Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul
2015-11-04
Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley
2007-01-01
Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.
Locally Dependent Linear Logistic Test Model with Person Covariates
ERIC Educational Resources Information Center
Ip, Edward H.; Smits, Dirk J. M.; De Boeck, Paul
2009-01-01
The article proposes a family of item-response models that allow the separate and independent specification of three orthogonal components: item attribute, person covariate, and local item dependence. Special interest lies in extending the linear logistic test model, which is commonly used to measure item attributes, to tests with embedded item…
Linear Logistic Test Modeling with R
ERIC Educational Resources Information Center
Baghaei, Purya; Kubinger, Klaus D.
2015-01-01
The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
ERIC Educational Resources Information Center
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Chan, Siew Foong; Deeks, Jonathan J; Macaskill, Petra; Irwig, Les
2008-01-01
To compare three predictive models based on logistic regression to estimate adjusted likelihood ratios allowing for interdependency between diagnostic variables (tests). This study was a review of the theoretical basis, assumptions, and limitations of published models; and a statistical extension of methods and application to a case study of the diagnosis of obstructive airways disease based on history and clinical examination. Albert's method includes an offset term to estimate an adjusted likelihood ratio for combinations of tests. Spiegelhalter and Knill-Jones method uses the unadjusted likelihood ratio for each test as a predictor and computes shrinkage factors to allow for interdependence. Knottnerus' method differs from the other methods because it requires sequencing of tests, which limits its application to situations where there are few tests and substantial data. Although parameter estimates differed between the models, predicted "posttest" probabilities were generally similar. Construction of predictive models using logistic regression is preferred to the independence Bayes' approach when it is important to adjust for dependency of tests errors. Methods to estimate adjusted likelihood ratios from predictive models should be considered in preference to a standard logistic regression model to facilitate ease of interpretation and application. Albert's method provides the most straightforward approach.
A Comparison of the One-and Three-Parameter Logistic Models on Measures of Test Efficiency.
ERIC Educational Resources Information Center
Benson, Jeri
Two methods of item selection were used to select sets of 40 items from a 50-item verbal analogies test, and the resulting item sets were compared for relative efficiency. The BICAL program was used to select the 40 items having the best mean square fit to the one parameter logistic (Rasch) model. The LOGIST program was used to select the 40 items…
Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E
2013-06-01
Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.
An Application of a Multidimensional Extension of the Two-Parameter Logistic Latent Trait Model.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A latent trait model is described that is appropriate for use with tests that measure more than one dimension, and its application to both real and simulated test data is demonstrated. Procedures for estimating the parameters of the model are presented. The research objectives are to determine whether the two-parameter logistic model more…
The use of the logistic model in space motion sickness prediction
NASA Technical Reports Server (NTRS)
Lin, Karl K.; Reschke, Millard F.
1987-01-01
The one-equation and the two-equation logistic models were used to predict subjects' susceptibility to motion sickness in KC-135 parabolic flights using data from other ground-based motion sickness tests. The results show that the logistic models correctly predicted substantially more cases (an average of 13 percent) in the data subset used for model building. Overall, the logistic models ranged from 53 to 65 percent predictions of the three endpoint parameters, whereas the Bayes linear discriminant procedure ranged from 48 to 65 percent correct for the cross validation sample.
Satellite rainfall retrieval by logistic regression
NASA Technical Reports Server (NTRS)
Chiu, Long S.
1986-01-01
The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.
Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T
2016-02-01
The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.
ERIC Educational Resources Information Center
MacDonald, George T.
2014-01-01
A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…
Model building strategy for logistic regression: purposeful selection.
Zhang, Zhongheng
2016-03-01
Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley P.
2004-01-01
Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.
NASA Astrophysics Data System (ADS)
Roşca, S.; Bilaşco, Ş.; Petrea, D.; Fodorean, I.; Vescan, I.; Filip, S.; Măguţ, F.-L.
2015-11-01
The existence of a large number of GIS models for the identification of landslide occurrence probability makes difficult the selection of a specific one. The present study focuses on the application of two quantitative models: the logistic and the BSA models. The comparative analysis of the results aims at identifying the most suitable model. The territory corresponding to the Niraj Mic Basin (87 km2) is an area characterised by a wide variety of the landforms with their morphometric, morphographical and geological characteristics as well as by a high complexity of the land use types where active landslides exist. This is the reason why it represents the test area for applying the two models and for the comparison of the results. The large complexity of input variables is illustrated by 16 factors which were represented as 72 dummy variables, analysed on the basis of their importance within the model structures. The testing of the statistical significance corresponding to each variable reduced the number of dummy variables to 12 which were considered significant for the test area within the logistic model, whereas for the BSA model all the variables were employed. The predictability degree of the models was tested through the identification of the area under the ROC curve which indicated a good accuracy (AUROC = 0.86 for the testing area) and predictability of the logistic model (AUROC = 0.63 for the validation area).
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Gillespie
2000-07-27
This report describes the tests performed to validate the CRWMS ''Analysis and Logistics Visually Interactive'' Model (CALVIN) Version 3.0 (V3.0) computer code (STN: 10074-3.0-00). To validate the code, a series of test cases was developed in the CALVIN V3.0 Validation Test Plan (CRWMS M&O 1999a) that exercises the principal calculation models and options of CALVIN V3.0. Twenty-five test cases were developed: 18 logistics test cases and 7 cost test cases. These cases test the features of CALVIN in a sequential manner, so that the validation of each test case is used to demonstrate the accuracy of the input to subsequentmore » calculations. Where necessary, the test cases utilize reduced-size data tables to make the hand calculations used to verify the results more tractable, while still adequately testing the code's capabilities. Acceptance criteria, were established for the logistics and cost test cases in the Validation Test Plan (CRWMS M&O 1999a). The Logistics test cases were developed to test the following CALVIN calculation models: Spent nuclear fuel (SNF) and reactivity calculations; Options for altering reactor life; Adjustment of commercial SNF (CSNF) acceptance rates for fiscal year calculations and mid-year acceptance start; Fuel selection, transportation cask loading, and shipping to the Monitored Geologic Repository (MGR); Transportation cask shipping to and storage at an Interim Storage Facility (ISF); Reactor pool allocation options; and Disposal options at the MGR. Two types of cost test cases were developed: cases to validate the detailed transportation costs, and cases to validate the costs associated with the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) and Regional Servicing Contractors (RSCs). For each test case, values calculated using Microsoft Excel 97 worksheets were compared to CALVIN V3.0 scenarios with the same input data and assumptions. All of the test case results compare with the CALVIN V3.0 results within the bounds of the acceptance criteria. Therefore, it is concluded that the CALVIN V3.0 calculation models and options tested in this report are validated.« less
ERIC Educational Resources Information Center
Wang, Wen-Chung; Huang, Sheng-Yun
2011-01-01
The one-parameter logistic model with ability-based guessing (1PL-AG) has been recently developed to account for effect of ability on guessing behavior in multiple-choice items. In this study, the authors developed algorithms for computerized classification testing under the 1PL-AG and conducted a series of simulations to evaluate their…
Lacagnina, Valerio; Leto-Barone, Maria S; La Piana, Simona; Seidita, Aurelio; Pingitore, Giuseppe; Di Lorenzo, Gabriele
2014-01-01
This article uses the logistic regression model for diagnostic decision making in patients with chronic nasal symptoms. We studied the ability of the logistic regression model, obtained by the evaluation of a database, to detect patients with positive allergy skin-prick test (SPT) and patients with negative SPT. The model developed was validated using the data set obtained from another medical institution. The analysis was performed using a database obtained from a questionnaire administered to the patients with nasal symptoms containing personal data, clinical data, and results of allergy testing (SPT). All variables found to be significantly different between patients with positive and negative SPT (p < 0.05) were selected for the logistic regression models and were analyzed with backward stepwise logistic regression, evaluated with area under the curve of the receiver operating characteristic curve. A second set of patients from another institution was used to prove the model. The accuracy of the model in identifying, over the second set, both patients whose SPT will be positive and negative was high. The model detected 96% of patients with nasal symptoms and positive SPT and classified 94% of those with negative SPT. This study is preliminary to the creation of a software that could help the primary care doctors in a diagnostic decision making process (need of allergy testing) in patients complaining of chronic nasal symptoms.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A two-stage study was conducted to compare the ability estimates yielded by tailored testing procedures based on the one-parameter logistic (1PL) and three-parameter logistic (3PL) models. The first stage of the study employed real data, while the second stage employed simulated data. In the first stage, response data for 3,000 examinees were…
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
Predicting space telerobotic operator training performance from human spatial ability assessment
NASA Astrophysics Data System (ADS)
Liu, Andrew M.; Oman, Charles M.; Galvan, Raquel; Natapoff, Alan
2013-11-01
Our goal was to determine whether existing tests of spatial ability can predict an astronaut's qualification test performance after robotic training. Because training astronauts to be qualified robotics operators is so long and expensive, NASA is interested in tools that can predict robotics performance before training begins. Currently, the Astronaut Office does not have a validated tool to predict robotics ability as part of its astronaut selection or training process. Commonly used tests of human spatial ability may provide such a tool to predict robotics ability. We tested the spatial ability of 50 active astronauts who had completed at least one robotics training course, then used logistic regression models to analyze the correlation between spatial ability test scores and the astronauts' performance in their evaluation test at the end of the training course. The fit of the logistic function to our data is statistically significant for several spatial tests. However, the prediction performance of the logistic model depends on the criterion threshold assumed. To clarify the critical selection issues, we show how the probability of correct classification vs. misclassification varies as a function of the mental rotation test criterion level. Since the costs of misclassification are low, the logistic models of spatial ability and robotic performance are reliable enough only to be used to customize regular and remedial training. We suggest several changes in tracking performance throughout robotics training that could improve the range and reliability of predictive models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less
NASA Astrophysics Data System (ADS)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam
2015-10-01
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.
ERIC Educational Resources Information Center
Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan
2016-01-01
This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming…
Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.
2008-01-01
Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934
Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald
2006-11-01
We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.
ERIC Educational Resources Information Center
Reckase, Mark D.
Latent trait model calibration procedures were used on data obtained from a group testing program. The one-parameter model of Wright and Panchapakesan and the three-parameter logistic model of Wingersky, Wood, and Lord were selected for comparison. These models and their corresponding estimation procedures were compared, using actual and simulated…
Transport spatial model for the definition of green routes for city logistics centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs
This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less
Evaluation of the Logistic Model for GAC Performance in Water Treatment
Full-scale field measurement and rapid small-scale column test data from the Greater Cincinnati (Ohio) Water Works (GCWW) were used to calibrate and investigate the application of the logistic model for simulating breakthrough of total organic carbon (TOC) in granular activated c...
Sun, Qiang
2017-10-01
With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.
Bond, H S; Sullivan, S G; Cowling, B J
2016-06-01
Influenza vaccination is the most practical means available for preventing influenza virus infection and is widely used in many countries. Because vaccine components and circulating strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The test-negative design is frequently used to estimate VE. In this design, patients meeting the same clinical case definition are recruited and tested for influenza; those who test positive are the cases and those who test negative form the comparison group. When determining VE in these studies, the typical approach has been to use logistic regression, adjusting for potential confounders. Because vaccine coverage and influenza incidence change throughout the season, time is included among these confounders. While most studies use unconditional logistic regression, adjusting for time, an alternative approach is to use conditional logistic regression, matching on time. Here, we used simulation data to examine the potential for both regression approaches to permit accurate and robust estimates of VE. In situations where vaccine coverage changed during the influenza season, the conditional model and unconditional models adjusting for categorical week and using a spline function for week provided more accurate estimates. We illustrated the two approaches on data from a test-negative study of influenza VE against hospitalization in children in Hong Kong which resulted in the conditional logistic regression model providing the best fit to the data.
ERIC Educational Resources Information Center
Fischer, Gerhard H.
1987-01-01
A natural parameterization and formalization of the problem of measuring change in dichotomous data is developed. Mathematically-exact definitions of specific objectivity are presented, and the basic structures of the linear logistic test model and the linear logistic model with relaxed assumptions are clarified. (SLD)
Logistic Achievement Test Scaling and Equating with Fixed versus Estimated Lower Asymptotes.
ERIC Educational Resources Information Center
Phillips, S. E.
This study compared the lower asymptotes estimated by the maximum likelihood procedures of the LOGIST computer program with those obtained via application of the Norton methodology. The study also compared the equating results from the three-parameter logistic model with those obtained from the equipercentile, Rasch, and conditional…
ERIC Educational Resources Information Center
Jones, Douglas H.
The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…
ERIC Educational Resources Information Center
Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza
2014-01-01
This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…
Item Vector Plots for the Multidimensional Three-Parameter Logistic Model
ERIC Educational Resources Information Center
Bryant, Damon; Davis, Larry
2011-01-01
This brief technical note describes how to construct item vector plots for dichotomously scored items fitting the multidimensional three-parameter logistic model (M3PLM). As multidimensional item response theory (MIRT) shows promise of being a very useful framework in the test development life cycle, graphical tools that facilitate understanding…
Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li
2014-01-01
Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158
Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo
2007-11-22
Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.
The Utility of IRT in Small-Sample Testing Applications.
ERIC Educational Resources Information Center
Sireci, Stephen G.
The utility of modified item response theory (IRT) models in small sample testing applications was studied. The modified IRT models were modifications of the one- and two-parameter logistic models. One-, two-, and three-parameter models were also studied. Test data were from 4 years of a national certification examination for persons desiring…
Use of Robust z in Detecting Unstable Items in Item Response Theory Models
ERIC Educational Resources Information Center
Huynh, Huynh; Meyer, Patrick
2010-01-01
The first part of this paper describes the use of the robust z[subscript R] statistic to link test forms using the Rasch (or one-parameter logistic) model. The procedure is then extended to the two-parameter and three-parameter logistic and two-parameter partial credit (2PPC) models. A real set of data was used to illustrate the extension. The…
A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.
Bersabé, Rosa; Rivas, Teresa
2010-05-01
The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
Carbon emissions, logistics volume and GDP in China: empirical analysis based on panel data model.
Guo, Xiaopeng; Ren, Dongfang; Shi, Jiaxing
2016-12-01
This paper studies the relationship among carbon emissions, GDP, and logistics by using a panel data model and a combination of statistics and econometrics theory. The model is based on the historical data of 10 typical provinces and cities in China during 2005-2014. The model in this paper adds the variability of logistics on the basis of previous studies, and this variable is replaced by the freight turnover of the provinces. Carbon emissions are calculated by using the annual consumption of coal, oil, and natural gas. GDP is the gross domestic product. The results showed that the amount of logistics and GDP have a contribution to carbon emissions and the long-term relationships are different between different cities in China, mainly influenced by the difference among development mode, economic structure, and level of logistic development. After the testing of panel model setting, this paper established a variable coefficient model of the panel. The influence of GDP and logistics on carbon emissions is obtained according to the influence factors among the variables. The paper concludes with main findings and provides recommendations toward rational planning of urban sustainable development and environmental protection for China.
Preserving Institutional Privacy in Distributed binary Logistic Regression.
Wu, Yuan; Jiang, Xiaoqian; Ohno-Machado, Lucila
2012-01-01
Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.
Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong
2016-01-01
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471
Length bias correction in gene ontology enrichment analysis using logistic regression.
Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H
2012-01-01
When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.
An Evaluation of Three Approximate Item Response Theory Models for Equating Test Scores.
ERIC Educational Resources Information Center
Marco, Gary L.; And Others
Three item response models were evaluated for estimating item parameters and equating test scores. The models, which approximated the traditional three-parameter model, included: (1) the Rasch one-parameter model, operationalized in the BICAL computer program; (2) an approximate three-parameter logistic model based on coarse group data divided…
A Comparison of the Fit of Empirical Data to Two Latent Trait Models. Report No. 92.
ERIC Educational Resources Information Center
Hutten, Leah R.
Goodness of fit of raw test score data were compared, using two latent trait models: the Rasch model and the Birnbaum three-parameter logistic model. Data were taken from various achievement tests and the Scholastic Aptitude Test (Verbal). A minimum sample size of 1,000 was required, and the minimum test length was 40 items. Results indicated that…
Genetic prediction of type 2 diabetes using deep neural network.
Kim, J; Kim, J; Kwak, M J; Bajaj, M
2018-04-01
Type 2 diabetes (T2DM) has strong heritability but genetic models to explain heritability have been challenging. We tested deep neural network (DNN) to predict T2DM using the nested case-control study of Nurses' Health Study (3326 females, 45.6% T2DM) and Health Professionals Follow-up Study (2502 males, 46.5% T2DM). We selected 96, 214, 399, and 678 single-nucleotide polymorphism (SNPs) through Fisher's exact test and L1-penalized logistic regression. We split each dataset randomly in 4:1 to train prediction models and test their performance. DNN and logistic regressions showed better area under the curve (AUC) of ROC curves than the clinical model when 399 or more SNPs included. DNN was superior than logistic regressions in AUC with 399 or more SNPs in male and 678 SNPs in female. Addition of clinical factors consistently increased AUC of DNN but failed to improve logistic regressions with 214 or more SNPs. In conclusion, we show that DNN can be a versatile tool to predict T2DM incorporating large numbers of SNPs and clinical information. Limitations include a relatively small number of the subjects mostly of European ethnicity. Further studies are warranted to confirm and improve performance of genetic prediction models using DNN in different ethnic groups. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An Evaluation of a Markov Chain Monte Carlo Method for the Two-Parameter Logistic Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…
ERIC Educational Resources Information Center
Haebara, Tomokazu
When several ability scales in item response models are separately derived from different test forms administered to different samples of examinees, these scales must be equated to a common scale because their units and origins are arbitrarily determined and generally different from scale to scale. A general method for equating logistic ability…
Predicting Student Success on the Texas Chemistry STAAR Test: A Logistic Regression Analysis
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.; Johnson, Jared
2012-01-01
Background: The context is the new Texas STAAR end-of-course testing program. Purpose: The authors developed a logistic regression model to predict who would pass-or-fail the new Texas chemistry STAAR end-of-course exam. Setting: Robert E. Lee High School (5A) with an enrollment of 2700 students, Tyler, Texas. Date of the study was the 2011-2012…
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins. PMID:27418910
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.
A Method of Q-Matrix Validation for the Linear Logistic Test Model
Baghaei, Purya; Hohensinn, Christine
2017-01-01
The linear logistic test model (LLTM) is a well-recognized psychometric model for examining the components of difficulty in cognitive tests and validating construct theories. The plausibility of the construct model, summarized in a matrix of weights, known as the Q-matrix or weight matrix, is tested by (1) comparing the fit of LLTM with the fit of the Rasch model (RM) using the likelihood ratio (LR) test and (2) by examining the correlation between the Rasch model item parameters and LLTM reconstructed item parameters. The problem with the LR test is that it is almost always significant and, consequently, LLTM is rejected. The drawback of examining the correlation coefficient is that there is no cut-off value or lower bound for the magnitude of the correlation coefficient. In this article we suggest a simulation method to set a minimum benchmark for the correlation between item parameters from the Rasch model and those reconstructed by the LLTM. If the cognitive model is valid then the correlation coefficient between the RM-based item parameters and the LLTM-reconstructed item parameters derived from the theoretical weight matrix should be greater than those derived from the simulated matrices. PMID:28611721
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
Development of a subway operation incident delay model using accelerated failure time approaches.
Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang
2014-12-01
This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Logistics modelling: improving resource management and public information strategies in Florida.
Walsh, Daniel M; Van Groningen, Chuck; Craig, Brian
2011-10-01
One of the most time-sensitive and logistically-challenging emergency response operations today is to provide mass prophylaxis to every man, woman and child in a community within 48 hours of a bioterrorism attack. To meet this challenge, federal, state and local public health departments in the USA have joined forces to develop, test and execute large-scale bioterrorism response plans. This preparedness and response effort is funded through the US Centers for Disease Control and Prevention's Cities Readiness Initiative, a programme dedicated to providing oral antibiotics to an entire population within 48 hours of a weaponised inhalation anthrax attack. This paper will demonstrate how the State of Florida used a logistics modelling tool to improve its CRI mass prophylaxis plans. Special focus will be on how logistics modelling strengthened Florida's resource management policies and validated its public information strategies.
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
NASA Astrophysics Data System (ADS)
Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.
2014-07-01
Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.
Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong
2016-04-07
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
[Calculating Pearson residual in logistic regressions: a comparison between SPSS and SAS].
Xu, Hao; Zhang, Tao; Li, Xiao-song; Liu, Yuan-yuan
2015-01-01
To compare the results of Pearson residual calculations in logistic regression models using SPSS and SAS. We reviewed Pearson residual calculation methods, and used two sets of data to test logistic models constructed by SPSS and STATA. One model contained a small number of covariates compared to the number of observed. The other contained a similar number of covariates as the number of observed. The two software packages produced similar Pearson residual estimates when the models contained a similar number of covariates as the number of observed, but the results differed when the number of observed was much greater than the number of covariates. The two software packages produce different results of Pearson residuals, especially when the models contain a small number of covariates. Further studies are warranted.
Science of Test Research Consortium: Year Two Final Report
2012-10-02
July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7
Neuropsychological tests for predicting cognitive decline in older adults
Baerresen, Kimberly M; Miller, Karen J; Hanson, Eric R; Miller, Justin S; Dye, Richelin V; Hartman, Richard E; Vermeersch, David; Small, Gary W
2015-01-01
Summary Aim To determine neuropsychological tests likely to predict cognitive decline. Methods A sample of nonconverters (n = 106) was compared with those who declined in cognitive status (n = 24). Significant univariate logistic regression prediction models were used to create multivariate logistic regression models to predict decline based on initial neuropsychological testing. Results Rey–Osterrieth Complex Figure Test (RCFT) Retention predicted conversion to mild cognitive impairment (MCI) while baseline Buschke Delay predicted conversion to Alzheimer’s disease (AD). Due to group sample size differences, additional analyses were conducted using a subsample of demographically matched nonconverters. Analyses indicated RCFT Retention predicted conversion to MCI and AD, and Buschke Delay predicted conversion to AD. Conclusion Results suggest RCFT Retention and Buschke Delay may be useful in predicting cognitive decline. PMID:26107318
Application of a Multidimensional Nested Logit Model to Multiple-Choice Test Items
ERIC Educational Resources Information Center
Bolt, Daniel M.; Wollack, James A.; Suh, Youngsuk
2012-01-01
Nested logit models have been presented as an alternative to multinomial logistic models for multiple-choice test items (Suh and Bolt in "Psychometrika" 75:454-473, 2010) and possess a mathematical structure that naturally lends itself to evaluating the incremental information provided by attending to distractor selection in scoring. One potential…
Fang, Xingang; Bagui, Sikha; Bagui, Subhash
2017-08-01
The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling recall memory for emotional objects in Alzheimer's disease.
Sundstrøm, Martin
2011-07-01
To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.
Sequential Computerized Mastery Tests--Three Simulation Studies
ERIC Educational Resources Information Center
Wiberg, Marie
2006-01-01
A simulation study of a sequential computerized mastery test is carried out with items modeled with the 3 parameter logistic item response theory model. The examinees' responses are either identically distributed, not identically distributed, or not identically distributed together with estimation errors in the item characteristics. The…
Lee, Seokho; Shin, Hyejin; Lee, Sang Han
2016-12-01
Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD-CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed-form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI. © 2016, The International Biometric Society.
A general framework for the use of logistic regression models in meta-analysis.
Simmonds, Mark C; Higgins, Julian Pt
2016-12-01
Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.
Fitting the Rasch Model to Account for Variation in Item Discrimination
ERIC Educational Resources Information Center
Weitzman, R. A.
2009-01-01
Building on the Kelley and Gulliksen versions of classical test theory, this article shows that a logistic model having only a single item parameter can account for varying item discrimination, as well as difficulty, by using item-test correlations to adjust incorrect-correct (0-1) item responses prior to an initial model fit. The fit occurs…
Predicting Cost and Schedule Growth for Military and Civil Space Systems
2008-03-01
the Shapiro-Wilk Test , and testing the residuals for constant variance using the Breusch - Pagan test . For logistic models, diagnostics include...the Breusch - Pagan Test . With this test , a p-value below 0.05 rejects the null hypothesis that the residuals have constant variance. Thus, similar...to the Shapiro- Wilk Test , because the optimal model will have constant variance of its residuals, this requires Breusch - Pagan p-values over 0.05
Bayesian Estimation in the One-Parameter Latent Trait Model.
1980-03-01
Journal of Mathematical and Statistical Psychology , 1973, 26, 31-44. (a) Andersen, E. B. A goodness of fit test for the Rasch model. Psychometrika, 1973, 28...technique for estimating latent trait mental test parameters. Educational and Psychological Measurement, 1976, 36, 705-715. Lindley, D. V. The...Lord, F. M. An analysis of verbal Scholastic Aptitude Test using Birnbaum’s three-parameter logistic model. Educational and Psychological
Item Response Theory Modeling of the Philadelphia Naming Test.
Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D
2015-06-01
In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating explanatory variables to item difficulty. This article describes the statistical model underlying the computer adaptive PNT presented in a companion article (Hula, Kellough, & Fergadiotis, 2015). Using archival data, we evaluated the fit of the PNT to 1- and 2-parameter logistic models and examined the precision of the resulting parameter estimates. We regressed the item difficulty estimates on three predictor variables: word length, age of acquisition, and contextual diversity. The 2-parameter logistic model demonstrated marginally better fit, but the fit of the 1-parameter logistic model was adequate. Precision was excellent for both person ability and item difficulty estimates. Word length, age of acquisition, and contextual diversity all independently contributed to variance in item difficulty. Item-response-theory methods can be productively used to analyze and quantify anomia severity in aphasia. Regression of item difficulty on lexical variables supported the validity of the PNT and interpretation of anomia severity scores in the context of current word-finding models.
Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data?
Kuo, Chia-Ling; Duan, Yinghui; Grady, James
2018-01-01
Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.
Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data?
Kuo, Chia-Ling; Duan, Yinghui; Grady, James
2018-01-01
Matching on demographic variables is commonly used in case–control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case–control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case–control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls. PMID:29552553
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet
2010-05-01
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.
Testing Gene-Gene Interactions in the Case-Parents Design
Yu, Zhaoxia
2011-01-01
The case-parents design has been widely used to detect genetic associations as it can prevent spurious association that could occur in population-based designs. When examining the effect of an individual genetic locus on a disease, logistic regressions developed by conditioning on parental genotypes provide complete protection from spurious association caused by population stratification. However, when testing gene-gene interactions, it is unknown whether conditional logistic regressions are still robust. Here we evaluate the robustness and efficiency of several gene-gene interaction tests that are derived from conditional logistic regressions. We found that in the presence of SNP genotype correlation due to population stratification or linkage disequilibrium, tests with incorrectly specified main-genetic-effect models can lead to inflated type I error rates. We also found that a test with fully flexible main genetic effects always maintains correct test size and its robustness can be achieved with negligible sacrifice of its power. When testing gene-gene interactions is the focus, the test allowing fully flexible main effects is recommended to be used. PMID:21778736
Haughton-Mars Project Expedition 2005
NASA Technical Reports Server (NTRS)
deWeck, Olivier; Simchi-Levi, David
2006-01-01
The 2005 expedition to the Haughton-Mars Project (HMP) research station on Devon Island was part of a NASA-funded project on Space Logistics. A team of nine r&searchers from MIT went to the Canadian Arctic to participate in the annual I-IMP field campaign from July 8 to August 12, 2005. We investigated the applicability of the HMP research station as an analogue for planetary macro- and micro-logistics to the Moon and Mars, and began collecting data for modeling purposes. We also tested new technologies and procedures to enhance the ability of humans and robots to jointly explore remote environments. The expedition had four main objectives. We briefly summarize our key findings in each of these areas. 1. Classes of Supply: First, we wanted to understand what supply items existed at the HMP research station in support of planetary science and exploration research at and around the Haughton Crater. We also wanted to quantify the total amount of imported mass at HMP and compare this with predictions from existing parametric lunar base demand models. 2. Macro-Logistics Transportation Network: Our second objective was to understand the nodes, transportation routes, vehicles, capacities and crew and cargo mass flow rates required to support the HMP logistics network. 3. Agent and Asset Tracking: Since the current inventory management system on ISS relies heavily on barcodes and manual tracking, we wanted to test new automated technologies and procedures such as radio frequency identification RFID) to support exploration logistics. 4. Micro-Logistics (EVA): Finally, we wanted to understand the micro-logistical requirements of conducting both short (<1 day) and long traverses in the Mars-analog terrain on Devon Island. Micro-logistics involves the movement of surface vehicles, people and supplies from base to various exploration sites over short distances (<100 km).
School Exits in the Milwaukee Parental Choice Program: Evidence of a Marketplace?
ERIC Educational Resources Information Center
Ford, Michael
2011-01-01
This article examines whether the large number of school exits from the Milwaukee school voucher program is evidence of a marketplace. Two logistic regression and multinomial logistic regression models tested the relation between the inability to draw large numbers of voucher students and the ability for a private school to remain viable. Data on…
Use of generalized ordered logistic regression for the analysis of multidrug resistance data.
Agga, Getahun E; Scott, H Morgan
2015-10-01
Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Scholz-Reiter, B.; Wirth, F.; Dashkovskiy, S.; Makuschewitz, T.; Schönlein, M.; Kosmykov, M.
2011-12-01
We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.
ERIC Educational Resources Information Center
Cao, Yi; Lu, Ru; Tao, Wei
2014-01-01
The local item independence assumption underlying traditional item response theory (IRT) models is often not met for tests composed of testlets. There are 3 major approaches to addressing this issue: (a) ignore the violation and use a dichotomous IRT model (e.g., the 2-parameter logistic [2PL] model), (b) combine the interdependent items to form a…
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
NASA Astrophysics Data System (ADS)
Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan
2016-12-01
This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming unidimensionality and local independence. Moreover, all distractors of the TUV were analyzed from item response curves (IRC) that represent simplified IRT. Data were gathered on 2392 science and engineering freshmen, from three universities in Thailand. The results revealed IRT analysis to be useful in assessing the test since its item parameters are independent of the ability parameters. The IRT framework reveals item-level information, and indicates appropriate ability ranges for the test. Moreover, the IRC analysis can be used to assess the effectiveness of the test's distractors. Both IRT and IRC approaches reveal test characteristics beyond those revealed by the classical analysis methods of tests. Test developers can apply these methods to diagnose and evaluate the features of items at various ability levels of test takers.
ERIC Educational Resources Information Center
Karkee, Thakur B.; Wright, Karen R.
2004-01-01
Different item response theory (IRT) models may be employed for item calibration. Change of testing vendors, for example, may result in the adoption of a different model than that previously used with a testing program. To provide scale continuity and preserve cut score integrity, item parameter estimates from the new model must be linked to the…
2013-01-01
Methods for analysis of network dynamics have seen great progress in the past decade. This article shows how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data context. We also provide practical heuristics for model building and assessment. We illustrate the power of these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential election cycle. This is a particularly interesting case because it marks the debut of Internet-based media such as blogs and social networking web sites as institutionally recognized features of the American political landscape. Using a longitudinal sample of all Democratic National Convention/Republican National Convention–designated blog citation networks, we are able to test the influence of various strategic, institutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political events on the propensity of blogs to cite one another over time. Using a combination of deviance-based model selection criteria and simulation-based model adequacy tests, we identify the combination of processes that best characterizes the choice behavior of the contending blogs. PMID:24143060
Prediction model for the return to work of workers with injuries in Hong Kong.
Xu, Yanwen; Chan, Chetwyn C H; Lo, Karen Hui Yu-Ling; Tang, Dan
2008-01-01
This study attempts to formulate a prediction model of return to work for a group of workers who have been suffering from chronic pain and physical injury while also being out of work in Hong Kong. The study used Case-based Reasoning (CBR) method, and compared the result with the statistical method of logistic regression model. The database of the algorithm of CBR was composed of 67 cases who were also used in the logistic regression model. The testing cases were 32 participants who had a similar background and characteristics to those in the database. The methods of setting constraints and Euclidean distance metric were used in CBR to search the closest cases to the trial case based on the matrix. The usefulness of the algorithm was tested on 32 new participants, and the accuracy of predicting return to work outcomes was 62.5%, which was no better than the 71.2% accuracy derived from the logistic regression model. The results of the study would enable us to have a better understanding of the CBR applied in the field of occupational rehabilitation by comparing with the conventional regression analysis. The findings would also shed light on the development of relevant interventions for the return-to-work process of these workers.
A Review of Models for Computer-Based Testing. Research Report 2011-12
ERIC Educational Resources Information Center
Luecht, Richard M.; Sireci, Stephen G.
2011-01-01
Over the past four decades, there has been incremental growth in computer-based testing (CBT) as a viable alternative to paper-and-pencil testing. However, the transition to CBT is neither easy nor inexpensive. As Drasgow, Luecht, and Bennett (2006) noted, many design engineering, test development, operations/logistics, and psychometric changes…
Zhang, Dezhi; Li, Shuangyan
2014-01-01
This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209
Zhang, Dezhi; Li, Shuangyan; Qin, Jin
2014-01-01
This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.
Modeling the College Application Decision Process in a Land-Grant Institution.
ERIC Educational Resources Information Center
DesJardins, Stephen L.; And Others
This study used a logistic probability model to investigate the effects of variables relating student characteristics and institutional factors on the decision to apply to a large land-grant research university. The study used the entire data set from American College Testing (ACT) program test-takers in the fall of 1995 and institutional data on…
SPSS Syntax for Missing Value Imputation in Test and Questionnaire Data
ERIC Educational Resources Information Center
van Ginkel, Joost R.; van der Ark, L. Andries
2005-01-01
A well-known problem in the analysis of test and questionnaire data is that some item scores may be missing. Advanced methods for the imputation of missing data are available, such as multiple imputation under the multivariate normal model and imputation under the saturated logistic model (Schafer, 1997). Accompanying software was made available…
Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero
2016-05-01
The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.
Mixture Rasch model for guessing group identification
NASA Astrophysics Data System (ADS)
Siow, Hoo Leong; Mahdi, Rasidah; Siew, Eng Ling
2013-04-01
Several alternative dichotomous Item Response Theory (IRT) models have been introduced to account for guessing effect in multiple-choice assessment. The guessing effect in these models has been considered to be itemrelated. In the most classic case, pseudo-guessing in the three-parameter logistic IRT model is modeled to be the same for all the subjects but may vary across items. This is not realistic because subjects can guess worse or better than the pseudo-guessing. Derivation from the three-parameter logistic IRT model improves the situation by incorporating ability in guessing. However, it does not model non-monotone function. This paper proposes to study guessing from a subject-related aspect which is guessing test-taking behavior. Mixture Rasch model is employed to detect latent groups. A hybrid of mixture Rasch and 3-parameter logistic IRT model is proposed to model the behavior based guessing from the subjects' ways of responding the items. The subjects are assumed to simply choose a response at random. An information criterion is proposed to identify the behavior based guessing group. Results show that the proposed model selection criterion provides a promising method to identify the guessing group modeled by the hybrid model.
Estimation of the Regression Effect Using a Latent Trait Model.
ERIC Educational Resources Information Center
Quinn, Jimmy L.
A logistic model was used to generate data to serve as a proxy for an immediate retest from item responses to a fourth grade standardized reading comprehension test of 45 items. Assuming that the actual test may be considered a pretest and the proxy data may be considered a retest, the effect of regression was investigated using a percentage of…
ERIC Educational Resources Information Center
Gugel, John F.
A new method for estimating the parameters of the normal ogive three-parameter model for multiple-choice test items--the normalized direct (NDIR) procedure--is examined. The procedure is compared to a more commonly used estimation procedure, Lord's LOGIST, using computer simulations. The NDIR procedure uses the normalized (mid-percentile)…
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.
