworth, Adam S; Sweeting, Michael J; Wood, Angela M; Howson, Joanna M M

    2017-06-01

    Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort designs, as it is less computationally expensive. Although Cox and logistic regression models have been compared previously in cohort studies, this work does not completely cover the GWAS setting nor extend to the case-cohort study design. Here, we evaluated Cox and logistic regression applied to cohort and case-cohort genetic association studies using simulated data and genetic data from the EPIC-CVD study. In the cohort setting, there was a modest improvement in power to detect SNP-disease associations using Cox regression compared with logistic regression, which increased as the disease incidence increased. In contrast, logistic regression had more power than (Prentice weighted) Cox regression in the case-cohort setting. Logistic regression yielded inflated effect estimates (assuming the hazard ratio is the underlying measure of association) for both study designs, especially for SNPs with greater effect on disease. Given logistic regression is substantially more computationally efficient than Cox regression in both settings, we propose a two-step approach to GWAS in cohort and case-cohort studies. First to analyse all SNPs with logistic regression to identify associated variants below a pre-defined P-value threshold, and second to fit Cox regression (appropriately weighted in case-cohort studies) to those identified SNPs to ensure accurate estimation of association with disease.

  16. Estimating Contraceptive Prevalence Using Logistics Data for Short-Acting Methods: Analysis Across 30 Countries.

    PubMed

    Cunningham, Marc; Bock, Ariella; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana

    2015-09-01

    Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. © Cunningham et al.

  17. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)

    NASA Astrophysics Data System (ADS)

    Ozdemir, Adnan

    2011-07-01

    SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model was found to be in strong agreement with the available groundwater spring test data. Hence, this method can be used routinely in groundwater exploration under favourable conditions.

  18. Model selection for logistic regression models

    NASA Astrophysics Data System (ADS)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  19. Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data?

    PubMed

    Kuo, Chia-Ling; Duan, Yinghui; Grady, James

    2018-01-01

    Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.

  20. Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data?

    PubMed Central

    Kuo, Chia-Ling; Duan, Yinghui; Grady, James

    2018-01-01

    Matching on demographic variables is commonly used in case–control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case–control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case–control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls. PMID:29552553

  1. A nonparametric multiple imputation approach for missing categorical data.

    PubMed

    Zhou, Muhan; He, Yulei; Yu, Mandi; Hsu, Chiu-Hsieh

    2017-06-06

    Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome and a binary logistic regression for predicting the missingness probability.

  2. A computational approach to compare regression modelling strategies in prediction research.

    PubMed

    Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H

    2016-08-25

    It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

  3. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  4. Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants.

    PubMed

    Kesselmeier, Miriam; Lorenzo Bermejo, Justo

    2017-11-01

    Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Polymorphism Thr160Thr in SRD5A1, involved in the progesterone metabolism, modifies postmenopausal breast cancer risk associated with menopausal hormone therapy.

    PubMed

    Hein, R; Abbas, S; Seibold, P; Salazar, R; Flesch-Janys, D; Chang-Claude, J

    2012-01-01

    Menopausal hormone therapy (MHT) is associated with an increased breast cancer risk in postmenopausal women, with combined estrogen-progestagen therapy posing a greater risk than estrogen monotherapy. However, few studies focused on potential effect modification of MHT-associated breast cancer risk by genetic polymorphisms in the progesterone metabolism. We assessed effect modification of MHT use by five coding single nucleotide polymorphisms (SNPs) in the progesterone metabolizing enzymes AKR1C3 (rs7741), AKR1C4 (rs3829125, rs17134592), and SRD5A1 (rs248793, rs3736316) using a two-center population-based case-control study from Germany with 2,502 postmenopausal breast cancer patients and 4,833 matched controls. An empirical-Bayes procedure that tests for interaction using a weighted combination of the prospective and the retrospective case-control estimators as well as standard prospective logistic regression were applied to assess multiplicative statistical interaction between polymorphisms and duration of MHT use with regard to breast cancer risk assuming a log-additive mode of inheritance. No genetic marginal effects were observed. Breast cancer risk associated with duration of combined therapy was significantly modified by SRD5A1_rs3736316, showing a reduced risk elevation in carriers of the minor allele (p (interaction,empirical-Bayes) = 0.006 using the empirical-Bayes method, p (interaction,logistic regression) = 0.013 using logistic regression). The risk associated with duration of use of monotherapy was increased by AKR1C3_rs7741 in minor allele carriers (p (interaction,empirical-Bayes) = 0.083, p (interaction,logistic regression) = 0.029) and decreased in minor allele carriers of two SNPs in AKR1C4 (rs3829125: p (interaction,empirical-Bayes) = 0.07, p (interaction,logistic regression) = 0.021; rs17134592: p (interaction,empirical-Bayes) = 0.101, p (interaction,logistic regression) = 0.038). After Bonferroni correction for multiple testing only SRD5A1_rs3736316 assessed using the empirical-Bayes method remained significant. Postmenopausal breast cancer risk associated with combined therapy may be modified by genetic variation in SRD5A1. Further well-powered studies are, however, required to replicate our finding.

  6. Estimating time-varying exposure-outcome associations using case-control data: logistic and case-cohort analyses.

    PubMed

    Keogh, Ruth H; Mangtani, Punam; Rodrigues, Laura; Nguipdop Djomo, Patrick

    2016-01-05

    Traditional analyses of standard case-control studies using logistic regression do not allow estimation of time-varying associations between exposures and the outcome. We present two approaches which allow this. The motivation is a study of vaccine efficacy as a function of time since vaccination. Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic regressions within successive time periods, reusing controls across periods. Our second approach treats the case-control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods. The simulation results show that both methods give correct estimates of time-varying effects of exposures using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over time and care should be taken over the definition of controls within time periods. However, using the case-cohort analysis there is no ambiguity over the definition of controls. The performance of the two analyses is very similar when controls are used most efficiently under the logistic approach. Using our methods, case-control studies can be used to estimate time-varying exposure-outcome associations where they may not previously have been considered. The case-cohort analysis has several advantages, including that it allows estimation of time-varying associations as a continuous function of time, while the logistic regression approach is restricted to assuming a step function form for the time-varying association.

  7. The association between short interpregnancy interval and preterm birth in Louisiana: a comparison of methods.

    PubMed

    Howard, Elizabeth J; Harville, Emily; Kissinger, Patricia; Xiong, Xu

    2013-07-01

    There is growing interest in the application of propensity scores (PS) in epidemiologic studies, especially within the field of reproductive epidemiology. This retrospective cohort study assesses the impact of a short interpregnancy interval (IPI) on preterm birth and compares the results of the conventional logistic regression analysis with analyses utilizing a PS. The study included 96,378 singleton infants from Louisiana birth certificate data (1995-2007). Five regression models designed for methods comparison are presented. Ten percent (10.17 %) of all births were preterm; 26.83 % of births were from a short IPI. The PS-adjusted model produced a more conservative estimate of the exposure variable compared to the conventional logistic regression method (β-coefficient: 0.21 vs. 0.43), as well as a smaller standard error (0.024 vs. 0.028), odds ratio and 95 % confidence intervals [1.15 (1.09, 1.20) vs. 1.23 (1.17, 1.30)]. The inclusion of more covariate and interaction terms in the PS did not change the estimates of the exposure variable. This analysis indicates that PS-adjusted regression may be appropriate for validation of conventional methods in a large dataset with a fairly common outcome. PS's may be beneficial in producing more precise estimates, especially for models with many confounders and effect modifiers and where conventional adjustment with logistic regression is unsatisfactory. Short intervals between pregnancies are associated with preterm birth in this population, according to either technique. Birth spacing is an issue that women have some control over. Educational interventions, including birth control, should be applied during prenatal visits and following delivery.

  8. Determination of osteoporosis risk factors using a multiple logistic regression model in postmenopausal Turkish women.

    PubMed

    Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal

    2005-09-01

    To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.

  9. Identification of immune correlates of protection in Shigella infection by application of machine learning.

    PubMed

    Arevalillo, Jorge M; Sztein, Marcelo B; Kotloff, Karen L; Levine, Myron M; Simon, Jakub K

    2017-10-01

    Immunologic correlates of protection are important in vaccine development because they give insight into mechanisms of protection, assist in the identification of promising vaccine candidates, and serve as endpoints in bridging clinical vaccine studies. Our goal is the development of a methodology to identify immunologic correlates of protection using the Shigella challenge as a model. The proposed methodology utilizes the Random Forests (RF) machine learning algorithm as well as Classification and Regression Trees (CART) to detect immune markers that predict protection, identify interactions between variables, and define optimal cutoffs. Logistic regression modeling is applied to estimate the probability of protection and the confidence interval (CI) for such a probability is computed by bootstrapping the logistic regression models. The results demonstrate that the combination of Classification and Regression Trees and Random Forests complements the standard logistic regression and uncovers subtle immune interactions. Specific levels of immunoglobulin IgG antibody in blood on the day of challenge predicted protection in 75% (95% CI 67-86). Of those subjects that did not have blood IgG at or above a defined threshold, 100% were protected if they had IgA antibody secreting cells above a defined threshold. Comparison with the results obtained by applying only logistic regression modeling with standard Akaike Information Criterion for model selection shows the usefulness of the proposed method. Given the complexity of the immune system, the use of machine learning methods may enhance traditional statistical approaches. When applied together, they offer a novel way to quantify important immune correlates of protection that may help the development of vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Applying Kaplan-Meier to Item Response Data

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2018-01-01

    Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…

  11. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  12. Nowcasting of Low-Visibility Procedure States with Ordered Logistic Regression at Vienna International Airport

    NASA Astrophysics Data System (ADS)

    Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.

  13. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  14. Calibrating random forests for probability estimation.

    PubMed

    Dankowski, Theresa; Ziegler, Andreas

    2016-09-30

    Probabilities can be consistently estimated using random forests. It is, however, unclear how random forests should be updated to make predictions for other centers or at different time points. In this work, we present two approaches for updating random forests for probability estimation. The first method has been proposed by Elkan and may be used for updating any machine learning approach yielding consistent probabilities, so-called probability machines. The second approach is a new strategy specifically developed for random forests. Using the terminal nodes, which represent conditional probabilities, the random forest is first translated to logistic regression models. These are, in turn, used for re-calibration. The two updating strategies were compared in a simulation study and are illustrated with data from the German Stroke Study Collaboration. In most simulation scenarios, both methods led to similar improvements. In the simulation scenario in which the stricter assumptions of Elkan's method were not met, the logistic regression-based re-calibration approach for random forests outperformed Elkan's method. It also performed better on the stroke data than Elkan's method. The strength of Elkan's method is its general applicability to any probability machine. However, if the strict assumptions underlying this approach are not met, the logistic regression-based approach is preferable for updating random forests for probability estimation. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  15. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    PubMed

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  16. The intermediate endpoint effect in logistic and probit regression

    PubMed Central

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted conclusions regarding the intermediate effect. PMID:17942466

  17. Methodology for constructing a colour-difference acceptability scale.

    PubMed

    Laborie, Baptiste; Viénot, Françoise; Langlois, Sabine

    2010-09-01

    Observers were invited to report their degree of satisfaction on a 6-point semantic scale with respect to the conformity of a test colour with a white reference colour, simultaneously presented on a PDP display. Eight test patches were chosen along each of the +a*, -a*, +b*, -b* axes of the CIELAB chromaticity plane, at Y = 80 ± 2 cd.m(-2) . Experimental conditions reliably represented the automotive environment (patch size, angular distance between patches) and observers could move their head and eyes freely. We have compared several methods of category scaling, the Torgerson-DMT method (Torgerson, W. S. (1958). Theory and methods of scaling. Wiley, New York, USA); two versions of the regression method i.e. Bonnet's (Bonnet, C. (1986). Manuel pratique de psychophysique. Armand Colin, Paris, France) and logistic regression; and the medians method. We describe in detail a case where all methods yield substantial but slightly different results. The solution proposed by the regression method which works with incomplete matrices and yields results directly on a colorimetric scale is probably the most useful in this industrial context. Finally we summarize the implementation of the logistic regression method over four hues and for one experimental condition. © 2010 The Authors, Ophthalmic and Physiological Optics © 2010 The College of Optometrists.

  18. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Davis, J.C.

    2003-01-01

    Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley

    2007-01-01

    Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.

  20. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  1. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis

    PubMed Central

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain

    2017-01-01

    Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993

  2. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    PubMed

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  3. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

    PubMed Central

    Kim, Yoonsang; Emery, Sherry

    2013-01-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

  4. Estimating the Probability of Rare Events Occurring Using a Local Model Averaging.

    PubMed

    Chen, Jin-Hua; Chen, Chun-Shu; Huang, Meng-Fan; Lin, Hung-Chih

    2016-10-01

    In statistical applications, logistic regression is a popular method for analyzing binary data accompanied by explanatory variables. But when one of the two outcomes is rare, the estimation of model parameters has been shown to be severely biased and hence estimating the probability of rare events occurring based on a logistic regression model would be inaccurate. In this article, we focus on estimating the probability of rare events occurring based on logistic regression models. Instead of selecting a best model, we propose a local model averaging procedure based on a data perturbation technique applied to different information criteria to obtain different probability estimates of rare events occurring. Then an approximately unbiased estimator of Kullback-Leibler loss is used to choose the best one among them. We design complete simulations to show the effectiveness of our approach. For illustration, a necrotizing enterocolitis (NEC) data set is analyzed. © 2016 Society for Risk Analysis.

  5. Determination of riverbank erosion probability using Locally Weighted Logistic Regression

    NASA Astrophysics Data System (ADS)

    Ioannidou, Elena; Flori, Aikaterini; Varouchakis, Emmanouil A.; Giannakis, Georgios; Vozinaki, Anthi Eirini K.; Karatzas, George P.; Nikolaidis, Nikolaos

    2015-04-01

    Riverbank erosion is a natural geomorphologic process that affects the fluvial environment. The most important issue concerning riverbank erosion is the identification of the vulnerable locations. An alternative to the usual hydrodynamic models to predict vulnerable locations is to quantify the probability of erosion occurrence. This can be achieved by identifying the underlying relations between riverbank erosion and the geomorphological or hydrological variables that prevent or stimulate erosion. Thus, riverbank erosion can be determined by a regression model using independent variables that are considered to affect the erosion process. The impact of such variables may vary spatially, therefore, a non-stationary regression model is preferred instead of a stationary equivalent. Locally Weighted Regression (LWR) is proposed as a suitable choice. This method can be extended to predict the binary presence or absence of erosion based on a series of independent local variables by using the logistic regression model. It is referred to as Locally Weighted Logistic Regression (LWLR). Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (e.g. binary response) based on one or more predictor variables. The method can be combined with LWR to assign weights to local independent variables of the dependent one. LWR allows model parameters to vary over space in order to reflect spatial heterogeneity. The probabilities of the possible outcomes are modelled as a function of the independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. erosion presence or absence) for any value of the independent variables. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding the independent variables tested. The most straightforward measure for goodness of fit is the G statistic. It is a simple and effective way to study and evaluate the Logistic Regression model efficiency and the reliability of each independent variable. The developed statistical model is applied to the Koiliaris River Basin on the island of Crete, Greece. Two datasets of river bank slope, river cross-section width and indications of erosion were available for the analysis (12 and 8 locations). Two different types of spatial dependence functions, exponential and tricubic, were examined to determine the local spatial dependence of the independent variables at the measurement locations. The results show a significant improvement when the tricubic function is applied as the erosion probability is accurately predicted at all eight validation locations. Results for the model deviance show that cross-section width is more important than bank slope in the estimation of erosion probability along the Koiliaris riverbanks. The proposed statistical model is a useful tool that quantifies the erosion probability along the riverbanks and can be used to assist managing erosion and flooding events. Acknowledgements This work is part of an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  6. Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory.

    PubMed

    Kruppa, Jochen; Liu, Yufeng; Biau, Gérard; Kohler, Michael; König, Inke R; Malley, James D; Ziegler, Andreas

    2014-07-01

    Probability estimation for binary and multicategory outcome using logistic and multinomial logistic regression has a long-standing tradition in biostatistics. However, biases may occur if the model is misspecified. In contrast, outcome probabilities for individuals can be estimated consistently with machine learning approaches, including k-nearest neighbors (k-NN), bagged nearest neighbors (b-NN), random forests (RF), and support vector machines (SVM). Because machine learning methods are rarely used by applied biostatisticians, the primary goal of this paper is to explain the concept of probability estimation with these methods and to summarize recent theoretical findings. Probability estimation in k-NN, b-NN, and RF can be embedded into the class of nonparametric regression learning machines; therefore, we start with the construction of nonparametric regression estimates and review results on consistency and rates of convergence. In SVMs, outcome probabilities for individuals are estimated consistently by repeatedly solving classification problems. For SVMs we review classification problem and then dichotomous probability estimation. Next we extend the algorithms for estimating probabilities using k-NN, b-NN, and RF to multicategory outcomes and discuss approaches for the multicategory probability estimation problem using SVM. In simulation studies for dichotomous and multicategory dependent variables we demonstrate the general validity of the machine learning methods and compare it with logistic regression. However, each method fails in at least one simulation scenario. We conclude with a discussion of the failures and give recommendations for selecting and tuning the methods. Applications to real data and example code are provided in a companion article (doi:10.1002/bimj.201300077). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  8. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.

    PubMed

    An, Lihua; Fung, Karen Y; Krewski, Daniel

    2010-09-01

    Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.

  9. Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set.

    PubMed

    Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun

    2006-01-01

    In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.

  10. Logistic regression analysis of factors associated with avascular necrosis of the femoral head following femoral neck fractures in middle-aged and elderly patients.

    PubMed

    Ai, Zi-Sheng; Gao, You-Shui; Sun, Yuan; Liu, Yue; Zhang, Chang-Qing; Jiang, Cheng-Hua

    2013-03-01

    Risk factors for femoral neck fracture-induced avascular necrosis of the femoral head have not been elucidated clearly in middle-aged and elderly patients. Moreover, the high incidence of screw removal in China and its effect on the fate of the involved femoral head require statistical methods to reflect their intrinsic relationship. Ninety-nine patients older than 45 years with femoral neck fracture were treated by internal fixation between May 1999 and April 2004. Descriptive analysis, interaction analysis between associated factors, single factor logistic regression, multivariate logistic regression, and detailed interaction analysis were employed to explore potential relationships among associated factors. Avascular necrosis of the femoral head was found in 15 cases (15.2 %). Age × the status of implants (removal vs. maintenance) and gender × the timing of reduction were interactive according to two-factor interactive analysis. Age, the displacement of fractures, the quality of reduction, and the status of implants were found to be significant factors in single factor logistic regression analysis. Age, age × the status of implants, and the quality of reduction were found to be significant factors in multivariate logistic regression analysis. In fine interaction analysis after multivariate logistic regression analysis, implant removal was the most important risk factor for avascular necrosis in 56-to-85-year-old patients, with a risk ratio of 26.00 (95 % CI = 3.076-219.747). The middle-aged and elderly have less incidence of avascular necrosis of the femoral head following femoral neck fractures treated by cannulated screws. The removal of cannulated screws can induce a significantly high incidence of avascular necrosis of the femoral head in elderly patients, while a high-quality reduction is helpful to reduce avascular necrosis.

  11. Detection of Differential Item Functioning with Nonlinear Regression: A Non-IRT Approach Accounting for Guessing

    ERIC Educational Resources Information Center

    Drabinová, Adéla; Martinková, Patrícia

    2017-01-01

    In this article we present a general approach not relying on item response theory models (non-IRT) to detect differential item functioning (DIF) in dichotomous items with presence of guessing. The proposed nonlinear regression (NLR) procedure for DIF detection is an extension of method based on logistic regression. As a non-IRT approach, NLR can…

  12. Should metacognition be measured by logistic regression?

    PubMed

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  14. An introduction to g methods.

    PubMed

    Naimi, Ashley I; Cole, Stephen R; Kennedy, Edward H

    2017-04-01

    Robins' generalized methods (g methods) provide consistent estimates of contrasts (e.g. differences, ratios) of potential outcomes under a less restrictive set of identification conditions than do standard regression methods (e.g. linear, logistic, Cox regression). Uptake of g methods by epidemiologists has been hampered by limitations in understanding both conceptual and technical details. We present a simple worked example that illustrates basic concepts, while minimizing technical complications. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  15. Classification of mislabelled microarrays using robust sparse logistic regression.

    PubMed

    Bootkrajang, Jakramate; Kabán, Ata

    2013-04-01

    Previous studies reported that labelling errors are not uncommon in microarray datasets. In such cases, the training set may become misleading, and the ability of classifiers to make reliable inferences from the data is compromised. Yet, few methods are currently available in the bioinformatics literature to deal with this problem. The few existing methods focus on data cleansing alone, without reference to classification, and their performance crucially depends on some tuning parameters. In this article, we develop a new method to detect mislabelled arrays simultaneously with learning a sparse logistic regression classifier. Our method may be seen as a label-noise robust extension of the well-known and successful Bayesian logistic regression classifier. To account for possible mislabelling, we formulate a label-flipping process as part of the classifier. The regularization parameter is automatically set using Bayesian regularization, which not only saves the computation time that cross-validation would take, but also eliminates any unwanted effects of label noise when setting the regularization parameter. Extensive experiments with both synthetic data and real microarray datasets demonstrate that our approach is able to counter the bad effects of labelling errors in terms of predictive performance, it is effective at identifying marker genes and simultaneously it detects mislabelled arrays to high accuracy. The code is available from http://cs.bham.ac.uk/∼jxb008. Supplementary data are available at Bioinformatics online.

  16. Data mining: Potential applications in research on nutrition and health.

    PubMed

    Batterham, Marijka; Neale, Elizabeth; Martin, Allison; Tapsell, Linda

    2017-02-01

    Data mining enables further insights from nutrition-related research, but caution is required. The aim of this analysis was to demonstrate and compare the utility of data mining methods in classifying a categorical outcome derived from a nutrition-related intervention. Baseline data (23 variables, 8 categorical) on participants (n = 295) in an intervention trial were used to classify participants in terms of meeting the criteria of achieving 10 000 steps per day. Results from classification and regression trees (CARTs), random forests, adaptive boosting, logistic regression, support vector machines and neural networks were compared using area under the curve (AUC) and error assessments. The CART produced the best model when considering the AUC (0.703), overall error (18%) and within class error (28%). Logistic regression also performed reasonably well compared to the other models (AUC 0.675, overall error 23%, within class error 36%). All the methods gave different rankings of variables' importance. CART found that body fat, quality of life using the SF-12 Physical Component Summary (PCS) and the cholesterol: HDL ratio were the most important predictors of meeting the 10 000 steps criteria, while logistic regression showed the SF-12PCS, glucose levels and level of education to be the most significant predictors (P ≤ 0.01). Differing outcomes suggest caution is required with a single data mining method, particularly in a dataset with nonlinear relationships and outliers and when exploring relationships that were not the primary outcomes of the research. © 2017 Dietitians Association of Australia.

  17. Logistic models--an odd(s) kind of regression.

    PubMed

    Jupiter, Daniel C

    2013-01-01

    The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.

    PubMed

    Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q

    2017-03-01

    Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.

  19. Assessing landslide susceptibility by statistical data analysis and GIS: the case of Daunia (Apulian Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ceppi, C.; Mancini, F.; Ritrovato, G.

    2009-04-01

    This study aim at the landslide susceptibility mapping within an area of the Daunia (Apulian Apennines, Italy) by a multivariate statistical method and data manipulation in a Geographical Information System (GIS) environment. Among the variety of existing statistical data analysis techniques, the logistic regression was chosen to produce a susceptibility map all over an area where small settlements are historically threatened by landslide phenomena. By logistic regression a best fitting between the presence or absence of landslide (dependent variable) and the set of independent variables is performed on the basis of a maximum likelihood criterion, bringing to the estimation of regression coefficients. The reliability of such analysis is therefore due to the ability to quantify the proneness to landslide occurrences by the probability level produced by the analysis. The inventory of dependent and independent variables were managed in a GIS, where geometric properties and attributes have been translated into raster cells in order to proceed with the logistic regression by means of SPSS (Statistical Package for the Social Sciences) package. A landslide inventory was used to produce the bivariate dependent variable whereas the independent set of variable concerned with slope, aspect, elevation, curvature, drained area, lithology and land use after their reductions to dummy variables. The effect of independent parameters on landslide occurrence was assessed by the corresponding coefficient in the logistic regression function, highlighting a major role played by the land use variable in determining occurrence and distribution of phenomena. Once the outcomes of the logistic regression are determined, data are re-introduced in the GIS to produce a map reporting the proneness to landslide as predicted level of probability. As validation of results and regression model a cell-by-cell comparison between the susceptibility map and the initial inventory of landslide events was performed and an agreement at 75% level achieved.

  20. Non-proportional odds multivariate logistic regression of ordinal family data.

    PubMed

    Zaloumis, Sophie G; Scurrah, Katrina J; Harrap, Stephen B; Ellis, Justine A; Gurrin, Lyle C

    2015-03-01

    Methods to examine whether genetic and/or environmental sources can account for the residual variation in ordinal family data usually assume proportional odds. However, standard software to fit the non-proportional odds model to ordinal family data is limited because the correlation structure of family data is more complex than for other types of clustered data. To perform these analyses we propose the non-proportional odds multivariate logistic regression model and take a simulation-based approach to model fitting using Markov chain Monte Carlo methods, such as partially collapsed Gibbs sampling and the Metropolis algorithm. We applied the proposed methodology to male pattern baldness data from the Victorian Family Heart Study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Mantel-Haenszel procedure revisited: models and generalizations.

    PubMed

    Fidler, Vaclav; Nagelkerke, Nico

    2013-01-01

    Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented.

  2. The Mantel-Haenszel Procedure Revisited: Models and Generalizations

    PubMed Central

    Fidler, Vaclav; Nagelkerke, Nico

    2013-01-01

    Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented. PMID:23516463

  3. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    NASA Astrophysics Data System (ADS)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  4. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  5. Predicting U.S. Army Reserve Unit Manning Using Market Demographics

    DTIC Science & Technology

    2015-06-01

    develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S

  6. An appraisal of convergence failures in the application of logistic regression model in published manuscripts.

    PubMed

    Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A

    2014-09-01

    Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.

  7. Logistic Regression: Concept and Application

    ERIC Educational Resources Information Center

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  8. Regularization Paths for Conditional Logistic Regression: The clogitL1 Package.

    PubMed

    Reid, Stephen; Tibshirani, Rob

    2014-07-01

    We apply the cyclic coordinate descent algorithm of Friedman, Hastie, and Tibshirani (2010) to the fitting of a conditional logistic regression model with lasso [Formula: see text] and elastic net penalties. The sequential strong rules of Tibshirani, Bien, Hastie, Friedman, Taylor, Simon, and Tibshirani (2012) are also used in the algorithm and it is shown that these offer a considerable speed up over the standard coordinate descent algorithm with warm starts. Once implemented, the algorithm is used in simulation studies to compare the variable selection and prediction performance of the conditional logistic regression model against that of its unconditional (standard) counterpart. We find that the conditional model performs admirably on datasets drawn from a suitable conditional distribution, outperforming its unconditional counterpart at variable selection. The conditional model is also fit to a small real world dataset, demonstrating how we obtain regularization paths for the parameters of the model and how we apply cross validation for this method where natural unconditional prediction rules are hard to come by.

  9. Computational tools for exact conditional logistic regression.

    PubMed

    Corcoran, C; Mehta, C; Patel, N; Senchaudhuri, P

    Logistic regression analyses are often challenged by the inability of unconditional likelihood-based approximations to yield consistent, valid estimates and p-values for model parameters. This can be due to sparseness or separability in the data. Conditional logistic regression, though useful in such situations, can also be computationally unfeasible when the sample size or number of explanatory covariates is large. We review recent developments that allow efficient approximate conditional inference, including Monte Carlo sampling and saddlepoint approximations. We demonstrate through real examples that these methods enable the analysis of significantly larger and more complex data sets. We find in this investigation that for these moderately large data sets Monte Carlo seems a better alternative, as it provides unbiased estimates of the exact results and can be executed in less CPU time than can the single saddlepoint approximation. Moreover, the double saddlepoint approximation, while computationally the easiest to obtain, offers little practical advantage. It produces unreliable results and cannot be computed when a maximum likelihood solution does not exist. Copyright 2001 John Wiley & Sons, Ltd.

  10. Regularization Paths for Conditional Logistic Regression: The clogitL1 Package

    PubMed Central

    Reid, Stephen; Tibshirani, Rob

    2014-01-01

    We apply the cyclic coordinate descent algorithm of Friedman, Hastie, and Tibshirani (2010) to the fitting of a conditional logistic regression model with lasso (ℓ1) and elastic net penalties. The sequential strong rules of Tibshirani, Bien, Hastie, Friedman, Taylor, Simon, and Tibshirani (2012) are also used in the algorithm and it is shown that these offer a considerable speed up over the standard coordinate descent algorithm with warm starts. Once implemented, the algorithm is used in simulation studies to compare the variable selection and prediction performance of the conditional logistic regression model against that of its unconditional (standard) counterpart. We find that the conditional model performs admirably on datasets drawn from a suitable conditional distribution, outperforming its unconditional counterpart at variable selection. The conditional model is also fit to a small real world dataset, demonstrating how we obtain regularization paths for the parameters of the model and how we apply cross validation for this method where natural unconditional prediction rules are hard to come by. PMID:26257587

  11. Ordinal logistic regression analysis on the nutritional status of children in KarangKitri village

    NASA Astrophysics Data System (ADS)

    Ohyver, Margaretha; Yongharto, Kimmy Octavian

    2015-09-01

    Ordinal logistic regression is a statistical technique that can be used to describe the relationship between ordinal response variable with one or more independent variables. This method has been used in various fields including in the health field. In this research, ordinal logistic regression is used to describe the relationship between nutritional status of children with age, gender, height, and family status. Nutritional status of children in this research is divided into over nutrition, well nutrition, less nutrition, and malnutrition. The purpose for this research is to describe the characteristics of children in the KarangKitri Village and to determine the factors that influence the nutritional status of children in the KarangKitri village. There are three things that obtained from this research. First, there are still children who are not categorized as well nutritional status. Second, there are children who come from sufficient economic level which include in not normal status. Third, the factors that affect the nutritional level of children are age, family status, and height.

  12. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.

    PubMed

    Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A

    2013-08-01

    As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.

  13. [Calculating Pearson residual in logistic regressions: a comparison between SPSS and SAS].

    PubMed

    Xu, Hao; Zhang, Tao; Li, Xiao-song; Liu, Yuan-yuan

    2015-01-01

    To compare the results of Pearson residual calculations in logistic regression models using SPSS and SAS. We reviewed Pearson residual calculation methods, and used two sets of data to test logistic models constructed by SPSS and STATA. One model contained a small number of covariates compared to the number of observed. The other contained a similar number of covariates as the number of observed. The two software packages produced similar Pearson residual estimates when the models contained a similar number of covariates as the number of observed, but the results differed when the number of observed was much greater than the number of covariates. The two software packages produce different results of Pearson residuals, especially when the models contain a small number of covariates. Further studies are warranted.

