Science.gov

Sample records for lombardy region emission

  1. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy.

    PubMed

    Caserini, Stefano; Galante, Silvia; Ozgen, Senem; Cucco, Sara; de Gregorio, Katia; Moretti, Marco

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC+OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. High-resolution emission inventory of the Lombardy region: development and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Dommen, J.; Prevot, A. S. H.; Baertsch-Ritter, N.; Maffeis, G.; Longoni, M. G.; Grüebler, F. C.; Thielmann, A.

    In the framework of the EUROTRAC-2 subproject limitation of oxidant production an emission inventory was developed for the Lombardy region in Italy with a 1 h temporal and 3 km spatial resolution. The emissions were processed in a bottom-up approach. We outline the emissions processing strategy used and summarize the inventory characteristics. Spatial maps and diurnal series charts of the total emissions of nitrogen oxides (NO x), carbon monoxide CO, volatile organic compounds (VOC) are provided. The emission inventory shows distinct patterns for the urban area and the non-metropolitan region. We compare ratios of CO to NO x and CO to different VOC-classes between the emission inventory and measurements performed at two sites representative for the urban and non-metropolitan areas. Ratios were determined from the slopes of correlations between CO and the respective species class. Observed CO/NO x ratios are higher in the urban and non-metropolitan area by factors of 2 and 3, respectively. CO/VOC ratios show different discrepancies depending on the VOC-class but are generally lower in the emission inventory. Observations at the two sites yielded similar concentration ratios opposite to the inventory.

  3. West Nile Virus Surveillance in the Lombardy Region, Northern Italy.

    PubMed

    Chiari, M; Prosperi, A; Faccin, F; Avisani, D; Cerioli, M; Zanoni, M; Bertoletti, M; Moreno, A M; Bruno, R; Monaco, F; Farioli, M; Lelli, D; Lavazza, A

    2015-08-01

    In 2013, the circulation of West Nile virus (WNV) was detected in the Lombardy region and the following year a surveillance programme was activated with the aim of early identification of the viral distribution in mosquitoes and wild birds. A total of 50 959 Culex spp. mosquitoes grouped in six hundred and forty-seven pools as well as 1400 birds were screened by RT-PCR for the presence of West Nile virus leading to the identification of the viral genome in 32 mosquito pools and 13 wild birds. The surveillance was able to detect the WNV circulation on an average of 42 days (CI 95% 29.98-53.86; Student's t-distribution) before the occurrence of human West Nile disease (WND) cases in the same area. These results demonstrate the presence of WNV in the Lombardy region and confirm entomological and wild birds surveillance as an effective measure for the early identification of WNV circulation in infected areas, thus providing a useful and cost-effective tool for the public health authorities in the application of measures to prevent human infection. © 2015 Blackwell Verlag GmbH.

  4. Nowcasting and assessing thunderstorm risk on the Lombardy region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonelli, P.; Marcacci, P.; Bertolotti, E.; Collino, E.; Stella, G.

    2011-06-01

    The problem of severe thunderstorm risk in the Lombardy region (Italy) is serious. In fact during the warm season many thunderstorms (TS) occur in high density populated area located between the river Po and the Alps. In the year 2003, about 90 TS caused damage to people, houses, cars, agriculture and electrical lines. About 30 municipalities undergo damage by tornadoes. The 2003 summer was not particularly anomalous with respect to others for TS activity. In this region storms are well detected by some C-band radars and the Meteosat satellites, but the study of the correlation between these variables and the TS severity needs the collection of many met-data at the ground. Unfortunately the lack of a fine mesh met-station network forces the use of local press news or subjective reports to identify the impact of TS. Since 2006 ERSE has been collaborating with the Lombardy Region - Civil Protection Service/Office - in developing and testing a system to detect and nowcast severe thunderstorms, STAF (Storm Track Alert and Forecast). STAF is a nowcasting tool based on Radar and MSG (Meteosat Second Generation) data that selects only severe TS, tracks them and produces alert messages to users. In order to evaluate the severity of a TS, a crucial issue for STAF is the correlation between variables detected by the remote-sensing instruments and the effects at the ground. The paper describes a method to classify the severity of a TS by computing an index named "probability of damage" (PD). The index has been carried out by means of a storm archive, where radar and satellite data are stored together with damages reports from newspapers, all collected in 2003 summer. The index has been verified during the 2009 summer, when STAF was applied in a field test involving a group of Civil Protection observers and users. The results of this test are reported in the paper. The test has been also an occasion for verifying the effectiveness of information provided by STAF to selected

  5. West Nile virus outbreak in the Lombardy region, northern Italy, summer 2013.

    PubMed

    Rovida, Francesca; Sarasini, Antonella; Campanini, Giulia; Percivalle, Elena; Gorini, Giovanna; Mariani, Bianca; Pan, Angelo; Cuzzoli, Antonio; Possenti, Stefano; Manzini, Lisa; Castelli, Francesco; Bossini, Nicola; Grossi, Paolo Antonio; Castilletti, Concetta; Calzolari, Mattia; Lelli, Davide; Piatti, Alessandra; Baldanti, Fausto

    2015-04-01

    In the summer of 2013, an outbreak of West Nile virus (WNV) infection occurred in the Lombardy, a region of northern Italy to the west of districts affected by WNV in previous years. Eighteen cases of human WNV infection were diagnosed--10 cases of acute WNV neuroinvasive disease and eight of WNV fever. In the same period, WNV was detected in birds (one crow) in horses (11 cases) and from mosquitoes (six pools).

  6. The Regional Mass Balance of Lombardy Alps (Italy) during 2007-2011

    NASA Astrophysics Data System (ADS)

    Bonardi, L.; La Barbera, L.; Scotti, R.; Villa, F.

    2012-04-01

    The regional mass balance project aims to estimate the mass balance of Lombardy glaciers (Central Alps, Italy) over the survey period 2007-2011. A network of 52 stakes was established, where measurements were taken yearly. The network was designed to cover 15 of the largest glaciers within the region, as well as to inspect all the glaciarized mountain sectors. Given the geographical representativity, the methodology applied for surveying mass balance at a regional scale followed an elevation criteria. The 244 Lombardy glaciers, for a total surface of 90.4 km2, were considered as one and a classical glaciological mass balance was implemented. Seven elevation ranges were identified, and stakes where positioned accordingly. The correlation between the specific balance and aspect of single stakes was so weak that this parameter was not taken into account. A mass balance value was associated to each altitude range, averaging the measurements taken at the correspondent stakes. In cases of stakes showing a considerably different trend in comparison to the average of the same altitude, a separate analysis was carried out and they were considered representative of the specific glacier only. The consistency of the field measurements was confirmed by the evidences emerged from the monitoring data and pictures collected every year for the Servizio Glaciologico Lombardo glaciological survey, and from projects of glaciological and geodetic mass balance carried out on specific glaciers.Altitude ranges and glaciers surface have been updated to 2007 thanks to newly available Digital Surface Models and aerial photos. The results show a strong negative mass balance: approx. - 615 million cubic meters of water over five years. The hydrological year 2006/2007 accounted for 30% of the loss while the less negative mass balance was recorded in 2008/2009 and 2009/2010 (accounting for 15% of the total loss each). Considering the regional glaciers volume in 2003, it is relevant to notice

  7. A Radar and Gauge hourly precipitation database for calibration and statistical purposes over Lombardy Region - Italy

    NASA Astrophysics Data System (ADS)

    Marcacci, P.; Bonelli, P.; Lacavalla, M.; Vaghi, L.; Molari, M.; Musolino, A. E.; La Rocca, L.; Bertolotti, E.

    2012-04-01

    The Lombardy territory is partly characterized by the Alps Chain and by flat terrain, belonging to the Po river basin. Precipitation amount is a crucial meteorological variable, needed in hydrology, agriculture and energy evaluations. On this territory different rain-gauge networks have been run in the last ten years with different degree of reliability and areal distribution. At the same time the Swiss C-band radar of Mount Lema (1624 m.), near the city of Locarno, managed by Meteo Swiss, has produced rainfall amount data with an high level of continuity and quality on almost the whole Lombardy territory. Although it is widely recognized that radar precipitation estimates are affected by errors in mountainous areas, mostly due to the shield effects, this source of data remains of great value for its high resolution property and real-time availability. Any effort to explain differences between radar and gauges estimations needs a tool able to manage a sufficient large data-set. In order to get such a tool on the Lombardy region, a data-base of ten years (2000-2009) of hourly precipitation amount from the Monte Lema radar and from the various gauge networks has been carried out. A radar-gauges calibration method has been tested and applied to the whole data-set. The calibration method is based on the relation between precipitation estimate error and the radar visibility. A subset of gauges have been selected in order to set up the method, a different subset has been used to test it. Hourly precipitation radar estimate has been re-computed taking into account the corrections obtained. The data-base, developed in a open source MySQL environment, contains both the original radar precipitation estimates and the corrected data, grid and gauges coordinates are also provided. Some query-procedures allow to compute areal precipitation amounts, statistical distribution, scatter plot diagram and correlation coefficients between gauge measurements and radar estimates. Examples

  8. Regional variation in hospitalisation and mortality in heart failure: comparison of England and Lombardy using multistate modelling.

    PubMed

    Bottle, Alex; Ventura, Chiara Maria; Dharmarajan, Kumar; Aylin, Paul; Ieva, Francesca; Paganoni, Anna Maria

    2017-07-28

    Heart failure (HF) is a common, serious chronic condition with high morbidity, hospitalisation and mortality. The healthcare systems of England and the northern Italian region of Lombardy share important similarities and have comprehensive hospital administrative databases linked to the death register. We used them to compare admission for HF and mortality for patients between 2006 and 2012 (n = 37,185 for Lombardy, 234,719 for England) with multistate models. Despite close similarities in age, sex and common comorbidities of the two sets of patients, in Lombardy, HF admissions were longer and more frequent per patient than in England, but short- and medium-term mortality was much lower. English patients had more very short stays, but their very elderly also had longer stays than their Lombardy counterparts. Using a three-state model, the predicted total time spent in hospital showed large differences between the countries: women in England spent an average of 24 days if aged 65 at first admission and 19 days if aged 85; in Lombardy these figures were 68 and 27 days respectively. Eight-state models suggested disease progression that appeared similar in each country. Differences by region within England were modest, with London patients spending more time in hospital and having lower mortality than the rest of England. Whilst clinical practice differences plausibly explain these patterns, we cannot confidently disentangle the impact of alternatives such as coding, casemix, and the availability and use of non-hospital settings. We need to better understand the links between rehospitalisation frequency and mortality.

  9. Current activities of Cardiovascular Rehabilitation in the ambulatory setting of the Lombardy Region.

    PubMed

    Ambrosetti, Marco; Pedretti, Roberto F E; Facchini, Mario; Malfatto, Gabriella; Riccobono, Salvatore Pio; Febo, Oreste; Diaco, Tommaso

    2016-06-22

    In the present work, the current activities of Cardiovascular Rehabilitation and Prevention (CRP) in the ambulatory setting of the Lombardy Region (Italy) are described. Based on the 2012 Legislation, ambulatory CRP is delivered by means of three programme categories (MAC 6, 7, and 8) with different degrees of intensity. The patient evaluation of global cardiovascular/clinical risk, comorbidity, and disability is the cornerstone for MAC prescription. Following the organization of MAC activities, a survey on 327 patients was carried out by the regional network of the Italian Society of Cardiovascular Rehabilitation (GICR-IACPR). Globally, acute coronary syndromes (with or without coronary revascularization) constituted the main access group to CRP. More than 60% of patients displayed a condition of high risk, comorbidity, and disability. The outcome of ambulatory CRP by means of MAC 6 and 7 was satisfactory, while in the 'less intensive' MAC 8 patients with complete drug up-titration and achievement of secondary prevention targets were no more than 70%.

  10. Implementing standards for the interoperability among healthcare providers in the public regionalized Healthcare Information System of the Lombardy Region.

    PubMed

    Barbarito, Fulvio; Pinciroli, Francesco; Mason, John; Marceglia, Sara; Mazzola, Luca; Bonacina, Stefano

    2012-08-01

    Information technologies (ITs) have now entered the everyday workflow in a variety of healthcare providers with a certain degree of independence. This independence may be the cause of difficulty in interoperability between information systems and it can be overcome through the implementation and adoption of standards. Here we present the case of the Lombardy Region, in Italy, that has been able, in the last 10 years, to set up the Regional Social and Healthcare Information System, connecting all the healthcare providers within the region, and providing full access to clinical and health-related documents independently from the healthcare organization that generated the document itself. This goal, in a region with almost 10 millions citizens, was achieved through a twofold approach: first, the political and operative push towards the adoption of the Health Level 7 (HL7) standard within single hospitals and, second, providing a technological infrastructure for data sharing based on interoperability specifications recognized at the regional level for messages transmitted from healthcare providers to the central domain. The adoption of such regional interoperability specifications enabled the communication among heterogeneous systems placed in different hospitals in Lombardy. Integrating the Healthcare Enterprise (IHE) integration profiles which refer to HL7 standards are adopted within hospitals for message exchange and for the definition of integration scenarios. The IHE patient administration management (PAM) profile with its different workflows is adopted for patient management, whereas the Scheduled Workflow (SWF), the Laboratory Testing Workflow (LTW), and the Ambulatory Testing Workflow (ATW) are adopted for order management. At present, the system manages 4,700,000 pharmacological e-prescriptions, and 1,700,000 e-prescriptions for laboratory exams per month. It produces, monthly, 490,000 laboratory medical reports, 180,000 radiology medical reports, 180

  11. Effects of particulate matter exposure on multiple sclerosis hospital admission in Lombardy region, Italy

    PubMed Central

    Laura, Angelici; Mirko, Piola; Tommaso, Cavalleri; Giorgia, Randi; Francesca, Cortini; Roberto, Bergamaschi; Andrea, Baccarelli A; Alberto, Bertazzi Pier; Cecilia, Pesatori Angela; Valentina, Bollati

    2016-01-01

    Background Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system, characterized by recurrent relapses of inflammation that cause mild to severe disability. Exposure to airborne particulate matter (PM) has been associated with acute increases in systemic inflammatory responses and neuroinflammation. In the present study, we hypothesize that exposure to PM < 10 µm in diameter (PM10) might increase the occurrence of MS-related hospitalizations. Methods We obtained daily concentrations of PM10 from 53 monitoring sites covering the study area and we identified 8287 MS-related hospitalization through hospital admission-discharge records of the Lombardy region, Italy, between 2001 and 2009. We used a Poisson regression analysis to investigate the association between exposure to PM10 and risk of hospitalization. Results A higher RR of hospital admission for MS relapse was associated with exposure to PM10 at different time intervals. The maximum effect of PM10 on MS hospitalization was found for exposure between days 0 and 7: Hospital admission for MS increased 42% (95%CI 1.39–1.45) on the days preceded by one week with PM10 levels in the highest quartile. The p-value for trend across quartiles was < 0.001. Conclusions These data support the hypothesis that air pollution may have a role in determining MS occurrence and relapses. Our findings could open new avenues for determining the pathogenic mechanisms of MS and potentially be applied to other autoimmune diseases. PMID:26624240

  12. Comparison of Predicted and Measured Soil Retention Curve in Lombardy Region Northern of Italy

    NASA Astrophysics Data System (ADS)

    Wassar, Fatma; Rienzner, Michele; Chiaradia, Enrico Antonio; Gandolfi, Claudio

    2013-04-01

    Water retention characteristics are crucial input parameters in any modeling study on water flow and solute transport. These properties are difficult to measure and therefore the use of both direct and indirect methods is required in order to adequately describe them with sufficient accuracy. Several field methods, laboratory methods and theoretical models for such determinations exist, each having their own limitations and advantages (Stephens, 1994). Therefore, extensive comparisons between estimated, field and laboratory results to determine it still requires their validity for a range of different soils and specific cases. This study attempts to make a contribution specifically in this connection. The soil water retention characteristics were determined in two representative sites (PMI-1 and PMI-5) located in Landriano field, in Lombardy region, northern Italy. In the laboratory, values of both volumetric water content (θ) and soil water matric potential (h) are measured in the same sample using the tensiometric box and pressure plate apparatus. Field determination of soil water retention involved measurements of soil water content with SENTEK probes, and matric potential with tensiometers. The retention curve characteristics were also determined using some of the most commonly cited and some recently developed PTFs that use soil properties such as particle-size distribution (sand, silt, and clay content), organic matter or organic Carbon content, and dry bulk density. Field methods are considered to be more representative than laboratory and estimation methods for determining water retention characteristics (Marion et al., 1996). Therefore, field retention curves were compared against retention curves obtained from laboratory measurements and PTFs estimations. The performances of laboratory and PTFs in predicting field measured data were evaluated using root mean square error (RMSE) and bias. The comparison showed that laboratory measurements were the most

  13. Healthcare-acquired infections in rehabilitation units of the Lombardy Region, Italy.

    PubMed

    Tinelli, M; Mannino, S; Lucchi, S; Piatti, A; Pagani, L; D'Angelo, R; Villa, M; Trezzi, L; Di Stefano, M G; Pavan, A; Macchi, L

    2011-08-01

    Little data are available on the frequency and risk factors for infection in patients in rehabilitation units. This was a 2-year retrospective cohort study conducted in 131 rehabilitation units (RUs) of the Lombardy Region, including those for patients requiring musculoskeletal, cardiac, respiratory, neurological and general geriatric rehabilitation. RUs were stratified into three groups by infection rate calculated from administrative data, and a random sample of RUs in each group was selected for analysis. Discharges from these RUs were randomly selected for chart review, and healthcare-acquired infection was confirmed using CDC/NHSN definitions. A logistic regression analysis explored the association among demographic variables of age, sex, type of rehabilitation unit, Charlson comorbidity score, and location prior to RU admission for selected infections. For the 3,028 discharges from 28 RUs, hospital administrative data had a sensitivity of 0.45 and a positive predictive value of 0.89 to identify infections in the chart review. At least one infection occurred in 14.9% of patient discharges, with 71% of infections being urinary, 8.0% respiratory, and 5% skin and soft tissue. Urinary infection was associated with female sex [odds ratio (OR) 1.48, 95% confidence interval (CI) 1.13-1.93], age 75-85 years (OR 2.21, 95% CI 1.12-4.34), Charlson comorbidity score of ≥3 (OR 1.54, 95% CI 1.10-2.17), and the transfer from acute care (OR 1.45, 95% CI 1.04-2.02). For respiratory infection, male sex (OR 3.06, 95% CI 1.51-6.18), comorbidity score of 1 or 2 (OR 2.16, 95% CI 1.08-4.36), and transfer from a healthcare setting other than an acute care hospital were independent risks (OR 3.14, 95% CI 1.15-8.53). Infections are common in residents of these rehabilitation units, and risk factors may differ with type of infection. The proportion of infections which may be prevented and effective prevention strategies need to be determined.

  14. [Environment and energy in hospitals: assessment of usage and impact of Health Facilities in the Lombardy Region].

    PubMed

    Brioschi, A; Capolongo, S; Buffoli, M

    2010-01-01

    The research moves from the current global and local context and from shared development strategies. From the observation and the analysis of contemporary environmental and energy issues and redefined directions of growth of human activity, it is addressing the question of environmental sustainability and energy conservation of building hospital systems. The work has developed a field survey relating the specific topic of energy saving and efficiency of the Park Hospital in the Italian Lombardy Region. This has been articulated in a diagnosis of technology and efficiency of regional hospitals, implemented through a census, and in a subsequent identification of interventional cases, in order to show its economic, environmental and health performance of the energy efficiency consumption and the environmentally sound.

  15. The Lombardy Rare Donor Programme.

    PubMed

    Revelli, Nicoletta; Villa, Maria Antonietta; Paccapelo, Cinzia; Manera, Maria Cristina; Rebulla, Paolo; Migliaccio, Anna Rita; Marconi, Maurizio

    2014-01-01

    In 2005, the government of Lombardy, an Italian region with an ethnically varied population of approximately 9.8 million inhabitants including 250,000 blood donors, founded the Lombardy Rare Donor Programme, a regional network of 15 blood transfusion departments coordinated by the Immunohaematology Reference Laboratory of the Ca' Granda Ospedale Maggiore Policlinico in Milan. During 2005 to 2012, Lombardy funded LORD-P with 14.1 million euros. During 2005-2012 the Lombardy Rare Donor Programme members developed a registry of blood donors and a bank of red blood cell units with either rare blood group phenotypes or IgA deficiency. To do this, the Immunohaematology Reference Laboratory performed extensive serological and molecular red blood cell typing in 59,738 group O or A, Rh CCDee, ccdee, ccDEE, ccDee, K- or k- donors aged 18-55 with a record of two or more blood donations, including both Caucasians and ethnic minorities. In parallel, the Immunohaematology Reference Laboratory implemented a 24/7 service of consultation, testing and distribution of rare units for anticipated or emergent transfusion needs in patients developing complex red blood cell alloimmunisation and lacking local compatible red blood cell or showing IgA deficiency. Red blood cell typing identified 8,747, 538 and 33 donors rare for a combination of common antigens, negative for high-frequency antigens and with a rare Rh phenotype, respectively. In June 2012, the Lombardy Rare Donor Programme frozen inventory included 1,157 red blood cell units. From March 2010 to June 2012 one IgA-deficient donor was detected among 1,941 screened donors and IgA deficiency was confirmed in four previously identified donors. From 2005 to June 2012, the Immunohaematology Reference Laboratory provided 281 complex red blood cell alloimmunisation consultations and distributed 8,008 Lombardy Rare Donor Programme red blood cell units within and outside the region, which were transfused to 2,365 patients with no

  16. Sensing Slow Mobility and Interesting Locations for Lombardy Region (italy): a Case Study Using Pointwise Geolocated Open Data

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Oxoli, D.; Zurbarán, M. A.

    2016-06-01

    During the past years Web 2.0 technologies have caused the emergence of platforms where users can share data related to their activities which in some cases are then publicly released with open licenses. Popular categories for this include community platforms where users can upload GPS tracks collected during slow travel activities (e.g. hiking, biking and horse riding) and platforms where users share their geolocated photos. However, due to the high heterogeneity of the information available on the Web, the sole use of these user-generated contents makes it an ambitious challenge to understand slow mobility flows as well as to detect the most visited locations in a region. Exploiting the available data on community sharing websites allows to collect near real-time open data streams and enables rigorous spatial-temporal analysis. This work presents an approach for collecting, unifying and analysing pointwise geolocated open data available from different sources with the aim of identifying the main locations and destinations of slow mobility activities. For this purpose, we collected pointwise open data from the Wikiloc platform, Twitter, Flickr and Foursquare. The analysis was confined to the data uploaded in Lombardy Region (Northern Italy) - corresponding to millions of pointwise data. Collected data was processed through the use of Free and Open Source Software (FOSS) in order to organize them into a suitable database. This allowed to run statistical analyses on data distribution in both time and space by enabling the detection of users' slow mobility preferences as well as places of interest at a regional scale.

  17. [Complexity of care and organizational effectiveness: a survey among medical care units in nine Lombardy region hospitals].

    PubMed

    Pasquali, Sara; Capitoni, Enrica; Tiraboschi, Giuseppina; Alborghetti, Adriana; De Luca, Giuseppe; Di Mauro, Stefania

    2017-01-01

    Eleven medical care units of nine Lombardy Region hospitals organized by levels of care model or by the traditional departmental model have been analyzed, in order to evaluate if methods for complexity of patient-care evaluation represent an index factor of nursing organizational effectiveness. Survey with nine Nurses in managerial position was conducted between Nov. 2013-Jan. 2014. The following factors have been described: context and nursing care model, staffing, complexity evaluation, patient satisfaction, staff well-being. Data were processed through Microsoft Excel. Among Units analysed ,all Units in levels of care and one organized by the departmental model systematically evaluate nursing complexity. Registered Nurses (RN) and Health Care Assistants (HCA) are on average numerically higher in Units that measure complexity (0.55/ 0.49 RN, 0.38/0.23 HCA - ratio per bed). Adopted measures in relation to changes in complexity are:rewarding systems, supporting interventions, such as moving personnel within different Units or additional required working hours; reduction in number of beds is adopted when no other solution is available. Patient satisfaction is evaluated through Customer Satisfaction questionnaires. Turnover, stress and rate of absenteeism data are not available in all Units. Complexity evaluation through appropriate methods is carried out in all hospitals organized in levels of care with personalized nursing care models, though complexity is detected with different methods. No significant differences in applied managerial strategies are present. Patient's satisfaction is evaluated everywhere. Data on staffing wellbeing is scarcely available. Coordinated regional actions are recommended in order to gather comparable data for research, improve decision making and effectiveness of Nursing care.

  18. The standardization of results on hair testing for drugs of abuse: An interlaboratory exercise in Lombardy Region, Italy.

    PubMed

    Stramesi, C; Vignali, C; Groppi, A; Caligara, M; Lodi, F; Pichini, S; Jurado, C

    2012-05-10

    Hair testing for drugs of abuse is performed in Lombardy by eleven analytical laboratories accredited for forensic purposes, the most frequent purposes being driving license regranting and workplace drug testing. Individuals undergoing hair testing for these purposes can choose the laboratory in which the analyses have to be carried out. The aim of our study was to perform an interlaboratory exercise in order to verify the level of standardization of hair testing for drugs of abuse in these accredited laboratories; nine out of the eleven laboratories participated in this exercise. Sixteen hair strands coming from different subjects were longitudinally divided in 3-4 aliquots and distributed to participating laboratories, which were requested to apply their routine methods. All the participants analyzed opiates (morphine and 6-acetylmorphine) and cocainics (cocaine and benzoylecgonine) while only six analyzed methadone and amphetamines (amphetamine, methamphetamine, MDMA, MDA and MDEA) and five Δ(9)-tetrahydrocannabinol (THC). The majority of the participants (seven labs) performed acidic hydrolysis to extract the drugs from the hair and analysis by GC-MS, while two labs used LC-MS/MS. Eight laboratories performed initial screening tests by Enzyme Multiplied Immunoassay Technique (EMIT), Enzyme-linked Immunosorbent Assay (ELISA) or Cloned Enzyme Donor Immunoassay (CEDIA). Results demonstrated a good qualitative performance for all the participants, since no false positive results were reported by any of them. Quantitative data were quite scattered, but less in samples with low concentrations of analytes than in those with higher concentrations. Results from this first regional interlaboratory exercise show that, on the one hand, individuals undergoing hair testing would have obtained the same qualitative results in any of the nine laboratories. On the other hand, the scatter in quantitative results could cause some inequalities if any interpretation of the data is

  19. 2015-2018 Regional Prevention Plan of Lombardy (Northern Italy) and sedentary prevention: a cross-sectional strategy to develop evidence-based programmes.

    PubMed

    Coppola, Liliana; Ripamonti, Ennio; Cereda, Danilo; Gelmi, Giusi; Pirrone, Lucia; Rebecchi, Andrea

    2016-01-01

    Cross-sector, life-course, and setting approaches are identified in the 2015-2018 Regional Prevention Plan (PRP) of Lombardy Region (Northern Italy) as valuable strategies to ensure the efficacy and sustainable prevention of the non-communicable disease (NCDs). The involvement of non-health sectors in health promotion activities represents a suitable strategy to affect on social, economic, and political determinants and to change environmental factors that could cause NCDs. A dialogue among communities, urban planning, and prevention know-how is a prerequisite to develop a system of policies suitable to promote healthy lifestyle in general and, specifically, active lifestyles. The 2015-2018 Lombardy PRP pursues its aims of health promotion and behavioural risk factors for NCDs prevention through programmes that implement their own setting networks (Health Promoting Schools - SPS; Workplace Health Promotion - WHP) and develop new networks. Sedentary lifestyle prevention and active lifestyle promotion are performed through the approach promoted by the Healthy Cities Programme (WHO), encouraging two main processes: 1. creating integrated capacity-building among health and social prevention services, academic research, and local stakeholders on different urban planning and design issues; 2. promoting community empowerment through active citizens participation. Through this process, Lombardy Region aims to orient its services developing evidence-based programmes and enhancing advocacy and mediating capacity skills in order to create a profitable partnership with non-health sectors. This paper reports the main impact data: 26,000 children that reach school by foot thanks to walking buses, 57% of 145 companies joining WHP are involved in promoting physical activity, 18,891 citizens who attend local walking groups.

  20. Usutu Virus Antibodies in Blood Donors and Healthy Forestry Workers in the Lombardy Region, Northern Italy.

    PubMed

    Percivalle, Elena; Sassera, Davide; Rovida, Francesca; Isernia, Paola; Fabbi, Massimo; Baldanti, Fausto; Marone, Piero

    2017-09-01

    Usutu virus (USUV), a member of the genus Flavivirus, is known to circulate at low prevalence in Northern Italy, and has been reported to cause overt infection. USUV was first reported in Europe in 2001, but a retrospective study showed that it has been present in Italy at least since 1996. Seroprevalence data for USUV antibodies in sera are being collected in different European countries, showing circulation at low prevalence in human populations. Interestingly, two consecutive studies in Northern Italy indicate a possible increase in the presence of the virus, from 0% to 0.23% seroprevalence in blood donors. In this study, antibodies against USUV were measured in 3 consecutive blood samples collected from October 2014 to December 2015 from 33 forestry workers in the Po river valley, while samples from 200 blood donors from the same geographical area were tested in parallel. Neutralizing and IgG antibodies were found in six forestry workers (18.1%) and in two blood donors (1%). Our results indicate that USUV circulation in the examined area, part of a highly populated region in Northern Italy, is higher than expected. Healthy subjects exhibit a higher prevalence than what was found in a previous report in an adjoining region (0.23%), while the population at risk shows a much higher prevalence value (18.1%).

  1. Surveillance of acute infectious gastroenteritis (1992-2009) and food-borne disease outbreaks (1996-2009) in Italy, with a focus on the Piedmont and Lombardy regions.

    PubMed

    Mughini-Gras, L; Graziani, C; Biorci, F; Pavan, A; Magliola, R; Ricci, A; Gilli, G; Carraro, E; Busani, L

    2012-02-23

    We describe trends in the occurrence of acute infectious gastroenteritis (1992 to 2009) and food-borne disease outbreaks (1996 to 2009) in Italy. In 2002, the Piedmont region implemented a surveillance system for early detection and control of food-borne disease outbreaks; in 2004, the Lombardy region implemented a system for surveillance of all notifiable human infectious diseases. Both systems are internet based. We compared the regional figures with the national mean using official notification data provided by the National Infectious Diseases Notification System (SIMI) and the National Institute of Statistics (ISTAT), in order to provide additional information about the epidemiology of these diseases in Italy. When compared with the national mean, data from the two regional systems showed a significant increase in notification rates of non-typhoid salmonellosis and infectious diarrhea other than non-typhoid salmonellosis, but for foodborne disease outbreaks, the increase was not statistically significant. Although the two regional systems have different objectives and structures, they showed improved sensitivity regarding notification of cases of acute infectious gastroenteritis and, to a lesser extent, food-borne disease outbreaks, and thus provide a more complete picture of the epidemiology of these diseases in Italy.

  2. [Appropriateness of indicating aortocoronary bypass and coronary angioplasty: results of an observational prospective study in the Lombardy region. Gruppo Interdisciplinare Valutazione Appropriatezza Rivascolarizzazione Coronarica].