Schell, Greggory J; Lavieri, Mariel S; Stein, Joshua D; Musch, David C
2013-12-21
Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness without proper clinical management. The tests used to assess disease progression are susceptible to process and measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in the data and improve significant disease progression identification. Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic regression models via generalized estimating equations (GEE) for calculating the probability of experiencing significant OAG progression: one model based on the raw measurements from CIGTS and another model based on the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under the ROC curve (AUC) estimates are calculated using cross-fold validation. The logistic regression model developed using Kalman filter estimates as data input achieves higher sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more accurately classify patients and instances as experiencing significant OAG progression. A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which improved the accuracy of a logistic regression classification model compared to a model using raw measurements as input. This methodology accounts for process and measurement noise to enable improved discrimination between progression and nonprogression in chronic diseases.
Jiménez-Huete, Adolfo; Riva, Elena; Toledano, Rafael; Campo, Pablo; Esteban, Jesús; Barrio, Antonio Del; Franch, Oriol
2014-12-01
The validity of neuropsychological tests for the differential diagnosis of degenerative dementias may depend on the clinical context. We constructed a series of logistic models taking into account this factor. We retrospectively analyzed the demographic and neuropsychological data of 301 patients with probable Alzheimer's disease (AD), frontotemporal degeneration (FTLD), or dementia with Lewy bodies (DLB). Nine models were constructed taking into account the diagnostic question (eg, AD vs DLB) and subpopulation (incident vs prevalent). The AD versus DLB model for all patients, including memory recovery and phonological fluency, was highly accurate (area under the curve = 0.919, sensitivity = 90%, and specificity = 80%). The results were comparable in incident and prevalent cases. The FTLD versus AD and DLB versus FTLD models were both inaccurate. The models constructed from basic neuropsychological variables allowed an accurate differential diagnosis of AD versus DLB but not of FTLD versus AD or DLB. © The Author(s) 2014.
Effort test failure: toward a predictive model.
Webb, James W; Batchelor, Jennifer; Meares, Susanne; Taylor, Alan; Marsh, Nigel V
2012-01-01
Predictors of effort test failure were examined in an archival sample of 555 traumatically brain-injured (TBI) adults. Logistic regression models were used to examine whether compensation-seeking, injury-related, psychological, demographic, and cultural factors predicted effort test failure (ETF). ETF was significantly associated with compensation-seeking (OR = 3.51, 95% CI [1.25, 9.79]), low education (OR:. 83 [.74, . 94]), self-reported mood disorder (OR: 5.53 [3.10, 9.85]), exaggerated displays of behavior (OR: 5.84 [2.15, 15.84]), psychotic illness (OR: 12.86 [3.21, 51.44]), being foreign-born (OR: 5.10 [2.35, 11.06]), having sustained a workplace accident (OR: 4.60 [2.40, 8.81]), and mild traumatic brain injury severity compared with very severe traumatic brain injury severity (OR: 0.37 [0.13, 0.995]). ETF was associated with a broader range of statistical predictors than has previously been identified and the relative importance of psychological and behavioral predictors of ETF was evident in the logistic regression model. Variables that might potentially extend the model of ETF are identified for future research efforts.
NASA Astrophysics Data System (ADS)
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty
NASA Astrophysics Data System (ADS)
Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin
2015-06-01
The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.
A New Family of Models for the Multiple-Choice Item.
1979-12-19
analysis of the verbal scholastic aptitude test using Birnhaum’s three-parameter logistic model. Educational and Psychological Measurement, 28, 989-1020...16. [8] McBride, J. R. Some properties of a Bayesian adaptive ability testing strategy. Applied Psychological Measurement, 1, 121-140, 1977. [9...University of Michigan Ann Arbor, MI 48106 ’~KL -137- Non Govt Mon Govt 1 Dr. Earl Hunt 1 Dr. Frederick N. Lord Dept. of Psychology Educational Testing
Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif
2017-01-01
Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.
Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model
ERIC Educational Resources Information Center
Von Davier, Matthias; Yamamoto, Kentaro
2004-01-01
The generalized partial-credit model (GPCM) is used frequently in educational testing and in large-scale assessments for analyzing polytomous data. Special cases of the generalized partial-credit model are the partial-credit model--or Rasch model for ordinal data--and the two parameter logistic (2PL) model. This article extends the GPCM to the…
Sun, Qiang
2017-06-01
As the largest developing country in the world, China has witnessed fast-paced urbanization over the past three decades with rapid economic growth. In fact, urbanization has been not only shown to promote economic growth and improve the livelihood of people but also can increase demands of regional logistics. Therefore, a better understanding of the relationship between urbanization and regional logistics is important for China's future sustainable development. The development of urban residential area and heterogeneous, modern society as well regional logistics are running two abreast. The regional logistics can promote the development of new-type urbanization jointly by promoting industrial concentration and logistics demand, enhancing the residents' quality of life and improving the infrastructure and logistics technology. In this paper, the index system and evaluation model for evaluating the development of regional logistics and the new-type urbanization are constructed. Further, the econometric analysis is utilized such as correlation analysis, co-integration test, and error correction model to explore relationships of the new-type urbanization development and regional logistics development in Liaoning Province. The results showed that there was a long-term stable equilibrium relationship between the new-type urbanization and regional logistics. The findings have important implications for Chinese policymakers that on the path towards a sustainable urbanization and regional reverse, this must be taken into consideration. The paper concludes providing some strategies that might be helpful to the policymakers in formulating development policies for sustainable urbanization.
Canary, Jana D; Blizzard, Leigh; Barry, Ronald P; Hosmer, David W; Quinn, Stephen J
2016-05-01
Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness-of-fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (TG), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer-Lemeshow (HL) and Pigeon-Heyse (J(2) ) statistics can be applied directly. In a simulation study, TG, HL, and J(2) were used to evaluate the fit of probit, log-log, complementary log-log, and log models, all calculated with a common grouping method. The TG statistic consistently maintained Type I error rates, while those of HL and J(2) were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, TG had more power than HL or J(2) . © 2015 John Wiley & Sons Ltd/London School of Economics.
NASA Experimental Program to Stimulate Competitive Research: South Carolina
NASA Technical Reports Server (NTRS)
Sutton, Michael A.
2004-01-01
The use of an appropriate relationship model is critical for reliable prediction of future urban growth. Identification of proper variables and mathematic functions and determination of the weights or coefficients are the key tasks for building such a model. Although the conventional logistic regression model is appropriate for handing land use problems, it appears insufficient to address the issue of interdependency of the predictor variables. This study used an alternative approach to simulation and modeling urban growth using artificial neural networks. It developed an operational neural network model trained using a robust backpropagation method. The model was applied in the Myrtle Beach region of South Carolina, and tested with both global datasets and areal datasets to examine the strength of both regional models and areal models. The results indicate that the neural network model not only has many theoretic advantages over other conventional mathematic models in representing the complex urban systems, but also is practically superior to the logistic model in its capability to predict urban growth with better - accuracy and less variation. The neural network model is particularly effective in terms of successfully identifying urban patterns in the rural areas where the logistic model often falls short. It was also found from the area-based tests that there are significant intra-regional differentiations in urban growth with different rules and rates. This suggests that the global modeling approach, or one model for the entire region, may not be adequate for simulation of a urban growth at the regional scale. Future research should develop methods for identification and subdivision of these areas and use a set of area-based models to address the issues of multi-centered, intra- regionally differentiated urban growth.
Quantification of photoacoustic microscopy images for ovarian cancer detection
NASA Astrophysics Data System (ADS)
Wang, Tianheng; Yang, Yi; Alqasemi, Umar; Kumavor, Patrick D.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2014-03-01
In this paper, human ovarian tissues with malignant and benign features were imaged ex vivo by using an opticalresolution photoacoustic microscopy (OR-PAM) system. Several features were quantitatively extracted from PAM images to describe photoacoustic signal distributions and fluctuations. 106 PAM images from 18 human ovaries were classified by applying those extracted features to a logistic prediction model. 57 images from 9 ovaries were used as a training set to train the logistic model, and 49 images from another 9 ovaries were used to test our prediction model. We assumed that if one image from one malignant ovary was classified as malignant, it is sufficient to classify this ovary as malignant. For the training set, we achieved 100% sensitivity and 83.3% specificity; for testing set, we achieved 100% sensitivity and 66.7% specificity. These preliminary results demonstrate that PAM could be extremely valuable in assisting and guiding surgeons for in vivo evaluation of ovarian tissue.
Accounting for informatively missing data in logistic regression by means of reassessment sampling.
Lin, Ji; Lyles, Robert H
2015-05-20
We explore the 'reassessment' design in a logistic regression setting, where a second wave of sampling is applied to recover a portion of the missing data on a binary exposure and/or outcome variable. We construct a joint likelihood function based on the original model of interest and a model for the missing data mechanism, with emphasis on non-ignorable missingness. The estimation is carried out by numerical maximization of the joint likelihood function with close approximation of the accompanying Hessian matrix, using sharable programs that take advantage of general optimization routines in standard software. We show how likelihood ratio tests can be used for model selection and how they facilitate direct hypothesis testing for whether missingness is at random. Examples and simulations are presented to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.
Li, Huixia; Luo, Miyang; Zheng, Jianfei; Luo, Jiayou; Zeng, Rong; Feng, Na; Du, Qiyun; Fang, Junqun
2017-02-01
An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of 85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN models were developed on Matlab 7.1.The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level (odds ratio = 0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place (3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). After many trials, we selected a 3-layer BPNN model with 15, 12, and 1 neuron in the input, hidden, and output layers, respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets, respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0.68 (0.78), respectively. The areas under the receiver operating curve on the testing and training sets are 0.87 and 0.97, respectively.This study suggests that the BPNN model could be used to predict the risk of CHD in individuals. This model should be further improved by large-sample-size research.
London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure
Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith
2017-01-01
Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343
Kayano, Mitsunori; Matsui, Hidetoshi; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru
2016-04-01
High-throughput time course expression profiles have been available in the last decade due to developments in measurement techniques and devices. Functional data analysis, which treats smoothed curves instead of originally observed discrete data, is effective for the time course expression profiles in terms of dimension reduction, robustness, and applicability to data measured at small and irregularly spaced time points. However, the statistical method of differential analysis for time course expression profiles has not been well established. We propose a functional logistic model based on elastic net regularization (F-Logistic) in order to identify the genes with dynamic alterations in case/control study. We employ a mixed model as a smoothing method to obtain functional data; then F-Logistic is applied to time course profiles measured at small and irregularly spaced time points. We evaluate the performance of F-Logistic in comparison with another functional data approach, i.e. functional ANOVA test (F-ANOVA), by applying the methods to real and synthetic time course data sets. The real data sets consist of the time course gene expression profiles for long-term effects of recombinant interferon β on disease progression in multiple sclerosis. F-Logistic distinguishes dynamic alterations, which cannot be found by competitive approaches such as F-ANOVA, in case/control study based on time course expression profiles. F-Logistic is effective for time-dependent biomarker detection, diagnosis, and therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Developing a Capacity Assessment Framework for Marine Logistics Groups
2017-02-20
test the framework for assessing logistics capacity on a Marine Expeditionary Unit (MEU) Combat Logistics Battalion (CLB). The study proceeded along...and (5) test the framework for assessing logistics capacity on a Marine Expeditionary Unit (MEU) Combat Logistics Battalion (CLB), time permitting...Marine Logistics Group 21 Impact of New Organization on Logistics Support Under the FSSG structure prior to 2006, the Marine Corps employed a
Application of conditional moment tests to model checking for generalized linear models.
Pan, Wei
2002-06-01
Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.
Interactions Between Item Content And Group Membership on Achievement Test Items.
ERIC Educational Resources Information Center
Linn, Robert L.; Harnisch, Delwyn L.
The purpose of this investigation was to examine the interaction of item content and group membership on achievement test items. Estimates of the parameters of the three parameter logistic model were obtained on the 46 item math test for the sample of eighth grade students (N = 2055) participating in the Illinois Inventory of Educational Progress,…
A Primer on the 2- and 3-Parameter Item Response Theory Models.
ERIC Educational Resources Information Center
Thornton, Artist
Item response theory (IRT) is a useful and effective tool for item response measurement if used in the proper context. This paper discusses the sets of assumptions under which responses can be modeled while exploring the framework of the IRT models relative to response testing. The one parameter model, or one parameter logistic model, is perhaps…
Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M
2014-12-01
Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.
Dudley, Robert W.; Hodgkins, Glenn A.; Dickinson, Jesse
2017-01-01
We present a logistic regression approach for forecasting the probability of future groundwater levels declining or maintaining below specific groundwater-level thresholds. We tested our approach on 102 groundwater wells in different climatic regions and aquifers of the United States that are part of the U.S. Geological Survey Groundwater Climate Response Network. We evaluated the importance of current groundwater levels, precipitation, streamflow, seasonal variability, Palmer Drought Severity Index, and atmosphere/ocean indices for developing the logistic regression equations. Several diagnostics of model fit were used to evaluate the regression equations, including testing of autocorrelation of residuals, goodness-of-fit metrics, and bootstrap validation testing. The probabilistic predictions were most successful at wells with high persistence (low month-to-month variability) in their groundwater records and at wells where the groundwater level remained below the defined low threshold for sustained periods (generally three months or longer). The model fit was weakest at wells with strong seasonal variability in levels and with shorter duration low-threshold events. We identified challenges in deriving probabilistic-forecasting models and possible approaches for addressing those challenges.
An Application of a Multidimensional Extension of the Two-Parameter Logistic Latent Trait Model.
1983-08-01
theory, models, technical issues, and applications. Review of Educational Research, 1978, 48, 467-510. Marco, G. L. Item characteristic curve...solutions to three intractable testing problems. Journal of Educational Measurement, 1977, 14, 139-160. McKinley, R. L. and Reckase, M. D. A successful...application of latent trait theory to tailored achievement testing (Research Report 80-1). Columbia: University of Missouri, Department of Educational
Landy, Rebecca; Cheung, Li C; Schiffman, Mark; Gage, Julia C; Hyun, Noorie; Wentzensen, Nicolas; Kinney, Walter K; Castle, Philip E; Fetterman, Barbara; Poitras, Nancy E; Lorey, Thomas; Sasieni, Peter D; Katki, Hormuzd A
2018-06-01
Electronic health-records (EHR) are increasingly used by epidemiologists studying disease following surveillance testing to provide evidence for screening intervals and referral guidelines. Although cost-effective, undiagnosed prevalent disease and interval censoring (in which asymptomatic disease is only observed at the time of testing) raise substantial analytic issues when estimating risk that cannot be addressed using Kaplan-Meier methods. Based on our experience analysing EHR from cervical cancer screening, we previously proposed the logistic-Weibull model to address these issues. Here we demonstrate how the choice of statistical method can impact risk estimates. We use observed data on 41,067 women in the cervical cancer screening program at Kaiser Permanente Northern California, 2003-2013, as well as simulations to evaluate the ability of different methods (Kaplan-Meier, Turnbull, Weibull and logistic-Weibull) to accurately estimate risk within a screening program. Cumulative risk estimates from the statistical methods varied considerably, with the largest differences occurring for prevalent disease risk when baseline disease ascertainment was random but incomplete. Kaplan-Meier underestimated risk at earlier times and overestimated risk at later times in the presence of interval censoring or undiagnosed prevalent disease. Turnbull performed well, though was inefficient and not smooth. The logistic-Weibull model performed well, except when event times didn't follow a Weibull distribution. We have demonstrated that methods for right-censored data, such as Kaplan-Meier, result in biased estimates of disease risks when applied to interval-censored data, such as screening programs using EHR data. The logistic-Weibull model is attractive, but the model fit must be checked against Turnbull non-parametric risk estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Perez, Ivan; Chavez, Allison K; Ponce, Dario
2016-01-01
The Ricketts' posteroanterior (PA) cephalometry seems to be the most widely used and it has not been tested by multivariate statistics for sex determination. The objective was to determine the applicability of Ricketts' PA cephalometry for sex determination using the logistic regression analysis. The logistic models were estimated at distinct age cutoffs (all ages, 11 years, 13 years, and 15 years) in a database from 1,296 Hispano American Peruvians between 5 years and 44 years of age. The logistic models were composed by six cephalometric measurements; the accuracy achieved by resubstitution varied between 60% and 70% and all the variables, with one exception, exhibited a direct relationship with the probability of being classified as male; the nasal width exhibited an indirect relationship. The maxillary and facial widths were present in all models and may represent a sexual dimorphism indicator. The accuracy found was lower than the literature and the Ricketts' PA cephalometry may not be adequate for sex determination. The indirect relationship of the nasal width in models with data from patients of 12 years of age or less may be a trait related to age or a characteristic in the studied population, which could be better studied and confirmed.
ERIC Educational Resources Information Center
Immekus, Jason C.; Maller, Susan J.
2009-01-01
The Kaufman Adolescent and Adult Intelligence Test (KAIT[TM]) is an individually administered test of intelligence for individuals ranging in age from 11 to 85+ years. The item response theory-likelihood ratio procedure, based on the two-parameter logistic model, was used to detect differential item functioning (DIF) in the KAIT across males and…
Investigation of a Nonparametric Procedure for Assessing Goodness-of-Fit in Item Response Theory
ERIC Educational Resources Information Center
Wells, Craig S.; Bolt, Daniel M.
2008-01-01
Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…
Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica
2016-01-01
The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005
Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica
2016-01-01
The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.
Hill, Benjamin David; Womble, Melissa N; Rohling, Martin L
2015-01-01
This study utilized logistic regression to determine whether performance patterns on Concussion Vital Signs (CVS) could differentiate known groups with either genuine or feigned performance. For the embedded measure development group (n = 174), clinical patients and undergraduate students categorized as feigning obtained significantly lower scores on the overall test battery mean for the CVS, Shipley-2 composite score, and California Verbal Learning Test-Second Edition subtests than did genuinely performing individuals. The final full model of 3 predictor variables (Verbal Memory immediate hits, Verbal Memory immediate correct passes, and Stroop Test complex reaction time correct) was significant and correctly classified individuals in their known group 83% of the time (sensitivity = .65; specificity = .97) in a mixed sample of young-adult clinical cases and simulators. The CVS logistic regression function was applied to a separate undergraduate college group (n = 378) that was asked to perform genuinely and identified 5% as having possibly feigned performance indicating a low false-positive rate. The failure rate was 11% and 16% at baseline cognitive testing in samples of high school and college athletes, respectively. These findings have particular relevance given the increasing use of computerized test batteries for baseline cognitive testing and return-to-play decisions after concussion.
2012-01-01
Background A discrete choice experiment (DCE) is a preference survey which asks participants to make a choice among product portfolios comparing the key product characteristics by performing several choice tasks. Analyzing DCE data needs to account for within-participant correlation because choices from the same participant are likely to be similar. In this study, we empirically compared some commonly-used statistical methods for analyzing DCE data while accounting for within-participant correlation based on a survey of patient preference for colorectal cancer (CRC) screening tests conducted in Hamilton, Ontario, Canada in 2002. Methods A two-stage DCE design was used to investigate the impact of six attributes on participants' preferences for CRC screening test and willingness to undertake the test. We compared six models for clustered binary outcomes (logistic and probit regressions using cluster-robust standard error (SE), random-effects and generalized estimating equation approaches) and three models for clustered nominal outcomes (multinomial logistic and probit regressions with cluster-robust SE and random-effects multinomial logistic model). We also fitted a bivariate probit model with cluster-robust SE treating the choices from two stages as two correlated binary outcomes. The rank of relative importance between attributes and the estimates of β coefficient within attributes were used to assess the model robustness. Results In total 468 participants with each completing 10 choices were analyzed. Similar results were reported for the rank of relative importance and β coefficients across models for stage-one data on evaluating participants' preferences for the test. The six attributes ranked from high to low as follows: cost, specificity, process, sensitivity, preparation and pain. However, the results differed across models for stage-two data on evaluating participants' willingness to undertake the tests. Little within-patient correlation (ICC ≈ 0) was found in stage-one data, but substantial within-patient correlation existed (ICC = 0.659) in stage-two data. Conclusions When small clustering effect presented in DCE data, results remained robust across statistical models. However, results varied when larger clustering effect presented. Therefore, it is important to assess the robustness of the estimates via sensitivity analysis using different models for analyzing clustered data from DCE studies. PMID:22348526
Rethinking the logistic approach for population dynamics of mutualistic interactions.
García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J
2014-12-21
Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.
2006-01-01
As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.
Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation
Song, Yongsoo; Wang, Shuang; Xia, Yuhou; Jiang, Xiaoqian
2018-01-01
Background Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. PMID:29666041
ERIC Educational Resources Information Center
DeCarlo, Lawrence T.
2011-01-01
Cognitive diagnostic models (CDMs) attempt to uncover latent skills or attributes that examinees must possess in order to answer test items correctly. The DINA (deterministic input, noisy "and") model is a popular CDM that has been widely used. It is shown here that a logistic version of the model can easily be fit with standard software for…
Use of Three-Parameter Item Response Theory in the Development of CTBS, Form U, and TCS.
ERIC Educational Resources Information Center
Yen, Wendy M.
The three-parameter logistic model discussed was used by CTB/McGraw-Hill in the development of the Comprehensive Tests of Basic Skills, Form U (CTBS/U) and the Test of Cognitive Skills (TCS), published in the fall of 1981. The development, standardization, and scoring of the tests are described, particularly as these procedures were influenced by…
Nedorezov, L V
2015-01-01
A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.
Harrell-Williams, Leigh; Wolfe, Edward W
2014-01-01
Previous research has investigated the influence of sample size, model misspecification, test length, ability distribution offset, and generating model on the likelihood ratio difference test in applications of item response models. This study extended that research to the evaluation of dimensionality using the multidimensional random coefficients multinomial logit model (MRCMLM). Logistic regression analysis of simulated data reveal that sample size and test length have a large effect on the capacity of the LR difference test to correctly identify unidimensionality, with shorter tests and smaller sample sizes leading to smaller Type I error rates. Higher levels of simulated misfit resulted in fewer incorrect decisions than data with no or little misfit. However, Type I error rates indicate that the likelihood ratio difference test is not suitable under any of the simulated conditions for evaluating dimensionality in applications of the MRCMLM.
Kim, Sun Mi; Kim, Yongdai; Jeong, Kuhwan; Jeong, Heeyeong; Kim, Jiyoung
2018-01-01
The aim of this study was to compare the performance of image analysis for predicting breast cancer using two distinct regression models and to evaluate the usefulness of incorporating clinical and demographic data (CDD) into the image analysis in order to improve the diagnosis of breast cancer. This study included 139 solid masses from 139 patients who underwent a ultrasonography-guided core biopsy and had available CDD between June 2009 and April 2010. Three breast radiologists retrospectively reviewed 139 breast masses and described each lesion using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We applied and compared two regression methods-stepwise logistic (SL) regression and logistic least absolute shrinkage and selection operator (LASSO) regression-in which the BI-RADS descriptors and CDD were used as covariates. We investigated the performances of these regression methods and the agreement of radiologists in terms of test misclassification error and the area under the curve (AUC) of the tests. Logistic LASSO regression was superior (P<0.05) to SL regression, regardless of whether CDD was included in the covariates, in terms of test misclassification errors (0.234 vs. 0.253, without CDD; 0.196 vs. 0.258, with CDD) and AUC (0.785 vs. 0.759, without CDD; 0.873 vs. 0.735, with CDD). However, it was inferior (P<0.05) to the agreement of three radiologists in terms of test misclassification errors (0.234 vs. 0.168, without CDD; 0.196 vs. 0.088, with CDD) and the AUC without CDD (0.785 vs. 0.844, P<0.001), but was comparable to the AUC with CDD (0.873 vs. 0.880, P=0.141). Logistic LASSO regression based on BI-RADS descriptors and CDD showed better performance than SL in predicting the presence of breast cancer. The use of CDD as a supplement to the BI-RADS descriptors significantly improved the prediction of breast cancer using logistic LASSO regression.
Eke, Gemma; Holttum, Sue; Hayward, Mark
2012-03-01
Previous research highlights barriers to clinical psychologists conducting research, but has rarely examined U.K. clinical psychologists. The study investigated U.K. clinical psychologists' self-reported research output and tested part of a theoretical model of factors influencing their intention to conduct research. Questionnaires were mailed to 1,300 U.K. clinical psychologists. Three hundred and seventy-four questionnaires were returned (29% response-rate). This study replicated in a U.K. sample the finding that the modal number of publications was zero, highlighted in a number of U.K. and U.S. studies. Research intention was bimodally distributed, and logistic regression classified 78% of cases successfully. Outcome expectations, perceived behavioral control and normative beliefs mediated between research training environment and intention. Further research should explore how research is negotiated in clinical roles, and this issue should be incorporated into prequalification training. © 2012 Wiley Periodicals, Inc.
Howard B. Stauffer; Cynthia J. Zabel; Jeffrey R. Dunk
2005-01-01
We compared a set of competing logistic regression habitat selection models for Northern Spotted Owls (Strix occidentalis caurina) in California. The habitat selection models were estimated, compared, evaluated, and tested using multiple sample datasets collected on federal forestlands in northern California. We used Bayesian methods in interpreting...
ERIC Educational Resources Information Center
Cooper, Michelle Asha
2009-01-01
This study uses data from the Educational Longitudinal Study of 2002 to test a conceptual model that integrates aspects of sociological and econometric frameworks into a traditional status attainment model for educational aspirations. Using descriptive and logistic analyses, this study advanced understanding of the patterns and stability of…
ERIC Educational Resources Information Center
Holster, Trevor A.; Lake, J.
2016-01-01
Stewart questioned Beglar's use of Rasch analysis of the Vocabulary Size Test (VST) and advocated the use of 3-parameter logistic item response theory (3PLIRT) on the basis that it models a non-zero lower asymptote for items, often called a "guessing" parameter. In support of this theory, Stewart presented fit statistics derived from…
A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)
ERIC Educational Resources Information Center
Arenson, Ethan A.; Karabatsos, George
2017-01-01
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
A Comparison of Exposure Control Procedures in CATs Using the 3PL Model
ERIC Educational Resources Information Center
Leroux, Audrey J.; Lopez, Myriam; Hembry, Ian; Dodd, Barbara G.
2013-01-01
This study compares the progressive-restricted standard error (PR-SE) exposure control procedure to three commonly used procedures in computerized adaptive testing, the randomesque, Sympson-Hetter (SH), and no exposure control methods. The performance of these four procedures is evaluated using the three-parameter logistic model under the…
Hoggarth, Petra A; Innes, Carrie R H; Dalrymple-Alford, John C; Jones, Richard D
2013-12-01
To generate a robust model of computerized sensory-motor and cognitive test performance to predict on-road driving assessment outcomes in older persons with diagnosed or suspected cognitive impairment. A logistic regression model classified pass–fail outcomes of a blinded on-road driving assessment. Generalizability of the model was tested using leave-one-out cross-validation. Three specialist clinics in New Zealand. Drivers (n=279; mean age 78.4, 65% male) with diagnosed or suspected dementia, mild cognitive impairment, unspecified cognitive impairment, or memory problems referred for a medical driving assessment. A computerized battery of sensory-motor and cognitive tests and an on-road medical driving assessment. One hundred fifty-five participants (55.5%) received an on-road fail score. Binary logistic regression correctly classified 75.6% of the sample into on-road pass and fail groups. The cross-validation indicated accuracy of the model of 72.0% with sensitivity for detecting on-road fails of 73.5%, specificity of 70.2%, positive predictive value of 75.5%, and negative predictive value of 68%. The off-road assessment prediction model resulted in a substantial number of people who were assessed as likely to fail despite passing an on-road assessment and vice versa. Thus, despite a large multicenter sample, the use of off-road tests previously found to be useful in other older populations, and a carefully constructed and tested prediction model, off-road measures have yet to be found that are sufficiently accurate to allow acceptable determination of on-road driving safety of cognitively impaired older drivers. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H
2017-02-01
At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.
Multivariate Models for Prediction of Human Skin Sensitization ...
One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine
Construction of a Computerized Adaptive Testing Version of the Quebec Adaptive Behavior Scale.
ERIC Educational Resources Information Center
Tasse, Marc J.; And Others
Multilog (Thissen, 1991) was used to estimate parameters of 225 items from the Quebec Adaptive Behavior Scale (QABS). A database containing actual data from 2,439 subjects was used for the parameterization procedures. The two-parameter-logistic model was used in estimating item parameters and in the testing strategy. MicroCAT (Assessment Systems…
ERIC Educational Resources Information Center
Gallant, Jason; Snyder, Gregory S.; von der Embse, Nathaniel P.
2014-01-01
This study examined characteristics and biopsychosocial predictors of nonsuicidal self-injury in a sample (N = 753) of youth in residential care admitted between 2005 and 2010. To model the data, the authors used t-tests, chi-square tests, and multiple logistic regressions stratified by gender. Results suggested that 12% of youth engaged in…
The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory
ERIC Educational Resources Information Center
Anil, Duygu
2008-01-01
In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…
Efficient logistic regression designs under an imperfect population identifier.
Albert, Paul S; Liu, Aiyi; Nansel, Tonja
2014-03-01
Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. © 2013, The International Biometric Society.
Statistical prediction of space motion sickness
NASA Technical Reports Server (NTRS)
Reschke, Millard F.
1990-01-01
Studies designed to empirically examine the etiology of motion sickness to develop a foundation for enhancing its prediction are discussed. Topics addressed include early attempts to predict space motion sickness, multiple test data base that uses provocative and vestibular function tests, and data base subjects; reliability of provocative tests of motion sickness susceptibility; prediction of space motion sickness using linear discriminate analysis; and prediction of space motion sickness susceptibility using the logistic model.
Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.
Schvartzman, M Sol; Gonzalez-Barron, Ursula; Butler, Francis; Jordan, Kieran
2014-01-01
Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw) of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model, and the Logistic model) and three secondary (the Cardinal model, the Ratowski model, and the Presser model) mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modeled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax) were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.
2018-01-01
Background Many studies have tried to develop predictors for return-to-work (RTW). However, since complex factors have been demonstrated to predict RTW, it is difficult to use them practically. This study investigated whether factors used in previous studies could predict whether an individual had returned to his/her original work by four years after termination of the worker's recovery period. Methods An initial logistic regression analysis of 1,567 participants of the fourth Panel Study of Worker's Compensation Insurance yielded odds ratios. The participants were divided into two subsets, a training dataset and a test dataset. Using the training dataset, logistic regression, decision tree, random forest, and support vector machine models were established, and important variables of each model were identified. The predictive abilities of the different models were compared. Results The analysis showed that only earned income and company-related factors significantly affected return-to-original-work (RTOW). The random forest model showed the best accuracy among the tested machine learning models; however, the difference was not prominent. Conclusion It is possible to predict a worker's probability of RTOW using machine learning techniques with moderate accuracy. PMID:29736160
Assessing models of arsenic occurrence in drinking water from bedrock aquifers in New Hampshire
Andy, Caroline; Fahnestock, Maria Florencia; Lombard, Melissa; Hayes, Laura; Bryce, Julie; Ayotte, Joseph
2017-01-01
Three existing multivariate logistic regression models were assessed using new data to evaluate the capacity of the models to correctly predict the probability of groundwater arsenic concentrations exceeding the threshold values of 1, 5, and 10 micrograms per liter (µg/L) in New Hampshire, USA. A recently released testing dataset includes arsenic concentrations from groundwater samples collected in 2004–2005 from a mix of 367 public-supply and private domestic wells. The use of this dataset to test three existing logistic regression models demonstrated enhanced overall predictive accuracy for the 5 and 10 μg/L models. Overall accuracies of 54.8, 76.3, and 86.4 percent were reported for the 1, 5, and 10 μg/L models, respectively. The state was divided by counties into northwest and southeast regions. Regional differences in accuracy were identified; models had an average accuracy of 83.1 percent for the counties in the northwest and 63.7 percent in the southeast. This is most likely due to high model specificity in the northwest and regional differences in arsenic occurrence. Though these models have limitations, they allow for arsenic hazard assessment across the region. The introduction of well-type (public or private), well depth, and casing length as explanatory variables may be appropriate measures to improve model performance. Our findings indicate that the original models generalize to the testing dataset, and should continue to serve as an important vehicle of preventative public health that may be applied to other groundwater contaminants in New Hampshire.
Developing and Testing a Model to Predict Outcomes of Organizational Change
Gustafson, David H; Sainfort, François; Eichler, Mary; Adams, Laura; Bisognano, Maureen; Steudel, Harold
2003-01-01
Objective To test the effectiveness of a Bayesian model employing subjective probability estimates for predicting success and failure of health care improvement projects. Data Sources Experts' subjective assessment data for model development and independent retrospective data on 221 healthcare improvement projects in the United States, Canada, and the Netherlands collected between 1996 and 2000 for validation. Methods A panel of theoretical and practical experts and literature in organizational change were used to identify factors predicting the outcome of improvement efforts. A Bayesian model was developed to estimate probability of successful change using subjective estimates of likelihood ratios and prior odds elicited from the panel of experts. A subsequent retrospective empirical analysis of change efforts in 198 health care organizations was performed to validate the model. Logistic regression and ROC analysis were used to evaluate the model's performance using three alternative definitions of success. Data Collection For the model development, experts' subjective assessments were elicited using an integrative group process. For the validation study, a staff person intimately involved in each improvement project responded to a written survey asking questions about model factors and project outcomes. Results Logistic regression chi-square statistics and areas under the ROC curve demonstrated a high level of model performance in predicting success. Chi-square statistics were significant at the 0.001 level and areas under the ROC curve were greater than 0.84. Conclusions A subjective Bayesian model was effective in predicting the outcome of actual improvement projects. Additional prospective evaluations as well as testing the impact of this model as an intervention are warranted. PMID:12785571
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.
Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.
2004-03-01
Breusch - Pagan test for constant variance of the residuals. Using Microsoft Excel® we calculate a p-value of 0.841237. This high p-value, which is above...our alpha of 0.05, indicates that our residuals indeed pass the Breusch - Pagan test for constant variance. In addition to the assumption tests , we...Wilk Test for Normality – Support (Reduced) Model (OLS) Finally, we perform a Breusch - Pagan test for constant variance of the residuals. Using
Selenium in irrigated agricultural areas of the western United States
Nolan, B.T.; Clark, M.L.
1997-01-01
A logistic regression model was developed to predict the likelihood that Se exceeds the USEPA chronic criterion for aquatic life (5 ??g/L) in irrigated agricultural areas of the western USA. Preliminary analysis of explanatory variables used in the model indicated that surface-water Se concentration increased with increasing dissolved solids (DS) concentration and with the presence of Upper Cretaceous, mainly marine sediment. The presence or absence of Cretaceous sediment was the major variable affecting Se concentration in surface-water samples from the National Irrigation Water Quality Program. Median Se concentration was 14 ??g/L in samples from areas underlain by Cretaceous sediments and < 1 ??g/L in samples from areas underlain by non-Cretaceous sediments. Wilcoxon rank sum tests indicated that elevated Se concentrations in samples from areas with Cretaceous sediments, irrigated areas, and from closed lakes and ponds were statistically significant. Spearman correlations indicated that Se was positively correlated with a binary geology variable (0.64) and DS (0.45). Logistic regression models indicated that the concentration of Se in surface water was almost certain to exceed the Environmental Protection Agency aquatic-life chronic criterion of 5 ??g/L when DS was greater than 3000 mg/L in areas with Cretaceous sediments. The 'best' logistic regression model correctly predicted Se exceedances and nonexceedances 84.4% of the time, and model sensitivity was 80.7%. A regional map of Cretaceous sediment showed the location of potential problem areas. The map and logistic regression model are tools that can be used to determine the potential for Se contamination of irrigated agricultural areas in the western USA.
Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation.
Kim, Miran; Song, Yongsoo; Wang, Shuang; Xia, Yuhou; Jiang, Xiaoqian
2018-04-17
Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. ©Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018.