  14. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  15. A Comparison of Methods for Detecting Differential Distractor Functioning

    ERIC Educational Resources Information Center

    Koon, Sharon

    2010-01-01

    This study examined the effectiveness of the odds-ratio method (Penfield, 2008) and the multinomial logistic regression method (Kato, Moen, & Thurlow, 2009) for measuring differential distractor functioning (DDF) effects in comparison to the standardized distractor analysis approach (Schmitt & Bleistein, 1987). Students classified as participating…

  16. Comparison of two occurrence risk assessment methods for collapse gully erosion ——A case study in Guangdong province

    NASA Astrophysics Data System (ADS)

    Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.

    2018-02-01

    Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.

  17. A modified approach to estimating sample size for simple logistic regression with one continuous covariate.

    PubMed

    Novikov, I; Fund, N; Freedman, L S

    2010-01-15

    Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.

  18. Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research

    ERIC Educational Resources Information Center

    He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne

    2018-01-01

    In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…

  19. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    PubMed Central

    Weiss, Brandi A.; Dardick, William

    2015-01-01

    This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897

  20. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.

    PubMed

    Weiss, Brandi A; Dardick, William

    2016-12-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.

  1. Power and sample size for multivariate logistic modeling of unmatched case-control studies.

    PubMed

    Gail, Mitchell H; Haneuse, Sebastien

    2017-01-01

    Sample size calculations are needed to design and assess the feasibility of case-control studies. Although such calculations are readily available for simple case-control designs and univariate analyses, there is limited theory and software for multivariate unconditional logistic analysis of case-control data. Here we outline the theory needed to detect scalar exposure effects or scalar interactions while controlling for other covariates in logistic regression. Both analytical and simulation methods are presented, together with links to the corresponding software.

  2. Methodologic considerations in the design and analysis of nested case-control studies: association between cytokines and postoperative delirium.

    PubMed

    Ngo, Long H; Inouye, Sharon K; Jones, Richard N; Travison, Thomas G; Libermann, Towia A; Dillon, Simon T; Kuchel, George A; Vasunilashorn, Sarinnapha M; Alsop, David C; Marcantonio, Edward R

    2017-06-06

    The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full cohort study. We present methodological considerations in a matched NCC design and analysis, which include the choice of match algorithms, analysis methods to evaluate the association of exposures of interest with outcomes, and consideration of overmatching. Matched, NCC design within a longitudinal observational prospective cohort study in the setting of two academic hospitals. Study participants are patients aged over 70 years who underwent scheduled major non-cardiac surgery. The primary outcome was postoperative delirium from in-hospital interviews and medical record review. The main exposure was IL-6 concentration (pg/ml) from blood sampled at three time points before delirium occurred. We used nonparametric signed ranked test to test for the median of the paired differences. We used conditional logistic regression to model the risk of IL-6 on delirium incidence. Simulation was used to generate a sample of cohort data on which unconditional multivariable logistic regression was used, and the results were compared to those of the conditional logistic regression. Partial R-square was used to assess the level of overmatching. We found that the optimal match algorithm yielded more matched pairs than the greedy algorithm. The choice of analytic strategy-whether to consider measured cytokine levels as the predictor or outcome-- yielded inferences that have different clinical interpretations but similar levels of statistical significance. Estimation results from NCC design using conditional logistic regression, and from simulated cohort design using unconditional logistic regression, were similar. We found minimal evidence for overmatching. Using a matched NCC approach introduces methodological challenges into the study design and data analysis. Nonetheless, with careful selection of the match algorithm, match factors, and analysis methods, this design is cost effective and, for our study, yields estimates that are similar to those from a prospective cohort study design.

  3. Introduction to the use of regression models in epidemiology.

    PubMed

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  4. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.

    PubMed

    Churpek, Matthew M; Yuen, Trevor C; Winslow, Christopher; Meltzer, David O; Kattan, Michael W; Edelson, Dana P

    2016-02-01

    Machine learning methods are flexible prediction algorithms that may be more accurate than conventional regression. We compared the accuracy of different techniques for detecting clinical deterioration on the wards in a large, multicenter database. Observational cohort study. Five hospitals, from November 2008 until January 2013. Hospitalized ward patients None Demographic variables, laboratory values, and vital signs were utilized in a discrete-time survival analysis framework to predict the combined outcome of cardiac arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines) were compared to several different machine learning methods. The models were derived in the first 60% of the data by date and then validated in the next 40%. For model derivation, each event time window was matched to a non-event window. All models were compared to each other and to the Modified Early Warning score, a commonly cited early warning score, using the area under the receiver operating characteristic curve (AUC). A total of 269,999 patients were admitted, and 424 cardiac arrests, 13,188 intensive care unit transfers, and 2,840 deaths occurred in the study. In the validation dataset, the random forest model was the most accurate model (AUC, 0.80 [95% CI, 0.80-0.80]). The logistic regression model with spline predictors was more accurate than the model utilizing linear predictors (AUC, 0.77 vs 0.74; p < 0.01), and all models were more accurate than the MEWS (AUC, 0.70 [95% CI, 0.70-0.70]). In this multicenter study, we found that several machine learning methods more accurately predicted clinical deterioration than logistic regression. Use of detection algorithms derived from these techniques may result in improved identification of critically ill patients on the wards.

  5. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  6. Radiomorphometric analysis of frontal sinus for sex determination.

    PubMed

    Verma, Saumya; Mahima, V G; Patil, Karthikeya

    2014-09-01

    Sex determination of unknown individuals carries crucial significance in forensic research, in cases where fragments of skull persist with no likelihood of identification based on dental arch. In these instances sex determination becomes important to rule out certain number of possibilities instantly and helps in establishing a biological profile of human remains. The aim of the study is to evaluate a mathematical method based on logistic regression analysis capable of ascertaining the sex of individuals in the South Indian population. The study was conducted in the department of Oral Medicine and Radiology. The right and left areas, maximum height, width of frontal sinus were determined in 100 Caldwell views of 50 women and 50 men aged 20 years and above, with the help of Vernier callipers and a square grid with 1 square measuring 1mm(2) in area. Student's t-test, logistic regression analysis. The mean values of variables were greater in men, based on Student's t-test at 5% level of significance. The mathematical model based on logistic regression analysis gave percentage agreement of total area to correctly predict the female gender as 55.2%, of right area as 60.9% and of left area as 55.2%. The areas of the frontal sinus and the logistic regression proved to be unreliable in sex determination. (Logit = 0.924 - 0.00217 × right area).

  7. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  8. A Methodology for Generating Placement Rules that Utilizes Logistic Regression

    ERIC Educational Resources Information Center

    Wurtz, Keith

    2008-01-01

    The purpose of this article is to provide the necessary tools for institutional researchers to conduct a logistic regression analysis and interpret the results. Aspects of the logistic regression procedure that are necessary to evaluate models are presented and discussed with an emphasis on cutoff values and choosing the appropriate number of…

  9. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing

    Treesearch

    John Hogland; Nedret Billor; Nathaniel Anderson

    2013-01-01

    Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...

  10. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees.

    PubMed

    Chung, Yi-Shih

    2013-12-01

    Factor complexity is a characteristic of traffic crashes. This paper proposes a novel method, namely boosted regression trees (BRT), to investigate the complex and nonlinear relationships in high-variance traffic crash data. The Taiwanese 2004-2005 single-vehicle motorcycle crash data are used to demonstrate the utility of BRT. Traditional logistic regression and classification and regression tree (CART) models are also used to compare their estimation results and external validities. Both the in-sample cross-validation and out-of-sample validation results show that an increase in tree complexity provides improved, although declining, classification performance, indicating a limited factor complexity of single-vehicle motorcycle crashes. The effects of crucial variables including geographical, time, and sociodemographic factors explain some fatal crashes. Relatively unique fatal crashes are better approximated by interactive terms, especially combinations of behavioral factors. BRT models generally provide improved transferability than conventional logistic regression and CART models. This study also discusses the implications of the results for devising safety policies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.

  12. The quest for conditional independence in prospectivity modeling: weights-of-evidence, boost weights-of-evidence, and logistic regression

    NASA Astrophysics Data System (ADS)

    Schaeben, Helmut; Semmler, Georg

    2016-09-01

    The objective of prospectivity modeling is prediction of the conditional probability of the presence T = 1 or absence T = 0 of a target T given favorable or prohibitive predictors B, or construction of a two classes 0,1 classification of T. A special case of logistic regression called weights-of-evidence (WofE) is geologists' favorite method of prospectivity modeling due to its apparent simplicity. However, the numerical simplicity is deceiving as it is implied by the severe mathematical modeling assumption of joint conditional independence of all predictors given the target. General weights of evidence are explicitly introduced which are as simple to estimate as conventional weights, i.e., by counting, but do not require conditional independence. Complementary to the regression view is the classification view on prospectivity modeling. Boosting is the construction of a strong classifier from a set of weak classifiers. From the regression point of view it is closely related to logistic regression. Boost weights-of-evidence (BoostWofE) was introduced into prospectivity modeling to counterbalance violations of the assumption of conditional independence even though relaxation of modeling assumptions with respect to weak classifiers was not the (initial) purpose of boosting. In the original publication of BoostWofE a fabricated dataset was used to "validate" this approach. Using the same fabricated dataset it is shown that BoostWofE cannot generally compensate lacking conditional independence whatever the consecutively processing order of predictors. Thus the alleged features of BoostWofE are disproved by way of counterexamples, while theoretical findings are confirmed that logistic regression including interaction terms can exactly compensate violations of joint conditional independence if the predictors are indicators.

  13. Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement

    NASA Astrophysics Data System (ADS)

    Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.

    2018-04-01

    Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).

  14. Aided diagnosis methods of breast cancer based on machine learning

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Wang, Nian; Cui, Xiaoyu

    2017-08-01

    In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.

  15. Estimating the causes of traffic accidents using logistic regression and discriminant analysis.

    PubMed

    Karacasu, Murat; Ergül, Barış; Altin Yavuz, Arzu

    2014-01-01

    Factors that affect traffic accidents have been analysed in various ways. In this study, we use the methods of logistic regression and discriminant analysis to determine the damages due to injury and non-injury accidents in the Eskisehir Province. Data were obtained from the accident reports of the General Directorate of Security in Eskisehir; 2552 traffic accidents between January and December 2009 were investigated regarding whether they resulted in injury. According to the results, the effects of traffic accidents were reflected in the variables. These results provide a wealth of information that may aid future measures toward the prevention of undesired results.

  16. Estimating a Logistic Discrimination Functions When One of the Training Samples Is Subject to Misclassification: A Maximum Likelihood Approach.

    PubMed

    Nagelkerke, Nico; Fidler, Vaclav

    2015-01-01

    The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of the training samples is subject to misclassification or mislabeling, e.g. diseased individuals are incorrectly classified/labeled as healthy controls. We show that this leads to zero-inflated binomial model with a defective logistic regression or discrimination function, whose parameters can be estimated using standard statistical methods such as maximum likelihood. These parameters can be used to estimate the probability of true group membership among those, possibly erroneously, classified as controls. Two examples are analyzed and discussed. A simulation study explores properties of the maximum likelihood parameter estimates and the estimates of the number of mislabeled observations.

  17. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    ERIC Educational Resources Information Center

    Weiss, Brandi A.; Dardick, William

    2016-01-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…

  18. What Are the Odds of that? A Primer on Understanding Logistic Regression

    ERIC Educational Resources Information Center

    Huang, Francis L.; Moon, Tonya R.

    2013-01-01

    The purpose of this Methodological Brief is to present a brief primer on logistic regression, a commonly used technique when modeling dichotomous outcomes. Using data from the National Education Longitudinal Study of 1988 (NELS:88), logistic regression techniques were used to investigate student-level variables in eighth grade (i.e., enrolled in a…

  19. On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis

    ERIC Educational Resources Information Center

    Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas

    2011-01-01

    The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…

  20. The microbiological profile and presence of bloodstream infection influence mortality rates in necrotizing fasciitis

    PubMed Central

    2011-01-01

    Introduction Necrotizing fasciitis (NF) is a life threatening infectious disease with a high mortality rate. We carried out a microbiological characterization of the causative pathogens. We investigated the correlation of mortality in NF with bloodstream infection and with the presence of co-morbidities. Methods In this retrospective study, we analyzed 323 patients who presented with necrotizing fasciitis at two different institutions. Bloodstream infection (BSI) was defined as a positive blood culture result. The patients were categorized as survivors and non-survivors. Eleven clinically important variables which were statistically significant by univariate analysis were selected for multivariate regression analysis and a stepwise logistic regression model was developed to determine the association between BSI and mortality. Results Univariate logistic regression analysis showed that patients with hypotension, heart disease, liver disease, presence of Vibrio spp. in wound cultures, presence of fungus in wound cultures, and presence of Streptococcus group A, Aeromonas spp. or Vibrio spp. in blood cultures, had a significantly higher risk of in-hospital mortality. Our multivariate logistic regression analysis showed a higher risk of mortality in patients with pre-existing conditions like hypotension, heart disease, and liver disease. Multivariate logistic regression analysis also showed that presence of Vibrio spp in wound cultures, and presence of Streptococcus Group A in blood cultures were associated with a high risk of mortality while debridement > = 3 was associated with improved survival. Conclusions Mortality in patients with necrotizing fasciitis was significantly associated with the presence of Vibrio in wound cultures and Streptococcus group A in blood cultures. PMID:21693053

  1. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States

    NASA Astrophysics Data System (ADS)

    Staley, Dennis; Negri, Jacquelyn; Kean, Jason

    2016-04-01

    Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.

  2. Dynamics of contraceptive use in India: apprehension versus future intention among non-users and traditional method users.

    PubMed

    Rai, Rajesh Kumar; Unisa, Sayeed

    2013-06-01

    This study examines the reasons for not using any method of contraception as well as reasons for not using modern methods of contraception, and factors associated with the future intention to use different types of contraceptives in India and its selected states, namely Uttar Pradesh, Assam and West Bengal. Data from the third wave of District Level Household and Facility Survey, 2007-08 were used. Bivariate as well as logistic regression analyses were performed to fulfill the study objective. Postpartum amenorrhea and breastfeeding practices were reported as the foremost causes for not using any method of contraception. Opposition to use, health concerns and fear of side effects were reported to be major hurdles in the way of using modern methods of contraception. Results from logistic regression suggest considerable variation in explaining the factors associated with future intention to use contraceptives. Promotion of health education addressing the advantages of contraceptive methods and eliminating apprehension about the use of these methods through effective communication by community level workers is the need of the hour. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A comparison between univariate probabilistic and multivariate (logistic regression) methods for landslide susceptibility analysis: the example of the Febbraro valley (Northern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Apuani, T.; Felletti, F.

    2009-04-01

    The aim of this paper is to compare the results of two statistical methods for landslide susceptibility analysis: 1) univariate probabilistic method based on landslide susceptibility index, 2) multivariate method (logistic regression). The study area is the Febbraro valley, located in the central Italian Alps, where different types of metamorphic rocks croup out. On the eastern part of the studied basin a quaternary cover represented by colluvial and secondarily, by glacial deposits, is dominant. In this study 110 earth flows, mainly located toward NE portion of the catchment, were analyzed. They involve only the colluvial deposits and their extension mainly ranges from 36 to 3173 m2. Both statistical methods require to establish a spatial database, in which each landslide is described by several parameters that can be assigned using a main scarp central point of landslide. The spatial database is constructed using a Geographical Information System (GIS). Each landslide is described by several parameters corresponding to the value of main scarp central point of the landslide. Based on bibliographic review a total of 15 predisposing factors were utilized. The width of the intervals, in which the maps of the predisposing factors have to be reclassified, has been defined assuming constant intervals to: elevation (100 m), slope (5 °), solar radiation (0.1 MJ/cm2/year), profile curvature (1.2 1/m), tangential curvature (2.2 1/m), drainage density (0.5), lineament density (0.00126). For the other parameters have been used the results of the probability-probability plots analysis and the statistical indexes of landslides site. In particular slope length (0 ÷ 2, 2 ÷ 5, 5 ÷ 10, 10 ÷ 20, 20 ÷ 35, 35 ÷ 260), accumulation flow (0 ÷ 1, 1 ÷ 2, 2 ÷ 5, 5 ÷ 12, 12 ÷ 60, 60 ÷27265), Topographic Wetness Index 0 ÷ 0.74, 0.74 ÷ 1.94, 1.94 ÷ 2.62, 2.62 ÷ 3.48, 3.48 ÷ 6,00, 6.00 ÷ 9.44), Stream Power Index (0 ÷ 0.64, 0.64 ÷ 1.28, 1.28 ÷ 1.81, 1.81 ÷ 4.20, 4.20 ÷ 9.40). Geological map and land use map were also used, considering geological and land use properties as categorical variables. Appling the univariate probabilistic method the Landslide Susceptibility Index (LSI) is defined as the sum of the ratio Ra/Rb calculated for each predisposing factor, where Ra is the ratio between number of pixel of class and the total number of pixel of the study area, and Rb is the ratio between number of landslides respect to the pixel number of the interval area. From the analysis of the Ra/Rb ratio the relationship between landslide occurrence and predisposing factors were defined. Then the equation of LSI was used in GIS to trace the landslide susceptibility maps. The multivariate method for landslide susceptibility analysis, based on logistic regression, was performed starting from the density maps of the predisposing factors, calculated with the intervals defined above using the equation Rb/Rbtot, where Rbtot is a sum of all Rb values. Using stepwise forward algorithms the logistic regression was performed in two successive steps: first a univariate logistic regression is used to choose the most significant predisposing factors, then the multivariate logistic regression can be performed. The univariate regression highlighted the importance of the following factors: elevation, accumulation flow, drainage density, lineament density, geology and land use. When the multivariate regression was applied the number of controlling factors was reduced neglecting the geological properties. The resulting final susceptibility equation is: P = 1 / (1 + exp-(6.46-22.34*elevation-5.33*accumulation flow-7.99* drainage density-4.47*lineament density-17.31*land use)) and using this equation the susceptibility maps were obtained. To easy compare the results of the two methodologies, the susceptibility maps were reclassified in five susceptibility intervals (very high, high, moderate, low and very low) using natural breaks. Then the maps were validated using two cumulative distribution curves, one related to the landslides (number of landslides in each susceptibility class) and one to the basin (number of pixel covering each class). Comparing the curves for each method, it results that the two approaches (univariate and multivariate) are appropriate, providing acceptable results. In both maps the distribution of high susceptibility condition is mainly localized on the left slope of the catchment in agreement with the field evidences. The comparison between the methods was obtained by subtraction of the two maps. This operation shows that about 40% of the basin is classified by the same class of susceptibility. In general the univariate probabilistic method tends to overestimate the areal extension of the high susceptibility class with respect to the maps obtained by the logistic regression method.

  4. Dynamic Dimensionality Selection for Bayesian Classifier Ensembles

    DTIC Science & Technology

    2015-03-19

    learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but much more...classifier, Generative learning, Discriminative learning, Naïve Bayes, Feature selection, Logistic regression , higher order attribute independence 16...discriminative learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but

  5. Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data

    PubMed Central

    Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438

  6. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules

    PubMed Central

    Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030

  7. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules.

    PubMed

    Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.

  8. Protocol Analysis as a Tool in Function and Task Analysis

    DTIC Science & Technology

    1999-10-01

    Autocontingency The use of log-linear and logistic regression methods to analyse sequential data seems appealing , and is strongly advocated by...collection and analysis of observational data. Behavior Research Methods, Instruments, and Computers, 23(3), 415-429. Patrick, J. D. (1991). Snob : A

  9. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  10. A statistical method for predicting seizure onset zones from human single-neuron recordings

    NASA Astrophysics Data System (ADS)

    Valdez, André B.; Hickman, Erin N.; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2013-02-01

    Objective. Clinicians often use depth-electrode recordings to localize human epileptogenic foci. To advance the diagnostic value of these recordings, we applied logistic regression models to single-neuron recordings from depth-electrode microwires to predict seizure onset zones (SOZs). Approach. We collected data from 17 epilepsy patients at the Barrow Neurological Institute and developed logistic regression models to calculate the odds of observing SOZs in the hippocampus, amygdala and ventromedial prefrontal cortex, based on statistics such as the burst interspike interval (ISI). Main results. Analysis of these models showed that, for a single-unit increase in burst ISI ratio, the left hippocampus was approximately 12 times more likely to contain a SOZ; and the right amygdala, 14.5 times more likely. Our models were most accurate for the hippocampus bilaterally (at 85% average sensitivity), and performance was comparable with current diagnostics such as electroencephalography. Significance. Logistic regression models can be combined with single-neuron recording to predict likely SOZs in epilepsy patients being evaluated for resective surgery, providing an automated source of clinically useful information.

  11. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  12. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  13. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand

    NASA Astrophysics Data System (ADS)

    Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung

    2009-04-01

    For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.

  14. HEALER: homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS

    PubMed Central

    Wang, Shuang; Zhang, Yuchen; Dai, Wenrui; Lauter, Kristin; Kim, Miran; Tang, Yuzhe; Xiong, Hongkai; Jiang, Xiaoqian

    2016-01-01

    Motivation: Genome-wide association studies (GWAS) have been widely used in discovering the association between genotypes and phenotypes. Human genome data contain valuable but highly sensitive information. Unprotected disclosure of such information might put individual’s privacy at risk. It is important to protect human genome data. Exact logistic regression is a bias-reduction method based on a penalized likelihood to discover rare variants that are associated with disease susceptibility. We propose the HEALER framework to facilitate secure rare variants analysis with a small sample size. Results: We target at the algorithm design aiming at reducing the computational and storage costs to learn a homomorphic exact logistic regression model (i.e. evaluate P-values of coefficients), where the circuit depth is proportional to the logarithmic scale of data size. We evaluate the algorithm performance using rare Kawasaki Disease datasets. Availability and implementation: Download HEALER at http://research.ucsd-dbmi.org/HEALER/ Contact: shw070@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26446135

  15. Sparse Logistic Regression for Diagnosis of Liver Fibrosis in Rat by Using SCAD-Penalized Likelihood

    PubMed Central

    Yan, Fang-Rong; Lin, Jin-Guan; Liu, Yu

    2011-01-01

    The objective of the present study is to find out the quantitative relationship between progression of liver fibrosis and the levels of certain serum markers using mathematic model. We provide the sparse logistic regression by using smoothly clipped absolute deviation (SCAD) penalized function to diagnose the liver fibrosis in rats. Not only does it give a sparse solution with high accuracy, it also provides the users with the precise probabilities of classification with the class information. In the simulative case and the experiment case, the proposed method is comparable to the stepwise linear discriminant analysis (SLDA) and the sparse logistic regression with least absolute shrinkage and selection operator (LASSO) penalty, by using receiver operating characteristic (ROC) with bayesian bootstrap estimating area under the curve (AUC) diagnostic sensitivity for selected variable. Results show that the new approach provides a good correlation between the serum marker levels and the liver fibrosis induced by thioacetamide (TAA) in rats. Meanwhile, this approach might also be used in predicting the development of liver cirrhosis. PMID:21716672

  16. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE PAGES

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...

    2017-09-22

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  17. Estimation of Recurrence of Colorectal Adenomas with Dependent Censoring Using Weighted Logistic Regression

    PubMed Central

    Hsu, Chiu-Hsieh; Li, Yisheng; Long, Qi; Zhao, Qiuhong; Lance, Peter

    2011-01-01

    In colorectal polyp prevention trials, estimation of the rate of recurrence of adenomas at the end of the trial may be complicated by dependent censoring, that is, time to follow-up colonoscopy and dropout may be dependent on time to recurrence. Assuming that the auxiliary variables capture the dependence between recurrence and censoring times, we propose to fit two working models with the auxiliary variables as covariates to define risk groups and then extend an existing weighted logistic regression method for independent censoring to each risk group to accommodate potential dependent censoring. In a simulation study, we show that the proposed method results in both a gain in efficiency and reduction in bias for estimating the recurrence rate. We illustrate the methodology by analyzing a recurrent adenoma dataset from a colorectal polyp prevention trial. PMID:22065985

  18. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran

    NASA Astrophysics Data System (ADS)

    Zeraatpisheh, Mojtaba; Ayoubi, Shamsollah; Jafari, Azam; Finke, Peter

    2017-05-01

    The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This research aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to determine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map, although differences between the scenarios with and without the geomorphology map were not significant. Employing the geomorphology map increased map purity and the Kappa index, and led to a decrease in the 'noisiness' of soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and suborder levels); however, random forest showed better performance at lower taxonomic levels (great group and subgroup levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number of training observations. The conventional soil mapping method produced a map with larger minimum polygon size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the conventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger average polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in the study area. The multinomial logistic regression method was identified as the most effective approach based on a combined index of map purity, map information content, and map production cost. The combined index also showed that smaller sample size led to a preference for the order level, while a larger sample size led to a preference for the great group level.

  19. Comparison of Objective and Subjective Methods on Determination of Differential Item Functioning

    ERIC Educational Resources Information Center

    Sahin, Melek Gülsah

    2017-01-01

    Research objective is comparing the objective methods often used in literature for determination of differential item functioning (DIF) and the subjective method based on the opinions of the experts which are not used so often in literature. Mantel-Haenszel (MH), Logistic Regression (LR) and SIBTEST are chosen as objective methods. While the data…

  20. Analysis of the discriminative methods for diagnosis of benign and malignant solitary pulmonary nodules based on serum markers.

    PubMed

    Wang, Wanping; Liu, Mingyue; Wang, Jing; Tian, Rui; Dong, Junqiang; Liu, Qi; Zhao, Xianping; Wang, Yuanfang

    2014-01-01

    Screening indexes of tumor serum markers for benign and malignant solitary pulmonary nodules (SPNs) were analyzed to find the optimum method for diagnosis. Enzyme-linked immunosorbent assays, an automatic immune analyzer and radioimmunoassay methods were used to examine the levels of 8 serum markers in 164 SPN patients, and the sensitivity for differential diagnosis of malignant or benign SPN was compared for detection using a single plasma marker or a combination of markers. The results for serological indicators that closely relate to benign and malignant SPNs were screened using the Fisher discriminant analysis and a non-conditional logistic regression analysis method, respectively. The results were then verified by the k-means clustering analysis method. The sensitivity when using a combination of serum markers to detect SPN was higher than that using a single marker. By Fisher discriminant analysis, cytokeratin 19 fragments (CYFRA21-1), carbohydrate antigen 125 (CA125), squamous cell carcinoma antigen (SCC) and breast cancer antigen (CA153), which relate to the benign and malignant SPNs, were screened. Through non-conditional logistic regression analysis, CYFRA21-1, SCC and CA153 were obtained. Using the k-means clustering analysis, the cophenetic correlation coefficient (0.940) obtained by the Fisher discriminant analysis was higher than that obtained with logistic regression analysis (0.875). This study indicated that the Fisher discriminant analysis functioned better in screening out serum markers to recognize the benign and malignant SPN. The combined detection of CYFRA21-1, CA125, SCC and CA153 is an effective way to distinguish benign and malignant SPN, and will find an important clinical application in the early diagnosis of SPN. © 2014 S. Karger GmbH, Freiburg.

  1. Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan

    PubMed Central

    2011-01-01

    Background The relationship between asthma and traffic-related pollutants has received considerable attention. The use of individual-level exposure measures, such as residence location or proximity to emission sources, may avoid ecological biases. Method This study focused on the pediatric Medicaid population in Detroit, MI, a high-risk population for asthma-related events. A population-based matched case-control analysis was used to investigate associations between acute asthma outcomes and proximity of residence to major roads, including freeways. Asthma cases were identified as all children who made at least one asthma claim, including inpatient and emergency department visits, during the three-year study period, 2004-06. Individually matched controls were randomly selected from the rest of the Medicaid population on the basis of non-respiratory related illness. We used conditional logistic regression with distance as both categorical and continuous variables, and examined non-linear relationships with distance using polynomial splines. The conditional logistic regression models were then extended by considering multiple asthma states (based on the frequency of acute asthma outcomes) using polychotomous conditional logistic regression. Results Asthma events were associated with proximity to primary roads with an odds ratio of 0.97 (95% CI: 0.94, 0.99) for a 1 km increase in distance using conditional logistic regression, implying that asthma events are less likely as the distance between the residence and a primary road increases. Similar relationships and effect sizes were found using polychotomous conditional logistic regression. Another plausible exposure metric, a reduced form response surface model that represents atmospheric dispersion of pollutants from roads, was not associated under that exposure model. Conclusions There is moderately strong evidence of elevated risk of asthma close to major roads based on the results obtained in this population-based matched case-control study. PMID:21513554

  2. Cluster Analysis of Campylobacter jejuni Genotypes Isolated from Small and Medium-Sized Mammalian Wildlife and Bovine Livestock from Ontario Farms.

    PubMed

    Viswanathan, M; Pearl, D L; Taboada, E N; Parmley, E J; Mutschall, S K; Jardine, C M

    2017-05-01

    Using data collected from a cross-sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter-specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair-group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two-dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife transmit Campylobacter jejuni directly to humans. © 2016 Blackwell Verlag GmbH.

  3. glmnetLRC f/k/a lrc package: Logistic Regression Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-06-09

    Methods for fitting and predicting logistic regression classifiers (LRC) with an arbitrary loss function using elastic net or best subsets. This package adds additional model fitting features to the existing glmnet and bestglm R packages. This package was created to perform the analyses described in Amidan BG, Orton DJ, LaMarche BL, et al. 2014. Signatures for Mass Spectrometry Data Quality. Journal of Proteome Research. 13(4), 2215-2222. It makes the model fitting available in the glmnet and bestglm packages more general by identifying optimal model parameters via cross validation with an customizable loss function. It also identifies the optimal threshold formore » binary classification.« less

  4. Interpretation of commonly used statistical regression models.

    PubMed

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  5. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US

    USGS Publications Warehouse

    Kumar, S.; Spaulding, S.A.; Stohlgren, T.J.; Hermann, K.A.; Schmidt, T.S.; Bahls, L.L.

    2009-01-01

    The diatom Didymosphenia geminata is a single-celled alga found in lakes, streams, and rivers. Nuisance blooms of D geminata affect the diversity, abundance, and productivity of other aquatic organisms. Because D geminata can be transported by humans on waders and other gear, accurate spatial prediction of habitat suitability is urgently needed for early detection and rapid response, as well as for evaluation of monitoring and control programs. We compared four modeling methods to predict D geminata's habitat distribution; two methods use presence-absence data (logistic regression and classification and regression tree [CART]), and two involve presence data (maximum entropy model [Maxent] and genetic algorithm for rule-set production [GARP]). Using these methods, we evaluated spatially explicit, bioclimatic and environmental variables as predictors of diatom distribution. The Maxent model provided the most accurate predictions, followed by logistic regression, CART, and GARP. The most suitable habitats were predicted to occur in the western US, in relatively cool sites, and at high elevations with a high base-flow index. The results provide insights into the factors that affect the distribution of D geminata and a spatial basis for the prediction of nuisance blooms. ?? The Ecological Society of America.

  6. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    PubMed

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  7. Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?

    PubMed

    Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M

    2018-05-01

    Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.

  8. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether

  9. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  10. Determining factors influencing survival of breast cancer by fuzzy logistic regression model.

    PubMed

    Nikbakht, Roya; Bahrampour, Abbas

    2017-01-01

    Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.