    PubMed

    Valagussa, F; Maggioni, A P; Valagussa, L; Filardo, G; Mura, G; Liberati, A

    1997-12-01

    Most studies on the appropriateness of cardiac revascularization procedures have been aimed at detecting "overuse" (ie when patients get a procedure without a clear indication), while little attention has been paid yet to "underuse" (when patients who could benefit from a procedure do not get it). This study was planned to assess the extent of over- and underuse of revascularization procedures in northern Italy. A multidisciplinary panel of experts convened by the Italian Association of Hospital Cardiologists (ANMCO) rated the appropriateness of 898 "theoretical indications" for coronary artery by-pass grafting (CABG) and percutaneous transluminal angioplasty (PTCA) using the RAND Corporation methodology. Standardized information has been collected on a consecutive sample of patients in the Lombardy region and identified during performance of a coronary angiogram at one of the services belonging to the GISE (Gruppo Italiano Studi Emodinamica) network. Out of the 2718 consecutive patients undergoing a coronary angiogram during the recruitment period (February-May 1995), a total of 1821 (70%) were eligible for the appropriateness study. Indication for CABG were appropriate in 565 (80%) patients, uncertain in 111 (16%) and inappropriate in 25 (4%). Corresponding values for PTCA were: 40% (n = 262), 46% (n = 300) and 14% (n = 90). Among the 394 to whom a medical therapy was recommended after angiography, the indication was considered appropriated in only 14% (n = 57) and uncertain for 30% (n = 117). For the remaining 220, the indication was considered inappropriate, suggesting that according to the panel criteria, 56% of the patients should have received a revascularization procedure (either a CABG or PTCA) instead. These results suggest that underuse of revascularization procedures represents a substantial health care problem in Lombardy region, at least with reference to the period covered by this study. The study in itself does not make it possible to understand

  3. Impact of European medicines agency recommendations for hypersensitivity reactions on intravenous iron prescription in haemodialysis centres of the Lombardy region.

    PubMed

    Rivera, Rodolfo F; Guido, Davide; Del Vecchio, Lucia; Corghi, Enzo; D'Amico, Marco; Camerini, Corrado; Spotti, Donatella; Galassi, Andrea; Pozzi, Claudio; Cancarini, Giovanni; Pontoriero, Giuseppe; Locatelli, Francesco

    2016-10-01

    The European Medicines Agency (EMA) has recommended measures to minimize the risk of hypersensitivity reactions (HSRs) to intravenous iron (IVFe). We analysed the effects of these recommendations on IVFe clinical management among haemodialysis centres (HDCs) in Lombardy, Italy. A questionnaire was sent to all 117 HDCs to collect information on centre characteristics, e.g. HDC type [hospital centre (HC) vs. centre with limited assistance (CAL)], presence/absence of intensive care unit (ICU) and/or emergency trained staff, IVFe therapy regarding molecules, administration modalities, side effects, and percentage variations in iron prescription between 2014 and 2013 (outcome, Δ-IVFe%). A linear regression model was applied to evaluate the focus effect (β) of HDC type on the outcome, controlling for possible confounding effects of the other characteristics. Response rate was 73.5 %. IVFe therapy was used in 69.1 % (HDC range 11-100) of patients. Following EMA recommendations, prescription was reduced by 12.6 %, with the largest reduction observed in CALs. No severe HSRs were reported. HCs had more frequently an ICU [97.2 vs. 20 %, odds ratio (OR) = 63.6 (95 % confidence interval 15.56; 537.47), p < 0.001], emergency trained staff [97.2 vs. 61.2 %, OR = 10.7 (2.68; 85.33), p < 0.001] and instrumental facilities (91.7 vs. 58 %, OR = 5.8 (2.03; 23.55), p < 0.001] than CALs. Linear regression demonstrated a significant raw effect of HDC type on Δ- IVFe% [β =  19.6 (9.82; 30.63), p < 0.001]. No association was found when HDC type was adjusted for ICU-presence [β = 6.7 (-2.32; 18.30), p = 0.199] or for all-confounding factors [β = 5.6 (-5.50; 17.08), p = 0.337]. This survey shows a disparity in IVFe therapy prescription following EMA recommendations, which is largely influenced by the presence/absence of ICUs in HD centres.

  4. The alerting system for hydrogeological hazard in Lombardy Region, northern Italy: rainfall thresholds triggering debris-flows and "equivalent rainfall" method

    NASA Astrophysics Data System (ADS)

    Cucchi, A.; Valsecchi, I. Q.; Alberti, M.; Fassi, P.; Molari, M.; Mannucci, G.

    2015-01-01

    The Functional Centre (CFMR) of the Civil Protection of the Lombardy Region, North Italy, has the main task of monitoring and alerting, particularly with respect to natural hazards. The procedure of early warning for hydrogeological hazard is based on a comparison of two quantities: thresholds and rainfall, both referred to a defined area and an exact time interval. The CFMR studied 52 landslide events (1987-2003) in Medium-Low Valtellina and derived a model of the critical detachment rainfall, in function of the local slope and the Curve Number CN (an empirical parameter related with the land cover and the hydrological conditions of the soil): it's physically consistent and allows a geographically targeted alerting. Moreover, rainfall thresholds were associated with a typical probability of exceedance. The processing of rainfall data is carried out through the "equivalent rainfall" method, that allows to take into account the antecedent moisture condition of the soil: in fact the hazard is substantially greater when the soil is near to saturation. The method was developed from the CN method and considers the local CN and the observed rainfall of the previous 5 days. The obtained value for the local equivalent rainfall, that combines rainfall (observed and forecasted) and local soil characteristics, is a better parameter for the evaluation of the hydrogeological hazard. The comparison between equivalent rainfall and thresholds allows to estimate the local hydrogeological hazard, displayed through hazard maps, and consequently to provide a reliable alerting activity (even localized to limited portions of the region).

  5. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus clonal complexes in bulk tank milk from dairy cattle herds in Lombardy Region (Northern Italy).

    PubMed

    Cortimiglia, C; Luini, M; Bianchini, V; Marzagalli, L; Vezzoli, F; Avisani, D; Bertoletti, M; Ianzano, A; Franco, A; Battisti, A

    2016-10-01

    Staphylococcus aureus is the most important causative agent of subclinical mastitis in cattle resulting in reduced milk production and quality. Methicillin-resistant S. aureus (MRSA) strains has a clear zoonotic relevance, especially in the case of occupational exposure. The aim of the study was to evaluate the prevalence of S. aureus and MRSA in bulk tank milk (BTM) from dairy cattle herds in the Lombardy Region (Northern Italy) and to identify the main MRSA circulating genotypes. MRSA strains were characterized by susceptibility testing, multi-locus sequence typing (MLST), spa typing and SCCmec typing. A total 844 BTM samples were analysed and S. aureus and MRSA were detected in 47·2% and 3·8% of dairy herds, respectively. MLST showed that the majority (28/32) of isolates belonged to the typical livestock-associated lineages: ST398, ST97 and ST1. Interestingly, in this study we report for the first time the new ST3211, a single locus variant of ST(CC)22, with the newly described 462 aroE allele. Our study indicates high diffusion of S. aureus mastitis and low, but not negligible, prevalence of MRSA in the considered area, suggesting the need for planning specific control programmes for bovine mastitis caused by S. aureus, especially when MRSA is implicated.

  6. A new methodology to identify surface water bodies at risk by using pesticide monitoring data: The glyphosate case study in Lombardy Region (Italy).

    PubMed

    Di Guardo, Andrea; Finizio, Antonio

    2018-01-01

    In the last decades, several monitoring programs were established as an effect of EU Directives addressing the quality of water resources (drinking water, groundwater and surface water). Plant Protection Products (PPPs) are an obvious target of monitoring activities, since they are directly released into the environment. One of the challenges in managing the risk of pesticides at the territorial scale is identifying the locations in water bodies needing implementation of risk mitigation measures. In this, the national pesticides monitoring plans could be very helpful. However, monitoring of pesticides is a challenging task because of the high number of registered pesticides, cost of analyses, and the periodicity of sampling related to pesticide application and use. Extensive high-quality data-sets are consequently often missing. More in general, the information that can be obtained from monitoring studies are frequently undervalued by risk managers. In this study, we propose a new methodology providing indications about the need to implement mitigation measures in stretches of surface water bodies on a territory by combining historical series of monitoring data and GIS. The methodology is articulated in two distinct phases: a) acquisition of monitoring data and setting-up of informative layers of georeferenced data (phase 1) and b) statistical and expert analysis for the identification of areas where implementation of limitation or mitigation measures are suggested (phase 2). Our methodology identifies potentially vulnerable water bodies, considering temporal contamination trends and relative risk levels at selected monitoring stations. A case study is presented considering glyphosate monitoring data in Lombardy Region (Northern of Italy) for the 2008-2014 period. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Impact of substitution among generic drugs on persistence and adherence: A retrospective claims data study from 2 Local Healthcare Units in the Lombardy Region of Italy.

    PubMed

    Colombo, Giorgio L; Agabiti-Rosei, Enrico; Margonato, Alberto; Mencacci, Claudio; Montecucco, Carlo Maurizio; Trevisan, Roberto; Catapano, Alberico L

    2016-06-01

    The use of generics, equivalent but less expensive drugs, is an important opportunity to reduce healthcare expenditure. The purpose of this study was to investigate the effect of substitution between unbranded generics on persistence and adherence to therapy in two Italian Local Health Units (ASL) in real-world clinical practice in 5 therapeutic areas using tracing drugs. Substitution of generic drugs is any change in the name of the manufacturer of the generic drug. The therapeutic areas were: diabetes (metformin); hypertension (amlodipine); dyslipidemia (simvastatin); psychiatry (sertraline); cardiology (propafenone); osteoporosis (alendronate). The retrospective analysis was carried out on the administrative databases of two Local Healthcare Units (ASL - Azienda sanitaria locale Bergamo (BG) and Pavia (PV)) in the Lombardy Region of Italy. The correlation between persistence and adherence with the different cohorts of generic substitution frequency within each therapeutic area was then calculated. According to the inclusion criteria, 23,773 patients were evaluated. Patients were observed for a period of 36 months starting from the first drug delivery (index date). The median age of the overall population was above 61 years in all therapeutic areas. The generic drug substitution occurred in 61.5% of patients (BG: 57.6% and PV: 65.4% respectively); Hypertension was the therapeutic area with the highest percentage of patients with substitutions. Patients' adherence, evaluated by the Medical Possession Rate (MPR) and persistence to the treatment decreases with the increase in the frequency of generic substitutions. This observation was confirmed by a statistically significant negative correlation (p-value of <0.001) between the adherence and persistence and the number of generic substitutions in each therapeutic area and Local Healthcare Units (ASL). Adherence is one of the pillars of the patient's health management in the control and prevention of progression of

  8. New Highly Active Antiretroviral drugs and generic drugs for the treatment of HIV infection: a budget impact analysis on the Italian National Health Service (Lombardy Region, Northern Italy).

    PubMed

    Restelli, Umberto; Scolari, Francesca; Bonfanti, Paolo; Croce, Davide; Rizzardini, Giuliano

    2015-08-11

    In the healthcare sector, it is crucial to identify sustainable strategies in order to allow the introduction and use of innovative technologies. Now, and over the next few years, the expiry of patents for different antiretroviral drugs offers an opportunity to increase the efficiency of resources allocation. The aim of the present study was to assess the impact, on the budget of the Italian National Healthcare Service, of generic antiretroviral drugs and of new antiretroviral drugs entering the market from 2015 to 2019. A budget impact model was developed in order to forecast the rate of use of ARTs, based on trends observed within the Lombardy Region (Italy), on clinical experts' opinion, and the consequent impact on the Italian NHS budget in a five year time horizon. Different scenarios were developed, considering the sole introduction of generic drugs, of new drugs, and their cumulative effects. A multivariate sensitivity analysis was also performed. The cumulative use of generic drugs and new drugs would lead to annual savings of 4.6 million € (-0.6 %) in 2015; 16.9 million € (-2.1 %) in 2016; 19.4 million € (-2.4 %) in 2017; 51.1 million € (-6.1 %) in 2018 and -110.3 million € (-12.8 %) in 2019. The impact of new drugs in percentage terms is +2.0 % in 2015, +3.4 % in 2016, +3.9 % in 2017, +5.7 % in 2018 and +7.7 % in 2019. The impact of generic drugs would lead to savings of 4.9 million € in 2015, 18.6 million € in 2016, 22.8 million € in 2017, 76.5 million € in 2018 and 187.4 million € in 2019. The sensitivity analysis showed annual mean savings for the Italian NHS ranging from 12.6 million €, -1.5 % compared to the base case scenario (decreasing all the rates of transition used in the simulation, and increasing the cost of generic drugs) to 76.0 million €, -9.1 % (increasing all the rates of transition used in the simulation, and decreasing the cost of generic and new drugs). The use of antiretroviral generic drugs may lead to

  9. [New Technologies in coronary interventional cardiology: results from the first inter-regional survey promoted by SICI-GISE in four regions of northern Italy ("the GISE TOLOVE" area: Tuscany, Lombardy, Veneto, Emilia-Romagna)].

    PubMed

    Mojoli, Marco; Musumeci, Giuseppe; Tarantini, Giuseppe; Limbruno, Ugo; Tarantino, Fabio; Lettieri, Corrado; Napodano, Massimo; Fineschi, Massimo; Menozzi, Alberto; Pavei, Andrea; Parodi, Guido; Santarelli, Andrea; Trabattoni, Daniela; Marchese, Alfredo; Piccaluga, Emanuela; Danzi, Gian Battista; Varbella, Ferdinando; Bedogni, Francesco; Sardella, Gennaro; Berti, Sergio

    2015-02-01

    The implementation of the latest medical innovations can vary widely within the same geographic area. This study aimed to describe the current status of recent innovations in the field of coronary interventional cardiology in 4 regions of Northern Italy. From April to May 2014, 4 regional delegations of the Italian Society of Invasive Cardiology (SICI-GISE) have promoted a multicenter survey. By means of a web-based methodology, a focused questionnaire was administered to head physicians of 97 cath-labs in 4 Italian regions within the "GISE TOLOVE" area (Lombardy, Veneto, Tuscany, Emilia-Romagna). Pharmacological and technological innovations in coronary interventional cardiology appear to be widely used in the area covered by this survey, with uniformity in application and availability of therapeutic devices and drugs within the 4 regions involved. The main limiting factors to the adoption of new technologies and drugs were economic factors or lack of scientific evidence for some specific devices or drugs. This survey showed widespread and consistent application of the main latest innovations in coronary interventional cardiology across 4 Italian regions of Northern Italy.

  10. [Current practice and changing trends in the percutaneous treatment of structural heart disease. Results of a multicenter survey promoted by the Italian Society of Interventional Cardiology in six Italian Regions including Tuscany, Lombardy, Veneto, Emilia-Romagna, Campania and Puglia].

    PubMed

    Mojoli, Marco; Musumeci, Giuseppe; Berti, Sergio; Limbruno, Ugo; Marchese, Alfredo; Mauro, Ciro; Tarantino, Fabio; Fineschi, Massimo; Lettieri, Corrado; Menozzi, Alberto; My, Luigi; Attisano, Tiziana; Cernetti, Carlo; Favero, Luca; Napodano, Massimo; Pasquetto, Giampaolo; Pavei, Andrea; La Manna, Alessio; Parodi, Guido; Santarelli, Andrea; Trabattoni, Daniela; Varbella, Ferdinando; Signore, Nicola; Soriani, Nicola; Gregori, Dario; Figliozzi, Stefano; Tarantini, Giuseppe

    2016-06-01

    Significant developments have occurred in the field of percutaneous interventions for structural heart disease over the last decade. The introduction of several innovations has expanded significantly the spectrum of therapeutic applications of structural interventional cardiology. However, the translation of the most recent scientific evidence into clinical practice and the adoption of new technologies may be susceptible to large variability, even within the same geographic area. This study aimed at describing current status and changing trends of structural heart interventions within 6 Regions in Italy. Between July 2015 and October 2015, 6 regional delegations of the Italian Society of Interventional Cardiology (SICI-GISE) promoted a web-based multicenter survey concerning structural heart interventions. An ad hoc questionnaire was administered to head physicians of the cath-labs of 4 Regions of Northern Italy (Tuscany, Lombardy, Veneto and Emilia-Romagna) and 2 Regions of Southern Italy (Puglia and Campania). Also, in this study we considered previous data from a similar survey that involved Tuscany, Lombardy, Veneto and Emilia-Romagna between April 2014 and May 2014. Data from the two surveys were compared, observing the changing trends between 2014 and 2015. The 2015 survey was completed in more than two thirds (68%) of the 145 eligible cath-labs. According to the survey, the application of percutaneous structural heart interventions and the availability of devices were wide and homogeneous within the 6 Regions involved. The main factors perceived as limiting the execution of structural heart interventions resulted economic (e.g. cost of procedures and devices) or organizational (e.g. limited diffusion of hybrid operating rooms). In this study, which was based on the results of a recent survey conducted in 6 Italian Regions, structural heart interventions resulted widely growing throughout the investigated area. The indications for treatment and the

  11. Off-patent generic medicines vs. off-patent brand medicines for six reference drugs: a retrospective claims data study from five local healthcare units in the Lombardy Region of Italy.

    PubMed

    Colombo, Giorgio L; Agabiti-Rosei, Enrico; Margonato, Alberto; Mencacci, Claudio; Montecucco, Carlo Maurizio; Trevisan, Roberto

    2013-01-01

    The scientific documentation supporting the potential clinical and economic benefits of a growing use of off-patent generic drugs in clinical practice seems to be limited in Italy as yet. We compared differences in outcomes between off-patent generic drugs and off-patent brand drugs in real clinical practice. The outcomes were: persistence and compliance with therapy, mortality, and other health resources consumption (hospitalizations, specialist examinations, other drugs) and total costs. Retrospective analysis was carried out by using the administrative databases of five Local Healthcare Units (ASLs - Aziende Sanitarie Locali) in the Lombardy Region of Italy. Data from the five ASLs were aggregated through a meta-analysis, which produced an estimate indicator of the mean or percentage difference between the two groups (branded vs. generic) and their respective significance tests. The therapeutic areas and studied drugs were: diabetes: metformin - A10BA02; hypertension: amlodipine - C08CA01; dyslipidemia: simvastatin - C10AA01; psychiatry: sertraline - N06AB06; cardiology: propafenone - C01BC03; osteoporosis: alendronate - M05BA04. The 5 Local Healthcare Units (ASL) represent a population of 3,847,004 inhabitants. The selected sample included 347,073 patients, or 9.02% of the total ASL population; 67% of the patients were treated with off-patent brand drugs. The average age was 68 years, with no difference between the two groups. After 34 months of observation, compliance and persistence were in favor to generic drugs in all therapeutic areas and statistically significant in the metformin, amlodipine, simvastatin, and sertraline groups. The clinical outcomes (hospitalizations, mortality, and other health costs) show no statistically significant differences between off-patent generic vs. off-patent brand medicines. Off-patent generic drugs appear to be a therapy option of choice in Italy as well, based on clinical outcomes and economic consequences, both for the

  12. Off-Patent Generic Medicines vs. Off-Patent Brand Medicines for Six Reference Drugs: A Retrospective Claims Data Study from Five Local Healthcare Units in the Lombardy Region of Italy

    PubMed Central

    Colombo, Giorgio L.; Agabiti-Rosei, Enrico; Margonato, Alberto; Mencacci, Claudio; Montecucco, Carlo Maurizio; Trevisan, Roberto

    2013-01-01

    The scientific documentation supporting the potential clinical and economic benefits of a growing use of off-patent generic drugs in clinical practice seems to be limited in Italy as yet. Methods We compared differences in outcomes between off-patent generic drugs and off-patent brand drugs in real clinical practice. The outcomes were: persistence and compliance with therapy, mortality, and other health resources consumption (hospitalizations, specialist examinations, other drugs) and total costs. Retrospective analysis was carried out by using the administrative databases of five Local Healthcare Units (ASLs - Aziende Sanitarie Locali) in the Lombardy Region of Italy. Data from the five ASLs were aggregated through a meta-analysis, which produced an estimate indicator of the mean or percentage difference between the two groups (branded vs. generic) and their respective significance tests. The therapeutic areas and studied drugs were: diabetes: metformin - A10BA02; hypertension: amlodipine - C08CA01; dyslipidemia: simvastatin - C10AA01; psychiatry: sertraline - N06AB06; cardiology: propafenone - C01BC03; osteoporosis: alendronate - M05BA04. Results The 5 Local Healthcare Units (ASL) represent a population of 3,847,004 inhabitants. The selected sample included 347,073 patients, or 9.02% of the total ASL population; 67% of the patients were treated with off-patent brand drugs. The average age was 68 years, with no difference between the two groups. After 34 months of observation, compliance and persistence were in favor to generic drugs in all therapeutic areas and statistically significant in the metformin, amlodipine, simvastatin, and sertraline groups. The clinical outcomes (hospitalizations, mortality, and other health costs) show no statistically significant differences between off-patent generic vs. off-patent brand medicines. Conclusions Off-patent generic drugs appear to be a therapy option of choice in Italy as well, based on clinical outcomes and economic

  13. Urinary bladder preservation for muscle-invasive bladder cancer: a survey among radiation oncologists of Lombardy, Italy.

    PubMed

    Jereczek-Fossa, Barbara Alicja; Colombo, Renzo; Magnani, Tiziana; Fodor, Cristiana; Gerardi, Marianna Alessandra; Antognoni, Paolo; Barsacchi, Lucia; Bedini, Nice; Bracelli, Stefano; Buffoli, Alberto; Cagna, Emanuela; Catalano, Gianpiero; Gottardo, Stefania; Italia, Corrado; Ivaldi, Giovanni Battista; Masciullo, Stefano; Merlotti, Anna; Sarti, Enrico; Scorsetti, Marta; Serafini, Flavia; Toninelli, Mariasole; Vitali, Elisabetta; Valdagni, Riccardo; Villa, Elisa; Zerini, Dario; De Cobelli, Ottavio; Orecchia, Roberto

    2015-01-01

    Bladder preservation is a treatment option in muscle-invasive bladder carcinoma. The most investigated approach is a trimodality schedule including maximum transurethral resection of bladder tumor (TURBT) followed by chemoradiotherapy. Our aim was to evaluate the use of bladder preservation by radiation oncologists of the Lombardy region in Italy. A survey with 13 items regarding data of 2012 was sent to all 32 radiotherapy centers within the collaboration between the Lombardy Oncological Network and the Lombardy Section of the Italian Society of Oncological Radiotherapy. Thirteen centers (41%) answered the survey; the presented data come from 11 active centers. In these centers, 11,748 patients were treated with external-beam radiotherapy in 2012, 100 of whom having bladder cancer (0.9%). 74/100 patients received radiotherapy as palliative treatment for T, N or M lesions. A further 9 and 5 patients received radiotherapy for oligometastatic disease (ablative doses to small volumes) and postoperatively, respectively. Bladder preservation was performed in 12 cases and included trimodality and other strategies (mainly TURBT followed by radiotherapy). A multidisciplinary urology tumor board met regularly in 5 of 11 centers. All responders declared their interest in the Lombardy multicenter collaboration on bladder preservation. Our survey showed that bladder preservation is rarely used in Lombardy despite the availability of the latest radiotherapy technologies and the presence of an urology tumor board in half of the centers. The initiative of multicenter and multidisciplinary collaboration was undertaken to prepare the platform for bladder preservation as a treatment option in selected patients.

  14. Climate impacts of regional SO2 emissions

    NASA Astrophysics Data System (ADS)

    Lamarque, J. F.; Fiore, A. M.; Shindell, D. T.

    2015-12-01

    Climate impacts of regional SO2 emissions J.-F. Lamarque, A. M. Fiore and D. Shindell In this talk, we present the analysis of constant -forcing present-day simulations pertaining to the perturbation of SO2 emissions over the United States and China. Using 3 chemistry-climate models (CESM, GFDL and GISS), we show that the removal of SO2 anthropogenic emissions over each region leads to significant (at the 95% or above; significance is also assessed relative to internal variability as determined from a 200-year control simulation with perpetual year 2000 conditions) perturbations in temperature over multiple regions of the Northern Hemisphere. While more limited, significant perturbations in regional precipitation are also found. While the overall (global and zonal means) forcing from Chinese emissions is similar to the US case, we found that the regional response to the emissions has different regional distributions.

  15. Incidence of mesothelioma in Lombardy, Italy: exposure to asbestos, time patterns and future projections

    PubMed Central

    Mensi, Carolina; De Matteis, Sara; Dallari, Barbara; Riboldi, Luciano; Bertazzi, Pier Alberto; Consonni, Dario

    2016-01-01

    Objectives In Italy, asbestos has been extensively used from 1945 to 1992. We evaluated the impact of exposure to asbestos on occurrence of malignant mesothelioma (MM) in the Lombardy Region, Northwest Italy, the most populated and industrialised Italian region. Methods From the Lombardy Mesothelioma Registry, we selected all incident cases of MM diagnosed between 2000 and 2012. We described sources of exposure to asbestos and examined time trends of MM rates. Using Poisson age-cohort models, we derived projections of burden of MM in the Lombardy population for the period 2013–2029. Results In 2000–2012, we recorded 4442 cases of MM (2850 men, 1592 women). Occupational exposure to asbestos was more frequent in men (73.6%) than in women (38.2%). Non-occupational exposure was found for 13.6% of women and 3.6% of men. The average number of cases of MM per year was still increasing (+3.6% in men, +3.3% in women). Incidence rates were still increasing in individuals aged 65+ years and declining in younger people. A maximum of 417 cases of MM (267 men, 150 women) are expected in 2019. We forecast there will be 6832 more cases (4397 in men, 2435 in women) in the period 2013–2029, for a total of 11 274 cases of MM (7247 in men, 4027 in women) in 30 years. Conclusions This study documented a high burden of MM in both genders in the Lombardy Region, reflecting extensive occupational (mainly in men) and non-occupational (mainly in women) exposure to asbestos in the past. Incidence rates are still increasing; a downturn in occurrence of MM is expected to occur after 2019. PMID:27312399

  16. Incidence of mesothelioma in Lombardy, Italy: exposure to asbestos, time patterns and future projections.

    PubMed

    Mensi, Carolina; De Matteis, Sara; Dallari, Barbara; Riboldi, Luciano; Bertazzi, Pier Alberto; Consonni, Dario

    2016-09-01

    In Italy, asbestos has been extensively used from 1945 to 1992. We evaluated the impact of exposure to asbestos on occurrence of malignant mesothelioma (MM) in the Lombardy Region, Northwest Italy, the most populated and industrialised Italian region. From the Lombardy Mesothelioma Registry, we selected all incident cases of MM diagnosed between 2000 and 2012. We described sources of exposure to asbestos and examined time trends of MM rates. Using Poisson age-cohort models, we derived projections of burden of MM in the Lombardy population for the period 2013-2029. In 2000-2012, we recorded 4442 cases of MM (2850 men, 1592 women). Occupational exposure to asbestos was more frequent in men (73.6%) than in women (38.2%). Non-occupational exposure was found for 13.6% of women and 3.6% of men. The average number of cases of MM per year was still increasing (+3.6% in men, +3.3% in women). Incidence rates were still increasing in individuals aged 65+ years and declining in younger people. A maximum of 417 cases of MM (267 men, 150 women) are expected in 2019. We forecast there will be 6832 more cases (4397 in men, 2435 in women) in the period 2013-2029, for a total of 11 274 cases of MM (7247 in men, 4027 in women) in 30 years. This study documented a high burden of MM in both genders in the Lombardy Region, reflecting extensive occupational (mainly in men) and non-occupational (mainly in women) exposure to asbestos in the past. Incidence rates are still increasing; a downturn in occurrence of MM is expected to occur after 2019. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. The groundwater pollution in Lombardy (north Italy) caused by organo-halogenated compounds.

    PubMed

    Berbenni, P; Cavallaro, A; Mori, B

    1993-01-01

    This paper deals with the phenomenon of the presence of organo-halogenated compounds in groundwaters of the Lombardy Region (North Italy). The regionwide study evidentiated the magnitude of the phenomenon, since these compounds are employed in all productive and household activities. The main cause of groundwater contamination is the infiltration of industrial wastewater: in the Province of Mantova, for example, organic chlorinated solvents have their origin in the NaOCl wastewater treatment for ammonia removal. Organic alogenated compounds in waters intended for human consumption in Lombardy are present in 510 wells over 92 townships, affecting a population of 1,934,133 equivalent to 20% of the total resident population (1991 data). Maximum observed concentrations are related to trielin and tetrachloroethilene. Water treatment was achieved through aeration (stripping) and activated carbon or resin adsorption; in a few instances, also hydraulic interventions were implemented.

  18. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  19. [Female breast cancer and occupational sectors: a preliminary study in the provinces of Lombardy, Italy].

    PubMed

    Oddone, Enrico; Edefonti, Valeria; Scaburri, Alessandra; Vai, Tiziana; Modonesi, Carlo; Crosignani, Paolo; Imbriani, Marcello

    2014-01-01

    The role of occupational exposures in breast cancer development is still uncertain. A recent paper showed increased risks in some occupational sectors in Lombardy, Italy. We deepened this analysis at the level of single provinces of the same Italian region. Based on administrative data, a case-control study was carried out recruiting all incident cases of female breast cancer in the period 2002-2009, aged between 35 and 69 years, residing in Lombardy, Italy. Controls were randomly sampled from all women residing in Lombardy as of December 31, 2005. Occupational histories, including blue collar status, were available from 1974 through record linkage with a social security pension database, and were obtained for 11188 cases and 25329 controls. Adjusted odds ratios (ORs) and corresponding 90% confidence intervals (CIs) were calculated using multiple unconditional logistic regression models. Analyses were performed also by single provinces of Lombardy, Italy. Multiple comparisons were accounted for according to the Benjamini-Hochberg method. The ORs for female breast cancer were modestly but significantly increased for employment in electrical manufacturing (OR 1.12, 90% CI 1.04-121), textile (OR 1.08, 90% CI 1.02-1.15), paper (OR 1.25, 90% CI 1.06-1.46) and rubber (OR 1.26, 90% CI 1.03-1.54) industries. Analysis by province showed significantly increased ORs for electrical manufacturing in the Milano province. After adjustment for multiple comparisons no estimates remained statistically significant, except OR for electrical manufacturing in the Milano province. Although with several limitations, our results point to a possible role of exposures in electrical manufacturing, textile, paper and rubber industries in the process leading to breast cancer. An in-dept study for the electrical manufacturing industry has been already planned in Milano province.

  20. Integration of natural and technological risks in Lombardy, Italy

    NASA Astrophysics Data System (ADS)

    Lari, S.; Frattini, P.; Crosta, G. B.

    2009-12-01

    Multi-risk assessment is becoming a valuable tool for land planning, emergency management and the deployment of mitigation strategies. Multi-risk maps combine all available information about hazard, vulnerability, and exposed values related to different dangerous phenomena, and provide a quantitative support to complex decision making. We analyse and integrate through an indicator-based approach nine major threats affecting the Lombardy Region (Northern Italy, 25 000 km2), namely landslide, avalanche, flood, wildfire, seismic, meteorological, industrial (technological) risks; road accidents, and work injuries. For each threat, we develop a set of indicators that express the physical risk and the coping capacity or system resilience. By combining these indicators through different weighting strategies (i.e. budgetary allocation, and fuzzy logic), we calculate a total risk for each threat. Then, we integrate these risks by applying AHP (Analytic Hierarchy Process) weighting, and we derive a set of multi-risk maps. Eventually, we identify the dominant risks for each zone, and a number of risk hot-spot areas. The proposed approach can be applied with different degree of detail depending on the quality of the available data. This allows the application of the method even in case of non homogeneous data, which is often the case for regional scale analyses. Moreover, it allows the integration of different risk types or metrics. Relative risk scores are provided from this methodology, not directly accounting for the temporal occurrence probability of the phenomena.