Timmermans, Luc; Falez, Freddy; Mélot, Christian; Wespes, Eric
2013-09-01
A urinary incontinence impairment rating must be a highly accurate, non-invasive exploration of the condition using International Classification of Functioning (ICF)-based assessment tools. The objective of this study was to identify the best evaluation test and to determine an impairment rating model of urinary incontinence. In performing a cross-sectional study comparing successive urodynamic tests using both the International Consultation on Incontinence Questionnaire-Urinary Incontinence-Short Form (ICIQ-UI-SF) and the 1-hr pad-weighing test in 120 patients, we performed statistical likelihood ratio analysis and used logistic regression to calculate the probability of urodynamic incontinence using the most significant independent predictors. Subsequently, we created a template that was based on the significant predictors and the probability of urodynamic incontinence. The mean ICIQ-UI-SF score was 13.5 ± 4.6, and the median pad test value was 8 g. The discrimination statistic (receiver operating characteristic) described how well the urodynamic observations matched the ICIQ-UI-SF scores (under curve area (UDA):0.689) and the pad test data (UDA: 0.693). Using logistic regression analysis, we demonstrated that the best independent predictors of urodynamic incontinence were the patient's age and the ICIQ-UI-SF score. The logistic regression model permitted us to construct an equation to determine the probability of urodynamic incontinence. Using these tools, we created a template to generate a probability index of urodynamic urinary incontinence. Using this probability index, relative to the patient and to the maximum impairment of the whole person (MIWP) relative to urinary incontinence, we were able to calculate a patient's permanent impairment. Copyright © 2012 Wiley Periodicals, Inc.
Stochastic modeling of sunshine number data
NASA Astrophysics Data System (ADS)
Brabec, Marek; Paulescu, Marius; Badescu, Viorel
2013-11-01
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar Radiation Monitoring Station of the West University of Timisoara.
Stochastic modeling of sunshine number data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Marek, E-mail: mbrabec@cs.cas.cz; Paulescu, Marius; Badescu, Viorel
2013-11-13
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation ofmore » Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar Radiation Monitoring Station of the West University of Timisoara.« less
NASA Technical Reports Server (NTRS)
deWeck, Olivier; Simchi-Levi, David
2006-01-01
The 2005 expedition to the Haughton-Mars Project (HMP) research station on Devon Island was part of a NASA-funded project on Space Logistics. A team of nine researchers from MIT went to the Canadian Arctic to participate in the annual HMP field campaign from July 8 to August 12, 2005. We investigated the applicability of the HMP research station as an analogue for planetary macro- and micro-logistics to the Moon and Mars, and began collecting data for modeling purposes. We also tested new technologies and procedures to enhance the ability of humans and robots to jointly explore remote environments. The expedition had four main objectives. We briefly summarize our key findings in each of these areas.
Applying Kaplan-Meier to Item Response Data
ERIC Educational Resources Information Center
McNeish, Daniel
2018-01-01
Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less
ERIC Educational Resources Information Center
Sahin, Alper; Weiss, David J.
2015-01-01
This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…
To Weight or Not to Weight? Balancing Influence of Initial Items in Adaptive Testing
ERIC Educational Resources Information Center
Chang, Hua-Hua; Ying, Zhiliang
2008-01-01
It has been widely reported that in computerized adaptive testing some examinees may get much lower scores than they would normally if an alternative paper-and-pencil version were given. The main purpose of this investigation is to quantitatively reveal the cause for the underestimation phenomenon. The logistic models, including the 1PL, 2PL, and…
On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis
ERIC Educational Resources Information Center
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas
2011-01-01
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A
2013-08-01
As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.
NASA Astrophysics Data System (ADS)
Amran, T. G.; Janitra Yose, Mindy
2018-03-01
As the free trade Asean Economic Community (AEC) causes the tougher competition, it is important that Indonesia’s automotive industry have high competitiveness as well. A model of logistics performance measurement was designed as an evaluation tool for automotive component companies to improve their logistics performance in order to compete in AEC. The design of logistics performance measurement model was based on the Logistics Scorecard perspectives, divided into two stages: identifying the logistics business strategy to get the KPI and arranging the model. 23 KPI was obtained. The measurement result can be taken into consideration of determining policies to improve the performance logistics competitiveness.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo
2018-05-01
Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.
Risk factors for lesions of the knee menisci among workers in South Korea's national parks.
Shin, Donghee; Youn, Kanwoo; Lee, Eunja; Lee, Myeongjun; Chung, Hweemin; Kim, Deokweon
2016-01-01
This study was designed to investigate the prevalence of the menisci lesions in national park workers and work factors affecting this prevalence. The study subjects were 698 workers who worked in 20 Korean national parks in 2014. An orthopedist visited each national park and performed physical examinations. Knee MRI was performed if the McMurray test or Apley test was positive and there was a complaint of pain in knee area. An orthopedist and a radiologist respectively read these images of the menisci using a grading system based on the MRI signals. To calculate the cumulative intensity of trekking of the workers, the mean trail distance, the difficulty of the trail, the tenure at each national parks, and the number of treks per month for each worker from the start of work until the present were investigated. Chi-square tests was performed to see if there were differences in the menisci lesions grade according to the variables. The variables used in the Chi-square test were evaluated using simple logistic regression analysis to get crude odds ratios, and adjusted odds ratios and 95 % confidence intervals were calculated using multivariate logistic regression analysis after establishing three different models according to the adjusted variables. According to the MRI signal grades of menisci, 29 % were grade 0, 11.3 % were grade 1, 46.0 % were grade 2, and 13.7 % were grade 3. The differences in the MRI signal grades of menisci according to age and the intensity of trekking as calculated by the three different methods were statistically significant. Multiple logistic regression analysis was performed for three models. In model 1, there was no statistically significant factor affecting the menisci lesions. In model 2, among the factors affecting the menisci lesions, the OR of a high cumulative intensity of trekking was 4.08 (95 % CI 1.00-16.61), and in model 3, the OR of a high cumulative intensity of trekking was 5.84 (95 % CI 1.09-31.26). The factor that most affected the menisci lesions among the workers in Korean national park was a high cumulative intensity of trekking.
The Mantel-Haenszel procedure revisited: models and generalizations.
Fidler, Vaclav; Nagelkerke, Nico
2013-01-01
Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented.
The Mantel-Haenszel Procedure Revisited: Models and Generalizations
Fidler, Vaclav; Nagelkerke, Nico
2013-01-01
Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented. PMID:23516463
Fitting Item Response Theory Models to Two Personality Inventories: Issues and Insights.
Chernyshenko, O S; Stark, S; Chan, K Y; Drasgow, F; Williams, B
2001-10-01
The present study compared the fit of several IRT models to two personality assessment instruments. Data from 13,059 individuals responding to the US-English version of the Fifth Edition of the Sixteen Personality Factor Questionnaire (16PF) and 1,770 individuals responding to Goldberg's 50 item Big Five Personality measure were analyzed. Various issues pertaining to the fit of the IRT models to personality data were considered. We examined two of the most popular parametric models designed for dichotomously scored items (i.e., the two- and three-parameter logistic models) and a parametric model for polytomous items (Samejima's graded response model). Also examined were Levine's nonparametric maximum likelihood formula scoring models for dichotomous and polytomous data, which were previously found to provide good fits to several cognitive ability tests (Drasgow, Levine, Tsien, Williams, & Mead, 1995). The two- and three-parameter logistic models fit some scales reasonably well but not others; the graded response model generally did not fit well. The nonparametric formula scoring models provided the best fit of the models considered. Several implications of these findings for personality measurement and personnel selection were described.
An Alternative to the 3PL: Using Asymmetric Item Characteristic Curves to Address Guessing Effects
ERIC Educational Resources Information Center
Lee, Sora; Bolt, Daniel M.
2018-01-01
Both the statistical and interpretational shortcomings of the three-parameter logistic (3PL) model in accommodating guessing effects on multiple-choice items are well documented. We consider the use of a residual heteroscedasticity (RH) model as an alternative, and compare its performance to the 3PL with real test data sets and through simulation…
ERIC Educational Resources Information Center
Wu, Yi-Fang
2015-01-01
Item response theory (IRT) uses a family of statistical models for estimating stable characteristics of items and examinees and defining how these characteristics interact in describing item and test performance. With a focus on the three-parameter logistic IRT (Birnbaum, 1968; Lord, 1980) model, the current study examines the accuracy and…
Di Mauro, Michele; Dato, Guglielmo Mario Actis; Barili, Fabio; Gelsomino, Sandro; Santè, Pasquale; Corte, Alessandro Della; Carrozza, Antonio; Ratta, Ester Della; Cugola, Diego; Galletti, Lorenzo; Devotini, Roger; Casabona, Riccardo; Santini, Francesco; Salsano, Antonio; Scrofani, Roberto; Antona, Carlo; Botta, Luca; Russo, Claudio; Mancuso, Samuel; Rinaldi, Mauro; De Vincentiis, Carlo; Biondi, Andrea; Beghi, Cesare; Cappabianca, Giangiuseppe; Tarzia, Vincenzo; Gerosa, Gino; De Bonis, Michele; Pozzoli, Alberto; Nicolini, Francesco; Benassi, Filippo; Rosato, Francesco; Grasso, Elena; Livi, Ugolino; Sponga, Sandro; Pacini, Davide; Di Bartolomeo, Roberto; De Martino, Andrea; Bortolotti, Uberto; Onorati, Francesco; Faggian, Giuseppe; Lorusso, Roberto; Vizzardi, Enrico; Di Giammarco, Gabriele; Marinelli, Daniele; Villa, Emmanuel; Troise, Giovanni; Picichè, Marco; Musumeci, Francesco; Paparella, Domenico; Margari, Vito; Tritto, Francesco; Damiani, Girolamo; Scrascia, Giuseppe; Zaccaria, Salvatore; Renzulli, Attilio; Serraino, Giuseppe; Mariscalco, Giovanni; Maselli, Daniele; Foschi, Massimiliano; Parolari, Alessandro; Nappi, Giannantonio
2017-08-15
The aim of this large retrospective study was to provide a logistic risk model along an additive score to predict early mortality after surgical treatment of patients with heart valve or prosthesis infective endocarditis (IE). From 2000 to 2015, 2715 patients with native valve endocarditis (NVE) or prosthesis valve endocarditis (PVE) were operated on in 26 Italian Cardiac Surgery Centers. The relationship between early mortality and covariates was evaluated with logistic mixed effect models. Fixed effects are parameters associated with the entire population or with certain repeatable levels of experimental factors, while random effects are associated with individual experimental units (centers). Early mortality was 11.0% (298/2715); At mixed effect logistic regression the following variables were found associated with early mortality: age class, female gender, LVEF, preoperative shock, COPD, creatinine value above 2mg/dl, presence of abscess, number of treated valve/prosthesis (with respect to one treated valve/prosthesis) and the isolation of Staphylococcus aureus, Fungus spp., Pseudomonas Aeruginosa and other micro-organisms, while Streptococcus spp., Enterococcus spp. and other Staphylococci did not affect early mortality, as well as no micro-organisms isolation. LVEF was found linearly associated with outcomes while non-linear association between mortality and age was tested and the best model was found with a categorization into four classes (AUC=0.851). The following study provides a logistic risk model to predict early mortality in patients with heart valve or prosthesis infective endocarditis undergoing surgical treatment, called "The EndoSCORE". Copyright © 2017. Published by Elsevier B.V.
SPD-based Logistics Management Model of Medical Consumables in Hospitals.
Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei; Yang, Shanlin
2016-10-01
With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China.
NASA Astrophysics Data System (ADS)
Shao, Yuxiang; Chen, Qing; Wei, Zhenhua
Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.
Nowcasting sunshine number using logistic modeling
NASA Astrophysics Data System (ADS)
Brabec, Marek; Badescu, Viorel; Paulescu, Marius
2013-04-01
In this paper, we present a formalized approach to statistical modeling of the sunshine number, binary indicator of whether the Sun is covered by clouds introduced previously by Badescu (Theor Appl Climatol 72:127-136, 2002). Our statistical approach is based on Markov chain and logistic regression and yields fully specified probability models that are relatively easily identified (and their unknown parameters estimated) from a set of empirical data (observed sunshine number and sunshine stability number series). We discuss general structure of the model and its advantages, demonstrate its performance on real data and compare its results to classical ARIMA approach as to a competitor. Since the model parameters have clear interpretation, we also illustrate how, e.g., their inter-seasonal stability can be tested. We conclude with an outlook to future developments oriented to construction of models allowing for practically desirable smooth transition between data observed with different frequencies and with a short discussion of technical problems that such a goal brings.
NASA Astrophysics Data System (ADS)
Yang, Bo; Tong, Yuting
2017-04-01
With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.
Avoiding overstating the strength of forensic evidence: Shrunk likelihood ratios/Bayes factors.
Morrison, Geoffrey Stewart; Poh, Norman
2018-05-01
When strength of forensic evidence is quantified using sample data and statistical models, a concern may be raised as to whether the output of a model overestimates the strength of evidence. This is particularly the case when the amount of sample data is small, and hence sampling variability is high. This concern is related to concern about precision. This paper describes, explores, and tests three procedures which shrink the value of the likelihood ratio or Bayes factor toward the neutral value of one. The procedures are: (1) a Bayesian procedure with uninformative priors, (2) use of empirical lower and upper bounds (ELUB), and (3) a novel form of regularized logistic regression. As a benchmark, they are compared with linear discriminant analysis, and in some instances with non-regularized logistic regression. The behaviours of the procedures are explored using Monte Carlo simulated data, and tested on real data from comparisons of voice recordings, face images, and glass fragments. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Analytical Tools for Affordability Analysis
2015-04-30
flunk this basic test from their inception. —Honorable Ashton B. Carter (2010), Under Secretary of Defense for Acquisition, Technology, and Logistics... Testing , and Evaluation] funding has been lost to cancelled programs. (Decker & Wagner, 2011) The Army is scarcely unique in this regard. All... econometric model of how schedule affects cost should take advantage of these different cost categories and treat them separately when they are known
Laura P. Leites; Andrew P. Robinson; Nicholas L. Crookston
2009-01-01
Diameter growth (DG) equations in many existing forest growth and yield models use tree crown ratio (CR) as a predictor variable. Where CR is not measured, it is estimated from other measured variables. We evaluated CR estimation accuracy for the models in two Forest Vegetation Simulator variants: the exponential and the logistic CR models used in the North...
Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal
2005-09-01
To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.
Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi
2017-03-01
Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Xingyu; Kim, Joyce; Patzer, Rachel E; Pitts, Stephen R; Patzer, Aaron; Schrager, Justin D
2017-10-26
To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements. Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient's reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model. Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.731- 0.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN. The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient's reason for visit regardless of modeling approach. Natural language processing and neural networks that incorporate patient-reported outcome free text may increase predictive accuracy for hospital admission.
2004-03-01
constant variance via an analysis of the residuals, as well as the Breusch - Pagan test (see Figure 3 below). As a result, we follow the footsteps of...reasonably normal, which ensures that our residuals meet the assumption of constant variance by passing the Breusch - Pagan test (see Figure 4 below...sections for Research and Development, Test and Evaluation (RDT&E), procurement and military construction (Jarvaise, 1996:3). While differing
Liebe, J D; Hübner, U; Straede, M C; Thye, J
2015-01-01
Availability and usage of individual IT applications have been studied intensively in the past years. Recently, IT support of clinical processes is attaining increasing attention. The underlying construct that describes the IT support of clinical workflows is clinical information logistics. This construct needs to be better understood, operationalised and measured. It is therefore the aim of this study to propose and develop a workflow composite score (WCS) for measuring clinical information logistics and to examine its quality based on reliability and validity analyses. We largely followed the procedural model of MacKenzie and colleagues (2011) for defining and conceptualising the construct domain, for developing the measurement instrument, assessing the content validity, pretesting the instrument, specifying the model, capturing the data and computing the WCS and testing the reliability and validity. Clinical information logistics was decomposed into the descriptors data and information, function, integration and distribution, which embraced the framework validated by an analysis of the international literature. This framework was refined selecting representative clinical processes. We chose ward rounds, pre- and post-surgery processes and discharge as sample processes that served as concrete instances for the measurements. They are sufficiently complex, represent core clinical processes and involve different professions, departments and settings. The score was computed on the basis of data from 183 hospitals of different size, ownership, location and teaching status. Testing the reliability and validity yielded encouraging results: the reliability was high with r(split-half) = 0.89, the WCS discriminated between groups; the WCS correlated significantly and moderately with two EHR models and the WCS received good evaluation results by a sample of chief information officers (n = 67). These findings suggest the further utilisation of the WCS. As the WCS does not assume ideal workflows as a gold standard but measures IT support of clinical workflows according to validated descriptors a high portability of the WCS to other hospitals in other countries is very likely. The WCS will contribute to a better understanding of the construct clinical information logistics.
Tahir, M Ramzan; Tran, Quang X; Nikulin, Mikhail S
2017-05-30
We studied the problem of testing a hypothesized distribution in survival regression models when the data is right censored and survival times are influenced by covariates. A modified chi-squared type test, known as Nikulin-Rao-Robson statistic, is applied for the comparison of accelerated failure time models. This statistic is used to test the goodness-of-fit for hypertabastic survival model and four other unimodal hazard rate functions. The results of simulation study showed that the hypertabastic distribution can be used as an alternative to log-logistic and log-normal distribution. In statistical modeling, because of its flexible shape of hazard functions, this distribution can also be used as a competitor of Birnbaum-Saunders and inverse Gaussian distributions. The results for the real data application are shown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
LOGAM (Logistic Analysis Model). Volume 2. Users Manual.
1982-08-01
as opposed to simulation models which represent a system’s behavior as a function of time. These latter classes of models are often complex. They...includes the cost of ammunition and missiles comsumed by the system being costed during unit training. Excluded is the cost of ammunition consumed during...data. The results obtained from sensitivity testing may be used to construct graphs which display the behavior of the maintenance concept over the range
Research on JD e-commerce's delivery model
NASA Astrophysics Data System (ADS)
Fan, Zhiguo; Ma, Mengkun; Feng, Chaoying
2017-03-01
E-commerce enterprises represented by JD have made a great contribution to the economic growth and economic development of our country. Delivery, as an important part of logistics, has self-evident importance. By establishing efficient and perfect self-built logistics systems and building good cooperation models with third-party logistics enterprises, e-commerce enterprises have created their own logistics advantages. Characterized by multi-batch and small-batch, e-commerce is much more complicated than traditional transaction. It's not easy to decide which delivery model e-commerce enterprises should adopt. Having e-commerce's logistics delivery as the main research object, this essay aims to find a more suitable logistics delivery model for JD's development.
Berrisford, Richard; Brunelli, Alessandro; Rocco, Gaetano; Treasure, Tom; Utley, Martin
2005-08-01
To identify pre-operative factors associated with in-hospital mortality following lung resection and to construct a risk model that could be used prospectively to inform decisions and retrospectively to enable fair comparisons of outcomes. Data were submitted to the European Thoracic Surgery Database from 27 units in 14 countries. We analysed data concerning all patients that had a lung resection. Logistic regression was used with a random sample of 60% of cases to identify pre-operative factors associated with in-hospital mortality and to build a model of risk. The resulting model was tested on the remaining 40% of patients. A second model based on age and ppoFEV1% was developed for risk of in-hospital death amongst tumour resection patients. Of the 3426 adult patients that had a first lung resection for whom mortality data were available, 66 died within the same hospital admission. Within the data used for model development, dyspnoea (according to the Medical Research Council classification), ASA (American Society of Anaesthesiologists) score, class of procedure and age were found to be significantly associated with in-hospital death in a multivariate analysis. The logistic model developed on these data displayed predictive value when tested on the remaining data. Two models of the risk of in-hospital death amongst adult patients undergoing lung resection have been developed. The models show predictive value and can be used to discern between high-risk and low-risk patients. Amongst the test data, the model developed for all diagnoses performed well at low risk, underestimated mortality at medium risk and overestimated mortality at high risk. The second model for resection of lung neoplasms was developed after establishing the performance of the first model and so could not be tested robustly. That said, we were encouraged by its performance over the entire range of estimated risk. The first of these two models could be regarded as an evaluation based on clinically available criteria while the second uses data obtained from objective measurement. We are optimistic that further model development and testing will provide a tool suitable for case mix adjustment.
SPD-based Logistics Management Model of Medical Consumables in Hospitals
LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei; YANG, Shanlin
2016-01-01
Background: With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. Methods: We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. Results: We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. Conclusion: The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China. PMID:27957435
Loaiza-Echeverri, A M; Bergmann, J A G; Toral, F L B; Osorio, J P; Carmo, A S; Mendonça, L F; Moustacas, V S; Henry, M
2013-03-15
The objective was to use various nonlinear models to describe scrotal circumference (SC) growth in Guzerat bulls on three farms in the state of Minas Gerais, Brazil. The nonlinear models were: Brody, Logistic, Gompertz, Richards, Von Bertalanffy, and Tanaka, where parameter A is the estimated testis size at maturity, B is the integration constant, k is a maturating index and, for the Richards and Tanaka models, m determines the inflection point. In Tanaka, A is an indefinite size of the testis, and B and k adjust the shape and inclination of the curve. A total of 7410 SC records were obtained every 3 months from 1034 bulls with ages varying between 2 and 69 months (<240 days of age = 159; 241-365 days = 451; 366-550 days = 1443; 551-730 days = 1705; and >731 days = 3652 SC measurements). Goodness of fit was evaluated by coefficients of determination (R(2)), error sum of squares, average prediction error (APE), and mean absolute deviation. The Richards model did not reach the convergence criterion. The R(2) were similar for all models (0.68-0.69). The error sum of squares was lowest for the Tanaka model. All models fit the SC data poorly in the early and late periods. Logistic was the model which best estimated SC in the early phase (based on APE and mean absolute deviation). The Tanaka and Logistic models had the lowest APE between 300 and 1600 days of age. The Logistic model was chosen for analysis of the environmental influence on parameters A and k. Based on absolute growth rate, SC increased from 0.019 cm/d, peaking at 0.025 cm/d between 318 and 435 days of age. Farm, year, and season of birth significantly affected size of adult SC and SC growth rate. An increase in SC adult size (parameter A) was accompanied by decreased SC growth rate (parameter k). In conclusion, SC growth in Guzerat bulls was characterized by an accelerated growth phase, followed by decreased growth; this was best represented by the Logistic model. The inflection point occurred at approximately 376 days of age (mean SC of 17.9 cm). We inferred that early selection of testicular size might result in smaller testes at maturity. Copyright © 2013 Elsevier Inc. All rights reserved.
Selected Logistics Models and Techniques.
1984-09-01
TI - 59 Programmable Calculator LCC...Program 27 TI - 59 Programmable Calculator LCC Model 30 Unmanned Spacecraft Cost Model 31 iv I: TABLE OF CONTENTS (CONT’D) (Subject Index) LOGISTICS...34"" - % - "° > - " ° .° - " .’ > -% > ]*° - LOGISTICS ANALYSIS MODEL/TECHNIQUE DATA MODEL/TECHNIQUE NAME: TI - 59 Programmable Calculator LCC Model TYPE MODEL: Cost Estimating DEVELOPED BY:
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
NASA Astrophysics Data System (ADS)
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers
Zapateiro De la Hoz, Mauricio; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes. PMID:26413563
Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.
Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam
2017-11-01
The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu
Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System weremore » used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic carcinogenesis (C) were studied by toxicogenomics. • Important genes for H and C were selected by logistic ridge regression analysis. • Amino acid biosynthesis and oxidative responses may be involved in C. • Predictive models for H and C provided 94.8% and 82.7% accuracy, respectively. • The identified genes could be useful for assessment of liver hypertrophy.« less
GIS-based spatial decision support system for grain logistics management
NASA Astrophysics Data System (ADS)
Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi
2010-07-01
Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.
Bayesian Estimation of the Logistic Positive Exponent IRT Model
ERIC Educational Resources Information Center
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong
2013-01-01
For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809
Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong
2013-01-01
For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.
Tu, Shin-Ping; Li, Lin; Tsai, Jenny Hsin-Chun; Yip, Mei-Po; Terasaki, Genji; Teh, Chong; Yasui, Yutaka; Hislop, T Gregory; Taylor, Vicky
2013-01-01
Background The Western Pacific region has the highest level of endemic hepatitis B virus (HBV) infection in the world, with the Chinese representing nearly one-third of infected persons globally. HBV carriers are potentially infectious to others and have an increased risk of chronic active hepatitis, cirrhosis, and hepatocellular carcinoma. Studies from the U.S. and Canada demonstrate that immigrants, particularly from Asia, are disproportionately affected by liver cancer. Purpose Given the different health care systems in Seattle and Vancouver, two geographically proximate cities, we examined HBV testing levels and factors associated with testing among Chinese residents of these cities. Methods We surveyed Chinese living in areas of Seattle and Vancouver with relatively high proportions of Chinese residents. In-person interviews were conducted in Cantonese, Mandarin, or English. Our bivariate analyses consisted of the chi-square test, with Fisher’s Exact test as necessary. We then performed unconditional logistic regression, first examining only the city effect as the sole explanatory variable of the model, then assessing the adjusted city effect in a final main-effects model that was constructed through backward selection to select statistically significant variables at alpha = 0.05. Results Survey cooperation rates for Seattle and Vancouver were 58% and 59%, respectively. In Seattle, 48% reported HBV testing, whereas in Vancouver, 55% reported testing. HBV testing in Seattle was lower than in Vancouver, with a crude odds ratio of 0.73 (95% CI = 0.56, 0.94). However after adjusting for demographic, health care access, knowledge, and social support variables, we found no significant differences in HBV testing between the two cities. In our logistic regression model, the odds of HBV testing were greatest when the doctor recommended the test, followed by when the employer asked for the test. Discussion Findings from this study support the need for additional research to examine the effectiveness of clinic-based and workplace interventions to promote HBV testing among immigrants to North America. PMID:19640196
Tu R, Shin-Ping; Li, Lin; Tsai, Jenny Hsin-Chun; Yip, Mei-Po; Terasaki, Genji; Teh, Chong; Yasui, Yutaka; Hislop, T Gregory; Taylor, Vicky
2009-01-01
The Western Pacific region has the highest level of endemic hepatitis B virus (HBV) infection in the world, with the Chinese representing nearly one-third of infected persons globally. HBV carriers are potentially infectious to others and have an increased risk of chronic active hepatitis, cirrhosis, and hepatocellular carcinoma. Studies from the U.S. and Canada demonstrate that immigrants, particularly from Asia, are disproportionately affected by liver cancer. Given the different health care systems in Seattle and Vancouver, two geographically proximate cities, we examined HBV testing levels and factors associated with testing among Chinese residents of these cities. We surveyed Chinese living in areas of Seattle and Vancouver with relatively high proportions of Chinese residents. In-person interviews were conducted in Cantonese, Mandarin, or English. Our bivariate analyses consisted of the chi-square test, with Fisher's Exact test as necessary. We then performed unconditional logistic regression, first examining only the city effect as the sole explanatory variable of the model, then assessing the adjusted city effect in a final main-effects model that was constructed through backward selection to select statistically significant variables at alpha=0.05. Survey cooperation rates for Seattle and Vancouver were 58% and 59%, respectively. In Seattle, 48% reported HBV testing, whereas in Vancouver, 55% reported testing. HBV testing in Seattle was lower than in Vancouver, with a crude odds ratio of 0.73 (95% CI = 0.56, 0.94). However after adjusting for demographic, health care access, knowledge, and social support variables, we found no significant differences in HBV testing between the two cities. In our logistic regression model, the odds of HBV testing were greatest when the doctor recommended the test, followed by when the employer asked for the test. Findings from this study support the need for additional research to examine the effectiveness of clinic-based and workplace interventions to promote HBV testing among immigrants to North America.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
Weiss, Brandi A.; Dardick, William
2015-01-01
This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.
Weiss, Brandi A; Dardick, William
2016-12-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.
Testing the Model Installation Program in the Tactical Air Command: 1984-1986.
1988-04-01
Installation Program was the brain child at Mr. Robert A. Stone. Deputy Assistant Secretary at Detense tor Manpower and Logistics. Mr. Stone was...what a - orn - , mnader can do when relieved from overly restrictive reguiations. L irtland needed a new electronic printing system. They received a
An Examination of Master's Student Retention & Completion
ERIC Educational Resources Information Center
Barry, Melissa; Mathies, Charles
2011-01-01
This study was conducted at a research-extensive public university in the southeastern United States. It examined the retention and completion of master's degree students across numerous disciplines. Results were derived from a series of descriptive statistics, T-tests, and a series of binary logistic regression models. The findings from binary…
Estimating Procurement Cost Growth Using Logistic and Multiple Regression
2003-03-01
Figure 4). The plots fail to pass the visual inspection for constant variance as well as the Breusch - Pagan test (Neter, 1996: 112) at an alpha level...plots fail to pass the visual inspection for constant variance as well as the Breusch - Pagan test at an alpha level of 0.05. Based on these findings...amount of cost growth a program will have 13 once model A deems that the program will incur cost growth. Sipple conducts validation testing on
Comparing the Discrete and Continuous Logistic Models
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche
This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less
Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche; ...
2016-03-14
This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less
Logistics Modeling for Lunar Exploration Systems
NASA Technical Reports Server (NTRS)
Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.
2008-01-01
The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.
Equal Area Logistic Estimation for Item Response Theory
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li
2009-08-01
Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.
Evolution Model and Simulation of Profit Model of Agricultural Products Logistics Financing
NASA Astrophysics Data System (ADS)
Yang, Bo; Wu, Yan
2018-03-01
Agricultural products logistics financial warehousing business mainly involves agricultural production and processing enterprises, third-party logistics enterprises and financial institutions tripartite, to enable the three parties to achieve win-win situation, the article first gives the replication dynamics and evolutionary stability strategy between the three parties in business participation, and then use NetLogo simulation platform, using the overall modeling and simulation method of Multi-Agent, established the evolutionary game simulation model, and run the model under different revenue parameters, finally, analyzed the simulation results. To achieve the agricultural products logistics financial financing warehouse business to participate in tripartite mutually beneficial win-win situation, thus promoting the smooth flow of agricultural products logistics business.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wang, J; Shen, L
Purpose: The purpose of this study is to investigate the relationship between computed tomographic (CT) texture features of primary lesions and metastasis-free survival for rectal cancer patients; and to develop a datamining prediction model using texture features. Methods: A total of 220 rectal cancer patients treated with neoadjuvant chemo-radiotherapy (CRT) were enrolled in this study. All patients underwent CT scans before CRT. The primary lesions on the CT images were delineated by two experienced oncologists. The CT images were filtered by Laplacian of Gaussian (LoG) filters with different filter values (1.0–2.5: from fine to coarse). Both filtered and unfiltered imagesmore » were analyzed using Gray-level Co-occurrence Matrix (GLCM) texture analysis with different directions (transversal, sagittal, and coronal). Totally, 270 texture features with different species, directions and filter values were extracted. Texture features were examined with Student’s t-test for selecting predictive features. Principal Component Analysis (PCA) was performed upon the selected features to reduce the feature collinearity. Artificial neural network (ANN) and logistic regression were applied to establish metastasis prediction models. Results: Forty-six of 220 patients developed metastasis with a follow-up time of more than 2 years. Sixtyseven texture features were significantly different in t-test (p<0.05) between patients with and without metastasis, and 12 of them were extremely significant (p<0.001). The Area-under-the-curve (AUC) of ANN was 0.72, and the concordance index (CI) of logistic regression was 0.71. The predictability of ANN was slightly better than logistic regression. Conclusion: CT texture features of primary lesions are related to metastasisfree survival of rectal cancer patients. Both ANN and logistic regression based models can be developed for prediction.« less
Ensemble habitat mapping of invasive plant species
Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.
2010-01-01
Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.
On the assessment of the added value of new predictive biomarkers.
Chen, Weijie; Samuelson, Frank W; Gallas, Brandon D; Kang, Le; Sahiner, Berkman; Petrick, Nicholas
2013-07-29
The surge in biomarker development calls for research on statistical evaluation methodology to rigorously assess emerging biomarkers and classification models. Recently, several authors reported the puzzling observation that, in assessing the added value of new biomarkers to existing ones in a logistic regression model, statistical significance of new predictor variables does not necessarily translate into a statistically significant increase in the area under the ROC curve (AUC). Vickers et al. concluded that this inconsistency is because AUC "has vastly inferior statistical properties," i.e., it is extremely conservative. This statement is based on simulations that misuse the DeLong et al. method. Our purpose is to provide a fair comparison of the likelihood ratio (LR) test and the Wald test versus diagnostic accuracy (AUC) tests. We present a test to compare ideal AUCs of nested linear discriminant functions via an F test. We compare it with the LR test and the Wald test for the logistic regression model. The null hypotheses of these three tests are equivalent; however, the F test is an exact test whereas the LR test and the Wald test are asymptotic tests. Our simulation shows that the F test has the nominal type I error even with a small sample size. Our results also indicate that the LR test and the Wald test have inflated type I errors when the sample size is small, while the type I error converges to the nominal value asymptotically with increasing sample size as expected. We further show that the DeLong et al. method tests a different hypothesis and has the nominal type I error when it is used within its designed scope. Finally, we summarize the pros and cons of all four methods we consider in this paper. We show that there is nothing inherently less powerful or disagreeable about ROC analysis for showing the usefulness of new biomarkers or characterizing the performance of classification models. Each statistical method for assessing biomarkers and classification models has its own strengths and weaknesses. Investigators need to choose methods based on the assessment purpose, the biomarker development phase at which the assessment is being performed, the available patient data, and the validity of assumptions behind the methodologies.
Supply Chain Engineering and the Use of a Supporting Knowledge Management Application
NASA Astrophysics Data System (ADS)
Laakmann, Frank
The future competition in markets will happen between logistics networks and no longer between enterprises. A new approach for supporting the engineering of logistics networks is developed by this research as a part of the Collaborative Research Centre (SFB) 559: "Modeling of Large Networks in Logistics" at the University of Dortmund together with the Fraunhofer-Institute of Material Flow and Logistics founded by Deutsche Forschungsgemeinschaft (DFG). Based on a reference model for logistics processes, the process chain model, a guideline for logistics engineers is developed to manage the different types of design tasks of logistics networks. The technical background of this solution is a collaborative knowledge management application. This paper will introduce how new Internet-based technologies support supply chain design projects.
Ren, Anna N; Neher, Robert E; Bell, Tyler; Grimm, James
2018-06-01
Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range. With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration. The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set. The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable. Copyright © 2018 Elsevier Inc. All rights reserved.
Determining factors influencing survival of breast cancer by fuzzy logistic regression model.
Nikbakht, Roya; Bahrampour, Abbas
2017-01-01
Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.
Cohen, Mark E; Dimick, Justin B; Bilimoria, Karl Y; Ko, Clifford Y; Richards, Karen; Hall, Bruce Lee
2009-12-01
Although logistic regression has commonly been used to adjust for risk differences in patient and case mix to permit quality comparisons across hospitals, hierarchical modeling has been advocated as the preferred methodology, because it accounts for clustering of patients within hospitals. It is unclear whether hierarchical models would yield important differences in quality assessments compared with logistic models when applied to American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) data. Our objective was to evaluate differences in logistic versus hierarchical modeling for identifying hospitals with outlying outcomes in the ACS-NSQIP. Data from ACS-NSQIP patients who underwent colorectal operations in 2008 at hospitals that reported at least 100 operations were used to generate logistic and hierarchical prediction models for 30-day morbidity and mortality. Differences in risk-adjusted performance (ratio of observed-to-expected events) and outlier detections from the two models were compared. Logistic and hierarchical models identified the same 25 hospitals as morbidity outliers (14 low and 11 high outliers), but the hierarchical model identified 2 additional high outliers. Both models identified the same eight hospitals as mortality outliers (five low and three high outliers). The values of observed-to-expected events ratios and p values from the two models were highly correlated. Results were similar when data were permitted from hospitals providing < 100 patients. When applied to ACS-NSQIP data, logistic and hierarchical models provided nearly identical results with respect to identification of hospitals' observed-to-expected events ratio outliers. As hierarchical models are prone to implementation problems, logistic regression will remain an accurate and efficient method for performing risk adjustment of hospital quality comparisons.
NASA Astrophysics Data System (ADS)
Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.
2014-12-01
This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust models in terms of selected predictors and coefficients, as well as of dispersion of the estimated probabilities around the mean value for each mapped pixel. The difference in the behaviour could be interpreted as the result of overfitting effects, which heavily affect decision tree classification more than logistic regression techniques.