  11. Active Travel to School: Findings from the Survey of US Health Behavior in School-Aged Children, 2009-2010

    ERIC Educational Resources Information Center

    Yang, Yong; Ivey, Stephanie S.; Levy, Marian C.; Royne, Marla B.; Klesges, Lisa M.

    2016-01-01

    Background: Whereas children's active travel to school (ATS) has confirmed benefits, only a few large national surveys of ATS exist. Methods: Using data from the Health Behavior in School-aged Children (HBSC) 2009-2010 US survey, we conducted a logistic regression model to estimate the odds ratios of ATS and a linear regression model to estimate…

  12. Mathematical models application for mapping soils spatial distribution on the example of the farm from the North of Udmurt Republic of Russia

    NASA Astrophysics Data System (ADS)

    Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.

    2018-01-01

    Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.

  13. Risk stratification personalised model for prediction of life-threatening ventricular tachyarrhythmias in patients with chronic heart failure.

    PubMed

    Frolov, Alexander Vladimirovich; Vaikhanskaya, Tatjana Gennadjevna; Melnikova, Olga Petrovna; Vorobiev, Anatoly Pavlovich; Guel, Ludmila Michajlovna

    2017-01-01

    The development of prognostic factors of life-threatening ventricular tachyarrhythmias (VTA) and sudden cardiac death (SCD) continues to maintain its priority and relevance in cardiology. The development of a method of personalised prognosis based on multifactorial analysis of the risk factors associated with life-threatening heart rhythm disturbances is considered a key research and clinical task. To design a prognostic and mathematical model to define personalised risk for life-threatening VTA in patients with chronic heart failure (CHF). The study included 240 patients with CHF (mean-age of 50.5 ± 12.1 years; left ventricular ejection fraction 32.8 ± 10.9%; follow-up period 36.8 ± 5.7 months). The participants received basic therapy for heart failure. The elec-trocardiogram (ECG) markers of myocardial electrical instability were assessed including microvolt T-wave alternans, heart rate turbulence, heart rate deceleration, and QT dispersion. Additionally, echocardiography and Holter monitoring (HM) were performed. The cardiovascular events were considered as primary endpoints, including SCD, paroxysmal ventricular tachycardia/ventricular fibrillation (VT/VF) based on HM-ECG data, and data obtained from implantable device interrogation (CRT-D, ICD) as well as appropriated shocks. During the follow-up period, 66 (27.5%) subjects with CHF showed adverse arrhythmic events, including nine SCD events and 57 VTAs. Data from a stepwise discriminant analysis of cumulative ECG-markers of myocardial electrical instability were used to make a mathematical model of preliminary VTA risk stratification. Uni- and multivariate Cox logistic regression analysis were performed to define an individualised risk stratification model of SCD/VTA. A binary logistic regression model demonstrated a high prognostic significance of discriminant function with a classification sensitivity of 80.8% and specificity of 99.1% (F = 31.2; c2 = 143.2; p < 0.0001). The method of personalised risk stratification using Cox logistic regression allows correct classification of more than 93.9% of CHF cases. A robust body of evidence concerning logistic regression prognostic significance to define VTA risk allows inclusion of this method into the algorithm of subsequent control and selection of the optimal treatment modality to treat patients with CHF.

  14. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression

    PubMed Central

    Dipnall, Joanna F.

    2016-01-01

    Background Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. Methods The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009–2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. Results After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). Conclusion The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin. PMID:26848571

  15. Evaluating risk factors for endemic human Salmonella Enteritidis infections with different phage types in Ontario, Canada using multinomial logistic regression and a case-case study approach

    PubMed Central

    2012-01-01

    Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531

  16. Mixed conditional logistic regression for habitat selection studies.

    PubMed

    Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas

    2010-05-01

    1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.

  17. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  18. Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data.

    PubMed

    Sun, Hokeun; Wang, Shuang

    2013-05-30

    The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Stata Modules for Calculating Novel Predictive Performance Indices for Logistic Models

    PubMed Central

    Barkhordari, Mahnaz; Padyab, Mojgan; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-01-01

    Background Prediction is a fundamental part of prevention of cardiovascular diseases (CVD). The development of prediction algorithms based on the multivariate regression models loomed several decades ago. Parallel with predictive models development, biomarker researches emerged in an impressively great scale. The key question is how best to assess and quantify the improvement in risk prediction offered by new biomarkers or more basically how to assess the performance of a risk prediction model. Discrimination, calibration, and added predictive value have been recently suggested to be used while comparing the predictive performances of the predictive models’ with and without novel biomarkers. Objectives Lack of user-friendly statistical software has restricted implementation of novel model assessment methods while examining novel biomarkers. We intended, thus, to develop a user-friendly software that could be used by researchers with few programming skills. Materials and Methods We have written a Stata command that is intended to help researchers obtain cut point-free and cut point-based net reclassification improvement index and (NRI) and relative and absolute Integrated discriminatory improvement index (IDI) for logistic-based regression analyses.We applied the commands to a real data on women participating the Tehran lipid and glucose study (TLGS) to examine if information of a family history of premature CVD, waist circumference, and fasting plasma glucose can improve predictive performance of the Framingham’s “general CVD risk” algorithm. Results The command is addpred for logistic regression models. Conclusions The Stata package provided herein can encourage the use of novel methods in examining predictive capacity of ever-emerging plethora of novel biomarkers. PMID:27279830

  20. Comparison of naïve Bayes and logistic regression for computer-aided diagnosis of breast masses using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Cary, Theodore W.; Cwanger, Alyssa; Venkatesh, Santosh S.; Conant, Emily F.; Sehgal, Chandra M.

    2012-03-01

    This study compares the performance of two proven but very different machine learners, Naïve Bayes and logistic regression, for differentiating malignant and benign breast masses using ultrasound imaging. Ultrasound images of 266 masses were analyzed quantitatively for shape, echogenicity, margin characteristics, and texture features. These features along with patient age, race, and mammographic BI-RADS category were used to train Naïve Bayes and logistic regression classifiers to diagnose lesions as malignant or benign. ROC analysis was performed using all of the features and using only a subset that maximized information gain. Performance was determined by the area under the ROC curve, Az, obtained from leave-one-out cross validation. Naïve Bayes showed significant variation (Az 0.733 +/- 0.035 to 0.840 +/- 0.029, P < 0.002) with the choice of features, but the performance of logistic regression was relatively unchanged under feature selection (Az 0.839 +/- 0.029 to 0.859 +/- 0.028, P = 0.605). Out of 34 features, a subset of 6 gave the highest information gain: brightness difference, margin sharpness, depth-to-width, mammographic BI-RADs, age, and race. The probabilities of malignancy determined by Naïve Bayes and logistic regression after feature selection showed significant correlation (R2= 0.87, P < 0.0001). The diagnostic performance of Naïve Bayes and logistic regression can be comparable, but logistic regression is more robust. Since probability of malignancy cannot be measured directly, high correlation between the probabilities derived from two basic but dissimilar models increases confidence in the predictive power of machine learning models for characterizing solid breast masses on ultrasound.

  1. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    PubMed

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  2. Variable Selection in Logistic Regression.

    DTIC Science & Technology

    1987-06-01

    23 %. AUTIOR(.) S. CONTRACT OR GRANT NUMBE Rf.i %Z. D. Bai, P. R. Krishnaiah and . C. Zhao F49620-85- C-0008 " PERFORMING ORGANIZATION NAME AND AOORESS...d I7 IOK-TK- d 7 -I0 7’ VARIABLE SELECTION IN LOGISTIC REGRESSION Z. D. Bai, P. R. Krishnaiah and L. C. Zhao Center for Multivariate Analysis...University of Pittsburgh Center for Multivariate Analysis University of Pittsburgh Y !I VARIABLE SELECTION IN LOGISTIC REGRESSION Z- 0. Bai, P. R. Krishnaiah

  3. Multinomial Logistic Regression Predicted Probability Map To Visualize The Influence Of Socio-Economic Factors On Breast Cancer Occurrence in Southern Karnataka

    NASA Astrophysics Data System (ADS)

    Madhu, B.; Ashok, N. C.; Balasubramanian, S.

    2014-11-01

    Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.

  4. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  5. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  6. Understanding logistic regression analysis.

    PubMed

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

  7. Measuring decision weights in recognition experiments with multiple response alternatives: comparing the correlation and multinomial-logistic-regression methods.

    PubMed

    Dai, Huanping; Micheyl, Christophe

    2012-11-01

    Psychophysical "reverse-correlation" methods allow researchers to gain insight into the perceptual representations and decision weighting strategies of individual subjects in perceptual tasks. Although these methods have gained momentum, until recently their development was limited to experiments involving only two response categories. Recently, two approaches for estimating decision weights in m-alternative experiments have been put forward. One approach extends the two-category correlation method to m > 2 alternatives; the second uses multinomial logistic regression (MLR). In this article, the relative merits of the two methods are discussed, and the issues of convergence and statistical efficiency of the methods are evaluated quantitatively using Monte Carlo simulations. The results indicate that, for a range of values of the number of trials, the estimated weighting patterns are closer to their asymptotic values for the correlation method than for the MLR method. Moreover, for the MLR method, weight estimates for different stimulus components can exhibit strong correlations, making the analysis and interpretation of measured weighting patterns less straightforward than for the correlation method. These and other advantages of the correlation method, which include computational simplicity and a close relationship to other well-established psychophysical reverse-correlation methods, make it an attractive tool to uncover decision strategies in m-alternative experiments.

  8. Detection of Differential Item Functioning Using the Lasso Approach

    ERIC Educational Resources Information Center

    Magis, David; Tuerlinckx, Francis; De Boeck, Paul

    2015-01-01

    This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the "LR lasso DIF method": logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts,…

  9. Campaign Strategies and Voter Approval of School Referenda: A Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Johnson, Paul A.; Ingle, William Kyle

    2009-01-01

    Drawing from state administrative data and surveys of superintendents in Ohio, this mixed methods study examined factors associated with voters' approval of local school levies. Utilizing binomial logistic regression, this study found that new levies and poverty rates were significantly associated with a decrease in the likelihood of passage.…

  10. PAKDD Data Mining Competition 2009: New Ways of Using Known Methods

    NASA Astrophysics Data System (ADS)

    Linhart, Chaim; Harari, Guy; Abramovich, Sharon; Buchris, Altina

    The PAKDD 2009 competition focuses on the problem of credit risk assessment. As required, we had to confront the problem of the robustness of the credit-scoring model against performance degradation caused by gradual market changes along a few years of business operation. We utilized the following standard models: logistic regression, KNN, SVM, GBM and decision tree. The novelty of our approach is two-fold: the integration of existing models, namely feeding the results of KNN as an input variable to the logistic regression, and re-coding categorical variables as numerical values that represent each category's statistical impact on the target label. The best solution we obtained reached 3rd place in the competition, with an AUC score of 0.655.

  11. Fisher Scoring Method for Parameter Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    NASA Astrophysics Data System (ADS)

    Widyaningsih, Purnami; Retno Sari Saputro, Dewi; Nugrahani Putri, Aulia

    2017-06-01

    GWOLR model combines geographically weighted regression (GWR) and (ordinal logistic reression) OLR models. Its parameter estimation employs maximum likelihood estimation. Such parameter estimation, however, yields difficult-to-solve system of nonlinear equations, and therefore numerical approximation approach is required. The iterative approximation approach, in general, uses Newton-Raphson (NR) method. The NR method has a disadvantage—its Hessian matrix is always the second derivatives of each iteration so it does not always produce converging results. With regard to this matter, NR model is modified by substituting its Hessian matrix into Fisher information matrix, which is termed Fisher scoring (FS). The present research seeks to determine GWOLR model parameter estimation using Fisher scoring method and apply the estimation on data of the level of vulnerability to Dengue Hemorrhagic Fever (DHF) in Semarang. The research concludes that health facilities give the greatest contribution to the probability of the number of DHF sufferers in both villages. Based on the number of the sufferers, IR category of DHF in both villages can be determined.

  12. Application of logistic regression to case-control association studies involving two causative loci.

    PubMed

    North, Bernard V; Curtis, David; Sham, Pak C

    2005-01-01

    Models in which two susceptibility loci jointly influence the risk of developing disease can be explored using logistic regression analysis. Comparison of likelihoods of models incorporating different sets of disease model parameters allows inferences to be drawn regarding the nature of the joint effect of the loci. We have simulated case-control samples generated assuming different two-locus models and then analysed them using logistic regression. We show that this method is practicable and that, for the models we have used, it can be expected to allow useful inferences to be drawn from sample sizes consisting of hundreds of subjects. Interactions between loci can be explored, but interactive effects do not exactly correspond with classical definitions of epistasis. We have particularly examined the issue of the extent to which it is helpful to utilise information from a previously identified locus when investigating a second, unknown locus. We show that for some models conditional analysis can have substantially greater power while for others unconditional analysis can be more powerful. Hence we conclude that in general both conditional and unconditional analyses should be performed when searching for additional loci.

  13. Supporting Regularized Logistic Regression Privately and Efficiently.

    PubMed

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.

  14. Beyond Reading Alone: The Relationship Between Aural Literacy And Asthma Management

    PubMed Central

    Rosenfeld, Lindsay; Rudd, Rima; Emmons, Karen M.; Acevedo-García, Dolores; Martin, Laurie; Buka, Stephen

    2010-01-01

    Objectives To examine the relationship between literacy and asthma management with a focus on the oral exchange. Methods Study participants, all of whom reported asthma, were drawn from the New England Family Study (NEFS), an examination of links between education and health. NEFS data included reading, oral (speaking), and aural (listening) literacy measures. An additional survey was conducted with this group of study participants related to asthma issues, particularly asthma management. Data analysis focused on bivariate and multivariable logistic regression. Results In bivariate logistic regression models exploring aural literacy, there was a statistically significant association between those participants with lower aural literacy skills and less successful asthma management (OR:4.37, 95%CI:1.11, 17.32). In multivariable logistic regression analyses, controlling for gender, income, and race in separate models (one-at-a-time), there remained a statistically significant association between those participants with lower aural literacy skills and less successful asthma management. Conclusion Lower aural literacy skills seem to complicate asthma management capabilities. Practice Implications Greater attention to the oral exchange, in particular the listening skills highlighted by aural literacy, as well as other related literacy skills may help us develop strategies for clear communication related to asthma management. PMID:20399060

  15. Supporting Regularized Logistic Regression Privately and Efficiently

    PubMed Central

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738

  16. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  17. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  18. Cross-Sectional and Panel Data Analyses of an Incompletely Observed Variable Derived from the Nonrandomized Method for Surveying Sensitive Questions

    ERIC Educational Resources Information Center

    Yamaguchi, Kazuo

    2016-01-01

    This article describes (1) the survey methodological and statistical characteristics of the nonrandomized method for surveying sensitive questions for both cross-sectional and panel survey data and (2) the way to use the incompletely observed variable obtained from this survey method in logistic regression and in loglinear and log-multiplicative…

  19. Application of Bayesian methods to habitat selection modeling of the northern spotted owl in California: new statistical methods for wildlife research

    Treesearch

    Howard B. Stauffer; Cynthia J. Zabel; Jeffrey R. Dunk

    2005-01-01

    We compared a set of competing logistic regression habitat selection models for Northern Spotted Owls (Strix occidentalis caurina) in California. The habitat selection models were estimated, compared, evaluated, and tested using multiple sample datasets collected on federal forestlands in northern California. We used Bayesian methods in interpreting...

  20. Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility

    Treesearch

    David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan

    2000-01-01

    Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...

  1. Using Multiple and Logistic Regression to Estimate the Median WillCost and Probability of Cost and Schedule Overrun for Program Managers

    DTIC Science & Technology

    2017-03-23

    PUBLIC RELEASE; DISTRIBUTION UNLIMITED Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and... Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle Follow this and additional works at: https://scholar.afit.edu...afit.edu. Recommended Citation Trudelle, Ryan C., "Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and

  2. Expression of Proteins Involved in Epithelial-Mesenchymal Transition as Predictors of Metastasis and Survival in Breast Cancer Patients

    DTIC Science & Technology

    2013-11-01

    Ptrend 0.78 0.62 0.75 Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for risk of node...Ptrend 0.71 0.67 Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for risk of high-grade tumors... logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for the associations between each of the seven SNPs and

  3. Addressing data privacy in matched studies via virtual pooling.

    PubMed

    Saha-Chaudhuri, P; Weinberg, C R

    2017-09-07

    Data confidentiality and shared use of research data are two desirable but sometimes conflicting goals in research with multi-center studies and distributed data. While ideal for straightforward analysis, confidentiality restrictions forbid creation of a single dataset that includes covariate information of all participants. Current approaches such as aggregate data sharing, distributed regression, meta-analysis and score-based methods can have important limitations. We propose a novel application of an existing epidemiologic tool, specimen pooling, to enable confidentiality-preserving analysis of data arising from a matched case-control, multi-center design. Instead of pooling specimens prior to assay, we apply the methodology to virtually pool (aggregate) covariates within nodes. Such virtual pooling retains most of the information used in an analysis with individual data and since individual participant data is not shared externally, within-node virtual pooling preserves data confidentiality. We show that aggregated covariate levels can be used in a conditional logistic regression model to estimate individual-level odds ratios of interest. The parameter estimates from the standard conditional logistic regression are compared to the estimates based on a conditional logistic regression model with aggregated data. The parameter estimates are shown to be similar to those without pooling and to have comparable standard errors and confidence interval coverage. Virtual data pooling can be used to maintain confidentiality of data from multi-center study and can be particularly useful in research with large-scale distributed data.

  4. Classification of Large-Scale Remote Sensing Images for Automatic Identification of Health Hazards: Smoke Detection Using an Autologistic Regression Classifier.

    PubMed

    Wolters, Mark A; Dean, C B

    2017-01-01

    Remote sensing images from Earth-orbiting satellites are a potentially rich data source for monitoring and cataloguing atmospheric health hazards that cover large geographic regions. A method is proposed for classifying such images into hazard and nonhazard regions using the autologistic regression model, which may be viewed as a spatial extension of logistic regression. The method includes a novel and simple approach to parameter estimation that makes it well suited to handling the large and high-dimensional datasets arising from satellite-borne instruments. The methodology is demonstrated on both simulated images and a real application to the identification of forest fire smoke.

  5. Logistic Regression Likelihood Ratio Test Analysis for Detecting Signals of Adverse Events in Post-market Safety Surveillance.

    PubMed

    Nam, Kijoeng; Henderson, Nicholas C; Rohan, Patricia; Woo, Emily Jane; Russek-Cohen, Estelle

    2017-01-01

    The Vaccine Adverse Event Reporting System (VAERS) and other product surveillance systems compile reports of product-associated adverse events (AEs), and these reports may include a wide range of information including age, gender, and concomitant vaccines. Controlling for possible confounding variables such as these is an important task when utilizing surveillance systems to monitor post-market product safety. A common method for handling possible confounders is to compare observed product-AE combinations with adjusted baseline frequencies where the adjustments are made by stratifying on observable characteristics. Though approaches such as these have proven to be useful, in this article we propose a more flexible logistic regression approach which allows for covariates of all types rather than relying solely on stratification. Indeed, a main advantage of our approach is that the general regression framework provides flexibility to incorporate additional information such as demographic factors and concomitant vaccines. As part of our covariate-adjusted method, we outline a procedure for signal detection that accounts for multiple comparisons and controls the overall Type 1 error rate. To demonstrate the effectiveness of our approach, we illustrate our method with an example involving febrile convulsion, and we further evaluate its performance in a series of simulation studies.

  6. [Prediction of histological liver damage in asymptomatic alcoholic patients by means of clinical and laboratory data].

    PubMed

    Iturriaga, H; Hirsch, S; Bunout, D; Díaz, M; Kelly, M; Silva, G; de la Maza, M P; Petermann, M; Ugarte, G

    1993-04-01

    Looking for a noninvasive method to predict liver histologic alterations in alcoholic patients without clinical signs of liver failure, we studied 187 chronic alcoholics recently abstinent, divided in 2 series. In the model series (n = 94) several clinical variables and results of common laboratory tests were confronted to the findings of liver biopsies. These were classified in 3 groups: 1. Normal liver; 2. Moderate alterations; 3. Marked alterations, including alcoholic hepatitis and cirrhosis. Multivariate methods used were logistic regression analysis and a classification and regression tree (CART). Both methods entered gamma-glutamyltransferase (GGT), aspartate-aminotransferase (AST), weight and age as significant and independent variables. Univariate analysis with GGT and AST at different cutoffs were also performed. To predict the presence of any kind of damage (Groups 2 and 3), CART and AST > 30 IU showed the higher sensitivity, specificity and correct prediction, both in the model and validation series. For prediction of marked liver damage, a score based on logistic regression and GGT > 110 IU had the higher efficiencies. It is concluded that GGT and AST are good markers of alcoholic liver damage and that, using sample cutoffs, histologic diagnosis can be correctly predicted in 80% of recently abstinent asymptomatic alcoholics.

  7. A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data

    USGS Publications Warehouse

    Raines, G.L.; Mihalasky, M.J.

    2002-01-01

    The U.S. Geological Survey (USGS) is proposing to conduct a global mineral-resource assessment using geologic maps, significant deposits, and exploration history as minimal data requirements. Using a geologic map and locations of significant pluton-related deposits, the pluton-related-deposit tract maps from the USGS national mineral-resource assessment have been reproduced with GIS-based analysis and modeling techniques. Agreement, kappa, and Jaccard's C correlation statistics between the expert USGS and calculated tract maps of 87%, 40%, and 28%, respectively, have been achieved using a combination of weights-of-evidence and weighted logistic regression methods. Between the experts' and calculated maps, the ranking of states measured by total permissive area correlates at 84%. The disagreement between the experts and calculated results can be explained primarily by tracts defined by geophysical evidence not considered in the calculations, generalization of tracts by the experts, differences in map scales, and the experts' inclusion of large tracts that are arguably not permissive. This analysis shows that tracts for regional mineral-resource assessment approximating those delineated by USGS experts can be calculated using weights of evidence and weighted logistic regression, a geologic map, and the location of significant deposits. Weights of evidence and weighted logistic regression applied to a global geologic map could provide quickly a useful reconnaissance definition of tracts for mineral assessment that is tied to the data and is reproducible. ?? 2002 International Association for Mathematical Geology.

  8. Combining biological and psychosocial baseline variables did not improve prediction of outcome of a very-low-energy diet in a clinic referral population.

    PubMed

    Sumithran, P; Purcell, K; Kuyruk, S; Proietto, J; Prendergast, L A

    2018-02-01

    Consistent, strong predictors of obesity treatment outcomes have not been identified. It has been suggested that broadening the range of predictor variables examined may be valuable. We explored methods to predict outcomes of a very-low-energy diet (VLED)-based programme in a clinically comparable setting, using a wide array of pre-intervention biological and psychosocial participant data. A total of 61 women and 39 men (mean ± standard deviation [SD] body mass index: 39.8 ± 7.3 kg/m 2 ) underwent an 8-week VLED and 12-month follow-up. At baseline, participants underwent a blood test and assessment of psychological, social and behavioural factors previously associated with treatment outcomes. Logistic regression, linear discriminant analysis, decision trees and random forests were used to model outcomes from baseline variables. Of the 100 participants, 88 completed the VLED and 42 attended the Week 60 visit. Overall prediction rates for weight loss of ≥10% at weeks 8 and 60, and attrition at Week 60, using combined data were between 77.8 and 87.6% for logistic regression, and lower for other methods. When logistic regression analyses included only baseline demographic and anthropometric variables, prediction rates were 76.2-86.1%. In this population, considering a wide range of biological and psychosocial data did not improve outcome prediction compared to simply-obtained baseline characteristics. © 2017 World Obesity Federation.

  9. Stata Modules for Calculating Novel Predictive Performance Indices for Logistic Models.

    PubMed

    Barkhordari, Mahnaz; Padyab, Mojgan; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-01-01

    Prediction is a fundamental part of prevention of cardiovascular diseases (CVD). The development of prediction algorithms based on the multivariate regression models loomed several decades ago. Parallel with predictive models development, biomarker researches emerged in an impressively great scale. The key question is how best to assess and quantify the improvement in risk prediction offered by new biomarkers or more basically how to assess the performance of a risk prediction model. Discrimination, calibration, and added predictive value have been recently suggested to be used while comparing the predictive performances of the predictive models' with and without novel biomarkers. Lack of user-friendly statistical software has restricted implementation of novel model assessment methods while examining novel biomarkers. We intended, thus, to develop a user-friendly software that could be used by researchers with few programming skills. We have written a Stata command that is intended to help researchers obtain cut point-free and cut point-based net reclassification improvement index and (NRI) and relative and absolute Integrated discriminatory improvement index (IDI) for logistic-based regression analyses.We applied the commands to a real data on women participating the Tehran lipid and glucose study (TLGS) to examine if information of a family history of premature CVD, waist circumference, and fasting plasma glucose can improve predictive performance of the Framingham's "general CVD risk" algorithm. The command is addpred for logistic regression models. The Stata package provided herein can encourage the use of novel methods in examining predictive capacity of ever-emerging plethora of novel biomarkers.

  10. Modelling Status Food Security Households Disease Sufferers Pulmonary Tuberculosis Uses the Method Regression Logistics Binary

    NASA Astrophysics Data System (ADS)

    Wulandari, S. P.; Salamah, M.; Rositawati, A. F. D.

    2018-04-01

    Food security is the condition where the food fulfilment is managed well for the country till the individual. Indonesia is one of the country which has the commitment to create the food security becomes main priority. However, the food necessity becomes common thing means that it doesn’t care about nutrient standard and the health condition of family member, so in the fulfilment of food necessity also has to consider the disease suffered by the family member, one of them is pulmonary tuberculosa. From that reasons, this research is conducted to know the factors which influence on household food security status which suffered from pulmonary tuberculosis in the coastal area of Surabaya by using binary logistic regression method. The analysis result by using binary logistic regression shows that the variables wife latest education, house density and spacious house ventilation significantly affect on household food security status which suffered from pulmonary tuberculosis in the coastal area of Surabaya, where the wife education level is University/equivalent, the house density is eligible or 8 m2/person and spacious house ventilation 10% of the floor area has the opportunity to become food secure households amounted to 0.911089. While the chance of becoming food insecure households amounted to 0.088911. The model household food security status which suffered from pulmonary tuberculosis in the coastal area of Surabaya has been conformable, and the overall percentages of those classifications are at 71.8%.

  11. Inferring microhabitat preferences of Lilium catesbaei (Liliaceae).

    PubMed

    Sommers, Kristen Penney; Elswick, Michael; Herrick, Gabriel I; Fox, Gordon A

    2011-05-01

    Microhabitat studies use varied statistical methods, some treating site occupancy as a dependent and others as an independent variable. Using the rare Lilium catesbaei as an example, we show why approaches to testing hypotheses of differences between occupied and unoccupied sites can lead to erroneous conclusions about habitat preferences. Predictive approaches like logistic regression can better lead to understanding of habitat requirements. Using 32 lily locations and 30 random locations >2 m from a lily (complete data: 31 lily and 28 random spots), we measured physical conditions--photosynthetically active radiation (PAR), canopy cover, litter depth, distance to and height of nearest shrub, and soil moisture--and number and identity of neighboring plants. Twelve lilies were used to estimate a photosynthetic assimilation curve. Analyses used logistic regression, discriminant function analysis (DFA), (multivariate) analysis of variance, and resampled Wilcoxon tests. Logistic regression and DFA found identical predictors of presence (PAR, canopy cover, distance to shrub, litter), but hypothesis tests pointed to a different set (PAR, litter, canopy cover, height of nearest shrub). Lilies are mainly in high-PAR spots, often close to light saturation. By contrast, PAR in random spots was often near the lily light compensation point. Lilies were near Serenoa repens less than at random; otherwise, neighbor identity had no significant effect. Predictive methods are more useful in this context than the hypothesis tests. Light availability plays a big role in lily presence, which may help to explain increases in flowering and emergence after fire and roller-chopping.

  12. Binomial outcomes in dataset with some clusters of size two: can the dependence of twins be accounted for? A simulation study comparing the reliability of statistical methods based on a dataset of preterm infants.

    PubMed

    Sauzet, Odile; Peacock, Janet L

    2017-07-20

    The analysis of perinatal outcomes often involves datasets with some multiple births. These are datasets mostly formed of independent observations and a limited number of clusters of size two (twins) and maybe of size three or more. This non-independence needs to be accounted for in the statistical analysis. Using simulated data based on a dataset of preterm infants we have previously investigated the performance of several approaches to the analysis of continuous outcomes in the presence of some clusters of size two. Mixed models have been developed for binomial outcomes but very little is known about their reliability when only a limited number of small clusters are present. Using simulated data based on a dataset of preterm infants we investigated the performance of several approaches to the analysis of binomial outcomes in the presence of some clusters of size two. Logistic models, several methods of estimation for the logistic random intercept models and generalised estimating equations were compared. The presence of even a small percentage of twins means that a logistic regression model will underestimate all parameters but a logistic random intercept model fails to estimate the correlation between siblings if the percentage of twins is too small and will provide similar estimates to logistic regression. The method which seems to provide the best balance between estimation of the standard error and the parameter for any percentage of twins is the generalised estimating equations. This study has shown that the number of covariates or the level two variance do not necessarily affect the performance of the various methods used to analyse datasets containing twins but when the percentage of small clusters is too small, mixed models cannot capture the dependence between siblings.

  13. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Treesearch

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  14. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    NASA Astrophysics Data System (ADS)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  15. Use of neural networks to model complex immunogenetic associations of disease: human leukocyte antigen impact on the progression of human immunodeficiency virus infection.

    PubMed

    Ioannidis, J P; McQueen, P G; Goedert, J J; Kaslow, R A

    1998-03-01

    Complex immunogenetic associations of disease involving a large number of gene products are difficult to evaluate with traditional statistical methods and may require complex modeling. The authors evaluated the performance of feed-forward backpropagation neural networks in predicting rapid progression to acquired immunodeficiency syndrome (AIDS) for patients with human immunodeficiency virus (HIV) infection on the basis of major histocompatibility complex variables. Networks were trained on data from patients from the Multicenter AIDS Cohort Study (n = 139) and then validated on patients from the DC Gay cohort (n = 102). The outcome of interest was rapid disease progression, defined as progression to AIDS in <6 years from seroconversion. Human leukocyte antigen (HLA) variables were selected as network inputs with multivariate regression and a previously described algorithm selecting markers with extreme point estimates for progression risk. Network performance was compared with that of logistic regression. Networks with 15 HLA inputs and a single hidden layer of five nodes achieved a sensitivity of 87.5% and specificity of 95.6% in the training set, vs. 77.0% and 76.9%, respectively, achieved by logistic regression. When validated on the DC Gay cohort, networks averaged a sensitivity of 59.1% and specificity of 74.3%, vs. 53.1% and 61.4%, respectively, for logistic regression. Neural networks offer further support to the notion that HIV disease progression may be dependent on complex interactions between different class I and class II alleles and transporters associated with antigen processing variants. The effect in the current models is of moderate magnitude, and more data as well as other host and pathogen variables may need to be considered to improve the performance of the models. Artificial intelligence methods may complement linear statistical methods for evaluating immunogenetic associations of disease.

  16. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  17. A Primer on Logistic Regression.