  1. Healthcare continuity from hospital to territory in Lombardy: TELEMACO project.

    PubMed

    Bernocchi, Palmira; Scalvini, Simonetta; Tridico, Caterina; Borghi, Gabriella; Zanaboni, Paolo; Masella, Cristina; Glisenti, Fulvio; Marzegalli, Maurizio

    2012-03-01

    To verify implementation and use of TELEMACO (TELEMedicina Ai piccoli COmunilombardi; http://www.telemaco.regione.lombardia.it/), which provides specialized continuity of care with innovative healthcare services in remote areas of the Lombardy region of Italy; to design a network in the territory for sharing of continuityof- care programs; and to allow the relevant health authorities to collect cost data to establish a model for sustainable pricing for implementing these services. TELEMACO provides home-based telemanagement services for patients with chronic heart failure and chronic obstructive pulmonary disease (COPD), as well as second-opinion teleconsultations in cardiology, dermatology, diabetology, and pulmonology for general practitioners and second-opinion teleconsultations on digital images in cases of traumatic brain injury and stroke. A total of 2 service centers, 10 cardiology and pneumology departments, 30 specialists, 176 general practitioners, 40 nurses, 2 emergency departments, and 2 consultant hospitals were involved. A total of 166 patients with chronic heart failure and 474 patients with COPD were enrolled. There were 4830, 51, and 44 second-opinion teleconsultations for cardiologic, dermatologic, and diabetic conditions, respectively. There were 147 second-opinion teleconsultations on digital images, 68 for stroke, and 79 for traumatic brain injury. Implementation of TELEMACO introduced innovations in working methods and provided evidence to the health authorities for allocating funds for such services. TELEMACO provided evidence that there is a growing need for home management of patients using telemedicine, a common and efficacious approach that can ensure care continuity, especially in chronic diseases.

  2. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  3. Regional landfills methane emission inventory in Malaysia.

    PubMed

    Abushammala, Mohammed F M; Noor Ezlin Ahmad Basri; Basri, Hassan; Ahmed Hussein El-Shafie; Kadhum, Abdul Amir H

    2011-08-01

    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.

  4. Wave emission from mode conversion region

    NASA Astrophysics Data System (ADS)

    Krasniak, Yu.; Tracy, E. R.; Kaufman, A. N.

    1996-11-01

    A new theory of wave emission from sources in nonuniform media has recently been developed(E. R. Tracy, A. N. Kaufman and Y.-M. Liang, Phys. Plasmas 2) (1995)1.. This earlier work considered the emission of a scalar wave (e.g. a Langmuir wave, or a Bernstein wave) by a moving charged particle. An important feature of nonuniform media is the possibility of linear mode conversion due to the near-degeneracy of the dispersion relations of two wave modes in localized regions of the plasma. The effect of mode conversion on emission has been a subject of recent interest(D. G. Swanson, Rev. Mod. Phys., 64)(1995)837.. Here we discuss the necessary extensions of Ref.[1] to allow for mode conversion. The analysis is performed for various combinations of positive- and negative-energy waves. Possible further extensions will also be discussed.

  5. Burden of pediatrics hospitalizations associated with Rotavirus gastroenteritis in Lombardy (Northern Italy) before immunization program.

    PubMed

    Pellegrinelli, Laura; Bubba, Laura; Primache, Valeria; Chiaramonte, Iacopo; Ruggeri, Franco Maria; Fiore, Lucia; Binda, Sandro

    2015-01-01

    Rotavirus is recognized as the main cause of acute gastroenteritis in children under 5 years old, representing a considerable public health problem with a great impact on social and public health costs in developed countries. This study aims to assess the frequency and the epidemiological aspect of the hospitalization associated with Rotavirus-gastroenteritis in Lombardy, Northern Italy, from 2005 to 2011. The Lombardy Hospital Discharge Database was inquired from the official data of the Italian Ministry of Health and investigated for acute gastroenteritis (ICD9-CM code for bacteria, parasitic, viral and undetermined etiologic diarrhea) in primary and secondary diagnosis in children ≤ 5 years, between 2005 and 2011. Out of the 32 944 acute-gastroenteritis hospitalizations reported in Lombardy, the 50.8% was caused by Rotavirus infection; of these, the 65.5% were reported in primary diagnosis. The peak of Rotavirus-gastroenteritis hospitalization was observed in February-March in children < 2 years old, with a cumulative prevalence of 64.5%. Patients admitted to hospital with diarrhea of undetermined etiology (about 14% of overall acute-gastroenteritis) showed epidemiological characteristics similar to the Rotavirus-gastroenteritis, suggesting that the virus infection could also be involved in at least some of these. Our data confirm that Rotavirus are the most important agents involving in acute gastroenteritis hospitalizations. The use of Hospital Discharge Database had proved to be a simple tool to estimate the burden and to describe the epidemiological characteristics of Rotavirus gastroenteritis and could be used as a surveillance activity before and after the introduction of mass vaccination at national and regional level in Italy.

  6. Wave emission from mode conversion regions

    NASA Astrophysics Data System (ADS)

    Krasniak, Yu.; Tracy, E. R.; Kaufman, A. N.

    1997-04-01

    An important feature of nonuniform media is the possibility of linear mode conversion due to the near-degeneracy of the dispersion relations of two wave modes in localized regions of the plasma. Wave emission from mode conversion regions has been a subject of a discussion in several recent publications (see, e.g. Swanson, Rev. Mod. Phys. 64, 837 (1995)). Here we present a new approach to this problem which is based on the ray tracing technique of Tracy et al., Phys. Plasmas 2, 4413 (1995), extended to mode conversion regions, as discussed in Friedland and Kaufman, Phys. Fluids 30, 3050 (1987). This extension allows one to connect the local wave field emitted by a source to rays outgoing from the conversion region. The analysis is performed for both positive- and negative-energy waves in arbitrary dimensions.

  7. [Knowledge of oral hygiene amongst adolescents in Lombardy, Italy].

    PubMed

    Camoni, Nicole; Arpesella, Marisa; Cutti, Sara; Livieri, Monica; Lanati, Niccolò; Tenconi, Maria Teresa

    2015-01-01

    The study evaluated oral hygiene knowledge among a group of 12-year-old students in Lombardy, Italy (n=182). Two different questionnaires were administered, respectively to adolescents and to their parents. Results indicate a low level of general knowledge on this topic. Factors influencing knowledge include the number of learning sources and yearly access to a dental clinic. The described situation highlights the need to implement school-based educational interventions.

  8. The redistributive effects of copayment in outpatient prescriptions: evidence from Lombardy.

    PubMed

    Berta, Paolo; Levaggi, Rosella; Martini, Gianmaria; Verzillo, Stefano

    2017-05-08

    In Italy, copayment has changed its nature and it can no longer be simply considered a system to curb inappropriate expenditure. It has become an important form of revenue for public health care provision, but it might also become a source of distortions in income and health benefits redistribution. We use a rich administrative dataset gathering information on patients demand (whose records have been matched to income declared for tax purposes) to study the effects of an additional copayment (the so called "superticket" introduced by the Italian government in 2012) in Lombardy, the biggest Italian Region whose socio-economic dimension is comparable to that of many European countries (e.g., the Netherlands, Switzerland, etc.). Our analysis shows that at the aggregate level the non-uniform superticket schedule adopted in Lombardy is slightly pro-poor, but this result coexists with evidences pointing towards possible cases of restriction to access caused by the additional copayment. The introduction of the superticket and the ensuing increase in the out-of pocket payment for health care raises questions about the distribution of the burden among patients, and the sustainability of the extra revenue through time. This issue needs to be further investigated by combining health status data with the information in this dataset.

  9. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-09-27

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  10. Regional emissions data base and evaluation system (REDES): Volume 2, Regional emissions evaluation data base (REED)

    SciTech Connect

    Boyd, G.A.; Campbell, A.P.; Davis, M.J.; Veselka, T.D.

    1988-08-01

    A three-volume report has been prepared to document these REDES data bases and computer model. This volume documents the data base for forecasting emissions. This disaggregated forecast data base of energy use and emissions for electric utility and industrial boilers for 1985 through 2010 is called REED (Regional Emissions Evaluation Data Base). The other volumes describe the methodology of the evaluation system and user-driven menu system (Vol. 1) and document the data base that characterizes 21 generic technologies (Vol. 3). All three volumes provide the user with a complete description of REDES, which is designed to forecast the change in emissions that could result from using a particular clean coal technology. The US Department of Energy's Innovative Clean Coal Technology (ICCT) program has solicited proposals from the private sector to demonstrate innovative technologies that allow the clean use of coal as an energy source. The US Department of Energy and the ICCT Source Evaluation Board requested that Argonne National Laboratory develop two data bases and a personal-computer-based model to aid in evaluating the potential for these proposed technologies to reduce environmental residuals. Version 1.0 of the Regional Emissions Data Base and Evaluation System (REDES) is available to the public through the National Energy Software Center. 41 refs., 16 tabs.

  11. Reservoir modelling of deep geothermal systems: the examples of Guardia Lombardi

    NASA Astrophysics Data System (ADS)

    Montegrossi, Giordano; Inversi, Barbara; Scrocca, Davide

    2013-04-01

    In the framework of the VIGOR project, a characterization of medium enthalpy geothermal resources was carried out in the Campania region (southern Italy), with a focus on the "Guardia dei Lombardi" area (Avellino). The VIGOR project started on the basis of an agreement between the Ministry of Economic Development and the Italian National Research Council, and it deals with the exploitation of innovative uses of geothermal energy in the so-called "regions of convergence" (Campania, Calabria, Puglia and Sicily). One of the main results of this research is the development of an integrated 3D geological model, which provides the base for a detailed assessment of possible geothermal exploitation of the carbonate reservoir. The preliminary results of our study suggest that "Guardia dei Lombardi" can be indicated as an interesting area for medium enthalpy geothermal exploitation, although the presence of a CO2 gas cap and the scaling capability of the deep fluids need to be carefully evaluated. The aim of this work is to give an estimation of a geothermal well productivity, in the case of a geothermal exploitation. The geothermal well that is thought to be more suitable in the Guardia dei Lombardi Area is named Bonito 1 Dir, a well with a measured temperature of 118 °C at 3,107m depth, which gives a corrected temperature of 138 °C with an error of 8 °C. The pressure was found to be nearly hydrostatic, with 266.9 bar at 2992.4 m depth, and the potential reservoir is hosted in the Mesozoic carbonate formation. According to hydraulic tests, we found that the permeability porosity product gives nearly 100 mD for the carbonatic formation. Since the matrix porosity is nearly 1% with 0.65 mD from core drilled tests, the result of the hydraulic test is to be related to a fractured system; in this case, there is no a clear relation among porosity and permeability, thus we had a sensitivity check on the possible porosity-permeability values of the system, keeping as a constrain

  12. Implementing the lifelong personal health record in a regionalised health information system: the case of Lombardy, Italy.

    PubMed

    Barbarito, Fulvio; Pinciroli, Francesco; Barone, Antonio; Pizzo, Fabrizio; Ranza, Riccardo; Mason, John; Mazzola, Luca; Bonacina, Stefano; Marceglia, Sara

    2015-04-01

    The use of personal health records (PHRs) can help people make better health decisions and improves the quality of care by allowing access to and use of the information needed to communicate effectively with others concerning their health care. This work presents the lifelong PHR system of the Lombardy region as an example of the implementation of an e-health solution that is capable of providing personal clinical documents from a lifelong perspective, integrating different healthcare providers over a large territory. The lifelong PHR is embedded in the regional healthcare information system of Lombardy, which is characterised by a large and heterogeneous territory, a large number of different healthcare providers and organisations, and a significant population. The lifelong PHR makes clinical documents available to healthcare professionals and citizens when needed, and it is automatically updated with all of the documents regarding a clinical event regardless of which healthcare provider is currently taking care of the patient. Present statistics show that the lifelong PHR has experienced a wide diffusion in a short period of time, and at the end of 2010, it was active for more than five million Lombardy citizens. Digital reports and e-prescription transactions have almost doubled since 2007 and have reached a coverage of almost 100%. The qualified and exhaustive collection of patient clinical data and documents should impact daily medical practice, as well as the care pathways and services provided to patients, and should help in the renewal of health assistance and the simplification of patients' access to care. © 2013 Published by Elsevier Ltd.

  13. [Calculation of regional carbon emission: a case of Guangdong Province].

    PubMed

    Zhai, Shi-Yan; Wang, Zheng; Ma, Xiao-Zhe; Huang, Rui; Liu, Chang-Xin; Zhu, Yong-Bin

    2011-06-01

    By using IPCC carbon emission calculation formula (2006 edition), economy-carbon emission dynamic model, and cement carbon emission model, a regional carbon emission calculation framework was established, and, taking Guangdong Province as a case, its energy consumption carbon emission, cement production CO2 emission, and forest carbon sink values in 2008-2050 were predicted, based on the socio-economic statistical data, energy consumption data, cement production data, and forest carbon sink data of the Province. In 2008-2050, the cement production CO2 emission in the Province would be basically stable, with an annual carbon emission being 10-15 Mt C, the energy consumption carbon emission and the total carbon emission would be in inverse U-shape, with the peaks occurred in 2035 and 2036, respectively, and the carbon emission intensity would be decreased constantly while the forest carbon sink would have a fluctuated decline. It was feasible and reasonable to use the regional carbon emission calculation framework established in this paper to calculate the carbon emission in Guangdong Province.

  14. Multi-regional input-output analysis for China's regional CH4 emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Jiashuo; Peng, Beihua

    2014-03-01

    China is the largest CH4 emitter in the world. Given the importance of CH4 in greenhouse gas emission inventories, the characteristics of China's CH4 emissions at different scales deserve to be fully understood. Presented in this paper is an interprovincial input-output embodiment analysis of China's regional CH4 emissions in 2007, based on the most recently available multi-regional input-output table, and relevant CH4 emissions data. The results show that the eastern, central and western areas contribute to 48.2%, 28.6%, and 23.3% of the national total embodied emissions, respectively. Guangdong has the highest level of embodied CH4 emissions among all of the 30 regions. The Agriculture sector produces the most embodied CH4 emissions in final demand, followed by the Construction, Food Production and Tobacco Processing, and Other Service Activities sectors. Significant net transfers of embodied CH4 emission flows are identified from the central and western areas to the eastern area via interregional trade. Shanxi is the largest interregional exporter of embodied CH4 emissions. In contrast, Guangdong is the largest interregional importer. Energy activities, agricultural activities, and waste management comprise 65.6%, 30.7%, and 3.7% of the total embodied CH4 emissions in interregional trade, respectively. By using consumption-based accounting principles, the emission magnitudes, per capita emissions, and emission intensities of most eastern regions increase remarkably, while those of some central and western regions decrease largely. To achieve regional CH4 emission mitigation, comprehensive mitigation measures should be designed under consideration of regional transfer of emission responsibility.

  15. Microlensing Constraints on Quasar Emission Regions: Athena's Perspective

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu

    2015-09-01

    Gravitational microlensing provides a unique tool to study the emission regions of quasars from the smallest X-ray emission region to the larger BLR region. I will review the recent progress of the field focusing on the constraints on the non-thermal X-ray emission, based on our Chandra long-term monitoring results (over 3 Msec) of a sample of lenses. We discover for the first time chromatic microlensing differences between the soft and hard X-ray bands in the X-ray continuum emission. Our results indicate that the coronae above the accretion disk thought to generate X-rays have a non-uniform electron distribution, and the hard X-ray emission region is smaller than the soft region in two cases tracking the event horizon of black holes. We detect metal emission lines for almost all X-ray images in all lenses. We measure larger equivalent line widths in lensed quasars compared to a large sample of normal non-lensed AGNs of similar luminosities. We conclude that the iron line emission region is smaller than that of the X-ray continuum, possibly resulting from strong gravitational lensing near the black hole. Both the X-ray and optical emission region sizes scale with the black hole mass with similar slopes, but with a much smaller normalization for the X-ray emission. With the order of magnitude increase of effective area by Athena, I will discuss the perspective of quasar microlensing in the Athena era.

  16. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  17. Global and regional drivers of accelerating CO2 emissions

    PubMed Central

    Raupach, Michael R.; Marland, Gregg; Ciais, Philippe; Le Quéré, Corinne; Canadell, Josep G.; Klepper, Gernot; Field, Christopher B.

    2007-01-01

    CO2 emissions from fossil-fuel burning and industrial processes have been accelerating at a global scale, with their growth rate increasing from 1.1% y−1 for 1990–1999 to >3% y−1 for 2000–2004. The emissions growth rate since 2000 was greater than for the most fossil-fuel intensive of the Intergovernmental Panel on Climate Change emissions scenarios developed in the late 1990s. Global emissions growth since 2000 was driven by a cessation or reversal of earlier declining trends in the energy intensity of gross domestic product (GDP) (energy/GDP) and the carbon intensity of energy (emissions/energy), coupled with continuing increases in population and per-capita GDP. Nearly constant or slightly increasing trends in the carbon intensity of energy have been recently observed in both developed and developing regions. No region is decarbonizing its energy supply. The growth rate in emissions is strongest in rapidly developing economies, particularly China. Together, the developing and least-developed economies (forming 80% of the world's population) accounted for 73% of global emissions growth in 2004 but only 41% of global emissions and only 23% of global cumulative emissions since the mid-18th century. The results have implications for global equity. PMID:17519334

  18. Global and regional drivers of accelerating CO2 emissions.

    PubMed

    Raupach, Michael R; Marland, Gregg; Ciais, Philippe; Le Quéré, Corinne; Canadell, Josep G; Klepper, Gernot; Field, Christopher B

    2007-06-12

    CO2 emissions from fossil-fuel burning and industrial processes have been accelerating at a global scale, with their growth rate increasing from 1.1% y(-1) for 1990-1999 to >3% y(-1) for 2000-2004. The emissions growth rate since 2000 was greater than for the most fossil-fuel intensive of the Intergovernmental Panel on Climate Change emissions scenarios developed in the late 1990s. Global emissions growth since 2000 was driven by a cessation or reversal of earlier declining trends in the energy intensity of gross domestic product (GDP) (energy/GDP) and the carbon intensity of energy (emissions/energy), coupled with continuing increases in population and per-capita GDP. Nearly constant or slightly increasing trends in the carbon intensity of energy have been recently observed in both developed and developing regions. No region is decarbonizing its energy supply. The growth rate in emissions is strongest in rapidly developing economies, particularly China. Together, the developing and least-developed economies (forming 80% of the world's population) accounted for 73% of global emissions growth in 2004 but only 41% of global emissions and only 23% of global cumulative emissions since the mid-18th century. The results have implications for global equity.

  19. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.

    2017-01-01

    The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations despite having radically different magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar fluxtube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  20. Light emitting device having peripheral emissive region

    DOEpatents

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  1. [Agro-ecosystem ammonia emission in Sichuan-Chongqing region].

    PubMed

    Li, Fu-chun; Han, Shen-hui; Yang, Jun; Zhang, Xu; Li, Ru-yan; Wei, Yuan-song; Fan, Mao-hong

    2009-10-15

    Ammonia (NH3) emission from agro-ecosystem in the Sichuan-Chongqing region during 1990-2004, was estimated by the regional nitrogen cycling model IAP-N. The county level agricultural activities data were used, and Sichuan-Chongqing region was divided into four sub-areas by the geographical characteristics , environment and local climatic conditions and administrative division. The results showed that average annual ammonia emissions (in nitrogen gauge) in 1990-1994, 1995-1999, 2000-2004 were 626.7, 670.5 and 698.8 Gg x a(-1) respectively. The ammonia emission appeared increasing trend, whereas, the contribution of various ammonia sources presented little change. For instance, in 2000-2004, the contributions of NH3 emission from fertilized cropland, manure management system and field residues burning to the total ammonia emission of agro-ecosystem in the Sichuan-Chongqing region were 53%, 46% and 1%, equals to 374.9, 318.2 and 5.6 Gg x a(-1) respectively. But the contributions were variable in different regions. Ammonia emission was primarily induced by fertilized cropland in Chengdu plain and Chongqing hilly area, whereas, in northwest sub-region of Sichuan province was manure management system. The geographical distribution of ammonia emission from agro-ecosystem in the Sichuan-Chongqing region was generally "east high and west low". Ammonia emissions in sub-regions of Chongqing hilly area, Chengdu plain, southwest and northwest sub-regions were 165.6, 408.8, 85.9 and 38.8 Gg x a(-1), respectively, during 2000-2004. At the same time, ammonia density were 20 and 28 kg x (hm2 x a)(-1) in sub-regions of the Chongqing hilly area and the Chengdu plain, whereas, 9.1 and 1.6 kg x (hm2 x a)(-1) in southwest and northwest sub-regions, respectively. The results will provide a scientific basis for making fertilizer effectively applied and mitigate NH3 and GHG emissions from agro-ecosystem of Sichuan-Chongqing region.

  2. Conservation agriculture practices to enhance soil organic in Lombardy plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Perego, Alessia; Giussani, Andrea; Corsi, Stefano; Tosini, Andrea; Acutis, Marco

    2016-04-01

    It has been demonstrated that conservation agriculture (CA) determines a long-term increase in soil organic carbon (SOC) stock in cropland. The present study aimed to estimate the amount of SOC stored in soil of Lombardy plain (Northern Italy) following the change from tillage agriculture (TA) to CA by using crop ARMOSA crop over 23 years (1989-2011). The territorial analysis was performed at agrarian region scale (AR) after identification of the representative crops rotation and soil types. The land use information were data available at cadastral scale and referred to 5 years (from 2007 to 2011). The meteorological data (i.e. maximum and minimum temperature, precipitation) were measured at 14 monitoring stations. Solar radiation was estimated using the equation of the Bristow and Campbell model (1994). A spatial interpolation method was used to extend the meteorological data throughout the entire plain of the region by employing Thiessen polygon method; the meteorological data of the polygon were assigned to each AR. ARMOSA was parameterized to simulate the two tillage systems. For TA and CA scenario the depth of tillage was limited to 35 and 10 cm, respectively; crop residual incorporation was not simulated under CA. In TA scenario, we used the parameters calibrated and validated by Perego et al.(2013) on a wide dataset collected at six monitoring sites in Lombardy plain. In CA, the rate of C decomposition of humified organic C was assumed to be smaller by 30% in no-tillage than in TA (Oorts et al., 2007). The model results showed a significant improve of SOC (p<0.01) from TA to CA under all the crop rotations with a potential SOC sequestration ranged from 0.1 to 0.48 t C ha-1 y-1. While soil type did not affect significantly the SOC sequestration, crop residue determined relevant increases in SOC. That was particularly evident in grain maize monoculture with or without cover crop. References: Oorts K., Garnier P., Findeling A., Mary B., Richard G., Nicolardot B

  3. Correlations between stream sulphate and regional SO2 emissions

    USGS Publications Warehouse

    Smith, R.A.; Alexander, R.B.

    1986-01-01

    The relationship between atmospheric SO2 emissions and stream and lake acidification has been difficult to quantify, largely because of the limitations of sulphur deposition measurements. Precipitation sulphate (SO4) records are mostly <5 yr in length and do not account for dry sulphur deposition. Moreover, a variable fraction of wet- and dry-deposited sulphur is retained in soils and vegetation and does not contribute to the acidity of aquatic systems. We have compared annual SO2 emissions for the eastern United States from 1976 to 1980 with stream SO4 measurements from fifteen predominantly undeveloped watersheds. We find that the two forms of sulphur are strongly correlated on a regional basis and that streams in the southeastern United States (SE) receive a smaller fraction (on average, 16%, compared with 24%) of regional sulphur emissions than do streams in the northeastern United States (NE). In addition to providing direct empirical evidence of a relationship between sulphur emissions and aquatic chemistry, these results suggest that there are significant regional differences in the fraction of deposited sulphur retained in basin soils and vegetation.The relationship between atmospheric SO//2 emissions and stream and lake acidification has been difficult to quantify, largely because of the limitations of sulphur deposition measurements. The authors have compared annual SO//2 emissions for the eastern United States from 1967 to 1980 with stream SO//4 measurements from fifteen predominantly undeveloped watersheds. They found that both the wet - and dry-deposited forms of sulphur are strongly correlated on a regional basis and that streams in the southeastern United States receive a smaller fraction (on average, 16%, compared with 24%) of regional sulphur emissions than do streams in the northeastern United States. In addition to providing direct empirical evidence of a relationship between sulphur emissions and aquatic chemistry, these results suggest that

  4. Radiative Forcing from Emissivity Response in Polar Regions

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  5. Multimodel emission metrics for regional emissions of short lived climate forcers

    NASA Astrophysics Data System (ADS)

    Aamaas, B.; Berntsen, T. K.; Fuglestvedt, J. S.; Shine, K. P.; Bellouin, N.

    2015-09-01

    For short lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemistry-transport or coupled-chemistry climate) models. We distinguish between emissions during summer (May-October) and winter season (November-April) for emissions from Europe, East Asia, as well as the global shipping sector. The species included in this study are aerosols and aerosols precursors (BC, OC, SO2, NH3), and ozone precursors (NOx, CO, VOC), which also influence aerosols, to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated relative to CO2, using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramp up period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies. For the aerosols, the emission metric values are larger in magnitude for Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values in East Asia and winter for CO and in Europe and summer for VOC. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of a mitigation policy package is robust even when accounting for correlations. For

  6. What Is the Source of Quiet Sun Transition Region Emission?

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; De Pontieu, Bart

    2016-11-01

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph (IRIS) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  7. Estimating Lightning NOx Emissions for Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Scotty, E.; Harkey, M.

    2014-12-01

    Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.

  8. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  9. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  10. γ-ray emission from the Westerlund 1 region

    NASA Astrophysics Data System (ADS)

    Ohm, S.; Hinton, J. A.; White, R.

    2013-09-01

    Westerlund 1 (Wd 1) is the most massive stellar cluster in the Galaxy and is associated with an extended region of TeV emission. Here, we report the results of a search for GeV γ-ray emission in this region. The analysis is based on ˜4.5 yr of Fermi-Large Area Telescope data and reveals significantly extended emission which we model as a Gaussian, resulting in a best-fitting sigma of σS = (0 .^{circ}475 ± 0 .^{circ}05) and an offset from Wd 1 of ˜1°. A partial overlap of the GeV emission with the TeV signal as reported by the High Energy Stereoscopic System (HESS) is found. We investigate the spectral and morphological characteristics of the γ-ray emission and discuss its origin in the context of two distinct scenarios. Acceleration of electrons in a pulsar wind nebula provides a reasonably natural interpretation of the GeV emission, but leaves the TeV emission unexplained. A scenario in which protons are accelerated in or near Wd 1 in supernova explosion(s) and are diffusing away and interacting with molecular material seems consistent with the observed GeV and TeV emission, but requires a very high energy input in protons, ˜1051 erg, and rather slow diffusion. Observations of Wd 1 with a future γ-ray detector such as the Cherenkov Telescope Array (CTA) provide a very promising route to fully resolve the origin of the TeV and GeV emission in Wd 1 and provide a deeper understanding of the high-energy astrophysics of massive stellar clusters.

  11. Global, regional and local health impacts of civil aviation emissions

    NASA Astrophysics Data System (ADS)

    Yim, Steve H. L.; Lee, Gideon L.; Lee, In Hwan; Allroggen, Florian; Ashok, Akshay; Caiazzo, Fabio; Eastham, Sebastian D.; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Aviation emissions impact surface air quality at multiple scales—from near-airport pollution peaks associated with airport landing and take off (LTO) emissions, to intercontinental pollution attributable to aircraft cruise emissions. Previous studies have quantified aviation’s air quality impacts around a specific airport, in a specific region, or at the global scale. However, no study has assessed the air quality and human health impacts of aviation, capturing effects on all aforementioned scales. This study uses a multi-scale modeling approach to quantify and monetize the air quality impact of civil aviation emissions, approximating effects of aircraft plume dynamics-related local dispersion (˜1 km), near-airport dispersion (˜10 km), regional (˜1000 km) and global (˜10 000 km) scale chemistry and transport. We use concentration-response functions to estimate premature deaths due to population exposure to aviation-attributable PM2.5 and ozone, finding that aviation emissions cause ˜16 000 (90% CI: 8300-24 000) premature deaths per year. Of these, LTO emissions contribute a quarter. Our estimate shows that premature deaths due to long-term exposure to aviation-attributable PM2.5 and O3 lead to costs of ˜21 bn per year. We compare these costs to other societal costs of aviation and find that they are on the same order of magnitude as global aviation-attributable climate costs, and one order of magnitude larger than aviation-attributable accident and noise costs.

  12. HCO emission from H II-molecular cloud interface regions

    NASA Technical Reports Server (NTRS)

    Schenewerk, M. S.; Jewell, P. R.; Snyder, L. E.; Hollis, J. M.; Ziurys, L. M.

    1988-01-01

    A survey of well-known molecular clouds in the four strongest HCO N(k-,k+) = 1(01)-O(60) hyperfine transitions has been carried out to determine the prevalence of HCO and to study its chemistry. HCO emission was observed in seven molecular clouds. Three of these, NGC 2264, W49, and NGC 7538, were not previously known sources of HCO. In addition, NGC 2024 and Sgr B2 were mapped and shown to have extensive HCO emission. The survey results show the HCO abundance to be enhanced in H II-molecular cloud interface regions and support a correlation between C(+) and HCO emission. The strength of the HCO emission in NGC 2024 is interpreted in terms of this enhancement and the source structure and proximity to Earth.

  13. HCO emission from H II-molecular cloud interface regions.

    PubMed

    Schenewerk, M S; Snyder, L E; Hollis, J M; Jewell, P R; Ziurys, L M

    1988-05-15

    A survey of well-known molecular clouds in the four strongest HCO NK-,K+ = 1(01)-0(00) hyperfine transitions has been carried out to determine the prevalence of HCO and to study its chemistry. HCO emission was observed in seven molecular clouds. Three of these, NGC 2264, W49, and NGC 7538, were not previously known sources of HCO. In addition, NGC 2024 and Sgr B2 were mapped and shown to have extensive HCO emission. The survey results show the HCO abundance to be enhanced in H II-molecular cloud interface regions and support a correlation between C+ and HCO emission. The strength of the HCO emission in NGC 2024 is interpreted in terms of this enhancement and the source structure and proximity to Earth.

  14. Terrestrial structured radio emissions occurring close to the equatorial regions

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Sawas, Sami; Berthelier, Jean-Jacques

    2015-04-01

    We study the occurrence of terrestrial radio emissions observed by the electric field experiment (ICE) onboard DEMETER micro-satellite. We principally consider the ICE observations recorded in the HF frequency range between 10 kHz and 3.175 MHz. A dynamic spectrum is recorded each half-orbit with a time and frequency resolutions, respectively, in the order of 3.25 kHz and 2.048 sec. The terrestrial structured radio emission is found to occur when the satellite is approaching the equatorial region of the Earth. It appears as a structured narrow band 'continuum' with a positive or negative low frequency drift rate, less than 1 kHz/s. The bandwidth is, on average, of about 30 kHz. We derive from our investigation the beam and the probable location of the emission source. We discuss the origin of this terrestrial radio emission and its dependence, or not, on the solar and geomagnetic activities.

  15. Baseline map of carbon emissions from deforestation in tropical regions.

    PubMed

    Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander

    2012-06-22

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  16. Emission metrics for quantifying regional climate impacts of aviation

    NASA Astrophysics Data System (ADS)

    Lund, Marianne T.; Aamaas, Borgar; Berntsen, Terje; Bock, Lisa; Burkhardt, Ulrike; Fuglestvedt, Jan S.; Shine, Keith P.