ERIC Educational Resources Information Center
Rizavi, Saba; Way, Walter D.; Lu, Ying; Pitoniak, Mary; Steffen, Manfred
2004-01-01
The purpose of this study was to use realistically simulated data to evaluate various CAT designs for use with the verbal reasoning measure of the Medical College Admissions Test (MCAT). Factors such as item pool depth, content constraints, and item formats often cause repeated adaptive administrations of an item at ability levels that are not…
ERIC Educational Resources Information Center
Choi, Youn-Jeng; Alexeev, Natalia; Cohen, Allan S.
2015-01-01
The purpose of this study was to explore what may be contributing to differences in performance in mathematics on the Trends in International Mathematics and Science Study 2007. This was done by using a mixture item response theory modeling approach to first detect latent classes in the data and then to examine differences in performance on items…
Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.
Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz
2018-02-04
To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.
Sperm function and assisted reproduction technology
MAAß, GESA; BÖDEKER, ROLF‐HASSO; SCHEIBELHUT, CHRISTINE; STALF, THOMAS; MEHNERT, CLAAS; SCHUPPE, HANS‐CHRISTIAN; JUNG, ANDREAS; SCHILL, WOLF‐BERNHARD
2005-01-01
The evaluation of different functional sperm parameters has become a tool in andrological diagnosis. These assays determine the sperm's capability to fertilize an oocyte. It also appears that sperm functions and semen parameters are interrelated and interdependent. Therefore, the question arose whether a given laboratory test or a battery of tests can predict the outcome in in vitro fertilization (IVF). One‐hundred and sixty‐one patients who underwent an IVF treatment were selected from a database of 4178 patients who had been examined for male infertility 3 months before or after IVF. Sperm concentration, motility, acrosin activity, acrosome reaction, sperm morphology, maternal age, number of transferred embryos, embryo score, fertilization rate and pregnancy rate were determined. In addition, logistic regression models to describe fertilization rate and pregnancy were developed. All the parameters in the models were dichotomized and intra‐ and interindividual variability of the parameters were assessed. Although the sperm parameters showed good correlations with IVF when correlated separately, the only essential parameter in the multivariate model was morphology. The enormous intra‐ and interindividual variability of the values was striking. In conclusion, our data indicate that the andrological status at the end of the respective treatment does not necessarily represent the status at the time of IVF. Despite a relatively low correlation coefficient in the logistic regression model, it appears that among the parameters tested, the most reliable parameter to predict fertilization is normal sperm morphology. (Reprod Med Biol 2005; 4: 7–30) PMID:29699207
Radiomorphometric analysis of frontal sinus for sex determination.
Verma, Saumya; Mahima, V G; Patil, Karthikeya
2014-09-01
Sex determination of unknown individuals carries crucial significance in forensic research, in cases where fragments of skull persist with no likelihood of identification based on dental arch. In these instances sex determination becomes important to rule out certain number of possibilities instantly and helps in establishing a biological profile of human remains. The aim of the study is to evaluate a mathematical method based on logistic regression analysis capable of ascertaining the sex of individuals in the South Indian population. The study was conducted in the department of Oral Medicine and Radiology. The right and left areas, maximum height, width of frontal sinus were determined in 100 Caldwell views of 50 women and 50 men aged 20 years and above, with the help of Vernier callipers and a square grid with 1 square measuring 1mm(2) in area. Student's t-test, logistic regression analysis. The mean values of variables were greater in men, based on Student's t-test at 5% level of significance. The mathematical model based on logistic regression analysis gave percentage agreement of total area to correctly predict the female gender as 55.2%, of right area as 60.9% and of left area as 55.2%. The areas of the frontal sinus and the logistic regression proved to be unreliable in sex determination. (Logit = 0.924 - 0.00217 × right area).
Calibration power of the Braden scale in predicting pressure ulcer development.
Chen, Hong-Lin; Cao, Ying-Juan; Wang, Jing; Huai, Bao-Sha
2016-11-02
Calibration is the degree of correspondence between the estimated probability produced by a model and the actual observed probability. The aim of this study was to investigate the calibration power of the Braden scale in predicting pressure ulcer development (PU). A retrospective analysis was performed among consecutive patients in 2013. The patients were separated into training a group and a validation group. The predicted incidence was calculated using a logistic regression model in the training group and the Hosmer-Lemeshow test was used for assessing the goodness of fit. In the validation cohort, the observed and the predicted incidence were compared by the Chi-square (χ 2 ) goodness of fit test for calibration power. We included 2585 patients in the study, of these 78 patients (3.0%) developed a PU. Between the training and validation groups the patient characteristics were non-significant (p>0.05). In the training group, the logistic regression model for predicting pressure ulcer was Logit(P) = -0.433*Braden score+2.616. The Hosmer-Lemeshow test showed no goodness fit (χ 2 =13.472; p=0.019). In the validation group, the predicted pressure ulcer incidence also did not fit well with the observed incidence (χ 2 =42.154, p=0.000 by Braden scores; and χ 2 =17.223, p=0.001 by Braden scale risk classification). The Braden scale has low calibration power in predicting PU formation.
Zhang, Dapeng; Lu, Hongyan; Zhuang, Minghua; Wu, Guohui; Yan, Hongjing; Xu, Jun; Wei, Xiaoli; Li, Chengmei; Meng, Sining; Fu, Xiaojing; Qi, Jinlei; Wang, Peng; Luo, Mei; Dai, Min; Yip, Ray; Sun, Jiangping; Wu, Zunyou
2016-01-01
To explore models to improve HIV testing, linkage to care and treatment among men who have sex with men (MSM) in cooperation with community-based organizations (CBOs) in China. We introduced a new model for HIV testing services targeting MSM in six cities in 2013.These models introduced provision of rapid HIV testing by CBO staff and streamlined processes for HIV screening, confirmation of initial reactive screening results, and linkage to care among diagnosed people. We monitored attrition along each step of the continuum of care from screening to treatment and compared program performance between 2012 and 2013. According to the providers of two rapid tests (HIV screening), four different services delivery models were examined in 2013: Model A = first screen at CDC, second at CDC (Model A = CDC+CDC), Model B = first and second screens at CBOs (Model B = CBO+CBO), Model C = first screen at CBO, second at Hospital (Model C = CBO+Hosp), and Model D = first screen at CBO, second at CDC (Model D = CBO+CDC). Logistic regressions were performed to assess advantages of different screening models of case finding and case management. Compared to 2012, the number of HIV screening tests performed for MSM increased 35.8% in 2013 (72,577 in 2013 vs. 53,455 in 2012). We observed a 5.6% increase in proportion of cases screened reactive receiving HIV confirmatory tests (93.9% in 2013 vs. 89.2% in 2012, χ2 = 48.52, p<0.001) and 65% reduction in loss to CD4 cell count tests (15% in 2013 vs. 43% in 2012, χ2 = 628.85, p<0.001). Regarding linkage to care and treatment, the 2013 pilot showed that the Model D had the highest rate of loss between screening reactive and confirmatory test among the four models, with 18.1% fewer receiving a second screening test and a further 5.9% loss among those receiving HIV confirmatory tests. The Model B and the Model C showed lower losses (0.8% and 1.3%) for newly diagnosed HIV positives receiving CD4 cell count tests, and higher rates of HIV positives referred to designated ART hospitals (88.0% and 93.3%) than the Model A and Model D (4.6% and 5.7% for CD4 cell count test, and 68.9% and 64.4% for referring to designated ART hospitals). The proportion of cases where the screening test was reactive that were commenced on ART was highest in Model C; 52.8% of cases commenced on ART compared to 38.9%, 34.2% and 21.1% in Models A, B and D respectively. Using Model A as a reference group, the multivariate logistic regression results also showed the advantages of Models B, C and D, which increased CD4 cell count test, referral to designated ART hospitals and initiation of ART, when controlling for program city and other factors. This study has demonstrated that involvement of CBOs in HIV rapid testing provision, streamlining testing and care procedures and early hospital case management can improve testing, linkage to, and retention in care and treatment among MSM in China.
Stacked Denoising Autoencoders Applied to Star/Galaxy Classification
NASA Astrophysics Data System (ADS)
Qin, Hao-ran; Lin, Ji-ming; Wang, Jun-yi
2017-04-01
In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.
Robust mislabel logistic regression without modeling mislabel probabilities.
Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun
2018-03-01
Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.
Tay, Richard
2016-03-01
The binary logistic model has been extensively used to analyze traffic collision and injury data where the outcome of interest has two categories. However, the assumption of a symmetric distribution may not be a desirable property in some cases, especially when there is a significant imbalance in the two categories of outcome. This study compares the standard binary logistic model with the skewed logistic model in two cases in which the symmetry assumption is violated in one but not the other case. The differences in the estimates, and thus the marginal effects obtained, are significant when the assumption of symmetry is violated. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
ERIC Educational Resources Information Center
Weiss, Brandi A.; Dardick, William
2016-01-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…
Determination of riverbank erosion probability using Locally Weighted Logistic Regression
NASA Astrophysics Data System (ADS)
Ioannidou, Elena; Flori, Aikaterini; Varouchakis, Emmanouil A.; Giannakis, Georgios; Vozinaki, Anthi Eirini K.; Karatzas, George P.; Nikolaidis, Nikolaos
2015-04-01
Riverbank erosion is a natural geomorphologic process that affects the fluvial environment. The most important issue concerning riverbank erosion is the identification of the vulnerable locations. An alternative to the usual hydrodynamic models to predict vulnerable locations is to quantify the probability of erosion occurrence. This can be achieved by identifying the underlying relations between riverbank erosion and the geomorphological or hydrological variables that prevent or stimulate erosion. Thus, riverbank erosion can be determined by a regression model using independent variables that are considered to affect the erosion process. The impact of such variables may vary spatially, therefore, a non-stationary regression model is preferred instead of a stationary equivalent. Locally Weighted Regression (LWR) is proposed as a suitable choice. This method can be extended to predict the binary presence or absence of erosion based on a series of independent local variables by using the logistic regression model. It is referred to as Locally Weighted Logistic Regression (LWLR). Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (e.g. binary response) based on one or more predictor variables. The method can be combined with LWR to assign weights to local independent variables of the dependent one. LWR allows model parameters to vary over space in order to reflect spatial heterogeneity. The probabilities of the possible outcomes are modelled as a function of the independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. erosion presence or absence) for any value of the independent variables. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding the independent variables tested. The most straightforward measure for goodness of fit is the G statistic. It is a simple and effective way to study and evaluate the Logistic Regression model efficiency and the reliability of each independent variable. The developed statistical model is applied to the Koiliaris River Basin on the island of Crete, Greece. Two datasets of river bank slope, river cross-section width and indications of erosion were available for the analysis (12 and 8 locations). Two different types of spatial dependence functions, exponential and tricubic, were examined to determine the local spatial dependence of the independent variables at the measurement locations. The results show a significant improvement when the tricubic function is applied as the erosion probability is accurately predicted at all eight validation locations. Results for the model deviance show that cross-section width is more important than bank slope in the estimation of erosion probability along the Koiliaris riverbanks. The proposed statistical model is a useful tool that quantifies the erosion probability along the riverbanks and can be used to assist managing erosion and flooding events. Acknowledgements This work is part of an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.
Racial Threat and White Opposition to Bilingual Education in Texas
ERIC Educational Resources Information Center
Hempel, Lynn M.; Dowling, Julie A.; Boardman, Jason D.; Ellison, Christopher G.
2013-01-01
This study examines local contextual conditions that influence opposition to bilingual education among non-Hispanic Whites, net of individual-level characteristics. Data from the Texas Poll (N = 615) are used in conjunction with U.S. Census data to test five competing hypotheses using binomial and multinomial logistic regression models. Our…
ERIC Educational Resources Information Center
Wang, Xueli
2010-01-01
Incorporating the psychological perspective, this study examines factors associated with the upward transfer of baccalaureate aspirants beginning at community colleges. Based on data from the National Education Longitudinal Study of 1988 and the Postsecondary Education Transcript Study, the study tests a logistic regression model to predict…
Population Invariance of Vertical Scaling Results
ERIC Educational Resources Information Center
Powers, Sonya; Turhan, Ahmet; Binici, Salih
2012-01-01
The population sensitivity of vertical scaling results was evaluated for a state reading assessment spanning grades 3-10 and a state mathematics test spanning grades 3-8. Subpopulations considered included males and females. The 3-parameter logistic model was used to calibrate math and reading items and a common item design was used to construct…
A Test-Length Correction to the Estimation of Extreme Proficiency Levels
ERIC Educational Resources Information Center
Magis, David; Beland, Sebastien; Raiche, Gilles
2011-01-01
In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…
Predictors of Child Molestation: Adult Attachment, Cognitive Distortions, and Empathy
ERIC Educational Resources Information Center
Wood, Eric; Riggs, Shelley
2008-01-01
A conceptual model derived from attachment theory was tested by examining adult attachment style, cognitive distortions, and both general and victim empathy in a sample of 61 paroled child molesters and 51 community controls. Results of logistic multiple regression showed that attachment anxiety, cognitive distortions, high general empathy but low…
Analysis of the Latin Square Task with Linear Logistic Test Models
ERIC Educational Resources Information Center
Zeuch, Nina; Holling, Heinz; Kuhn, Jorg-Tobias
2011-01-01
The Latin Square Task (LST) was developed by Birney, Halford, and Andrews [Birney, D. P., Halford, G. S., & Andrews, G. (2006). Measuring the influence of cognitive complexity on relational reasoning: The development of the Latin Square Task. Educational and Psychological Measurement, 66, 146-171.] and represents a non-domain specific,…
Use of the Child Behavior Checklist as a Diagnostic Screening Tool in Community Mental Health
ERIC Educational Resources Information Center
Rishel, Carrie W.; Greeno, Catherine; Marcus, Steven C.; Shear, M. Katherine; Anderson, Carol
2005-01-01
Objective: This study examines whether the Child Behavior Checklist (CBCL) can be used as an accurate psychiatric screening tool for children in community mental health settings. Method: Associations, logistic regression models, and receiver operating characteristic (ROC) analysis were used to test the predictive relationship between the CBCL and…
Bayesian multivariate hierarchical transformation models for ROC analysis.
O'Malley, A James; Zou, Kelly H
2006-02-15
A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.
Bayesian multivariate hierarchical transformation models for ROC analysis
O'Malley, A. James; Zou, Kelly H.
2006-01-01
SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836
Factors Infuencing Women in Pap Smear Uptake
NASA Astrophysics Data System (ADS)
Wijayanti, K. E.; Alam, I. G.
2017-03-01
Objective: Pap smear has proven can decrease death caused by cervical cancer. However, in Indonesia, only few woman who already did pap smear. The aim of this study was to investigate women’s knowledge about pap smear cervical cancer, and to investigate factors influence women to do pap smear test. Methods: Quantitative data colected through questionairre towards 31 women who did pap smear and 55 women who did not do pap smear. Questionairre was made using Health Belief model as a guideline to examine percieved susceptibility, perceived serioussnes, perceived benefits and perceived barriers. Chi square and multiple logistic regresion were used to investigate difference in knowledge and what the most factor that influence women to take pap smear test. Results: There’s significance knowledge difference betweeen women who did and did not do pap smear. But furthermore, by using Multiple Logistic Regression test, appearantly knowledge was not a strong predictor factor for women to take pap smear test (koefisiensi β = -0,164) Conclusion: Perceived barriers were factors that affected pap smear uptake in women in Indonesia. Few respondents get the wrong informations about pap smear, cevical cancer and its symptoms
Logistics in a low carbon concept: Connotation and realization way
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng; Qiu, Xiaoying; Mao, Jiarong
2017-01-01
Low-carbon logistics has become a trend for the logistics industry-as a high-energy consumption industry, continuation of its previous operating mode has been significantly behind the times. So logistics industry must release lower carbon emissions. This paper sort out the literature home and abroad from three aspects, that is, the definition of low-carbon logistics, low-carbon logistics implementation mechanisms or measures, and low carbon design quantitative models. The research shows: low-carbon logistics needed to implemented both in enterprise' macro and micro level, which means the government should provide relevant policy support and micro enterprises should be actively sought from all sectors of the logistics in energy saving. In practice, low-carbon logistics optimization models are effective tools for enterprises to implement emission reduction.
Lanfredi, Mariangela; Candini, Valentina; Buizza, Chiara; Ferrari, Clarissa; Boero, Maria E; Giobbio, Gian M; Goldschmidt, Nicoletta; Greppo, Stefania; Iozzino, Laura; Maggi, Paolo; Melegari, Anna; Pasqualetti, Patrizio; Rossi, Giuseppe; de Girolamo, Giovanni
2014-05-15
Quality of life (QOL) has been considered an important outcome measure in psychiatric research and determinants of QOL have been widely investigated. We aimed at detecting predictors of QOL at baseline and at testing the longitudinal interrelations of the baseline predictors with QOL scores at a 1-year follow-up in a sample of patients living in Residential Facilities (RFs). Logistic regression models were adopted to evaluate the association between WHOQoL-Bref scores and potential determinants of QOL. In addition, all variables significantly associated with QOL domains in the final logistic regression model were included by using the Structural Equation Modeling (SEM). We included 139 patients with a diagnosis of schizophrenia spectrum. In the final logistic regression model level of activity, social support, age, service satisfaction, spiritual well-being and symptoms' severity were identified as predictors of QOL scores at baseline. Longitudinal analyses carried out by SEM showed that 40% of QOL follow-up variability was explained by QOL at baseline, and significant indirect effects toward QOL at follow-up were found for satisfaction with services and for social support. Rehabilitation plans for people with schizophrenia living in RFs should also consider mediators of change in subjective QOL such as satisfaction with mental health services. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, J C; Silverberg, J I
2015-11-01
Chickenpox infection early in childhood has previously been shown to protect against the development of childhood eczema in line with the hygiene hypothesis. In 1995, the American Academy of Pediatrics recommended routine vaccination against varicella zoster virus in the United States. Subsequently, rates of chickenpox infection have dramatically decreased in childhood. We sought to understand the impact of declining rates of chickenpox infection on the prevalence of eczema. We analysed data from 207 007 children in the 1997-2013 National Health Interview Survey. One-year prevalence of eczema and 'ever had' history of chickenpox were analysed. Associations between chickenpox infection and eczema were tested using survey-weighted logistic regression. The impact of chickenpox on trends of eczema prevalence was tested using survey logistic regression and generalized linear models. Children with a history of chickenpox compared with those without chickenpox had a lower prevalence [survey-weighted logistic regression (95% confidence interval, CI)] of eczema [8·8% (8·5-9·0%) vs. 10·6% (10·4-10·8%)]. In pooled multivariate models controlling for age, sex, race/ethnicity, household income, highest level of household education, insurance coverage, U.S. birthplace and family size, eczema was inversely associated with chickenpox [adjusted odds ratio (95% CI), 0·90 (0·86-0·94), P < 0·001]. The prevalence of eczema significantly increased over time (Tukey post-hoc test, P < 0·001 for comparisons of survey years 2001-13 vs. 1997-2000, 2008-13 vs. 2001-04 and 2008-13 vs. 2005-07). In multivariate generalized linear models, the odds of eczema was not associated with chickenpox in 2001-13 (P ≥ 0·06). These findings suggest that lower rates of chickenpox infection secondary to widespread vaccination against varicella zoster virus are not contributing to higher rates of childhood eczema in the U.S. © 2015 British Association of Dermatologists.
ERIC Educational Resources Information Center
Chen, Chau-Kuang
2005-01-01
Logistic and Cox regression methods are practical tools used to model the relationships between certain student learning outcomes and their relevant explanatory variables. The logistic regression model fits an S-shaped curve into a binary outcome with data points of zero and one. The Cox regression model allows investigators to study the duration…
Wang, Lian-Hong; Yan, Jin; Yang, Guo-Li; Long, Shuo; Yu, Yong; Wu, Xi-Lin
2015-04-01
Money boys with inconsistent condom use (less than 100% of the time) are at high risk of infection by human immunodeficiency virus (HIV) or sexually transmitted infection (STI), but relatively little research has examined their risk behaviors. We investigated the prevalence of consistent condom use (100% of the time) and associated factors among money boys. A cross-sectional study using a structured questionnaire was conducted among money boys in Changsha, China, between July 2012 and January 2013. Independent variables included socio-demographic data, substance abuse history, work characteristics, and self-reported HIV and STI history. Dependent variables included the consistent condom use with different types of sex partners. Among the participants, 82.4% used condoms consistently with male clients, 80.2% with male sex partners, and 77.1% with female sex partners in the past 3 months. A multiple stepwise logistic regression model identified four statistically significant factors associated with lower likelihoods of consistent condom use with male clients: age group, substance abuse, lack of an "employment" arrangement, and having no HIV test within the prior 6 months. In a similar model, only one factor associated significantly with lower likelihoods of consistent condom use with male sex partners was identified in multiple stepwise logistic regression analyses: having no HIV test within the prior six months. As for female sex partners, two significant variables were statistically significant in the multiple stepwise logistic regression analysis: having no HIV test within the prior 6 months and having STI history. Interventions which are linked with more realistic and acceptable HIV prevention methods are greatly warranted and should increase risk awareness and the behavior of consistent condom use in both commercial and personal relationship. © 2015 International Society for Sexual Medicine.
González-Madroño, A; Mancha, A; Rodríguez, F J; Culebras, J; de Ulibarri, J I
2012-01-01
To ratify previous validations of the CONUT nutritional screening tool by the development of two probabilistic models using the parameters included in the CONUT, to see if the CONUT´s effectiveness could be improved. It is a two step prospective study. In Step 1, 101 patients were randomly selected, and SGA and CONUT was made. With data obtained an unconditional logistic regression model was developed, and two variants of CONUT were constructed: Model 1 was made by a method of logistic regression. Model 2 was made by dividing the probabilities of undernutrition obtained in model 1 in seven regular intervals. In step 2, 60 patients were selected and underwent the SGA, the original CONUT and the new models developed. The diagnostic efficacy of the original CONUT and the new models was tested by means of ROC curves. Both samples 1 and 2 were put together to measure the agreement degree between the original CONUT and SGA, and diagnostic efficacy parameters were calculated. No statistically significant differences were found between sample 1 and 2, regarding age, sex and medical/surgical distribution and undernutrition rates were similar (over 40%). The AUC for the ROC curves were 0.862 for the original CONUT, and 0.839 and 0.874, for model 1 and 2 respectively. The kappa index for the CONUT and SGA was 0.680. The CONUT, with the original scores assigned by the authors is equally good than mathematical models and thus is a valuable tool, highly useful and efficient for the purpose of Clinical Undernutrition screening.
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
LOGMIS Programmed Texts, Tests and Answers.
1979-04-01
This publication contains the programmed text and related test and answer booklets produced to teach field users correct procedures for utilization of the Army’s Logistics Management Information System (LOGMIS). It was prepared by ARINC Research Corporation under Contract DAEA18-77-C-0184 for the Logistics Evaluation Branch, Plans and Programs Division of the Assistant Chief of Staff for Logistics, U.S. Army Communications Command. (Author)
Harvey, H Benjamin; Liu, Catherine; Ai, Jing; Jaworsky, Cristina; Guerrier, Claude Emmanuel; Flores, Efren; Pianykh, Oleg
2017-10-01
To test whether data elements available in the electronic medical record (EMR) can be effectively leveraged to predict failure to attend a scheduled radiology examination. Using data from a large academic medical center, we identified all patients with a diagnostic imaging examination scheduled from January 1, 2016, to April 1, 2016, and determined whether the patient successfully attended the examination. Demographic, clinical, and health services utilization variables available in the EMR potentially relevant to examination attendance were recorded for each patient. We used descriptive statistics and logistic regression models to test whether these data elements could predict failure to attend a scheduled radiology examination. The predictive accuracy of the regression models were determined by calculating the area under the receiver operator curve. Among the 54,652 patient appointments with radiology examinations scheduled during the study period, 6.5% were no-shows. No-show rates were highest for the modalities of mammography and CT and lowest for PET and MRI. Logistic regression indicated that 16 of the 27 demographic, clinical, and health services utilization factors were significantly associated with failure to attend a scheduled radiology examination (P ≤ .05). Stepwise logistic regression analysis demonstrated that previous no-shows, days between scheduling and appointments, modality type, and insurance type were most strongly predictive of no-show. A model considering all 16 data elements had good ability to predict radiology no-shows (area under the receiver operator curve = 0.753). The predictive ability was similar or improved when these models were analyzed by modality. Patient and examination information readily available in the EMR can be successfully used to predict radiology no-shows. Moving forward, this information can be proactively leveraged to identify patients who might benefit from additional patient engagement through appointment reminders or other targeted interventions to avoid no-shows. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
The Use of Logistic Model in RUL Assessment
NASA Astrophysics Data System (ADS)
Gumiński, R.; Radkowski, S.
2017-12-01
The paper takes on the issue of assessment of remaining useful life (RUL). The goal of the paper was to develop a method, which would enable use of diagnostic information in the task of reducing the uncertainty related to technical risk. Prediction of the remaining useful life (RUL) of the system is a very important task for maintenance strategy. In the literature RUL of an engineering system is defined as the first future time instant in which thresholds of conditions (safety, operational quality, maintenance cost, etc) are violated. Knowledge of RUL offers the possibility of planning the testing and repair activities. Building models of damage development is important in this task. In the presented work, logistic function will be used to model fatigue crack development. It should be remembered that modeling of every phase of damage development is very difficult, yet modeling of every phase of damage separately, especially including on-line diagnostic information is more effective. Particular attention was paid to the possibility of forecasting the occurrence of damage due to fatigue while relying on the analysis of the structure of a vibroacoustic signal.
Seligman, D A; Pullinger, A G
2000-01-01
Confusion about the relationship of occlusion to temporomandibular disorders (TMD) persists. This study attempted to identify occlusal and attrition factors plus age that would characterize asymptomatic normal female subjects. A total of 124 female patients with intracapsular TMD were compared with 47 asymptomatic female controls for associations to 9 occlusal factors, 3 attrition severity measures, and age using classification tree, multiple stepwise logistic regression, and univariate analyses. Models were tested for accuracy (sensitivity and specificity) and total contribution to the variance. The classification tree model had 4 terminal nodes that used only anterior attrition and age. "Normals" were mainly characterized by low attrition levels, whereas patients had higher attrition and tended to be younger. The tree model was only moderately useful (sensitivity 63%, specificity 94%) in predicting normals. The logistic regression model incorporated unilateral posterior crossbite and mediotrusive attrition severity in addition to the 2 factors in the tree, but was slightly less accurate than the tree (sensitivity 51%, specificity 90%). When only occlusal factors were considered in the analysis, normals were additionally characterized by a lack of anterior open bite, smaller overjet, and smaller RCP-ICP slides. The log likelihood accounted for was similar for both the tree (pseudo R(2) = 29.38%; mean deviance = 0.95) and the multiple logistic regression (Cox Snell R(2) = 30.3%, mean deviance = 0.84) models. The occlusal and attrition factors studied were only moderately useful in differentiating normals from TMD patients.
Pan, Yue; Liu, Hongmei; Metsch, Lisa R; Feaster, Daniel J
2017-02-01
HIV testing is the foundation for consolidated HIV treatment and prevention. In this study, we aim to discover the most relevant variables for predicting HIV testing uptake among substance users in substance use disorder treatment programs by applying random forest (RF), a robust multivariate statistical learning method. We also provide a descriptive introduction to this method for those who are unfamiliar with it. We used data from the National Institute on Drug Abuse Clinical Trials Network HIV testing and counseling study (CTN-0032). A total of 1281 HIV-negative or status unknown participants from 12 US community-based substance use disorder treatment programs were included and were randomized into three HIV testing and counseling treatment groups. The a priori primary outcome was self-reported receipt of HIV test results. Classification accuracy of RF was compared to logistic regression, a standard statistical approach for binary outcomes. Variable importance measures for the RF model were used to select the most relevant variables. RF based models produced much higher classification accuracy than those based on logistic regression. Treatment group is the most important predictor among all covariates, with a variable importance index of 12.9%. RF variable importance revealed that several types of condomless sex behaviors, condom use self-efficacy and attitudes towards condom use, and level of depression are the most important predictors of receipt of HIV testing results. There is a non-linear negative relationship between count of condomless sex acts and the receipt of HIV testing. In conclusion, RF seems promising in discovering important factors related to HIV testing uptake among large numbers of predictors and should be encouraged in future HIV prevention and treatment research and intervention program evaluations.
Multivariate models for prediction of human skin sensitization hazard.
Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole
2017-03-01
One of the Interagency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens™ assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy 88%), any of the alternative methods alone (accuracy 63-79%) or test batteries combining data from the individual methods (accuracy 75%). These results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
A model for field toxicity tests
Kaiser, Mark S.; Finger, Susan E.
1996-01-01
Toxicity tests conducted under field conditions present an interesting challenge for statistical modelling. In contrast to laboratory tests, the concentrations of potential toxicants are not held constant over the test. In addition, the number and identity of toxicants that belong in a model as explanatory factors are not known and must be determined through a model selection process. We present one model to deal with these needs. This model takes the record of mortalities to form a multinomial distribution in which parameters are modelled as products of conditional daily survival probabilities. These conditional probabilities are in turn modelled as logistic functions of the explanatory factors. The model incorporates lagged values of the explanatory factors to deal with changes in the pattern of mortalities over time. The issue of model selection and assessment is approached through the use of generalized information criteria and power divergence goodness-of-fit tests. These model selection criteria are applied in a cross-validation scheme designed to assess the ability of a model to both fit data used in estimation and predict data deleted from the estimation data set. The example presented demonstrates the need for inclusion of lagged values of the explanatory factors and suggests that penalized likelihood criteria may not provide adequate protection against overparameterized models in model selection.
Arredondo, Elva Maria; Pollak, Kathryn; Costanzo, Philip R
2008-12-01
The goals of this study are to evaluate (a) the effectiveness of a stage model in predicting Latinas' self-report of obtaining a Pap test and (b) the unique role of psychosocial/cultural factors in predicting progress toward behavior change. One-on-one structured interviews with monolingual Spanish-speaking Latinas (n=190) were conducted. Most participants (85%) intended to obtain a Pap smear within 1 year; therefore, staging women based on intention was not possible. Moreover, results from the polychotomous hierarchical logistic regression suggest that psychosocial and cultural factors were independent predictors of Pap test history. A stage model may not be appropriate for predicting Pap test screening among Latinas. Results suggest that unique cultural, psychosocial, and demographic factors may inhibit cervical cancer screening practices. Clinicians may need to tailor messages on these cultural and psychosocial factors to increase Pap testing among Latinas.
A Note on the Item Information Function of the Four-Parameter Logistic Model
ERIC Educational Resources Information Center
Magis, David
2013-01-01
This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given item with fixed item parameters, Lord derived the value of the latent ability level that maximizes the item information function under the 3PL model. The…
Embedded measures of performance validity using verbal fluency tests in a clinical sample.
Sugarman, Michael A; Axelrod, Bradley N
2015-01-01
The objective of this study was to determine to what extent verbal fluency measures can be used as performance validity indicators during neuropsychological evaluation. Participants were clinically referred for neuropsychological evaluation in an urban-based Veteran's Affairs hospital. Participants were placed into 2 groups based on their objectively evaluated effort on performance validity tests (PVTs). Individuals who exhibited credible performance (n = 431) failed 0 PVTs, and those with poor effort (n = 192) failed 2 or more PVTs. All participants completed the Controlled Oral Word Association Test (COWAT) and Animals verbal fluency measures. We evaluated how well verbal fluency scores could discriminate between the 2 groups. Raw scores and T scores for Animals discriminated between the credible performance and poor-effort groups with 90% specificity and greater than 40% sensitivity. COWAT scores had lower sensitivity for detecting poor effort. A combination of FAS and Animals scores into logistic regression models yielded acceptable group classification, with 90% specificity and greater than 44% sensitivity. Verbal fluency measures can yield adequate detection of poor effort during neuropsychological evaluation. We provide suggested cut points and logistic regression models for predicting the probability of poor effort in our clinical setting and offer suggested cutoff scores to optimize sensitivity and specificity.
Maintenance and Logistics Support for the International Monitoring System Network of the CTBTO
NASA Astrophysics Data System (ADS)
Haslinger, F.; Brely, N.; Akrawy, M.
2007-05-01
The global network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), once completed, will consist of 321 monitoring facilities of four different technologies: hydroacoustic, seismic, infrasonic, and radionuclide. As of today, about 65% of the installations are completed and contribute data to the products issued by the International Data Centre (IDC) of the CTBTO. In order to accomplish the task to reliably collect evidence for any potential nuclear test explosion anywhere on the planet, all stations are required to perform to very high data availability requirements (at least 98% data availability over a 12-month period). To enable reaching this requirement, a three-layer concept has been developed to allow efficient support of the IMS stations: Operations, Maintenance and Logistics, and Engineering. Within this concept Maintenance and Logistics provide second level support of the stations, whereby problems arising at the station are assigned through the IMS ticket system to Maintenance if they cannot be resolved on the Operations level. Maintenance will then activate the required resources to appropriately address and ultimately resolve the problem. These resources may be equipment support contracts, other third party contracts, or the dispatch of a maintenance team. Engineering Support will be activated if the problem requires redesign of the station or after catastrophic failures when a total rebuild of a station may be necessary. In this model, Logistics Support is responsible for parts replenishment and support contract management. Logistics Support also collects and analyzes relevant failure mode and effect information, develops supportability models, and has the responsibility for document management, obsolescence, risk & quality, and configuration management, which are key elements for efficient station support. Maintenance Support in addition is responsible for maintenance strategies, for planning and oversight of the execution of preventive maintenance programs by the Station Operators, and for review of operational troubleshooting procedures used in first level support. Particular challenges for the efficient and successful Maintenance and Logistics Support of the IMS network lie in the specific political boundary conditions regulating its implementation, in the fact that all IMS facilities and their equipment are owned by the respective host countries, and in finding the appropriate balance between outsourcing services and retaining essential in-house expertise.
Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel
2015-01-01
The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.
STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL
2015-01-01
Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749
Montes, Alejandro; Pazos, Gustavo
2016-02-01
Identifying children at risk of failing the National Developmental Screening Test by combining prevalences of children suspected of having inapparent developmental disorders (IDDs) and associated risk factors (RFs) would allow to save resources. 1. To estimate the prevalence of children suspected of having IDDs. 2. To identify associated RFs. 3. To assess three methods developed based on observed RFs and propose a pre-screening procedure. The National Developmental Screening Test was administered to 60 randomly selected children aged between 2 and 4 years old from a socioeconomically disadvantaged area from Puerto Madryn. Twenty-four biological and socioenvironmental outcome measures were assessed in order to identify potential RFs using bivariate and multivariate analyses. The likelihood of failing the screening test was estimated as follows: 1. a multivariate logistic regression model was developed; 2. a relationship was established between the number of RFs present in each child and the percentage of children who failed the test; 3. these two methods were combined. The prevalence of children suspected of having IDDs was 55.0% (95% confidence interval: 42.4%-67.6%). Six RFs were initially identified using the bivariate approach. Three of them (maternal education, number of health checkups and Z scores for height-for-age, and maternal age) were included in the logistic regression model, which has a greater explanatory power. The third method included in the assessment showed greater sensitivity and specificity (85% and 79%, respectively). The estimated prevalence of children suspected of having IDDs was four times higher than the national standards. Seven RFs were identified. Combining the analysis of risk factor accumulation and a multivariate model provides a firm basis for developing a sensitive, specific and practical pre-screening procedure for socioeconomically disadvantaged areas. Sociedad Argentina de Pediatría.
Educational Subculture and Dropping out in Higher Education: A Longitudinal Case Study
ERIC Educational Resources Information Center
Venuleo, C.; Mossi, P.; Salvatore, S.
2016-01-01
The paper tests longitudinally the hypothesis that educational subcultures in terms of which students interpret their role and their educational setting affect the probability of dropping out of higher education. A logistic regression model was performed to predict drop out at the beginning of the second academic year for the 823 freshmen of a…
Comparing the IRT Pre-equating and Section Pre-equating: A Simulation Study.