    ERIC Educational Resources Information Center

    Woldbeck, Tanya

    This paper introduces logistic regression as a viable alternative when the researcher is faced with variables that are not continuous. If one is to use simple regression, the dependent variable must be measured on a continuous scale. In the behavioral sciences, it may not always be appropriate or possible to have a measured dependent variable on a…

  18. Assessing West Virginia NIPF owner preferred forest management assistance topics and delivery methods

    Treesearch

    Daniel J. Magill; Rory F. Fraser; David W. McGill

    2003-01-01

    Four hundred and fourteen non-industrial private forest (NIPF) owners in West Virginia responded to a mail survey questionnaire assessing their forest management assistance topics and delivery methods of interest. Logistic regression was used to analyze 39 independent variables in relation to the dependent variables of wanting a specific topic of forestry assistance or...

  19. Factors Associated with Recruitment and Screening in the Treatment for Adolescents with Depression Study (TADS)

    ERIC Educational Resources Information Center

    May, Diane E.; Hallin, Mary J.; Kratochvil, Christopher J.; Puumala, Susan E.; Smith, Lynette S.; Reinecke, Mark A.; Silva, Susan G.; Weller, Elizabeth B.; Vitiello, Benedetto; Breland-Noble, Alfiee; March, John S.

    2007-01-01

    Objective: To examine factors associated with eligibility and randomization and consider the efficiency of recruitment methods. Method: Adolescents, ages 12 to 17 years, were telephone screened (N = 2,804) followed by in-person evaluation (N = 1,088) for the Treatment for Adolescents With Depression Study. Separate logistic regression models,…

  20. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  1. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  2. Use of geographically weighted logistic regression to quantify spatial variation in the environmental and sociodemographic drivers of leptospirosis in Fiji: a modelling study.

    PubMed

    Mayfield, Helen J; Lowry, John H; Watson, Conall H; Kama, Mike; Nilles, Eric J; Lau, Colleen L

    2018-05-01

    Leptospirosis is a globally important zoonotic disease, with complex exposure pathways that depend on interactions between human beings, animals, and the environment. Major drivers of outbreaks include flooding, urbanisation, poverty, and agricultural intensification. The intensity of these drivers and their relative importance vary between geographical areas; however, non-spatial regression methods are incapable of capturing the spatial variations. This study aimed to explore the use of geographically weighted logistic regression (GWLR) to provide insights into the ecoepidemiology of human leptospirosis in Fiji. We obtained field data from a cross-sectional community survey done in 2013 in the three main islands of Fiji. A blood sample obtained from each participant (aged 1-90 years) was tested for anti-Leptospira antibodies and household locations were recorded using GPS receivers. We used GWLR to quantify the spatial variation in the relative importance of five environmental and sociodemographic covariates (cattle density, distance to river, poverty rate, residential setting [urban or rural], and maximum rainfall in the wettest month) on leptospirosis transmission in Fiji. We developed two models, one using GWLR and one with standard logistic regression; for each model, the dependent variable was the presence or absence of anti-Leptospira antibodies. GWLR results were compared with results obtained with standard logistic regression, and used to produce a predictive risk map and maps showing the spatial variation in odds ratios (OR) for each covariate. The dataset contained location information for 2046 participants from 1922 households representing 81 communities. The Aikaike information criterion value of the GWLR model was 1935·2 compared with 1254·2 for the standard logistic regression model, indicating that the GWLR model was more efficient. Both models produced similar OR for the covariates, but GWLR also detected spatial variation in the effect of each covariate. Maximum rainfall had the least variation across space (median OR 1·30, IQR 1·27-1·35), and distance to river varied the most (1·45, 1·35-2·05). The predictive risk map indicated that the highest risk was in the interior of Viti Levu, and the agricultural region and southern end of Vanua Levu. GWLR provided a valuable method for modelling spatial heterogeneity of covariates for leptospirosis infection and their relative importance over space. Results of GWLR could be used to inform more place-specific interventions, particularly for diseases with strong environmental or sociodemographic drivers of transmission. WHO, Australian National Health & Medical Research Council, University of Queensland, UK Medical Research Council, Chadwick Trust. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  3. Predictors of Smokeless Tobacco Abstinence

    ERIC Educational Resources Information Center

    Ebbert, Jon O.; Glover, Elbert D.; Shinozaki, Eri; Schroeder, Darrell R.; Dale, Lowell C.

    2008-01-01

    Objectives: To investigate predictors of tobacco abstinence among smokeless tobacco (ST) users. Methods: Logistic regression analyses assessed characteristics associated with tobacco abstinence among ST users receiving bupropion SR. Results: Older age was associated with increased tobacco abstinence in both placebo and bupropion SR groups at end…

  4. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    EPA Science Inventory

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  5. Victimization and Suicidality among Female College Students

    ERIC Educational Resources Information Center

    Leone, Janel M.; Carroll, James M.

    2016-01-01

    Objective: To investigate the predictive role of victimization in suicidality among college women. Participants: Female respondents to the American College Health Association National College Health Assessment II (N = 258). Methods: Multivariate logistic regression analyses examined the relationship between victimization and suicidality. Results:…

  6. [Influences of environmental factors and interaction of several chemokines gene-environmental on systemic lupus erythematosus].

    PubMed

    Ye, Dong-qing; Hu, Yi-song; Li, Xiang-pei; Huang, Fen; Yang, Shi-gui; Hao, Jia-hu; Yin, Jing; Zhang, Guo-qing; Liu, Hui-hui

    2004-11-01

    To explore the impact of environmental factors, daily lifestyle, psycho-social factors and the interactions between environmental factors and chemokines genes on systemic lupus erythematosus (SLE). Case-control study was carried out and environmental factors for SLE were analyzed by univariate and multivariate unconditional logistic regression. Interactions between environmental factors and chemokines polymorphism contributing to systemic lupus erythematosus were also analyzed by logistic regression model. There were nineteen factors associated with SLE when univariate unconditional logistic regression was used. However, when multivariate unconditional logistic regression was used, only five factors showed having impacts on the disease, in which drinking well water (OR=0.099) was protective factor for SLE, and multiple drug allergy (OR=8.174), over-exposure to sunshine (OR=18.339), taking antibiotics (OR=9.630) and oral contraceptives were risk factors for SLE. When unconditional logistic regression model was used, results showed that there was interaction between eating irritable food and -2518MCP-1G/G genotype (OR=4.387). No interaction between environmental factors was found that contributing to SLE in this study. Many environmental factors were related to SLE, and there was an interaction between -2518MCP-1G/G genotype and eating irritable food.

  7. A New Approach for Mobile Advertising Click-Through Rate Estimation Based on Deep Belief Nets.

    PubMed

    Chen, Jie-Hao; Zhao, Zi-Qian; Shi, Ji-Yun; Zhao, Chong

    2017-01-01

    In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%.

  8. A New Approach for Mobile Advertising Click-Through Rate Estimation Based on Deep Belief Nets

    PubMed Central

    Zhao, Zi-Qian; Shi, Ji-Yun; Zhao, Chong

    2017-01-01

    In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%. PMID:29209363

  9. An Alternative Flight Software Trigger Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions Using Inaccurate or Scarce Information

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.

  10. Impact of Colic Pain as a Significant Factor for Predicting the Stone Free Rate of One-Session Shock Wave Lithotripsy for Treating Ureter Stones: A Bayesian Logistic Regression Model Analysis

    PubMed Central

    Chung, Doo Yong; Cho, Kang Su; Lee, Dae Hun; Han, Jang Hee; Kang, Dong Hyuk; Jung, Hae Do; Kown, Jong Kyou; Ham, Won Sik; Choi, Young Deuk; Lee, Joo Yong

    2015-01-01

    Purpose This study was conducted to evaluate colic pain as a prognostic pretreatment factor that can influence ureter stone clearance and to estimate the probability of stone-free status in shock wave lithotripsy (SWL) patients with a ureter stone. Materials and Methods We retrospectively reviewed the medical records of 1,418 patients who underwent their first SWL between 2005 and 2013. Among these patients, 551 had a ureter stone measuring 4–20 mm and were thus eligible for our analyses. The colic pain as the chief complaint was defined as either subjective flank pain during history taking and physical examination. Propensity-scores for established for colic pain was calculated for each patient using multivariate logistic regression based upon the following covariates: age, maximal stone length (MSL), and mean stone density (MSD). Each factor was evaluated as predictor for stone-free status by Bayesian and non-Bayesian logistic regression model. Results After propensity-score matching, 217 patients were extracted in each group from the total patient cohort. There were no statistical differences in variables used in propensity- score matching. One-session success and stone-free rate were also higher in the painful group (73.7% and 71.0%, respectively) than in the painless group (63.6% and 60.4%, respectively). In multivariate non-Bayesian and Bayesian logistic regression models, a painful stone, shorter MSL, and lower MSD were significant factors for one-session stone-free status in patients who underwent SWL. Conclusions Colic pain in patients with ureter calculi was one of the significant predicting factors including MSL and MSD for one-session stone-free status of SWL. PMID:25902059

  11. An Alternative Flight Software Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

    NASA Technical Reports Server (NTRS)

    Smith, Kelly; Gay, Robert; Stachowiak, Susan

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles

  12. An Alternative Flight Software Trigger Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter. In order to increase overall robustness, the vehicle also has an alternate method of triggering the drogue parachute deployment based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this velocity-based trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers excellent performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.

  13. An investigation of the speeding-related crash designation through crash narrative reviews sampled via logistic regression.

    PubMed

    Fitzpatrick, Cole D; Rakasi, Saritha; Knodler, Michael A

    2017-01-01

    Speed is one of the most important factors in traffic safety as higher speeds are linked to increased crash risk and higher injury severities. Nearly a third of fatal crashes in the United States are designated as "speeding-related", which is defined as either "the driver behavior of exceeding the posted speed limit or driving too fast for conditions." While many studies have utilized the speeding-related designation in safety analyses, no studies have examined the underlying accuracy of this designation. Herein, we investigate the speeding-related crash designation through the development of a series of logistic regression models that were derived from the established speeding-related crash typologies and validated using a blind review, by multiple researchers, of 604 crash narratives. The developed logistic regression model accurately identified crashes which were not originally designated as speeding-related but had crash narratives that suggested speeding as a causative factor. Only 53.4% of crashes designated as speeding-related contained narratives which described speeding as a causative factor. Further investigation of these crashes revealed that the driver contributing code (DCC) of "driving too fast for conditions" was being used in three separate situations. Additionally, this DCC was also incorrectly used when "exceeding the posted speed limit" would likely have been a more appropriate designation. Finally, it was determined that the responding officer only utilized one DCC in 82% of crashes not designated as speeding-related but contained a narrative indicating speed as a contributing causal factor. The use of logistic regression models based upon speeding-related crash typologies offers a promising method by which all possible speeding-related crashes could be identified. Published by Elsevier Ltd.

  14. A Comparison of Methods for Estimating Conditional Item Score Differences in Differential Item Functioning (DIF) Assessments. Research Report. ETS RR-10-15

    ERIC Educational Resources Information Center

    Moses, Tim; Miao, Jing; Dorans, Neil

    2010-01-01

    This study compared the accuracies of four differential item functioning (DIF) estimation methods, where each method makes use of only one of the following: raw data, logistic regression, loglinear models, or kernel smoothing. The major focus was on the estimation strategies' potential for estimating score-level, conditional DIF. A secondary focus…

  15. Valid Statistical Analysis for Logistic Regression with Multiple Sources

    NASA Astrophysics Data System (ADS)

    Fienberg, Stephen E.; Nardi, Yuval; Slavković, Aleksandra B.

    Considerable effort has gone into understanding issues of privacy protection of individual information in single databases, and various solutions have been proposed depending on the nature of the data, the ways in which the database will be used and the precise nature of the privacy protection being offered. Once data are merged across sources, however, the nature of the problem becomes far more complex and a number of privacy issues arise for the linked individual files that go well beyond those that are considered with regard to the data within individual sources. In the paper, we propose an approach that gives full statistical analysis on the combined database without actually combining it. We focus mainly on logistic regression, but the method and tools described may be applied essentially to other statistical models as well.

  16. Neuropsychological tests for predicting cognitive decline in older adults

    PubMed Central

    Baerresen, Kimberly M; Miller, Karen J; Hanson, Eric R; Miller, Justin S; Dye, Richelin V; Hartman, Richard E; Vermeersch, David; Small, Gary W

    2015-01-01

    Summary Aim To determine neuropsychological tests likely to predict cognitive decline. Methods A sample of nonconverters (n = 106) was compared with those who declined in cognitive status (n = 24). Significant univariate logistic regression prediction models were used to create multivariate logistic regression models to predict decline based on initial neuropsychological testing. Results Rey–Osterrieth Complex Figure Test (RCFT) Retention predicted conversion to mild cognitive impairment (MCI) while baseline Buschke Delay predicted conversion to Alzheimer’s disease (AD). Due to group sample size differences, additional analyses were conducted using a subsample of demographically matched nonconverters. Analyses indicated RCFT Retention predicted conversion to MCI and AD, and Buschke Delay predicted conversion to AD. Conclusion Results suggest RCFT Retention and Buschke Delay may be useful in predicting cognitive decline. PMID:26107318

  17. Application of L1/2 regularization logistic method in heart disease diagnosis.

    PubMed

    Zhang, Bowen; Chai, Hua; Yang, Ziyi; Liang, Yong; Chu, Gejin; Liu, Xiaoying

    2014-01-01

    Heart disease has become the number one killer of human health, and its diagnosis depends on many features, such as age, blood pressure, heart rate and other dozens of physiological indicators. Although there are so many risk factors, doctors usually diagnose the disease depending on their intuition and experience, which requires a lot of knowledge and experience for correct determination. To find the hidden medical information in the existing clinical data is a noticeable and powerful approach in the study of heart disease diagnosis. In this paper, sparse logistic regression method is introduced to detect the key risk factors using L(1/2) regularization on the real heart disease data. Experimental results show that the sparse logistic L(1/2) regularization method achieves fewer but informative key features than Lasso, SCAD, MCP and Elastic net regularization approaches. Simultaneously, the proposed method can cut down the computational complexity, save cost and time to undergo medical tests and checkups, reduce the number of attributes needed to be taken from patients.

  18. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Jamie A., E-mail: jamie.dean@icr.ac.uk; Wong, Kee H.; Gay, Hiram

    Purpose: Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue–sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. Methods and Materials: FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogrammore » data. The reduced dose data were input into functional logistic regression models (functional partial least squares–logistic regression [FPLS-LR] and functional principal component–logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate–response associations, assessed using bootstrapping. Results: The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/−0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/−0.96, 0.79/−0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. Conclusions: FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling.« less

  19. Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation

    PubMed Central

    Song, Yongsoo; Wang, Shuang; Xia, Yuhou; Jiang, Xiaoqian

    2018-01-01

    Background Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. PMID:29666041

  20. Predicting β-Turns in Protein Using Kernel Logistic Regression

    PubMed Central

    Elbashir, Murtada Khalafallah; Sheng, Yu; Wang, Jianxin; Wu, FangXiang; Li, Min

    2013-01-01

    A β-turn is a secondary protein structure type that plays a significant role in protein configuration and function. On average 25% of amino acids in protein structures are located in β-turns. It is very important to develope an accurate and efficient method for β-turns prediction. Most of the current successful β-turns prediction methods use support vector machines (SVMs) or neural networks (NNs). The kernel logistic regression (KLR) is a powerful classification technique that has been applied successfully in many classification problems. However, it is often not found in β-turns classification, mainly because it is computationally expensive. In this paper, we used KLR to obtain sparse β-turns prediction in short evolution time. Secondary structure information and position-specific scoring matrices (PSSMs) are utilized as input features. We achieved Q total of 80.7% and MCC of 50% on BT426 dataset. These results show that KLR method with the right algorithm can yield performance equivalent to or even better than NNs and SVMs in β-turns prediction. In addition, KLR yields probabilistic outcome and has a well-defined extension to multiclass case. PMID:23509793

  1. Predicting β-turns in protein using kernel logistic regression.

    PubMed

    Elbashir, Murtada Khalafallah; Sheng, Yu; Wang, Jianxin; Wu, Fangxiang; Li, Min

    2013-01-01

    A β-turn is a secondary protein structure type that plays a significant role in protein configuration and function. On average 25% of amino acids in protein structures are located in β-turns. It is very important to develope an accurate and efficient method for β-turns prediction. Most of the current successful β-turns prediction methods use support vector machines (SVMs) or neural networks (NNs). The kernel logistic regression (KLR) is a powerful classification technique that has been applied successfully in many classification problems. However, it is often not found in β-turns classification, mainly because it is computationally expensive. In this paper, we used KLR to obtain sparse β-turns prediction in short evolution time. Secondary structure information and position-specific scoring matrices (PSSMs) are utilized as input features. We achieved Q total of 80.7% and MCC of 50% on BT426 dataset. These results show that KLR method with the right algorithm can yield performance equivalent to or even better than NNs and SVMs in β-turns prediction. In addition, KLR yields probabilistic outcome and has a well-defined extension to multiclass case.

  2. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.

    PubMed

    Pfeiffer, R M; Riedl, R

    2015-08-15

    We assess the asymptotic bias of estimates of exposure effects conditional on covariates when summary scores of confounders, instead of the confounders themselves, are used to analyze observational data. First, we study regression models for cohort data that are adjusted for summary scores. Second, we derive the asymptotic bias for case-control studies when cases and controls are matched on a summary score, and then analyzed either using conditional logistic regression or by unconditional logistic regression adjusted for the summary score. Two scores, the propensity score (PS) and the disease risk score (DRS) are studied in detail. For cohort analysis, when regression models are adjusted for the PS, the estimated conditional treatment effect is unbiased only for linear models, or at the null for non-linear models. Adjustment of cohort data for DRS yields unbiased estimates only for linear regression; all other estimates of exposure effects are biased. Matching cases and controls on DRS and analyzing them using conditional logistic regression yields unbiased estimates of exposure effect, whereas adjusting for the DRS in unconditional logistic regression yields biased estimates, even under the null hypothesis of no association. Matching cases and controls on the PS yield unbiased estimates only under the null for both conditional and unconditional logistic regression, adjusted for the PS. We study the bias for various confounding scenarios and compare our asymptotic results with those from simulations with limited sample sizes. To create realistic correlations among multiple confounders, we also based simulations on a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  3. [Application of SAS macro to evaluated multiplicative and additive interaction in logistic and Cox regression in clinical practices].

    PubMed

    Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q

    2016-05-01

    Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.

  4. How Do Clinicians Prefer Cultural Competence Training? Findings from the DSM-5 Cultural Formulation Interview Field Trial

    PubMed Central

    Aggarwal, Neil Krishan; Lam, Peter; Castillo, Enrico; Weiss, Mitchell G.; Diaz, Esperanza; Alarcón, Renato D.; van Dijk, Rob; Rohlof, Hans; Ndetei, David M.; Scalco, Monica; Aguilar-Gaxiola, Sergio; Bassiri, Kavoos; Deshpande, Smita; Groen, Simon; Jadhav, Sushrut; Kirmayer, Laurence J.; Paralikar, Vasudeo; Westermeyer, Joseph; Santos, Filipa; Vega-Dienstmaier, Johann; Anez, Luis; Boiler, Marit; Nicasio, Andel V.; Lewis-Fernández, Roberto

    2015-01-01

    Objective This study’s objective is to analyze training methods clinicians reported as most and least helpful during the DSM-5 Cultural Formulation Interview field trial, reasons why, and associations between demographic characteristics and method preferences. Method The authors used mixed methods to analyze interviews from 75 clinicians in five continents on their training preferences after a standardized training session and clinicians’ first administration of the Cultural Formulation Interview. Content analysis identified most and least helpful educational methods by reason. Bivariate and logistic regression analysis compared clinician characteristics to method preferences. Results Most frequently, clinicians named case-based behavioral simulations as “most helpful” and video as “least helpful” training methods. Bivariate and logistic regression models, first unadjusted and then clustered by country, found that each additional year of a clinician’s age was associated with a preference for behavioral simulations: OR=1.05 (95% CI: 1.01–1.10; p=0.025). Conclusions Most clinicians preferred active behavioral simulations in cultural competence training, and this effect was most pronounced among older clinicians. Effective training may be best accomplished through a combination of reviewing written guidelines, video demonstration, and behavioral simulations. Future work can examine the impact of clinician training satisfaction on patient symptoms and quality of life. PMID:26449983

  5. Approaches to Identify Exceedances of Water Quality Thresholds Associated with Ocean Conditions

    EPA Science Inventory

    WED scientists have developed a method to help distinguish whether failures to meet water quality criteria are associated with natural coastal upwelling by using the statistical approach of logistic regression. Estuaries along the west coast of the United States periodically ha...

  6. Alternative High School Students: Prevalence and Correlates of Overweight

    ERIC Educational Resources Information Center

    Kubik, Martha Y.; Davey, Cynthia; Fulkerson, Jayne A.; Sirard, John; Story, Mary; Arcan, Chrisa

    2009-01-01

    Objective: To determine prevalence and correlates of overweight among adolescents attending alternative high schools (AHS). Methods: AHS students (n=145) from 6 schools completed surveys and anthropometric measures. Cross-sectional associations were assessed using mixed model multivariate logistic regression. Results: Among students, 42% were…

  7. Measurement equivalence of the KINDL questionnaire across child self-reports and parent proxy-reports: a comparison between item response theory and ordinal logistic regression.

    PubMed

    Jafari, Peyman; Sharafi, Zahra; Bagheri, Zahra; Shalileh, Sara

    2014-06-01

    Measurement equivalence is a necessary assumption for meaningful comparison of pediatric quality of life rated by children and parents. In this study, differential item functioning (DIF) analysis is used to examine whether children and their parents respond consistently to the items in the KINDer Lebensqualitätsfragebogen (KINDL; in German, Children Quality of Life Questionnaire). Two DIF detection methods, graded response model (GRM) and ordinal logistic regression (OLR), were applied for comparability. The KINDL was completed by 1,086 school children and 1,061 of their parents. While the GRM revealed that 12 out of the 24 items were flagged with DIF, the OLR identified 14 out of the 24 items with DIF. Seven items with DIF and five items without DIF were common across the two methods, yielding a total agreement rate of 50 %. This study revealed that parent proxy-reports cannot be used as a substitute for a child's ratings in the KINDL.

  8. Factors associated with utilization of long-acting and permanent contraceptive methods among women who have decided not to have more children in Gondar city.

    PubMed

    Zenebe, Chernet Baye; Adefris, Mulat; Yenit, Melaku Kindie; Gelaw, Yalemzewod Assefa

    2017-09-06

    Despite the fact that long acting family planning methods reduce population growth and improve maternal health, their utilization remains poor. Therefore, this study assessed the prevalence of long acting and permanent family planning method utilization and associated factors among women in reproductive age groups who have decided not to have more children in Gondar city, northwest Ethiopia. An institution based cross-sectional study was conducted from August to October, 2015. Three hundred seventeen women who have decided not to have more children were selected consecutively into the study. A structured and pretested questionnaire was used to collect data. Both bivariate and multi-variable logistic regressions analyses were used to identify factors associated with utilization of long acting and permanent family planning methods. The multi-variable logistic regression analysis was used to investigate factors associated with the utilization of long acting and permanent family planning methods. The Adjusted Odds Ratio (AOR) with the corresponding 95% Confidence Interval (CI) was used to show the strength of associations, and variables with a P-value of <0.05 were considered statistically significant. In this study, the overall prevalence of long acting and permanent contraceptive (LAPCM) method utilization was 34.7% (95% CI: 29.5-39.9). According to the multi-variable logistic regression analysis, utilization of long acting and permanent contraceptive methods was significantly associated with women who had secondary school, (AOR: 2279, 95% CI: 1.17, 4.44), college, and above education (AOR: 2.91, 95% CI: 1.36, 6.24), history of previous utilization (AOR: 3.02, 95% CI: 1.69, 5.38), and information about LAPCM (AOR: 8.85, 95% CI: 2.04, 38.41). In this study the prevalence of long acting and permanent family planning method utilization among women who have decided not to have more children was high compared with previous studies conducted elsewhere. Advanced educational status, previous utilization of LAPCM, and information on LAPCM were significantly associated with the utilization of LAPCM. As a result, strengthening behavioral change communication channels to make information accessible is highly recommended.

  9. Accounting for center in the Early External Cephalic Version trials: an empirical comparison of statistical methods to adjust for center in a multicenter trial with binary outcomes.

    PubMed

    Reitsma, Angela; Chu, Rong; Thorpe, Julia; McDonald, Sarah; Thabane, Lehana; Hutton, Eileen

    2014-09-26

    Clustering of outcomes at centers involved in multicenter trials is a type of center effect. The Consolidated Standards of Reporting Trials Statement recommends that multicenter randomized controlled trials (RCTs) should account for center effects in their analysis, however most do not. The Early External Cephalic Version (EECV) trials published in 2003 and 2011 stratified by center at randomization, but did not account for center in the analyses, and due to the nature of the intervention and number of centers, may have been prone to center effects. Using data from the EECV trials, we undertook an empirical study to compare various statistical approaches to account for center effect while estimating the impact of external cephalic version timing (early or delayed) on the outcomes of cesarean section, preterm birth, and non-cephalic presentation at the time of birth. The data from the EECV pilot trial and the EECV2 trial were merged into one dataset. Fisher's exact method was used to test the overall effect of external cephalic version timing unadjusted for center effects. Seven statistical models that accounted for center effects were applied to the data. The models included: i) the Mantel-Haenszel test, ii) logistic regression with fixed center effect and fixed treatment effect, iii) center-size weighted and iv) un-weighted logistic regression with fixed center effect and fixed treatment-by-center interaction, iv) logistic regression with random center effect and fixed treatment effect, v) logistic regression with random center effect and random treatment-by-center interaction, and vi) generalized estimating equations. For each of the three outcomes of interest approaches to account for center effect did not alter the overall findings of the trial. The results were similar for the majority of the methods used to adjust for center, illustrating the robustness of the findings. Despite literature that suggests center effect can change the estimate of effect in multicenter trials, this empirical study does not show a difference in the outcomes of the EECV trials when accounting for center effect. The EECV2 trial was registered on 30 July 30 2005 with Current Controlled Trials: ISRCTN 56498577.

  10. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    PubMed

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  11. Survival analysis of postoperative nausea and vomiting in patients receiving patient-controlled epidural analgesia.

    PubMed

    Lee, Shang-Yi; Hung, Chih-Jen; Chen, Chih-Chieh; Wu, Chih-Cheng

    2014-11-01

    Postoperative nausea and vomiting as well as postoperative pain are two major concerns when patients undergo surgery and receive anesthetics. Various models and predictive methods have been developed to investigate the risk factors of postoperative nausea and vomiting, and different types of preventive managements have subsequently been developed. However, there continues to be a wide variation in the previously reported incidence rates of postoperative nausea and vomiting. This may have occurred because patients were assessed at different time points, coupled with the overall limitation of the statistical methods used. However, using survival analysis with Cox regression, and thus factoring in these time effects, may solve this statistical limitation and reveal risk factors related to the occurrence of postoperative nausea and vomiting in the following period. In this retrospective, observational, uni-institutional study, we analyzed the results of 229 patients who received patient-controlled epidural analgesia following surgery from June 2007 to December 2007. We investigated the risk factors for the occurrence of postoperative nausea and vomiting, and also assessed the effect of evaluating patients at different time points using the Cox proportional hazards model. Furthermore, the results of this inquiry were compared with those results using logistic regression. The overall incidence of postoperative nausea and vomiting in our study was 35.4%. Using logistic regression, we found that only sex, but not the total doses and the average dose of opioids, had significant effects on the occurrence of postoperative nausea and vomiting at some time points. Cox regression showed that, when patients consumed a higher average dose of opioids, this correlated with a higher incidence of postoperative nausea and vomiting with a hazard ratio of 1.286. Survival analysis using Cox regression showed that the average consumption of opioids played an important role in postoperative nausea and vomiting, a result not found by logistic regression. Therefore, the incidence of postoperative nausea and vomiting in patients cannot be reliably determined on the basis of a single visit at one point in time. Copyright © 2014. Published by Elsevier Taiwan.

  12. An Attempt at Quantifying Factors that Affect Efficiency in the Management of Solid Waste Produced by Commercial Businesses in the City of Tshwane, South Africa

    PubMed Central

    Worku, Yohannes; Muchie, Mammo

    2012-01-01

    Objective. The objective was to investigate factors that affect the efficient management of solid waste produced by commercial businesses operating in the city of Pretoria, South Africa. Methods. Data was gathered from 1,034 businesses. Efficiency in solid waste management was assessed by using a structural time-based model designed for evaluating efficiency as a function of the length of time required to manage waste. Data analysis was performed using statistical procedures such as frequency tables, Pearson's chi-square tests of association, and binary logistic regression analysis. Odds ratios estimated from logistic regression analysis were used for identifying key factors that affect efficiency in the proper disposal of waste. Results. The study showed that 857 of the 1,034 businesses selected for the study (83%) were found to be efficient enough with regards to the proper collection and disposal of solid waste. Based on odds ratios estimated from binary logistic regression analysis, efficiency in the proper management of solid waste was significantly influenced by 4 predictor variables. These 4 influential predictor variables are lack of adherence to waste management regulations, wrong perception, failure to provide customers with enough trash cans, and operation of businesses by employed managers, in a decreasing order of importance. PMID:23209483

  13. Immortal time bias in observational studies of time-to-event outcomes.

    PubMed

    Jones, Mark; Fowler, Robert

    2016-12-01

    The purpose of the study is to show, through simulation and example, the magnitude and direction of immortal time bias when an inappropriate analysis is used. We compare 4 methods of analysis for observational studies of time-to-event outcomes: logistic regression, standard Cox model, landmark analysis, and time-dependent Cox model using an example data set of patients critically ill with influenza and a simulation study. For the example data set, logistic regression, standard Cox model, and landmark analysis all showed some evidence that treatment with oseltamivir provides protection from mortality in patients critically ill with influenza. However, when the time-dependent nature of treatment exposure is taken account of using a time-dependent Cox model, there is no longer evidence of a protective effect of treatment. The simulation study showed that, under various scenarios, the time-dependent Cox model consistently provides unbiased treatment effect estimates, whereas standard Cox model leads to bias in favor of treatment. Logistic regression and landmark analysis may also lead to bias. To minimize the risk of immortal time bias in observational studies of survival outcomes, we strongly suggest time-dependent exposures be included as time-dependent variables in hazard-based analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    EPA Science Inventory

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  15. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yahya, Noorazrul, E-mail: noorazrul.yahya@research.uwa.edu.au; Ebert, Martin A.; Bulsara, Max

    Purpose: Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate. Methods: The performance of logistic regression, elastic-net, support-vector machine, random forest, neural network, and multivariate adaptive regression splines (MARS) to predict urinary symptoms was analyzed using data from 754 participants accrued by TROG03.04-RADAR. Predictive features included dose-surface data, comorbidities, and medication-intake. Four symptoms were analyzed: dysuria, haematuria, incontinence, and frequency, each with three definitions (grade ≥more » 1, grade ≥ 2 and longitudinal) with event rate between 2.3% and 76.1%. Repeated cross-validations producing matched models were implemented. A synthetic minority oversampling technique was utilized in endpoints with rare events. Parameter optimization was performed on the training data. Area under the receiver operating characteristic curve (AUROC) was used to compare performance using sample size to detect differences of ≥0.05 at the 95% confidence level. Results: Logistic regression, elastic-net, random forest, MARS, and support-vector machine were the highest-performing statistical-learning strategies in 3, 3, 3, 2, and 1 endpoints, respectively. Logistic regression, MARS, elastic-net, random forest, neural network, and support-vector machine were the best, or were not significantly worse than the best, in 7, 7, 5, 5, 3, and 1 endpoints. The best-performing statistical model was for dysuria grade ≥ 1 with AUROC ± standard deviation of 0.649 ± 0.074 using MARS. For longitudinal frequency and dysuria grade ≥ 1, all strategies produced AUROC>0.6 while all haematuria endpoints and longitudinal incontinence models produced AUROC<0.6. Conclusions: Logistic regression and MARS were most likely to be the best-performing strategy for the prediction of urinary symptoms with elastic-net and random forest producing competitive results. The predictive power of the models was modest and endpoint-dependent. New features, including spatial dose maps, may be necessary to achieve better models.« less

  16. Risk adjustment in the American College of Surgeons National Surgical Quality Improvement Program: a comparison of logistic versus hierarchical modeling.