    2017-07-01

    This study examines the impacts of emissions from aviation in six source regions on global and regional temperatures. We consider the NOx-induced impacts on ozone and methane, aerosols and contrail-cirrus formation and calculate the global and regional emission metrics global warming potential (GWP), global temperature change potential (GTP) and absolute regional temperature change potential (ARTP). The GWPs and GTPs vary by a factor of 2-4 between source regions. We find the highest aviation aerosol metric values for South Asian emissions, while contrail-cirrus metrics are higher for Europe and North America, where contrail formation is prevalent, and South America plus Africa, where the optical depth is large once contrails form. The ARTP illustrate important differences in the latitudinal patterns of radiative forcing (RF) and temperature response: the temperature response in a given latitude band can be considerably stronger than suggested by the RF in that band, also emphasizing the importance of large-scale circulation impacts. To place our metrics in context, we quantify temperature change in four broad latitude bands following 1 year of emissions from present-day aviation, including CO2. Aviation over North America and Europe causes the largest net warming impact in all latitude bands, reflecting the higher air traffic activity in these regions. Contrail cirrus gives the largest warming contribution in the short term, but remain important at about 15 % of the CO2 impact in several regions even after 100 years. Our results also illustrate both the short- and long-term impacts of CO2: while CO2 becomes dominant on longer timescales, it also gives a notable warming contribution already 20 years after the emission. Our emission metrics can be further used to estimate regional temperature change under alternative aviation emission scenarios. A first evaluation of the ARTP in the context of aviation suggests that further work to account for vertical sensitivities

  17. Campylomorphus homalisinus (Elateridae): a new species for Lombardy (Italy), with notes on its ecology, distribution and biogeography

    PubMed Central

    2014-01-01

    Abstract Campylomorphus homalisinus has been found on Mt. Lesima (Northern Apennines) and it is the first record for the Lombardy region. Campylomorphus homalisinus is a rare orophilous species: it has a discontinuous chorology that may have been caused by glaciers dynamics during the Pleistocene era. Little is known about the ecology of the species. This record and the expert-based investigation we performed determined that Campylomorphus homalisinus inhabits shrublands and grasslands, but may also occur in the forests. This survey includes the only record of Campylomorphus homalisinus foraging on flowers, a behavior that is not rare in the family Elateridae. We hypothesize that adults integrate their diet with flower resources according to a generalist strategy. PMID:24891828

  18. Cool and hot emission in a recurring active region jet

    NASA Astrophysics Data System (ADS)

    Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen

    2017-09-01

    Aims: We present a thorough investigation of the cool and hot temperature components in four recurring active region jets observed on July 10, 2015 using the Atmospheric Imaging Assembly (AIA), X-ray Telescope (XRT), and Interface Region Imaging Spectrograph (IRIS) instruments. Methods: A differential emission measure (DEM) analysis was performed on areas in the jet spire and footpoint regions by combining the IRIS spectra and the AIA observations. This procedure better constrains the low temperature DEM values by adding IRIS spectral lines. Plasma parameters, such as Doppler velocities, electron densities, nonthermal velocities and a filling factor were also derived from the IRIS spectra. Results: In the DEM analysis, significant cool emission was found in the spire and the footpoint regions. The hot emission was peaked at log T [K] = 5.6-5.9 and 6.5 respectively. The DEM curves show the presence of hot plasma (T = 3 MK) in the footpoint region. We confirmed this result by estimating the Fe XVIII emission from the AIA 94 Å channel which was formed at an effective temperature of log T [K] = 6.5. The average XRT temperatures were also found to be in agreement with log T [K] = 6.5. The emission measure (EM) was found to be three orders of magnitude higher in the AIA-IRIS DEM compared with that obtained using only AIA. The O IV (1399/1401 Å) electron densities were found to be 2.0×1010 cm-3 in the spire and 7.6 × 1010 cm-3 in the footpoint. Different threads along the spire show different plane-of-sky velocities both in the lower corona and transition region. Doppler velocities of 32 km s-1 (blueshifted) and 13 km s-1 (redshifted) were obtained in the spire and footpoint, respectively from the Si IV 1402.77 Å spectral line. Nonthermal velocities of 69 and 53 km s-1 were recorded in the spire and footpoint region, respectively. We obtained a filling factor of 0.1 in the spire at log T [K] = 5. Conclusions: The recurrent jet observations confirmed the presence of

  19. Airborne Quantification of Methane Emissions over the Four Corners Region

    NASA Astrophysics Data System (ADS)

    Kort, E. A.; Smith, M. L.; Gvakharia, A.; Sweeney, C.; Conley, S. A.

    2016-12-01

    Methane (CH4) is a potent greenhouse gas and the primary component of natural gas. One of the main sources of anthropogenic CH4 to the atmosphere is fugitive emissions from fossil fuel production, processing, and transport. The San Juan Basin (SJB) is one of the largest coal-bed methane producing regions in North America and has previously been noted for its methane emissions: Space-based observations have been used to determine a CH4 flux from the region of 0.59 Tg yr-1, and airborne remote infrared measurements have quantified individual point sources, totaling 0.32-0.39 Tg yr-1. In this work, we use a direct method consisting of airborne measurements and the mass balance method to quantify the total CH4 emissions from the SJB, based on continuous atmospheric observations from aircraft collected during the TOPDOWN2015 field campaign in April 2015. Using five independent days of measurements of atmospheric CH4 concentration and meteorological variables including wind speed and direction and planetary boundary layer, we calculate an average CH4 flux in close agreement with the previous space-based estimate made for 2003-2009. These combined results suggest CH4 emission remained relatively stable from 2003 through 2015 for the SJB, even as natural gas production in the region experienced a significant decline. Our airborne quantification of coal outcrops where CH4 seepage occurs indicate these sources are a small fraction of the basin total and cannot explain the persistent emissions from 2003-2015. The largest individual point sources quantified by airborne measurement were anthropogenic, including a coal mine vent shaft and gas processing facilities. Taken together, these results suggest that changes in total gas production for the basin is not a strong predictor for changes in the basin's CH4 emissions.

  20. Dust processing in photodissociation regions. Mid-IR emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Abergel, A.; Verstraete, L.; Habart, E.

    2008-12-01

    Context: Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H2 formation. Aims: With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. Methods: In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. Results: We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). Conclusions: We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC 2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from “dense” to “diffuse” properties at the small spatial scale of the dense illuminated ridge.

  1. Solar Source Regions of Energetic 3He Emission

    NASA Astrophysics Data System (ADS)

    Mason, G. M.; Nitta, N. V.; Cohen, C. M.; Wiedenbeck, M. E.

    2012-12-01

    One of the surprising observations from the ACE mission has been the detection of energetic 3He emission occurring over multi-day periods. Previously observations of solar energetic 3He had detected short-lived "impulsive" energetic particle events which were associated with type III bursts and energetic electrons. The ACE observations were able to detect 3He at very low levels (<1% of 4He compared to ~10% in most earlier work) and this showed that the impulsive events often occurred during seemingly continuous multi-day periods of 3He emission. During solar active periods, 3He was present at 1 AU the majority of the time, giving evidence for either semi-continuous processes or else unresolved multiple small injections. The obvious injections during such periods were strongly associated with jet activity By adding STEREO and SDO observations we are seeking to extend the observational picture for these events. First, by following single 3He emitting regions from STEREO-B to ACE to STEREO-A we seek to examine for how long the 3He emission can continue, since any single spacecraft can be magnetically connected to a single region for only a few days and ACE often sees emission periods of that length. Second, by using SDO-AIA we seek to probe further the properties of the emitting regions to see if the previously reported association with jets is seen in events which we can now observe with greater resolution, sensitivity, and cadence than previously possible.

  2. A new rock glacier inventory of the Lombardy, Central Alps, Italy

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Brardinoni, F.; Alberti, S.; Frattini, P.; Crosta, G. B.

    2012-04-01

    The Lombardy Alps, with a surface of 2148 km2 above 2000 m a.s.l. (9% of the total) represents an important portion of the southern side of the orogen. For encompassing a variety of tectonic and climatic regimes, they represent an interesting area to examine environmental controls on periglacial processes. Today, technological developments in remote sensing techniques allow us to study periglacial landforms with increasing detail. We present a new inventory for the whole Lombardy Alps in which we identify and classify rock glaciers and protalus ramparts. The inventory has been conducted by combining a number of remotely-sensed images with field traverses. Specifically, the interpretation of high-resolution (0.5 x 0.5 m) digital aerial photos (2000, 2003, 2007) and a 2 m*2 m Digital Surface Model that cover the whole region has allowed inventorying a greater number of relevant landforms when compared to prior regional efforts. Measurements and photographs taken during fieldwork provided critical ground control for the validation of data extracted from remotely-based analysis. Rock glaciers have been mapped in GIS polygons. The inventory follows the specifics detailed by Scapozza and Mari (2010), with some additional information adapted from the PermaNET evidences guidelines (Cremonese et al., 2011). Landform attributes include, geographic coordinates, mountain sector, type, activity, area, elevation (min, max and mean), slope gradient, slope aspect, dominant lithology, vegetation at the front, and upstream presence/absence of a glacier. In total, we identify 1734 periglacial landforms covering a surface of 81,5 km2 (0,34% of the region). In terms of activity, the inventory includes 673 (39%) intact classified and 1061 (61%) relict landforms. The most common landform typology is the talus-lobate (931, 54%) followed by talus tongue-shaped (436, 25%) and protalus ramparts (232, 13%). Minimum elevation, often considered a good approximation of discontinuous permafrost

  3. Regional and sectoral assessment of greenhouse gas emissions in India

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Bhattacharya, Sumana; Shukla, P. R.; Dadhwal, V. K.

    In this paper the authors have estimated for 1990 and 1995 the inventory of greenhouse gases CO 2, CH 4 and N 2O for India at a national and sub-regional district level. The district level estimates are important for improving the national inventories as well as for developing sound mitigation strategies at manageable smaller scales. Our estimates indicate that the total CO 2, CH 4 and N 2O emissions from India were 592.5, 17, 0.2 and 778, 18, 0.3 Tg in 1990 and 1995, respectively. The compounded annual growth rate (CAGR) of these gases over this period were 6.3, 1.2 and 3.3%, respectively. The districts have been ranked according to their order of emissions and the relatively large emitters are termed as hotspots. A direct correlation between coal consumption and districts with high CO 2 emission was observed. CO 2 emission from the largest 10% emitters increased by 8.1% in 1995 with respect to 1990 and emissions from rest of the districts decreased over the same period, thereby indicating a skewed primary energy consumption pattern for the country. Livestock followed by rice cultivation were the dominant CH 4 emitting sources. The waste sector though a large CH 4 emitter in the developed countries, only contributed about 10% the total CH 4 emission from all sources as most of the waste generated in India is allowed to decompose aerobically. N 2O emissions from the use of nitrogen fertilizer were maximum in both the years (more than 60% of the total N 2O). High emission intensities, in terms of CO 2 equivalent, are in districts of Gangetic plains, delta areas, and the southern part of the country. These overlap with districts with large coal mines, mega power plants, intensive paddy cultivation and high fertilizer use. The study indicates that the 25 highest emitting districts account for more than 37% of all India CO 2 equivalent GHG emissions. Electric power generation has emerged as the dominant source of GHG emissions, followed by emissions from steel and

  4. CAND-LO 2014-15 study: changing epidemiology of candidemia in Lombardy (Italy).

    PubMed

    Prigitano, Anna; Cavanna, Caterina; Passera, Marco; Ossi, Cristina; Sala, Eugenio; Lombardi, Gianluigi; Grancini, Anna; De Luca, Concetta; Bramati, Simone; Gelmi, Marina; Tejada, Milvana; Grande, Romualdo; Farina, Claudio; Lallitto, Fabiola; Tortorano, Anna Maria

    2016-12-01

    The aim of this study was to monitor recent changes in the epidemiology of candidemia and in the antifungal susceptibility profiles of Candida isolates in one Italian region (Lombardy) in 2014-2015 in comparison with two other studies performed in the same area in 1997-1999 and in 2009. A laboratory-based surveillance was conducted in 11 microbiology laboratories. Identification of Candida isolates from 868 episodes and antifungal susceptibility testing (YeastOne) was performed locally. A progressive increase in the rate of candidemia up to 1.27/1000 admissions and 1.59/10,000 patient days was documented. In all the three surveys, Candida albicans remains the most frequently isolated species, ranging from 52 to 59 % of the etiology of BSIs. The epidemiological shift to the more resistant C. glabrata, observed between 1997-1999 and 2009 surveys, was not confirmed by our more recent data. The pattern of etiology of BSIs occurred in 2014-2015 overlaps that of the 90s. Acquired antifungal resistance is a rare event. No isolate had an amphoterin B minimal inhibitory concentration (MIC, mg/L) value higher than the epidemiological cutoff. All the echinocandin MIC distributions are typical for wild-type organisms except for those of two C. glabrata isolates. Fluconazole resistance declined from 24.9 % in the 2009 survey to 5.4 % in the recent one. Data from regional surveys may highlight the influence of therapeutic practices on the epidemiology of Candida BSIs and may optimize empirical therapies.

  5. Urban, Regional and Global Impacts of Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Setzer, A.; Cirino, G.

    2013-05-01

    Biomass burning is a major regional and global driver for atmospheric composition. Its effects in regional and global climate are very significant, but still difficult to assess. Even in large urban areas in Latin America such as Mexico City, Sao Paulo and Santiago, and in developed areas such as Paris and Californian cities it is possible to observe significant biomass burning effects air quality. The wood burning components as well as inner city and vicinities burning if agricultural residues impact heavily the concentration of organic aerosol, carbon monoxide and ozone in urban areas. Regionally, regions such as Amazonia and Central America show large plumes of smoke that extend their impact over continental areas, with changes in the radiation balance, air quality and climate. The deforestation rate in Amazonia have dropped strongly from 27,000 Km2 in 2004 to 6,200 Km2 in 2011, a very significant reduction, but this reduction was not observed in Africa and Southeast Asia. Health effects of biomass burning emissions are very significant, and observed in several key regions. Remote sensing techniques for fire detection have progressed significantly and long time series (10-15 years) are now feasible. The black carbon associated with biomass burning has important impacts in formation and development of clouds in Amazonia and other regions. The organic component of biomass burning emissions scatter light and increase diffuse radiation that alters carbon uptake in large regions of Amazonia and certainly other forested areas. Increase of up to 30% in carbon uptake associated with biomass burning emissions was observed in Amazonia, as part of the LBA Experiment. New analytical methods that quantify the absorption angstrom exponent of biomass burning and fossil fuel black carbon (BC) can differentiate BC from different burning sources. In addition, the hygroscopic properties of particles with a core shell of BC coated with organic compounds can be measured and shows

  6. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    SciTech Connect

    BENKOVITZ,C.M.

    2002-11-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

  7. Role of regional wetland emissions in atmospheric methane variability

    NASA Astrophysics Data System (ADS)

    McNorton, J.; Gloor, E.; Wilson, C.; Hayman, G. D.; Gedney, N.; Comyn-Platt, E.; Marthews, T.; Parker, R. J.; Boesch, H.; Chipperfield, M. P.

    2016-11-01

    Atmospheric methane (CH4) accounts for 20% of the total direct anthropogenic radiative forcing by long-lived greenhouse gases. Surface observations show a pause (1999-2006) followed by a resumption in CH4 growth, which remain largely unexplained. Using a land surface model, we estimate wetland CH4 emissions from 1993 to 2014 and study the regional contributions to changes in atmospheric CH4. Atmospheric model simulations using these emissions, together with other sources, compare well with surface and satellite CH4 data. Modeled global wetland emissions vary by ±3%/yr (σ = 4.8 Tg), mainly due to precipitation-induced changes in wetland area, but the integrated effect makes only a small contribution to the pause in CH4 growth from 1999 to 2006. Increasing temperature, which increases wetland area, drives a long-term trend in wetland CH4 emissions of +0.2%/yr (1999 to 2014). The increased growth post-2006 was partly caused by increased wetland emissions (+3%), mainly from Tropical Asia, Southern Africa, and Australia.

  8. Atmospheric Pollution and Emission Sources in South Asian Urban Region

    NASA Astrophysics Data System (ADS)

    Biswas, K. F.; Husain, Liaquat

    2009-04-01

    Rapid urbanization, and lack of efficient monitoring and control of pollution, along with phenomena like Asian Brown Haze or prolonged episodes of winter fog, makes the South Asian atmospheric chemistry a very complex one. The anthropogenic aerosols released from this region are projected to become the dominant component of anthropogenic aerosols worldwide in the next 25 years (Nakicenovic and Swart, 2000). The region is one of the most densely populated in the world, with present population densities of 100-500 persons km-2. There are six big cities, namely, Delhi, Dhaka, Karachi, Kolkata, Lahore, and Mumbai, each housing a population around or above 10 million. There is now a real concern about the sustainability of the region's ability to support the population due to air pollution, loss of biodiversity and soil degradation. Therefore, we conducted several extensive campaigns over last 10 years in Lahore, Karachi, and Islamabad in Pakistan to (1) chemically characterize the aerosols (PM2.5 mass, concentrations of trace elements, ions, black and organic carbon), and gaseous pollutants (concentrations of NH3, SO2, HONO, HNO3, HCl and (COOH)2, and (2) identify the major emission sources in this region. Exceedingly high concentrations of all species, relative to major urban areas of US and Europe, were observed. Concentrations of PM2.5, BC, Pb, SO42-, NH4+, HONO, NH3 respectively, up to 476, 110, 12, 66, 60, 19.6 and 50 μgm-3 were observed in these cities, which were far in excess of WHO and US EPA air quality standard (Biswas et al., 2008). We use air parcel back trajectories, intercomponent relationships and meteorological observations to explain chemistry and emission sources of aerosol constituents. Carbonaceous aerosols contributed up to 69% of the PM2.5 mass (Husain et al., 2007). Source apportionment was conducted using positive matrix factorization. The analysis has classified six emission sources of aerosol components, namely, industrial activities, wood

  9. Impact of reduced mass of light commercial vehicles on fuel consumption, CO2 emissions, air quality, and socio-economic costs.

    PubMed

    Cecchel, S; Chindamo, D; Turrini, E; Carnevale, C; Cornacchia, G; Gadola, M; Panvini, A; Volta, M; Ferrario, D; Golimbioschi, R

    2017-09-14

    This study presents a modelling system to evaluate the impact of weight reduction in light commercial vehicles with diesel engines on air quality and greenhouse gas emissions. The PROPS model assesses the emissions of one vehicle in the aforementioned category and its corresponding reduced-weight version. The results serve as an input to the RIAT+ tool, an air quality integrated assessment modelling system. This paper applies the tools in a case study in the Lombardy region (Italy) and discusses the input data pre-processing, the PROPS-RIAT+ modelling system runs, and the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The regional impact of urban emissions on climate over central Europe: present and future emission perspectives

    NASA Astrophysics Data System (ADS)

    Huszár, Peter; Belda, Michal; Karlický, Jan; Pišoft, Petr; Halenka, Tomáš

    2016-10-01

    The regional climate model RegCM4.2 was coupled to the chemistry transport model CAMx, including two-way interactions, to evaluate the regional impact of urban emission from central European cities on climate for present-day (2001-2010) and future (2046-2055) periods, and for the future one only emission changes are considered. Short-lived non-CO2 emissions are considered and, for the future impact, only the emission changes are accounted for (the climate is kept "fixed"). The urban impact on climate is calculated with the annihilation approach in which two experiments are performed: one with all emissions included and one without urban emissions. The radiative impacts of non-CO2 primary and secondary formed pollutants are considered, namely ozone (O3), sulfates (PSO4), nitrates (PNO3), primary organic aerosol and primary elementary carbon (POA and PEC).The validation of the modelling system is limited to key climate parameters, near-surface temperature and precipitation. It shows that the model, in general, underestimates temperature and overestimates precipitation. We attribute this behaviour to an excess of cloudiness/water vapour present in the model atmosphere as a consequence of overpredicted evaporation from the surface.The impact on climate is characterised by statistically significant cooling of up to -0.02 and -0.04 K in winter (DJF) and summer (JJA), mainly over cities. We found that the main contributors to the cooling are the direct and indirect effects of the aerosols, while the ozone titration, calculated especially for DJF, plays rather a minor role. In accordance with the vertical extent of the urban-emission-induced aerosol perturbation, cooling dominates the first few model layers up to about 150 m in DJF and 1000 m in JJA. We found a clear diurnal cycle of the radiative impacts with maximum cooling just after noon (JJA) or later in afternoon (DJF). Furthermore, statistically significant decreases of surface radiation are modelled in accordance

  11. Temporal trends in adolescent pregnancies in Lombardy, Italy: 1996-2010.

    PubMed

    Parazzini, Fabio; Ricci, Elena; Cipriani, Sonia; Motta, Tiziano; Chiaffarino, Francesca; Malvezzi, Matteo; Bulfoni, Giuseppe

    2013-04-01

    Data from southern European countries concerning teenage pregnancy have not been properly analysed so far. We provide the temporal trend of adolescent pregnancy rates in Lombardy, Northern Italy. Using the hospital discharge register (1996-2010), teenage pregnancy-related admission rates per 1000 girls aged 13 to 19 years, residing in Lombardy, were computed. Miscarriage-, induced abortion-, and delivery ratios/100 pregnancies, and caesarean section ratio/100 deliveries, were calculated. The pregnancy rate increased from 9.07 in 1996-2000 to 10.20 in 2001-2005, and remained at that level (10.27) in 2006-2010. However, the rates by country of birth (native Italian and non-native Italian) showed a steady decline in 2003-2010, when data about residents in Lombardy, categorised by sex, age and country of birth, were available. The induced abortion rate rose from 5.38/1000 to 5.55/1000, then decreased slightly in 2006-2010. The abortion ratio/100 pregnancies diminished from 59.3 in 1996-2000 to 50.3 in 2006-2010. Between 1996 and 2010, the overall teenage pregnancy rate has risen in Lombardy. When the rates were calculated separately for adolescents born in Italy and immigrants, the trends reverted in the period 2003-2010: in both groups pregnancy- and birth rates steadily declined. Pregnancy-, abortion-, and birth rates in non-native Italians, after having dropped, are all still much higher than those among native Italians. Because the number of non-native Italian adolescent girls markedly increased over the last two decades, their group--with decreasing, but still higher, birth- and abortion rates--has caused the observed rise in those rates when all adolescents residing in Lombardy are considered indistinctly.

  12. Radio emission and the forbidden line region of Seyfert galaxies

    SciTech Connect

    Ulvestad, J.S.

    1981-01-01

    The results of an extensive program of mapping Seyfert galaxies using the Very Large Array radio telescope are presented. Unlike the majority of radio galaxies, the radio emission in most Seyferts is confined to the inner few kiloparsecs (or less) of the galaxy. This scale is similar to the size of the region in which optical forbidden line emission occurs. Six double (or triple) radio sources have been mapped now in Seyfert galaxies. Approximately ten more galaxies shown more diffuse emission or are resolved only slightly. In almost all galaxies, the central radio peak, when present, coincides with the optical continuum peak. In every double or triple radio source, the outer radio lobes straddle that optical peak. The major axes of the double and triple radio sources may be correlated with the directions of greatest elongation of the optical line-emitting cloud complexes. However, the radio source axes do not appear to be related to the major or minor axes of the outer optical continuum isophotes of the Seyfert galaxies. Synchrotron emission is the dominant source of radio photons in all the galaxies observed. Thermal processes contribute, on the average, no more than about 6% of the total radio emission at 4.885 GHz. Using standard assumptions, radio luminosities, magnetic fields, and total energy contents have been calculated for the observed galaxies. The triple radio source in NGC 5548 has been studied in detail. The properties of NGC 5548 have been used to investigate some theoretical aspects of the double and triple sources and their relationship to the forbidden line region (FLR).

  13. Plasma simulations of emission line regions in high energy environments

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  14. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E. J.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M. L.; Odoherty, S. J.; Patra, P. K.; Harth, C.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P.; Steele, P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2013-12-01

    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also discrete air samples collected in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute for Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7%yr-1, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally-gridded a priori N2O emissions over the 37 yr since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in the recent years, most likely due

  15. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M.; O'Doherty, S.; Patra, P. K.; Harth, C. M.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P. J.; Steele, L. P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2014-05-01

    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely

  16. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M.; O'Doherty, S.; Patra, P. K.; Harth, C. M.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P. B.; Steele, L. P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2013-07-01

    We present a comprehensive estimate of nitrous oxide ( N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also discrete air samples collected in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute for Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7 % yr-1, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally-gridded a priori N2O emissions over the 37 yr since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in the recent years, most likely

  17. Formation of IR emission in HII regions around young stars

    NASA Astrophysics Data System (ADS)

    Pavlyuchenkov, Yaroslav; Kirsanova, Maria; Akimkin, Vitaly; Wiebe, Dmitry

    2013-07-01

    We investigate the formation of IR emission and corresponding intensity distributions at 8, 24, and 100 micron in HII regions around young massive stars. The evolution of an HII region is simulated using an advanced chemo-dynamical model. Three dust components are included in the model: large silicate grains, very small graphite grains (VSG), and polycyclic aromatic hydrocarbon (PAH) particles. The emergent SED and intensity distributions are calculated using our RT model where stochastic heating of VSG and PAHs is taken into account. The efficiency of two processes for stochastic heating of VSG and PAHs is studied: the absorption of star emission and interaction with hot gas. We compare the synthetic maps with the observed maps from Spitzer and Herschel for the RCW 120 HII region. It is shown that the model with constant PAH abundance cannot reproduce the ring-like appearance of the observed intensity distribution at 8 micron. In order to explain the observed IR distributions we inspect two models of dust evolution. The first model assumes that PAHs are destroyed inside an HII region. In the second model the drift of the dust particles caused by radiation pressure is taken into account. We show that the model with PAH destruction is consistent with observed profiles given appropriate choice of the PAH destruction time. On the contrary, the model with the dust drift is not consistent with observations.

  18. Regional sulfur dioxide emissions: shall we achieve the goal?

    NASA Astrophysics Data System (ADS)

    Tan, X.; Shi, L.; Wang, M.; Wang, JY

    2017-01-01

    Although economic growth is slowing down in the new normal period, air pollution is still a very serious problem in China. The 15% binding goal of sulfur dioxide emission reduction from 2016 to 2020, as stipulated in the 13th Five-Year Plan, has been an ambitious target for the Chinese government. This paper studies the synthetic evaluation and forecasting analysis of sulfur dioxide in China by means of a “grey model” approach combined with the grey relational analysis methods, with the panel data of 31 provinces from 2005 to 2015. Grey analysis used to analyse a system with imperfect information, such that a variety of available solutions is reviewed, and the optimal solution is identified. Some encouraging results show that national emissions and a majority of provinces will achieve the target. Over time, the gap of regional differences is rapidly closing. According to the results of grey relational analysis, we find industrial structure and energy consumption have a more significant impact on sulfur dioxide emissions than GDP. Atmospheric treatment investment and environmental protection manpower play a more important role in emissions variation. Based on the findings, we should distinguish different factors and take different measures to protect the environment.

  19. Regional differences in worldwide emissions of mercury to the atmosphere

    NASA Astrophysics Data System (ADS)

    Pirrone, Nicola; Keeler, Gerald J.; Nriagu, Jerome O.

    Annual emissions of anthropogenic Hg to the atmosphere in different regions of the world during the last decade show an interesting dichotomy: the emissions in the developed countries increased at the rate of about 4.5-5.5% yr -1 up to 1989 and have since remained nearly constant, while in developing countries the emissions continue to rise steadily at the rate of 2.7-4.5% yr -1. On a global basis, however, the total anthropogenic emissions of Hg increased by about 4% yr -1 during the 1980s, peaked in 1989 at about 2290 t and are currently decreasing at the rate of about 1.3% yr -1. Solid waste disposal through incineration processes is the dominant source of atmospheric mercury in North America (˜ 40%), Central and South America (˜34%), western Europe (˜28%) and Africa (˜30%), whereas coal combustion remains the dominant source in Asia (˜42%) and eastern Europe and the former USSR (˜40%). Mining and smelting of Zn and Pb represent the major industrial source of Hg in Oceania (˜35%).

  20. The distance to the heliospheric VLF emission region

    NASA Technical Reports Server (NTRS)

    Mcnutt, R. L., Jr.; Lazarus, A. J.; Belcher, J. W.; Lyon, J.; Goodrich, C. C.; Kulkarni, R.

    1995-01-01

    Two major episodes of heliospheric VLF emissions near 3 kHz have been observed by the Voyager spacecraft in 1983/84 and 1992/3. This higher-frequency component is apparently triggered by solar wind transients with sufficiently large spatial extents and energies to continue to propagate as shocks in the heliosheath. Entrainment of previously unshocked material and changed flow conditions in the heliosheath both tend to slow the shock propagation. The shock evolution is not self-similar. Rather, it is intermediate to two blast-wave similarity solutions in the moving solar wind frame. In one solution the shock moves as time to the 2/3 power and in the other as time to the 4/5 power. Using these models, the shock/Forbush decrease observed at Voyager 2 in September, 1991 and the turn-on of the 1992 emission is consistent with an emission region distance of approximately 130 AU (assuming no additional slowing of the shock in the heliosheath). If the termination shock was at approximately 70 AU when the transient shock collided with it, the true distance to the source region was probably closer to approximately 115 AU.

  1. The Distance to the Heliospheric VLF Emission Region

    NASA Technical Reports Server (NTRS)

    McNutt, R. L., Jr.; Lazarus, A. J.; Belcher, J. W.; Lyon, J.; Goodrich, C. C.; Kulkarni, R.

    1995-01-01

    Two major episodes of heliospheric VLF emissions near 3 kHz have been observed by the Voyager spacecraft in 1983-1984 and 1992-1993. This higher-frequency component is apparently triggered by solar wind transients with sufficiently large spatial extents and energies to continue to propagate as shocks in the heliosheath. Entrainment of previously unshocked material and changed flow conditions in the heliosheath both tend to slow the shock propagation. The shock evolution is not self-similar. Rather, it is intermediate to two blast-wave similarity solutions in the moving solar wind frame. In one solution the shock moves as time to the 2/3 power and in the other as time to the 4/5 power. Using these models, the shock/Forbush decrease observed at Voyager 2 in September, 1991 and the turn-on of the 1992 emission is consistent with an emission region distance of approx. 130 AU (assuming no additional slowing of the shock in the heliosheath). If the termination shock was at approx. 70 AU when the transient shock collided with it, the true distance to the source region was probably closer to approx. 115 AU.

  2. TRANSITION REGION EMISSION FROM SOLAR FLARES DURING THE IMPULSIVE PHASE

    SciTech Connect

    Johnson, H.; Raymond, J. C.; Murphy, N. A.; Suleiman, R.; Giordano, S.; Ko, Y.-K.; Ciaravella, A.

    2011-07-10

    There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-limb measurements by the Solar and Heliospheric Observatory/Ultraviolet Coronagraph Spectrometer, we derive the O VI {lambda}1032 luminosities for 29 flares during the impulsive phase and the Ly{alpha} luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases, we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and five events show speeds in the 40-80 km s{sup -1} range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.

  3. Gamma ray emission from the region of the galactic center

    NASA Technical Reports Server (NTRS)

    Dahlbacka, G. H.; Freier, P. S.; Waddington, C. J.

    1972-01-01

    A combination nuclear emulsion-spark chamber gamma ray (E=100 MeV) telescope was used to study the region of sky that includes the Galactic Center. 95% confidence upper limits on the flux from the reported sources G gamma 2 - 3 and Sgr gamma-1 were placed at 4.4 and 8.8 x 10 to the minus 5th power protons/sq cm-sec, and a similar limit on the emission from the Galactic Center as a point source (plus or minus .75 degrees) was placed at 3.3 x 10 to the minus 5th power protons/sq cm-sec. No enhanced emission was observed from the Galactic Plane (plus or minus 6 degrees) and an upper limit of 2 x 10 to the minus 4th power protons/sq cm-sec rad/ was obtained.