ERIC Educational Resources Information Center
Hwang, Chi-en; Cleary, T. Anne
The results obtained from two basic types of pre-equatings of tests were compared: the item response theory (IRT) pre-equating and section pre-equating (SPE). The simulated data were generated from a modified three-parameter logistic model with a constant guessing parameter. Responses of two replication samples of 3000 examinees on two 72-item…
Logistic regression models of factors influencing the location of bioenergy and biofuels plants
T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu
2011-01-01
Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...
Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow
2017-01-01
Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.
Millard, Steven P; Shofer, Jane; Braff, David; Calkins, Monica; Cadenhead, Kristin; Freedman, Robert; Green, Michael F; Greenwood, Tiffany A; Gur, Raquel; Gur, Ruben; Lazzeroni, Laura C; Light, Gregory A; Olincy, Ann; Nuechterlein, Keith; Seidman, Larry; Siever, Larry; Silverman, Jeremy; Stone, William S; Sprock, Joyce; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Ming; Turetsky, Bruce; Radant, Allen; Tsuang, Debby W
2016-07-01
Past studies describe numerous endophenotypes associated with schizophrenia (SZ), but many endophenotypes may overlap in information they provide, and few studies have investigated the utility of a multivariate index to improve discrimination between SZ and healthy community comparison subjects (CCS). We investigated 16 endophenotypes from the first phase of the Consortium on the Genetics of Schizophrenia, a large, multi-site family study, to determine whether a subset could distinguish SZ probands and CCS just as well as using all 16. Participants included 345 SZ probands and 517 CCS with a valid measure for at least one endophenotype. We used both logistic regression and random forest models to choose a subset of endophenotypes, adjusting for age, gender, smoking status, site, parent education, and the reading subtest of the Wide Range Achievement Test. As a sensitivity analysis, we re-fit models using multiple imputations to determine the effect of missing values. We identified four important endophenotypes: antisaccade, Continuous Performance Test-Identical Pairs 3-digit version, California Verbal Learning Test, and emotion identification. The logistic regression model that used just these four endophenotypes produced essentially the same results as the model that used all 16 (84% vs. 85% accuracy). While a subset of endophenotypes cannot replace clinical diagnosis nor encompass the complexity of the disease, it can aid in the design of future endophenotypic and genetic studies by reducing study cost and subject burden, simplifying sample enrichment, and improving the statistical power of locating those genetic regions associated with schizophrenia that may be the easiest to identify initially. Published by Elsevier B.V.
Millard, Steven P.; Shofer, Jane; Braff, David; Calkins, Monica; Cadenhead, Kristin; Freedman, Robert; Green, Michael F.; Greenwood, Tiffany A.; Gur, Raquel; Gur, Ruben; Lazzeroni, Laura C.; Light, Gregory A.; Olincy, Ann; Nuechterlein, Keith; Seidman, Larry; Siever, Larry; Silverman, Jeremy; Stone, William; Sprock, Joyce; Sugar, Catherine A.; Swerdlow, Neal R.; Tsuang, Ming; Turetsky, Bruce; Radant, Allen; Tsuang, Debby W.
2016-01-01
Past studies describe numerous endophenotypes associated with schizophrenia (SZ), but many endophenotypes may overlap in information they provide, and few studies have investigated the utility of a multivariate index to improve discrimination between SZ and healthy community comparison subjects (CCS). We investigated 16 endophenotypes from the first phase of the Consortium on the Genetics of Schizophrenia, a large, multi-site family study, to determine whether a subset could distinguish SZ probands and CCS just as well as using all 16. Participants included 345 SZ probands and 517 CCS with a valid measure for at least one endophenotype. We used both logistic regression and random forest models to choose a subset of endophenotypes, adjusting for age, gender, smoking status, site, parent education, and the reading subtest of the Wide Range Achievement Test. As a sensitivity analysis, we re-fit models using multiple imputations to determine the effect of missing values. We identified four important endophenotypes: antisaccade, Continuous Performance Test-Identical Pairs 3-digit version, California Verbal Learning Test, and emotion identification. The logistic regression model that used just these four endophenotypes produced essentially the same results as the model that used all 16 (84% vs. 85% accuracy). While a subset of endophenotypes cannot replace clinical diagnosis nor encompass the complexity of the disease, it can aid in the design of future endophenotypic and genetic studies by reducing study cost and subject burden, simplifying sample enrichment, and improving statistical power of locating genetic regions associated with schizophrenia that may be the easiest to identify initially. PMID:27132484
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
Luque, M J; Tapia, J L; Villarroel, L; Marshall, G; Musante, G; Carlo, W; Kattan, J
2014-01-01
Develop a risk prediction model for severe intraventricular hemorrhage (IVH) in very low birth weight infants (VLBWI). Prospectively collected data of infants with birth weight 500 to 1249 g born between 2001 and 2010 in centers from the Neocosur Network were used. Forward stepwise logistic regression model was employed. The model was tested in the 2011 cohort and then applied to the population of VLBWI that received prophylactic indomethacin to analyze its effect in the risk of severe IVH. Data from 6538 VLBWI were analyzed. The area under ROC curve for the model was 0.79 and 0.76 when tested in the 2011 cohort. The prophylactic indomethacin group had lower incidence of severe IVH, especially in the highest-risk groups. A model for early severe IVH prediction was developed and tested in our population. Prophylactic indomethacin was associated with a lower risk-adjusted incidence of severe IVH.
Using phenomenological models for forecasting the 2015 Ebola challenge.
Pell, Bruce; Kuang, Yang; Viboud, Cecile; Chowell, Gerardo
2018-03-01
The rising number of novel pathogens threatening the human population has motivated the application of mathematical modeling for forecasting the trajectory and size of epidemics. We summarize the real-time forecasting results of the logistic equation during the 2015 Ebola challenge focused on predicting synthetic data derived from a detailed individual-based model of Ebola transmission dynamics and control. We also carry out a post-challenge comparison of two simple phenomenological models. In particular, we systematically compare the logistic growth model and a recently introduced generalized Richards model (GRM) that captures a range of early epidemic growth profiles ranging from sub-exponential to exponential growth. Specifically, we assess the performance of each model for estimating the reproduction number, generate short-term forecasts of the epidemic trajectory, and predict the final epidemic size. During the challenge the logistic equation consistently underestimated the final epidemic size, peak timing and the number of cases at peak timing with an average mean absolute percentage error (MAPE) of 0.49, 0.36 and 0.40, respectively. Post-challenge, the GRM which has the flexibility to reproduce a range of epidemic growth profiles ranging from early sub-exponential to exponential growth dynamics outperformed the logistic growth model in ascertaining the final epidemic size as more incidence data was made available, while the logistic model underestimated the final epidemic even with an increasing amount of data of the evolving epidemic. Incidence forecasts provided by the generalized Richards model performed better across all scenarios and time points than the logistic growth model with mean RMS decreasing from 78.00 (logistic) to 60.80 (GRM). Both models provided reasonable predictions of the effective reproduction number, but the GRM slightly outperformed the logistic growth model with a MAPE of 0.08 compared to 0.10, averaged across all scenarios and time points. Our findings further support the consideration of transmission models that incorporate flexible early epidemic growth profiles in the forecasting toolkit. Such models are particularly useful for quickly evaluating a developing infectious disease outbreak using only case incidence time series of the early phase of an infectious disease outbreak. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
1990-09-01
without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether
A Note on Three Statistical Tests in the Logistic Regression DIF Procedure
ERIC Educational Resources Information Center
Paek, Insu
2012-01-01
Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…
Connock, Martin; Hyde, Chris; Moore, David
2011-10-01
The UK National Institute for Health and Clinical Excellence (NICE) has used its Single Technology Appraisal (STA) programme to assess several drugs for cancer. Typically, the evidence submitted by the manufacturer comes from one short-term randomized controlled trial (RCT) demonstrating improvement in overall survival and/or in delay of disease progression, and these are the pre-eminent drivers of cost effectiveness. We draw attention to key issues encountered in assessing the quality and rigour of the manufacturers' modelling of overall survival and disease progression. Our examples are two recent STAs: sorafenib (Nexavar®) for advanced hepatocellular carcinoma, and azacitidine (Vidaza®) for higher-risk myelodysplastic syndromes (MDS). The choice of parametric model had a large effect on the predicted treatment-dependent survival gain. Logarithmic models (log-Normal and log-logistic) delivered double the survival advantage that was derived from Weibull models. Both submissions selected the logarithmic fits for their base-case economic analyses and justified selection solely on Akaike Information Criterion (AIC) scores. AIC scores in the azacitidine submission failed to match the choice of the log-logistic over Weibull or exponential models, and the modelled survival in the intervention arm lacked face validity. AIC scores for sorafenib models favoured log-Normal fits; however, since there is no statistical method for comparing AIC scores, and differences may be trivial, it is generally advised that the plausibility of competing models should be tested against external data and explored in diagnostic plots. Function fitting to observed data should not be a mechanical process validated by a single crude indicator (AIC). Projective models should show clear plausibility for the patients concerned and should be consistent with other published information. Multiple rather than single parametric functions should be explored and tested with diagnostic plots. When trials have survival curves with long tails exhibiting few events then the robustness of extrapolations using information in such tails should be tested.
Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P
2015-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of more than 10% over the standard classification models, which can be translated to correct labeling of additional 400 - 500 readmissions for heart failure patients in the state of California over a year. Lastly, several key predictor identified from the HCUP data include the disposition location from discharge, the number of chronic conditions, and the number of acute procedures. It would be beneficial to apply simple decision rules obtained from the decision tree in an ad-hoc manner to guide the cohort stratification. It could be potentially beneficial to explore the effect of pairwise interactions between influential predictors when building the logistic regression models for different data strata. Judicious use of the ad-hoc CLR models developed offers insights into future development of prediction models for hospital readmissions, which can lead to better intuition in identifying high-risk patients and developing effective post-discharge care strategies. Lastly, this paper is expected to raise the awareness of collecting data on additional markers and developing necessary database infrastructure for larger-scale exploratory studies on readmission risk prediction.
Two-echelon logistics service supply chain decision game considering quality supervision
NASA Astrophysics Data System (ADS)
Shi, Jiaying
2017-10-01
Due to the increasing importance of supply chain logistics service, we established the Stackelberg game model between single integrator and single subcontractors under decentralized and centralized circumstances, and found that logistics services integrators as a leader prefer centralized decision-making but logistics service subcontractors tend to the decentralized decision-making. Then, we further analyzed why subcontractor chose to deceive and rebuilt a principal-agent game model to monitor the logistics services quality of them. Mixed Strategy Nash equilibrium and related parameters were discussed. The results show that strengthening the supervision and coordination can improve the quality level of logistics service supply chain.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Predicting U.S. Army Reserve Unit Manning Using Market Demographics
2015-06-01
develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S
Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen Fitzgerald
2012-01-01
Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...
Differentially private distributed logistic regression using private and public data.
Ji, Zhanglong; Jiang, Xiaoqian; Wang, Shuang; Xiong, Li; Ohno-Machado, Lucila
2014-01-01
Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee.
Sebire, Simon J; Haase, Anne M; Montgomery, Alan A; McNeill, Jade; Jago, Russ
2014-05-01
The current study investigated cross-sectional associations between maternal and paternal logistic and modeling physical activity support and the self-efficacy, self-esteem, and physical activity intentions of 11- to 12-year-old girls. 210 girls reported perceptions of maternal and paternal logistic and modeling support and their self-efficacy, self-esteem and intention to be physically active. Data were analyzed using multivariable regression models. Maternal logistic support was positively associated with participants' self-esteem, physical activity self-efficacy, and intention to be active. Maternal modeling was positively associated with self-efficacy. Paternal modeling was positively associated with self-esteem and self-efficacy but there was no evidence that paternal logistic support was associated with the psychosocial variables. Activity-related parenting practices were associated with psychosocial correlates of physical activity among adolescent girls. Logistic support from mothers, rather than modeling support or paternal support may be a particularly important target when designing interventions aimed at preventing the age-related decline in physical activity among girls.
Validation of Metrics as Error Predictors
NASA Astrophysics Data System (ADS)
Mendling, Jan
In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.
Regional Logistics Information Resources Integration Patterns and Countermeasures
NASA Astrophysics Data System (ADS)
Wu, Hui; Shangguan, Xu-ming
Effective integration of regional logistics information resources can provide collaborative services in information flow, business flow and logistics for regional logistics enterprises, which also can reduce operating costs and improve market responsiveness. First, this paper analyzes the realistic significance on the integration of regional logistics information. Second, this paper brings forward three feasible patterns on the integration of regional logistics information resources, These three models have their own strengths and the scope of application and implementation, which model is selected will depend on the specific business and the regional distribution of enterprises. Last, this paper discusses the related countermeasures on the integration of regional logistics information resources, because the integration of regional logistics information is a systems engineering, when the integration is advancing, the countermeasures should pay close attention to the current needs and long-term development of regional enterprises.
The weighted priors approach for combining expert opinions in logistic regression experiments
Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.
2017-04-24
When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less
Assessing risk factors for periodontitis using regression
NASA Astrophysics Data System (ADS)
Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa
2013-10-01
Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.
The weighted priors approach for combining expert opinions in logistic regression experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.
When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less
Burkhardt, John C; DesJardins, Stephen L; Teener, Carol A; Gay, Steven E; Santen, Sally A
2016-11-01
In higher education, enrollment management has been developed to accurately predict the likelihood of enrollment of admitted students. This allows evidence to dictate numbers of interviews scheduled, offers of admission, and financial aid package distribution. The applicability of enrollment management techniques for use in medical education was tested through creation of a predictive enrollment model at the University of Michigan Medical School (U-M). U-M and American Medical College Application Service data (2006-2014) were combined to create a database including applicant demographics, academic application scores, institutional financial aid offer, and choice of school attended. Binomial logistic regression and multinomial logistic regression models were estimated in order to study factors related to enrollment at the local institution versus elsewhere and to groupings of competing peer institutions. A predictive analytic "dashboard" was created for practical use. Both models were significant at P < .001 and had similar predictive performance. In the binomial model female, underrepresented minority students, grade point average, Medical College Admission Test score, admissions committee desirability score, and most individual financial aid offers were significant (P < .05). The significant covariates were similar in the multinomial model (excluding female) and provided separate likelihoods of students enrolling at different institutional types. An enrollment-management-based approach would allow medical schools to better manage the number of students they admit and target recruitment efforts to improve their likelihood of success. It also performs a key institutional research function for understanding failed recruitment of highly desirable candidates.
Bektaş, Frat; Eken, Cenker; Soyuncu, Secgin; Kilicaslan, Isa; Cete, Yildiray
2008-12-01
The aim of this study is to determine the efficiency of artificial intelligence in detecting craniocervical junction injuries by using an artificial neural network (ANN) that may be applicable in future studies of different traumatic injuries. Major head trauma patients with Glasgow Coma Scale
Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei
2017-06-01
We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers.
Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A
2014-09-01
Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.
NASA Astrophysics Data System (ADS)
Ozdemir, Adnan
2011-07-01
SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model was found to be in strong agreement with the available groundwater spring test data. Hence, this method can be used routinely in groundwater exploration under favourable conditions.
ERIC Educational Resources Information Center
Adedokun, Omolola A.; Balschweid, Mark A.
2008-01-01
This study investigates the links between community contexts/factors and rural 11th-grade agricultural science students' choice of careers in agriculture. A logistic regression model was developed and tested to examine the extent to which nine measures of community contexts (i.e., membership in FFA, membership in 4-H, community attachment,…
ERIC Educational Resources Information Center
Tay, Louis; Huang, Qiming; Vermunt, Jeroen K.
2016-01-01
In large-scale testing, the use of multigroup approaches is limited for assessing differential item functioning (DIF) across multiple variables as DIF is examined for each variable separately. In contrast, the item response theory with covariate (IRT-C) procedure can be used to examine DIF across multiple variables (covariates) simultaneously. To…
Mathematical Modeling for Optimal System Testing under Fixed-cost Constraint
2009-04-22
Logistics Network Strategic Sourcing Program Management Building Collaborative Capacity Business Process Reengineering (BPR) for LCS Mission...research presented at the symposium was supported by the Acquisition Chair of the Graduate School of Business & Public Policy at the Naval...James B. Greene, RADM, USN, (Ret) Acquisition Chair Graduate School of Business and Public Policy Naval Postgraduate School 555 Dyer Road, Room
Calibration of an Item Bank for the Assessment of Basque Language Knowledge
ERIC Educational Resources Information Center
Lopez-Cuadrado, Javier; Perez, Tomas A.; Vadillo, Jose A.; Gutierrez, Julian
2010-01-01
The main requisite for a functional computerized adaptive testing system is the need of a calibrated item bank. This text presents the tasks carried out during the calibration of an item bank for assessing knowledge of Basque language. It has been done in terms of the 3-parameter logistic model provided by the item response theory. Besides, this…
Testing for gene-environment interaction under exposure misspecification.
Sun, Ryan; Carroll, Raymond J; Christiani, David C; Lin, Xihong
2017-11-09
Complex interplay between genetic and environmental factors characterizes the etiology of many diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown functional form of the environment term in the true data-generating mechanism. We study the impact of misspecification of the environmental exposure effect on inference for the GxE interaction term in linear and logistic regression models. We first examine the asymptotic bias of the GxE interaction regression coefficient, allowing for confounders as well as arbitrary misspecification of the exposure and confounder effects. For linear regression, we show that under gene-environment independence and some confounder-dependent conditions, when the environment effect is misspecified, the regression coefficient of the GxE interaction can be unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, we show that the regression coefficient is generally biased if the genetic factor is associated with the outcome directly or indirectly. Further, we show that the standard robust sandwich variance estimator for the GxE interaction does not perform well in practical GxE studies, and we provide an alternative testing procedure that has better finite sample properties. © 2017, The International Biometric Society.
C-reactive protein, platelets, and patent ductus arteriosus.
Meinarde, Leonardo; Hillman, Macarena; Rizzotti, Alina; Basquiera, Ana Lisa; Tabares, Aldo; Cuestas, Eduardo
2016-12-01
The association between inflammation, platelets, and patent ductus arteriosus (PDA) has not been studied so far. The purpose of this study was to evaluate whether C-reactive protein (CRP) is related to low platelet count and PDA. This was a retrospective study of 88 infants with a birth weight ≤1500 g and a gestational age ≤30 weeks. Platelet count, CRP, and an echocardiogram were assessed in all infants. The subjects were matched by sex, gestational age, and birth weight. Differences were compared using the χ 2 , t-test, or Mann-Whitney U-test, as appropriate. Significant variables were entered into a logistic regression model. The association between CRP and platelets was evaluated by correlation and regression analysis. Platelet count (167 000 vs. 213 000 µl -1 , p = 0.015) was lower and the CRP (0.45 vs. 0.20 mg/dl, p = 0.002) was higher, and the platelet count correlated inversely with CRP (r = -0.145, p = 0.049) in the infants with vs. without PDA. Only CRP was independently associated with PDA in a logistic regression model (OR 64.1, 95% confidence interval 1.4-2941, p = 0.033).
A development of logistics management models for the Space Transportation System
NASA Technical Reports Server (NTRS)
Carrillo, M. J.; Jacobsen, S. E.; Abell, J. B.; Lippiatt, T. F.
1983-01-01
A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support.
Sudan, Ranjan; Clark, Philip; Henry, Brandon
2015-01-01
The American College of Surgeons has developed a reliable and valid OSCE (objective structured clinical examination) to assess the clinical skills of incoming postgraduate year 1 surgery residents, but the cost and logistics of implementation have not been described. Fixed costs included staff time, medical supplies, facility fee, standardized patient (SP) training time, and one OSCE session. Variable costs were incurred for additional OSCE sessions. Costs per resident were calculated and modeled for increasing the number of test takers. American College of Surgeons OSCE materials and examination facilities were free. Fixed costs included training 11 SPs for 4 hours ($1,540), moulage and simulation material ($469), and administrative effort for 44 hours ($2,200). Variable cost for each session was $1,540 (SP time). Total cost for the first session was $6,649 ($664/resident), decreased to $324/resident for 3 sessions, and projected to further decline to $239/resident for 6 sessions. The cost decreased as the number of residents tested increased. To manage costs, testing more trainees by regional collaboration is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
Ye, Jiang-Feng; Zhao, Yu-Xin; Ju, Jian; Wang, Wei
2017-10-01
To discuss the value of the Bedside Index for Severity in Acute Pancreatitis (BISAP), Modified Early Warning Score (MEWS), serum Ca2+, similarly hereinafter, and red cell distribution width (RDW) for predicting the severity grade of acute pancreatitis and to develop and verify a more accurate scoring system to predict the severity of AP. In 302 patients with AP, we calculated BISAP and MEWS scores and conducted regression analyses on the relationships of BISAP scoring, RDW, MEWS, and serum Ca2+ with the severity of AP using single-factor logistics. The variables with statistical significance in the single-factor logistic regression were used in a multi-factor logistic regression model; forward stepwise regression was used to screen variables and build a multi-factor prediction model. A receiver operating characteristic curve (ROC curve) was constructed, and the significance of multi- and single-factor prediction models in predicting the severity of AP using the area under the ROC curve (AUC) was evaluated. The internal validity of the model was verified through bootstrapping. Among 302 patients with AP, 209 had mild acute pancreatitis (MAP) and 93 had severe acute pancreatitis (SAP). According to single-factor logistic regression analysis, we found that BISAP, MEWS and serum Ca2+ are prediction indexes of the severity of AP (P-value<0.001), whereas RDW is not a prediction index of AP severity (P-value>0.05). The multi-factor logistic regression analysis showed that BISAP and serum Ca2+ are independent prediction indexes of AP severity (P-value<0.001), and MEWS is not an independent prediction index of AP severity (P-value>0.05); BISAP is negatively related to serum Ca2+ (r=-0.330, P-value<0.001). The constructed model is as follows: ln()=7.306+1.151*BISAP-4.516*serum Ca2+. The predictive ability of each model for SAP follows the order of the combined BISAP and serum Ca2+ prediction model>Ca2+>BISAP. There is no statistical significance for the predictive ability of BISAP and serum Ca2+ (P-value>0.05); however, there is remarkable statistical significance for the predictive ability using the newly built prediction model as well as BISAP and serum Ca2+ individually (P-value<0.01). Verification of the internal validity of the models by bootstrapping is favorable. BISAP and serum Ca2+ have high predictive value for the severity of AP. However, the model built by combining BISAP and serum Ca2+ is remarkably superior to those of BISAP and serum Ca2+ individually. Furthermore, this model is simple, practical and appropriate for clinical use. Copyright © 2016. Published by Elsevier Masson SAS.
Can shoulder dystocia be reliably predicted?
Dodd, Jodie M; Catcheside, Britt; Scheil, Wendy
2012-06-01
To evaluate factors reported to increase the risk of shoulder dystocia, and to evaluate their predictive value at a population level. The South Australian Pregnancy Outcome Unit's population database from 2005 to 2010 was accessed to determine the occurrence of shoulder dystocia in addition to reported risk factors, including age, parity, self-reported ethnicity, presence of diabetes and infant birth weight. Odds ratios (and 95% confidence interval) of shoulder dystocia was calculated for each risk factor, which were then incorporated into a logistic regression model. Test characteristics for each variable in predicting shoulder dystocia were calculated. As a proportion of all births, the reported rate of shoulder dystocia increased significantly from 0.95% in 2005 to 1.38% in 2010 (P = 0.0002). Using a logistic regression model, induction of labour and infant birth weight greater than both 4000 and 4500 g were identified as significant independent predictors of shoulder dystocia. The value of risk factors alone and when incorporated into the logistic regression model was poorly predictive of the occurrence of shoulder dystocia. While there are a number of factors associated with an increased risk of shoulder dystocia, none are of sufficient sensitivity or positive predictive value to allow their use clinically to reliably and accurately identify the occurrence of shoulder dystocia. © 2012 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
van Rijn, Peter W; Ali, Usama S
2017-05-01
We compare three modelling frameworks for accuracy and speed of item responses in the context of adaptive testing. The first framework is based on modelling scores that result from a scoring rule that incorporates both accuracy and speed. The second framework is the hierarchical modelling approach developed by van der Linden (2007, Psychometrika, 72, 287) in which a regular item response model is specified for accuracy and a log-normal model for speed. The third framework is the diffusion framework in which the response is assumed to be the result of a Wiener process. Although the three frameworks differ in the relation between accuracy and speed, one commonality is that the marginal model for accuracy can be simplified to the two-parameter logistic model. We discuss both conditional and marginal estimation of model parameters. Models from all three frameworks were fitted to data from a mathematics and spelling test. Furthermore, we applied a linear and adaptive testing mode to the data off-line in order to determine differences between modelling frameworks. It was found that a model from the scoring rule framework outperformed a hierarchical model in terms of model-based reliability, but the results were mixed with respect to correlations with external measures. © 2017 The British Psychological Society.
The UK Military Experience of Thoracic Injury in the Wars in Iraq and Afghanistan
2013-01-01
investigations including computed tomography (CT), laboratory and blood bank. A Role 4 hospital is a fixed capability in the home nation capable of providing full...not an independent predictor of mortality in our model. Goodness of the logistic regression model fit was demonstrated using a Hosmer and Lemeshow test...of good practice and ethical care; thus we believe the hidden mortality is minimal. It is possible that in some circumstances, the desire to do
Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.
Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P
2010-01-01
In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.
Roland, Lauren T.; Kallogjeri, Dorina; Sinks, Belinda C.; Rauch, Steven D.; Shepard, Neil T.; White, Judith A.; Goebel, Joel A.
2015-01-01
Objective Test performance of a focused dizziness questionnaire’s ability to discriminate between peripheral and non-peripheral causes of vertigo. Study Design Prospective multi-center Setting Four academic centers with experienced balance specialists Patients New dizzy patients Interventions A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Main outcomes Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and non-peripheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. Results 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and non-peripheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central and other causes were considered good as measured by c-indices of 0.75, 0.7 and 0.78, respectively. Conclusions This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from non-peripheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed. PMID:26485598
Roland, Lauren T; Kallogjeri, Dorina; Sinks, Belinda C; Rauch, Steven D; Shepard, Neil T; White, Judith A; Goebel, Joel A
2015-12-01
Test performance of a focused dizziness questionnaire's ability to discriminate between peripheral and nonperipheral causes of vertigo. Prospective multicenter. Four academic centers with experienced balance specialists. New dizzy patients. A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and nonperipheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. In total, 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and nonperipheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central, and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central, and other causes was considered good as measured by c-indices of 0.75, 0.7, and 0.78, respectively. This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from nonperipheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed.
Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo
2013-01-01
Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593
A multimodal logistics service network design with time windows and environmental concerns
Zhang, Dezhi; He, Runzhong; Wang, Zhongwei
2017-01-01
The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained. PMID:28934272
A multimodal logistics service network design with time windows and environmental concerns.
Zhang, Dezhi; He, Runzhong; Li, Shuangyan; Wang, Zhongwei
2017-01-01
The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained.
Differentially private distributed logistic regression using private and public data
2014-01-01
Background Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. Methodology In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. Experiments and results We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Conclusion Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee. PMID:25079786
Cunningham, Marc; Bock, Ariella; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana
2015-09-01
Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. © Cunningham et al.
Cunningham, Marc; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana
2015-01-01
Background: Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Methods: Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. Results: For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Conclusions: Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. PMID:26374805
Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes
2017-08-01
Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R 12 and AO-R 14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.
Use and interpretation of logistic regression in habitat-selection studies
Keating, Kim A.; Cherry, Steve
2004-01-01
Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.
Logistic models--an odd(s) kind of regression.
Jupiter, Daniel C
2013-01-01
The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
A general diagnostic model applied to language testing data.
von Davier, Matthias
2008-11-01
Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.
Reporting quality of multivariable logistic regression in selected Indian medical journals.
Kumar, R; Indrayan, A; Chhabra, P
2012-01-01
Use of multivariable logistic regression (MLR) modeling has steeply increased in the medical literature over the past few years. Testing of model assumptions and adequate reporting of MLR allow the reader to interpret results more accurately. To review the fulfillment of assumptions and reporting quality of MLR in selected Indian medical journals using established criteria. Analysis of published literature. Medknow.com publishes 68 Indian medical journals with open access. Eight of these journals had at least five articles using MLR between the years 1994 to 2008. Articles from each of these journals were evaluated according to the previously established 10-point quality criteria for reporting and to test the MLR model assumptions. SPSS 17 software and non-parametric test (Kruskal-Wallis H, Mann Whitney U, Spearman Correlation). One hundred and nine articles were finally found using MLR for analyzing the data in the selected eight journals. The number of such articles gradually increased after year 2003, but quality score remained almost similar over time. P value, odds ratio, and 95% confidence interval for coefficients in MLR was reported in 75.2% and sufficient cases (>10) per covariate of limiting sample size were reported in the 58.7% of the articles. No article reported the test for conformity of linear gradient for continuous covariates. Total score was not significantly different across the journals. However, involvement of statistician or epidemiologist as a co-author improved the average quality score significantly (P=0.014). Reporting of MLR in many Indian journals is incomplete. Only one article managed to score 8 out of 10 among 109 articles under review. All others scored less. Appropriate guidelines in instructions to authors, and pre-publication review of articles using MLR by a qualified statistician may improve quality of reporting.
Stupiansky, Nathan W; Liau, Adrian; Rosenberger, Joshua; Rosenthal, Susan L; Tu, Wanzhu; Xiao, Shan; Fontenot, Holly; Zimet, Gregory D
2017-08-01
Many men who have sex with men (MSM) do not disclose their same sex behaviors to healthcare providers (HCPs). We used a series of logistic regression models to explore a conceptual framework that first identified predictors of disclosure to HCPs among young MSM (YMSM), and subsequently examined young men's disclosure of male-male sexual behaviors to HCPs as a mediator between sociodemographic and behavioral factors and three distinct health outcomes [HIV testing, sexually transmitted infection (STI) testing, and human papillomavirus (HPV) vaccination]. We determined the predictors of disclosure to HCPs among YMSM and examined the relationship between disclosure and the receipt of appropriate healthcare services. Data were collected online through a US national sample of 1750 YMSM (ages 18-29 years) using a social and sexual networking website for MSM. Sexual history, STI/HIV screening history, sexual health, and patient-provider communication were analyzed in the logistic regression models. Participants were predominantly white (75.2%) and gay/homosexual (76.7%) with at least some college education (82.7%). Young men's disclosure of male-male sexual behaviors to HCPs was associated with the receipt of all healthcare outcomes in our model. Disclosure was a stronger mediator in HPV vaccination than in HIV and STI testing. Disclosure to non-HCP friends and family, HCP visit in the past year, and previous STI diagnosis were the strongest predictors of disclosure. Young men's disclosure of male-male sexual behaviors to HCPs is integral to the receipt of appropriate healthcare services among YMSM. HPV vaccination is more dependent on provider-level interaction with patients than HIV/STI testing.
Application of Item Response Theory to Tests of Substance-related Associative Memory
Shono, Yusuke; Grenard, Jerry L.; Ames, Susan L.; Stacy, Alan W.
2015-01-01
A substance-related word association test (WAT) is one of the commonly used indirect tests of substance-related implicit associative memory and has been shown to predict substance use. This study applied an item response theory (IRT) modeling approach to evaluate psychometric properties of the alcohol- and marijuana-related WATs and their items among 775 ethnically diverse at-risk adolescents. After examining the IRT assumptions, item fit, and differential item functioning (DIF) across gender and age groups, the original 18 WAT items were reduced to 14- and 15-items in the alcohol- and marijuana-related WAT, respectively. Thereafter, unidimensional one- and two-parameter logistic models (1PL and 2PL models) were fitted to the revised WAT items. The results demonstrated that both alcohol- and marijuana-related WATs have good psychometric properties. These results were discussed in light of the framework of a unified concept of construct validity (Messick, 1975, 1989, 1995). PMID:25134051
Gupte, Manisha; Alcalay, Roy N.; Mejia-Santana, Helen; Raymond, Deborah; Saunders-Pullman, Rachel; Roos, Ernest; Orbe-Reily, Martha; Tang, Ming-X; Mirelman, Anat; Ozelius, Laurie; Orr-Urtreger, Avi; Clark, Lorraine; Giladi, Nir; Bressman, Susan
2014-01-01
Our objective was to explore interest in genetic testing among Ashkenazi Jewish (AJ) Parkinson’s Disease (PD) cases and first-degree relatives, as genetic testing for LRRK2 G2019S is widely available. Approximately 18 % of AJ PD cases carry G2019S mutations; penetrance estimations vary between 24 and 100 % by age 80. A Genetic Attitude Questionnaire (GAQ) was administered at two New York sites to PD families unaware of LRRK2 G2019S mutation status. The association of G2019S, age, education, gender and family history of PD with desire for genetic testing (outcome) was modeled using logistic regression. One-hundred eleven PD cases and 77 relatives completed the GAQ. Both PD cases and relatives had excellent PD-specific genetic knowledge. Among PD, 32.6 % “definitely” and 41.1 % “probably” wanted testing, if offered “now.” Among relatives, 23.6 % “definitely” and 36.1 % “probably” wanted testing “now.” Desire for testing in relatives increased incrementally based on hypothetical risk of PD. The most important reasons for testing in probands and relatives were: if it influenced medication response, identifying no mutation, and early prevention and treatment. In logistic regression, older age was associated with less desire for testing in probands OR=0.921 95%CI 0.868–0.977, p=0.009. Both probands and relatives express interest in genetic testing, despite no link to current treatment or prevention. PMID:25127731
History of falls, gait, balance, and fall risks in older cancer survivors living in the community.
Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle
2015-01-01
Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A "faller" was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher's exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with P<0.15 were included in a forward logistic regression model to identify factors predictive of falls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was P<0.05. During follow-up, 59% of participants had one or more falls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594-29.074) (P<0.05). Sensitivity and specificity for correctly identifying a faller using the positive history of falls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling.
History of falls, gait, balance, and fall risks in older cancer survivors living in the community
Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle
2015-01-01
Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A “faller” was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher’s exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with P<0.15 were included in a forward logistic regression model to identify factors predictive of falls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was P<0.05. During follow-up, 59% of participants had one or more falls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594–29.074) (P<0.05). Sensitivity and specificity for correctly identifying a faller using the positive history of falls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling. PMID:26425079
Applying Simulation and Logistics Modeling to Transportation Issues
DOT National Transportation Integrated Search
1995-08-15
This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Ene...
LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei
2017-01-01
Background: We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. Methods: We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. Results: For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Conclusion: Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers. PMID:28828316
NASA Technical Reports Server (NTRS)
Flechner, S. G.; Patterson, J. C., Jr.
1972-01-01
An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.
Modeling logistic performance in quantitative microbial risk assessment.
Rijgersberg, Hajo; Tromp, Seth; Jacxsens, Liesbeth; Uyttendaele, Mieke
2010-01-01
In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times-mutually dependent in successive steps in the chain-cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for Listeria monocytogenes in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.
Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.
Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio
2014-11-24
The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.
Modeling Population Growth and Extinction
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2009-01-01
The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…
Sperandio, Evandro Fornias; Arantes, Rodolfo Leite; da Silva, Rodrigo Pereira; Matheus, Agatha Caveda; Lauria, Vinícius Tonon; Bianchim, Mayara Silveira; Romiti, Marcello; Gagliardi, Antônio Ricardo de Toledo; Dourado, Victor Zuniga
2016-01-01
Accelerometry provides objective measurement of physical activity levels, but is unfeasible in clinical practice. Thus, we aimed to identify physical fitness tests capable of predicting physical inactivity among adults. Diagnostic test study developed at a university laboratory and a diagnostic clinic. 188 asymptomatic subjects underwent assessment of physical activity levels through accelerometry, ergospirometry on treadmill, body composition from bioelectrical impedance, isokinetic muscle function, postural balance on a force platform and six-minute walk test. We conducted descriptive analysis and multiple logistic regression including age, sex, oxygen uptake, body fat, center of pressure, quadriceps peak torque, distance covered in six-minute walk test and steps/day in the model, as predictors of physical inactivity. We also determined sensitivity (S), specificity (Sp) and area under the curve of the main predictors by means of receiver operating characteristic curves. The prevalence of physical inactivity was 14%. The mean number of steps/day (≤ 5357) was the best predictor of physical inactivity (S = 99%; Sp = 82%). The best physical fitness test was a distance in the six-minute walk test and ≤ 96% of predicted values (S = 70%; Sp = 80%). Body fat > 25% was also significant (S = 83%; Sp = 51%). After logistic regression, steps/day and distance in the six-minute walk test remained predictors of physical inactivity. The six-minute walk test should be included in epidemiological studies as a simple and cheap tool for screening for physical inactivity.