    PubMed

    Cohen, Mark E; Dimick, Justin B; Bilimoria, Karl Y; Ko, Clifford Y; Richards, Karen; Hall, Bruce Lee

    2009-12-01

    Although logistic regression has commonly been used to adjust for risk differences in patient and case mix to permit quality comparisons across hospitals, hierarchical modeling has been advocated as the preferred methodology, because it accounts for clustering of patients within hospitals. It is unclear whether hierarchical models would yield important differences in quality assessments compared with logistic models when applied to American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) data. Our objective was to evaluate differences in logistic versus hierarchical modeling for identifying hospitals with outlying outcomes in the ACS-NSQIP. Data from ACS-NSQIP patients who underwent colorectal operations in 2008 at hospitals that reported at least 100 operations were used to generate logistic and hierarchical prediction models for 30-day morbidity and mortality. Differences in risk-adjusted performance (ratio of observed-to-expected events) and outlier detections from the two models were compared. Logistic and hierarchical models identified the same 25 hospitals as morbidity outliers (14 low and 11 high outliers), but the hierarchical model identified 2 additional high outliers. Both models identified the same eight hospitals as mortality outliers (five low and three high outliers). The values of observed-to-expected events ratios and p values from the two models were highly correlated. Results were similar when data were permitted from hospitals providing < 100 patients. When applied to ACS-NSQIP data, logistic and hierarchical models provided nearly identical results with respect to identification of hospitals' observed-to-expected events ratio outliers. As hierarchical models are prone to implementation problems, logistic regression will remain an accurate and efficient method for performing risk adjustment of hospital quality comparisons.

  17. Self-Reported Health among Older Bangladeshis: How Good a Health Indicator Is It?

    ERIC Educational Resources Information Center

    Rahman, M. Omar; Barsky, Arthur J.

    2003-01-01

    Purpose: This study examines the value of self-reported health (SRH) as an indicator of underlying health status in a developing country setting. Design and Methods: Logistic regression methods with adjustments for multistage sampling are used to examine the factors associated with SRH in 2,921 men and women aged 50 and older in rural Bangladesh.…

  18. Impact of Missing Data on the Detection of Differential Item Functioning: The Case of Mantel-Haenszel and Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Robitzsch, Alexander; Rupp, Andre A.

    2009-01-01

    This article describes the results of a simulation study to investigate the impact of missing data on the detection of differential item functioning (DIF). Specifically, it investigates how four methods for dealing with missing data (listwise deletion, zero imputation, two-way imputation, response function imputation) interact with two methods of…

  19. Modification of the Mantel-Haenszel and Logistic Regression DIF Procedures to Incorporate the SIBTEST Regression Correction

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2009-01-01

    The Mantel-Haenszel (MH) and logistic regression (LR) differential item functioning (DIF) procedures have inflated Type I error rates when there are large mean group differences, short tests, and large sample sizes.When there are large group differences in mean score, groups matched on the observed number-correct score differ on true score,…

  20. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE PAGES

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    2017-12-20

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  1. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  2. Combinations of Multiple Neuroimaging Markers using Logistic Regression for Auxiliary Diagnosis of Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Mao, Nini; Liu, Yunting; Chen, Kewei; Yao, Li; Wu, Xia

    2018-06-05

    Multiple neuroimaging modalities have been developed providing various aspects of information on the human brain. Used together and properly, these complementary multimodal neuroimaging data integrate multisource information which can facilitate a diagnosis and improve the diagnostic accuracy. In this study, 3 types of brain imaging data (sMRI, FDG-PET, and florbetapir-PET) were fused in the hope to improve diagnostic accuracy, and multivariate methods (logistic regression) were applied to these trimodal neuroimaging indices. Then, the receiver-operating characteristic (ROC) method was used to analyze the outcomes of the logistic classifier, with either each index, multiples from each modality, or all indices from all 3 modalities, to investigate their differential abilities to identify the disease. With increasing numbers of indices within each modality and across modalities, the accuracy of identifying Alzheimer disease (AD) increases to varying degrees. For example, the area under the ROC curve is above 0.98 when all the indices from the 3 imaging data types are combined. Using a combination of different indices, the results confirmed the initial hypothesis that different biomarkers were potentially complementary, and thus the conjoint analysis of multiple information from multiple sources would improve the capability to identify diseases such as AD and mild cognitive impairment. © 2018 S. Karger AG, Basel.

  3. Satellite rainfall retrieval by logistic regression

    NASA Technical Reports Server (NTRS)

    Chiu, Long S.

    1986-01-01

    The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.

  4. Correlates of Gambling among Eighth-Grade Boys and Girls

    ERIC Educational Resources Information Center

    Chaumeton, Nigel R.; Ramowski, Sarah K.; Nystrom, Robert J.

    2011-01-01

    Background: This study examined the correlates of gambling behavior among eighth-grade students. Methods: Children (n = 15,865) enrolled in publicly funded schools in Oregon completed the 2008 Oregon Healthy Teens survey. Multivariate logistic regression analyses assessed the combined and independent associations between risk and protective…

  5. Concentration of folate in colorectal tissue biopsies predicts prevalence of adenomatous polyps

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Folate has been implicated as a potential aetiological factor for colorectal cancer. Previous research has not adequately exploited concentrations of folate in normal colonic mucosal biopsies to examine the issue. Methods: Logistic regression models were used to estimate ORs ...

  6. Practical Session: Logistic Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

  7. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less

  8. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    NASA Astrophysics Data System (ADS)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam

    2015-10-01

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  9. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  10. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  12. Study of relationship between clinical factors and velopharyngeal closure in cleft palate patients

    PubMed Central

    Chen, Qi; Zheng, Qian; Shi, Bing; Yin, Heng; Meng, Tian; Zheng, Guang-ning

    2011-01-01

    BACKGROUND: This study was carried out to analyze the relationship between clinical factors and velopharyngeal closure (VPC) in cleft palate patients. METHODS: Chi-square test was used to compare the postoperative velopharyngeal closure rate. Logistic regression model was used to analyze independent variables associated with velopharyngeal closure. RESULTS: Difference of postoperative VPC rate in different cleft types, operative ages and surgical techniques was significant (P=0.000). Results of logistic regression analysis suggested that when operative age was beyond deciduous dentition stage, or cleft palate type was complete, or just had undergone a simple palatoplasty without levator veli palatini retropositioning, patients would suffer a higher velopharyngeal insufficiency rate after primary palatal repair. CONCLUSIONS: Cleft type, operative age and surgical technique were the contributing factors influencing VPC rate after primary palatal repair of cleft palate patients. PMID:22279464

  13. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  14. The relationship between venture capital investment and macro economic variables via statistical computation method

    NASA Astrophysics Data System (ADS)

    Aygunes, Gunes

    2017-07-01

    The objective of this paper is to survey and determine the macroeconomic factors affecting the level of venture capital (VC) investments in a country. The literary depends on venture capitalists' quality and countries' venture capital investments. The aim of this paper is to give relationship between venture capital investment and macro economic variables via statistical computation method. We investigate the countries and macro economic variables. By using statistical computation method, we derive correlation between venture capital investments and macro economic variables. According to method of logistic regression model (logit regression or logit model), macro economic variables are correlated with each other in three group. Venture capitalists regard correlations as a indicator. Finally, we give correlation matrix of our results.

  15. Juvenile Offender Recidivism: An Examination of Risk Factors

    ERIC Educational Resources Information Center

    Calley, Nancy G.

    2012-01-01

    One hundred and seventy three male juvenile offenders were followed two years postrelease from a residential treatment facility to assess recidivism and factors related to recidivism. The overall recidivism rate was 23.9%. Logistic regression with stepwise and backward variable selection methods was used to examine the relationship between…

  16. Social Context of Drinking and Alcohol Problems among College Students

    ERIC Educational Resources Information Center

    Beck, Kenneth H.; Arria, Amelia M.; Caldeira, Kimberly M.; Vincent, Kathryn B.; O'Grady, Kevin E.; Wish, Eric D.

    2008-01-01

    Objective: To examine how social contexts of drinking are related to alcohol use disorders, other alcohol-related problems, and depression among college students. Methods: Logistic regression models controlling for drinking frequency measured the association between social context and problems, among 728 current drinkers. Results: Drinking for…

  17. Adolescent Domain Screening Inventory-Short Form: Development and Initial Validation

    ERIC Educational Resources Information Center

    Corrigan, Matthew J.

    2017-01-01

    This study sought to develop a short version of the ADSI, and investigate its psychometric properties. Methods: This is a secondary analysis. Analysis to determine the Cronbach's Alpha, correlations to determine concurrent criterion validity and known instrument validity and a logistic regression to determine predictive validity were conducted.…

  18. Drunkorexia: Understanding the Co-Occurrence of Alcohol Consumption and Eating/Exercise Weight Management Behaviors

    ERIC Educational Resources Information Center

    Barry, Adam E.; Piazza-Gardner, Anna K.

    2012-01-01

    Objective: Examine the co-occurrence of alcohol consumption, physical activity, and disordered eating behaviors via a drunkorexia perspective. Participants: Nationally representative sample (n = 22,488) of college students completing the Fall 2008 National College Health Assessment. Methods: Hierarchical logistic regression was employed to…

  19. The Effect of Religiosity and Campus Alcohol Culture on Collegiate Alcohol Consumption

    ERIC Educational Resources Information Center

    Wells, Gayle M.

    2010-01-01

    Religiosity and campus culture were examined in relationship to alcohol consumption among college students using reference group theory. Participants and Methods: College students (N = 530) at a religious college and at a state university complete questionnaires on alcohol use and religiosity. Statistical tests and logistic regression were…

  20. Sexual Orientation Differences in HIV Testing Motivation among College Men

    ERIC Educational Resources Information Center

    Kort, Daniel N.; Samsa, Gregory P.; McKellar, Mehri S.

    2017-01-01

    Objective: To investigate sexual orientation differences in college men's motivations for HIV testing. Participants: 665 male college students in the Southeastern United States from 2006 to 2014. Methods: Students completed a survey on HIV risk factors and testing motivations. Logistic regressions were conducted to determine the differences…

  1. Oak regeneration and overstory density in the Missouri Ozarks

    Treesearch

    David R. Larsen; Monte A. Metzger

    1997-01-01

    Reducing overstory density is a commonly recommended method of increasing the regeneration potential of oak (Quercus) forests. However, recommendations seldom specify the probable increase in density or the size of reproduction associated with a given residual overstory density. This paper presents logistic regression models that describe this...

  2. Victimization and Health Risk Factors among Weapon-Carrying Youth

    ERIC Educational Resources Information Center

    Stayton, Catherine; McVeigh, Katharine H.; Olson, E. Carolyn; Perkins, Krystal; Kerker, Bonnie D.

    2011-01-01

    Objective: To compare health risks of 2 subgroups of weapon carriers: victimized and nonvictimized youth. Methods: 2003-2007 NYC Youth Risk Behavior Surveys were analyzed using bivariate analyses and multinomial logistic regression. Results: Among NYC teens, 7.5% reported weapon carrying without victimization; 6.9% reported it with victimization.…

  3. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    PubMed

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  4. Semiparametric time varying coefficient model for matched case-crossover studies.

    PubMed

    Ortega-Villa, Ana Maria; Kim, Inyoung; Kim, H

    2017-03-15

    In matched case-crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. This is because any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. Hence, the conditional logistic regression model is not able to detect any effects associated with the matching covariates by stratum. However, some matching covariates such as time often play an important role as an effect modification leading to incorrect statistical estimation and prediction. Therefore, we propose three approaches to evaluate effect modification by time. The first is a parametric approach, the second is a semiparametric penalized approach, and the third is a semiparametric Bayesian approach. Our parametric approach is a two-stage method, which uses conditional logistic regression in the first stage and then estimates polynomial regression in the second stage. Our semiparametric penalized and Bayesian approaches are one-stage approaches developed by using regression splines. Our semiparametric one stage approach allows us to not only detect the parametric relationship between the predictor and binary outcomes, but also evaluate nonparametric relationships between the predictor and time. We demonstrate the advantage of our semiparametric one-stage approaches using both a simulation study and an epidemiological example of a 1-4 bi-directional case-crossover study of childhood aseptic meningitis with drinking water turbidity. We also provide statistical inference for the semiparametric Bayesian approach using Bayes Factors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?

    PubMed Central

    Nichols, Bonnie

    2018-01-01

    Objective Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Method Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment’s design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010–2014). Results Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, “design last finish,” and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design. PMID:29489884

  6. A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets.

    PubMed

    López Puga, Jorge; García García, Juan

    2012-11-01

    Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

  7. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    PubMed

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have similar performances reaching AUC values 0.783 and 0.779 for traditional Lasso and Tree-Lasso, respectfully. However, information loss of Lasso models is 0.35 bits higher compared to Tree-Lasso model. We propose a method for building predictive models applicable for the detection of readmission risk based on Electronic Health records. Integration of domain knowledge (in the form of ICD-9-CM taxonomy) and a data-driven, sparse predictive algorithm (Tree-Lasso Logistic Regression) resulted in an increase of interpretability of the resulting model. The models are interpreted for the readmission prediction problem in general pediatric population in California, as well as several important subpopulations, and the interpretations of models comply with existing medical understanding of pediatric readmission. Finally, quantitative assessment of the interpretability of the models is given, that is beyond simple counts of selected low-level features. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models.

    PubMed

    Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan

    2010-03-01

    Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians Postgraduate Press, Inc.

  9. Bayesian logistic regression in detection of gene-steroid interaction for cancer at PDLIM5 locus.

    PubMed

    Wang, Ke-Sheng; Owusu, Daniel; Pan, Yue; Xie, Changchun

    2016-06-01

    The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene- steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (P< 0.05); especially, SNP rs6532496 revealed the strongest association with cancer (P = 6.84 × 10⁻³); while the next best signal was rs951613 (P = 7.46 × 10⁻³). Classic logistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene-steroid interaction effects (OR=2.18, 95% CI=1.31-3.63 with P = 2.9 × 10⁻³ for rs6532496 and OR=2.07, 95% CI=1.24-3.45 with P = 5.43 × 10⁻³ for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR=2.26, 95% CI=1.2-3.38 for rs6532496 and OR=2.14, 95% CI=1.14-3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene-steroid interaction effects (P < 0.05); whereas 13 SNPs showed gene-steroid interaction effects without main effect on cancer. SNP rs4634230 revealed the strongest gene-steroid interaction effect (OR=2.49, 95% CI=1.5-4.13 with P = 4.0 × 10⁻⁴ based on the classic logistic regression and OR=2.59, 95% CI=1.4-3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use influencing cancer.

  10. Deletion Diagnostics for Alternating Logistic Regressions

    PubMed Central

    Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.

    2013-01-01

    Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960

  11. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    PubMed

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  12. Statistical primer: propensity score matching and its alternatives.

    PubMed

    Benedetto, Umberto; Head, Stuart J; Angelini, Gianni D; Blackstone, Eugene H

    2018-06-01

    Propensity score (PS) methods offer certain advantages over more traditional regression methods to control for confounding by indication in observational studies. Although multivariable regression models adjust for confounders by modelling the relationship between covariates and outcome, the PS methods estimate the treatment effect by modelling the relationship between confounders and treatment assignment. Therefore, methods based on the PS are not limited by the number of events, and their use may be warranted when the number of confounders is large, or the number of outcomes is small. The PS is the probability for a subject to receive a treatment conditional on a set of baseline characteristics (confounders). The PS is commonly estimated using logistic regression, and it is used to match patients with similar distribution of confounders so that difference in outcomes gives unbiased estimate of treatment effect. This review summarizes basic concepts of the PS matching and provides guidance in implementing matching and other methods based on the PS, such as stratification, weighting and covariate adjustment.

  13. Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    2012-01-01

    Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These…

  14. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  15. Intermediate and advanced topics in multilevel logistic regression analysis

    PubMed Central

    Merlo, Juan

    2017-01-01

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher‐level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within‐cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population‐average effect of covariates measured at the subject and cluster level, in contrast to the within‐cluster or cluster‐specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster‐level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28543517

  16. Intermediate and advanced topics in multilevel logistic regression analysis.

    PubMed

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  17. Binary Logistic Regression Versus Boosted Regression Trees in Assessing Landslide Susceptibility for Multiple-Occurring Regional Landslide Events: Application to the 2009 Storm Event in Messina (Sicily, southern Italy).

    NASA Astrophysics Data System (ADS)

    Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.

    2014-12-01

    This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust models in terms of selected predictors and coefficients, as well as of dispersion of the estimated probabilities around the mean value for each mapped pixel. The difference in the behaviour could be interpreted as the result of overfitting effects, which heavily affect decision tree classification more than logistic regression techniques.

  18. Sex discrimination from the acetabulum in a twentieth-century skeletal sample from France using digital photogrammetry.

    PubMed

    Macaluso, P J

    2011-02-01

    Digital photogrammetric methods were used to collect diameter, area, and perimeter data of the acetabulum for a twentieth-century skeletal sample from France (Georges Olivier Collection, Musée de l'Homme, Paris) consisting of 46 males and 36 females. The measurements were then subjected to both discriminant function and logistic regression analyses in order to develop osteometric standards for sex assessment. Univariate discriminant functions and logistic regression equations yielded overall correct classification accuracy rates for both the left and the right acetabula ranging from 84.1% to 89.6%. The multivariate models developed in this study did not provide increased accuracy over those using only a single variable. Classification sex bias ratios ranged between 1.1% and 7.3% for the majority of models. The results of this study, therefore, demonstrate that metric analysis of acetabular size provides a highly accurate, and easily replicable, method of discriminating sex in this documented skeletal collection. The results further suggest that the addition of area and perimeter data derived from digital images may provide a more effective method of sex assessment than that offered by traditional linear measurements alone. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Predicting Social Trust with Binary Logistic Regression

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  20. Effect of folic acid on appetite in children: ordinal logistic and fuzzy logistic regressions.

    PubMed

    Namdari, Mahshid; Abadi, Alireza; Taheri, S Mahmoud; Rezaei, Mansour; Kalantari, Naser; Omidvar, Nasrin

    2014-03-01

    Reduced appetite and low food intake are often a concern in preschool children, since it can lead to malnutrition, a leading cause of impaired growth and mortality in childhood. It is occasionally considered that folic acid has a positive effect on appetite enhancement and consequently growth in children. The aim of this study was to assess the effect of folic acid on the appetite of preschool children 3 to 6 y old. The study sample included 127 children ages 3 to 6 who were randomly selected from 20 preschools in the city of Tehran in 2011. Since appetite was measured by linguistic terms, a fuzzy logistic regression was applied for modeling. The obtained results were compared with a statistical ordinal logistic model. After controlling for the potential confounders, in a statistical ordinal logistic model, serum folate showed a significantly positive effect on appetite. A small but positive effect of folate was detected by fuzzy logistic regression. Based on fuzzy regression, the risk for poor appetite in preschool children was related to the employment status of their mothers. In this study, a positive association was detected between the levels of serum folate and improved appetite. For further investigation, a randomized controlled, double-blind clinical trial could be helpful to address causality. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Using a Guided Machine Learning Ensemble Model to Predict Discharge Disposition following Meningioma Resection.

    PubMed

    Muhlestein, Whitney E; Akagi, Dallin S; Kallos, Justiss A; Morone, Peter J; Weaver, Kyle D; Thompson, Reid C; Chambless, Lola B

    2018-04-01

    Objective  Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods  A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results  Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p  = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion  Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest.

  2. Breast Arterial Calcification Is Associated with Reproductive Factors in Asymptomatic Postmenopausal Women

    PubMed Central

    Whaley, Dana H.; Sheedy, Patrick F.; Peyser, Patricia A.

    2010-01-01

    Abstract Objective The etiology of breast arterial calcification (BAC) is not well understood. We examined reproductive history and cardiovascular disease (CVD) risk factor associations with the presence of detectable BAC in asymptomatic postmenopausal women. Methods Reproductive history and CVD risk factors were obtained in 240 asymptomatic postmenopausal women from a community-based research study who had a screening mammogram within 2 years of their participation in the study. The mammograms were reviewed for the presence of detectable BAC. Age-adjusted logistic regression models were fit to assess the association between each risk factor and the presence of BAC. Multiple variable logistic regression models were used to identify the most parsimonious model for the presence of BAC. Results The prevalence of BAC increased with increased age (p < 0.0001). The most parsimonious logistic regression model for BAC presence included age at time of examination, increased parity (p = 0.01), earlier age at first birth (p = 0.002), weight, and an age-by-weight interaction term (p = 0.004). Older women with a smaller body size had a higher probability of having BAC than women of the same age with a larger body size. Conclusions The presence or absence of BAC at mammography may provide an assessment of a postmenopausal woman's lifetime estrogen exposure and indicate women who could be at risk for hormonally related conditions. PMID:20629578

  3. Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma.

    PubMed

    Mocellin, Simone; Ambrosi, Alessandro; Montesco, Maria Cristina; Foletto, Mirto; Zavagno, Giorgio; Nitti, Donato; Lise, Mario; Rossi, Carlo Riccardo

    2006-08-01

    Currently, approximately 80% of melanoma patients undergoing sentinel node biopsy (SNB) have negative sentinel lymph nodes (SLNs), and no prediction system is reliable enough to be implemented in the clinical setting to reduce the number of SNB procedures. In this study, the predictive power of support vector machine (SVM)-based statistical analysis was tested. The clinical records of 246 patients who underwent SNB at our institution were used for this analysis. The following clinicopathologic variables were considered: the patient's age and sex and the tumor's histological subtype, Breslow thickness, Clark level, ulceration, mitotic index, lymphocyte infiltration, regression, angiolymphatic invasion, microsatellitosis, and growth phase. The results of SVM-based prediction of SLN status were compared with those achieved with logistic regression. The SLN positivity rate was 22% (52 of 234). When the accuracy was > or = 80%, the negative predictive value, positive predictive value, specificity, and sensitivity were 98%, 54%, 94%, and 77% and 82%, 41%, 69%, and 93% by using SVM and logistic regression, respectively. Moreover, SVM and logistic regression were associated with a diagnostic error and an SNB percentage reduction of (1) 1% and 60% and (2) 15% and 73%, respectively. The results from this pilot study suggest that SVM-based prediction of SLN status might be evaluated as a prognostic method to avoid the SNB procedure in 60% of patients currently eligible, with a very low error rate. If validated in larger series, this strategy would lead to obvious advantages in terms of both patient quality of life and costs for the health care system.

  4. Efficient estimation of the attributable fraction when there are monotonicity constraints and interactions.

    PubMed

    Traskin, Mikhail; Wang, Wei; Ten Have, Thomas R; Small, Dylan S

    2013-01-01

    The PAF for an exposure is the fraction of disease cases in a population that can be attributed to that exposure. One method of estimating the PAF involves estimating the probability of having the disease given the exposure and confounding variables. In many settings, the exposure will interact with the confounders and the confounders will interact with each other. Also, in many settings, the probability of having the disease is thought, based on subject matter knowledge, to be a monotone increasing function of the exposure and possibly of some of the confounders. We develop an efficient approach for estimating logistic regression models with interactions and monotonicity constraints, and apply this approach to estimating the population attributable fraction (PAF). Our approach produces substantially more accurate estimates of the PAF in some settings than the usual approach which uses logistic regression without monotonicity constraints.

  5. Logistic Regression in the Identification of Hazards in Construction

    NASA Astrophysics Data System (ADS)

    Drozd, Wojciech

    2017-10-01

    The construction site and its elements create circumstances that are conducive to the formation of risks to safety during the execution of works. Analysis indicates the critical importance of these factors in the set of characteristics that describe the causes of accidents in the construction industry. This article attempts to analyse the characteristics related to the construction site, in order to indicate their importance in defining the circumstances of accidents at work. The study includes sites inspected in 2014 - 2016 by the employees of the District Labour Inspectorate in Krakow (Poland). The analysed set of detailed (disaggregated) data includes both quantitative and qualitative characteristics. The substantive task focused on classification modelling in the identification of hazards in construction and identifying those of the analysed characteristics that are important in an accident. In terms of methodology, resource data analysis using statistical classifiers, in the form of logistic regression, was the method used.

  6. Mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images

    NASA Astrophysics Data System (ADS)

    Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María

    2009-02-01

    Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.

  7. Accounting for informatively missing data in logistic regression by means of reassessment sampling.

    PubMed

    Lin, Ji; Lyles, Robert H

    2015-05-20

    We explore the 'reassessment' design in a logistic regression setting, where a second wave of sampling is applied to recover a portion of the missing data on a binary exposure and/or outcome variable. We construct a joint likelihood function based on the original model of interest and a model for the missing data mechanism, with emphasis on non-ignorable missingness. The estimation is carried out by numerical maximization of the joint likelihood function with close approximation of the accompanying Hessian matrix, using sharable programs that take advantage of general optimization routines in standard software. We show how likelihood ratio tests can be used for model selection and how they facilitate direct hypothesis testing for whether missingness is at random. Examples and simulations are presented to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Odontological approach to sexual dimorphism in southeastern France.

    PubMed

    Lladeres, Emilie; Saliba-Serre, Bérengère; Sastre, Julien; Foti, Bruno; Tardivo, Delphine; Adalian, Pascal

    2013-01-01

    The aim of this study was to establish a prediction formula to allow for the determination of sex among the southeastern French population using dental measurements. The sample consisted of 105 individuals (57 males and 48 females, aged between 18 and 25 years). Dental measurements were calculated using Euclidean distances, in three-dimensional space, from point coordinates obtained by a Microscribe. A multiple logistic regression analysis was performed to establish the prediction formula. Among 12 selected dental distances, a stepwise logistic regression analysis highlighted the two most significant discriminate predictors of sex: one located at the mandible and the other at the maxilla. A cutpoint was proposed to prediction of true sex. The prediction formula was then tested on a validation sample (20 males and 34 females, aged between 18 and 62 years and with a history of orthodontics or restorative care) to evaluate the accuracy of the method. © 2012 American Academy of Forensic Sciences.

  9. Automatic segmentation and classification of mycobacterium tuberculosis with conventional light microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui

    2015-12-01

    This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.

  10. Health Risk Behaviors in a Representative Sample of Bisexual and Heterosexual Female High School Students in Massachusetts

    ERIC Educational Resources Information Center

    White Hughto, Jaclyn M.; Biello, Katie B.; Reisner, Sari L.; Perez-Brumer, Amaya; Heflin, Katherine J.; Mimiaga, Matthew J.

    2016-01-01

    Background: Differences in sexual health-related outcomes by sexual behavior and identity remain underinvestigated among bisexual female adolescents. Methods: Data from girls (N?=?875) who participated in the Massachusetts Youth Risk Behavior Surveillance survey were analyzed. Weighted logistic regression models were fit to examine sexual and…

  11. Does the EDI Measure School Readiness in the Same Way across Different Groups of Children?

    ERIC Educational Resources Information Center

    Guhn, Martin; Gadermann, Anne; Zumbo, Bruno D.

    2007-01-01

    The present study investigates whether the Early Development Instrument (Offord & Janus, 1999) measures school readiness similarly across different groups of children. We employ ordinal logistic regression to investigate differential item functioning, a method of examining measurement bias. For 40,000 children, our analysis compares groups…

  12. Predicting site locations for biomass using facilities with Bayesian methods

    Treesearch

    Timothy M. Young; James H. Perdue; Xia Huang

    2017-01-01

    Logistic regression models combined with Bayesian inference were developed to predict locations and quantify factors that influence the siting of biomass-using facilities that use woody biomass in the Southeastern United States. Predictions were developed for two groups of mills, one representing larger capacity mills similar to pulp and paper mills (Group II...

  13. Associations between Smoking and Extreme Dieting among Adolescents

    ERIC Educational Resources Information Center

    Seo, Dong-Chul; Jiang, Nan

    2009-01-01

    This study examined the association between cigarette smoking and dieting behaviors and trends in that association among US adolescents in grades 9-12 between 1999 and 2007. Youth Risk Behavior Survey datasets were analyzed using the multivariable logistic regression method. The sample size of each survey year ranged from 13,554 to 15,273 with…

  14. Exploring Milk and Yogurt Selection in an Urban Universal School Breakfast Program

    ERIC Educational Resources Information Center

    Miller, M. Elizabeth; Kwon, Sockju

    2015-01-01

    Purpose/Objectives: The purpose of this study was to explore milk and yogurt selection among students participating in a School Breakfast Program. Methods: Researchers observed breakfast selection of milk, juice and yogurt in six elementary and four secondary schools. Data were analyzed using descriptive statistics and logistic regression to…

  15. Attitudes towards Participation in Business Development Programmes: An Ethnic Comparison in Sweden

    ERIC Educational Resources Information Center

    Abbasian, Saeid; Yazdanfar, Darush

    2015-01-01

    Purpose: The aim of the study is to investigate whether there are any differences between the attitudes towards participation in development programmes of entrepreneurs who are immigrants and those who are native-born. Design/methodology/approach: Several statistical methods, including a binary logistic regression model, were used to analyse a…

  16. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

    Treesearch

    M. L. Gumpertz; C.-T. Wu; John M. Pye

    2000-01-01

    Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...

  17. Parental Youth Assets and Sexual Activity: Differences by Race/Ethnicity

    ERIC Educational Resources Information Center

    Tolma, Eleni L.; Oman, Roy F.; Vesely, Sara K.; Aspy, Cheryl B.; Beebe, Laura; Fluhr, Janene

    2011-01-01

    Objectives: To examine how the relationship between parental-related youth assets and youth sexual activity differed by race/ethnicity. Methods: A random sample of 976 youth and their parents living in a Midwestern city participated in the study. Multivariate logistic regression analyses were conducted for 3 major ethnic groups controlling for the…

  18. The Oklahoma's Promise Program: A National Model to Promote College Persistence

    ERIC Educational Resources Information Center

    Mendoza, Pilar; Mendez, Jesse P.