  4. ESTIMATING THE CHROMOSPHERIC ABSORPTION OF TRANSITION REGION MOSS EMISSION

    SciTech Connect

    De Pontieu, Bart; Hansteen, Viggo H.; McIntosh, Scott W.; Patsourakos, Spiros

    2009-09-10

    Many models for coronal loops have difficulty explaining the observed EUV brightness of the transition region, which is often significantly less than theoretical models predict. This discrepancy has been addressed by a variety of approaches including filling factors and time-dependent heating, with varying degrees of success. Here, we focus on an effect that has been ignored so far: the absorption of EUV light with wavelengths below 912 A by the resonance continua of neutral hydrogen and helium. Such absorption is expected to occur in the low-lying transition region of hot, active region loops that is colocated with cool chromospheric features and called 'moss' as a result of the reticulated appearance resulting from the absorption. We use cotemporal and cospatial spectroheliograms obtained with the Solar and Heliospheric Observatory/SUMER and Hinode/EIS of Fe XII 1242 A, 195 A, and 186.88 A, and compare the density determination from the 186/195 A line ratio to that resulting from the 195/1242 A line ratio. We find that while coronal loops have compatible density values from these two line pairs, upper transition region moss has conflicting density determinations. This discrepancy can be resolved by taking into account significant absorption of 195 A emission caused by the chromospheric inclusions in the moss. We find that the amount of absorption is generally of the order of a factor of 2. We compare to numerical models and show that the observed effect is well reproduced by three-dimensional radiative MHD models of the transition region and corona. We use STEREO A/B data of the same active region and find that increased angles between line of sight and local vertical cause additional absorption. Our determination of the amount of chromospheric absorption of TR emission can be used to better constrain coronal heating models.

  5. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  6. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  7. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  8. Seasonality of monoterpene emission potentials in Quercus ilex and Pinus pinea: Implications for regional VOC emissions modeling

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor; Niinemets, ÜLo; Sabate, Santi; Gracia, Carlos; PeñUelas, Josep

    2009-11-01

    VOC emissions from terrestrial ecosystems provide one of the principal controls over oxidative photochemistry in the lower atmosphere and the resulting air pollution. Such atmospheric processes have strong seasonal cycles. Although similar seasonal cycles in VOC emissions from terrestrial ecosystems have been reported, regional emissions inventories generally omit the effect of seasonality on emissions. We compiled measurement data on seasonal variations in monoterpene emissions potentials for two evergreen species (Quercus ilex and Pinus pinea) and used these data to construct two contrasting seasonal response functions for the inclusion in monoterpene emission models. We included these responses in the Niinemets et al. model and compared simulation results to those of the MEGAN model, both with and without its predicted seasonality. The effect of seasonality on regional monoterpene emissions inventories for European Mediterranean forests dominated by these species was tested for both models, using the GOTILWA+ biosphere model platform. The consideration of seasonality in the Niinemets et al. model reduced total estimated annual monoterpene emissions by up to 65% in some regions, with largest reductions at lower latitudes. The MEGAN model demonstrated a much weaker seasonal response than that in the Niinemets et al. model, and did not capture the between species seasonality differences found in this study. Results suggest that previous regional model inventories based on one fixed emission factor likely overestimate regional emissions, and species-specific expressions of seasonality may be necessary. The consideration of seasonality both largely reduces monoterpene emissions estimates, and changes their expected seasonal distribution.

  9. Contrasting regional versus global radiative forcing by megacity pollution emissions

    NASA Astrophysics Data System (ADS)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  10. Impact of carbonaceous aerosol emissions on regional climate change

    NASA Astrophysics Data System (ADS)

    Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I.

    2006-11-01

    The past and future evolution of atmospheric composition and climate has been simulated with a version of the Max Planck Institute Earth System Model (MPI-ESM). The system consists of the atmosphere, including a detailed representation of tropospheric aerosols, the land surface, and the ocean, including a model of the marine biogeochemistry which interacts with the atmosphere via the dust and sulfur cycles. In addition to the prescribed concentrations of carbon dioxide, ozone and other greenhouse gases, the model is driven by natural forcings (solar irradiance and volcanic aerosol), and by emissions of mineral dust, sea salt, sulfur, black carbon (BC) and particulate organic matter (POM). Transient climate simulations were performed for the twentieth century and extended into the twenty-first century, according to SRES scenario A1B, with two different assumptions on future emissions of carbonaceous aerosols (BC, POM). In the first experiment, BC and POM emissions decrease over Europe and China but increase at lower latitudes (central and South America, Africa, Middle East, India, Southeast Asia). In the second experiment, the BC and POM emissions are frozen at their levels of year 2000. According to these experiments the impact of projected changes in carbonaceaous aerosols on the global mean temperature is negligible, but significant changes are found at low latitudes. This includes a cooling of the surface, enhanced precipitation and runoff, and a wetter surface. These regional changes in surface climate are caused primarily by the atmospheric absorption of sunlight by increasing BC levels and, subsequently, by thermally driven circulations which favour the transport of moisture from the adjacent oceans. The vertical redistribution of solar energy is particularly large during the dry season in central Africa when the anomalous atmospheric heating of up to 60 W m-2 and a corresponding decrease in surface solar radiation leads to a marked surface cooling, reduced

  11. UV extinction and IR emission in diffuse H2 regions

    NASA Technical Reports Server (NTRS)

    Aannestad, Per A.

    1994-01-01

    HII regions occupy a unique position in our understanding of the physical relationships between stars, the interstellar medium, and galactic structure. Observations show a complex interaction between a newly formed hot star and its surroundings. In particular, the ultraviolet radiation from the stars modifies the pre-existing dust, which again affects both the amount of ionizing radiation absorbed by the gas, and the infrared spectrum emitted by the heated dust. The aim of this project was to use UV and far-UV observations to gain information on the nebular dust, and to use this dust to model the far-IR emission, for a consistent picture of a few selected diffuse HII regions. Using archival data from the IUE and Voyager data banks and computed model atmospheres, we have deduced extinction curves for early-types stars. The requisite spectral resolution turned out to be a major task. We have successfully modelled these curves in terms of a multi-component, multi-size distribution of dust grains, and interpret the differences in the curves as primarily due to the presence or non-presence of intermediate size grains (0.01 to 0.04 micron). Much smaller (0.005 micron) grains must also be present. Finally, we have made calculations of the temperature fluctuations and the corresponding infra-red emission in such small grains.

  12. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    PubMed

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM2.5) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles.

  13. Atmospheric Impact of Large Methane Emission in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Cameron-Smith, P. J.; Bergmann, D.; Reagan, M. T.; Collins, W.; Elliott, S. M.; Maltrud, M. E.

    2011-12-01

    A highly potent greenhouse gas, methane, is locked in the solid phase as ice-like deposits containing a mixture of water and gas (mostly methane) called clathrates, in ocean sediments and underneath permafrost regions. Clathrates are stable under high pressure and low temperatures. Recent estimates suggest that about 1600 - 2000GtC of clathrates are present in oceans and 400GtC in Arctic permafrost (Archer et al.2009) which is about 4000 times that of current annual emissions. In a warming climate, increase in ocean temperatures could alter the geothermal gradient, which in turn could lead to dissociation of the clathrates and release of methane into the ocean and subsequently into the atmosphere as well. This could be of particular importance in the shallow part of the Arctic Ocean where the clathrates are found in depths of only 300m. In this presentation, we shall show results from our ongoing simulation of a scenario of large scale methane outgassing from clathrate dissociation due to warming ocean temperatures in the Arctic based on ocean sediment modeling. To that end we use the CESM (Community Earth System Model) version 1 with fully active coupled atmosphere-ocean-land model together with fast atmospheric chemistry module to simulate the response to increasing methane emissions in the Barents Sea, Canadian Archipelago and the Sea of Okhotsk. The simulation shows the effect these methane emissions could have on global surface methane, surface ozone, surface air temperature and other related indices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491764

  14. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  15. Carbon emissions from deforestation in the Brazilian Amazon Region

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-11-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; g C m-2) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazônia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C yr-1 (1 Pg{=}1015 g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C yr-1 from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C yr-1 in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  16. Pollution over Megacity Regions from the Tropospheric Emission Spectrometer (TES)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Payne, V.; Hegarty, J. D.; Luo, M.; Bowman, K. W.; Millet, D. B.

    2015-12-01

    The world's megacities, defined as urban areas with over 10 million people, are growing rapidly in population and increasing in number, as the migration from rural to urban areas continues. This rapid growth brings economic opportunities but also exacts costs, such as traffic congestion, inadequate sanitation and poor air quality. Monitoring air quality has become a priority for many regional governments, as they seek to understand the sources and distribution of the species contributing to the local pollution. Hyperspectral infrared instruments orbiting the Earth can measure many of these species simultaneously, and since they measure averages over their footprints, they are less sensitive to proximity to strong point sources than in situ measurements, and thus provide a more regional perspective. The JPL TES team has selected a number of megacities as Special Observation targets. These observations, or transects, are sets of 20 closely spaced (12 km apart) TES observations carried out every sixteen days. We will present the TES ozone (O3), peroxyacetyl nitrate (PAN), ammonia (NH3), formic acid (HCOOH) and methanol (CH3OH) data collected over Mexico City, Lagos (Nigeria) and Los Angeles from 2013 through 2015, and illustrate how the seasonality in the TES measurements is related to local emissions, biomass burning and regional circulation patterns, and we will reinforce our arguments with MODIS AOD and TES CO data. One of the transects over Mexico City in October demonstrates very nicely the synergy obtained from simultaneous measurements of multiple trace species. We will also discuss the spatial variability along the transects and how it is related to topography and land use.

  17. CONSTRAINING THE VELA PULSAR'S RADIO EMISSION REGION USING NYQUIST-LIMITED SCINTILLATION STATISTICS

    SciTech Connect

    Johnson, M. D.; Gwinn, C. R.; Demorest, P. E-mail: cgwinn@physics.ucsb.edu

    2012-10-10

    Using a novel technique, we achieve {approx}100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  18. Assessment of discrepancies between bottom-up and regional emission inventories in Norwegian urban areas

    NASA Astrophysics Data System (ADS)

    López-Aparicio, Susana; Guevara, Marc; Thunis, Philippe; Cuvelier, Kees; Tarrasón, Leonor

    2017-04-01

    This study shows the capabilities of a benchmarking system to identify inconsistencies in emission inventories, and to evaluate the reason behind discrepancies as a mean to improve both bottom-up and downscaled emission inventories. Fine scale bottom-up emission inventories for seven urban areas in Norway are compared with three regional emission inventories, EC4MACS, TNO_MACC-II and TNO_MACC-III, downscaled to the same areas. The comparison shows discrepancies in nitrogen oxides (NOx) and particulate matter (PM2.5 and PM10) when evaluating both total and sectorial emissions. The three regional emission inventories underestimate NOx and PM10 traffic emissions by approximately 20-80% and 50-90%, respectively. The main reasons for the underestimation of PM10 emissions from traffic in the regional inventories are related to non-exhaust emissions due to resuspension, which are included in the bottom-up emission inventories but are missing in the official national emissions, and therefore in the downscaled regional inventories. The benchmarking indicates that the most probable reason behind the underestimation of NOx traffic emissions by the regional inventories is the activity data. The fine scale NOx traffic emissions from bottom-up inventories are based on the actual traffic volume at the road link and are much higher than the NOx emissions downscaled from national estimates based on fuel sales and based on population for the urban areas. We have identified important discrepancies in PM2.5 emissions from wood burning for residential heating among all the inventories. These discrepancies are associated with the assumptions made for the allocation of emissions. In the EC4MACs inventory, such assumptions imply high underestimation of PM2.5 emissions from the residential combustion sector in urban areas, which ranges from 40 to 90% compared with the bottom-up inventories. The study shows that in three of the seven Norwegian cities there is need for further improvement of

  19. Methane emissions in India: Sub-regional and sectoral trends

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Kankal, Bhushan; Shukla, P. R.

    2011-09-01

    This paper uses the 2006 IPCC Guidelines and latest country specific emission factors to estimate Indian methane emissions at sectoral and district level for the years 1990, 1995, 2005 and 2008. The estimates show that while methane emissions have increased steadily over past two decades, their share in India's aggregate GHG emissions has declined from 31% in 1985 to 27% in 2008 mainly due to relatively higher growth CO 2 emissions from the fossil fuels. The estimates for the year 2008 show that: i) agriculture sector, which employed two-thirds of India's population and contributed 17% of GDP, accounted for 23% of India's GHG emissions ii) 83% of country's methane emissions are contributed by enteric fermentation, manure use and rice production, and iii) methane emissions from urban solid waste are steadily rising over the past two decades; their share in aggregate methane emissions has reached 8%. Resting on the disaggregated emissions estimates, the paper argues for using geographical and sectoral flexibilities to develop a roadmap for mitigation of methane emissions for India.

  20. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  1. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  2. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  3. High altitude plume emissions in atmospheric-window region

    SciTech Connect

    Sharma, R.D.; Bakshi, P.; Sindoni, J.

    1989-02-01

    Quantum-Mechanical Spectator model (Impulse Approximation) is used to calculate the cross section for rotation-vibration excitation of CO during collision with atomic oxygen at relative velocity (energy) of 5 (1.3), 8 (3.3), 11 (5.3), and 14 km/s (10.2 eV). The calculation is carried out for initial CO vibrational level v=o and rotational levels J=O and J=10 and final vibrational levels v'=o - 6 and final rotational levels up to J'=100. It is shown that the final results are almost independent of the initial rotational level. The rotational distribution in the final vibrational levels is rather flat and cannot be described by a Maxwell-Boltzmann distribution. The final rotation-vibration distributions are translated into relative emission in the 4.7-micron region. The emitted radiation from each level shows an R-branch bandhead around 4.4 microns with P-branch extending beyond 6 microns. It is expected that carbon dioxide and water generated by the plumes at high altitudes, upon collision with atomic oxygen, would also emit band infrared radiation around 6, 4.3, and 2.7 microns.

  4. Active Region Emission Measure Distributions and Implications for Nanoflare Heating

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.

    2014-03-01

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ~ Ta below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (TN ) and the distribution of nanoflare energies. If TN is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, TN must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  5. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  6. Global sources of non-CO2 greenhouse gas emissions: regional trends, uncertainties and options for emission reductions

    NASA Astrophysics Data System (ADS)

    Olivier, J. G.; van Aardenne, J. A.; Peters, J. A.

    2005-05-01

    An overview will be presented of sources and trends of global emissions of direct non-CO2 greenhouse gases CH4, N2O and the fluorinated gases HFCs, PFCs and SF6, which are addressed in the Kyoto protocol. Special attention will be given to regional source trends, estimated uncertainties and most recent global emission trends. In addition, the most significant options for emission reductions will be discussed in view of medium term emission scenarios that were meant to illustrate future trends without the effects climate policy. For estimating the recent global emission trends a special approach was used to compile fast annual updates of the EDGAR global emission inventories, based on the more detailed previous version. We present an overview of the approaches used for this `Fast Track' for the different source sectors. Results are presented for 1995-2002 for various anthropogenic sources at regional scales including an estimate of the accuracies achieved. A similar overview will be provided for the emissions of the ozone precursors NOx, CO and NMVOC and of black carbon. Tropospheric ozone and black carbon are both greenhouse gases, which are not considered in the Kyoto protocol, but in industrialised countries the emissions that cause them are often part of environmental policy on local and regional air quality.

  7. Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model.

    PubMed

    Kocman, David; Horvat, Milena

    2011-08-01

    A mercury emission model was developed to estimate non-point source mercury (Hg) emissions occurring over the year from the Idrijca River catchment, draining the area of the world's second largest Hg mine in Idrija, Slovenia. Site-specific empirical correlations between the measured Hg emission fluxes and the parameters controlling the emission (comprising substrate Hg content, soil temperature, solar radiation and soil moisture) were incorporated into the mercury emission model developed using Geographic Information System technology. In this way, the spatial distribution and significance of the most polluted sites that need to be properly managed was assessed. The modelling results revealed that annually approximately 51 kg of mercury are emitted from contaminated surfaces in the catchment (640 km(2)), highlighting that emission from contaminated surfaces contributes significantly to the elevated Hg concentrations in the ambient air of the region. Very variable meteorological conditions in the modelling domain throughout the year resulted in the high seasonal and spatial variations of mercury emission fluxes observed. Moreover, it was found that mercury emission fluxes from surfaces in the Idrija region are 3-4 fold higher than the values commonly used in models representing emissions from global mercuriferous belts. Sensitivity and model uncertainty analysis indicated the importance of knowing not only the amount but also the type of mercury species and their binding in soils in future model development.

  8. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.; Archibald, Anne; Hessels, Jason; van Leeuwen, Joeri; Mitra, Dipanjan; Ransom, Scott; Stairs, Ingrid; van Straten, Willem; Weisberg, Joel M.

    2017-08-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  9. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    PubMed

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  10. [Objective functional compensation in NHIL: INAIL prosthesic protocol in Lombardy, 2007-2010].

    PubMed

    Calcinoni, O; Polo, L

    2011-01-01

    Even if NHIL gives already right to economic compensation, our Insurance aimed to real functional compensation, to reduce handicap in everyday life. Together with Professor Giordano, Audioprosthesists' Association and Manufacturers' representatives, INAIL Medical Superintendence started in 2003 a study on this problem, involving some of his forensic physician and ENT staff; in 2007-2009 INAIL issued directives innovating and planning the rules in prosthesis provision, not only acoustical ones. In 2010 started an experimental protocol to rule hearing aid provision in all INAIL centers, throughout Italy. Authors present first results of this protocol in Lombardy, related to previous and national ones.

  11. Some important physical properties of laminated veneer lumber (Lvl) made from oriental beech and Lombardy poplar

    NASA Astrophysics Data System (ADS)

    Kılıç, Murat

    2012-09-01

    This study examined some physical characteristics of laminated veneer lumber (LVL) obtained in different compositions from cut veneers of Oriental beech (Fagus Orientalis Lipsky) and Lombardy poplar (Populus nigra) with thicknesses of 4 mm and 5 mm. Five each beech and poplar trees were felled with this objective. The PVAc (Kleiberit 303) and PU (Bizon Timber PU-Max Express) types of adhesive were used in lamination. The air-dry and oven dry densities, cell wall density and porosity, the value of volume density, shrinkage in a tangential and radial direction and volume swelling amounts were determined by preparing the specimens in accordance with the standards.

  12. Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories

    NASA Astrophysics Data System (ADS)

    Whitburn, S.; Van Damme, M.; Kaiser, J. W.; van der Werf, G. R.; Turquety, S.; Hurtmans, D.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.

    2015-11-01

    Vegetation fires emit large amounts of nitrogen compounds in the atmosphere, including ammonia (NH3). These emissions are still subject to large uncertainties. In this study, we analyze time series of monthly NH3 total columns (molec cm-2) from the IASI sounder on board MetOp-A satellite and their relation with MODIS fire radiative power (MW) measurements. We derive monthly NH3 emissions estimates for four regions accounting for a major part of the total area affected by fires (two in Africa, one in central South America and one in Southeast Asia), using a simplified box model, and we compare them to the emissions from both the GFEDv3.1 and GFASv1.0 biomass burning emission inventories. In order to strengthen the analysis, we perform a similar comparison for carbon monoxide (CO), also measured by IASI and for which the emission factors used in the inventories to convert biomass burned to trace gas emissions are thought to be more reliable. In general, a good correspondence between NH3 and CO columns and the FRP is found, especially for regions in central South America with correlation coefficients of 0.82 and 0.66, respectively. The comparison with the two biomass burning emission inventories GFASv1.0 and GFEDv3.1 shows good agreements, particularly in the time of the maximum of emissions for the central South America region and in the magnitude for the region of Africa south of the equator. We find evidence of significant non-pyrogenic emissions for the regions of Africa north of the equator (for NH3) and Southeast Asia (for NH3 and CO). On a yearly basis, total emissions calculated from IASI measurements for the four regions reproduce fairly well the interannual variability from the GFEDv3.1 and GFASv1.0 emissions inventories for NH3 but show values about 1.5-2 times higher than emissions given by the two biomass burning emission inventories, even when assuming a fairly long lifetime of 36 h for that species.

  13. Ground beetles (Coleoptera: Carabidae) of rice field banks and restored habitats in an agricultural area of the Po Plain (Lombardy, Italy)

    PubMed Central

    2013-01-01

    Abstract An entomological investigation was carried out in an agricultural area, mainly rice fields, of the Po river plain, located in the municipalities of Lacchiarella (MI) and Giussago (PV) (Lombardy, Italy). In 2009 and 2010, ground beetles (Coleoptera: Carabidae) were sampled along rice field banks and in restored habitats, by means of pitfall traps. The area appeared as species-rich, compared to other anthropogenic habitats in the Po river pain. Most of the collected Carabids were species with a wide distribution in the Paleartic region, eurytopic and common in European agroecosystems. The assemblages were dominated by small-medium, macropterous species, with summer larvae. No endemic species were found. Species with southern distribution, rarely found north of the Po river, were also sampled. Amara littorea is recorded for the first time in Italy. PMID:24723767

  14. INFLUENCE OF INCREASED ISOPRENE EMISSIONS ON REGIONAL OZONE MODELING

    EPA Science Inventory

    The role of biogenic hydrocarbons on ozone modeling has been a controversial issue since the 1970s. In recent years, changes in biogenic emission algorithms have resulted in large increases in estimated isoprene emissions. This paper describes a recent algorithm, the second gener...

  15. INFLUENCE OF INCREASED ISOPRENE EMISSIONS ON REGIONAL OZONE MODELING

    EPA Science Inventory

    The role of biogenic hydrocarbons on ozone modeling has been a controversial issue since the 1970s. In recent years, changes in biogenic emission algorithms have resulted in large increases in estimated isoprene emissions. This paper describes a recent algorithm, the second gener...

  16. Highly nonlinear ozone formation in the Houston region and implications for emission controls

    NASA Astrophysics Data System (ADS)

    Xiao, Xue; Cohan, Daniel S.; Byun, Daewon W.; Ngan, Fong

    2010-12-01

    Photochemical modeling with high-order sensitivity analysis is applied to simulate the nonlinear responses of ozone to NOx and VOC emissions from different source regions in the Houston-Galveston-Brazoria area and their interactions. First-order responses of daytime ozone to Houston NOx emissions are typically positive but are negative in the core region, indicating a NOx-inhibited chemical regime there. Houston anthropogenic VOC emissions exert a spatially smaller impact on ozone but are important to high ozone concentrations in the core region. Highest ozone concentrations in the Houston region typically occur where the impacts of the Houston Ship Channel NOx emissions coincide with those of NOx emitted from the rest of the Houston region. Daytime ozone is found to exhibit a more nonlinear responsiveness to precursor emissions in Houston than has been reported in other regions, including a strongly concave response to local NOx emissions and strong interactions between the impacts of NOx and VOC emissions changes. Due to this intense nonlinearity, moderate perturbations (10-30%) in either NOx or VOC emissions inventories could flip whether Houston ozone is modeled to be more responsive to VOC control or NOx control. Thus the accuracy of emission inventories could strongly influence predictions of ozone response to emission reductions.

  17. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Treesearch

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  18. Premature deaths attributed to source-specific BC emissions in six urban US regions

    NASA Astrophysics Data System (ADS)

    Turner, Matthew D.; Henze, Daven K.; Capps, Shannon L.; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R.; Stanier, Charles O.; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G.; Nenes, Athanasios; Pinder, Rob W.; Napelenok, Sergey L.; Bash, Jesse O.; Percell, Peter B.; Chai, Tianfeng

    2015-11-01

    Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions.

  19. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  20. Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China.

    PubMed

    Zheng, Junyu; Ou, Jiamin; Mo, Ziwei; Yin, Shasha

    2011-12-15

    A 3 km × 3 km gridded mercury emission inventory in the Pearl River Delta (PRD) region for 2008 was compiled from the best available emission factors and official statistical data. The inventory presented a comprehensive estimation of anthropogenic mercury sources and roughly estimated the emissions from natural sources. The total mercury emissions in the PRD region for the year of 2008 are estimated to be 17,244 kg, of which 85% released as Hg(0), 11% as Hg(2+), and 4% as Hg(P). Anthropogenic activities are dominant sources, accounting for 91% of the total emissions, while natural sources constitute the remaining emissions. Ranking by cities, Foshan produces the largest mercury emissions, followed by Dongguan, Guangzhou and Jiangmen. Coal combustion, municipal solid waste (MSW) incineration, fluorescent lamp and battery production are dominant contributors, responsible for 28%, 21%, 19% and 16% of the anthropogenic emissions, respectively. The high contribution of MSW incineration results from the rapid growth of MSW incineration in this region, reflecting a new trend of mercury emissions in China, especially in the fast developing regions. This implies the urgent need for further investigation of mercury emissions and the importance of controlling mercury emissions from MSW incineration.

  1. VizieR Online Data Catalog: Emission lines from giant HII regions (Garcia Vargas+, 1995)

    NASA Astrophysics Data System (ADS)

    Garcia Vargas, M. L.; Bressan, A.; Diaz, A. I.

    1995-03-01

    We have computed theoretical models of the emission line spectra of giant extragalactic HII regions (GEHR) in which a single star cluster is assumed to be responsible for the ionization. In this paper we present the synthetic emission line spectra of the ionized regions. (1 data file).

  2. The Fan Region at 1.5 GHz with GMIMS: Polarized synchrotron emission tracing Galactic structure

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Landecker, Tom; Carretti, Ettore; Douglas, Kevin A.; Sun, Xiaohui; Gaensler, Bryan M.; Mao, Sui Ann; McClure-Griffiths, Naomi; Reich, Wolfgang; Wolleben, Maik; Miller Dickey, John; Gray, Andrew; Haverkorn, Marijke; Leahy, John Patrick; Schnitzeler, Dominic

    2017-01-01

    Diffuse polarized radio continuum emission provides information about the structure of the Galactic magnetic field. With the Global Magneto-Ionic Medium Survey (GMIMS), we are mapping this emission from the entire sky from 300 to 1800 MHz. We will present a brief overview of the GMIMS survey.We will focus on 1270-1750 MHz observations from the Northern hemisphere GMIMS data to determine the geometry of the magnetic field in the Fan Region. The Fan Region is one of the dominant features of the sky in polarized radio continuum, long thought to be a local (d < 500 pc) synchrotron emission feature. We find that the 1.5 GHz polarized radio emission is anti-correlated with Halpha emission from the Perseus Arm, 2 kpc away. This indicates that ionized gas in the Perseus Arm depolarizes about 30% of the Fan Region emission, indicating that some of the Fan Region emission originates in or beyond the Perseus Arm. The synchrotron emission must therefore be produced along a large path length, suggesting the presence of a coherent magnetic field in the plane in the outer Galaxy. We argue that the polarized emission from the Fan Region is a consequence of the structure of the Galactic magnetic field and ISM. We model beam depolarization due to the ISM, finding that in the presence of depolarization the rotation measure measured from polarized emission is much lower than that measured towards background point sources, explaining an observed discrepancy between the GMIMS rotation measures and background rotation measures.

  3. Assessing Natural Background Levels of aquifers in the Metropolitan Area of Milan (Lombardy)

    NASA Astrophysics Data System (ADS)

    De Caro, Mattia; Crosta, Giovanni; Frattini, Paolo

    2016-04-01

    The European Water Framework Directive (WFD 2000/60/CE) requires Member States to evaluate the status of groundwater bodies in order to reach a good water quality for human consumption. One of the preliminary steps for defining the status of groundwater bodies consists in the definition and evaluation of the so-called Natural Background Levels (NBL). The NBL or Baseline level can be defined as "the range of concentration of a given element, isotope or chemical compound in solution, derived entirely from natural, geological, biological or atmospheric sources, under conditions not perturbed by anthropogenic activity" (Edmund and Shand, 2009). The qualitative analysis for a large area (ca 4500 Km2) of the Po Plain around the Milan Metropolitan area (Lombardy, Italy) is presented in this study. Despite the aquifers in the Milan metropolitan area are an incredible groundwater resource for a very large population (3.195.629 inhabitants in the metropolitan area, data at November 2014) and a highly industrialized area, a groundwater baseline characterization is still missing. In order to attain the hydro-geochemical characterization a complete geodatabase was built (120.655 chemical samples from 1980 to 2014). This database has been explored by classical and multivariate statistical analyses to provide relationships among the more influential lithological, hydrogeological and hydro-chemical variables. Finally, the NBLs of different chemical species which may be anthropogenic sensitive (Na, Cl, K, NO3, SO4, NH4, As, Fe, Cr, Fe, Mn, Zn) and for multiple aquifer bodies (phreatic, semi-confined and confined aquifer) are evaluated. Two different approaches are applied: the Pre-Selection method (BRIDGE, 2006) and the Component-Separation method. The first one (PS) consists in the exclusion of samples from the available dataset that could indicate human activities then deriving the NBL as the 90th percentile of the remaining data. The second one (CS) consists in the fitting of

  4. The groundwater system of Livigno area (north Lombardy - Italy):first results

    NASA Astrophysics Data System (ADS)

    Gambillara, R.; Terrana, S.; Carugati, G.

    2009-04-01

    In the last few years, a progressive impoverishment of water resources took place in the mountain; this is due to the increase of antropic activity and to the change in the precipitation regime. In this context, the preservation of every aquifer will acquire great importance. In particular, the mountain fissured aquifers could play a relevant role in the water supply for the mountain people, although they have a limited productivity. These aquifers, in fact, represent the main alimentation source for mountain people. However, they are made vulnerable by external factors such as the climate change and the pollution, because these springs are near to their recharge areas, therefore their circuits are short and swift. A good knowledge of the mountain hydro-geological circuits allows either their safeguard or a better exploitation. In the mountain environment, for a better reconstruction of groundwater system is suggested the multidisciplinary approach, because it permit to maximize the merit of both methods. The Livigno area represents a good test for the groundwater system reconstruction in the mountain environment because it has a complex geological and tectonical setting and because, in this area, the density of population varies greatly during the year and this generate a shortage of water in some seasons. In order to characterize this aquifer, a multidisciplinary approach, based on lithological, geochemical, hydro-geological and geo-structural methods, has been adopted. Mostly, the geo-structural methods allow to determinate the rock permeability and the hydraulic conductivity tensor, whereas the geochemical method permit to reconstruction of groundwater system. The Livigno area is located at 1800 m s.l.m. in the central Alps (northern Lombardy - Italy). For the tectonic setting this area is comprise between the Err Bernina system (Lower Australpine) and the Ortles-Quatervals system (Upper Austroalpine). The most important regional fault is represented by Zebr

  5. National Emission Standards for Hazardous Air Pollutants in Region 7

    EPA Pesticide Factsheets

    National Emission Standards for Hazardous Air Pollutants (NESHAPs) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.

  6. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    PubMed

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    SciTech Connect

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  8. Regional estimates of the transient climate response to cumulative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Matthews, H. Damon; de Elía, Ramón

    2016-05-01

    The Transient Climate Response to cumulative carbon Emissions (TCRE) measures the response of global temperatures to cumulative CO2 emissions. Although the TCRE is a global quantity, climate impacts manifest predominantly in response to local climate changes. Here we quantify the link between CO2 emissions and regional temperature change, showing that regional temperatures also respond approximately linearly to cumulative CO2 emissions. Using an ensemble of twelve Earth system models, we present a novel application of pattern scaling to define the regional pattern of temperature change per emission of CO2. Ensemble mean regional TCRE values range from less than 1 °C per TtC for some ocean regions, to more than 5 °C per TtC in the Arctic, with a pattern of higher values over land and at high northern latitudes. We find also that high-latitude ocean regions deviate more strongly from linearity as compared to land and lower-latitude oceans. This suggests that ice-albedo and ocean circulation feedbacks are important contributors to the overall negative deviation from linearity of the global temperature response to high levels of cumulative emissions. The strong linearity of the regional climate response over most land regions provides a robust way to quantitatively link anthropogenic CO2 emissions to local-scale climate impacts.