The Robustness of LOGIST and BILOG IRT Estimation Programs to Violations of Local Independence.
ERIC Educational Resources Information Center
Ackerman, Terry A.
One of the important underlying assumptions of all item response theory (IRT) models is that of local independence. This assumption requires that the response to an item on a test not be influenced by the response to any other items. This assumption is often taken for granted, with little or no scrutiny of the response process required to answer…
Smart and Green Energy (SAGE) for Base Camps Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.
2014-02-11
The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.
Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-06
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.
Can we predict 4-year graduation in podiatric medical school using admission data?
Sesodia, Sanjay; Molnar, David; Shaw, Graham P
2012-01-01
This study examined the predictive ability of educational background and demographic variables, available at the admission stage, to identify applicants who will graduate in 4 years from podiatric medical school. A logistic regression model was used to identify two predictors of 4-year graduation: age at matriculation and total Medical College Admission Test score. The model was cross-validated using a second independent sample from the same population. Cross-validation gives greater confidence that the results could be more generally applied. Total Medical College Admission Test score was the strongest predictor of 4-year graduation, with age at matriculation being a statistically significant but weaker predictor. Despite the model's capacity to predict 4-year graduation better than random assignment, a sufficient amount of error in prediction remained, suggesting that important predictors are missing from the model. Furthermore, the high rate of false-positives makes it inappropriate to use age and Medical College Admission Test score as admission screens in an attempt to eliminate attrition by not accepting at-risk students.
Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo
2015-05-12
To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.
Research on reverse logistics location under uncertainty environment based on grey prediction
NASA Astrophysics Data System (ADS)
Zhenqiang, Bao; Congwei, Zhu; Yuqin, Zhao; Quanke, Pan
This article constructs reverse logistic network based on uncertain environment, integrates the reverse logistics network and distribution network, and forms a closed network. An optimization model based on cost is established to help intermediate center, manufacturing center and remanufacturing center make location decision. A gray model GM (1, 1) is used to predict the product holdings of the collection points, and then prediction results are carried into the cost optimization model and a solution is got. Finally, an example is given to verify the effectiveness and feasibility of the model.
Humanitarian response: improving logistics to save lives.
McCoy, Jessica
2008-01-01
Each year, millions of people worldwide are affected by disasters, underscoring the importance of effective relief efforts. Many highly visible disaster responses have been inefficient and ineffective. Humanitarian agencies typically play a key role in disaster response (eg, procuring and distributing relief items to an affected population, assisting with evacuation, providing healthcare, assisting in the development of long-term shelter), and thus their efficiency is critical for a successful disaster response. The field of disaster and emergency response modeling is well established, but the application of such techniques to humanitarian logistics is relatively recent. This article surveys models of humanitarian response logistics and identifies promising opportunities for future work. Existing models analyze a variety of preparation and response decisions (eg, warehouse location and the distribution of relief supplies), consider both natural and manmade disasters, and typically seek to minimize cost or unmet demand. Opportunities to enhance the logistics of humanitarian response include the adaptation of models developed for general disaster response; the use of existing models, techniques, and insights from the literature on commercial supply chain management; the development of working partnerships between humanitarian aid organizations and private companies with expertise in logistics; and the consideration of behavioral factors relevant to a response. Implementable, realistic models that support the logistics of humanitarian relief can improve the preparation for and the response to disasters, which in turn can save lives.
NASA Astrophysics Data System (ADS)
Madhu, B.; Ashok, N. C.; Balasubramanian, S.
2014-11-01
Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.
In-space propellant logistics. Volume 4: Project planning data
NASA Technical Reports Server (NTRS)
1972-01-01
The prephase A conceptual project planning data as it pertains to the development of the selected logistics module configuration transported into earth orbit by the space shuttle orbiter. The data represents the test, implementation, and supporting research and technology requirements for attaining the propellant transfer operational capability for early 1985. The plan is based on a propellant module designed to support the space-based tug with cryogenic oxygen-hydrogen propellants. A logical sequence of activities that is required to define, design, develop, fabricate, test, launch, and flight test the propellant logistics module is described. Included are the facility and ground support equipment requirements. The schedule of activities are based on the evolution and relationship between the R and T, the development issues, and the resultant test program.
Telehealth Stroke Dysphagia Evaluation Is Safe and Effective.
Morrell, Kate; Hyers, Megan; Stuchiner, Tamela; Lucas, Lindsay; Schwartz, Karissa; Mako, Jenniffer; Spinelli, Kateri J; Yanase, Lisa
2017-01-01
Rapid evaluation of dysphagia poststroke significantly lowers rates of aspiration pneumonia. Logistical barriers often significantly delay in-person dysphagia evaluation by speech language pathologists (SLPs) in remote and rural hospitals. Clinical swallow evaluations delivered via telehealth have been validated in a number of clinical contexts, yet no one has specifically validated a teleswallow evaluation for in-hospital post-stroke dysphagia assessment. A team of 6 SLPs experienced in stroke care and a telestroke neurologist designed, implemented, and tested a teleswallow evaluation for acute stroke patients, in which 100 patients across 2 affiliated, urban certified stroke centers were sequentially evaluated by a bedside and telehealth SLP. Inter-rater reliability was analyzed using percent agreement, Cohen's kappa, Kendall's tau-b, and Wilcoxon matched-pairs signed rank tests. Logistic regression models accounting for age and gender were used to test the impact of stroke severity and stroke location on agreement. We found excellent agreement for both liquid (91% agreement; kappa = 0.808; Kendall's tau-b = 0.813, p < 0.001; Wilcoxon signed rank = -0.818, p = 0.417) and solid (87% agreement; kappa = 0.792; Kendall's tau-b = 0.844, p < 0.001; Wilcoxon signed rank = 0.243, p = 0.808) dietary textures. From regression modeling, there is suggestive but inconclusive evidence that higher National Institute of Health Stroke Scale (NIHSS) scores correlate with lower levels of agreement for liquid diet recommendations (OR [95% CI] 0.895 [0.793-1.01]; p = 0.07). There was no impact of NIHSS score for solid diet recommendations and no impact of stroke location on solid or liquid diet recommendations. Qualitatively, we identified professional, logistical, technical, and patient barriers to implementation, many of which resolved with experience over time. Dysphagia evaluation by a remote SLP via telehealth is safe and effective following stroke. We plan to implement teleswallow across our multistate telestroke network as standard practice for poststroke dysphagia evaluation. © 2017 S. Karger AG, Basel.
A decision support model for investment on P2P lending platform.
Zeng, Xiangxiang; Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace-Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone.
A decision support model for investment on P2P lending platform
Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace—Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone. PMID:28877234
NASA Astrophysics Data System (ADS)
Min, Qing-xu; Zhu, Jun-zhen; Feng, Fu-zhou; Xu, Chao; Sun, Ji-wei
2017-06-01
In this paper, the lock-in vibrothermography (LVT) is utilized for defect detection. Specifically, for a metal plate with an artificial fatigue crack, the temperature rise of the defective area is used for analyzing the influence of different test conditions, i.e. engagement force, excitation intensity, and modulated frequency. The multivariate nonlinear and logistic regression models are employed to estimate the POD (probability of detection) and POA (probability of alarm) of fatigue crack, respectively. The resulting optimal selection of test conditions is presented. The study aims to provide an optimized selection method of the test conditions in the vibrothermography system with the enhanced detection ability.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking.
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults' belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking.
Nowakowska, Marzena
2017-04-01
The development of the Bayesian logistic regression model classifying the road accident severity is discussed. The already exploited informative priors (method of moments, maximum likelihood estimation, and two-stage Bayesian updating), along with the original idea of a Boot prior proposal, are investigated when no expert opinion has been available. In addition, two possible approaches to updating the priors, in the form of unbalanced and balanced training data sets, are presented. The obtained logistic Bayesian models are assessed on the basis of a deviance information criterion (DIC), highest probability density (HPD) intervals, and coefficients of variation estimated for the model parameters. The verification of the model accuracy has been based on sensitivity, specificity and the harmonic mean of sensitivity and specificity, all calculated from a test data set. The models obtained from the balanced training data set have a better classification quality than the ones obtained from the unbalanced training data set. The two-stage Bayesian updating prior model and the Boot prior model, both identified with the use of the balanced training data set, outperform the non-informative, method of moments, and maximum likelihood estimation prior models. It is important to note that one should be careful when interpreting the parameters since different priors can lead to different models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mixed conditional logistic regression for habitat selection studies.
Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas
2010-05-01
1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures
ERIC Educational Resources Information Center
Atar, Burcu; Kamata, Akihito
2011-01-01
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
Using Dominance Analysis to Determine Predictor Importance in Logistic Regression
ERIC Educational Resources Information Center
Azen, Razia; Traxel, Nicole
2009-01-01
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Logistics of a Lunar Based Solar Power Satellite Scenario
NASA Technical Reports Server (NTRS)
Melissopoulos, Stefanos
1995-01-01
A logistics system comprised of two orbital stations for the support of a 500 GW space power satellite scenario in a geostationary orbit was investigated in this study. A subsystem mass model, a mass flow model and a life cycle cost model were developed. The results regarding logistics cost and burden rates show that the transportation cost contributed the most (96%) to the overall cost of the scenario. The orbital stations at a geostationary and at a lunar orbit contributed 4 % to that cost.
Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack
2011-01-01
Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.
Predicting mountain lion activity using radiocollars equipped with mercury tip-sensors
Janis, Michael W.; Clark, Joseph D.; Johnson, Craig
1999-01-01
Radiotelemetry collars with tip-sensors have long been used to monitor wildlife activity. However, comparatively few researchers have tested the reliability of the technique on the species being studied. To evaluate the efficacy of using tip-sensors to assess mountain lion (Puma concolor) activity, we radiocollared 2 hand-reared mountain lions and simultaneously recorded their behavior and the associated telemetry signal characteristics. We noted both the number of pulse-rate changes and the percentage of time the transmitter emitted a fast pulse rate (i.e., head up) within sampling intervals ranging from 1-5 minutes. Based on 27 hours of observations, we were able to correctly distinguish between active and inactive behaviors >93% of the time using a logistic regression model. We present several models to predict activity of mountain lions; the selection of which to us would depend on study objectives and logistics. Our results indicate that field protocols that use only pulse-rate changes to indicate activity can lead to significant classification errors.
Saucedo-Reyes, Daniela; Carrillo-Salazar, José A; Román-Padilla, Lizbeth; Saucedo-Veloz, Crescenciano; Reyes-Santamaría, María I; Ramírez-Gilly, Mariana; Tecante, Alberto
2018-03-01
High hydrostatic pressure inactivation kinetics of Escherichia coli ATCC 25922 and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028 ( S. typhimurium) in a low acid mamey pulp at four pressure levels (300, 350, 400, and 450 MPa), different exposure times (0-8 min), and temperature of 25 ± 2℃ were obtained. Survival curves showed deviations from linearity in the form of a tail (upward concavity). The primary models tested were the Weibull model, the modified Gompertz equation, and the biphasic model. The Weibull model gave the best goodness of fit ( R 2 adj > 0.956, root mean square error < 0.290) in the modeling and the lowest Akaike information criterion value. Exponential-logistic and exponential decay models, and Bigelow-type and an empirical models for b'( P) and n( P) parameters, respectively, were tested as alternative secondary models. The process validation considered the two- and one-step nonlinear regressions for making predictions of the survival fraction; both regression types provided an adequate goodness of fit and the one-step nonlinear regression clearly reduced fitting errors. The best candidate model according to the Akaike theory information, with better accuracy and more reliable predictions was the Weibull model integrated by the exponential-logistic and exponential decay secondary models as a function of time and pressure (two-step procedure) or incorporated as one equation (one-step procedure). Both mathematical expressions were used to determine the t d parameter, where the desired reductions ( 5D) (considering d = 5 ( t 5 ) as the criterion of 5 Log 10 reduction (5 D)) in both microorganisms are attainable at 400 MPa for 5.487 ± 0.488 or 5.950 ± 0.329 min, respectively, for the one- or two-step nonlinear procedure.
An integrative fuzzy Kansei engineering and Kano model for logistics services
NASA Astrophysics Data System (ADS)
Hartono, M.; Chuan, T. K.; Prayogo, D. N.; Santoso, A.
2017-11-01
Nowadays, customer emotional needs (known as Kansei) in product and especially in services become a major concern. One of the emerging services is the logistics services. In obtaining a global competitive advantage, logistics services should understand and satisfy their customer affective impressions (Kansei). How to capture, model and analyze the customer emotions has been well structured by Kansei Engineering, equipped with Kano model to strengthen its methodology. However, its methodology lacks of the dynamics of customer perception. More specifically, there is a criticism of perceived scores on user preferences, in both perceived service quality and Kansei response, whether they represent an exact numerical value. Thus, this paper is proposed to discuss an approach of fuzzy Kansei in logistics service experiences. A case study in IT-based logistics services involving 100 subjects has been conducted. Its findings including the service gaps accompanied with prioritized improvement initiatives are discussed.
Hoyer, A; Kuss, O
2015-05-20
In real life and somewhat contrary to biostatistical textbook knowledge, sensitivity and specificity (and not only predictive values) of diagnostic tests can vary with the underlying prevalence of disease. In meta-analysis of diagnostic studies, accounting for this fact naturally leads to a trivariate expansion of the traditional bivariate logistic regression model with random study effects. In this paper, a new model is proposed using trivariate copulas and beta-binomial marginal distributions for sensitivity, specificity, and prevalence as an expansion of the bivariate model. Two different copulas are used, the trivariate Gaussian copula and a trivariate vine copula based on the bivariate Plackett copula. This model has a closed-form likelihood, so standard software (e.g., SAS PROC NLMIXED) can be used. The results of a simulation study have shown that the copula models perform at least as good but frequently better than the standard model. The methods are illustrated by two examples. Copyright © 2015 John Wiley & Sons, Ltd.
Logistics, electronic commerce, and the environment
NASA Astrophysics Data System (ADS)
Sarkis, Joseph; Meade, Laura; Talluri, Srinivas
2002-02-01
Organizations realize that a strong supporting logistics or electronic logistics (e-logistics) function is important from both commercial and consumer perspectives. The implications of e-logistics models and practices cover the forward and reverse logistics functions of organizations. They also have direct and profound impact on the natural environment. This paper will focus on a discussion of forward and reverse e-logistics and their relationship to the natural environment. After discussion of the many pertinent issues in these areas, directions of practice and implications for study and research are then described.
Optimizing the US Navy’s Combat Logistics Force
2008-01-01
Optimizing the US Navy’s Combat Logistics Force Gerald G. Brown, W. Matthew Carlyle Operations Research Department, Naval Postgraduate School...Wiley InterScience (www.interscience.wiley.com). Abstract: We study how changes to the composition and employment of the US Navy combat logistic force...evaluate new CLF ship designs, advise what number of ships in a new ship class would be needed, test concepts for forward at-sea logistics bases in lieu
ADCYAP1R1 and asthma in Puerto Rican children.
Chen, Wei; Boutaoui, Nadia; Brehm, John M; Han, Yueh-Ying; Schmitz, Cassandra; Cressley, Alex; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Baccarelli, Andrea A; Weeks, Daniel E; Kolls, Jay K; Canino, Glorisa; Celedón, Juan C
2013-03-15
Epigenetic and/or genetic variation in the gene encoding the receptor for adenylate-cyclase activating polypeptide 1 (ADCYAP1R1) has been linked to post-traumatic stress disorder in adults and anxiety in children. Psychosocial stress has been linked to asthma morbidity in Puerto Rican children. To examine whether epigenetic or genetic variation in ADCYAP1R1 is associated with childhood asthma in Puerto Ricans. We conducted a case-control study of 516 children ages 6-14 years living in San Juan, Puerto Rico. We assessed methylation at a CpG site in the promoter of ADCYAP1R1 (cg11218385) using a pyrosequencing assay in DNA from white blood cells. We tested whether cg11218385 methylation (range, 0.4-6.1%) is associated with asthma using logistic regression. We also examined whether exposure to violence (assessed by the Exposure to Violence [ETV] Scale in children 9 yr and older) is associated with cg11218385 methylation (using linear regression) or asthma (using logistic regression). Logistic regression was used to test for association between a single nucleotide polymorphism in ADCYAP1R1 (rs2267735) and asthma under an additive model. All multivariate models were adjusted for age, sex, household income, and principal components. EACH 1% increment in cg11218385 methylation was associated with increased odds of asthma (adjusted odds ratio, 1.3; 95% confidence interval, 1.0-1.6; P = 0.03). Among children 9 years and older, exposure to violence was associated with cg11218385 methylation. The C allele of single nucleotide polymorphism rs2267735 was significantly associated with increased odds of asthma (adjusted odds ratio, 1.3; 95% confidence interval, 1.02-1.67; P = 0.03). Epigenetic and genetic variants in ADCYAP1R1 are associated with asthma in Puerto Rican children.
Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan
NASA Technical Reports Server (NTRS)
1974-01-01
The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.
Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.
Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai
2017-04-01
This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.
Rodia, Maria Teresa; Solmi, Rossella; Pasini, Francesco; Nardi, Elena; Mattei, Gabriella; Ugolini, Giampaolo; Ricciardiello, Luigi; Strippoli, Pierluigi; Miglio, Rossella; Lauriola, Mattia
2018-06-01
A noninvasive blood test for the early detection of colorectal cancer (CRC) is highly required. We evaluated a panel of 4 mRNAs as putative markers of CRC. We tested LGALS4, CEACAM6, TSPAN8, and COL1A2, referred to as the CELTiC panel, using quantitative reverse transcription polymerase chain reaction, on subjects with positive fecal immunochemical test (FIT) results and undergoing colonoscopy. Using a nonparametric test and multinomial logistic model, FIT-positive subjects were compared with CRC patients and healthy individuals. All the genes of the CELTiC panel displayed statistically significant differences between the healthy subjects (n = 67), both low-risk (n = 36) and high-risk/CRC (n = 92) subjects, and those in the negative-colonoscopy, FIT-positive group (n = 36). The multinomial logistic model revealed LGALS4 was the most powerful marker discriminating the 4 groups. When assessing the diagnostic values by analysis of the areas under the receiver operating characteristic curves (AUCs), the CELTiC panel reached an AUC of 0.91 (sensitivity, 79%; specificity, 94%) comparing normal subjects to low-risk subjects, and 0.88 (sensitivity, 75%; specificity, 87%) comparing normal and high-risk/CRC subjects. The comparison between the normal subjects and the negative-colonoscopy, FIT-positive group revealed an AUC of 0.93 (sensitivity, 82%; specificity, 97%). The CELTiC panel could represent a useful tool for discriminating subjects with positive FIT findings and for the early detection of precancerous adenomatous lesions and CRC. Copyright © 2017 Elsevier Inc. All rights reserved.
Logistical Consideration in Computer-Based Screening of Astronaut Applicants
NASA Technical Reports Server (NTRS)
Galarza, Laura
2000-01-01
This presentation reviews the logistical, ergonomic, and psychometric issues and data related to the development and operational use of a computer-based system for the psychological screening of astronaut applicants. The Behavioral Health and Performance Group (BHPG) at the Johnson Space Center upgraded its astronaut psychological screening and selection procedures for the 1999 astronaut applicants and subsequent astronaut selection cycles. The questionnaires, tests, and inventories were upgraded from a paper-and-pencil system to a computer-based system. Members of the BHPG and a computer programmer designed and developed needed interfaces (screens, buttons, etc.) and programs for the astronaut psychological assessment system. This intranet-based system included the user-friendly computer-based administration of tests, test scoring, generation of reports, the integration of test administration and test output to a single system, and a complete database for past, present, and future selection data. Upon completion of the system development phase, four beta and usability tests were conducted with the newly developed system. The first three tests included 1 to 3 participants each. The final system test was conducted with 23 participants tested simultaneously. Usability and ergonomic data were collected from the system (beta) test participants and from 1999 astronaut applicants who volunteered the information in exchange for anonymity. Beta and usability test data were analyzed to examine operational, ergonomic, programming, test administration and scoring issues related to computer-based testing. Results showed a preference for computer-based testing over paper-and -pencil procedures. The data also reflected specific ergonomic, usability, psychometric, and logistical concerns that should be taken into account in future selection cycles. Conclusion. Psychological, psychometric, human and logistical factors must be examined and considered carefully when developing and using a computer-based system for psychological screening and selection.
Use of logistic regression for modelling risk factors: with application to non-melanoma skin cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitaliano, P.P.
Logistic regression was used to estimate the relative risk of basal and squamous skin cancer for such factors as cumulative lifetime solar exposure, age, complexion, and tannability. In previous reports, a subject's exposure was estimated indirectly, by latitude, or by the number of sun days in a subject's habitat. In contrast, these results are based on interview data gathered for each subject. A relatively new technique was used to estimate relative risk by controlling for confounding and testing for effect modification. A linear effect for the relative risk of cancer versus exposure was found. Tannability was shown to be amore » more important risk factor than complexion. This result is consistent with the work of Silverstone and Searle.« less
Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated with Radiotherapy
2017-10-01
approaches in the GWAS meta-analysis: 1) logistic regression to test association of each SNP with grade 1 or worse toxicity at 2 years post ...Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY
Accounting for Slipping and Other False Negatives in Logistic Models of Student Learning
ERIC Educational Resources Information Center
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R.
2015-01-01
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Some Observations on the Identification and Interpretation of the 3PL IRT Model
ERIC Educational Resources Information Center
Azevedo, Caio Lucidius Naberezny
2009-01-01
The paper by Maris, G., & Bechger, T. (2009) entitled, "On the Interpreting the Model Parameters for the Three Parameter Logistic Model," addressed two important questions concerning the three parameter logistic (3PL) item response theory (IRT) model (and in a broader sense, concerning all IRT models). The first one is related to the model…
A High Resolution Ammunition Resupply Model.
1982-03-01
LOU ............... 104 3. Requests for Resupply . . ........ 108 a. Weapon Systems . . . . . . . . . . . . 108 b. Platoon . ... 109 c. Company...essence, the fundamental question, "Can it be done?", is never adequately answered. B. LOGISTICS MODELS Current logistics models then, although...19 .._ " Development of a detailed model that responds to requests for ammunition resupply, maintains a simplified stockage system , and models the
Mayfield, Helen J; Lowry, John H; Watson, Conall H; Kama, Mike; Nilles, Eric J; Lau, Colleen L
2018-05-01
Leptospirosis is a globally important zoonotic disease, with complex exposure pathways that depend on interactions between human beings, animals, and the environment. Major drivers of outbreaks include flooding, urbanisation, poverty, and agricultural intensification. The intensity of these drivers and their relative importance vary between geographical areas; however, non-spatial regression methods are incapable of capturing the spatial variations. This study aimed to explore the use of geographically weighted logistic regression (GWLR) to provide insights into the ecoepidemiology of human leptospirosis in Fiji. We obtained field data from a cross-sectional community survey done in 2013 in the three main islands of Fiji. A blood sample obtained from each participant (aged 1-90 years) was tested for anti-Leptospira antibodies and household locations were recorded using GPS receivers. We used GWLR to quantify the spatial variation in the relative importance of five environmental and sociodemographic covariates (cattle density, distance to river, poverty rate, residential setting [urban or rural], and maximum rainfall in the wettest month) on leptospirosis transmission in Fiji. We developed two models, one using GWLR and one with standard logistic regression; for each model, the dependent variable was the presence or absence of anti-Leptospira antibodies. GWLR results were compared with results obtained with standard logistic regression, and used to produce a predictive risk map and maps showing the spatial variation in odds ratios (OR) for each covariate. The dataset contained location information for 2046 participants from 1922 households representing 81 communities. The Aikaike information criterion value of the GWLR model was 1935·2 compared with 1254·2 for the standard logistic regression model, indicating that the GWLR model was more efficient. Both models produced similar OR for the covariates, but GWLR also detected spatial variation in the effect of each covariate. Maximum rainfall had the least variation across space (median OR 1·30, IQR 1·27-1·35), and distance to river varied the most (1·45, 1·35-2·05). The predictive risk map indicated that the highest risk was in the interior of Viti Levu, and the agricultural region and southern end of Vanua Levu. GWLR provided a valuable method for modelling spatial heterogeneity of covariates for leptospirosis infection and their relative importance over space. Results of GWLR could be used to inform more place-specific interventions, particularly for diseases with strong environmental or sociodemographic drivers of transmission. WHO, Australian National Health & Medical Research Council, University of Queensland, UK Medical Research Council, Chadwick Trust. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Nagel, O G; Molina, M P; Basílico, J C; Zapata, M L; Althaus, R L
2009-06-01
To use experimental design techniques and a multiple logistic regression model to optimize a microbiological inhibition test with dichotomous response for the detection of Penicillin G in milk. A 2(3) x 2(2) robust experimental design with two replications was used. The effects of three control factors (V: culture medium volume, S: spore concentration of Geobacillus stearothermophilus, I: indicator concentration), two noise factors (Dt: diffusion time, Ip: incubation period) and their interactions were studied. The V, S, Dt, Ip factors and V x S, V x Ip, S x Ip interactions showed significant effects. The use of 100 microl culture medium volume, 2 x 10(5) spores ml(-1), 60 min diffusion time and 3 h incubation period is recommended. In these elaboration conditions, the penicillin detection limit was of 3.9 microg l(-1), similar to the maximum residue limit (MRL). Of the two noise factors studied, the incubation period can be controlled by means of the culture medium volume and spore concentration. We were able to optimize bioassays of dichotomous response using an experimental design and logistic regression model for the detection of residues at the level of MRL, aiding in the avoidance of health problems in the consumer.
Constructive thinking, rational intelligence and irritable bowel syndrome.
Rey, Enrique; Moreno Ortega, Marta; Garcia Alonso, Monica-Olga; Diaz-Rubio, Manuel
2009-07-07
To evaluate rational and experiential intelligence in irritable bowel syndrome (IBS) sufferers. We recruited 100 subjects with IBS as per Rome II criteria (50 consulters and 50 non-consulters) and 100 healthy controls, matched by age, sex and educational level. Cases and controls completed a clinical questionnaire (including symptom characteristics and medical consultation) and the following tests: rational-intelligence (Wechsler Adult Intelligence Scale, 3rd edition); experiential-intelligence (Constructive Thinking Inventory); personality (NEO personality inventory); psychopathology (MMPI-2), anxiety (state-trait anxiety inventory) and life events (social readjustment rating scale). Analysis of variance was used to compare the test results of IBS-sufferers and controls, and a logistic regression model was then constructed and adjusted for age, sex and educational level to evaluate any possible association with IBS. No differences were found between IBS cases and controls in terms of IQ (102.0 +/- 10.8 vs 102.8 +/- 12.6), but IBS sufferers scored significantly lower in global constructive thinking (43.7 +/- 9.4 vs 49.6 +/- 9.7). In the logistic regression model, global constructive thinking score was independently linked to suffering from IBS [OR 0.92 (0.87-0.97)], without significant OR for total IQ. IBS subjects do not show lower rational intelligence than controls, but lower experiential intelligence is nevertheless associated with IBS.
Reverse logistics system planning for recycling computers hardware: A case study
NASA Astrophysics Data System (ADS)
Januri, Siti Sarah; Zulkipli, Faridah; Zahari, Siti Meriam; Shamsuri, Siti Hajar
2014-09-01
This paper describes modeling and simulation of reverse logistics networks for collection of used computers in one of the company in Selangor. The study focuses on design of reverse logistics network for used computers recycling operation. Simulation modeling, presented in this work allows the user to analyze the future performance of the network and to understand the complex relationship between the parties involved. The findings from the simulation suggest that the model calculates processing time and resource utilization in a predictable manner. In this study, the simulation model was developed by using Arena simulation package.
Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan
2010-03-01
Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians Postgraduate Press, Inc.
Lee, Christine K; Hofer, Ira; Gabel, Eilon; Baldi, Pierre; Cannesson, Maxime
2018-04-17
The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality. The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index. In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99). Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.
Prevalence of abortion and stillbirth in a beef cattle system in Southeastern Mexico.
Segura-Correa, José C; Segura-Correa, Victor M
2009-12-01
Prenatal mortality is an important cause of production losses in the livestock industry. This study estimates the prevalences of abortion and stillbirth in a beef cattle system and determines the significance of some risk factors, in the tropics of Mexico. Data were obtained from a Zebu cattle herd and their crosses with Bos taurus breeds, in Yucatan, Mexico. The logit of the probability of an abortion or stillbirth was modeled using binary logistic regression. The risk factors tested were: year of abortion (or calving), season of abortion (or calving), parity number and dam breed group. The effect of twins on stillbirth was tested using Fisher exact test. Of the 4175 calvings studied 49 were abortions (1.17%). Significant factors in the logistic regression analysis for abortions were season of abortion and parity number. The risk of abortion was lower in the dry seasons compared to the rainy and windy seasons (P = 0.009). The risk of abortion was higher in second parity cows followed by the third and first parity cows, as compared to older cows (P = 0.015). Of the 4126 births, 87 were stillbirths (2.11%). Significant factors in the logistic regression analysis for stillbirth were year of calving (P = 0.0001) and parity number (P < 0.001). The risk of stillbirth in first parity cows was 2.6 times that of old cows. Of the total births, 15 were twins (0.36%) of which 7 were born dead calves. Herd owners must focus on the significant risk factors under their control to reduce the prevalence of prenatal mortality.
Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-01
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639
An inexact reverse logistics model for municipal solid waste management systems.
Zhang, Yi Mei; Huang, Guo He; He, Li
2011-03-01
This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.
MESSOC capabilities and results. [Model for Estimating Space Station Opertions Costs
NASA Technical Reports Server (NTRS)
Shishko, Robert
1990-01-01
MESSOC (Model for Estimating Space Station Operations Costs) is the result of a multi-year effort by NASA to understand and model the mature operations cost of Space Station Freedom. This paper focuses on MESSOC's ability to contribute to life-cycle cost analyses through its logistics equations and databases. Together, these afford MESSOC the capability to project not only annual logistics costs for a variety of Space Station scenarios, but critical non-cost logistics results such as annual Station maintenance crewhours, upweight/downweight, and on-orbit sparing availability as well. MESSOC results using current logistics databases and baseline scenario have already shown important implications for on-orbit maintenance approaches, space transportation systems, and international operations cost sharing.
Requirement analysis for the one-stop logistics management of fresh agricultural products
NASA Astrophysics Data System (ADS)
Li, Jun; Gao, Hongmei; Liu, Yuchuan
2017-08-01
Issues and concerns for food safety, agro-processing, and the environmental and ecological impact of food production have been attracted many research interests. Traceability and logistics management of fresh agricultural products is faced with the technological challenges including food product label and identification, activity/process characterization, information systems for the supply chain, i.e., from farm to table. Application of one-stop logistics service focuses on the whole supply chain process integration for fresh agricultural products is studied. A collaborative research project for the supply and logistics of fresh agricultural products in Tianjin was performed. Requirement analysis for the one-stop logistics management information system is studied. The model-driven business transformation, an approach uses formal models to explicitly define the structure and behavior of a business, is applied for the review and analysis process. Specific requirements for the logistic management solutions are proposed. Development of this research is crucial for the solution of one-stop logistics management information system integration platform for fresh agricultural products.
Two models for evaluating landslide hazards
Davis, J.C.; Chung, C.-J.; Ohlmacher, G.C.
2006-01-01
Two alternative procedures for estimating landslide hazards were evaluated using data on topographic digital elevation models (DEMs) and bedrock lithologies in an area adjacent to the Missouri River in Atchison County, Kansas, USA. The two procedures are based on the likelihood ratio model but utilize different assumptions. The empirical likelihood ratio model is based on non-parametric empirical univariate frequency distribution functions under an assumption of conditional independence while the multivariate logistic discriminant model assumes that likelihood ratios can be expressed in terms of logistic functions. The relative hazards of occurrence of landslides were estimated by an empirical likelihood ratio model and by multivariate logistic discriminant analysis. Predictor variables consisted of grids containing topographic elevations, slope angles, and slope aspects calculated from a 30-m DEM. An integer grid of coded bedrock lithologies taken from digitized geologic maps was also used as a predictor variable. Both statistical models yield relative estimates in the form of the proportion of total map area predicted to already contain or to be the site of future landslides. The stabilities of estimates were checked by cross-validation of results from random subsamples, using each of the two procedures. Cell-by-cell comparisons of hazard maps made by the two models show that the two sets of estimates are virtually identical. This suggests that the empirical likelihood ratio and the logistic discriminant analysis models are robust with respect to the conditional independent assumption and the logistic function assumption, respectively, and that either model can be used successfully to evaluate landslide hazards. ?? 2006.
Kusano, Kristofer; Gabler, Hampton C
2014-01-01
The odds of death for a seriously injured crash victim are drastically reduced if he or she received care at a trauma center. Advanced automated crash notification (AACN) algorithms are postcrash safety systems that use data measured by the vehicles during the crash to predict the likelihood of occupants being seriously injured. The accuracy of these models are crucial to the success of an AACN. The objective of this study was to compare the predictive performance of competing injury risk models and algorithms: logistic regression, random forest, AdaBoost, naïve Bayes, support vector machine, and classification k-nearest neighbors. This study compared machine learning algorithms to the widely adopted logistic regression modeling approach. Machine learning algorithms have not been commonly studied in the motor vehicle injury literature. Machine learning algorithms may have higher predictive power than logistic regression, despite the drawback of lacking the ability to perform statistical inference. To evaluate the performance of these algorithms, data on 16,398 vehicles involved in non-rollover collisions were extracted from the NASS-CDS. Vehicles with any occupants having an Injury Severity Score (ISS) of 15 or greater were defined as those requiring victims to be treated at a trauma center. The performance of each model was evaluated using cross-validation. Cross-validation assesses how a model will perform in the future given new data not used for model training. The crash ΔV (change in velocity during the crash), damage side (struck side of the vehicle), seat belt use, vehicle body type, number of events, occupant age, and occupant sex were used as predictors in each model. Logistic regression slightly outperformed the machine learning algorithms based on sensitivity and specificity of the models. Previous studies on AACN risk curves used the same data to train and test the power of the models and as a result had higher sensitivity compared to the cross-validated results from this study. Future studies should account for future data; for example, by using cross-validation or risk presenting optimistic predictions of field performance. Past algorithms have been criticized for relying on age and sex, being difficult to measure by vehicle sensors, and inaccuracies in classifying damage side. The models with accurate damage side and including age/sex did outperform models with less accurate damage side and without age/sex, but the differences were small, suggesting that the success of AACN is not reliant on these predictors.
Topitzes, James; Mersky, Joshua P.; McNeil, Cheryl B.
2014-01-01
This paper describes an innovative adaptation of an evidence-based intervention – Parent Child Interaction Therapy or PCIT – to foster parent training services. The authors faced multiple problems that commonly plague translational child welfare research as they developed, implemented and tested their model. The paper discusses how the authors addressed these problems when: 1) specifying the child welfare context in which the intervention model was implemented and tested, choosing an intervention model that responded to child welfare service needs, and tailoring the model for a child welfare context; 2) securing external funding and initiating sustainability plans for model uptake; and 3) forging a university-community partnership to overcome logistical and ethical obstacles. Concluding with a summary of promising preliminary study results, a description of future plans to replicate and spread the model, and a distillation of project lessons, the paper suggests that child welfare translational research with PCIT is very promising. PMID:25729340
An Extension of the Concept of Specific Objectivity.