    2013-01-01

    Using a multi-method approach involving fixed effects and logistic regressions, this study examined the effect of the Oklahoma's Promise Program on student persistence in relation to the Pell and Stafford federal programs and according to socio-economic characteristics and class level. The Oklahoma's Promise is a hybrid state program that pays…

  19. The Relationship between Food Insecurity and Obesity in Rural Childbearing Women

    ERIC Educational Resources Information Center

    Olson, Christine M.; Strawderman, Myla S.

    2008-01-01

    Context: While food insecurity and obesity have been shown to be positively associated in women, little is known about the direction of the causal relationship between these 2 constructs. Purpose: To clarify the direction of the causal relationship between food insecurity and obesity. Methods: Chi-square and logistic regression analysis of data…

  20. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    USDA-ARS?s Scientific Manuscript database

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  1. Use of the Child Behavior Checklist as a Diagnostic Screening Tool in Community Mental Health

    ERIC Educational Resources Information Center

    Rishel, Carrie W.; Greeno, Catherine; Marcus, Steven C.; Shear, M. Katherine; Anderson, Carol

    2005-01-01

    Objective: This study examines whether the Child Behavior Checklist (CBCL) can be used as an accurate psychiatric screening tool for children in community mental health settings. Method: Associations, logistic regression models, and receiver operating characteristic (ROC) analysis were used to test the predictive relationship between the CBCL and…

  2. Self-Reported Cancer Screening among Elderly Medicare Beneficiaries: A Rural-Urban Comparison

    ERIC Educational Resources Information Center

    Fan, Lin; Mohile, Supriya; Zhang, Ning; Fiscella, Kevin; Noyes, Katia

    2012-01-01

    Purpose: We examined the rural-urban disparity of screening for breast cancer and colorectal cancer (CRC) among the elder Medicare beneficiaries and assessed rurality's independent impact on receipt of screening. Methods: Using 2005 Medicare Current Beneficiary Survey, we applied weighted logistic regression to estimate the overall rural-urban…

  3. Out-of-School Time Activity Participation among US-Immigrant Youth

    ERIC Educational Resources Information Center

    Yu, Stella M.; Newport-Berra, McHale; Liu, Jihong

    2015-01-01

    Background: Structured out-of-school time (OST) activities are associated with positive academic and psychosocial outcomes. Methods: Data came from the 2007 National Survey of Children's Health, restricted to 36,132 youth aged 12-17?years. Logistic regression models were used to examine the joint effects of race/ethnicity and immigrant family type…

  4. The weighted priors approach for combining expert opinions in logistic regression experiments

    DOE PAGES

    Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.

    2017-04-24

    When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less

  5. Socioeconomic Disparities in Telephone-Based Treatment of Tobacco Dependence

    PubMed Central

    Varghese, Merilyn; Stitzer, Maxine; Landes, Reid; Brackman, S. Laney; Munn, Tiffany

    2014-01-01

    Objectives. We examined socioeconomic disparities in tobacco dependence treatment outcomes from a free, proactive telephone counseling quitline. Methods. We delivered cognitive–behavioral treatment and nicotine patches to 6626 smokers and examined socioeconomic differences in demographic, clinical, environmental, and treatment use factors. We used logistic regressions and generalized estimating equations (GEE) to model abstinence and account for socioeconomic differences in the models. Results. The odds of achieving long-term abstinence differed by socioeconomic status (SES). In the GEE model, the odds of abstinence for the highest SES participants were 1.75 times those of the lowest SES participants. Logistic regression models revealed no treatment outcome disparity at the end of treatment, but significant disparities 3 and 6 months after treatment. Conclusions. Although quitlines often increase access to treatment for some lower SES smokers, significant socioeconomic disparities in treatment outcomes raise questions about whether current approaches are contributing to tobacco-related socioeconomic health disparities. Strategies to improve treatment outcomes for lower SES smokers might include novel methods to address multiple factors associated with socioeconomic disparities. PMID:24922165

  6. The weighted priors approach for combining expert opinions in logistic regression experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.

    When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less

  7. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression.

    PubMed

    Dipnall, Joanna F; Pasco, Julie A; Berk, Michael; Williams, Lana J; Dodd, Seetal; Jacka, Felice N; Meyer, Denny

    2016-01-01

    Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin.

  8. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models. PMID:22871397

  9. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Trigila, Alessandro; Iadanza, Carla; Esposito, Carlo; Scarascia-Mugnozza, Gabriele

    2015-11-01

    The aim of this work is to define reliable susceptibility models for shallow landslides using Logistic Regression and Random Forests multivariate statistical techniques. The study area, located in North-East Sicily, was hit on October 1st 2009 by a severe rainstorm (225 mm of cumulative rainfall in 7 h) which caused flash floods and more than 1000 landslides. Several small villages, such as Giampilieri, were hit with 31 fatalities, 6 missing persons and damage to buildings and transportation infrastructures. Landslides, mainly types such as earth and debris translational slides evolving into debris flows, were triggered on steep slopes and involved colluvium and regolith materials which cover the underlying metamorphic bedrock. The work has been carried out with the following steps: i) realization of a detailed event landslide inventory map through field surveys coupled with observation of high resolution aerial colour orthophoto; ii) identification of landslide source areas; iii) data preparation of landslide controlling factors and descriptive statistics based on a bivariate method (Frequency Ratio) to get an initial overview on existing relationships between causative factors and shallow landslide source areas; iv) choice of criteria for the selection and sizing of the mapping unit; v) implementation of 5 multivariate statistical susceptibility models based on Logistic Regression and Random Forests techniques and focused on landslide source areas; vi) evaluation of the influence of sample size and type of sampling on results and performance of the models; vii) evaluation of the predictive capabilities of the models using ROC curve, AUC and contingency tables; viii) comparison of model results and obtained susceptibility maps; and ix) analysis of temporal variation of landslide susceptibility related to input parameter changes. Models based on Logistic Regression and Random Forests have demonstrated excellent predictive capabilities. Land use and wildfire variables were found to have a strong control on the occurrence of very rapid shallow landslides.

  10. SU-E-J-256: Predicting Metastasis-Free Survival of Rectal Cancer Patients Treated with Neoadjuvant Chemo-Radiotherapy by Data-Mining of CT Texture Features of Primary Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wang, J; Shen, L

    Purpose: The purpose of this study is to investigate the relationship between computed tomographic (CT) texture features of primary lesions and metastasis-free survival for rectal cancer patients; and to develop a datamining prediction model using texture features. Methods: A total of 220 rectal cancer patients treated with neoadjuvant chemo-radiotherapy (CRT) were enrolled in this study. All patients underwent CT scans before CRT. The primary lesions on the CT images were delineated by two experienced oncologists. The CT images were filtered by Laplacian of Gaussian (LoG) filters with different filter values (1.0–2.5: from fine to coarse). Both filtered and unfiltered imagesmore » were analyzed using Gray-level Co-occurrence Matrix (GLCM) texture analysis with different directions (transversal, sagittal, and coronal). Totally, 270 texture features with different species, directions and filter values were extracted. Texture features were examined with Student’s t-test for selecting predictive features. Principal Component Analysis (PCA) was performed upon the selected features to reduce the feature collinearity. Artificial neural network (ANN) and logistic regression were applied to establish metastasis prediction models. Results: Forty-six of 220 patients developed metastasis with a follow-up time of more than 2 years. Sixtyseven texture features were significantly different in t-test (p<0.05) between patients with and without metastasis, and 12 of them were extremely significant (p<0.001). The Area-under-the-curve (AUC) of ANN was 0.72, and the concordance index (CI) of logistic regression was 0.71. The predictability of ANN was slightly better than logistic regression. Conclusion: CT texture features of primary lesions are related to metastasisfree survival of rectal cancer patients. Both ANN and logistic regression based models can be developed for prediction.« less

  11. Using automated texture features to determine the probability for masking of a tumor on mammography, but not ultrasound.

    PubMed

    Häberle, Lothar; Hack, Carolin C; Heusinger, Katharina; Wagner, Florian; Jud, Sebastian M; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger; Wittenberg, Thomas; Fasching, Peter A

    2017-08-30

    Tumors in radiologically dense breast were overlooked on mammograms more often than tumors in low-density breasts. A fast reproducible and automated method of assessing percentage mammographic density (PMD) would be desirable to support decisions whether ultrasonography should be provided for women in addition to mammography in diagnostic mammography units. PMD assessment has still not been included in clinical routine work, as there are issues of interobserver variability and the procedure is quite time consuming. This study investigated whether fully automatically generated texture features of mammograms can replace time-consuming semi-automatic PMD assessment to predict a patient's risk of having an invasive breast tumor that is visible on ultrasound but masked on mammography (mammography failure). This observational study included 1334 women with invasive breast cancer treated at a hospital-based diagnostic mammography unit. Ultrasound was available for the entire cohort as part of routine diagnosis. Computer-based threshold PMD assessments ("observed PMD") were carried out and 363 texture features were obtained from each mammogram. Several variable selection and regression techniques (univariate selection, lasso, boosting, random forest) were applied to predict PMD from the texture features. The predicted PMD values were each used as new predictor for masking in logistic regression models together with clinical predictors. These four logistic regression models with predicted PMD were compared among themselves and with a logistic regression model with observed PMD. The most accurate masking prediction was determined by cross-validation. About 120 of the 363 texture features were selected for predicting PMD. Density predictions with boosting were the best substitute for observed PMD to predict masking. Overall, the corresponding logistic regression model performed better (cross-validated AUC, 0.747) than one without mammographic density (0.734), but less well than the one with the observed PMD (0.753). However, in patients with an assigned mammography failure risk >10%, covering about half of all masked tumors, the boosting-based model performed at least as accurately as the original PMD model. Automatically generated texture features can replace semi-automatically determined PMD in a prediction model for mammography failure, such that more than 50% of masked tumors could be discovered.

  12. Extension of the Peters–Belson method to estimate health disparities among multiple groups using logistic regression with survey data

    PubMed Central

    Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.

    2015-01-01

    Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235

  13. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    ERIC Educational Resources Information Center

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  14. Iterative Purification and Effect Size Use with Logistic Regression for Differential Item Functioning Detection

    ERIC Educational Resources Information Center

    French, Brian F.; Maller, Susan J.

    2007-01-01

    Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…

  15. "Let Me Count the Ways:" Fostering Reasons for Living among Low-Income, Suicidal, African American Women

    ERIC Educational Resources Information Center

    West, Lindsey M.; Davis, Telsie A.; Thompson, Martie P.; Kaslow, Nadine J.

    2011-01-01

    Protective factors for fostering reasons for living were examined among low-income, suicidal, African American women. Bivariate logistic regressions revealed that higher levels of optimism, spiritual well-being, and family social support predicted reasons for living. Multivariate logistic regressions indicated that spiritual well-being showed…

  16. Comparison of Two Approaches for Handling Missing Covariates in Logistic Regression

    ERIC Educational Resources Information Center

    Peng, Chao-Ying Joanne; Zhu, Jin

    2008-01-01

    For the past 25 years, methodological advances have been made in missing data treatment. Most published work has focused on missing data in dependent variables under various conditions. The present study seeks to fill the void by comparing two approaches for handling missing data in categorical covariates in logistic regression: the…

  17. Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures

    ERIC Educational Resources Information Center

    Atar, Burcu; Kamata, Akihito

    2011-01-01

    The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…

  18. Multiple Logistic Regression Analysis of Cigarette Use among High School Students

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph

    2011-01-01

    A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…

  19. Modeling Polytomous Item Responses Using Simultaneously Estimated Multinomial Logistic Regression Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.

    2010-01-01

    Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…

  20. Propensity Score Estimation with Data Mining Techniques: Alternatives to Logistic Regression

    ERIC Educational Resources Information Center

    Keller, Bryan S. B.; Kim, Jee-Seon; Steiner, Peter M.

    2013-01-01

    Propensity score analysis (PSA) is a methodological technique which may correct for selection bias in a quasi-experiment by modeling the selection process using observed covariates. Because logistic regression is well understood by researchers in a variety of fields and easy to implement in a number of popular software packages, it has…

  1. Two-factor logistic regression in pediatric liver transplantation

    NASA Astrophysics Data System (ADS)

    Uzunova, Yordanka; Prodanova, Krasimira; Spasov, Lyubomir

    2017-12-01

    Using a two-factor logistic regression analysis an estimate is derived for the probability of absence of infections in the early postoperative period after pediatric liver transplantation. The influence of both the bilirubin level and the international normalized ratio of prothrombin time of blood coagulation at the 5th postoperative day is studied.

  2. Predictors of Placement Stability at the State Level: The Use of Logistic Regression to Inform Practice

    ERIC Educational Resources Information Center

    Courtney, Jon R.; Prophet, Retta

    2011-01-01

    Placement instability is often associated with a number of negative outcomes for children. To gain state level contextual knowledge of factors associated with placement stability/instability, logistic regression was applied to selected variables from the New Mexico Adoption and Foster Care Administrative Reporting System dataset. Predictors…

  3. Further investigations of the W-test for pairwise epistasis testing.

    PubMed

    Howey, Richard; Cordell, Heather J

    2017-01-01

    Background: In a recent paper, a novel W-test for pairwise epistasis testing was proposed that appeared, in computer simulations, to have higher power than competing alternatives. Application to genome-wide bipolar data detected significant epistasis between SNPs in genes of relevant biological function. Network analysis indicated that the implicated genes formed two separate interaction networks, each containing genes highly related to autism and neurodegenerative disorders. Methods: Here we investigate further the properties and performance of the W-test via theoretical evaluation, computer simulations and application to real data. Results: We demonstrate that, for common variants, the W-test is closely related to several existing tests of association allowing for interaction, including logistic regression on 8 degrees of freedom, although logistic regression can show inflated type I error for low minor allele frequencies,  whereas the W-test shows good/conservative type I error control. Although in some situations the W-test can show higher power, logistic regression is not limited to tests on 8 degrees of freedom but can instead be tailored to impose greater structure on the assumed alternative hypothesis, offering a power advantage when the imposed structure matches the true structure. Conclusions: The W-test is a potentially useful method for testing for association - without necessarily implying interaction - between genetic variants disease, particularly when one or more of the genetic variants are rare. For common variants, the advantages of the W-test are less clear, and, indeed, there are situations where existing methods perform better. In our investigations, we further uncover a number of problems with the practical implementation and application of the W-test (to bipolar disorder) previously described, apparently due to inadequate use of standard data quality-control procedures. This observation leads us to urge caution in interpretation of the previously-presented results, most of which we consider are highly likely to be artefacts.

  4. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  5. Length bias correction in gene ontology enrichment analysis using logistic regression.

    PubMed

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  6. Naval Research Logistics Quarterly. Volume 28. Number 3,

    DTIC Science & Technology

    1981-09-01

    denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions

  7. Regression approaches in the test-negative study design for assessment of influenza vaccine effectiveness.

    PubMed

    Bond, H S; Sullivan, S G; Cowling, B J

    2016-06-01

    Influenza vaccination is the most practical means available for preventing influenza virus infection and is widely used in many countries. Because vaccine components and circulating strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The test-negative design is frequently used to estimate VE. In this design, patients meeting the same clinical case definition are recruited and tested for influenza; those who test positive are the cases and those who test negative form the comparison group. When determining VE in these studies, the typical approach has been to use logistic regression, adjusting for potential confounders. Because vaccine coverage and influenza incidence change throughout the season, time is included among these confounders. While most studies use unconditional logistic regression, adjusting for time, an alternative approach is to use conditional logistic regression, matching on time. Here, we used simulation data to examine the potential for both regression approaches to permit accurate and robust estimates of VE. In situations where vaccine coverage changed during the influenza season, the conditional model and unconditional models adjusting for categorical week and using a spline function for week provided more accurate estimates. We illustrated the two approaches on data from a test-negative study of influenza VE against hospitalization in children in Hong Kong which resulted in the conditional logistic regression model providing the best fit to the data.

  8. Diagnostic Algorithm to Reflect Regressive Changes of Human Papilloma Virus in Tissue Biopsies

    PubMed Central

    Lhee, Min Jin; Cha, Youn Jin; Bae, Jong Man; Kim, Young Tae

    2014-01-01

    Purpose Landmark indicators have not yet to be developed to detect the regression of cervical intraepithelial neoplasia (CIN). We propose that quantitative viral load and indicative histological criteria can be used to differentiate between atypical squamous cells of undetermined significance (ASCUS) and a CIN of grade 1. Materials and Methods We collected 115 tissue biopsies from women who tested positive for the human papilloma virus (HPV). Nine morphological parameters including nuclear size, perinuclear halo, hyperchromasia, typical koilocyte (TK), abortive koilocyte (AK), bi-/multi-nucleation, keratohyaline granules, inflammation, and dyskeratosis were examined for each case. Correlation analyses, cumulative logistic regression, and binary logistic regression were used to determine optimal cut-off values of HPV copy numbers. The parameters TK, perinuclear halo, multi-nucleation, and nuclear size were significantly correlated quantitatively to HPV copy number. Results An HPV loading number of 58.9 and AK number of 20 were optimal to discriminate between negative and subtle findings in biopsies. An HPV loading number of 271.49 and AK of 20 were optimal for discriminating between equivocal changes and obvious koilocytosis. Conclusion We propose that a squamous epithelial lesion with AK of >20 and quantitative HPV copy number between 58.9-271.49 represents a new spectrum of subtle pathological findings, characterized by AK in ASCUS. This can be described as a distinct entity and called "regressing koilocytosis". PMID:24532500

  9. Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar.

    PubMed

    Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald

    2006-11-01

    We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.

  10. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    PubMed

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.

  11. Use of generalized ordered logistic regression for the analysis of multidrug resistance data.

    PubMed

    Agga, Getahun E; Scott, H Morgan

    2015-10-01

    Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.

  12. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  13. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.

    PubMed

    Hay, Peter D; Smith, Julie; O'Connor, Richard A

    2016-02-01

    The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.

  14. Cesarean delivery rates among family physicians versus obstetricians: a population-based cohort study using instrumental variable methods

    PubMed Central

    Dawe, Russell Eric; Bishop, Jessica; Pendergast, Amanda; Avery, Susan; Monaghan, Kelly; Duggan, Norah; Aubrey-Bassler, Kris

    2017-01-01

    Background: Previous research suggests that family physicians have rates of cesarean delivery that are lower than or equivalent to those for obstetricians, but adjustments for risk differences in these analyses may have been inadequate. We used an econometric method to adjust for observed and unobserved factors affecting the risk of cesarean delivery among women attended by family physicians versus obstetricians. Methods: This retrospective population-based cohort study included all Canadian (except Quebec) hospital deliveries by family physicians and obstetricians between Apr. 1, 2006, and Mar. 31, 2009. We excluded women with multiple gestations, and newborns with a birth weight less than 500 g or gestational age less than 20 weeks. We estimated the relative risk of cesarean delivery using instrumental-variable-adjusted and logistic regression. Results: The final cohort included 776 299 women who gave birth in 390 hospitals. The risk of cesarean delivery was 27.3%, and the mean proportion of deliveries by family physicians was 26.9% (standard deviation 23.8%). The relative risk of cesarean delivery for family physicians versus obstetricians was 0.48 (95% confidence interval [CI] 0.41-0.56) with logistic regression and 1.27 (95% CI 1.02-1.57) with instrumental-variable-adjusted regression. Interpretation: Our conventional analyses suggest that family physicians have a lower rate of cesarean delivery than obstetricians, but instrumental variable analyses suggest the opposite. Because instrumental variable methods adjust for unmeasured factors and traditional methods do not, the large discrepancy between these estimates of risk suggests that clinical and/or sociocultural factors affecting the decision to perform cesarean delivery may not be accounted for in our database. PMID:29233843

  15. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density

    PubMed Central

    Pang, Marco Y.C.; Eng, Janice J.

    2011-01-01

    Introduction Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Methods Thirty nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for: balance, mobility, leg muscle strength, spasticity, and falls-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance whereas logistic regression was used to identify the determinants of falls. Results Multiple regression analysis revealed that after adjusting for basic demographics, falls-related self-efficacy remained independently associated with balance/mobility performance (R2=0.494, P<0.001). Logistic regression showed that falls-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P=0.04). Conclusions Falls-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD. PMID:18097709

  16. Reducing false-positive incidental findings with ensemble genotyping and logistic regression based variant filtering methods.

    PubMed

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won

    2014-08-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.

  17. Reducing false positive incidental findings with ensemble genotyping and logistic regression-based variant filtering methods

    PubMed Central

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choi, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B.; Gupta, Neha; Kohane, Isaac S.; Green, Robert C.; Kong, Sek Won

    2014-01-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous SNVs; 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and ensemble genotyping would be essential to minimize false positive DNM candidates. PMID:24829188

  18. Examining the Link Between Public Transit Use and Active Commuting

    PubMed Central

    Bopp, Melissa; Gayah, Vikash V.; Campbell, Matthew E.

    2015-01-01

    Background: An established relationship exists between public transportation (PT) use and physical activity. However, there is limited literature that examines the link between PT use and active commuting (AC) behavior. This study examines this link to determine if PT users commute more by active modes. Methods: A volunteer, convenience sample of adults (n = 748) completed an online survey about AC/PT patterns, demographic, psychosocial, community and environmental factors. t-test compared differences between PT riders and non-PT riders. Binary logistic regression analyses examined the effect of multiple factors on AC and a full logistic regression model was conducted to examine AC. Results: Non-PT riders (n = 596) reported less AC than PT riders. There were several significant relationships with AC for demographic, interpersonal, worksite, community and environmental factors when considering PT use. The logistic multivariate analysis for included age, number of children and perceived distance to work as negative predictors and PT use, feelings of bad weather and lack of on-street bike lanes as a barrier to AC, perceived behavioral control and spouse AC were positive predictors. Conclusions: This study revealed the complex relationship between AC and PT use. Further research should investigate how AC and public transit use are related. PMID:25898405

  19. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

    PubMed

    Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif

    2017-01-01

    Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  20. Risk estimation using probability machines

    PubMed Central

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  1. Risk estimation using probability machines.

    PubMed

    Dasgupta, Abhijit; Szymczak, Silke; Moore, Jason H; Bailey-Wilson, Joan E; Malley, James D

    2014-03-01

    Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a "risk machine", will share properties from the statistical machine that it is derived from.

  2. Detecting DIF in Polytomous Items Using MACS, IRT and Ordinal Logistic Regression

    ERIC Educational Resources Information Center

    Elosua, Paula; Wells, Craig

    2013-01-01

    The purpose of the present study was to compare the Type I error rate and power of two model-based procedures, the mean and covariance structure model (MACS) and the item response theory (IRT), and an observed-score based procedure, ordinal logistic regression, for detecting differential item functioning (DIF) in polytomous items. A simulation…

  3. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    ERIC Educational Resources Information Center

    Rudner, Lawrence

    2016-01-01

    In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…

  4. Comparing Linear Discriminant Function with Logistic Regression for the Two-Group Classification Problem.

    ERIC Educational Resources Information Center

    Fan, Xitao; Wang, Lin

    The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…

  5. Effects of Social Class and School Conditions on Educational Enrollment and Achievement of Boys and Girls in Rural Viet Nam

    ERIC Educational Resources Information Center

    Nguyen, Phuong L.

    2006-01-01

    This study examines the effects of parental SES, school quality, and community factors on children's enrollment and achievement in rural areas in Viet Nam, using logistic regression and ordered logistic regression. Multivariate analysis reveals significant differences in educational enrollment and outcomes by level of household expenditures and…

  6. School Exits in the Milwaukee Parental Choice Program: Evidence of a Marketplace?

    ERIC Educational Resources Information Center

    Ford, Michael

    2011-01-01

    This article examines whether the large number of school exits from the Milwaukee school voucher program is evidence of a marketplace. Two logistic regression and multinomial logistic regression models tested the relation between the inability to draw large numbers of voucher students and the ability for a private school to remain viable. Data on…

  7. Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

    DTIC Science & Technology

    2016-11-22

    structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The

  8. Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.

    PubMed

    Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo

    2016-01-01

    In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.

  9. Model building strategy for logistic regression: purposeful selection.

    PubMed

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  10. Method for estimating potential tree-grade distributions for northeastern forest species

    Treesearch

    Daniel A. Yaussy; Daniel A. Yaussy

    1993-01-01

    Generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive...

  11. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Treesearch

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  12. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    PubMed

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  13. Childhood Misfortune as a Threat to Successful Aging: Avoiding Disease

    ERIC Educational Resources Information Center

    Schafer, Markus H.; Ferraro, Kenneth F.

    2012-01-01

    Purpose: The purpose of this study was to examine whether childhood misfortune reduces the likelihood of being disease free in adulthood. Design and Methods: This article used a sample of 3,000+ American adults, aged 25-74, who were first interviewed in 1995 and reinterviewed in 2005. Logistic regression was used to estimate the odds of avoiding…

  14. Exploring Student Characteristics of Retention That Lead to Graduation in Higher Education Using Data Mining Models

    ERIC Educational Resources Information Center

    Raju, Dheeraj; Schumacker, Randall

    2015-01-01

    The study used earliest available student data from a flagship university in the southeast United States to build data mining models like logistic regression with different variable selection methods, decision trees, and neural networks to explore important student characteristics associated with retention leading to graduation. The decision tree…

  15. A Logistic Regression Analysis of Student Experience Factors for the Enhancement of Developmental Post-Secondary Retention Initiatives

    ERIC Educational Resources Information Center

    Shenkle, Michael Thomas

    2017-01-01

    In response to stagnant undergraduate completion rates and growing demands for post-secondary accountability, institutions are actively pursuing effective, broadly applicable methods for promoting student success. One notable scarcity in existing research is found in the tailoring of broad academic interventions to better meet the specific needs…

  16. Does Concern Motivate Behavior Change?: Exploring the Relationship between Physical Activity and Body Mass Index among Low-Income Housing Residents

    ERIC Educational Resources Information Center

    Tamers, Sara L.; Allen, Jennifer; Yang, May; Stoddard, Anne; Harley, Amy; Sorensen, Glorian

    2014-01-01

    Objective: To explore relationships between concerns and physical activity and body mass index (BMI) among a racially/ethnically diverse low-income population. Method: A cross-sectional survey documented behavioral risks among racially/ethnically diverse low-income residents in the Boston area (2005-2009). Multivariable logistic regressions were…

  17. Does the Perceived Neighborhood Reputation Contribute to Neighborhood Differences in Social Trust and Residential Wellbeing?

    ERIC Educational Resources Information Center

    Kullberg, Agneta; Timpka, Toomas; Svensson, Tommy; Karlsson, Nadine; Lindqvist, Kent

    2010-01-01

    The authors used a mixed methods approach to examine if the reputation of a housing area has bearing on residential wellbeing and social trust in three pairs of socioeconomically contrasting neighborhoods in a Swedish urban municipality. Multilevel logistic regression analyses were performed to examine associations between area reputation and…

  18. Antitobacco Media Awareness of Rural Youth Compared to Suburban and Urban Youth in Indiana

    ERIC Educational Resources Information Center

    Zollinger, Terrell W.; Saywell, Robert M., Jr.; Overgaard, Amanda D.; Przybylski, Michael J.; Dutta-Bergman, Mohan

    2006-01-01

    Purpose: This study examined the awareness and impact of antitobacco media messages among rural, suburban, and urban youth. Method: Self-administered questionnaires were received from 1,622, 1,059, and 1,177 middle school (sixth, seventh, and eighth grade) students in rural, suburban, and urban locations, respectively. Logistic regression compared…

  19. Comparing Forest/Nonforest Classifications of Landsat TM Imagery for Stratifying FIA Estimates of Forest Land Area

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Greg C. Liknes; Geoffrey R. Holden

    2005-01-01

    Landsat Thematic Mapper (TM) satellite imagery and Forest Inventory and Analysis (FIA) plot data were used to construct forest/nonforest maps of Mapping Zone 41, National Land Cover Dataset 2000 (NLCD 2000). Stratification approaches resulting from Maximum Likelihood, Fuzzy Convolution, Logistic Regression, and k-Nearest Neighbors classification/prediction methods were...

  20. Articulation of Cut Scores in the Context of the Next-Generation Assessments. Research Report. ETS RR-17-34

    ERIC Educational Resources Information Center

    Kannan, Priya; Sgammato, Adrienne

    2017-01-01

    Logistic regression (LR)-based methods have become increasingly popular for predicting and articulating cut scores. However, the precision of predictive relationships is largely dependent on the underlying correlations between the predictor and the criterion. In two simulation studies, we evaluated the impact of varying the underlying grade-level…

  1. Mental Health and Self-Directed Violence among Student Service Members/Veterans in Postsecondary Education

    ERIC Educational Resources Information Center

    Blosnich, John R.; Kopacz, Marek S.; McCarten, Janet; Bossarte, Robert M.

    2015-01-01

    Objectives: Using a sample of student service members/veterans, the current study aimed to examine the prevalence of psychiatric diagnoses and suicide-related outcomes and the association of hazardous duty with mental health. Participants: Data are from the Fall 2011 National College Health Assessment (N = 27,774). Methods: Logistic regression was…

  2. Compensatory Weight Control Behaviors of Women in Emerging Adulthood: Associations between Childhood Abuse Experiences and Adult Relationship Avoidance

    ERIC Educational Resources Information Center

    Bankoff, Sarah M.; Valentine, Sarah E.; Jackson, Michelle A.; Schacht, Rebecca L.; Pantalone, David W.

    2013-01-01

    Objective: To examine correlates of compensatory weight control behaviors among women in transition between adolescence and adulthood. Participants: The authors recruited a sample of undergraduate women ("N" = 759) at a large northwestern university during the 2009-2010 academic year. Methods: Logistic regression was used to assess…

  3. An Efficient Design Strategy for Logistic Regression Using Outcome- and Covariate-Dependent Pooling of Biospecimens Prior to Assay

    PubMed Central

    Lyles, Robert H.; Mitchell, Emily M.; Weinberg, Clarice R.; Umbach, David M.; Schisterman, Enrique F.

    2016-01-01

    Summary Potential reductions in laboratory assay costs afforded by pooling equal aliquots of biospecimens have long been recognized in disease surveillance and epidemiological research and, more recently, have motivated design and analytic developments in regression settings. For example, Weinberg and Umbach (1999, Biometrics 55, 718–726) provided methods for fitting set-based logistic regression models to case-control data when a continuous exposure variable (e.g., a biomarker) is assayed on pooled specimens. We focus on improving estimation efficiency by utilizing available subject-specific information at the pool allocation stage. We find that a strategy that we call “(y,c)-pooling,” which forms pooling sets of individuals within strata defined jointly by the outcome and other covariates, provides more precise estimation of the risk parameters associated with those covariates than does pooling within strata defined only by the outcome. We review the approach to set-based analysis through offsets developed by Weinberg and Umbach in a recent correction to their original paper. We propose a method for variance estimation under this design and use simulations and a real-data example to illustrate the precision benefits of (y,c)-pooling relative to y-pooling. We also note and illustrate that set-based models permit estimation of covariate interactions with exposure. PMID:26964741

  4. Sequence analysis to assess labour market participation following vocational rehabilitation: an observational study among patients sick-listed with low back pain from a randomised clinical trial in Denmark

    PubMed Central

    Lindholdt, Louise; Labriola, Merete; Nielsen, Claus Vinther; Horsbøl, Trine Allerslev; Lund, Thomas

    2017-01-01

    Introduction The return-to-work (RTW) process after long-term sickness absence is often complex and long and implies multiple shifts between different labour market states for the absentee. Standard methods for examining RTW research typically rely on the analysis of one outcome measure at a time, which will not capture the many possible states and transitions the absentee can go through. The purpose of this study was to explore the potential added value of sequence analysis in supplement to standard regression analysis of a multidisciplinary RTW intervention among patients with low back pain (LBP). Methods The study population consisted of 160 patients randomly allocated to either a hospital-based brief or a multidisciplinary intervention. Data on labour market participation following intervention were obtained from a national register and analysed in two ways: as a binary outcome expressed as active or passive relief at a 1-year follow-up and as four different categories for labour market participation. Logistic regression and sequence analysis were performed. Results The logistic regression analysis showed no difference in labour market participation for patients in the two groups after 1 year. Applying sequence analysis showed differences in subsequent labour market participation after 2 years after baseline in favour of the brief intervention group versus the multidisciplinary intervention group. Conclusion The study indicated that sequence analysis could provide added analytical value as a supplement to traditional regression analysis in prospective studies of RTW among patients with LBP. PMID:28729315

  5. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    PubMed

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  6. Training to Provide Psychiatric Genetic Counseling: How Does It Impact Recent Graduates' and Current Students' Readiness to Provide Genetic Counseling for Individuals with Psychiatric Illness and Attitudes towards this Population?