  9. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  10. Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region.

    PubMed

    Lyon, David R; Zavala-Araiza, Daniel; Alvarez, Ramón A; Harriss, Robert; Palacios, Virginia; Lan, Xin; Talbot, Robert; Lavoie, Tegan; Shepson, Paul; Yacovitch, Tara I; Herndon, Scott C; Marchese, Anthony J; Zimmerle, Daniel; Robinson, Allen L; Hamburg, Steven P

    2015-07-07

    Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400-82,400) kg CH4 h(-1). O&G emissions were estimated to be 46,200 (40,000-54,100) kg CH4 h(-1) with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory's higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites.

  11. Regional emission metrics for short-lived climate forcers from multiple models

    NASA Astrophysics Data System (ADS)

    Aamaas, Borgar; Berntsen, Terje K.; Fuglestvedt, Jan S.; Shine, Keith P.; Bellouin, Nicolas

    2016-06-01

    For short-lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemical-transport or coupled chemistry-climate) models. We distinguish between emissions during summer (May-October) and winter (November-April) for emissions in Europe and East Asia, as well as from the global shipping sector and global emissions. The species included in this study are aerosols and aerosol precursors (BC, OC, SO2, NH3), as well as ozone precursors (NOx, CO, VOCs), which also influence aerosols to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated using global warming potential (GWP) and global temperature change potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramping period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies.For the aerosols, the emission metric values are larger in magnitude for emissions in Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values for emissions in East Asia and winter for CO and in Europe and summer for VOCs. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of an illustrative mitigation policy package is

  12. Estimation of greenhouse impacts of continuous regional emissions

    SciTech Connect

    Sinisalo, J.

    1998-03-27

    In this thesis, a method to calculate the greenhouse impact of continuous, time-dependent, non-global greenhouse gas emissions is used to estimate the impact of estimated anthropogenic pre-1990 and future (post 1990) emissions of CO{sub 2}, CH{sub 4} and N{sub 2}O of Finland and Nordic countries. Estimates for the impact of Finnish CFCs and their substitutes and the significance of Finnnish forests as carbon sink are also calculated. The method is also used to compare several different wood and peat energy production schemes with fossil fuel use, in terms of caused greenhouse impact. The uncertainty of the results is examined.

  13. VOLATILE ORGANIC COMPOUNDS FROM VEGETATION IN SOUTHERN YUNNAN PROVINCE, CHINA: EMISSION RATES AND SOME POTENTIAL REGIONAL IMPLICATIONS

    EPA Science Inventory

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVO...

  14. VOLATILE ORGANIC COMPOUNDS FROM VEGETATION IN SOUTHERN YUNNAN PROVINCE, CHINA: EMISSION RATES AND SOME POTENTIAL REGIONAL IMPLICATIONS

    EPA Science Inventory

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVO...

  15. Reducing greenhouse gas emissions for climate stabilization: framing regional options

    SciTech Connect

    Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

  16. MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL

    EPA Science Inventory

    This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...

  17. MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL

    EPA Science Inventory

    This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...

  18. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  19. Reduction in NO(x) emission trends over China: regional and seasonal variations.

    PubMed

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Liu, Zhen

    2013-11-19

    We analyzed satellite observations of nitrogen dioxide (NO2) columns by the Ozone Monitoring Instrument (OMI) over China from 2005 to 2010 in order to estimate the top-down anthropogenic nitrogen oxides (NOx) emission trends. Since NOx emissions were affected by the economic slowdown in 2009, we removed one year of abnormal data in the analysis. The estimated average emission trend is 4.01 ± 1.39% yr(-1), which is slower than the trend of 5.8-10.8% yr(-1) reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trends. The average NOx emission trend of 3.47 ± 1.07% yr(-1) in warm season (June-September) is less than the trend of 5.03 ± 1.92% yr(-1) in cool season (October-May). The regional annual emission trends decrease from 4.76 ± 1.61% yr(-1) in North China Plain to 3.11 ± 0.98% yr(-1) in Yangtze River Delta and further down to -4.39 ± 1.81% yr(-1) in Pearl River Delta. The annual emission trends of the four largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen are -0.76 ± 0.29%, 0.69 ± 0.27%, -4.46 ± 1.22%, and -7.18 ± 2.88% yr(-1), considerably lower than the regional averages or surrounding rural regions. These results appear to suggest that a number of factors, including emission control measures of thermal power plants, increased hydro-power usage, vehicle emission regulations, and closure or migration of high-emission industries, have significantly reduced or even reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions, but their effects are not as significant in other major cities or less economically developed regions.

  20. Allowable CO2 emissions based on regional and impact-related climate targets

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sonia I.; Donat, Markus G.; Pitman, Andy J.; Knutti, Reto; Wilby, Robert L.

    2016-01-01

    Global temperature targets, such as the widely accepted limit of an increase above pre-industrial temperatures of two degrees Celsius, may fail to communicate the urgency of reducing carbon dioxide (CO2) emissions. The translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because such targets are more directly aligned with individual national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean.

  1. Allowable CO2 emissions based on regional and impact-related climate targets.

    PubMed

    Seneviratne, Sonia I; Donat, Markus G; Pitman, Andy J; Knutti, Reto; Wilby, Robert L

    2016-01-28

    Global temperature targets, such as the widely accepted limit of an increase above pre-industrial temperatures of two degrees Celsius, may fail to communicate the urgency of reducing carbon dioxide (CO2) emissions. The translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because such targets are more directly aligned with individual national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean.

  2. Biogenic voc emissions development and its impacts on regional o3 in PRD, china

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Shuping, Situ; Guenther, Alex; Chen, Fei; Wu, Zhiyong

    2010-05-01

    The new Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been coupled with WRF-Chem to investigate the influence of biogenic violate organic carbon (BVOC ) emissions on the regional distribution of O3 and SOA concentration in the Pearl River Delta (PRD), China. MEGAN first estimate an emission factor which represents the net above-canopy emission rate expected at optimal conditions, and use a number of environmental correction factor based on photosynthetically activated radiation (PAR) and leaf temperature to adjust the emission rate due to deviations from optimal conditions. Total emissions are the sum of emissions estimated for each plant functional type (PFT) in a given grid cell. Our model simulations estimated showed: (1) Total annual BVOCs emissions were 339.01× 106 kg, which is 40.68% of annual AVOCs emissions and 28.91% of total VOCs emission in PRD in 2006. Isoprene, monoterpene, sesquiterpene and OVOCs contributed about 31.94%, 39.23%, 3.27% and 25.56% of the estimated total annual emissions respectively. α- pinene and β- pinene were the major components in monoterpene, which contributed 28.09% and 26.98% to the total annual monoterpene emissions respectively;β-caryophyllene andα-farnesene were two important sesquiterpene, and they contributed to 22.31% and 18.76% of the annual sesquiterpene emissions.(2) BVOCs emissions have large variations in their spatial distributions, which were mainly resulted from the differences in the geographical distribution of vegetation. Their emission amounts were larger in the places where urbanization were relative lower and plants distributions were higher.(3) Emissions of terpenoids had significant annual and diurnal variations and the largest emission rate occurred at 13:00 local time while the amount of emission in summer is the largest.(4) There were significant terpenoids emission rate (≥1.21.2 kg km-2h-1) in the remote areas in PRD region where the emissions of AVOCs were low, and

  3. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events.

    PubMed

    Ault, Andrew P; Moore, Meagan J; Furutani, Hiroshi; Prather, Kimberly A

    2009-05-15

    Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.

  4. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China

    NASA Astrophysics Data System (ADS)

    Situ, S.; Guenther, A.; Wang, X.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-01

    This study investigated the impacts of seasonal and regional variability in biogenic volatile organic compounds (BVOCs) on surface ozone over the Pearl River delta (PRD) region in southern China in 2010 with the WRF-Chem/MEGAN (Weather Research and Forecasting coupled with Chemistry/Model of Emissions of Gases and Aerosols from Nature) modeling system. Compared to observations in the literature and this study, MEGAN tends to predict reasonable BVOC emissions in summer, but may overestimate isoprene emissions in autumn, even when the local high-resolution land-cover data and observed emission factors of BVOCs from local plant species are combined to constrain the MEGAN BVOC emissions model. With the standard MEGAN output, it is shown that the impact of BVOC emissions on the surface ozone peak is ~3 ppb on average with a maximum of 24.8 ppb over the PRD region in autumn, while the impact is ~10 ppb on average, with a maximum value of 34.0 ppb in summer. The areas where surface ozone is sensitive to BVOC emissions are different in autumn and in summer, which is primarily due to the change of prevailing wind over the PRD; nevertheless, in both autumn and summer, the surface ozone is most sensitive to the BVOC emissions in the urban area because the area is usually VOC-limited. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables were also performed to assess the sensitivity of surface ozone to MEGAN drivers, and the results reveal that land cover and emission factors of BVOCs are the most important drivers and have large impacts on the predicted surface ozone.

  5. [Asbestos exposure in the non-asbestos textile industry: the experience of the Lombardy Mesothelioma Registry].

    PubMed

    Mensi, Carolina; Macchione, Maria; Termine, Lorenzo; Canti, Zulejka; Rivolta, Giuseppe; Riboldi, Luciano; Chiappino, Gerolamo

    2007-01-01

    The Lombardy Mesothelioma Registry, activated in 2000, receives more than 300 cases per year of suspected malignant mesothelioma; the standardized (age and gender) incidence rate of pleural mesothelioma is 2.4/100,000 inhabitants (CI 95% 2.0-2.7). The finding of an increasing number of cases among workers of the non-asbestos-textile industry, classified as "unknown exposure to asbestos", upheld the suspect of presence of asbestos in this compartment. Specific information about a possible asbestos exposure were collected by technicians, maintenance personnel and other experts; industrial machinery utilized in the past was thoroughly examined; direct inspections were carried out in several workplaces that had not yet undergone significant changes with respect to the past. A large amount of asbestos had been regularly used on the ceilings and also to the walls of factories in order to avoid both condensation of steam and reflection of noise. In addition, asbestos had also been widely used to insulate water and steam pipes. The braking systems of most of machines also had asbestos gaskets, and on several looms some brakes operated continuously. The population in study was composed of 119 subjects, 27 males and 92 females, median age of 72 years. Asbestos exposure was ascribed to work in 106 cases (89%). The system devised by the Lombardy Registry had brought to light an occupational hazard in a professional area previously never believed as a source of asbestos exposure. In consideration of the described experience, both environmental and clinical, it seems reasonable to consider the non-asbestos-textile as a new department at risk for asbestos exposure.

  6. Energy and Emissions from U.S. Population Shifts and Implications for Regional GHG Mitigation Planning.

    PubMed

    Hoesly, Rachel; Matthews, H Scott; Hendrickson, Chris

    2015-11-03

    Living in different areas is associated with different impacts; the movement of people to and from those areas will affect energy use and emissions over the U.S. The emissions implications of state-to-state migration on household energy and GHG emissions are explored. Three million households move across state lines annually, and generally move from the North East to the South and West. Migrating households often move to states with different climates (thus different heating and cooling and needs), different fuel mixes, and different regional electricity grids, which leads them to experience changes in household emissions as a result of their move. Under current migration trends, the emissions increases of households moving from the Northeast to the South and Southwest are balanced by the emissions decreases of households moving to California and the Pacific Northwest. The net sum of emissions changes for migrating households is slightly positive but near zero; however, that net zero sum represents the balance of many emission changes. Planning for continued low carbon growth in low carbon regions or cities experiencing high growth rates driven by migration is essential in order to offset the moderate emissions increases experienced by households moving to high carbon regions.

  7. Detecting fossil fuel emissions patterns from subcontinental regions using North American in situ CO2 measurements.

    PubMed

    Shiga, Yoichi P; Michalak, Anna M; Gourdji, Sharon M; Mueller, Kim L; Yadav, Vineet

    2014-06-28

    The ability to monitor fossil fuel carbon dioxide (FFCO2) emissions from subcontinental regions using atmospheric CO2 observations remains an important but unrealized goal. Here we explore a necessary but not sufficient component of this goal, namely, the basic question of the detectability of FFCO2 emissions from subcontinental regions. Detectability is evaluated by examining the degree to which FFCO2 emissions patterns from specific regions are needed to explain the variability observed in high-frequency atmospheric CO2 observations. Analyses using a CO2 monitoring network of 35 continuous measurement towers over North America show that FFCO2 emissions are difficult to detect during nonwinter months. We find that the compounding effects of the seasonality of atmospheric transport patterns and the biospheric CO2 flux signal dramatically hamper the detectability of FFCO2 emissions. Results from several synthetic data case studies highlight the need for advancements in data coverage and transport model accuracy if the goal of atmospheric measurement-based FFCO2 emissions detection and estimation is to be achieved beyond urban scales. Poor detectability of fossil fuel CO2 emissions from subcontinental regionsDetectability assessed via attribution of emissions patterns in atmospheric dataLoss in detectability due to transport modeling errors and biospheric signal.

  8. REGIONAL ASSESSMENT OF METHANE EMISSION RATES FROM RESERVOIRS IN THE MIDWESTERN UNITED STATES

    EPA Science Inventory

    Reservoirs are a globally significant source of methane (CH4) to the atmosphere, but regional and global emission estimates are poorly constrained due to high variability in emission rates among reservoirs and a lack of measurements in some areas geographic areas. Methane emissi...

  9. Tracing industrial sulfur emissions in atmospheric sulfate deposition in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard. Mayer; Mark E. Fenn

    2012-01-01

    Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in...

  10. REGIONAL ASSESSMENT OF METHANE EMISSION RATES FROM RESERVOIRS IN THE MIDWESTERN UNITED STATES

    EPA Science Inventory

    Reservoirs are a globally significant source of methane (CH4) to the atmosphere, but regional and global emission estimates are poorly constrained due to high variability in emission rates among reservoirs and a lack of measurements in some areas geographic areas. Methane emissi...

  11. Air Emissions Inventory Guidance for Implementation of Ozone and Particulate Matter NAAQS and Regional Haze Regulations

    EPA Pesticide Factsheets

    Guidance document on how to develop emission inventories to meet State Implementation Plan requirements for complying with the 8-hour ozone national ambient air quality standards (NAAQS), the revised particulate matter (PM) NAAQS, and the regional haze reg

  12. Pulsar VLBI to Measure Cosmological Rotation and Study Pulsar Emission Regions

    NASA Astrophysics Data System (ADS)

    Gwinn, C. R.

    2009-08-01

    Pulsars are useful for measuring the rotation of the universe. Also, their emission regions provide interesting laboratories for plasma physics. I describe here how VLBI of pulsars, and the VSOP-2 spacecraft, can contribute to such studies.

  13. Cosmic rays and the emission line regions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Mushotzky, R. F.

    1984-01-01

    The effects that the synchrotron emitting relativistic electrons could have on the emission line regions which characterize active nuclei are discussed. Detailed models of both the inner, dense, broad line region and the outer, lower density, narrow line region are presented, together with the first models of the optically emitting gas often found within extended radio lobes. If the relativistic gas which produces the synchrotron radio emission is mixed with the emission line region gas then significant changes in the emission line spectrum will result. The effects of the synchrotron emitting electrons on filaments in the Crab Nebula are discussed in an appendix, along with a comparison between the experimental calculations, which employ the mean escape probability formalism, and recent Hubbard and Puetter models.

  14. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign

    SciTech Connect

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B.; Jaffe, Daniel A.; Kleinman, Lawrence; Sedlacek, Arthur J.; Briggs, Nicole L.; Hee, Jonathan; Fortner, Edward; Shilling, John E.; Worsnop, Douglas; Yokelson, Robert J.; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K.; Pekour, Mikhail S.; Springston, Stephen; Zhang, Qi

    2016-08-16

    Abstract Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, wildfire emissions in the Pacific Northwest region of the United States were characterized using real-time measurements near their sources using an aircraft, and farther downwind from a fixed ground site located at the Mt. Bachelor Observatory (~ 2700 m a.s.l.). The characteristics of aerosol emissions were found to depend strongly on the modified combustion efficiency (MCE), a qualitative index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the carbon oxidation state of organic aerosol increased with MCE. The relationships between the aerosol properties and MCE were consistent between fresher emissions (~1 hour old) and emissions sampled after atmospheric transport (6 - 45 hours), suggesting that organic aerosol mass loading and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of regionally transported wildfire emissions and their impacts on regional air quality and global climate.

  15. Characterization of emissions sources in the California-Mexico Border Region during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Zavala, M. A.; Lei, W.; Li, G.; Bei, N.; Barrera, H.; Tejeda, D.; Molina, L. T.; Cal-Mex 2010 Emissions Team

    2010-12-01

    The California-Mexico border region provides an opportunity to evaluate the characteristics of the emission processes in rapidly expanding urban areas where intensive international trade and commerce activities occur. Intense anthropogenic activities, biomass burning, as well as biological and geological sources significantly contribute to high concentration levels of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), volatile organic compounds (VOCs), air toxics, and ozone observed in the California-US Baja California-Mexico border region. The continued efforts by Mexico and US for improving and updating the emissions inventories in the sister cities of San Diego-Tijuana and Calexico-Mexicali has helped to understand the emission processes in the border region. In addition, the recent Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region. In this work we will present our analyzes of the data obtained during Cal-Mex 2010 for the characterization of the emission sources and their use for the evaluation of the recent emissions inventories for the Mexican cities of Tijuana and Mexicali. The developed emissions inventories will be implemented in concurrent air quality modeling efforts for understanding the physical and chemical transformations of air pollutants in the California-Mexico border region and their impacts.

  16. Estimating methane emissions in California's urban and rural regions using multitower observations

    DOE PAGES

    Jeong, Seongeun; Newman, Sally; Zhang, Jingsong; ...

    2016-11-05

    Here, we present an analysis of methane (CH4) emissions using atmospheric observations from 36 thirteen sites in California during June 2013 – May 2014. A hierarchical Bayesian inversion 37 method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by 38 comparing measured CH4 mixing ratios with transport model (WRF-STILT) predictions based 39 on seasonally varying California-specific CH4 prior emission models. The transport model is 40 assessed using a combination of meteorological and carbon monoxide (CO) measurements 41 coupled with the gridded California Air Resources Board (CARB) carbon monoxide (CO) 42 emission inventory. Hierarchical Bayesianmore » inversion suggests that state annual anthropogenic 43 CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence, including transport bias 44 uncertainty), higher (1.2 - 1.8 times) than the CARB current inventory (1.64 Tg CH4/yr in 2013). 45 We note that the estimated CH4 emissions drop to 1.0 - 1.6 times the CARB inventory if we 46 correct for the 10% median CH4 emissions assuming the bias in CO analysis is applicable to 47 CH4. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and 48 South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, 49 respectively. This study suggests that the livestock sector is likely the major contributor to the 50 state total CH4 emissions, in agreement with CARB’s inventory. Attribution to source sectors for 51 sub-regions of California using additional trace gas species would further improve the 52 quantification of California’s CH4 emissions and mitigation efforts towards the California Global 53 Warming Solutions Act of 2006 (AB-32).« less

  17. The Effects of Surface Longwave Emissivity on Atmospheric Circulation and Convection at Sahara and Sahel Regions

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Chen, X.; Huang, X.; Flanner, M.

    2016-12-01

    The longwave spectral emissivities of desert and vegetation are considerably different from blackbody emissivity. A dominant majority of current atmospheric GCMs still treat the surface as blackbody and ignore spectral variations of surface emissivity. Charney (1975) proposed a positive feedback in arid areas via interactions among solar radiation, surface albedo, and atmospheric motion. This leads us to postulate that similar feedback as in Charney (1975) could operate in the longwave and such longwave feedback might not be properly represented by current GCMs. We incorporate realistic surface spectral emissivity over the Sahara and Sahel regions, where the emissivity is as low as 0-6-0.7 over the IR window region, into the NCAR CESM v1.1.1, while keeping treatments for the rest of the globe unchanged. Both the standard and the modified CESM are then used to carry out a 10-year simulation with prescribed climatological SST. Compared to the standard CESM simulation, the mean surface radiative temperature in the modified CESM simulation increases by 1.6 K over the region. However, the net upward longwave flux at the top of the atmosphere is decreased by 2.33 Wm-2 because the low emissivity of desert leads to less longwave emission over the IR window region. Energy budget analysis shows that the atmospheric radiative cooling over the region is decreased by 1.33 Wm-2 in the modified CESM simulation. The changes in 500-hPa vertical velocities indicate in average enhanced descending motion over the region, result in suppression of convection, which in return enhances arid situation in the region. Our findings demonstrate that change in surface LW spectral emissivity can influence simulated climate in the Sahara and Sahel regions in a way, to some extent, similar to the mechanism proposed by Charney (1975).

  18. The Ultraviolet Emission Spectra of AN HII Region

    NASA Astrophysics Data System (ADS)

    Cox, Nancy

    1991-07-01

    ONE OF THE ADVANTAGES OF THE NEW INSTRUMENTS SUCH AS THE HUBBLE SPACE TELESCOPE IS TO BE ABLE TO STUDY THE UNIVERSE AT WAVELENGTHS PREVIOUSLY UNOBSERVABLE FROM UNDER THE EARTH'S ATMOSPHERE. ONE THE THESE IS THE UV REGION OF THE STECTRUM. USING HST'S FOS, I WOULD LIKE TO TAKE A UV SPETRUM OF AN HII REGION, M8, THE LAGOON NEBULA (HOURGLASS REGION). HII REGIONS ARE AREAS OF STARBIRTH AND ARE SAMPLES OF THE INTERSTELLAR MATTER OUT OF WHICH STARS ARE BEING BORN. HOT, YOUNG O STARS WHICH RADIATE STRONGLY IN THE UV ARE EMBEDDED IN M8. MANY EMSSION LINES ARE EXPECTED BETWEEN 912-3300 ANGTROMS. USING WF/PC, AN IMAGE OF THE HOURGALSS WILL BE TAKEN LOOKING FOR FILIMENTARY STRUCTURE AND NEW BORN STARS.

  19. Estimating shipping emissions in the region of the Sea of Marmara, Turkey.

    PubMed

    Deniz, Cengiz; Durmuşoğlu, Yalçin

    2008-02-01

    Ship emissions are significantly increasing globally and have remarkable impact on air quality on sea and land. These emissions contribute serious adverse health and environmental effects. Territorial waters, inland seas and ports are the regions most affected by ship emissions. As an inland sea the Sea of Marmara is an area that has too much ship traffic. Since the region of the Marmara is highly urbanized, emissions from ships affect human health and the overall environment. In this paper exhaust gas emissions from ships in the Sea of Marmara and the Turkish Straits are calculated by utilizing the data acquired in 2003. Main engine types, fuel types, operations types, navigation times and speeds of vessels are taken into consideration in the study. Total emissions from ships in the study area were estimated as 5,451,224 t y(-1) for CO(2), 111,039 t y(-1) for NO(x), 87,168 t y(-1) for SO(2), 20,281 t y(-1) for CO, 5801 t y(-1) for VOC, 4762 t y(-1) for PM. The shipping emissions in the region are equivalent to 11% of NO(x) 0.1% of CO and 0.12% of PM of the corresponding total emissions in Turkey. The shipping emissions in the area are 46% of NO(x), 25% of PM and 1.5% of CO of road traffic emissions in Turkey data between which and correspond to a higher level than aircraft emissions and rail emissions in Turkey.

  20. Global, Regional, and National Fossil-Fuel CO2 Emissions

    DOE Data Explorer

    Boden, T. A.; Andres, R. J.; Marland, G.

    2016-01-01

    The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2016), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2016) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  1. Global, Regional, and National Fossil-Fuel CO2 Emissions

    DOE Data Explorer

    Boden, T. A.; Andres, R. J.; Marland, G.

    2017-01-01

    The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2017), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2017) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  2. Global, Regional, and National Fossil-Fuel CO2 Emissions

    DOE Data Explorer

    Boden, T. A.; Andres, R. J.; Marland, G.

    2015-01-01

    The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2014), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2014) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).

  3. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign

    DOE PAGES

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B.; ...

    2016-07-11

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (~2700 m a.s.l.) as well as near their sources using an aircraft. In addition, the regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), anmore » index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (~1 h old) and emissions sampled after atmospheric transport (6–45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. In conclusion, these results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.« less

  4. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign

    SciTech Connect

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B.; Jaffe, Daniel A.; Kleinman, Lawrence; Sedlacek, III, Arthur J.; Briggs, Nicole L.; Hee, Jonathan; Fortner, Edward; Shilling, John E.; Worsnop, Douglas; Yokelson, Robert J.; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K.; Pekour, Mikhail S.; Springston, Stephen; Zhang, Qi

    2016-07-11

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (~2700 m a.s.l.) as well as near their sources using an aircraft. In addition, the regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (~1 h old) and emissions sampled after atmospheric transport (6–45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. In conclusion, these results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.

  5. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign

    SciTech Connect

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B.; Jaffe, Daniel A.; Kleinman, Lawrence; Sedlacek, III, Arthur J.; Briggs, Nicole L.; Hee, Jonathan; Fortner, Edward; Shilling, John E.; Worsnop, Douglas; Yokelson, Robert J.; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K.; Pekour, Mikhail S.; Springston, Stephen; Zhang, Qi

    2016-07-11

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (~2700 m a.s.l.) as well as near their sources using an aircraft. In addition, the regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (~1 h old) and emissions sampled after atmospheric transport (6–45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. In conclusion, these results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.

  6. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.

  7. Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors

    NASA Astrophysics Data System (ADS)

    Naik, Vaishali; Mauzerall, Denise; Horowitz, Larry; Schwarzkopf, M. Daniel; Ramaswamy, V.; Oppenheimer, Michael

    2005-12-01

    The global distribution of tropospheric ozone (O3) depends on the emission of precursors, chemistry, and transport. For small perturbations to emissions, the global radiative forcing resulting from changes in O3 can be expressed as a sum of forcings from emission changes in different regions. Tropospheric O3 is considered in present climate policies only through the inclusion of indirect effect of CH4 on radiative forcing through its impact on O3 concentrations. The short-lived O3 precursors (NOx, CO, and NMHCs) are not directly included in the Kyoto Protocol or any similar climate mitigation agreement. In this study, we quantify the global radiative forcing resulting from a marginal reduction (10%) in anthropogenic emissions of NOx alone from nine geographic regions and a combined marginal reduction in NOx, CO, and NMHCs emissions from three regions. We simulate, using the global chemistry transport model MOZART-2, the change in the distribution of global O3 resulting from these emission reductions. In addition to the short-term reduction in O3, these emission reductions also increase CH4 concentrations (by decreasing OH); this increase in CH4 in turn counteracts part of the initial reduction in O3 concentrations. We calculate the global radiative forcing resulting from the regional emission reductions, accounting for changes in both O3 and CH4. Our results show that changes in O3 production and resulting distribution depend strongly on the geographical location of the reduction in precursor emissions. We find that the global O3 distribution and radiative forcing are most sensitive to changes in precursor emissions from tropical regions and least sensitive to changes from midlatitude and high-latitude regions. Changes in CH4 and O3 concentrations resulting from NOx emission reductions alone produce offsetting changes in radiative forcing, leaving a small positive residual forcing (warming) for all regions. In contrast, for combined reductions of anthropogenic

  8. Regional differences in Chinese SO2 emission control efficiency and policy implications

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wang, Y.; Ma, Q.; Xie, Y.; He, K.

    2015-02-01

    SO2 emission control has been one of the most important air pollution policies in China since 2000. In this study, we assess regional differences in SO2 emission control efficiencies in China through the modeling analysis of four scenarios of SO2 emissions, all of which aim at reducing the national total SO2 emissions by 8% or 2.3 Tg below the 2010 emissions level, the target set by the current 12th FYP (2011-2015), but differ in the spatial implementation. The GEOS-Chem chemical transport model is used to evaluate the efficiency of each scenario on the basis of three impact metrics: surface sulfate concentration, population-weighted sulfate concentration (PWC), and sulfur export flux from China to the Western Pacific. The efficiency of SO2 control (β) is defined as the relative change of each impact metric to a 1% reduction of SO2 emissions from the 2010 baseline. The S1 scenario, which adopts a spatially uniform reduction of SO2 emissions in China, gives a β of 0.71, 0.83, and 0.67 for sulfate concentration, PWC, and export flux, respectively. By comparison, the S2 scenario, which implements all the SO2 emissions reduction over North China (NC), is found most effective in reducing national-mean surface sulfate concentrations and sulfur export fluxes, with β being 0.76 and 0.95 respectively. The S3 scenario of implementing all the SO2 emission reduction over South China (SC) has the highest β in reducing PWC (β = 0.98) because SC has the highest correlation between population density and sulfate concentration. Reducing SO2 emissions over Southwest China (SWC) is found to be least efficient on the national scale, albeit within-region benefit. The difference in β by scenario is attributable to regional differences in SO2 oxidation pathways and source-receptor relationships. Among the three regions examined here, NC shows the largest proportion of sulfate formation from gas phase oxidation, which is more sensitive to SO2 emission change than aqueous oxidation

  9. The Influence of Marcellus Shale Extraction Emissions on Regionally Monitored Dry Reactive Nitrogen Deposition.

    PubMed

    Coughlin, Justin G; Rose, Lucy A; Bain, Daniel J; Elliott, Emily M

    2017-03-09

    Emissions of nitrogen oxides (NOx) in the United States (U.S.) from large stationary sources, such as electric generating units, have decreased since 1995, driving decreases in nitrogen deposition. However, increasing NOx emissions from emerging industries, such as unconventional natural gas (UNG) extraction, could offset stationary source emission reductions in shale gas producing regions of the U.S. The Marcellus Shale in the northeastern U.S. has seen dramatic increases in the number of wells and associated natural gas production during the past 10 years. In this study, we examine the potential impacts of shale gas development on regional NOx emission inventories and dry deposition fluxes to Clean Air Status and Trends (CASTNET) sites in Pennsylvania and New York. Our results demonstrate that the current distribution of CASTNET sites is ineffective for monitoring the influence of Marcellus well NOx emissions on regional nitrogen deposition. Despite the fact that existing CASTNET sites are not influenced by UNG extraction activity, NOx emissions densities from shale gas extraction are substantial and are estimated to reach up to 21 kg NOx ha(-1) year(-1) in some regions. If these emissions deposit locally, UNG extraction activity could contribute to critical nitrogen load exceedances in areas of high well density.

  10. Advancement of regional-scale emission mapping of greenhouse gases using anthropogenic emission inventories and a process-based model

    NASA Astrophysics Data System (ADS)

    Ito, A.; Saito, M.; Hirata, R.; Senda, M.

    2016-12-01

    Emissions of greenhouse gases distribute highly heterogeneously over land surface, including natural sources and sinks and anthropogenic sources. They have also different temporal variations, making it difficult to resolve observed atmospheric signals into specific sources. Advancing the mapping of land surface greenhouse gas sources and sinks is effective to improve credibility of not only bottom-up but also top-down estimates. In this study, we make an attempt to conduct regional-scale evaluation of greenhouse gases using several anthropogenic emission inventories and a process-based model of natural sources and sinks. We compare different inventory data to clarify the uncertainty in regional budget, putting the particular focus on Asian region and countries. The process-based model estimates greenhouse gas budget of forests, other natural lands, and croplands, taking account of atmospheric composition and deposition and fertilizer input. Having high spatial and temporal resolution would be a key feature of the new mapping, and so we try to use new land data for CMIP6. Finally, we discuss how the new emission mapping methodology and regional accounting are likely to make contributions to IPCC and UNFCCC.