ERIC Educational Resources Information Center
Irtel, Hans
1995-01-01
Comparisons of subjects are specifically objective if they do not depend on the items involved. Such comparisons are not restricted to the one-parameter logistic latent trait model but may also be defined within ordinal independence models and even within the two-parameter logistic model. (Author)
Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q
2017-03-01
Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.
Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H
2016-01-01
Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults’ belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking. PMID:27853440
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.
2003-01-01
Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.
Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei
2017-06-01
To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.
Sex differences in the effect of aging on dry eye disease.
Ahn, Jong Ho; Choi, Yoon-Hyeong; Paik, Hae Jung; Kim, Mee Kum; Wee, Won Ryang; Kim, Dong Hyun
2017-01-01
Aging is a major risk factor in dry eye disease (DED), and understanding sexual differences is very important in biomedical research. However, there is little information about sex differences in the effect of aging on DED. We investigated sex differences in the effect of aging and other risk factors for DED. This study included data of 16,824 adults from the Korea National Health and Nutrition Examination Survey (2010-2012), which is a population-based cross-sectional survey. DED was defined as the presence of frequent ocular dryness or a previous diagnosis by an ophthalmologist. Basic sociodemographic factors and previously known risk factors for DED were included in the analyses. Linear regression modeling and multivariate logistic regression modeling were used to compare the sex differences in the effect of risk factors for DED; we additionally performed tests for interactions between sex and other risk factors for DED in logistic regression models. In our linear regression models, the prevalence of DED symptoms in men increased with age ( R =0.311, P =0.012); however, there was no association between aging and DED in women ( P >0.05). Multivariate logistic regression analyses showed that aging in men was not associated with DED (DED symptoms/diagnosis: odds ratio [OR] =1.01/1.04, each P >0.05), while aging in women was protectively associated with DED (DED symptoms/diagnosis: OR =0.94/0.91, P =0.011/0.003). Previous ocular surgery was significantly associated with DED in both men and women (men/women: OR =2.45/1.77 [DED symptoms] and 3.17/2.05 [DED diagnosis], each P <0.001). Tests for interactions of sex revealed significantly different aging × sex and previous ocular surgery × sex interactions ( P for interaction of sex: DED symptoms/diagnosis - 0.044/0.011 [age] and 0.012/0.006 [previous ocular surgery]). There were distinct sex differences in the effect of aging on DED in the Korean population. DED following ocular surgery also showed sexually different patterns. Age matching and sex matching are strongly recommended in further studies about DED, especially DED following ocular surgery.
Xu, Di; Chai, Meiyun; Dong, Zhujun; Rahman, Md Maksudur; Yu, Xi; Cai, Junmeng
2018-06-04
The kinetic compensation effect in the logistic distributed activation energy model (DAEM) for lignocellulosic biomass pyrolysis was investigated. The sum of square error (SSE) surface tool was used to analyze two theoretically simulated logistic DAEM processes for cellulose and xylan pyrolysis. The logistic DAEM coupled with the pattern search method for parameter estimation was used to analyze the experimental data of cellulose pyrolysis. The results showed that many parameter sets of the logistic DAEM could fit the data at different heating rates very well for both simulated and experimental processes, and a perfect linear relationship between the logarithm of the frequency factor and the mean value of the activation energy distribution was found. The parameters of the logistic DAEM can be estimated by coupling the optimization method and isoconversional kinetic methods. The results would be helpful for chemical kinetic analysis using DAEM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scenario analysis and disaster preparedness for port and maritime logistics risk management.
Kwesi-Buor, John; Menachof, David A; Talas, Risto
2016-08-01
System Dynamics (SD) modelling is used to investigate the impacts of policy interventions on industry actors' preparedness to mitigate risks and to recover from disruptions along the maritime logistics and supply chain network. The model suggests a bi-directional relation between regulation and industry actors' behaviour towards Disaster Preparedness (DP) in maritime logistics networks. The model also showed that the level of DP is highly contingent on forecast accuracy, technology change, attitude to risk prevention, port activities, and port environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bakal, Gokhan; Talari, Preetham; Kakani, Elijah V; Kavuluru, Ramakanth
2018-06-01
Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying different causal relations between biomedical entities is also critical to understand biomedical processes. Generally, natural language processing (NLP) and machine learning are used to predict specific relations between any given pair of entities using the distant supervision approach. To build high accuracy supervised predictive models to predict previously unknown treatment and causative relations between biomedical entities based only on semantic graph pattern features extracted from biomedical knowledge graphs. We used 7000 treats and 2918 causes hand-curated relations from the UMLS Metathesaurus to train and test our models. Our graph pattern features are extracted from simple paths connecting biomedical entities in the SemMedDB graph (based on the well-known SemMedDB database made available by the U.S. National Library of Medicine). Using these graph patterns connecting biomedical entities as features of logistic regression and decision tree models, we computed mean performance measures (precision, recall, F-score) over 100 distinct 80-20% train-test splits of the datasets. For all experiments, we used a positive:negative class imbalance of 1:10 in the test set to model relatively more realistic scenarios. Our models predict treats and causes relations with high F-scores of 99% and 90% respectively. Logistic regression model coefficients also help us identify highly discriminative patterns that have an intuitive interpretation. We are also able to predict some new plausible relations based on false positives that our models scored highly based on our collaborations with two physician co-authors. Finally, our decision tree models are able to retrieve over 50% of treatment relations from a recently created external dataset. We employed semantic graph patterns connecting pairs of candidate biomedical entities in a knowledge graph as features to predict treatment/causative relations between them. We provide what we believe is the first evidence in direct prediction of biomedical relations based on graph features. Our work complements lexical pattern based approaches in that the graph patterns can be used as additional features for weakly supervised relation prediction. Copyright © 2018 Elsevier Inc. All rights reserved.
Esdar, Moritz; Hübner, Ursula; Liebe, Jan-David; Hüsers, Jens; Thye, Johannes
2017-01-01
Clinical information logistics is a construct that aims to describe and explain various phenomena of information provision to drive clinical processes. It can be measured by the workflow composite score, an aggregated indicator of the degree of IT support in clinical processes. This study primarily aimed to investigate the yet unknown empirical patterns constituting this construct. The second goal was to derive a data-driven weighting scheme for the constituents of the workflow composite score and to contrast this scheme with a literature based, top-down procedure. This approach should finally test the validity and robustness of the workflow composite score. Based on secondary data from 183 German hospitals, a tiered factor analytic approach (confirmatory and subsequent exploratory factor analysis) was pursued. A weighting scheme, which was based on factor loadings obtained in the analyses, was put into practice. We were able to identify five statistically significant factors of clinical information logistics that accounted for 63% of the overall variance. These factors were "flow of data and information", "mobility", "clinical decision support and patient safety", "electronic patient record" and "integration and distribution". The system of weights derived from the factor loadings resulted in values for the workflow composite score that differed only slightly from the score values that had been previously published based on a top-down approach. Our findings give insight into the internal composition of clinical information logistics both in terms of factors and weights. They also allowed us to propose a coherent model of clinical information logistics from a technical perspective that joins empirical findings with theoretical knowledge. Despite the new scheme of weights applied to the calculation of the workflow composite score, the score behaved robustly, which is yet another hint of its validity and therefore its usefulness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W
2015-08-01
Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Presenilin E318G variant and Alzheimer's disease risk: the Cache County study.
Hippen, Ariel A; Ebbert, Mark T W; Norton, Maria C; Tschanz, JoAnn T; Munger, Ronald G; Corcoran, Christopher D; Kauwe, John S K
2016-06-29
Alzheimer's disease is the leading cause of dementia in the elderly and the third most common cause of death in the United States. A vast number of genes regulate Alzheimer's disease, including Presenilin 1 (PSEN1). Multiple studies have attempted to locate novel variants in the PSEN1 gene that affect Alzheimer's disease status. A recent study suggested that one of these variants, PSEN1 E318G (rs17125721), significantly affects Alzheimer's disease status in a large case-control dataset, particularly in connection with the APOEε4 allele. Our study looks at the same variant in the Cache County Study on Memory and Aging, a large population-based dataset. We tested for association between E318G genotype and Alzheimer's disease status by running a series of Fisher's exact tests. We also performed logistic regression to test for an additive effect of E318G genotype on Alzheimer's disease status and for the existence of an interaction between E318G and APOEε4. In our Fisher's exact test, it appeared that APOEε4 carriers with an E318G allele have slightly higher risk for AD than those without the allele (3.3 vs. 3.8); however, the 95 % confidence intervals of those estimates overlapped completely, indicating non-significance. Our logistic regression model found a positive but non-significant main effect for E318G (p = 0.895). The interaction term between E318G and APOEε4 was also non-significant (p = 0.689). Our findings do not provide significant support for E318G as a risk factor for AD in APOEε4 carriers. Our calculations indicated that the overall sample used in the logistic regression models was adequately powered to detect the sort of effect sizes observed previously. However, the power analyses of our Fisher's exact tests indicate that our partitioned data was underpowered, particularly in regards to the low number of E318G carriers, both AD cases and controls, in the Cache county dataset. Thus, the differences in types of datasets used may help to explain the difference in effect magnitudes seen. Analyses in additional case-control datasets will be required to understand fully the effect of E318G on Alzheimer's disease status.
Strategies on the Implementation of China's Logistics Information Network
NASA Astrophysics Data System (ADS)
Dong, Yahui; Li, Wei; Guo, Xuwen
The economic globalization and trend of e-commerce network have determined that the logistics industry will be rapidly developed in the 21st century. In order to achieve the optimal allocation of resources, a worldwide rapid and sound customer service system should be established. The establishment of a corresponding modern logistics system is the inevitable choice of this requirement. It is also the inevitable choice for the development of modern logistics industry in China. The perfect combination of modern logistics and information network can better promote the development of the logistics industry. Through the analysis of Status of Logistics Industry in China, this paper summed up the domestic logistics enterprise logistics information system in the building of some common problems. According to logistics information systems planning methods and principles set out logistics information system to optimize the management model.
NASA Astrophysics Data System (ADS)
Luo, Jia; Zhang, Min; Zhou, Xiaoling; Chen, Jianhua; Tian, Yuxin
2018-01-01
Taken 4 main tree species in the Wuling mountain small watershed as research objects, 57 typical sample plots were set up according to the stand type, site conditions and community structure. 311 goal diameter-class sample trees were selected according to diameter-class groups of different tree-height grades, and the optimal fitting models of tree height and DBH growth of main tree species were obtained by stem analysis using Richard, Logistic, Korf, Mitscherlich, Schumacher, Weibull theoretical growth equations, and the correlation coefficient of all optimal fitting models reached above 0.9. Through the evaluation and test, the optimal fitting models possessed rather good fitting precision and forecast dependability.
Zavala, Egbert
2017-05-01
This study analyzed data from the Police Stress and Domestic Violence in Police Families in Baltimore, Maryland, 1997-1999 ( N = 753) to examine propositions derived from target congruence theory in the context of intimate partner violence (IPV) victimization experienced by police officers. Specifically, this study tested the influence of target vulnerability, target gratifiability, and target antagonism on IPV victimization. Results from logistic regression models showed that all three theoretical constructs positively and significantly predicted IPV victimization. Results, as well as the study's limitations and directions for future research, are discussed.
Robertson, Sam; Woods, Carl; Gastin, Paul
2015-09-01
To develop a physiological performance and anthropometric attribute model to predict Australian Football League draft selection. Cross-sectional observational. Data was obtained (n=4902) from three Under-18 Australian football competitions between 2010 and 2013. Players were allocated into one of the three groups, based on their highest level of selection in their final year of junior football (Australian Football League Drafted, n=292; National Championship, n=293; State-level club, n=4317). Physiological performance (vertical jumps, agility, speed and running endurance) and anthropometric (body mass and height) data were obtained. Hedge's effect sizes were calculated to assess the influence of selection-level and competition on these physical attributes, with logistic regression models constructed to discriminate Australian Football League Drafted and National Championship players. Rule induction analysis was undertaken to determine a set of rules for discriminating selection-level. Effect size comparisons revealed a range of small to moderate differences between State-level club players and both other groups for all attributes, with trivial to small differences between Australian Football League Drafted and National Championship players noted. Logistic regression models showed multistage fitness test, height and 20 m sprint time as the most important attributes in predicting Draft success. Rule induction analysis showed that players displaying multistage fitness test scores of >14.01 and/or 20 m sprint times of <2.99 s were most likely to be recruited. High levels of performance in aerobic and/or speed tests increase the likelihood of elite junior Australian football players being recruited to the highest level of the sport. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Bildirici, Melike; Ersin, Özgür Ömer
2018-01-01
The study aims to combine the autoregressive distributed lag (ARDL) cointegration framework with smooth transition autoregressive (STAR)-type nonlinear econometric models for causal inference. Further, the proposed STAR distributed lag (STARDL) models offer new insights in terms of modeling nonlinearity in the long- and short-run relations between analyzed variables. The STARDL method allows modeling and testing nonlinearity in the short-run and long-run parameters or both in the short- and long-run relations. To this aim, the relation between CO 2 emissions and economic growth rates in the USA is investigated for the 1800-2014 period, which is one of the largest data sets available. The proposed hybrid models are the logistic, exponential, and second-order logistic smooth transition autoregressive distributed lag (LSTARDL, ESTARDL, and LSTAR2DL) models combine the STAR framework with nonlinear ARDL-type cointegration to augment the linear ARDL approach with smooth transitional nonlinearity. The proposed models provide a new approach to the relevant econometrics and environmental economics literature. Our results indicated the presence of asymmetric long-run and short-run relations between the analyzed variables that are from the GDP towards CO 2 emissions. By the use of newly proposed STARDL models, the results are in favor of important differences in terms of the response of CO 2 emissions in regimes 1 and 2 for the estimated LSTAR2DL and LSTARDL models.
Ramsay-Curve Item Response Theory for the Three-Parameter Logistic Item Response Model
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters of a unidimensional item response model using marginal maximum likelihood estimation. This study evaluates RC-IRT for the three-parameter logistic (3PL) model with comparisons to the normal model and to the empirical…
On Interpreting the Model Parameters for the Three Parameter Logistic Model
ERIC Educational Resources Information Center
Maris, Gunter; Bechger, Timo
2009-01-01
This paper addresses two problems relating to the interpretability of the model parameters in the three parameter logistic model. First, it is shown that if the values of the discrimination parameters are all the same, the remaining parameters are nonidentifiable in a nontrivial way that involves not only ability and item difficulty, but also the…
Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q
2016-05-01
Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.
[Relationship between shift work and overweight/obesity in male steel workers].
Xiao, M Y; Wang, Z Y; Fan, H M; Che, C L; Lu, Y; Cong, L X; Gao, X J; Liu, Y J; Yuan, J X; Li, X M; Hu, B; Chen, Y P
2016-11-10
Objective: To investigate the relationship between shift work and overweight/obesity in male steel workers. Methods: A questionnaire survey was conducted among the male steel workers selected during health examination in Tangshan Steel Company from March 2015 to March 2016. The relationship between shift work and overweight/obesity in the male steel workers were analyzed by using logistic regression model and restricted cubic splinemodel. Results: A total of 7 262 male steel workers were surveyed, the overall prevalence of overweight/obesitywas 64.5% (4 686/7 262), the overweight rate was 34.3% and the obesity rate was 30.2%, respectively. After adjusting for age, educational level and average family income level per month by multivariable logistic regression analysis, shift work was associated with overweight/obesity and obesity in the male steel workers. The OR was 1.19(95% CI : 1.05-1.35) and 1.15(95% CI : 1.00-1.32). Restricted cubic spline model analysis showed that the relationship between shift work years and overweight/obesity in the male steel workers was a nonlinear dose response one (nonlinear test χ 2 =7.43, P <0.05). Restricted cubic spline model analysis showed that the relationship between shift work years and obesity in the male steel workers was a nonlinear dose response one (nonlinear test χ 2 =10.48, P <0.05). Conclusion: Shift work was associated with overweight and obesity in the male steel workers, and shift work years and overweight/obesity had a nonlinear relationship.
Modeling of pathogen survival during simulated gastric digestion.
Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru
2011-02-01
The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens.
Modeling of Pathogen Survival during Simulated Gastric Digestion ▿
Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru
2011-01-01
The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens. PMID:21131530
Factors associated with HIV testing among male motorbike taxi drivers in urban Vietnam.
Huy, Nguyen Van; Khuyen, Le Thi; Ha, Pham Nguyen
2015-01-01
Using the Attitude-Skills-Knowledge (ASK) model, this study examined the prevalence of, and factors associated with, human immunodeficiency virus (HIV) testing among male motorbike taxi drivers (MMTDs). In a cross-sectional design, using quantitative approaches, 291 MMTDs were recruited from 135 sites across 13 districts in Hanoi, Vietnam, for a face-to-face interview. Applying the ASK model modified as a central theory, logistic regression was used to identify determinants of HIV testing. Although many MMTDs engaged in multiple risk behaviours for HIV, only 20.6% had been tested for HIV during the past 12 months. The tested model included one factor of the ASK model, HIV prevention knowledge (adjusted odds ratio [AOR] = 4.76; 95% confidence interval [CI] = 2.12-10.7) and five additional factors: being married (AOR = 3.13; 95% CI = 1.25-4.78), preferring sex with men or with both men and women (AOR = 8.72; 95% CI = 1.48-51.5), having lower number of lifetime sex partners (AOR = 0.66; 95% CI = 0.49-0.88), higher number of past year sex partners (AOR = 2.97: 95% CI = 1.21-7.31) and discussing condom use when having sex with partners (AOR = 0.08; 95% CI = 0.01-7.31). This modified ASK model provided better fit than the ASK model, as it explained more variance in HIV testing (47 vs. 29.8%). Recognising factors associated with HIV testing among MMTDs enables us to create suitable public health intervention strategies.
REECo activities and sample logistics in support of the Nevada Applied Ecology Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wireman, D.L.; Rosenberry, C.E. Jr.; White, M.G.
Activities and sample logistics of Reynolds Electrical and Engineering Co., Inc. (REECo), in support of the Nevada Applied Ecology Group (NAEG), are discussed in this summary report. Activities include the collection, preparation, and shipment of samples of soils, vegetation, and small animals collected at Pu-contaminated areas of the Nevada Test Site and Tonopah Test Range. (CH)
Beal, Eliza W; Tumin, Dmitry; Chakedis, Jeffery; Porter, Erica; Moris, Dimitrios; Zhang, Xu-Feng; Arnold, Mark; Harzman, Alan; Husain, Syed; Schmidt, Carl R; Pawlik, Timothy M
2018-07-01
Given the conflicting nature of reported risk factors for post-discharge venous thromboembolism (VTE) and unclear guidelines for post-discharge pharmacoprophylaxis, we sought to determine risk factors for 30-day post-discharge VTE after colectomy to predict which patients will benefit from post-discharge pharmacoprophylaxis. Patients who underwent colectomy in the American College of Surgeons National Surgical Quality Improvement Project Participant Use Files from 2011 to 2015 were identified. Logistic regression modeling was used. Receiver-operating characteristic curves were used and the best cut-points were determined using Youden's J index (sensitivity + specificity - 1). Hosmer-Lemeshow goodness-of-fit test was used to test model calibration. A random sample of 30% of the cohort was used as a validation set. Among 77,823 cases, the overall incidence of VTE after colectomy was 1.9%, with 0.7% of VTE events occurring in the post-discharge setting. Factors associated with post-discharge VTE risk including body mass index, preoperative albumin, operation time, hospital length of stay, race, smoking status, inflammatory bowel disease, return to the operating room and postoperative ileus were included in logistic regression equation model. The model demonstrated good calibration (goodness of fit P = 0.7137) and good discrimination (area under the curve (AUC) = 0.68; validation set, AUC = 0.70). A score of ≥-5.00 had the maxim sensitivity and specificity, resulting in 36.63% of patients being treated with prophylaxis for an overall VTE risk of 0.67%. Approximately one-third of post-colectomy VTE events occurred after discharge. Patients with predicted post-discharge VTE risk of ≥-5.00 should be recommended for extended post-discharge VTE prophylaxis.
2017-06-01
designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily
Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M
2007-09-01
Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.
Voit, E O; Knapp, R G
1997-08-15
The linear-logistic regression model and Cox's proportional hazard model are widely used in epidemiology. Their successful application leaves no doubt that they are accurate reflections of observed disease processes and their associated risks or incidence rates. In spite of their prominence, it is not a priori evident why these models work. This article presents a derivation of the two models from the framework of canonical modeling. It begins with a general description of the dynamics between risk sources and disease development, formulates this description in the canonical representation of an S-system, and shows how the linear-logistic model and Cox's proportional hazard model follow naturally from this representation. The article interprets the model parameters in terms of epidemiological concepts as well as in terms of general systems theory and explains the assumptions and limitations generally accepted in the application of these epidemiological models.
Reboussin, Beth A; Preisser, John S; Song, Eun-Young; Wolfson, Mark
2012-07-01
Under-age drinking is an enormous public health issue in the USA. Evidence that community level structures may impact on under-age drinking has led to a proliferation of efforts to change the environment surrounding the use of alcohol. Although the focus of these efforts is to reduce drinking by individual youths, environmental interventions are typically implemented at the community level with entire communities randomized to the same intervention condition. A distinct feature of these trials is the tendency of the behaviours of individuals residing in the same community to be more alike than that of others residing in different communities, which is herein called 'clustering'. Statistical analyses and sample size calculations must account for this clustering to avoid type I errors and to ensure an appropriately powered trial. Clustering itself may also be of scientific interest. We consider the alternating logistic regressions procedure within the population-averaged modelling framework to estimate the effect of a law enforcement intervention on the prevalence of under-age drinking behaviours while modelling the clustering at multiple levels, e.g. within communities and within neighbourhoods nested within communities, by using pairwise odds ratios. We then derive sample size formulae for estimating intervention effects when planning a post-test-only or repeated cross-sectional community-randomized trial using the alternating logistic regressions procedure.
ERIC Educational Resources Information Center
Spano, Richard; Pridemore, William Alex; Bolland, John
2012-01-01
Two waves of longitudinal data from 1,049 African American youth living in extreme poverty are used to examine the impact of exposure to violence (Time 1) and violent behavior (Time 1) on first time gun carrying (Time 2). Multivariate logistic regression results indicate that (a) violent behavior (Time 1) increased the likelihood of initiation of…
Research challenges in municipal solid waste logistics management.
Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J
2016-02-01
During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Borgquist, Ola; Wise, Matt P; Nielsen, Niklas; Al-Subaie, Nawaf; Cranshaw, Julius; Cronberg, Tobias; Glover, Guy; Hassager, Christian; Kjaergaard, Jesper; Kuiper, Michael; Smid, Ondrej; Walden, Andrew; Friberg, Hans
2017-08-01
Dysglycemia and glycemic variability are associated with poor outcomes in critically ill patients. Targeted temperature management alters blood glucose homeostasis. We investigated the association between blood glucose concentrations and glycemic variability and the neurologic outcomes of patients randomized to targeted temperature management at 33°C or 36°C after cardiac arrest. Post hoc analysis of the multicenter TTM-trial. Primary outcome of this analysis was neurologic outcome after 6 months, referred to as "Cerebral Performance Category." Thirty-six sites in Europe and Australia. All 939 patients with out-of-hospital cardiac arrest of presumed cardiac cause that had been included in the TTM-trial. Targeted temperature management at 33°C or 36°C. Nonparametric tests as well as multiple logistic regression and mixed effects logistic regression models were used. Median glucose concentrations on hospital admission differed significantly between Cerebral Performance Category outcomes (p < 0.0001). Hyper- and hypoglycemia were associated with poor neurologic outcome (p = 0.001 and p = 0.054). In the multiple logistic regression models, the median glycemic level was an independent predictor of poor Cerebral Performance Category (Cerebral Performance Category, 3-5) with an odds ratio (OR) of 1.13 in the adjusted model (p = 0.008; 95% CI, 1.03-1.24). It was also a predictor in the mixed model, which served as a sensitivity analysis to adjust for the multiple time points. The proportion of hyperglycemia was higher in the 33°C group compared with the 36°C group. Higher blood glucose levels at admission and during the first 36 hours, and higher glycemic variability, were associated with poor neurologic outcome and death. More patients in the 33°C treatment arm had hyperglycemia.
Uhler, Kristin M; Baca, Rosalinda; Dudas, Emily; Fredrickson, Tammy
2015-01-01
Speech perception measures have long been considered an integral piece of the audiological assessment battery. Currently, a prelinguistic, standardized measure of speech perception is missing in the clinical assessment battery for infants and young toddlers. Such a measure would allow systematic assessment of speech perception abilities of infants as well as the potential to investigate the impact early identification of hearing loss and early fitting of amplification have on the auditory pathways. To investigate the impact of sensation level (SL) on the ability of infants with normal hearing (NH) to discriminate /a-i/ and /ba-da/ and to determine if performance on the two contrasts are significantly different in predicting the discrimination criterion. The design was based on a survival analysis model for event occurrence and a repeated measures logistic model for binary outcomes. The outcome for survival analysis was the minimum SL for criterion and the outcome for the logistic regression model was the presence/absence of achieving the criterion. Criterion achievement was designated when an infant's proportion correct score was >0.75 on the discrimination performance task. Twenty-two infants with NH sensitivity participated in this study. There were 9 males and 13 females, aged 6-14 mo. Testing took place over two to three sessions. The first session consisted of a hearing test, threshold assessment of the two speech sounds (/a/ and /i/), and if time and attention allowed, visual reinforcement infant speech discrimination (VRISD). The second session consisted of VRISD assessment for the two test contrasts (/a-i/ and /ba-da/). The presentation level started at 50 dBA. If the infant was unable to successfully achieve criterion (>0.75) at 50 dBA, the presentation level was increased to 70 dBA followed by 60 dBA. Data examination included an event analysis, which provided the probability of criterion distribution across SL. The second stage of the analysis was a repeated measures logistic regression where SL and contrast were used to predict the likelihood of speech discrimination criterion. Infants were able to reach criterion for the /a-i/ contrast at statistically lower SLs when compared to /ba-da/. There were six infants who never reached criterion for /ba-da/ and one never reached criterion for /a-i/. The conditional probability of not reaching criterion by 70 dB SL was 0% for /a-i/ and 21% for /ba-da/. The predictive logistic regression model showed that children were more likely to discriminate the /a-i/ even when controlling for SL. Nearly all normal-hearing infants can demonstrate discrimination criterion of a vowel contrast at 60 dB SL, while a level of ≥70 dB SL may be needed to allow all infants to demonstrate discrimination criterion of a difficult consonant contrast. American Academy of Audiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defraene, Gilles, E-mail: gilles.defraene@uzleuven.be; Van den Bergh, Laura; Al-Mamgani, Abrahim
2012-03-01
Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including themore » most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions: Comparable prediction models were obtained with LKB, RS, and logistic NTCP models. Including clinical factors improved the predictive power of all models significantly.« less
Large unbalanced credit scoring using Lasso-logistic regression ensemble.
Wang, Hong; Xu, Qingsong; Zhou, Lifeng
2015-01-01
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.
Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico
Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.
2003-01-01
Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire that could substantially reduce habitat of chipmunks over a mountain range.
Determinants and prevalence of late HIV testing in Tijuana, Mexico.
Carrizosa, Claudia M; Blumberg, Elaine J; Hovell, Melbourne F; Martinez-Donate, Ana P; Garcia-Gonzalez, Gregorio; Lozada, Remedios; Kelley, Norma J; Hofstetter, C Richard; Sipan, Carol L
2010-05-01
Timely diagnosis of HIV is essential to improve survival rates and reduce transmission of the virus. Insufficient progress has been made in effecting earlier HIV diagnoses. The Mexican border city of Tijuana has one of the highest AIDS incidence and mortality rates in all of Mexico. This study examined the prevalence and potential correlates of late HIV testing in Tijuana, Mexico. Late testers were defined as participants who had at least one of: (1) an AIDS-defining illness within 1 year of first positive HIV test; (2) a date of AIDS diagnosis within 1 year of first positive HIV test; or (3) an initial CD4 cell count below 200 cells per microliter within 1 year of first positive HIV test. Medical charts of 670 HIV-positive patients from two HIV/AIDS public clinics in Tijuana were reviewed and abstracted; 362 of these patients were interviewed using a cross-sectional survey. Using multivariate logistic regression, we explored potential correlates of late HIV testing based on the Behavioral Ecological Model. From 342 participants for whom late testing could be determined, the prevalence of late testing was 43.2%. Multivariate logistic regression results (n = 275) revealed five significant correlates of late testing: "I preferred not to know I had HIV" (adjusted odds ratio [AOR] = 2.78, 1.46-5.31); clinic (AOR = 1.90, 1.06-3.41); exposure to peers engaging in high-risk sexual behavior (AOR = 1.14, 1.02-1.27); stigma regarding HIV-infected individuals (AOR = 0.65, 0.47-0.92); and stigma regarding HIV testing (AOR = 0.66, 0.45-0.97). These findings may inform the design of interventions to increase timely HIV testing and help reduce HIV transmission in the community at large.
Application of wireless sensor network technology in logistics information system
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-04-01
This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.
Testing the Predictive Validity of the Hendrich II Fall Risk Model.
Jung, Hyesil; Park, Hyeoun-Ae
2018-03-01
Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.
Wu, Ping-An; Li, Yun-Liang; Wu, Han-Jiang; Wang, Kai; Fan, Guo-Zheng
2007-09-01
To investigate the relationship between muscle segment homeobox gene-1 (MSX1) and the genetic susceptibility of nonsyndromic cleft lip and palate (NSCLP) in Hunan Hans. One microsatellite DNA marker CA repeat in MSX1 intron region was used as genetic marker. The genotypes of 387 members in 129 NSCLP nuclear family trios were analyzed by polymerase chain reaction (PCR) and denaturing polyacrylamide gel electrophoresis. Then transmission disequilibrium test (TDT) and Logistic regression analysis were used to conduct association analysis. TDT analysis confirmed that CA4 allele in CL/P and CPO groups preferentially transmitted to the affected offspring (P = 0.018, P = 0.041). Logistic regression analysis indicated that the recessive model of inheritance was supported, and CA4 itself or CA4 acting as a marker for a disease allele or haplotype was inherited in a recessive fashion (P = 0.009). MSX1 gene is associated with NSCLP, and MSX1 gene may be directly involved either in the etiology of NSCLP or in linkage disequilibrium with disease-predisposing sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Zhang, H; Zhang, B
2015-06-15
Purpose: To investigate the feasibility of a logistic function-based model to predict organ-at-risk (OAR) DVH for IMRT planning. The predicted DVHs are compared to achieved DVHs by expert treatment planners. Methods: A logistic function is used to model the OAR dose-gradient function. This function describes the percentage of the prescription dose as a function of the normal distance to PTV surface. The slope of dose-gradient function is function of relative spatial orientation of the PTV and OARs. The OAR DVH is calculated using the OAR dose-gradient function assuming that the dose is same for voxels with same normal distance tomore » PTV. Ten previously planned prostate IMRT plans were selected to build the model, and the following plan parameters were calculated as possible features to the model: the PTV maximum/minimum dose, PTV volume, bladder/rectum volume in the radiation field, percentage of bladder/rectum overlapping with PTV, and the distance between the bladder/rectum centroid and PTV. The bladder/rectum dose-gradient function was modeled and applied on 10 additional test cases, and the predicted and achieved clinical bladder/rectum DVHs were compared: V70 (percentage of volume receiving 70Gy and above), V65, V60, V55, V50, V45, V40. Results: The following parameters were selected as model features: PTV volume, and distance of centroid of rectum/bladder to PTV. The model was tested with 10 additional patients. For bladder, the absolute difference (mean±standard deviation) between predicted and clinical DVHs is V70=−0.3±3.2, V65=−0.8±3.9, V60=1.5±4.3, V55=1.7±5.3, V50=−0.6±6.4, V45=0.6±6.5, and V40=0.9±5.7, the correlation coefficient is 0.96; for rectum, the difference is V70=1.5±3.8, V65=1.2±4.2, V60=−0.1±5.3, V55=1.0±6.6, V50=1.6±8.7, V45=1.9±9.8, and V40=1.5±10.1, and the correlation coefficient is 0.87. Conclusion: The OAR DVH can be accurately predicted using the OAR dose-gradient function in IMRT plans. This approach may be used as a quality control tool and aid less experienced planners determine benchmarks for plan quality.« less
The application of virtual reality systems as a support of digital manufacturing and logistics
NASA Astrophysics Data System (ADS)
Golda, G.; Kampa, A.; Paprocka, I.
2016-08-01
Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.
Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang
2017-01-01
The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030
Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang
2017-01-01
The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.
2008-01-01
Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.
ERIC Educational Resources Information Center
Samejima, Fumiko
2008-01-01
Samejima ("Psychometrika "65:319--335, 2000) proposed the logistic positive exponent family of models (LPEF) for dichotomous responses in the unidimensional latent space. The objective of the present paper is to propose and discuss a graded response model that is expanded from the LPEF, in the context of item response theory (IRT). This…
A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors
ERIC Educational Resources Information Center
Miyazaki, Kei; Hoshino, Takahiro
2009-01-01
In Item Response Theory (IRT), item characteristic curves (ICCs) are illustrated through logistic models or normal ogive models, and the probability that examinees give the correct answer is usually a monotonically increasing function of their ability parameters. However, since only limited patterns of shapes can be obtained from logistic models…
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Study of relationship between clinical factors and velopharyngeal closure in cleft palate patients
Chen, Qi; Zheng, Qian; Shi, Bing; Yin, Heng; Meng, Tian; Zheng, Guang-ning
2011-01-01
BACKGROUND: This study was carried out to analyze the relationship between clinical factors and velopharyngeal closure (VPC) in cleft palate patients. METHODS: Chi-square test was used to compare the postoperative velopharyngeal closure rate. Logistic regression model was used to analyze independent variables associated with velopharyngeal closure. RESULTS: Difference of postoperative VPC rate in different cleft types, operative ages and surgical techniques was significant (P=0.000). Results of logistic regression analysis suggested that when operative age was beyond deciduous dentition stage, or cleft palate type was complete, or just had undergone a simple palatoplasty without levator veli palatini retropositioning, patients would suffer a higher velopharyngeal insufficiency rate after primary palatal repair. CONCLUSIONS: Cleft type, operative age and surgical technique were the contributing factors influencing VPC rate after primary palatal repair of cleft palate patients. PMID:22279464
Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong
2017-12-28
Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which obtained the highest precision. All adjustment strategies through logistic regression were biased for causal effect estimation, while IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus, IPW-based-MSM was recommended to adjust for confounders set.