    PubMed

    Low, Ashley; Dixon, Shannan; Higgs, Amanda; Joines, Jessica; Hippman, Catriona

    2018-02-01

    Mental illness is extremely common and genetic counselors frequently see patients with mental illness. Genetic counselors report discomfort in providing psychiatric genetic counseling (GC), suggesting the need to look critically at training for psychiatric GC. This study aimed to investigate psychiatric GC training and its impact on perceived preparedness to provide psychiatric GC (preparedness). Current students and recent graduates were invited to complete an anonymous survey evaluating psychiatric GC training and outcomes. Bivariate correlations (p<.10) identified variables for inclusion in a logistic regression model to predict preparedness. Data were checked for assumptions underlying logistic regression. The logistic regression model for the 286 respondents [χ 2 (8)=84.87, p<.001] explained between 37.1% (Cox & Snell R 2 =.371) and 49.7% (Nagelkerke R 2 =.497) of the variance in preparedness scores. More frequent psychiatric GC instruction (OR=5.13), more active methods for practicing risk assessment (OR=4.43), and education on providing resources for mental illness (OR=4.99) made uniquely significant contributions to the model (p<.001). Responses to open-ended questions revealed interest in further psychiatric GC training, particularly enabling "hands on" experience. This exploratory study suggests that enriching GC training through more frequent psychiatric GC instruction and more active opportunities to practice psychiatric GC skills will support students in feeling more prepared to provide psychiatric GC after graduation.

  7. Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed (Ambrosia artemisiifolia L.) distribution in China

    USGS Publications Warehouse

    Hao, Chen; LiJun, Chen; Albright, Thomas P.

    2007-01-01

    Invasive exotic species pose a growing threat to the economy, public health, and ecological integrity of nations worldwide. Explaining and predicting the spatial distribution of invasive exotic species is of great importance to prevention and early warning efforts. We are investigating the potential distribution of invasive exotic species, the environmental factors that influence these distributions, and the ability to predict them using statistical and information-theoretic approaches. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, for most species, absence data are not available. Presented with the challenge of developing a model based on presence-only information, we developed an improved logistic regression approach using Information Theory and Frequency Statistics to produce a relative suitability map. This paper generated a variety of distributions of ragweed (Ambrosia artemisiifolia L.) from logistic regression models applied to herbarium specimen location data and a suite of GIS layers including climatic, topographic, and land cover information. Our logistic regression model was based on Akaike's Information Criterion (AIC) from a suite of ecologically reasonable predictor variables. Based on the results we provided a new Frequency Statistical method to compartmentalize habitat-suitability in the native range. Finally, we used the model and the compartmentalized criterion developed in native ranges to "project" a potential distribution onto the exotic ranges to build habitat-suitability maps. ?? Science in China Press 2007.

  8. The Joint Effects of Lifestyle Factors and Comorbidities on the Risk of Colorectal Cancer: A Large Chinese Retrospective Case-Control Study

    PubMed Central

    Hu, Hai; Zhou, Yangyang; Ren, Shujuan; Wu, Jiajin; Zhu, Meiying; Chen, Donghui; Yang, Haiyan; Wang, Liwei

    2015-01-01

    Background Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality. In previous epidemiologic studies, the respective correlation between lifestyle factors and comorbidity and CRC has been extensively studied. However, little is known about their joint effects on CRC. Methods We conducted a retrospective case-control study of 1,144 diagnosed CRC patients and 60,549 community controls. A structured questionnaire was administered to the participants about their socio-demographic factors, anthropometric measures, comorbidity history and lifestyle factors. Logistic regression model was used to calculate the odds ratio (ORs) and 95% confidence intervals (95%CIs) for each factor. According to the results from logistic regression model, we further developed healthy lifestyle index (HLI) and comorbidity history index (CHI) to investigate their independent and joint effects on CRC risk. Results Four lifestyle factors (including physical activities, sleep, red meat and vegetable consumption) and four types of comorbidity (including diabetes, hyperlipidemia, history of inflammatory bowel disease and polyps) were found to be independently associated with the risk of CRC in multivariant logistic regression model. Intriguingly, their combined pattern- HLI and CHI demonstrated significant correlation with CRC risk independently (ORHLI: 3.91, 95%CI: 3.13–4.88; ORCHI: 2.49, 95%CI: 2.11–2.93) and jointly (OR: 10.33, 95%CI: 6.59–16.18). Conclusions There are synergistic effects of lifestyle factors and comorbidity on the risk of colorectal cancer in the Chinese population. PMID:26710070

  9. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  10. NIDA-Drug Addiction Treatment Outcome Study (DATOS) Relapse as a Function of Spirituality/Religiosity

    PubMed Central

    Schoenthaler, Stephen J.; Blum, Kenneth; Braverman, Eric R.; Giordano, John; Thompson, Ben; Oscar-Berman, Marlene; Badgaiyan, Rajendra D.; Madigan, Margaret A.; Dushaj, Kristina; Li, Mona; Demotrovics, Zsolt; Waite, Roger L.; Gold, Mark S.

    2015-01-01

    Background The connection between religion/spirituality and deviance, like substance abuse, was first made by Durkheim who defined socially expected behaviors as norms. He explained that deviance is due in large part to their absence (called anomie), and concluded that spirituality lowers deviance by preserving norms and social bonds. Impairments in brain reward circuitry, as observed in Reward Deficiency Syndrome (RDS), may also result in deviance and as such we wondered if stronger belief in spirituality practice and religious belief could lower relapse from drugs of abuse. Methods The NIDA Drug Addiction Treatment Outcome Study data set was used to examine post hoc relapse rates among 2,947 clients who were interviewed at 12 months after intake broken down by five spirituality measures. Results Our main findings strongly indicate, that those with low spirituality have higher relapse rates and those with high spirituality have higher remission rates with crack use being the sole exception. We found significant differences in terms of cocaine, heroin, alcohol, and marijuana relapse as a function of strength of religious beliefs (x2 = 15.18, p = 0.028; logistic regression = 10.65, p = 0.006); frequency of attending religious services (x2 = 40.78, p < 0.0005; logistic regression = 30.45, p < 0.0005); frequency of reading religious books (x2 = 27.190, p < 0.0005; logistic regression = 17.31, p < 0.0005); frequency of watching religious programs (x2 = 19.02, p = 0.002; logistic regression = ns); and frequency of meditation/prayer (x2 = 11.33, p = 0.045; logistic regression = 9.650, p = 0.002). Across the five measures of spirituality, the spiritual participants reported between 7% and 21% less alcohol, cocaine, heroin, and marijuana use than the non-spiritual subjects. However, the crack users who reported that religion was not important reported significantly less crack use than the spiritual participants. The strongest association between remission and spirituality involves attending religious services weekly, the one marker of the five that involves the highest social interaction/social bonding consistent with Durkheim’s social bond theory. Conclusions Stronger spiritual/religious beliefs and practices are directly associated with remission from abused drugs except crack. Much like the value of having a sponsor, for clients who abuse drugs, regular spiritual practice, particularly weekly attendance at the religious services of their choice is associated with significantly higher remission. These results demonstrate the clinically significant role of spirituality and the social bonds it creates in drug treatment programs. PMID:26052556

  11. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley P.

    2004-01-01

    Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.

  12. Surveillance of antimicrobial resistance in clinical isolates of Pasteurella multocida and Streptococcus suis from Ontario swine.

    PubMed

    Glass-Kaastra, Shiona K; Pearl, David L; Reid-Smith, Richard J; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A

    2014-10-01

    Susceptibility results for Pasteurella multocida and Streptococcus suis isolated from swine clinical samples were obtained from January 1998 to October 2010 from the Animal Health Laboratory at the University of Guelph, Guelph, Ontario, and used to describe variation in antimicrobial resistance (AMR) to 4 drugs of importance in the Ontario swine industry: ampicillin, tetracycline, tiamulin, and trimethoprim-sulfamethoxazole. Four temporal data-analysis options were used: visualization of trends in 12-month rolling averages, logistic-regression modeling, temporal-scan statistics, and a scan with the "What's strange about recent events?" (WSARE) algorithm. The AMR trends varied among the antimicrobial drugs for a single pathogen and between pathogens for a single antimicrobial, suggesting that pathogen-specific AMR surveillance may be preferable to indicator data. The 4 methods provided complementary and, at times, redundant results. The most appropriate combination of analysis methods for surveillance using these data included temporal-scan statistics with a visualization method (rolling-average or predicted-probability plots following logistic-regression models). The WSARE algorithm provided interesting results for quality control and has the potential to detect new resistance patterns; however, missing data created problems for displaying the results in a way that would be meaningful to all surveillance stakeholders.

  13. Surveillance of antimicrobial resistance in clinical isolates of Pasteurella multocida and Streptococcus suis from Ontario swine

    PubMed Central

    Glass-Kaastra, Shiona K.; Pearl, David L.; Reid-Smith, Richard J.; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A.

    2014-01-01

    Susceptibility results for Pasteurella multocida and Streptococcus suis isolated from swine clinical samples were obtained from January 1998 to October 2010 from the Animal Health Laboratory at the University of Guelph, Guelph, Ontario, and used to describe variation in antimicrobial resistance (AMR) to 4 drugs of importance in the Ontario swine industry: ampicillin, tetracycline, tiamulin, and trimethoprim–sulfamethoxazole. Four temporal data-analysis options were used: visualization of trends in 12-month rolling averages, logistic-regression modeling, temporal-scan statistics, and a scan with the “What’s strange about recent events?” (WSARE) algorithm. The AMR trends varied among the antimicrobial drugs for a single pathogen and between pathogens for a single antimicrobial, suggesting that pathogen-specific AMR surveillance may be preferable to indicator data. The 4 methods provided complementary and, at times, redundant results. The most appropriate combination of analysis methods for surveillance using these data included temporal-scan statistics with a visualization method (rolling-average or predicted-probability plots following logistic-regression models). The WSARE algorithm provided interesting results for quality control and has the potential to detect new resistance patterns; however, missing data created problems for displaying the results in a way that would be meaningful to all surveillance stakeholders. PMID:25355992

  14. Assessment of Differential Item Functioning in Health-Related Outcomes: A Simulation and Empirical Analysis with Hierarchical Polytomous Data

    PubMed Central

    Sharafi, Zahra

    2017-01-01

    Background The purpose of this study was to evaluate the effectiveness of two methods of detecting differential item functioning (DIF) in the presence of multilevel data and polytomously scored items. The assessment of DIF with multilevel data (e.g., patients nested within hospitals, hospitals nested within districts) from large-scale assessment programs has received considerable attention but very few studies evaluated the effect of hierarchical structure of data on DIF detection for polytomously scored items. Methods The ordinal logistic regression (OLR) and hierarchical ordinal logistic regression (HOLR) were utilized to assess DIF in simulated and real multilevel polytomous data. Six factors (DIF magnitude, grouping variable, intraclass correlation coefficient, number of clusters, number of participants per cluster, and item discrimination parameter) with a fully crossed design were considered in the simulation study. Furthermore, data of Pediatric Quality of Life Inventory™ (PedsQL™) 4.0 collected from 576 healthy school children were analyzed. Results Overall, results indicate that both methods performed equivalently in terms of controlling Type I error and detection power rates. Conclusions The current study showed negligible difference between OLR and HOLR in detecting DIF with polytomously scored items in a hierarchical structure. Implications and considerations while analyzing real data were also discussed. PMID:29312463

  15. A Comparison of Logistic Regression, Neural Networks, and Classification Trees Predicting Success of Actuarial Students

    ERIC Educational Resources Information Center

    Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard

    2010-01-01

    The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…

  16. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Treesearch

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  17. Odds Ratio, Delta, ETS Classification, and Standardization Measures of DIF Magnitude for Binary Logistic Regression

    ERIC Educational Resources Information Center

    Monahan, Patrick O.; McHorney, Colleen A.; Stump, Timothy E.; Perkins, Anthony J.

    2007-01-01

    Previous methodological and applied studies that used binary logistic regression (LR) for detection of differential item functioning (DIF) in dichotomously scored items either did not report an effect size or did not employ several useful measures of DIF magnitude derived from the LR model. Equations are provided for these effect size indices.…

  18. A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

    2011-01-01

    We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

  19. Estimation of Logistic Regression Models in Small Samples. A Simulation Study Using a Weakly Informative Default Prior Distribution

    ERIC Educational Resources Information Center

    Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel

    2012-01-01

    In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…

  20. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.

  2. Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Arihood, Leslie D.

    2010-01-01

    This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features.

  3. Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.

    PubMed

    Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam

    2017-11-01

    The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.

  4. Son Preference and Family Limitation in Pakistan: A Parity- and Contraceptive Method-Specific Analysis.

    PubMed

    Channon, Melanie Dawn

    2017-09-01

    Son preference exerts a strong influence over contraceptive and fertility decisions in many South Asian countries. In Pakistan, where fertility remains high and contraceptive use low, research on son preference has been limited. Data from Pakistan Demographic and Health Surveys conducted in 1990-1991, 2006-2007 and 2012-2013 were used to examine potential indicators and outcomes of son preference. Descriptive analyses looked at sex composition preferences of men and women, as well as the sex ratio at last birth. Multivariate logistic regression analyses examined parity progression by birth order, while multinomial logistic regression was used to identify associations between sex composition and use of permanent, temporary and traditional contraceptive methods. Parity progression and choice of contraceptive method are increasingly associated with the sex composition of children. Many respondents wanted at least two sons, though most also wanted at least one daughter. Analyses suggest that the prevalence of modern contraceptive use among parous women would have been 19% higher in 2012-2013 in the absence of son preference. Permanent method use was extremely low among women with no sons and increased significantly with number of sons. The association between number of sons and use of temporary methods was weaker, while son preference had little relationship with traditional method use. The association of son preference with parity progression and modern contraceptive use has become stronger in Pakistan. Continuation of the fertility transition may be difficult unless the degrees of differential stopping behavior and differential contraceptive use decline.

  5. EXpectation Propagation LOgistic REgRession (EXPLORER): Distributed Privacy-Preserving Online Model Learning

    PubMed Central

    Wang, Shuang; Jiang, Xiaoqian; Wu, Yuan; Cui, Lijuan; Cheng, Samuel; Ohno-Machado, Lucila

    2013-01-01

    We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature selection etc.) as the traditional frequentist Logistic Regression model, but provides more flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than having to retrain the entire data set when new observations are recorded. The proposed EXPLORER supports asynchronized communication, which relieves the participants from coordinating with one another, and prevents service breakdown from the absence of participants or interrupted communications. PMID:23562651

  6. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.

    PubMed

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2017-03-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.

  7. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models

    PubMed Central

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2016-01-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437

  8. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    PubMed

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  9. Estimating irrigation water use in the humid eastern United States

    USGS Publications Warehouse

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to develop the models as well as two independent validation datasets from Georgia and Virginia that were not used in model development. Irrigation water-use estimates from the logistic regression method more closely matched mean reported irrigation rates than estimates from the crop-water-demand model when compared to the irrigation data used to develop the equations. The root mean squared errors (RMSEs) for the logistic regression estimates of mean annual irrigation ranged from 0.3 to 2.0 inches (in.) for the five crop types; RMSEs for the crop-water-demand models ranged from 1.4 to 3.9 in. However, when the models were applied and compared to the independent validation datasets from southwest Georgia from 2010, and from Virginia from 1999 to 2007, the crop-water-demand model estimates were as good as or better at predicting the mean irrigation volume than the logistic regression models for most crop types. RMSEs for logistic regression estimates of mean annual irrigation ranged from 1.0 to 7.0 in. for validation data from Georgia and from 1.8 to 4.9 in. for validation data from Virginia; RMSEs for crop-water-demand model estimates ranged from 2.1 to 5.8 in. for Georgia data and from 2.0 to 3.9 in. for Virginia data. In general, regression-based models performed better in areas that had quality daily or weekly irrigation data from which the regression equations were developed; however, the regression models were less reliable than the crop-water-demand models when applied outside the area for which they were developed. In most eastern coastal states that do not have quality irrigation data, the crop-water-demand model can be used more reliably. The development of predictive models of irrigation water use in this study was hindered by a lack of quality irrigation data. Many mid-Atlantic and New England states do not require irrigation water use to be reported. A survey of irrigation data from 14 eastern coastal states from Maine to Georgia indicated that, with the exception of the data in Georgia, irrigation data in the states that do require reporting commonly did not contain requisite ancillary information such as irrigated area or crop type, lacked precision, or were at an aggregated temporal scale making them unsuitable for use in the development of predictive models. Confidence in the reliability of either modeling method is affected by uncertainty in the reported data from which the models were developed or validated. Only through additional collection of quality data and further study can the accuracy and uncertainty of irrigation water-use estimates be improved in the humid eastern United States.

  10. Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure–flow relation: The CARNet study

    PubMed Central

    Meel-van den Abeelen, Aisha S.S.; Simpson, David M.; Wang, Lotte J.Y.; Slump, Cornelis H.; Zhang, Rong; Tarumi, Takashi; Rickards, Caroline A.; Payne, Stephen; Mitsis, Georgios D.; Kostoglou, Kyriaki; Marmarelis, Vasilis; Shin, Dae; Tzeng, Yu-Chieh; Ainslie, Philip N.; Gommer, Erik; Müller, Martin; Dorado, Alexander C.; Smielewski, Peter; Yelicich, Bernardo; Puppo, Corina; Liu, Xiuyun; Czosnyka, Marek; Wang, Cheng-Yen; Novak, Vera; Panerai, Ronney B.; Claassen, Jurgen A.H.R.

    2014-01-01

    Transfer function analysis (TFA) is a frequently used method to assess dynamic cerebral autoregulation (CA) using spontaneous oscillations in blood pressure (BP) and cerebral blood flow velocity (CBFV). However, controversies and variations exist in how research groups utilise TFA, causing high variability in interpretation. The objective of this study was to evaluate between-centre variability in TFA outcome metrics. 15 centres analysed the same 70 BP and CBFV datasets from healthy subjects (n = 50 rest; n = 20 during hypercapnia); 10 additional datasets were computer-generated. Each centre used their in-house TFA methods; however, certain parameters were specified to reduce a priori between-centre variability. Hypercapnia was used to assess discriminatory performance and synthetic data to evaluate effects of parameter settings. Results were analysed using the Mann–Whitney test and logistic regression. A large non-homogeneous variation was found in TFA outcome metrics between the centres. Logistic regression demonstrated that 11 centres were able to distinguish between normal and impaired CA with an AUC > 0.85. Further analysis identified TFA settings that are associated with large variation in outcome measures. These results indicate the need for standardisation of TFA settings in order to reduce between-centre variability and to allow accurate comparison between studies. Suggestions on optimal signal processing methods are proposed. PMID:24725709

  11. Toward Automating HIV Identification: Machine Learning for Rapid Identification of HIV-Related Social Media Data.

    PubMed

    Young, Sean D; Yu, Wenchao; Wang, Wei

    2017-02-01

    "Social big data" from technologies such as social media, wearable devices, and online searches continue to grow and can be used as tools for HIV research. Although researchers can uncover patterns and insights associated with HIV trends and transmission, the review process is time consuming and resource intensive. Machine learning methods derived from computer science might be used to assist HIV domain experts by learning how to rapidly and accurately identify patterns associated with HIV from a large set of social data. Using an existing social media data set that was associated with HIV and coded by an HIV domain expert, we tested whether 4 commonly used machine learning methods could learn the patterns associated with HIV risk behavior. We used the 10-fold cross-validation method to examine the speed and accuracy of these models in applying that knowledge to detect HIV content in social media data. Logistic regression and random forest resulted in the highest accuracy in detecting HIV-related social data (85.3%), whereas the Ridge Regression Classifier resulted in the lowest accuracy. Logistic regression yielded the fastest processing time (16.98 seconds). Machine learning can enable social big data to become a new and important tool in HIV research, helping to create a new field of "digital HIV epidemiology." If a domain expert can identify patterns in social data associated with HIV risk or HIV transmission, machine learning models could quickly and accurately learn those associations and identify potential HIV patterns in large social data sets.

  12. Dietary consumption patterns and laryngeal cancer risk.

    PubMed

    Vlastarakos, Petros V; Vassileiou, Andrianna; Delicha, Evie; Kikidis, Dimitrios; Protopapas, Dimosthenis; Nikolopoulos, Thomas P

    2016-06-01

    We conducted a case-control study to investigate the effect of diet on laryngeal carcinogenesis. Our study population was made up of 140 participants-70 patients with laryngeal cancer (LC) and 70 controls with a non-neoplastic condition that was unrelated to diet, smoking, or alcohol. A food-frequency questionnaire determined the mean consumption of 113 different items during the 3 years prior to symptom onset. Total energy intake and cooking mode were also noted. The relative risk, odds ratio (OR), and 95% confidence interval (CI) were estimated by multiple logistic regression analysis. We found that the total energy intake was significantly higher in the LC group (p < 0.001), and that the difference remained statistically significant after logistic regression analysis (p < 0.001; OR: 118.70). Notably, meat consumption was higher in the LC group (p < 0.001), and the difference remained significant after logistic regression analysis (p = 0.029; OR: 1.16). LC patients also consumed significantly more fried food (p = 0.036); this difference also remained significant in the logistic regression model (p = 0.026; OR: 5.45). The LC group also consumed significantly more seafood (p = 0.012); the difference persisted after logistic regression analysis (p = 0.009; OR: 2.48), with the consumption of shrimp proving detrimental (p = 0.049; OR: 2.18). Finally, the intake of zinc was significantly higher in the LC group before and after logistic regression analysis (p = 0.034 and p = 0.011; OR: 30.15, respectively). Cereal consumption (including pastas) was also higher among the LC patients (p = 0.043), with logistic regression analysis showing that their negative effect was possibly associated with the sauces and dressings that traditionally accompany pasta dishes (p = 0.006; OR: 4.78). Conversely, a higher consumption of dairy products was found in controls (p < 0.05); logistic regression analysis showed that calcium appeared to be protective at the micronutrient level (p < 0.001; OR: 0.27). We found no difference in the overall consumption of fruits and vegetables between the LC patients and controls; however, the LC patients did have a greater consumption of cooked tomatoes and cooked root vegetables (p = 0.039 for both), and the controls had more consumption of leeks (p = 0.042) and, among controls younger than 65 years, cooked beans (p = 0.037). Lemon (p = 0.037), squeezed fruit juice (p = 0.032), and watermelon (p = 0.018) were also more frequently consumed by the controls. Other differences at the micronutrient level included greater consumption by the LC patients of retinol (p = 0.044), polyunsaturated fats (p = 0.041), and linoleic acid (p = 0.008); LC patients younger than 65 years also had greater intake of riboflavin (p = 0.045). We conclude that the differences in dietary consumption patterns between LC patients and controls indicate a possible role for lifestyle modifications involving nutritional factors as a means of decreasing the risk of laryngeal cancer.

  13. Regression discontinuity was a valid design for dichotomous outcomes in three randomized trials.

    PubMed

    van Leeuwen, Nikki; Lingsma, Hester F; Mooijaart, Simon P; Nieboer, Daan; Trompet, Stella; Steyerberg, Ewout W

    2018-06-01

    Regression discontinuity (RD) is a quasi-experimental design that may provide valid estimates of treatment effects in case of continuous outcomes. We aimed to evaluate validity and precision in the RD design for dichotomous outcomes. We performed validation studies in three large randomized controlled trials (RCTs) (Corticosteroid Randomization After Significant Head injury [CRASH], the Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries [GUSTO], and PROspective Study of Pravastatin in elderly individuals at risk of vascular disease [PROSPER]). To mimic the RD design, we selected patients above and below a cutoff (e.g., age 75 years) randomized to treatment and control, respectively. Adjusted logistic regression models using restricted cubic splines (RCS) and polynomials and local logistic regression models estimated the odds ratio (OR) for treatment, with 95% confidence intervals (CIs) to indicate precision. In CRASH, treatment increased mortality with OR 1.22 [95% CI 1.06-1.40] in the RCT. The RD estimates were 1.42 (0.94-2.16) and 1.13 (0.90-1.40) with RCS adjustment and local regression, respectively. In GUSTO, treatment reduced mortality (OR 0.83 [0.72-0.95]), with more extreme estimates in the RD analysis (OR 0.57 [0.35; 0.92] and 0.67 [0.51; 0.86]). In PROSPER, similar RCT and RD estimates were found, again with less precision in RD designs. We conclude that the RD design provides similar but substantially less precise treatment effect estimates compared with an RCT, with local regression being the preferred method of analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  15. Emergency Department Use by Nursing Home Residents: Effect of Severity of Cognitive Impairment

    ERIC Educational Resources Information Center

    Stephens, Caroline E.; Newcomer, Robert; Blegen, Mary; Miller, Bruce; Harrington, Charlene

    2012-01-01

    Purpose: To examine the 1-year prevalence and risk of emergency department (ED) use and ambulatory care-sensitive (ACS) ED use by nursing home (NH) residents with different levels of severity of cognitive impairment (CI). Design and Methods: We used multinomial logistic regression to estimate the effect of CI severity on the odds of any ED visit…

  16. Gender and Race Are Significant Determinants of Students' Food Choices on a College Campus

    ERIC Educational Resources Information Center

    Boek, Stacey; Bianco-Simeral, Stephanie; Chan, Kenny; Goto, Keiko

    2012-01-01

    Objective: To examine the roles of gender and race in students' determinants of food choices on a college campus. Methods: A total of 405 college students participated in a survey entitled "Campus Food: You Tell Us!" Chi-square and logistic regression were used to examine associations between demographics and food choice determinants. Results:…

  17. The Effect of Exposure to Pro-Tobacco Advertising on Experimentation with Emerging Tobacco Products among U.S. Adolescents

    ERIC Educational Resources Information Center

    Agaku, Israel T.; Ayo-Yusuf, Olalekan A.

    2014-01-01

    Introduction: This study assessed the influence of exposure to pro-tobacco advertisements on experimentation with emerging tobacco products among U.S. adolescents aged =9 years, in Grades 6 to 12. Method: Data were obtained from the 2011 National Youth Tobacco Survey. Multivariate logistic regression was used to measure the association between…

  18. The Associations between Health Literacy, Reasons for Seeking Health Information, and Information Sources Utilized by Taiwanese Adults

    ERIC Educational Resources Information Center

    Wei, Mi-Hsiu

    2014-01-01

    Objective: To determine the associations between health literacy, the reasons for seeking health information, and the information sources utilized by Taiwanese adults. Method: A cross-sectional survey of 752 adults residing in rural and urban areas of Taiwan was conducted via questionnaires. Chi-squared tests and logistic regression were used for…

  19. Hospitalization of Nursing Home Residents with Cognitive Impairments: The Influence of Organizational Features and State Policies

    ERIC Educational Resources Information Center

    Gruneir, Andrea; Miller, Susan C.; Intrator, Orna; Mor, Vincent

    2007-01-01

    Purpose: The purpose of this study was to quantify the effect of specific nursing home features and state Medicaid policies on the risk of hospitalization among cognitively impaired nursing home residents. Design and Methods: We used multilevel logistic regression to estimate the odds of hospitalization among long-stay (greater than 90 days)…

  20. Using the Rural-Urban Continuum to Explore Adolescent Alcohol, Tobacco, and Other Drug Use in Montana

    ERIC Educational Resources Information Center

    Hanson, Carl L.; Novilla, M. Lelinneth L. B.; Barnes, Michael D.; Eggett, Dennis; McKell, Chelsea; Reichman, Peter; Havens, Mike

    2009-01-01

    The purpose of the study was to compare 30-day prevalence of alcohol, tobacco, and other drug use among twelfth-grade students in Montana across a rural-urban continuum during 2000, 2002, and 2004. The methods include an analysis of the Montana Prevention Needs Assessment (N = 15,372) using multivariable logistic regression adjusting for risk…

  1. A Comparison of Health-Risk Behaviors of Rural Migrants with Rural Residents and Urban Residents in China

    ERIC Educational Resources Information Center

    Chen, Xinguang; Stanton, Bonita; Li, Xiaoming; Fang, Xiaoyi; Lin, Danhua; Xiong, Qing

    2009-01-01

    Objective: To determine whether rural-to-urban migrants in China are more likely than rural and urban residents to engage in risk behaviors. Methods: Comparative analysis of survey data between migrants and rural and urban residents using age standardized rate and multiple logistic regression. Results: The prevalence and frequency of tobacco…

  2. Placement and Permanency Outcomes for Children in Out-of-Home Care by Prior Inpatient Mental Health Treatment

    ERIC Educational Resources Information Center

    Park, Jung Min; Ryan, Joseph P.

    2009-01-01

    Objective: This longitudinal study followed 5,978 children in out-of-home care to examine whether placement and permanency outcomes differ between children with and without a history of inpatient mental health treatment. Method: Data were drawn from child welfare and Medicaid records from the state of Illinois. Logistic regression and survival…

  3. HIV/AIDS Knowledge, Perception of Knowledge and Sources of Information among University Students in USA, Turkey, South Africa and Nigeria

    ERIC Educational Resources Information Center

    Abiona, Titilayo; Balogun, Joseph; Yohannes, Eden; Adefuye, Adedeji; Yakut, Yavuz; Amosun, Seyi; Frantz, Jose

    2014-01-01

    Objective: To examine HIV/AIDS knowledge, perceptions of knowledge and sources of HIV information among university students in four countries with different HIV prevalence rates. Methods: A survey was completed by 2,570 randomly selected university students from the USA, Turkey, South Africa and Nigeria. Logistic regression analysis was used to…

  4. Comparison of statistical tests for association between rare variants and binary traits.

    PubMed

    Bacanu, Silviu-Alin; Nelson, Matthew R; Whittaker, John C

    2012-01-01

    Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless, the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene), the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the assumption that the tested variants have similar effects. We previously proposed a method that can accommodate heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is assumed to be large and covariates explain a small fraction of trait's variability and (3) the proposed trend and heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait variability.