  11. Methane Emissions in the London Region: Deciphering Regional Sources with Mobile Measurements

    NASA Astrophysics Data System (ADS)

    Zazzeri, G.; Lowry, D.; Fisher, R. E.; France, J. L.; Lanoisellé, M.; Bjorkegren, A.; Nisbet, E. G.

    2014-12-01

    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from the leading methane sources in the London region, such as landfills and gas leaks. A mobile Picarro G2301 CRDS analyser was installed in a vehicle, together with an anemometer and a Hemisphere GPS receiver, to measure atmospheric methane mole fractions and their relative location. When methane plumes were located and intercepted, air samples were collected in Tedlar bags, for δ13C-CH4 isotopic analysis by CF-GC-IRMS (Continous Flow-Gas Chromatography-Isotopic Ratio Mass Spectroscopy). This method provides high precision isotopic values, determining δ13C-CH4 to ±0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a δ13C-CH4 signature, with the relative uncertainty, allocated to each methane source investigated. The averaged δ13C-CH4 signature for landfill sites around the London region is - 58 ± 3 ‰, whereas the δ13C-CH4 signature for gas leaks is fairly constant at -36 ± 2 ‰, a value characteristic of North Sea supply. The Picarro G2301 analyser was installed also on the roof of King's College London, located in the centre of the city, and connected to an air inlet located 7 meters above roof height. An auto-sampler was connected to the same air inlet and launched remotely when a high nocturnal build up was expected, allowing up to twenty air bags to be collected for methane isotopic analysis over a 24 hour period. The main source contributing to overnight methane build up in central London is fugitive gas, in agreement with inventories. From the isotopic characterisation of urban methane sources and the source mix in London, the contribution to the urban methane budget and the local distribution of the methane sources given in inventories can be validated.

  12. TOPDOWN 2015: A Multi-aircraft Assessment of Methane Emissions in the Four Corners Region

    NASA Astrophysics Data System (ADS)

    Kort, E. A.; Smith, M. L.; Gvakharia, A.; Sweeney, C.; Frankenberg, C.; Conley, S. A.

    2015-12-01

    Satellite data collected from 2003-2009 highlighted the Four Corners region in the Southwest US as having notable methane enhancements relative to the surrounding locale. Analysis of those satellite observations indicated significant methane emissions (~0.59 Tg CH4/yr) in the region. Ground-based observations made in 2012 were consistent with this finding. Observational estimates of emissions from recent years are lacking, and there remains a gap in understanding why emissions of this magnitude have been present in the Four Corners region. The TOPDOWN 2015: San Juan campaign applied a layered, multi-aircraft approach to the Four Corners region to quantify total field methane emissions in 2015, quantify the contribution of major point sources, determine their prevalence, and demonstrate new technologies and approaches to attribution and quantification. In this talk I will discuss preliminary results from the airborne campaign, focusing on total field methane emissions, the role of point sources in the San Juan basin, how these preliminary results align with previous studies, and implications for current and future emissions in the Four Corners region.

  13. Data-driven dissection of emission-line regions in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Korn, Andreas J.

    2016-11-01

    Aims: Indirectly resolving the line-emitting gas regions in distant active galactic nuclei (AGN) requires both high-resolution photometry and spectroscopy (i.e. through reverberation mapping). Emission in AGN originates on widely different scales; the broad-line region (BLR) has a typical radius less than a few parsec, the narrow-line region (NLR) extends out to hundreds of parsecs. But emission also appears on large scales from heated nebulae in the host galaxies (tenths of kpc). Methods: We propose a novel, data-driven method based on correlations between emission-line fluxes to identify which of the emission lines are produced in the same kind of emission-line regions. We tested the method on Seyfert galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) and Galaxy Zoo project. Results: We demonstrate the usefulness of the method on Seyfert-1s and Seyfert-2 objects, showing similar narrow-line regions (NLRs). Preliminary results from comparing Seyfert-2s in spiral and elliptical galaxy hosts suggest that the presence of particular emission lines in the NLR depends both on host morphology and eventual radio-loudness. Finally, we explore an apparent linear relation between the final correlation coefficient obtained from the method and time lags as measured in reverberation mapping for Zw229-015.

  14. Identification of surface NOx emission sources on a regional scale using OMI NO2

    NASA Astrophysics Data System (ADS)

    Zyrichidou, I.; Κoukouli, M. E.; Balis, D.; Markakis, K.; Poupkou, A.; Katragkou, E.; Kioutsioukis, I.; Melas, D.; Boersma, K. F.; van Roozendael, M.

    2015-01-01

    In this study, an inverse modeling technique is applied to obtain, at a regional scale, top-down emission estimates for nitrogen oxides utilizing tropospheric nitrogen dioxide (NO2) columns retrieved by the OMI/Aura instrument and estimated by the Comprehensive Air Quality Model with extensions (CAMx). The main idea, applied previously using models with coarse spatial resolution, is to combine the a priori information from the bottom up emission inventory used in an air quality simulation that covers the Balkan peninsula in a high resolution grid (0.1° × 0.1°) with the tropospheric NO2 quantities estimated for one complete year by CAMx and the tropospheric NO2 columns retrieved by satellite observations in order to identify missing emissions sources on a regional scale. The results have identified biases between the a priori and a posteriori emission inventories due to the missing emission sources or over-estimation of the spread and quantity of certain emission sources. In such a fine resolution grid we have also analyzed and considered the horizontal transport on the a posteriori NOx emissions. The deduced a posteriori NOx emissions, dominated by the fossil fuel emissions, were found to be1.11 ± 0.30 Tg N/y, compared to 0.87 ± 0.43 Tg N/y found in the a priori Balkan emission inventory. Soil emissions over the extended Greek domain, omitted in the a priori inventory, were estimated to account for almost 20% of the total emitted amount, while for the year 2009 the biomass burning NOx emission flux was also estimated and the average rate accounted for 0.5 × 10-6 Tg N/km2.

  15. The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, Buhalqem; Meixner, Franz X.; Behrendt, Thomas; Badawy, Moawad; Wagner, Thomas

    2016-08-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyperarid ecosystems in NW China to the regional NOx emissions during the growing season. Soil biogenic net potential NO fluxes were quantified by laboratory incubation of soil samples from the three dominating ecosystems (desert, cotton, and grape fields). Regional biogenic NO emissions were calculated bottom-up hourly for the entire growing season (April-September 2010) by considering corresponding land use, hourly data of soil temperature, gravimetric soil moisture, and fertilizer enhancement factors. The regional HONO emissions were estimated using the ratio of the optimum condition ((FN,opt(HONO) to FN,opt (NO)). Regional anthropogenic NOx emissions were calculated bottom-up from annual statistical data provided by regional and local government bureaus which have been downscaled to monthly value. Regional top-down emission estimates of NOx were derived on the monthly basis from satellite observations (OMI) of tropospheric vertical NO2 column densities and prescribed values of the tropospheric NOx lifetime. In order to compare the top-down and bottom-up emission estimates, all emission estimates were expressed in terms of mass of atomic nitrogen. Consequently, monthly top-down NOx emissions (total) were compared with monthly bottom-up NOx emissions (biogenic + anthropogenic) for the time of the satellite overpass (around 13:00 LT) with the consideration of the diurnal cycle of bottom-up estimates. Annual variation in total Tohsun Oasis NOx emissions is characterized by a strong peak in winter (December-February) and a secondary peak in summer (June-August). During summer, soil biogenic emissions were from equal to double that of related anthropogenic emissions, and grape soils were the main contributor to soil biogenic emissions, followed by cotton soils, while emissions from the desert were negligible. The top-down and bottom

  16. β-delayed proton emission in the 100Sn region

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Becerril, A.; Amthor, A.; Baumann, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Cyburt, R. H.; Crawford, H. L.; Estrade, A.; Gade, A.; Ginter, T.; Guess, C. J.; Hausmann, M.; Hitt, G. W.; Mantica, P. F.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Perdikakis, G.; Pereira, J.; Portillo, M.; Schatz, H.; Smith, K.; Stoker, J.; Stolz, A.; Zegers, R. G. T.

    2012-07-01

    β-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory (NSCL). The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System in conjunction with the Segmented Germanium Array. The nuclei 96Cd, 98Ing, 98Inm, and 99In were identified as β-delayed proton emitters, with branching ratios bβp=5.5(40)%, 5.5-2+3%, 19(2)%, and 0.9(4)%, respectively. The branching ratios for 89Ru, 91,92Rh, 93Pd, and 95Ag were deduced for the first time with bβp=3-1.7+1.9%, 1.3(5)%, 1.9(1)%, 7.5(5)%, and 2.5(3)%, respectively. The bβp=22(1)% value for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bβp values on the composition of the type I x-ray burst ashes was studied.

  17. Middle East emissions of VOCs estimated using OMI HCHO observations and the MAGRITTE regional model

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Stavrakou, Trisevgeni; Bauwens, Maite; De Smedt, Isabelle; Van Roozendael, Michel

    2017-04-01

    Air quality in the Middle East has considerably deteriorated in the last decades. In particular tropospheric ozone reaches very high levels during summer due to the combination of high solar irradiances with often very high and rapidly evolving anthropogenic emissions of NOx and VOCs associated to oil/gas exploitation and fast urbanisation. In addition, high biogenic VOC emissions are expected in non-desert areas, in particular during summer due to scorching temperatures and high solar irradiances. Both anthropogenic and biogenic VOC emissions are poorly known, however, due to near-absence of experimental constraints on emission factors for local vegetation and industrial and extraction processes. Furthermore, the dependence of emissions on environmental conditions (e.g. soil moisture in the case of biogenic isoprene emissions) is only very crudely parameterized in emission models. Here we use spaceborne (OMI) observations of formaldehyde, a known product of anthropogenic and biogenic VOC oxidation, as constraint in an inversion framework built on a regional model, MAGRITTE (Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace Gas Emissions). MAGRITTE is run at 0.5x0.5 degree resolution, with lateral boundary conditions provided by the global CTM IMAGESv2 (Bauwens et al., 2016). The global and regional models share essentially the same chemistry and physical parameterizations. Emission inversion with MAGRITTE is performed using an adjoint-based iterative procedure, similar to previous inversions using IMAGES. Biogenic VOC emissions are calculated using MEGAN (Muller et al., 2008; Stavrakou et al., 2015), whereas the HTAPv2 emission dataset is used for anthropogenic emissions, with several adjustments for oil/gas exploitation and traffic emissions. The OMI data are regridded onto the model resolution and averaged seasonally in order to reduce noise. Preliminary results indicate that biogenic isoprene emissions are a

  18. Temporal variability in emission category influence on organic matter aerosols in the Indian region

    NASA Astrophysics Data System (ADS)

    Cherian, R.; Venkataraman, C.; Ramachandran, S.

    2009-03-01

    The dependence of carbonaceous aerosol properties, like radiation absorption and hygroscopicity, on the emission source of origin motivate this work. The influence of emission categories, including crop residue and forest burning, biofuel combustion, brick kilns, thermal power plants, diesel transport and ``other industry'', is estimated on organic matter (OM) surface concentrations in the Indian ocean region. The approach uses general circulation model predicted OM surface concentrations during a ship cruise, identifies probable source regions for high concentration episodes using the potential source contribution function, and estimates collocated OM emissions resolved by category. Distinct source regions identified, are the Indo-Gangetic Plain during 20-30th January, 1999, and central/south India during 1-11th March, 1999. Contributing emission categories are primarily biofuel combustion (18 Gg) during 20-30th January, but a combination of forest burning (8 Gg), biofuel combustion (7 Gg) and crop residue (5 Gg) during 1-11th March. The magnitude of emission flux rather than spatial extent of an emission category, was seen to increase its influence on the receptor. This approach can be used to investigate seasonal and inter-annual variability in emission category influence on atmospheric pollutants.

  19. Seasonal Variation of Methane Emissions in California's Urban and Rural Regions Using Multi-site Observations

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Hsu, Y.; Andrews, A. E.; Bianco, L.; Newman, S.; Cui, X.; Bagley, J.; Graven, H. D.; Salameh, P.; Sloop, C.; LaFranchi, B.; Michelsen, H. A.; Bambha, R.; Weiss, R. F.; Keeling, R. F.; Fischer, M. L.

    2014-12-01

    California's commitment (Assembly Bill 32) to reduce total greenhouse gas (GHG) emissions to 1990 levels by 2020 requires quantification of current GHG emissions. We present seasonal variation of California's total CH4 emissions for summer 2013 - spring 2014, using data from a dozen sites covering urban and rural areas of California that include South Coast Air Basin (SoCAB), Central Valley, and San Francisco Bay Area. We apply a Bayesian inverse model to estimate CH4 emissions from discrete regions of California and source sectors by combining atmospheric measurements, upstream background, updated high-resolution prior emission maps developed for California, and predicted atmospheric transport from WRF-STILT. We quantify site-specific model-measurement uncertainties due to transport using simulated and observed meteorology, background estimated from oceanic and aircraft observations, and the prior emissions. In particular, we evaluate predicted transport variables in WRF with networks of surface and upper air observations. Preliminary inversion results during summer of 2013 suggest that state total CH4 emissions are 1.2 - 1.7 times higher than the current CARB inventory. Here, we extend and improve upon earlier analyses to provide a full seasonal cycle of CH4 emissions across all major urban and rural regions in California.

  20. Carbon emissions from cities and urban regions at multiple levels (Invited)

    NASA Astrophysics Data System (ADS)

    Dhakal, S.

    2010-12-01

    The role of urban areas in global carbon emissions is expected to be significant and thus crucial for the global climate change mitigation. Accordingly, in this paper, consolidate and present the existing knowledge and information on the urban carbon emissions at global, regional and city levels. This is built on a consolidated knowledge from author’s organized and co-edited special issue in Energy Policy Journal titled Carbon Emissions and Carbon Management in Cities published in 2010, other of author’s own work in China, Thailand and North-East Asian cities, and the existing literatures on cities. In particular, we present and clarify the contribution of urban areas in the global and respective regional CO2 emissions and the CO2 emissions from the global cities including their inter-comparisons. In those discussions, we present the trends and patterns of CO2 emissions from cities and highlight the points of caution and uncertainties in CO2 estimation imposed by the definitions of urban areas and cities, the scope and approach of estimations, and the methodological limitations. We will pay a special attention to the carbon attribution challenges since urban area is essentially an open system with intense interactions outside its physical boundaries. Their responsibilities for carbon emissions and mitigation vary depending on the choice of the system boundary of urban activities and how carbon emissions are attributed. We show example of such phenomenon quantitatively thorough a case study of Tokyo.

  1. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

    NASA Astrophysics Data System (ADS)

    McKain, Kathryn; Down, Adrian; Raciti, Steve M.; Budney, John; Hutyra, Lucy R.; Floerchinger, Cody; Herndon, Scott C.; Nehrkorn, Thomas; Zahniser, Mark S.; Jackson, Robert B.; Phillips, Nathan; Wofsy, Steven C.

    2015-02-01

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4ṡm-2ṡy-1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  2. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    PubMed

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  3. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

    PubMed Central

    McKain, Kathryn; Down, Adrian; Raciti, Steve M.; Budney, John; Hutyra, Lucy R.; Floerchinger, Cody; Herndon, Scott C.; Nehrkorn, Thomas; Zahniser, Mark S.; Jackson, Robert B.; Phillips, Nathan; Wofsy, Steven C.

    2015-01-01

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory. PMID:25617375

  4. Simulating ozone concentrations using precursor emission inventories in Delhi - National Capital Region of India

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Khare, Mukesh

    2017-02-01

    This study simulates ground level ozone concentrations in a heavily populated and polluted National Capital Region (NCR- Delhi) in India. Multi-sectoral emission inventories of ozone precursors are prepared at a high resolution of 4 × 4 km2 for the whole region covering the capital city of Delhi along with other surrounding towns and rural regions in NCR. Emission inventories show that transport sector accounts for 55% of the total NOx emissions, followed by power plants (23%) and diesel generator sets (7%). In NMVOC inventories, transport sector again accounts for 33%, followed by evaporative emissions released from solvent use and fuel handling activities (30%), and agricultural residue burning (28%). Refuse burning contributes to 73% of CO emissions mainly due to incomplete combustion, followed by agricultural residue burning (14%). These emissions are spatially and temporally distributed across the study domain and are fed into the WRF-CMAQ models to predict ozone concentrations for the year 2012. Model validations are carried out with the observed values at different monitoring stations in Delhi. The performance of the models over various metrics used for evaluation was found to be satisfactory. Summers and post-monsoon seasons were better simulated than monsoon and winter seasons. Simulations have shown higher concentrations of ozone formation during summers and lesser during winters and monsoon seasons, mainly due to varying solar radiation affecting photo-chemical activities. Ozone concentrations are observed lower at those locations where NOx emissions are higher, and concentrations increase close to the boundary of study domain when compared to the center of Delhi city. Downwind regions to Delhi are influenced by the ozone formed due to plume of precursor emissions released from Delhi. Considering significant background contributions, regional scale controls are required for reducing ozone in NCR.

  5. Regional Attribution of Ozone Production and Associated Radiative Forcing: a Step to Crediting NOx Emission Reductions

    NASA Astrophysics Data System (ADS)

    Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2004-12-01

    The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.

  6. An Inter-Regional Comparison of Ozone Sensitivity to Reductions in Emissions in Central California

    NASA Astrophysics Data System (ADS)

    Soong, S.; Tanrikulu, S.; Tran, C.; Jia, Y.; Beaver, S.; Matsuoka, J.; Cordova, J.

    2011-12-01

    Emissions of ozone precursors NOx and VOC have declined significantly in central California over the past 60 years due to rigorous emission control programs, with 40 to 50 percent reductions achieved from 1990 to 2010 alone. Three major air basins, however, are still designated as nonattainment areas for the federal 8-hour ozone standard: the San Francisco Bay Area (SFBA), Sacramento area and the San Joaquin Valley (SJV). Historically, ozone response to reductions in emissions varied from region to region. While the maximum hourly ozone concentrations have declined significantly in all three air basins, the locations of maximum ozone shifted. Some exceedance areas came into compliance with the standard while new areas started exceeding the standard. Some areas did not significantly respond to reductions in emissions. To meet the current ozone standard, additional emission reductions are needed. Further emission reductions above and beyond the goal of meeting the current standard will be needed if the EPA lowers the current standard. In an effort to help planners and decision makers, we have been conducting a modeling study to better understand how ozone may respond to future emission reductions in the region. In this initial phase of the study, we used the WRF-CMAQ modeling system to simulate ozone for July 12-28, 2006, a representative high ozone period for all three air basins. With the selected high grid resolution and optimum model setup, the model performance for the base case simulation was exceptionally good. Statistical agreement with observations was better than most previously applied models in the region. We performed a number of sensitivity simulations by reducing anthropogenic VOC or NOx emissions separately or together 10-60 percent at 10 percent intervals uniformly across the board and prepared EKMA diagrams at observation stations. We found that a 60 percent reduction in VOC and NOx emissions reduced the maximum ozone by 20-30 percent in the

  7. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  8. The impact of shipping emissions on air pollution in the Greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2015-04-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within the Interreg IVb project Clean North Sea Shipping (CNSS) a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a data base containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 in high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and of sulfur oxides 123 Gg within the North Sea, which was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25% in summer and 15% in winter. Some hundred kilometers away from the sea the contribution was about 6% in summer and 4% in

  9. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    PubMed

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  10. Comparison of regional and global land cover products and the implications for biogenic emission modeling.

    PubMed

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T

    2015-10-01

    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  11. Variation of radiative forcings and global warming potentials from regional aviation NOx emissions

    NASA Astrophysics Data System (ADS)

    Skowron, Agnieszka; Lee, David S.; De León, Ruben R.

    2015-03-01

    The response to hemispherical and regional aircraft NOx emissions is explored by using two climate metrics: radiative forcing (RF) and Global Warming Potential (GWP). The global chemistry transport model, MOZART-3 CTM, is applied in this study for a series of incremental aircraft NOx emission integrations to different regions. It was found that the sensitivity of chemical responses per unit emission rate from regional aircraft NOx emissions varies with size of aircraft NOx emission rate and that climate metric values decrease with increasing aircraft NOx emission rates, except for Southeast Asia. Previous work has recognized that aircraft NOx GWPs may vary regionally. However, the way in which these regional GWPs are calculated are critical. Previous studies have added a fixed amount of NOx to different regions. This approach can heavily bias the results of a regional GWP because of the well-established sensitivity of O3 production to background NOx whereby the Ozone Production Efficiency (OPE) is greater at small background NOx. Thus, even a small addition of NOx in a clean-air area can produce a large O3 response. Using this 'fixed addition' method of 0.035 Tg(N) yr-1, results in the greatest effect observed for North Atlantic and Brazil, ∼10.0 mW m-2/Tg(N) yr-1. An alternative 'proportional approach' is also taken that preserves the subtle balance of local NOx-O3-CH4 systems with the existing emission patterns of aircraft and background NOx, whereby a proportional amount of aircraft NOx, 5% (N) yr-1, is added to each region in order to determine the response. This results in the greatest effect observed for North Pacific that with its net NOx RF of 23.7 mW m-2/Tg(N) yr-1 is in contrast with the 'fixed addition' method. For determining regional NOx GWPs, it is argued that the 'proportional' approach gives more representative results. However, a constraint of both approaches is that the regional GWP determined is dependent on the relative global emission pattern

  12. The 2 μm spectrum of the auroral emission in the polar regions of Jupiter

    NASA Astrophysics Data System (ADS)

    Kedziora-Chudczer, L.; Cotton, D. V.; Kedziora, D. J.; Bailey, J.

    2017-09-01

    We report observations of the high (R ∼ 18000) and medium (R ∼ 5900) resolution, near-infrared spectra of Jupiter's polar regions with the GNIRS instrument at the Gemini North telescope. The observations correspond to the area of main auroral oval in the South and the main spot of the Io footprint in the North. We detected and assigned 18 emission lines of the H3+ , 2ν2 → 0 overtone band in the region from 4800 to 4980 cm-1 and 5 additional lines in the extended low-resolution spectrum. We use our new modelling scheme, ATMOF to remove telluric absorption bands of CO2 that feature strongly in the 2 μm region. The H2 1-0 S(1), S(2) and S(3) emission lines are also detected in the observed spectral region. We found the rotational temperature and column density of H3+ emission at the peak intensity for both northern and southern auroral regions to be the same within the measurement errors (Trot ∼ 950K and N(H3+) ∼ 4.5× 1016 m-2). The estimates of Trot from H2 are consistent within much higher uncertainties with temperatures derived from H3+ emissions. We derived the profiles of the H3+ emissivity and ion density for both auroral regions providing the first such measurement for the emission associated with the main spot of the Io footprint. We also found a number of weaker lines in the high-resolution spectra that could be associated with emission from high excitation levels in neutral iron, which could be deposited in Jupiter's atmosphere as a result of meteor ablation.

  13. The "APEC Blue" Phenomenon: Impacts of Regional emission control Meteorology Condition and Regional Transport from a Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Gao, M.; Carmichael, G. R.; Liu, Z.; Ji, D.; Saide, P. E.; Wang, Y.; Xin, J.

    2015-12-01

    On November 5-11, China hosted the 2014 Asia-Pacific Economic Cooperation (APEC) Economic Leaders' Week in Beijing. To ensure good air quality during the APEC week, a series of strict emission control measures were taken in Beijing and surrounding provinces, which provide us with a great opportunity to examine the effectiveness of regional emission control. As important as emissions, meteorology can also significantly affect air quality in Beijing, so it's meaningful to understand the impact of meteorology conditions in the APEC week. Besides, it's important to study the impact of regional transport as its contribution to Beijing pollution levels is controversial. In this study, we investigate the impacts of emission control, meteorology and regional transport on the air quality during APEC week using a fully online coupled meteorology-chemistry model WRF-Chem. Compared to surface observations, the model has very good performance. The conclusions from this study will provide useful insights for government to control aerosol pollution in Beijing.

  14. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  15. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  16. Emission properties of non-equilibrium krypton plasma in the water-window region

    NASA Astrophysics Data System (ADS)

    Zakharov, Vassily S.

    2017-01-01

    The line emission properties of non-equilibrium krypton plasma are examined and the optimal emission temperature conditions for soft x-ray emission output in the water-window region are explored. The kinetic parameters for non-equilibrium plasma including major inelastic ion interaction processes, radiation and emission data are obtained with an approach based on the Hartree-Fock-Slater (HFS) quantum-statistical model and a distorted wave approximation. A nonmaxwellian electron distribution is used as well for calculating collisional rates. At a temperature of 70 eV the emission spectral efficiency for Kr equilibrium plasma is about 10%, and it jumps to a value greater than 70% at 100 eV. A similar spectral efficiency is achieved at a lower temperature e.g. 80 eV in non-equilibrium plasma with 7.5 keV fast electron average energy.

  17. Estimating methane emissions in California's urban and rural regions using multitower observations

    NASA Astrophysics Data System (ADS)

    Jeong, Seongeun; Newman, Sally; Zhang, Jingsong; Andrews, Arlyn E.; Bianco, Laura; Bagley, Justin; Cui, Xinguang; Graven, Heather; Kim, Jooil; Salameh, Peter; LaFranchi, Brian W.; Priest, Chad; Campos-Pineda, Mixtli; Novakovskaia, Elena; Sloop, Christopher D.; Michelsen, Hope A.; Bambha, Ray P.; Weiss, Ray F.; Keeling, Ralph; Fischer, Marc L.

    2016-11-01

    We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32).

  18. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  19. The influence of daily meteorology on boreal fire emissions and regional trace gas variability

    NASA Astrophysics Data System (ADS)

    Wiggins, E. B.; Veraverbeke, S.; Henderson, J. M.; Karion, A.; Miller, J. B.; Lindaas, J.; Commane, R.; Sweeney, C.; Luus, K. A.; Tosca, M. G.; Dinardo, S. J.; Wofsy, S.; Miller, C. E.; Randerson, J. T.

    2016-11-01

    Relationships between boreal wildfire emissions and day-to-day variations in meteorological variables are complex and have important implications for the sensitivity of high-latitude ecosystems to climate change. We examined the influence of environmental conditions on boreal fire emissions and fire contributions to regional trace gas variability in interior Alaska during the summer of 2013 using two types of analysis. First, we quantified the degree to which meteorological and fire weather indices explained regional variability in fire activity using four different products, including active fires, fire radiative power, burned area, and carbon emissions. Second, we combined daily emissions from the Alaskan Fire Emissions Database (AKFED) with the coupled Polar Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport model to estimate fire contributions to trace gas concentration measurements at the Carbon in Arctic Reservoirs Vulnerability Experiment-NOAA Global Monitoring Division (CRV) tower in interior Alaska. Tower observations during two high fire periods were used to estimate CO and CH4 emission factors. We found that vapor pressure deficit and temperature had a level of performance similar to more complex fire weather indices. Emission factors derived from CRV tower measurements were 134 ± 25 g CO per kg of combusted biomass and 7.74 ± 1.06 g CH4 per kg of combusted biomass. Predicted daily CO mole fractions from AKFED emissions were moderately correlated with CRV observations (r = 0.68) and had a high bias. The modeling system developed here allows for attribution of emission factors to individual fires and has the potential to improve our understanding of regional CO, CH4, and CO2 budgets.

  20. Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China.

    PubMed

    Guo, Xiurui; Fu, Liwei; Ji, Muse; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan

    2016-09-01

    Motor vehicle emissions are increasingly becoming one of the important factors affecting the urban air quality in China. It is necessary and useful to policy makers to demonstrate the situation given the relevant pollutants reduction measures are taken. This paper predicted the reduction potentials of conventional pollutants (PM10, NOx, CO, HC) under different control strategies and policies in the Beijing-Tianjin-Hebei (BTH) region during 2011-2020. There are the baseline and 5 control scenarios designed, which presented the different current and future possible vehicular emissions control measures. Future population of different kinds of vehicles were predicted based on the Gompertz model, and vehicle kilometers travelled estimated as well. After that, the emissions reduction under the different scenarios during 2011-2020 could be estimated using emission factors and activity level data. The results showed that, the vehicle population in the BTH region would continue to grow up, especially in Tianjin and Hebei. Comparing the different scenarios, emission standards updating scenario would achieve a substantial reduction and keep rising up for all the pollutants, and the scenario of eliminating high-emission vehicles can reduce emissions more effectively in short-term than in long-term, especially in Beijing. Due to the constraints of existing economical and technical level, the reduction effect of promoting new energy vehicles would not be significant, especially given the consideration of their lifetime impact. The reduction effect of population regulation scenario in Beijing cannot be ignorable and would keep going up for PM10, CO and HC, excluding NOx. Under the integrated scenario considering all the control measures it would achieve the maximum reduction potential of emissions, which means to reduce emissions of PM10, NOx, CO, HC, by 56%, 59%, 48%, 52%, respectively, compared to BAU scenario for the whole BTH region in 2020. Copyright © 2016 Elsevier Ltd

  1. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Aikin, K. C.; Gouw, J. A.; Gilman, J. B.; Holloway, J. S.; Lerner, B. M.; Nadkarni, R.; Neuman, J. A.; Nowak, J. B.; Trainer, M.; Warneke, C.; Parrish, D. D.

    2015-03-01

    We present measurements of methane (CH4) taken aboard a NOAA WP-3D research aircraft in 2013 over the Haynesville shale region in eastern Texas/northwestern Louisiana, the Fayetteville shale region in Arkansas, and the northeastern Pennsylvania portion of the Marcellus shale region, which accounted for the majority of Marcellus shale gas production that year. We calculate emission rates from the horizontal CH4 flux in the planetary boundary layer downwind of each region after subtracting the CH4 flux entering the region upwind. We find 1 day CH4 emissions of (8.0 ± 2.7) × 107 g/h from the Haynesville region, (3.9 ± 1.8) × 107 g/h from the Fayetteville region, and (1.5 ± 0.6) × 107 g/h from the Marcellus region in northeastern Pennsylvania. Finally, we compare the CH4 emissions to the total volume of natural gas extracted from each region to derive a loss rate from production operations of 1.0-2.1% from the Haynesville region, 1.0-2.8% from the Fayetteville region, and 0.18-0.41% from the Marcellus region in northeastern Pennsylvania. The climate impact of CH4 loss from shale gas production depends upon the total leakage from all production regions. The regions investigated in this work represented over half of the U.S. shale gas production in 2013, and we find generally lower loss rates than those reported in earlier studies of regions that made smaller contributions to total production. Hence, the national average CH4 loss rate from shale gas production may be lower than values extrapolated from the earlier studies.