Denham, Melinda; Schell, Lawrence M; Deane, Glenn; Gallo, Mia V; Ravenscroft, Julia; DeCaprio, Anthony P
2005-02-01
Children are commonly exposed at background levels to several ubiquitous environmental pollutants, such as lead and persistent organic pollutants, that have been linked to neurologic and endocrine effects. These effects have prompted concern about alterations in human reproductive development. Few studies have examined the effects of these toxicants on human sexual maturation at levels commonly found in the general population, and none has been able to examine multiple toxicant exposures. The aim of the current investigation was to examine the relationship between attainment of menarche and levels of 6 environmental pollutants to which children are commonly exposed at low levels, ie, dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), mirex, lead, and mercury. This study was conducted with residents of the Akwesasne Mohawk Nation, a sovereign territory that spans the St Lawrence River and the boundaries of New York State and Ontario and Quebec, Canada. Since the 1950s, the St Lawrence River has been a site of substantial industrial development, and the Nation is currently adjacent to a US National Priority Superfund site. PCB, p,p'-DDE, HCB, and mirex levels exceeding the US Food and Drug Administration recommended tolerance limits for human consumption have been found in local animal species. The present analysis included 138 Akwesasne Mohawk Nation girls 10 to 16.9 years of age. Blood samples and sociodemographic data were collected by Akwesasne community members, without prior knowledge of participants' exposure status. Attainment of menses (menarche) was assessed as present or absent at the time of the interview. Congener-specific PCB analysis was available, and all 16 PCB congeners detected in >50% of the sample were included in analyses (International Union of Pure and Applied Chemistry numbers 52, 70, 74, 84, 87, 95, 99, 101 [+90], 105, 110, 118, 138 [+163 and 164], 149 [+123], 153, 180, and 187). Probit analysis was used to determine the median age at menarche for the sample. Binary logistic regression analysis was used to determine predictors of menarcheal status. Six toxicants (p,p'-DDE, HCB, PCBs, mirex, lead, and mercury) were entered into the logistic regression model. Age, socioeconomic status (SES), and BMI were tested as potential cofounders and were included in the model at P < .05. Interactions among toxicants were also evaluated. Toxicant levels were measured in blood for this sample and were consistent with long-term exposure to a variety of toxicants in multiple media. Mercury levels were at or below background levels, all lead levels were well below the Centers for Disease Control and Prevention action limit of 10 microg/dL, and PCB levels were consistent with a cumulative, continuing exposure pattern. The median age at menarche for the total sample was 12.2 years. The predicted age at menarche for girls with lead levels above the median (1.2 microg/dL) was 10.5 months later than that for girls with lead levels below the median. In the logistic regression analysis, age was the strongest predictor of menarcheal status and SES was also a significant predictor but BMI was not. The logistic regression analysis that corrected for age, SES, and other pollutants (p,p'-DDE, HCB, mirex, and mercury) indicated that, at their respective geometric means, lead (geometric mean: 0.49 microg/dL) was associated with a significantly lower probability of having reached menarche (beta = -1.29) and a group of 4 potentially estrogenic PCB congeners (E-PCB) (geometric mean: 0.12 ppb; International Union of Pure and Applied Chemistry numbers 52, 70, 101 [+90], and 187) was associated with a significantly greater probability of having reached menarche (beta = 2.13). Predicted probabilities at different levels of lead and PCBs were calculated on the basis of the logistic regression model. At the respective means of all toxicants and SES, 69% of 12-year-old girls were predicted to have reached menarche. However, at the 75th percentile of lead levels, only 10% of 12-year-old Mohawk girls were predicted to have reached menarche; at the 75th percentile of E-PCB levels, 86% of 12-year-old Mohawk girls were predicted to have reached menarche. No association was observed between mirex, p,p'-DDE, or HCB and menarcheal status. Although BMI was not a significant predictor, we tested BMI in the logistic regression model; it had little effect on the relationships between menarcheal status and either lead or E-PCB. In models testing toxicant interactions, age, SES, lead levels, and PCB levels continued to be significant predictors of menarcheal status. When each toxicant was tested in a logistic regression model correcting only for age and SES, we observed little change in the effects of lead or E-PCB on menarcheal status. The analysis of multichemical exposure among Akwesasne Mohawk Nation adolescent girls suggests that the attainment of menarche may be sensitive to relatively low levels of lead and certain PCB congeners. This study is distinguished by the ability to test many toxicants simultaneously and thus to exclude effects from unmeasured but coexisting exposures. By testing several PCB congener groupings, we were able to determine that specifically a group of potentially estrogenic PCB congeners affected the odds of reaching menarche. The lead and PCB findings are consistent with the literature and are biologically plausible. The sample size, cross-sectional study design, and possible occurrence of confounders beyond those tested suggest that results should be interpreted cautiously. Additional investigation to determine whether such low toxicant levels may affect reproduction and disorders of the reproductive system is warranted.
Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.
Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo
2016-01-01
In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.
Comparative analysis on the probability of being a good payer
NASA Astrophysics Data System (ADS)
Mihova, V.; Pavlov, V.
2017-10-01
Credit risk assessment is crucial for the bank industry. The current practice uses various approaches for the calculation of credit risk. The core of these approaches is the use of multiple regression models, applied in order to assess the risk associated with the approval of people applying for certain products (loans, credit cards, etc.). Based on data from the past, these models try to predict what will happen in the future. Different data requires different type of models. This work studies the causal link between the conduct of an applicant upon payment of the loan and the data that he completed at the time of application. A database of 100 borrowers from a commercial bank is used for the purposes of the study. The available data includes information from the time of application and credit history while paying off the loan. Customers are divided into two groups, based on the credit history: Good and Bad payers. Linear and logistic regression are applied in parallel to the data in order to estimate the probability of being good for new borrowers. A variable, which contains value of 1 for Good borrowers and value of 0 for Bad candidates, is modeled as a dependent variable. To decide which of the variables listed in the database should be used in the modelling process (as independent variables), a correlation analysis is made. Due to the results of it, several combinations of independent variables are tested as initial models - both with linear and logistic regression. The best linear and logistic models are obtained after initial transformation of the data and following a set of standard and robust statistical criteria. A comparative analysis between the two final models is made and scorecards are obtained from both models to assess new customers at the time of application. A cut-off level of points, bellow which to reject the applications and above it - to accept them, has been suggested for both the models, applying the strategy to keep the same Accept Rate as in the current data.
Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi
2016-01-01
The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.
Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus
Smith, Jack W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S.
1988-01-01
Neural networks or connectionist models for parallel processing are not new. However, a resurgence of interest in the past half decade has occurred. In part, this is related to a better understanding of what are now referred to as hidden nodes. These algorithms are considered to be of marked value in pattern recognition problems. Because of that, we tested the ability of an early neural network model, ADAP, to forecast the onset of diabetes mellitus in a high risk population of Pima Indians. The algorithm's performance was analyzed using standard measures for clinical tests: sensitivity, specificity, and a receiver operating characteristic curve. The crossover point for sensitivity and specificity is 0.76. We are currently further examining these methods by comparing the ADAP results with those obtained from logistic regression and linear perceptron models using precisely the same training and forecasting sets. A description of the algorithm is included.
Prediction of performance on the RCMP physical ability requirement evaluation.
Stanish, H I; Wood, T M; Campagna, P
1999-08-01
The Royal Canadian Mounted Police use the Physical Ability Requirement Evaluation (PARE) for screening applicants. The purposes of this investigation were to identify those field tests of physical fitness that were associated with PARE performance and determine which most accurately classified successful and unsuccessful PARE performers. The participants were 27 female and 21 male volunteers. Testing included measures of aerobic power, anaerobic power, agility, muscular strength, muscular endurance, and body composition. Multiple regression analysis revealed a three-variable model for males (70-lb bench press, standing long jump, and agility) explaining 79% of the variability in PARE time, whereas a one-variable model (agility) explained 43% of the variability for females. Analysis of the classification accuracy of the males' data was prohibited because 91% of the males passed the PARE. Classification accuracy of the females' data, using logistic regression, produced a two-variable model (agility, 1.5-mile endurance run) with 93% overall classification accuracy.
Research and application of genetic algorithm in path planning of logistics distribution vehicle
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
The core of the logistics distribution system is the vehicle routing planning, research path planning problem, provide a better solution has become an important issue. In order to provide the decision support for logistics and distribution operations, this paper studies the problem of vehicle routing with capacity constraints (CVRP). By establishing a mathematical model, the genetic algorithm is used to plan the path of the logistics vehicle to meet the minimum logistics and transportation costs.
Analysis of Jingdong Mall Logistics Distribution Model
NASA Astrophysics Data System (ADS)
Shao, Kang; Cheng, Feng
In recent years, the development of electronic commerce in our country to speed up the pace. The role of logistics has been highlighted, more and more electronic commerce enterprise are beginning to realize the importance of logistics in the success or failure of the enterprise. In this paper, the author take Jingdong Mall for example, performing a SWOT analysis of their current situation of self-built logistics system, find out the problems existing in the current Jingdong Mall logistics distribution and give appropriate recommendations.
NASA Astrophysics Data System (ADS)
Wong, David W. C.; Choy, K. L.; Chow, Harry K. H.; Lin, Canhong
2014-06-01
For the most rapidly growing economic entity in the world, China, a new logistics operation called the indirect cross-border supply chain model has recently emerged. The primary idea of this model is to reduce logistics costs by storing goods at a bonded warehouse with low storage cost in certain Chinese regions, such as the Pearl River Delta (PRD). This research proposes a performance measurement system (PMS) framework to assess the direct and indirect cross-border supply chain models. The PMS covers four categories including cost, time, quality and flexibility in the assessment of the performance of direct and indirect models. Furthermore, a survey was conducted to investigate the logistics performance of third party logistics (3PLs) at the PRD regions, including Guangzhou, Shenzhen and Hong Kong. The significance of the proposed PMS framework allows 3PLs accurately pinpoint the weakness and strengths of it current operations policy at four major performance measurement categories. Hence, this helps 3PLs further enhance the competitiveness and operations efficiency through better resources allocation at the area of warehousing and transportation.
Tangen, C M; Koch, G G
1999-03-01
In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.
Liu, Weihua; Yang, Yi; Wang, Shuqing; Liu, Yang
2014-01-01
Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful.
Seo, Dong Gi; Choi, Jeongwook
2018-05-17
Computerized adaptive testing (CAT) has been adopted in license examinations due to a test efficiency and accuracy. Many research about CAT have been published to prove the efficiency and accuracy of measurement. This simulation study investigated scoring method and item selection methods to implement CAT in Korean medical license examination (KMLE). This study used post-hoc (real data) simulation design. The item bank used in this study was designed with all items in a 2017 KMLE. All CAT algorithms for this study were implemented by a 'catR' package in R program. In terms of accuracy, Rasch and 2parametric logistic (PL) model performed better than 3PL model. Modal a Posteriori (MAP) or Expected a Posterior (EAP) provided more accurate estimates than MLE and WLE. Furthermore Maximum posterior weighted information (MPWI) or Minimum expected posterior variance (MEPV) performed better than other item selection methods. In terms of efficiency, Rasch model was recommended to reduce test length. Simulation study should be performed under varied test conditions before adopting a live CAT. Based on a simulation study, specific scoring and item selection methods should be predetermined before implementing a live CAT.
Social cohesion, social participation and HIV testing among men who have sex with men in Swaziland.
Grover, Elise; Grosso, Ashley; Ketende, Sosthenes; Kennedy, Caitlin; Fonner, Virginia; Adams, Darrin; Sithole, Bhekie; Mnisi, Zandile; Maziya, Sibusiso Lulu; Baral, Stefan
2016-01-01
Social cohesion and social participation are social factors that may help reduce HIV risks and optimize health-seeking behaviors. We examined the association between these factors and HIV testing in the last 12 months among men who have sex with men (MSM) in Swaziland using a cross-sectional survey conducted with 326 men, 18 years of age or older reporting having sex with another man in the last 12 months. Social capital analyses included measures of social cohesion and social participation. The social cohesion measurement scale was created through exploratory factor analysis using polychoric correlations to determine unidimensionality and Cronbach's Alpha to assess internal consistency. The measurement scale was divided at the 25th and 75th percentiles using "high," "medium" and "low" levels of social cohesion for between-group comparisons. The social participation index included four questions regarding participation, resulting in a participation index ranging from 0 to 4. In the final multivariate logistic regression model, an increase in the level of social participation was found to be significantly associated with HIV testing in the last 12 months, adjusting for age, income, reporting a casual partner, family exclusion and rejection by other MSM due to sexual orientation (adjusted odds ratio [aOR]: 1.3, 95% confidence interval [CI] 1.1-1.7, p < .01). MSM with high social cohesion had almost twice the odds of HIV testing in the last 12 months (aOR: 1.8, 95% CI 1.1-3.3, p < .05) as MSM with medium social cohesion, though the overall social cohesion variable was not found to be significant using a Wald test in either the adjusted or unadjusted logistic regression models. These data suggest that building solidarity and trust within and between groups may be a strategy to improve uptake of HIV testing.
NASA Shuttle Logistics Depot (NSLD) - The application of ATE
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack
1990-01-01
The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.
Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble
Wang, Hong; Xu, Qingsong; Zhou, Lifeng
2015-01-01
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988
Modelling the growth of plants with a uniform growth logistics.
Kilian, H G; Bartkowiak, D; Kazda, M; Kaufmann, D
2014-05-21
The increment model has previously been used to describe the growth of plants in general. Here, we examine how the same logistics enables the development of different superstructures. Data from the literature are analyzed with the increment model. Increments are growth-invariant molecular clusters, treated as heuristic particles. This approach formulates the law of mass action for multi-component systems, describing the general properties of superstructures which are optimized via relaxation processes. The daily growth patterns of hypocotyls can be reproduced implying predetermined growth invariant model parameters. In various species, the coordinated formation and death of fine roots are modeled successfully. Their biphasic annual growth follows distinct morphological programs but both use the same logistics. In tropical forests, distributions of the diameter in breast height of trees of different species adhere to the same pattern. Beyond structural fluctuations, competition and cooperation within and between the species may drive optimization. All superstructures of plants examined so far could be reproduced with our approach. With genetically encoded growth-invariant model parameters (interaction with the environment included) perfect morphological development runs embedded in the uniform logistics of the increment model. Copyright © 2014 Elsevier Ltd. All rights reserved.
To Use or Not to Use--(The One- or Three-Parameter Logistic Model) That Is the Question.
ERIC Educational Resources Information Center
Reckase, Mark D.
Definition of the issues to the use of latent trait models, specifically one- and three-parameter logistic models, in conjunction with multi-level achievement batteries, forms the basis of this paper. Research results related to these issues are also documented in an attempt to provide a rational basis for model selection. The application of the…
Arslan, Miray; Şar, Sevgi
2017-12-11
Logistics activities play a prominent role in enabling manufacturers, distribution channels, and pharmacies to work in harmony. Nowadays these activities have become increasingly striking in the pharmaceutical industry and seen as a development area for this sector. Additionally, green practices are beginning to be more attracting particularly in decreasing costs and increasing image of pharmaceutical companies. The main objective of this study was modeling green logistics (GL) behavior of the managers in the pharmaceutical sector in the theory of planned behavior (TPB) frame via structural equation modeling (SEM). A measurement tool was developed according to TPB. Exploratory factor analysis was conducted to determine subfactors of GL behavior. In the second step, confirmatory factor analysis (CFA) was conducted for confirming whether there is a relationship between the observed variables and their underlying latent constructs. Finally, structural equation model was conducted to specify the relationships between latent variables. In the proposed green logistics behavior (GLB) model, the positive effect of environmental attitude towards GL, perceived behavioral control related GL, and subjective norm about GL on intention towards GL were found statistically significant. Nevertheless, the effect of attitude towards costs of GL on intention towards GL was not found statistically significant. Intention towards GL has been found to have a positive statistically significant effect on the GL behavior. Based on the results of this study, it is possible to say that TPB is an appropriate theory for modeling green logistics behavior of managers. This model can be seen as a guide to the companies in the pharmaceutical sector to participate in green logistics. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitschkowetz, N.; Vickers, D.L.
This report provides a summary of the Computer-aided Acquisition and Logistic Support (CALS) Test Network (CTN) Laboratory Acceptance Test (LAT) and User Application Test (UAT) activities undertaken to evaluate the CALS capabilities being implemented as part of the Department of Defense (DOD) engineering repositories. Although the individual testing activities provided detailed reports for each repository, a synthesis of the results, conclusions, and recommendations is offered to provide a more concise presentation of the issues and the strategies, as viewed from the CTN perspective.
Identifying the potential of changes to blood sample logistics using simulation.
Jørgensen, Pelle; Jacobsen, Peter; Poulsen, Jørgen Hjelm
2013-01-01
Using simulation as an approach to display and improve internal logistics at hospitals has great potential. This study shows how a simulation model displaying the morning blood-taking round at a Danish public hospital can be developed and utilized with the aim of improving the logistics. The focus of the simulation was to evaluate changes made to the transportation of blood samples between wards and the laboratory. The average- (AWT) and maximum waiting time (MWT) from a blood sample was drawn at the ward until it was received at the laboratory, and the distribution of arrivals of blood samples in the laboratory were used as the evaluation criteria. Four different scenarios were tested and compared with the current approach: (1) Using AGVs (mobile robots), (2) using a pneumatic tube system, (3) using porters that are called upon, or (4) using porters that come to the wards every 45 minutes. Furthermore, each of the scenarios was tested in terms of what amount of resources would give the optimal result. The simulations showed a big improvement potential in implementing a new technology/mean for transporting the blood samples. The pneumatic tube system showed the biggest potential lowering the AWT and MWT with approx. 36% and 18%, respectively. Additionally, all of the scenarios had a more even distribution of arrivals except for porters coming to the wards every 45 min. As a consequence of the results obtained in the study, the hospital decided to implement a pneumatic tube system.
2008-06-01
p, is the value that satisfies the following equation: xnx (1) c x qp x n − = ∑ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ =− 0 1 γ where γ = confidence level...zero failures is therefore, using the above equation, where γ = 0.5, c =0: (2) xnx x qp x n − = ∑ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ =− 0 0 5.01 which reduces
Constructive thinking, rational intelligence and irritable bowel syndrome
Rey, Enrique; Ortega, Marta Moreno; Alonso, Monica Olga Garcia; Diaz-Rubio, Manuel
2009-01-01
AIM: To evaluate rational and experiential intelligence in irritable bowel syndrome (IBS) sufferers. METHODS: We recruited 100 subjects with IBS as per Rome II criteria (50 consulters and 50 non-consulters) and 100 healthy controls, matched by age, sex and educational level. Cases and controls completed a clinical questionnaire (including symptom characteristics and medical consultation) and the following tests: rational-intelligence (Wechsler Adult Intelligence Scale, 3rd edition); experiential-intelligence (Constructive Thinking Inventory); personality (NEO personality inventory); psychopathology (MMPI-2), anxiety (state-trait anxiety inventory) and life events (social readjustment rating scale). Analysis of variance was used to compare the test results of IBS-sufferers and controls, and a logistic regression model was then constructed and adjusted for age, sex and educational level to evaluate any possible association with IBS. RESULTS: No differences were found between IBS cases and controls in terms of IQ (102.0 ± 10.8 vs 102.8 ± 12.6), but IBS sufferers scored significantly lower in global constructive thinking (43.7 ± 9.4 vs 49.6 ± 9.7). In the logistic regression model, global constructive thinking score was independently linked to suffering from IBS [OR 0.92 (0.87-0.97)], without significant OR for total IQ. CONCLUSION: IBS subjects do not show lower rational intelligence than controls, but lower experiential intelligence is nevertheless associated with IBS. PMID:19575489
Lee-Lin, Frances; Nguyen, Thuan; Pedhiwala, Nisreen; Dieckmann, Nathan; Menon, Usha
2015-01-01
To test the efficacy of a culturally targeted breast cancer screening educational program in increasing mammogram completion in Chinese-American immigrant women. Randomized controlled study. Chinese communities, Portland, Oregon. From April 2010 to September 2011, 300 women were randomized to receive a theory-based, culturally targeted breast cancer screening educational intervention (n = 147) or a mammography screening brochure published by the National Cancer Institute (n = 153). The two-part intervention consisted of group teaching with targeted, theory-based messages followed by individual counseling sessions. Mammography completion, perceived susceptibility, perceived benefits, perceived barriers, perceived cultural barriers, and demographic variables. A 2 × 3 mixed logistic model was applied to determine odds ratio of mammogram completion. Behavior changed in both groups, with a total of 170 participants (56.7%) reporting a mammogram at 12 months. The logistic model indicated increased odds of mammogram completion in the intervention compared to the control group at 3, 6, and 12 months. When controlling for marital status, age, and age moved to the United States, the intervention group was nine times more likely to complete mammograms than the control group. The culturally targeted educational program significantly increased mammogram use among Chinese immigrant women. Further testing of effectiveness in larger community settings is needed. The intervention may also serve as a foundation from which to develop education to increase cancer screening among other minority subgroups.
Model selection for logistic regression models
NASA Astrophysics Data System (ADS)
Duller, Christine
2012-09-01
Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.
Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.
Houpt, Joseph W; Bittner, Jennifer L
2018-07-01
Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nurses' decision making in heart failure management based on heart failure certification status.
Albert, Nancy M; Bena, James F; Buxbaum, Denise; Martensen, Linda; Morrison, Shannon L; Prasun, Marilyn A; Stamp, Kelly D
Research findings on the value of nurse certification were based on subjective perceptions or biased by correlations of certification status and global clinical factors. In heart failure, the value of certification is unknown. Examine the value of certification based nurses' decision-making. Cross-sectional study of nurses who completed heart failure clinical vignettes that reflected decision-making in clinical heart failure scenarios. Statistical tests included multivariable linear, logistic and proportional odds logistic regression models. Of nurses (N = 605), 29.1% were heart failure certified, 35.0% were certified in another specialty/job role and 35.9% were not certified. In multivariable modeling, nurses certified in heart failure (versus not heart failure certified) had higher clinical vignette scores (p = 0.002), reflecting higher evidence-based decision making; nurses with another specialty/role certification (versus no certification) did not (p = 0.62). Heart failure certification, but not in other specialty/job roles was associated with decisions that reflected delivery of high-quality care. Copyright © 2018 Elsevier Inc. All rights reserved.
Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan
2014-01-01
Purpose The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Methods and Materials Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3+ xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R2, chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Results Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R2 was satisfactory and corresponded well with the expected values. Conclusions Multivariate NTCP models with LASSO can be used to predict patient-rated xerostomia after IMRT. PMID:24586971
Lee, Tsair-Fwu; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan
2014-01-01
The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3(+) xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R(2), chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R(2) was satisfactory and corresponded well with the expected values. Multivariate NTCP models with LASSO can be used to predict patient-rated xerostomia after IMRT.
Potgieter, Jenni-Marí; Swanepoel, De Wet; Myburgh, Hermanus Carel; Smits, Cas
2017-11-20
This study determined the effect of hearing loss and English-speaking competency on the South African English digits-in-noise hearing test to evaluate its suitability for use across native (N) and non-native (NN) speakers. A prospective cross-sectional cohort study of N and NN English adults with and without sensorineural hearing loss compared pure-tone air conduction thresholds to the speech reception threshold (SRT) recorded with the smartphone digits-in-noise hearing test. A rating scale was used for NN English listeners' self-reported competence in speaking English. This study consisted of 454 adult listeners (164 male, 290 female; range 16 to 90 years), of whom 337 listeners had a best ear four-frequency pure-tone average (4FPTA; 0.5, 1, 2, and 4 kHz) of ≤25 dB HL. A linear regression model identified three predictors of the digits-in-noise SRT, namely, 4FPTA, age, and self-reported English-speaking competence. The NN group with poor self-reported English-speaking competence (≤5/10) performed significantly (p < 0.01) poorer than the N and NN (≥6/10) groups on the digits-in-noise test. Screening characteristics of the test improved with separate cutoff values depending on English-speaking competence for the N and NN groups (≥6/10) and NN group alone (≤5/10). Logistic regression models, which include age in the analysis, showed a further improvement in sensitivity and specificity for both groups (area under the receiver operating characteristic curve, 0.962 and 0.903, respectively). Self-reported English-speaking competence had a significant influence on the SRT obtained with the smartphone digits-in-noise test. A logistic regression approach considering SRT, self-reported English-speaking competence, and age as predictors of best ear 4FPTA >25 dB HL showed that the test can be used as an accurate hearing screening tool for N and NN English speakers. The smartphone digits-in-noise test, therefore, allows testing in a multilingual population familiar with English digits using dynamic cutoff values that can be chosen according to self-reported English-speaking competence and age.
NASA Astrophysics Data System (ADS)
Yilmaz, Işık
2009-06-01
The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.
Zhao, Qian; Chen, Haoyang; Yan, Hongyan; He, Yan; Zhu, Li; Fu, WenTing; Shen, Biyu
2018-01-31
This study aimed (i) to complement existing research by focusing on body image disturbance issues in Chinese Systemic Lupus Erythematosus (SLE) patients; (ii) to investigate how Chinese patients make sense of disease diagnosis and perceived cultural influences within the context of their SLE. A total of 118 SLE patients underwent standardized laboratory examinations and completed several questionnaires. Independent sample t-test, Mann-Whitney U-test, Chi-square test, and multivariate analysis using backward stepwise logistic regression model were used to analyze these data. We found 18.3% SLE patients had BID, which were significantly higher than the control group (.8%). SLE patients are more concerned about their physical changes caused by disease. There were significant correlations among personal health insurance, complication of diabetes, appearance of new rash, depression, anxiety, self-esteem and BID in patients with SLE. Meanwhile, logistic regression analysis revealed that appearance of new rash and high anxiety were significantly associated with BID in SLE patients. In conclusion, it is beneficial to pay attention to the physical and mental health of patients with rheumatic disease from the perspective of body image, to understand their needs and to provide effective and effective service for them.
2013-01-01
Background A cross-sectional study was carried out in four districts of the Afar region in Ethiopia to determine the prevalence of brucellosis in camels, and to identify risky practices that would facilitate the transmission of zoonoses to humans. This study involved testing 461 camels and interviewing 120 livestock owners. The modified Rose Bengal plate test (mRBPT) and complement fixation test (CFT) were used as screening and confirmatory tests, respectively. SPSS 16 was used to analyze the overall prevalence and potential risk factors for seropositivity, using a multivariable logistic regression analysis. Results In the camel herds tested, 5.4% had antibodies against Brucella species, and the district level seroprevalence ranged from 11.7% to 15.5% in camels. The logistic regression model for camels in a herd size > 20 animals (OR = 2.8; 95% CI: 1.16-6.62) and greater than four years of age (OR = 4.9; 95% CI: 1.45-16.82) showed a higher risk of infection when compared to small herds and those ≤ 4 years old. The questionnaire survey revealed that most respondents did not know about the transmission of zoonotic diseases, and that their practices could potentially facilitate the transmission of zoonotic pathogens. Conclusions The results of this study revealed that camel brucellosis is prevalent in the study areas. Therefore, there is a need for implementing control measures and increasing public awareness in the prevention methods of brucellosis. PMID:24344729
The use of auxiliary variables in capture-recapture and removal experiments
Pollock, K.H.; Hines, J.E.; Nichols, J.D.
1984-01-01
The dependence of animal capture probabilities on auxiliary variables is an important practical problem which has not been considered in the development of estimation procedures for capture-recapture and removal experiments. In this paper the linear logistic binary regression model is used to relate the probability of capture to continuous auxiliary variables. The auxiliary variables could be environmental quantities such as air or water temperature, or characteristics of individual animals, such as body length or weight. Maximum likelihood estimators of the population parameters are considered for a variety of models which all assume a closed population. Testing between models is also considered. The models can also be used when one auxiliary variable is a measure of the effort expended in obtaining the sample.
Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.
2015-01-01
Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235
Pedersen, Nicklas Juel; Jensen, David Hebbelstrup; Lelkaitis, Giedrius; Kiss, Katalin; Charabi, Birgitte; Specht, Lena; von Buchwald, Christian
2017-01-01
It is challenging to identify at diagnosis those patients with early oral squamous cell carcinoma (OSCC), who have a poor prognosis and those that have a high risk of harboring occult lymph node metastases. The aim of this study was to develop a standardized and objective digital scoring method to evaluate the predictive value of tumor budding. We developed a semi-automated image-analysis algorithm, Digital Tumor Bud Count (DTBC), to evaluate tumor budding. The algorithm was tested in 222 consecutive patients with early-stage OSCC and major endpoints were overall (OS) and progression free survival (PFS). We subsequently constructed and cross-validated a binary logistic regression model and evaluated its clinical utility by decision curve analysis. A high DTBC was an independent predictor of both poor OS and PFS in a multivariate Cox regression model. The logistic regression model was able to identify patients with occult lymph node metastases with an area under the curve (AUC) of 0.83 (95% CI: 0.78–0.89, P <0.001) and a 10-fold cross-validated AUC of 0.79. Compared to other known histopathological risk factors, the DTBC had a higher diagnostic accuracy. The proposed, novel risk model could be used as a guide to identify patients who would benefit from an up-front neck dissection. PMID:28212555
Fujikawa, Hiroshi; Kimura, Bon; Fujii, Tateo
2009-09-01
In this study, we developed a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Raw growth data was obtained with a V. parahaemolyticus O3:K6 strain cultured at a variety of broth temperatures, pH, and salt concentrations. Data were analyzed with our logistic model and the parameter values of the model were analyzed with polynomial equations. A prediction program consisting of the growth model and the polynomial equations was then developed. After the range of the growth environments was modified, the program successfully predicted the growth for all environments tested. The program could be a useful tool to ensure the bacteriological safety of seafood.
Nonstationary time series prediction combined with slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, G.; Chen, X.
2015-07-01
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.
McFarlane, Judith; Nava, Angeles; Gilroy, Heidi; Paulson, Rene; Maddoux, John
2012-12-01
Worldwide, two models of care are offered most often to abused women-safe shelter and justice services. No evidence exists on the differential effectiveness of the models. To provide evidence for best practice and policy, 300 abused women, 150 first-time users of a shelter and 150 first time-applicants for a protection order, participated in a seven-year study. Safety, abuse, and the emotional and physical functioning of the women and their children were measured. The procedural logistics, sampling process, metrics, and baseline descriptors for these 300 women and 300 children is presented along with implications for practice and policy.
McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying
2009-01-01
Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817
Differential item functioning analysis of the Vanderbilt Expertise Test for cars.
Lee, Woo-Yeol; Cho, Sun-Joo; McGugin, Rankin W; Van Gulick, Ana Beth; Gauthier, Isabel
2015-01-01
The Vanderbilt Expertise Test for cars (VETcar) is a test of visual learning for contemporary car models. We used item response theory to assess the VETcar and in particular used differential item functioning (DIF) analysis to ask if the test functions the same way in laboratory versus online settings and for different groups based on age and gender. An exploratory factor analysis found evidence of multidimensionality in the VETcar, although a single dimension was deemed sufficient to capture the recognition ability measured by the test. We selected a unidimensional three-parameter logistic item response model to examine item characteristics and subject abilities. The VETcar had satisfactory internal consistency. A substantial number of items showed DIF at a medium effect size for test setting and for age group, whereas gender DIF was negligible. Because online subjects were on average older than those tested in the lab, we focused on the age groups to conduct a multigroup item response theory analysis. This revealed that most items on the test favored the younger group. DIF could be more the rule than the exception when measuring performance with familiar object categories, therefore posing a challenge for the measurement of either domain-general visual abilities or category-specific knowledge.
Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration
Li, Xiaohui; Tan, Qingmei
2013-01-01
In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models. PMID:24391724
Vehicle scheduling schemes for commercial and emergency logistics integration.
Li, Xiaohui; Tan, Qingmei
2013-01-01
In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.
A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu
Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.
Preti, Antonio; Vellante, Marcello; Petretto, Donatella R
2017-05-01
The "Reading the Mind in the Eyes" Test (hereafter: Eyes Test) is considered an advanced task of the Theory of Mind aimed at assessing the performance of the participant in perspective-takingthat is, the ability to sense or understand other people's cognitive and emotional states. In this study, the item response theory analysis was applied to the adult version of the Eyes Test. The Italian version of the Eyes Test was administered to 200 undergraduate students of both genders (males = 46%). Modified parallel analysis (MPA) was used to test unidimensionality. Marginal maximum likelihood estimation was used to fit the 1-, 2-, and 3-parameter logistic (PL) model to the data. Differential Item Functioning (DIF) due to gender was explored with five independent methods. MPA provided evidence in favour of unidimensionality. The Rasch model (1-PL) was superior to the other two models in explaining participants' responses to the Eyes Test. There was no robust evidence of gender-related DIF in the Eyes Test, although some differences may exist for some items as a reflection of real differences by group. The study results support a one-factor model of the Eyes Test. Performance on the Eyes Test is defined by the participant's ability in perspective-taking. Researchers should cease using arbitrarily selected subscores in assessing the performance of participants to the Eyes Test. Lack of gender-related DIF favours the use of the Eyes Test in the investigation of gender differences concerning empathy and social cognition.
Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G
2007-08-01
A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.
A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy
Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw
2014-01-01
Objective This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. Design We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Results Advanced colorectal neoplasia was detected in 2544 of the 35 918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7–8. Conclusions Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. PMID:24385598
A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy.
Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw
2014-07-01
This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Advanced colorectal neoplasia was detected in 2544 of the 35,918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7-8. Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Berlinguer, Fiammetta; Madeddu, Manuela; Pasciu, Valeria; Succu, Sara; Spezzigu, Antonio; Satta, Valentina; Mereu, Paolo; Leoni, Giovanni G; Naitana, Salvatore
2009-01-01
Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART) outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus) aged 2 years (A, B and C). In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA) motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0 < 0.01) and blastocysts output (p < 0.05) compared with C. Logistic regression analysis model explained a deviance of 72% (p < 0.0001), directly related with the mean percentage of rapid spermatozoa in fresh semen (p < 0.01), semen viability after thawing (p < 0.01), and with two of the three comet parameters considered, i.e tail DNA percentage and comet length (p < 0.0001). DNA integrity alone had a high predictive value on IVF outcome with frozen/thawed semen (deviance explained: 57%). The model proposed here represents one of the many possible ways to explain differences found in embryo output following IVF with different semen donors and may represent a useful tool to select the most suitable donors for semen cryopreservation. PMID:19900288
Ngo, Long H; Inouye, Sharon K; Jones, Richard N; Travison, Thomas G; Libermann, Towia A; Dillon, Simon T; Kuchel, George A; Vasunilashorn, Sarinnapha M; Alsop, David C; Marcantonio, Edward R
2017-06-06
The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full cohort study. We present methodological considerations in a matched NCC design and analysis, which include the choice of match algorithms, analysis methods to evaluate the association of exposures of interest with outcomes, and consideration of overmatching. Matched, NCC design within a longitudinal observational prospective cohort study in the setting of two academic hospitals. Study participants are patients aged over 70 years who underwent scheduled major non-cardiac surgery. The primary outcome was postoperative delirium from in-hospital interviews and medical record review. The main exposure was IL-6 concentration (pg/ml) from blood sampled at three time points before delirium occurred. We used nonparametric signed ranked test to test for the median of the paired differences. We used conditional logistic regression to model the risk of IL-6 on delirium incidence. Simulation was used to generate a sample of cohort data on which unconditional multivariable logistic regression was used, and the results were compared to those of the conditional logistic regression. Partial R-square was used to assess the level of overmatching. We found that the optimal match algorithm yielded more matched pairs than the greedy algorithm. The choice of analytic strategy-whether to consider measured cytokine levels as the predictor or outcome-- yielded inferences that have different clinical interpretations but similar levels of statistical significance. Estimation results from NCC design using conditional logistic regression, and from simulated cohort design using unconditional logistic regression, were similar. We found minimal evidence for overmatching. Using a matched NCC approach introduces methodological challenges into the study design and data analysis. Nonetheless, with careful selection of the match algorithm, match factors, and analysis methods, this design is cost effective and, for our study, yields estimates that are similar to those from a prospective cohort study design.
Wang, Bowen; Xiong, Haitao; Jiang, Chengrui
2014-01-01
As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center.
Wang, Bowen; Jiang, Chengrui
2014-01-01
As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center. PMID:25215319
A Collection of Technical Papers
NASA Technical Reports Server (NTRS)
1995-01-01
Papers presented at the 6th Space Logistics Symposium covered such areas as: The International Space Station; The Hubble Space Telescope; Launch site computer simulation; Integrated logistics support; The Baikonur Cosmodrome; Probabalistic tools for high confidence repair; A simple space station rescue vehicle; Integrated Traffic Model for the International Space Station; Packaging the maintenance shop; Leading edge software support; Storage information management system; Consolidated maintenance inventory logistics planning; Operation concepts for a single stage to orbit vehicle; Mission architecture for human lunar exploration; Logistics of a lunar based solar power satellite scenario; Just in time in space; NASA acquisitions/logistics; Effective transition management; Shuttle logistics; and Revitalized space operations through total quality control management.
Brenn, T; Arnesen, E
1985-01-01
For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.
Forest biomass supply logistics for a power plant using the discrete-event simulation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobini, Mahdi; Sowlati, T.; Sokhansanj, Shahabaddine
This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted averagemore » cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO2 emissions resulted from the processes are also provided.« less
Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao
2018-05-10
In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.