  5. Wanted and unwanted fertility in Bolivia: does ethnicity matter?

    PubMed

    McNamee, Catherine B

    2009-12-01

    In Bolivia, the total fertility rate (TFR) among indigenous populations is higher than that among the nonindigenous population. It is important to investigate whether this difference is attributable to ethnic differences in wanted or unwanted fertility. Data from the 2003 Bolivian Demographic and Health Survey were used to estimate women's wanted and unwanted TFRs. Logistic regression analyses were conducted to examine whether women's, men's and couples' characteristics were associated with use of any contraceptive method and modern methods. The TFRs for indigenous and nonindigenous women were 1.5 and 1.7, [corrected] respectively. The wanted fertility rate for indigenous women was nearly the same as that for nonindigenous women (2.8 and 1.4, [corrected] respectively); virtually all of the ethnic difference in the TFRs was attributable to the ethnic difference in unwanted fertility. The proportion of women in need of contraception was greater among indigenous women than among nonindigenous women (26% vs. 19%). In logistic regression analyses, male fertility preferences explained only a small part of the ethnic difference in contraceptive use. Women's, men's and couples' preferences contribute only marginally to unwanted fertility, suggesting that structural factors act as obstacles to preventing unwanted fertility.

  6. Biomarker combinations for diagnosis and prognosis in multicenter studies: Principles and methods.

    PubMed

    Meisner, Allison; Parikh, Chirag R; Kerr, Kathleen F

    2017-01-01

    Many investigators are interested in combining biomarkers to predict a binary outcome or detect underlying disease. This endeavor is complicated by the fact that many biomarker studies involve data from multiple centers. Depending upon the relationship between center, the biomarkers, and the target of prediction, care must be taken when constructing and evaluating combinations of biomarkers. We introduce a taxonomy to describe the role of center and consider how a biomarker combination should be constructed and evaluated. We show that ignoring center, which is frequently done by clinical researchers, is often not appropriate. The limited statistical literature proposes using random intercept logistic regression models, an approach that we demonstrate is generally inadequate and may be misleading. We instead propose using fixed intercept logistic regression, which appropriately accounts for center without relying on untenable assumptions. After constructing the biomarker combination, we recommend using performance measures that account for the multicenter nature of the data, namely the center-adjusted area under the receiver operating characteristic curve. We apply these methods to data from a multicenter study of acute kidney injury after cardiac surgery. Appropriately accounting for center, both in construction and evaluation, may increase the likelihood of identifying clinically useful biomarker combinations.

  7. Weight Fluctuation and Postmenopausal Breast Cancer in the National Health and Nutrition Examination Survey I Epidemiologic Follow-Up Study

    PubMed Central

    Komaroff, Marina

    2016-01-01

    Objective. The aim of this study is to investigate if weight fluctuation is an independent risk factor for postmenopausal breast cancer (PBC) among women who gained weight in adult years. Methods. NHANES I Epidemiologic Follow-Up Study (NHEFS) database was used in the study. Women that were cancers-free at enrollment and diagnosed for the first time with breast cancer at age 50 or greater were considered cases. Controls were chosen from the subset of cancers-free women and matched to cases by years of follow-up and status of body mass index (BMI) at 25 years of age. Weight fluctuation was measured by the root-mean-square-error (RMSE) from a simple linear regression model for each woman with their body mass index (BMI) regressed on age (started at 25 years) while women with the positive slope from this regression were defined as weight gainers. Data were analyzed using conditional logistic regression models. Results. A total of 158 women were included into the study. The conditional logistic regression adjusted for weight gain demonstrated positive association between weight fluctuation in adult years and postmenopausal breast cancers (odds ratio/OR = 1.67; 95% confidence interval/CI: 1.06–2.66). Conclusions. The data suggested that long-term weight fluctuation was significant risk factor for PBC among women who gained weight in adult years. This finding underscores the importance of maintaining lost weight and avoiding weight fluctuation. PMID:26953120

  8. Contraceptive awareness among men in Bangladesh.

    PubMed

    Islam, Mohammad Amirul; Padmadas, Sabu S; Smith, Peter W F

    2006-04-01

    A considerable gap exists between contraceptive awareness and use. Traditional approaches to measuring awareness are inadequate to properly understand the linkages between awareness and use. The objective of this study was to examine the degree of men's modern contraceptive awareness in Bangladesh and the associated determinants and further testing of a hypothesis that current contraceptive use confers a high degree of method awareness. This study used the couple data set from the Bangladesh Demographic and Health Survey (1999-2000). A two-level, multinomial logistic regression was used with the degree of contraceptive awareness as the dependent variable. The degree of awareness was measured by the reported number of modern contraceptive methods known among men aged 15-59 years. Men's responses on method awareness were classified according to those reported spontaneously and probed. Nearly 100% of the study participants reported having heard of at least one method and about half reported awareness of at least eight different methods of contraception. Multinomial logistic regression analyses showed that older and educated men were more likely to have reported a high degree of awareness. The findings confirmed our hypothesis that current contraceptive use is likely to confer a high degree of modern method awareness among men (p<0.001), after controlling for other important characteristics. Men who had a low degree of contraceptive awareness seem not properly informed of the wide range of contraceptive options. It is imperative that family planning intervention strategies in Bangladesh should focus on the degree and functional knowledge of contraceptive methods to improve the uptake of especially male-based modern methods.

  9. The Overall Odds Ratio as an Intuitive Effect Size Index for Multiple Logistic Regression: Examination of Further Refinements

    ERIC Educational Resources Information Center

    Le, Huy; Marcus, Justin

    2012-01-01

    This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…

  10. Predicting Student Success on the Texas Chemistry STAAR Test: A Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Johnson, William L.; Johnson, Annabel M.; Johnson, Jared

    2012-01-01

    Background: The context is the new Texas STAAR end-of-course testing program. Purpose: The authors developed a logistic regression model to predict who would pass-or-fail the new Texas chemistry STAAR end-of-course exam. Setting: Robert E. Lee High School (5A) with an enrollment of 2700 students, Tyler, Texas. Date of the study was the 2011-2012…

  11. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Treesearch

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  12. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.

  13. Predicting The Type Of Pregnancy Using Flexible Discriminate Analysis And Artificial Neural Networks: A Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooman, A.; Mohammadzadeh, M

    Some medical and epidemiological surveys have been designed to predict a nominal response variable with several levels. With regard to the type of pregnancy there are four possible states: wanted, unwanted by wife, unwanted by husband and unwanted by couple. In this paper, we have predicted the type of pregnancy, as well as the factors influencing it using three different models and comparing them. Regarding the type of pregnancy with several levels, we developed a multinomial logistic regression, a neural network and a flexible discrimination based on the data and compared their results using tow statistical indices: Surface under curvemore » (ROC) and kappa coefficient. Based on these tow indices, flexible discrimination proved to be a better fit for prediction on data in comparison to other methods. When the relations among variables are complex, one can use flexible discrimination instead of multinomial logistic regression and neural network to predict the nominal response variables with several levels in order to gain more accurate predictions.« less

  14. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  15. HIV testing among MSM in Bogotá, Colombia: The role of structural and individual characteristics

    PubMed Central

    Reisen, Carol A.; Zea, Maria Cecilia; Bianchi, Fernanda T.; Poppen, Paul J.; del Río González, Ana Maria; Romero, Rodrigo A. Aguayo; Pérez, Carolin

    2014-01-01

    This study used mixed methods to examine characteristics related to HIV testing among men who have sex with men (MSM) in Bogotá, Colombia. A sample of 890 MSM responded to a computerized quantitative survey. Follow-up qualitative data included 20 in-depth interviews with MSM and 12 key informant interviews. Hierarchical logistic set regression indicated that sequential sets of variables reflecting demographic characteristics, insurance coverage, risk appraisal, and social context each added to the explanation of HIV testing. Follow-up logistic regression showed that individuals who were older, had higher income, paid for their own insurance, had had a sexually transmitted infection, knew more people living with HIV, and had greater social support were more likely to have been tested for HIV at least once. Qualitative findings provided details of personal and structural barriers to testing, as well as interrelationships among these factors. Recommendations to increase HIV testing among Colombian MSM are offered. PMID:25068180

  16. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  17. The Association between Unintended Pregnancy and Violence among Incarcerated Men and Women

    PubMed Central

    Kelly, Patricia J.; Ramaswamy, Megha

    2018-01-01

    Background In this article, we examine the association between unintended pregnancy and individual and community level indicators of violence in a population of both women and men in the criminal justice system. Methods We conducted a cross-sectional survey with 290 women and 306 men in 3 correctional facilities in Kansas City and used logistic regression models to assess relationships between key independent variables and unintended pregnancy. Findings In gender-specific logistic regression models, women with a history of intimate partner violence were 2.02 times more likely (CI 1.15, 3.56), and those with a history of sexual abuse before age 16 were 1.23 times more likely (CI 1.02–1.49) to have experienced unintended pregnancy. Men or their family members who were victimized by neighborhood violence were 1.82 times more likely to have experienced unintended pregnancy (CI 1.01, 3.28). Discussion These findings suggest the need for gender and community-specific interventions that address the relationship between violence and unintended pregnancy. PMID:23136860

  18. Methods for estimating drought streamflow probabilities for Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  19. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi

    2013-11-01

    In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.

  20. Filtering data from the collaborative initial glaucoma treatment study for improved identification of glaucoma progression.

    PubMed

    Schell, Greggory J; Lavieri, Mariel S; Stein, Joshua D; Musch, David C

    2013-12-21

    Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness without proper clinical management. The tests used to assess disease progression are susceptible to process and measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in the data and improve significant disease progression identification. Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic regression models via generalized estimating equations (GEE) for calculating the probability of experiencing significant OAG progression: one model based on the raw measurements from CIGTS and another model based on the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under the ROC curve (AUC) estimates are calculated using cross-fold validation. The logistic regression model developed using Kalman filter estimates as data input achieves higher sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more accurately classify patients and instances as experiencing significant OAG progression. A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which improved the accuracy of a logistic regression classification model compared to a model using raw measurements as input. This methodology accounts for process and measurement noise to enable improved discrimination between progression and nonprogression in chronic diseases.

  1. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings.

    PubMed

    Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay

    2009-06-03

    Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.

  2. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Duman, T. Y.; Can, T.; Gokceoglu, C.; Nefeslioglu, H. A.; Sonmez, H.

    2006-11-01

    As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.

  3. Comparison of Survival Models for Analyzing Prognostic Factors in Gastric Cancer Patients

    PubMed

    Habibi, Danial; Rafiei, Mohammad; Chehrei, Ali; Shayan, Zahra; Tafaqodi, Soheil

    2018-03-27

    Objective: There are a number of models for determining risk factors for survival of patients with gastric cancer. This study was conducted to select the model showing the best fit with available data. Methods: Cox regression and parametric models (Exponential, Weibull, Gompertz, Log normal, Log logistic and Generalized Gamma) were utilized in unadjusted and adjusted forms to detect factors influencing mortality of patients. Comparisons were made with Akaike Information Criterion (AIC) by using STATA 13 and R 3.1.3 softwares. Results: The results of this study indicated that all parametric models outperform the Cox regression model. The Log normal, Log logistic and Generalized Gamma provided the best performance in terms of AIC values (179.2, 179.4 and 181.1, respectively). On unadjusted analysis, the results of the Cox regression and parametric models indicated stage, grade, largest diameter of metastatic nest, largest diameter of LM, number of involved lymph nodes and the largest ratio of metastatic nests to lymph nodes, to be variables influencing the survival of patients with gastric cancer. On adjusted analysis, according to the best model (log normal), grade was found as the significant variable. Conclusion: The results suggested that all parametric models outperform the Cox model. The log normal model provides the best fit and is a good substitute for Cox regression. Creative Commons Attribution License

  4. [Effect of different anesthetic methods on postoperative outcomes in elderly patients undergoing hip fracture surgery].

    PubMed

    Wei, B; Zhang, H; Xu, M; Li, M; Wang, J; Zhang, L P; Guo, X Y; Zhao, Y M; Zhou, F

    2017-12-18

    To investigate the effect of general or regional anesthesia on postoperative cardiopulmonary complications and inpatient mortality after hip fracture surgery in elderly patients. A retrospective analysis was conducted according to the medical records of 572 elderly patients with hip fractures admitted to our hospital from January 1, 2005 to December 31, 2014. The age, gender, preoperative comorbidities, length of preoperative bedridden time, mechanism of injury, surgical types, anesthetic methods, major postoperative complications and inpatient mortality were recorded. Multivariate Logistic regression analysis was applied to analyze the impact of different anesthetic methods on inpatient mortality in these patients. Of the 572 patients, 392 (68.5%) received regional anesthesia. Inpatient death occurred in 8 (8/572, mortality: 1.4%), including 5 cases of RA group (5/392, mortality: 1.3%) and 3 cases of GA group (3/180, mortality: 1.7%). There was no statistically significant difference between the two groups in inpatient mortality (P>0.05). Multiple Logistic regression analysis showed that gender (odds ratio: 0.18, 95% CI: 0.03-1.05, P=0.057), age (odds ratio: 1.22, 95% CI: 1.07-1.38, P=0.002), preoperative pulmonary comorbidities (odds ratio: 12.09, 95% CI: 2.28-64.12, P=0.003) and surgical types (odds ratio: 9.36, 95% CI: 1.34-64.26, P=0.024) were risk factors for inpatient mortality. Postoperative cardiovascular complications occurred in 36 patients (36/572, morbidity: 6.3%), with 19 patients in RA group (19/392, morbidity: 4.8%),and 17 patients in GA group (17/180, morbidity: 9.4%). Multiple Logistic regression analysis showed that age (odds ratio: 1.13, 95% CI: 1.07-1.19, P<0.001), hypertension (odds ratio: 2.72, 95% CI: 1.24-5.96, P=0.012) and preoperative cerebral comorbidities (odds ratio: 2.11, 95% CI: 0.99-4.52, P=0.054) were risk factors for postoperative cardiovascular complications. Postoperative pulmonary complications occurred in 56 patients (56/572, morbidity: 9.8%), with 19 patients in RA group (19/392, morbidity: 4.8%), and 37 patients in GA group (37/180, morbidity: 20.6%). Multiple Logistic regression analysis showed that age (odds ratio: 1.13, 95% CI: 1.07-1.19, P<0.001), preoperative pulmonary comorbidities (odds ratio: 2.89, 95% CI: 1.28-7.05, P=0.020), length of preoperative bedridden time (odds ratio: 1.11, 95% CI: 1.04-1.18, P=0.003) and anesthetic methods (odds ratio: 5.86, 95% CI: 2.98-11.53, P<0.001) were risk factors for postoperative pulmonary complications. General anesthesia may not affect the inpatient mortality after hip fracture surgery in elderly patients. Regional anesthesia is associated with a lower risk of pulmonary complications after surgical procedure compared with general anesthesia.

  5. Predictors of condom use and refusal among the population of Free State province in South Africa

    PubMed Central

    2012-01-01

    Background This study investigated the extent and predictors of condom use and condom refusal in the Free State province in South Africa. Methods Through a household survey conducted in the Free Sate province of South Africa, 5,837 adults were interviewed. Univariate and multivariate survey logistic regressions and classification trees (CT) were used for analysing two response variables ‘ever used condom’ and ‘ever refused condom’. Results Eighty-three per cent of the respondents had ever used condoms, of which 38% always used them; 61% used them during the last sexual intercourse and 9% had ever refused to use them. The univariate logistic regression models and CT analysis indicated that a strong predictor of condom use was its perceived need. In the CT analysis, this variable was followed in importance by ‘knowledge of correct use of condom’, condom availability, young age, being single and higher education. ‘Perceived need’ for condoms did not remain significant in the multivariate analysis after controlling for other variables. The strongest predictor of condom refusal, as shown by the CT, was shame associated with condoms followed by the presence of sexual risk behaviour, knowing one’s HIV status, older age and lacking knowledge of condoms (i.e., ability to prevent sexually transmitted diseases and pregnancy, availability, correct and consistent use and existence of female condoms). In the multivariate logistic regression, age was not significant for condom refusal while affordability and perceived need were additional significant variables. Conclusions The use of complementary modelling techniques such as CT in addition to logistic regressions adds to a better understanding of condom use and refusal. Further improvement in correct and consistent use of condoms will require targeted interventions. In addition to existing social marketing campaigns, tailored approaches should focus on establishing the perceived need for condom-use and improving skills for correct use. They should also incorporate interventions to reduce the shame associated with condoms and individual counselling of those likely to refuse condoms. PMID:22639964

  6. New robust statistical procedures for the polytomous logistic regression models.

    PubMed

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  7. EXpectation Propagation LOgistic REgRession (EXPLORER): distributed privacy-preserving online model learning.

    PubMed

    Wang, Shuang; Jiang, Xiaoqian; Wu, Yuan; Cui, Lijuan; Cheng, Samuel; Ohno-Machado, Lucila

    2013-06-01

    We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature selection, etc.) as the traditional frequentist logistic regression model, but provides more flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than having to retrain the entire data set when new observations are recorded. The proposed EXPLORER supports asynchronized communication, which relieves the participants from coordinating with one another, and prevents service breakdown from the absence of participants or interrupted communications. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Cytopathologic differential diagnosis of low-grade urothelial carcinoma and reactive urothelial proliferation in bladder washings: a logistic regression analysis.

    PubMed

    Cakir, Ebru; Kucuk, Ulku; Pala, Emel Ebru; Sezer, Ozlem; Ekin, Rahmi Gokhan; Cakmak, Ozgur

    2017-05-01

    Conventional cytomorphologic assessment is the first step to establish an accurate diagnosis in urinary cytology. In cytologic preparations, the separation of low-grade urothelial carcinoma (LGUC) from reactive urothelial proliferation (RUP) can be exceedingly difficult. The bladder washing cytologies of 32 LGUC and 29 RUP were reviewed. The cytologic slides were examined for the presence or absence of the 28 cytologic features. The cytologic criteria showing statistical significance in LGUC were increased numbers of monotonous single (non-umbrella) cells, three-dimensional cellular papillary clusters without fibrovascular cores, irregular bordered clusters, atypical single cells, irregular nuclear overlap, cytoplasmic homogeneity, increased N/C ratio, pleomorphism, nuclear border irregularity, nuclear eccentricity, elongated nuclei, and hyperchromasia (p ˂ 0.05), and the cytologic criteria showing statistical significance in RUP were inflammatory background, mixture of small and large urothelial cells, loose monolayer aggregates, and vacuolated cytoplasm (p ˂ 0.05). When these variables were subjected to a stepwise logistic regression analysis, four features were selected to distinguish LGUC from RUP: increased numbers of monotonous single (non-umbrella) cells, increased nuclear cytoplasmic ratio, hyperchromasia, and presence of small and large urothelial cells (p = 0.0001). By this logistic model of the 32 cases with proven LGUC, the stepwise logistic regression analysis correctly predicted 31 (96.9%) patients with this diagnosis, and of the 29 patients with RUP, the logistic model correctly predicted 26 (89.7%) patients as having this disease. There are several cytologic features to separate LGUC from RUP. Stepwise logistic regression analysis is a valuable tool for determining the most useful cytologic criteria to distinguish these entities. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. [Econometric and ethical validation of regression logistics. Reducing of the number of patients in the evaluation of mortality].

    PubMed

    Castiel, D; Herve, C

    1992-01-01

    In general, a large number of patients is needed to conclude whether the results of a therapeutic strategy are significant or not. One can lower this number with a logit. The method has been proposed in an article published recently (Cost-utility analysis of early thrombolytic therapy, Pharmaco Economics, 1992). The present article is an essay aimed at validating the method, both from the econometric and ethical points of view.

  10. Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.

    PubMed

    Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P

    2010-01-01

    In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.

  11. Modelling the spatial distribution of Fasciola hepatica in bovines using decision tree, logistic regression and GIS query approaches for Brazil.

    PubMed

    Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I

    2017-11-01

    Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.

  12. Dynamic Network Logistic Regression: A Logistic Choice Analysis of Inter- and Intra-Group Blog Citation Dynamics in the 2004 US Presidential Election

    PubMed Central

    2013-01-01

    Methods for analysis of network dynamics have seen great progress in the past decade. This article shows how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data context. We also provide practical heuristics for model building and assessment. We illustrate the power of these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential election cycle. This is a particularly interesting case because it marks the debut of Internet-based media such as blogs and social networking web sites as institutionally recognized features of the American political landscape. Using a longitudinal sample of all Democratic National Convention/Republican National Convention–designated blog citation networks, we are able to test the influence of various strategic, institutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political events on the propensity of blogs to cite one another over time. Using a combination of deviance-based model selection criteria and simulation-based model adequacy tests, we identify the combination of processes that best characterizes the choice behavior of the contending blogs. PMID:24143060

  13. Item Response Theory Modeling of the Philadelphia Naming Test.

    PubMed

    Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D

    2015-06-01

    In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating explanatory variables to item difficulty. This article describes the statistical model underlying the computer adaptive PNT presented in a companion article (Hula, Kellough, & Fergadiotis, 2015). Using archival data, we evaluated the fit of the PNT to 1- and 2-parameter logistic models and examined the precision of the resulting parameter estimates. We regressed the item difficulty estimates on three predictor variables: word length, age of acquisition, and contextual diversity. The 2-parameter logistic model demonstrated marginally better fit, but the fit of the 1-parameter logistic model was adequate. Precision was excellent for both person ability and item difficulty estimates. Word length, age of acquisition, and contextual diversity all independently contributed to variance in item difficulty. Item-response-theory methods can be productively used to analyze and quantify anomia severity in aphasia. Regression of item difficulty on lexical variables supported the validity of the PNT and interpretation of anomia severity scores in the context of current word-finding models.

  14. Who Works Among Older Black and White, Well-Functioning Adults in the Health, Aging, and Body Composition Study?

    PubMed Central

    Rooks, Ronica N.; Simonsick, Eleanor M.; Schulz, Richard; Rubin, Susan; Harris, Tamara

    2017-01-01

    Objective: The aim of this study is to examine social, economic, and health factors related to paid work in well-functioning older adults and if and how these factors vary by race. Method: We used sex-stratified logistic and multinomial logistic regression to examine cross-sectional data in the Health, Aging, and Body Composition cohort study. The sample included 3,075 community-dwelling Black (42%) and White adults aged 70 to 79 at baseline. Results: Multinomial logistic regression analyses show Black men were more likely to work full-time, and Black women were more likely to work part-time. Men with ≥US$50,000 family income were more likely to work full-time. Men with better physical functioning were more likely to work full- and part-time. Women with ≥US$50,000 family income and fewer chronic diseases were more likely to work full-time. Women who were overweight and had fewer chronic diseases were more likely to work part-time. Discussion: Results suggest that well-functioning, older Black adults were more likely to work than their White counterparts, and working relates to better health and higher income, providing support for a productive or successful aging perspective. PMID:28894767

  15. Gene-environment interaction between adiponectin gene polymorphisms and environmental factors on the risk of diabetic retinopathy.

    PubMed

    Li, Yuan; Wu, Qun Hong; Jiao, Ming Li; Fan, Xiao Hong; Hu, Quan; Hao, Yan Hua; Liu, Ruo Hong; Zhang, Wei; Cui, Yu; Han, Li Yuan

    2015-01-01

    To evaluate whether the adiponectin gene is associated with diabetic retinopathy (DR) risk and interaction with environmental factors modifies the DR risk, and to investigate the relationship between serum adiponectin levels and DR. Four adiponectin polymorphisms were evaluated in 372 DR cases and 145 controls. Differences in environmental factors between cases and controls were evaluated by unconditional logistic regression analysis. The model-free multifactor dimensionality reduction method and traditional multiple regression models were applied to explore interactions between the polymorphisms and environmental factors. Using the Bonferroni method, we found no significant associations between four adiponectin polymorphisms and DR susceptibility. Multivariate logistic regression found that physical activity played a protective role in the progress of DR, whereas family history of diabetes (odds ratio 1.75) and insulin therapy (odds ratio 1.78) were associated with an increased risk for DR. The interaction between the C-11377 G (rs266729) polymorphism and insulin therapy might be associated with DR risk. Family history of diabetes combined with insulin therapy also increased the risk of DR. No adiponectin gene polymorphisms influenced the serum adiponectin levels. Serum adiponectin levels did not differ between the DR group and non-DR group. No significant association was identified between four adiponectin polymorphisms and DR susceptibility after stringent Bonferroni correction. The interaction between C-11377G (rs266729) polymorphism and insulin therapy, as well as the interaction between family history of diabetes and insulin therapy, might be associated with DR susceptibility.

  16. Explicit criteria for prioritization of cataract surgery

    PubMed Central

    Ma Quintana, José; Escobar, Antonio; Bilbao, Amaia

    2006-01-01

    Background Consensus techniques have been used previously to create explicit criteria to prioritize cataract extraction; however, the appropriateness of the intervention was not included explicitly in previous studies. We developed a prioritization tool for cataract extraction according to the RAND method. Methods Criteria were developed using a modified Delphi panel judgment process. A panel of 11 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the effect of all variables on the final panel score using general linear and logistic regression models. Priority scoring systems were developed by means of optimal scaling and general linear models. The explicit criteria developed were summarized by means of regression tree analysis. Results Eight variables were considered to create the indications. Of the 310 indications that the panel evaluated, 22.6% were considered high priority, 52.3% intermediate priority, and 25.2% low priority. Agreement was reached for 31.9% of the indications and disagreement for 0.3%. Logistic regression and general linear models showed that the preoperative visual acuity of the cataractous eye, visual function, and anticipated visual acuity postoperatively were the most influential variables. Alternative and simple scoring systems were obtained by optimal scaling and general linear models where the previous variables were also the most important. The decision tree also shows the importance of the previous variables and the appropriateness of the intervention. Conclusion Our results showed acceptable validity as an evaluation and management tool for prioritizing cataract extraction. It also provides easy algorithms for use in clinical practice. PMID:16512893

  17. Development of a Bayesian model to estimate health care outcomes in the severely wounded

    PubMed Central

    Stojadinovic, Alexander; Eberhardt, John; Brown, Trevor S; Hawksworth, Jason S; Gage, Frederick; Tadaki, Douglas K; Forsberg, Jonathan A; Davis, Thomas A; Potter, Benjamin K; Dunne, James R; Elster, E A

    2010-01-01

    Background: Graphical probabilistic models have the ability to provide insights as to how clinical factors are conditionally related. These models can be used to help us understand factors influencing health care outcomes and resource utilization, and to estimate morbidity and clinical outcomes in trauma patient populations. Study design: Thirty-two combat casualties with severe extremity injuries enrolled in a prospective observational study were analyzed using step-wise machine-learned Bayesian belief network (BBN) and step-wise logistic regression (LR). Models were evaluated using 10-fold cross-validation to calculate area-under-the-curve (AUC) from receiver operating characteristics (ROC) curves. Results: Our BBN showed important associations between various factors in our data set that could not be developed using standard regression methods. Cross-validated ROC curve analysis showed that our BBN model was a robust representation of our data domain and that LR models trained on these findings were also robust: hospital-acquired infection (AUC: LR, 0.81; BBN, 0.79), intensive care unit length of stay (AUC: LR, 0.97; BBN, 0.81), and wound healing (AUC: LR, 0.91; BBN, 0.72) showed strong AUC. Conclusions: A BBN model can effectively represent clinical outcomes and biomarkers in patients hospitalized after severe wounding, and is confirmed by 10-fold cross-validation and further confirmed through logistic regression modeling. The method warrants further development and independent validation in other, more diverse patient populations. PMID:21197361

  18. Reconstruction of the Foot and Ankle Using Pedicled or Free Flaps: Perioperative Flap Survival Analysis

    PubMed Central

    Li, Xiucun; Cui, Jianli; Maharjan, Suraj; Lu, Laijin; Gong, Xu

    2016-01-01

    Objective The purpose of this study is to determine the correlation between non-technical risk factors and the perioperative flap survival rate and to evaluate the choice of skin flap for the reconstruction of foot and ankle. Methods This was a clinical retrospective study. Nine variables were identified. The Kaplan-Meier method coupled with a log-rank test and a Cox regression model was used to predict the risk factors that influence the perioperative flap survival rate. The relationship between postoperative wound infection and risk factors was also analyzed using a logistic regression model. Results The overall flap survival rate was 85.42%. The necrosis rates of free flaps and pedicled flaps were 5.26% and 20.69%, respectively. According to the Cox regression model, flap type (hazard ratio [HR] = 2.592; 95% confidence interval [CI] (1.606, 4.184); P < 0.001) and postoperative wound infection (HR = 0.266; 95% CI (0.134, 0.529); P < 0.001) were found to be statistically significant risk factors associated with flap necrosis. Based on the logistic regression model, preoperative wound bed inflammation (odds ratio [OR] = 11.371,95% CI (3.117, 41.478), P < 0.001) was a statistically significant risk factor for postoperative wound infection. Conclusion Flap type and postoperative wound infection were both independent risk factors influencing the flap survival rate in the foot and ankle. However, postoperative wound infection was a risk factor for the pedicled flap but not for the free flap. Microvascular anastomosis is a major cause of free flap necrosis. To reconstruct complex or wide soft tissue defects of the foot or ankle, free flaps are safer and more reliable than pedicled flaps and should thus be the primary choice. PMID:27930679

  19. Marital status and survival of patients with oral cavity squamous cell carcinoma: a population-based study

    PubMed Central

    Shi, Xiao; Zhang, Ting-ting; Hu, Wei-ping; Ji, Qing-hai

    2017-01-01

    Background The relationship between marital status and oral cavity squamous cell carcinoma (OCSCC) survival has not been explored. The objective of our study was to evaluate the impact of marital status on OCSCC survival and investigate the potential mechanisms. Results Married patients had better 5-year cancer-specific survival (CSS) (66.7% vs 54.9%) and 5-year overall survival (OS) (56.0% vs 41.1%). In multivariate Cox regression models, unmarried patients also showed higher mortality risk for both CSS (Hazard Ratio [HR]: 1.260, 95% confidence interval (CI): 1.187–1.339, P < 0.001) and OS (HR: 1.328, 95% CI: 1.266–1.392, P < 0.001). Multivariate logistic regression showed married patients were more likely to be diagnosed at earlier stage (P < 0.001) and receive surgery (P < 0.001). Married patients still demonstrated better prognosis in the 1:1 matched group analysis (CSS: 62.9% vs 60.8%, OS: 52.3% vs 46.5%). Materials and Methods 11022 eligible OCSCC patients were identified from Surveillance, Epidemiology, and End Results (SEER) database, including 5902 married and 5120 unmarried individuals. Kaplan-Meier analysis, Log-rank test and Cox proportional hazards regression model were used to analyze survival and mortality risk. Influence of marital status on stage, age at diagnosis and selection of treatment was determined by binomial and multinomial logistic regression. Propensity score matching method was adopted to perform a 1:1 matched cohort. Conclusions Marriage has an independently protective effect on OCSCC survival. Earlier diagnosis and more sufficient treatment are possible explanations. Besides, even after 1:1 matching, survival advantage of married group still exists, indicating that spousal support from other aspects may also play an important role. PMID:28415710

  20. Science of Test Research Consortium: Year Two Final Report

    DTIC Science & Technology

    2012-10-02

    July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7

Top