  2. Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport

    NASA Astrophysics Data System (ADS)

    Ojha, Narendra; Pozzer, Andrea; Rauthe-Schöch, Armin; Baker, Angela K.; Yoon, Jongmin; Brenninkmeijer, Carl A. M.; Lelieveld, Jos

    2016-03-01

    We compare in situ measurements of ozone (O3) and carbon monoxide (CO) profiles from the CARIBIC program with the results from the regional chemistry transport model (WRF-Chem) to investigate the role of local and regional emissions and long-range transport over southern India during the summer monsoon of 2008. WRF-Chem successfully reproduces the general features of O3 and CO distributions over the South Asian region. However, absolute CO concentrations in the lower troposphere are typically underestimated. Here we investigate the influence of local relative to remote emissions through sensitivity simulations. The influence of 50 % increased CO emissions over South Asia leads to a significant enhancement (upto 20 % in July) in upper tropospheric CO in the northern and central Indian regions. Over Chennai in southern India, this causes a 33 % increase in surface CO during June. However, the influence of enhanced local and regional emissions is found to be smaller (5 %) in the free troposphere over Chennai, except during September. Local to regional emissions are therefore suggested to play a minor role in the underestimation of CO by WRF-Chem during June-August. In the lower troposphere, a high pollution (O3: 146.4 ± 12.8, CO: 136.4 ± 12.2 nmol mol-1) event (15 July 2008), not reproduced by the model, is shown to be due to transport of photochemically processed air masses from the boundary layer in southern India. A sensitivity simulation combined with backward trajectories indicates that long-range transport of CO to southern India is significantly underestimated, particularly in air masses from the west, i.e., from Central Africa. This study highlights the need for more aircraft-based measurements over India and adjacent regions and the improvement of global emission inventories.

  3. Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars

    DTIC Science & Technology

    2003-06-01

    The properties of the extrasolar planetary systems have revealed a tremendous diversity that was unanticipated by tradi- tional planet formation...velocity searches for extrasolar planets . One of our more interesting results is the detection of CO fundamental emission from a transitional T Tauri star...GAS IN THE TERRESTRIAL PLANET REGION OF DISKS: CO FUNDAMENTAL EMISSION FROM T TAURI STARS Joan Najita NOAO, 950North Cherry Avenue, Tucson, AZ 85719

  4. Measurement of multilayer mirror reflectivity and stimulated emission in the XUV spectral region

    SciTech Connect

    Keane, C.; Nam, C.H.; Meixler, L.; Milchberg, H.; Skinner, C.H.; Suckewer, S.; Voorhees, D.; Barbee, T.

    1986-03-01

    We present measurements of multilayer mirror reflectivity and stimulated emission in the XUV spectral region. A molybdenum-silicon multilayer mirror with 12% measured reflectivity at 182 A was found to produce a 120% enhancement of the C VI 182 A line (3 ..-->.. 2 transition) in a strongly recombining plasma. No such enhancement of the CV 186.7 A line was seen, demonstrating amplification of stimulated emission at 182 A.

  5. Emission Line Spectra in the Soft X-Ray Region 20-75 (Angstrom)

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Chen, H; Behar, E; Kahn, S M

    2002-06-18

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, we studied emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region. Here we present observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 {angstrom} to illustrate our work.

  6. Emission Line Spectra in the Soft X-ray Region 20 - 75 Angstroms

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Chen, H.; Behar, E.; Kahn, S. M.

    2002-01-01

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EDIT-II, emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region were studied. Observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 Angstrom are presented to illustrate our work.

  7. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  8. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography].

    PubMed

    Franck, G; Salmon, E; Poirrier, R; Sadzot, B; Franco, G

    1987-03-01

    Measurements of regional cerebral glucose uptake by the 18F-fluorodeoxyglucose technique (18FDG) and positron emission tomography (PET) along with polygraph recordings were made serially during relaxed wakefulness and different stages of nocturnal sleep in two right-handed normal volunteers. During stage III-IV sleep, values declined diffusely in both hemispheric regions (-31%), thalamus (-33%), cerebellum (-33%) and brain stem (-25%). During paradoxical sleep regional values increased diffusely compared with slow wave sleep. Compared to wakefulness, regional metabolic values seemed to increase but the results were more variable from one volunteer to the other. These preliminary data indicate important regional alterations in cerebral metabolism between sleep states.

  9. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, P.; Ma, J. Z.; Zhu, S.; Pozzer, A.; Li, W.

    2011-07-01

    Huabei is a part of eastern China located between 32° N and 42° N latitude. Administratively it is a region including Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on the data from the statistical yearbooks of state and provinces as well as local districts including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and

  10. Far-infrared emission in the Rho Ophiuchi region - A comparison with molecular gas emission and visual extinction

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Dickman, R. L.; Herbst, W.

    1989-01-01

    The dust characteristics of a 40 arcmin x 40 arcmin section of the Rho Ophiuchi molecular clouds complex revealed by the IRAS satellite are compared with both molecular line and deep star count data for the region. The data reveal the cloud to be clearly visible at 12 and 25 microns, as well as at 60 and 100 microns. Modeling the infrared emission from the cloud as being due to two populations of dust grains, the short-wavelength emission is found not to reflect the internal structure of the molecular cloud. The 60 micron opacity determined using a single grain emission model correlates reasonably well with (C-13)O column density and visual extinction up to roughly 5 mag. The cloud edges appear to be heated by the interstellar radiation field. The far-infrared luminosity to mass ratio for the region is determined to be 0.9 solar luminosity/solar mass, a value much smaller than the average ratio for the inner Galaxy.

  11. Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region.

    PubMed

    Zavala-Araiza, Daniel; Sullivan, David W; Allen, David T

    2014-05-06

    Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.

  12. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.

    PubMed

    Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q

    2016-12-15

    To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO2, NO2 and PM10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NOx, VOCs and NH3 emissions. Although the area mean concentrations of NOx, nitrate and PM2.5 decreased under both NOx CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NOx REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM2.5 was found in certain areas as reducing NOx emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH3 emission reductions showed that nitrate was sensitive to NH3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O3 formation in PRD was generally VOCs-limited while turned to be NOx-limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O3 concentrations while mitigating NOx emissions in the afternoon could reduce the peak O3 levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, P.; Ma, J. Z.; Zhu, S.; Pozzer, A.; Li, W.

    2012-01-01

    Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and chemical plants. The

  14. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    SciTech Connect

    Stephens, Ian W.; Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M.

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  15. [Plastic industry and exposure to carcinogenic chemical agents: an Italian Multicentric Study in Lombardy].

    PubMed

    Cirla, P E; Castoldi, M R; Marchese, E; Cavallo, D M; Fustinoni, S; Cattaneo, A; Martinotti, I; Foà, V; Tiso, C

    2007-01-01

    The potential carcinogenic risk at the workplaces is a primary interest of occupational health, but some questions are also controversially discussed. Particularly, in the plastic forming industry a great attention was directed to the hot processing and their possible exposure to monomers, some of which were classified as carcinogen by the International Agency for Research on Cancer (IARC) and/or the European Union (EU). In Lombardy, a study on occupational exposure to chemical carcinogens in the plastic forming industry was planned during last years. The aim was to recognize and promote preventive technical and medical solutions, basing on efficacy. By an investigation at workplace supported with standardized questionnaires, the presence of chemical carcinogens was registered in 59% of a representative sample of firms; but an effective possibility of exposure was found only for 34% of cases. The evaluation of exposure to monomers by air monitoring (acrylonitrile, 1,3-butadiene, styrene, formaldehyde), involving a representative sample of factory with ABS and formaldehydic resins processing, showed low level exposure, because the common hygienic prevention measures were applied; some particular occupation shoved greater exposure to formaldehyde.

  16. Leibniz's Observations on Hydrology: An Unpublished Letter on the Great Lombardy Flood of 1705.

    PubMed

    Strickland, Lloyd; Church, Michael

    2015-01-01

    Although the historical reputation of Gottfried Wilhelm Leibniz (1646-1716) largely rests on his philosophical and mathematical work, it is widely known that he made important contributions to many of the emerging but still inchoate branches of natural science of his day. Among the many scientific papers Leibniz published during his lifetime are ones on the nascent science we now know as hydrology. While Leibniz's other scientific work has become of increasing interest to scholars in recent years, his thinking about hydrology has been neglected, despite being relatively broad in extent, including as it does papers on the 'raising of vapours' and the formation of ice, as well as the separation of salt and fresh water. That list can now be extended still further following the discovery of a previously unpublished letter of Leibniz's on the causes of the devastating Lombardy flood of October and November 1705. This letter, which will be the focus of our paper, reveals the depth of Leibniz's understanding of key hydrological processes. In it, he considers various mechanisms for the flood, such as heavy rains on high ground, underwater earthquakes, and a mountain collapse. Over the course of the paper we examine each of these mechanisms in depth, and show that Leibniz was in the vanguard of hydrological thinking. We also show that the letter contains one of the first scholarly attempts to apply aspects of the still-forming notion of the hydrological cycle to account for a flood event.

  17. New paleoradiological investigations of ancient human remains from North West Lombardy archaeological excavations.

    PubMed

    Licata, Marta; Borgo, Melania; Armocida, Giuseppe; Nicosia, Luca; Ferioli, Elena

    2016-03-01

    Since its birth in 1895, radiology has been used to study ancient mummies. The purpose of this article is to present paleoradiological investigations conducted on several medieval human remains in Varese province. Anthropological (generic identification) and paleopathological analyses were carried out with the support of diagnostic imaging (X-ray and CT scans). Human remains were discovered during excavations of medieval archaeological sites in northwest Lombardy. Classical physical anthropological methods were used for the macroscopic identification of the human remains. X-ray and CT scans were performed on the same scanner (16-layer Hitachi Eclos 16 X-ray equipment). Results Radiological analysis permitted investigating (1) the sex, (2) age of death, (3) type of trauma, (4) therapeutic interventions and (5) osteomas in ancient human remains. In particular, X-ray and CT examinations showed dimorphic facial traits on the mummified skull, and the same radiological approaches allowed determining the age at death from a mummified lower limb. CT analyses allow investigating different types of traumatic lesions in skulls and postcranial skeleton portions and reconstructing the gait and functional outcomes of a fractured femur. Moreover, one case of possible Gardner’s syndrome (GS) was postulated from observing multiple osteomas in an ancient skull. Among the medical tests available to the clinician, radiology is the most appropriate first-line procedure for a diagnostic approach to ancient human remains because it can be performed without causing any significant damage to the specimen.

  18. Emission Mechanism of "Green Fuzzies" in High-mass Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Takami, Michihiro; Chen, How-Huan; Karr, Jennifer L.; Lee, Hsu-Tai; Lai, Shih-Ping; Minh, Young-Chol

    2012-03-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope has revealed that a number of high-mass protostars are associated with extended mid-infrared emission, particularly prominent at 4.5 μm. These are called "Green Fuzzy" emission or "Extended Green Objects." We present color analysis of this emission toward six nearby (d = 2-3 kpc) well-studied high-mass protostars and three candidate high-mass protostars identified with the Spitzer GLIMPSE survey. In our color-color diagrams, most of the sources show a positive correlation between the [3.6]-[4.5] and [3.5]-[5.8] colors along the extinction vector in all or part of the region. We compare the colors with those of scattered continuum associated with the low-mass protostar L 1527, modeled scattered continuum in cavities, shocked emission associated with low-mass protostars, modeled H2 emission for thermal and fluorescent cases, and modeled polycyclic aromatic hydrocarbon (PAH) emission. Of the emission mechanisms discussed above, scattered continuum provides the simplest explanation for the observed linear correlation. In this case, the color variation within each object is attributed to different foreground extinctions at different positions. Alternative possible emission mechanisms to explain this correlation may be a combination of thermal and fluorescent H2 emission in shocks, and a combination of scattered continuum and thermal H2 emission, but detailed models or spectroscopic follow-up are required to investigate this possibility further. Our color-color diagrams also show possible contributions from PAHs in two objects. However, none of our samples show clear evidence for PAH emission directly associated with the high-mass protostars, several of which should be associated with ionizing radiation. This suggests that these protostars are heavily embedded even at mid-infrared wavelengths.

  19. Health impact assessment of marine emissions in Pearl River Delta region.

    PubMed

    Lai, H K; Tsang, H; Chau, J; Lee, C H; McGhee, S M; Hedley, A J; Wong, C M

    2013-01-15

    Global marine vessels emissions are adversely affecting human health particularly in southeast Asia. But health burdens from both ocean- and river-going vessels in Pearl River Delta (PRD) regions are not quantified. We estimated the potential health impacts using pooled relative risks of mortality and hospital admissions in China, and the model derived concentrations of sulfur dioxide (SO₂), particulate matter (PM₁₀), nitrogen dioxide (NO₂) and ozone (O₃) due to vessels emissions. SO₂ concentrations due to marine emissions in Hong Kong were 13.6 μg m⁻³ compared with 0.7 μg m⁻³ in PRD regions that were far from the marine vessels. In PRD regions, the estimated annual numbers (per million people) of excess deaths from all natural causes and hospital admissions from cardiorespiratory causes attributable to SO₂, NO₂, O₃ and PM₁₀ combined from marine emissions were 45 and 265 respectively. Marine emission control measures could contribute a large reduction in mortality and hospital admissions in PRD regions especially in Hong Kong.

  20. Webinar Presentation: Linking Regional Aerosol Emission Changes with Multiple Impact Measures through Direct and Cloud-Related Forcing Estimates

    EPA Pesticide Factsheets

    This presentation, Linking Regional Aerosol Emission Changes with Multiple Impact Measures through Direct and Cloud-Related Forcing Estimates, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty.

  1. Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Horvath, Arpad; Madanat, Samer

    2010-03-01

    A comparative life-cycle energy and emissions (greenhouse gas, CO, NO X, SO 2, PM 10, and VOCs) inventory is created for three U.S. metropolitan regions (San Francisco, Chicago, and New York City). The inventory captures both vehicle operation (direct fuel or electricity consumption) and non-operation components (e.g., vehicle manufacturing, roadway maintenance, infrastructure operation, and material production among others). While urban transportation inventories have been continually improved, little information exists identifying the particular characteristics of metropolitan passenger transportation and why one region may differ from the next. Using travel surveys and recently developed transportation life-cycle inventories, metropolitan inventories are constructed and compared. Automobiles dominate total regional performance accounting for 86-96% of energy consumption and emissions. Comparing system-wide averages, New York City shows the lowest end-use energy and greenhouse gas footprint compared to San Francisco and Chicago and is influenced by the larger share of transit ridership. While automobile fuel combustion is a large component of emissions, diesel rail, electric rail, and ferry service can also have strong contributions. Additionally, the inclusion of life-cycle processes necessary for any transportation mode results in significant increases (as large as 20 times that of vehicle operation) for the region. In particular, emissions of CO 2 from cement production used in concrete throughout infrastructure, SO 2 from electricity generation in non-operational components (vehicle manufacturing, electricity for infrastructure materials, and fuel refining), PM 10 in fugitive dust releases in roadway construction, and VOCs from asphalt result in significant additional inventory. Private and public transportation are disaggregated as well as off-peak and peak travel times. Furthermore, emissions are joined with healthcare and greenhouse gas monetized

  2. Regional differences in Chinese SO2 emission control efficiency and policy implications

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wang, Y.; Ma, Q.; Yao, Y.; Xie, Y.; He, K.

    2015-06-01

    SO2 emission control has been one of the most important air pollution policies in China since 2000. In this study, we assess regional differences in SO2 emission control efficiencies in China through the modeling analysis of four scenarios of SO2 emissions, all of which aim to reduce the national total SO2 emissions by 8% or 2.3 Tg below the 2010 emissions level, the target set by the current twelfth Five-Year Plan (FYP; 2011-2015), but differ in spatial implementation. The GEOS-Chem chemical transport model is used to evaluate the efficiency of each scenario on the basis of four impact metrics: surface SO2 and sulfate concentrations, population-weighted sulfate concentration (PWC), and sulfur export flux from China to the western Pacific. The efficiency of SO2 control (β) is defined as the relative change of each impact metric to a 1% reduction in SO2 emissions from the 2010 baseline. The S1 scenario, which adopts a spatially uniform reduction in SO2 emissions in China, gives a β of 0.99, 0.71, 0.83, and 0.67 for SO2 and sulfate concentrations, PWC, and export flux, respectively. By comparison, the S2 scenario, which implements all the SO2 emissions reduction over North China (NC), is found most effective in reducing national mean surface SO2 and sulfate concentrations and sulfur export fluxes, with β being 1.0, 0.76, and 0.95 respectively. The S3 scenario of implementing all the SO2 emission reduction over South China (SC) has the highest β in reducing PWC (β = 0.98) because SC has the highest correlation between population density and sulfate concentration. Reducing SO2 emissions over Southwest China (SWC) is found to be least efficient on the national scale, albeit with large benefits within the region. The difference in β by scenario is attributable to the regional difference in SO2 oxidation pathways and the source-receptor relationship. Among the three regions examined here, NC shows the largest proportion of sulfate formation through gas

  3. A Sub-category Disaggregated Greenhouse Gas Emission Inventory for the Bogota Region, Colombia

    NASA Astrophysics Data System (ADS)

    Pulido-Guio, A. D.; Rojas, A. M.; Ossma, L. J.; Jimenez-Pizarro, R.

    2012-12-01

    Several international organizations, such as UNDP and UNEP, have recently recognized the importance of empowering sub-national decision levels on climatic governance according to the subsidiarity principle. Regional and municipal authorities are directly responsible for land use management and for regulating economic sectors that emit greenhouse gases (GHG) and are vulnerable to climate change. Sub-national authorities are also closer to the population, which make them better suited for educating the public and for achieving commitment among stakeholders. This investigation was developed within the frame of the Regional Integrated Program on Climate Change for the Cundinamarca-Bogota Region (PRICC), an initiative aimed at incorporating the climate dimension into the regional and local decision making. The region composed by Bogota and its nearest, semi-rural area of influence (Province of Cundinamarca) is the most important population and economic center of Colombia. Our investigation serves two purposes: a) to establish methodologies for estimating regional GHG emissions appropriate to the Colombian context, and b) to disaggregate GHG emissions by economic sector as a mitigation decision-making tool. GHG emissions were calculated using IPCC 1996 - Tier 1 methodologies, as there are no regional- or country-specific emission factors available for Colombia. Top-Down (TD) methodologies, based on national and regional energy use intensity, per capita consumption and fertilizer use, were developed and applied to estimate activities for following categories: fuel use in industrial, commercial and residential sectors (excepting NG and LPG), use of ozone depleting substances (ODS) and substitutes, and fertilizer use (for total emissions of agricultural soils). The emissions from the remaining 22 categories were calculated using Bottom-Up (BU) methodologies given the availability of regional information. The total GHG emissions in the Cundinamarca-Bogota Region on 2008 are

  4. The contribution of soil biogenic NO emissions from a managed hyper-arid ecosystem to the regional NO2 emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Badawy, M.; Behrendt, T.; Meixner, F. X.; Wagner, T.

    2015-12-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyper-arid ecosystem in NW-China to the regional NO2 emissions during growing season. Soil biogenic NO emissions were quantified by laboratory incubation of corresponding soil samples. We have developed the Geoscience General Tool Package (GGTP) to obtain soil temperature, soil moisture and biogenic soil NO emission at oasis scale. Bottom-up anthropogenic NO2 emissions have been scaled down from annual to monthly values to compare mean monthly soil biogenic NO2 emissions. The top-down emission estimates have been derived from satellite observations compared then with the bottom-up emission estimates (anthropogenic and biogenic). The results show that the soil biogenic emissions of NO2 during the growing period are (at least) equal until twofold of the related anthropogenic sources. We found that the grape soils are the main summertime contributor to the biogenic NO emissions of study area, followed by cotton soils. The top-down and bottom-up emission estimates were shown to be useful methods to estimate the monthly/seasonal cycle of the total regional NO2 emissions. The resulting total NO2 emissions show a strong peak in winter and a secondary peak in summer, providing confidence in the method. These findings provide strong evidence that biogenic emissions from soils of managed drylands (irrigated and fertilized) in the growing period can be much more important contributors to the regional NO2 budget (hence to regional photochemistry) of dryland regions than thought before.

  5. Regional emission and loss budgets of atmospheric methane (2002-2012)

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.; Dlugokencky, E. J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E. A.; Crotwell, A. M.; Ravi Kumar, K.; Nakazawa, T.

    2015-12-01

    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. Clear understanding of atmospheric CH4's budget of emissions and losses is required to aid sustainable development of Earth's future environment. We used an atmospheric chemistry-transport model (JAMSTEC's ACTM) for simulating atmospheric CH4. An inverse modeling system has been developed for estimating CH4 emissions (7 ensemble cases) from 53 land regions for 2002-2012 using measurements at 39 sites. Global net CH4 emissions varied between 505-509 and 524-545 Tg/yr during 2002-2004 and 2010-2012, respectively (ranges based on 6 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurement. The inversion system did not account for interannual variations in radicals reacting with CH4 in atmosphere. Our results suggest that the recent update of EDGAR inventory (version 4.2FT2010) overestimated global total emissions by at least 25 Tg/yr in 2010. Increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, with timing consistent with an increase of non-dairy cattle stocks by ~10% in 2012 from 1056 million heads in 2002, leading to ~10 Tg/yr increase in emissions from enteric fermentation. All 7 inversions robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to sparse observational network. Forward simulation results using both the a priori and a posteriori emissions are compared with independent aircraft measurements for validation. By doing that we are able to reject the upper limit (545 Tg/yr) of global total emissions as 14 Tg/yr too high during 2008-2012, which allows us to further conclude that CH4 emission increase rate over the East Asia (China mainly) region was 7-8 Tg/yr between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg/yr in the a priori emissions.

  6. Estimating methane emissions in California's urban and rural regions using multitower observations

    SciTech Connect

    Jeong, Seongeun; Newman, Sally; Zhang, Jingsong; Andrews, Arlyn E.; Bianco, Laura; Bagley, Justin; Cui, Xinguang; Graven, Heather; Kim, Jooil; Salameh, Peter; LaFranchi, Brian W.; Priest, Chad; Campos-Pineda, Mixtli; Novakovskaia, Elena; Sloop, Christopher D.; Michelsen, Hope A.; Bambha, Ray P.; Weiss, Ray F.; Keeling, Ralph; Fischer, Marc L.

    2016-11-05

    Here, we present an analysis of methane (CH4) emissions using atmospheric observations from 36 thirteen sites in California during June 2013 – May 2014. A hierarchical Bayesian inversion 37 method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by 38 comparing measured CH4 mixing ratios with transport model (WRF-STILT) predictions based 39 on seasonally varying California-specific CH4 prior emission models. The transport model is 40 assessed using a combination of meteorological and carbon monoxide (CO) measurements 41 coupled with the gridded California Air Resources Board (CARB) carbon monoxide (CO) 42 emission inventory. Hierarchical Bayesian inversion suggests that state annual anthropogenic 43 CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence, including transport bias 44 uncertainty), higher (1.2 - 1.8 times) than the CARB current inventory (1.64 Tg CH4/yr in 2013). 45 We note that the estimated CH4 emissions drop to 1.0 - 1.6 times the CARB inventory if we 46 correct for the 10% median CH4 emissions assuming the bias in CO analysis is applicable to 47 CH4. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and 48 South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, 49 respectively. This study suggests that the livestock sector is likely the major contributor to the 50 state total CH4 emissions, in agreement with CARB’s inventory. Attribution to source sectors for 51 sub-regions of California using additional trace gas species would further improve the 52 quantification of California’s CH4 emissions and mitigation efforts towards the California Global 53 Warming Solutions Act of 2006 (AB-32).

  7. The Kinematics of Quasar Broad Emission Line Regions Using a Disk-Wind Model

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee; Webster, Rachel L.; King, Anthea L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2017-09-01

    The structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.

  8. Estimation of PFOS emission from domestic sources in the eastern coastal region of China.

    PubMed

    Xie, Shuangwei; Lu, Yonglong; Wang, Tieyu; Liu, Shijie; Jones, Kevin; Sweetman, Andy

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and related chemicals (collectively "PFOS equivalents") have been released to the environment through widespread consumer use and disposal of PFOS-containing products like carpet, leather, textiles, paper, food containers, household cleansers, etc. Accordingly, in addition to PFOS-related industries, domestic activities may also considerably contribute to the PFOS emissions in the eastern coastal region of China, which has been characterized by high industrial input. In the present study, domestic emissions of PFOS equivalents derived from municipal wastewater treatment plants were estimated at the county level, using a regression model of domestic emission density with population density and per capita disposable income as independent variables. The total emission load of PFOS equivalents from domestic sources in the eastern coastal region of China was 381kg in 2010, and large cities were prominent as the emission centers. The domestic emission density averaged 0.37g/km(2)·a for the entire study area. Generally, the Beijing-Tianjin area, Pearl River Delta and Yangtze River Delta, as the most populous and economically developed areas in China, showed significantly higher emission density. Geographical variations within individual provinces were noteworthy. The average per capita discharge load of PFOS equivalents arising from domestic activities was 1.91μg/day per capita in the eastern coastal region of China, which is consistent with previous estimates in Korea, but lower than those calculated for developed countries. In comparison, the spatial distributions of provincial PFOS emissions from domestic and industrial sources were similar to each other; however, the latter was much larger for all the provinces. © 2013.

  9. [Effect of Biochar on Soil Greenhouse Gas Emissions in Semi-arid Region].

    PubMed

    Guo, Yan-liang; Wang, Dan-dan; Zheng, Ji-yong; Zhao, Shi-wei; Zhang, Xing-chang

    2015-09-01

    This study aimed to investigate the effects of biochar addition on the emission of greenhouse gases from farmland soil in semi-arid region. Through an in-situ experiments, the influence of sawdust biochar(J) and locust tree skin biochar (H) at three doses (1%, 3%, and 5% of quality percentage) on C2, CH4 and N2O emissions were studied within the six months in the south of Ningxiaprovince. The results indicated that soil CO2 emission flux was slightly increased with the addition doses for both biochars, and the averaged CO2 emission flux for sawdust and locust tree skin biochar was enhanced by 1. 89% and 3. 34% compared to the control, but the difference between treatments was not statistically significant. The soil CH4 emission was decreased with the increasing of biochar doses, by 1. 17%, 2. 55%, 4. 32% for J1, J3, J5 and 2. 35%, 5. 83%, 7. 32% for H1, H3, H5, respectively. However, the difference was statistically significant only for J5, H3 and H5 treatments (P <0. 05). Across addition doses, there was no apparent effect on soil N2O emission. Our study indicated that the biochar has no significant influence on soil CO2 and N2O emissions within six months in semi-arid region and can significantly influence soil CH4 emissions (P < 0. 05). As for biochar type, the locust tree skin biochar is significantly better than the sawdust biochar in terms of restraining CH4 emission(P = 0. 048).

  10. Assessment of regional acidifying pollutants in the Athabasca oil sands area under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Jung, Jaegun; Morris, Ralph; Pauls, Ron

    2017-05-01

    Acid deposition is a potential environmental impact of oil sands development in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta. An acid deposition management framework has been established to manage this issue. This framework includes an acid deposition modelling and time-to-effect impact assessment component that was recently implemented for four acidifying emissions cases using the Community Multi-scale Air Quality (CMAQ) model. Predicted gross Potential Acid Input (PAI) deposition in the AOSR increases from the historical to existing case with further increases predicted in two future cases due to the projected increase in NOx emissions. On average the total predicted PAI deposition in the AOSR is approximately 40% sulphur deposition and 60% nitrogen deposition. Sulphur deposition decreases by 7% from the historical to existing cases due to the reductions in SO2 emissions that have occurred in the AOSR but increases by 5% from the existing to future case 1 and by 8% from existing to future case 2 even though continued AOSR SO2 emission decreases were modelled. This is likely the result of the deposition reduction associated with a single large reduction in SO2 emissions from one facility's main stack being offset elsewhere in the AOSR by deposition increases due to small increases in SO2 emissions from several in situ sources with shorter stacks. Average nitrogen deposition over the AOSR increases by 10% from the historical to existing case and then further increases by 10.6% from the existing case to future case 1 and by 12.3% from the existing case to future case 2. The increasing relevance of NOx emissions over SO2 emissions in the AOSR suggests that a robust treatment of nitrogen chemistry such as in CMAQ is required for conducting deposition assessments in the region. The modelling results provide information that can be used to inform oil sands emission management priorities in the context of acid deposition and nitrogen eutrophication

  11. Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions

    NASA Astrophysics Data System (ADS)

    Bellouin, Nicolas; Baker, Laura; Hodnebrog, Øivind; Olivié, Dirk; Cherian, Ribu; Macintosh, Claire; Samset, Bjørn; Esteve, Anna; Aamaas, Borgar; Quaas, Johannes; Myhre, Gunnar

    2016-11-01

    Predictions of temperature and precipitation responses to changes in the anthropogenic emissions of climate forcers require the quantification of the radiative forcing exerted by those changes. This task is particularly difficult for near-term climate forcers like aerosols, methane, and ozone precursors because their short atmospheric lifetimes cause regionally and temporally inhomogeneous radiative forcings. This study quantifies specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, for eight near-term climate forcers as a function of their source regions and the season of emission by using dedicated simulations by four general circulation and chemistry-transport models. Although differences in the representation of atmospheric chemistry and radiative processes in different models impede the creation of a uniform dataset, four distinct findings can be highlighted. Firstly, specific radiative forcing for sulfur dioxide and organic carbon are stronger when aerosol-cloud interactions are taken into account. Secondly, there is a lack of agreement on the sign of the specific radiative forcing of volatile organic compound perturbations, suggesting they are better avoided in climate mitigation strategies. Thirdly, the strong seasonalities of the specific radiative forcing of most forcers allow strategies to minimise positive radiative forcing based on the timing of emissions. Finally, European and shipping emissions exert stronger aerosol specific radiative forcings compared to East Asia where the baseline is more polluted. This study can therefore form the basis for further refining climate mitigation options based on regional and seasonal controls on emissions. For example, reducing summertime emissions of black carbon and wintertime emissions of sulfur dioxide in the more polluted regions is a possible way to improve air quality without weakening the negative radiative forcing of aerosols.

  12. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    NASA Astrophysics Data System (ADS)

    Xing, J.; Wang, S. X.; Chatani, S.; Zhang, C. Y.; Wei, W.; Hao, J. M.; Klimont, Z.; Cofala, J.; Amann, M.

    2010-11-01

    Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status), PC[0] (improvement of energy efficiencies and current environmental legislation), PC[1] (improvement of energy efficiencies and better implementation of environmental legislation), and PC[2] (improvement of energy efficiencies and strict environmental legislation). Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ) with 2005 emissions and 2020 emission scenarios. Under REF[0] emissions, the concentrations of SO2, NO2, hourly maximum ozone in summer, PM2.5, total sulfur and nitrogen depositions will increase by 5~47%, 45~53%, 8~12%, 4~15%, 4~37% and 7~14%, respectively, over East China. Under the PC[2] emission scenario, the

  13. Anomalous Microwave Emission in HII regions: is it really anomalous? The case of RCW 49

    NASA Astrophysics Data System (ADS)

    Paladini, Roberta; Ingallinera, A.; Agliozzo, C.; Tibbs, C.; Dickinson, C.; Trigiglio, C.; Umana, G.; Noriega-Crespo, A.; Flagey, N.

    2014-01-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free-free emission is reported for several Galactic HII regions. Here, we investigate the case of RCW 49, the brightest Galactic HII region of the Southern hemisphere, for which the Caltech Background Imager (CBI) tentatively 3 sigma) detected Anomalous Microwave Emission at 31 GHz. Using the Australia Telescope Compact Array (ATCA), we carried out continuum multi-frequency observations (5 GHz, 19 GHz and 34 GHz) of an area of 7.8' X 5.6' centered on the CBI 31-GHz peak of emission, complemented by observations of the H109alpha hydrogen Radio Recombination Line of the same region. The analysis of the continuum and line data show that: 1) the microwave-IR correlation found by the Caltech Background Imager on scales of ~ 6' appears to persist on arcsec angular scales (0.4'' - 1'); 2) there is evidence of rising spectral indices between 1.4 and 5 GHz and these are compatible with the presence of strong stellar winds, possibly generated by the Westerlund 2 cluster; 3) the anomalous emission in RCW 49 cannot be attributed to inverted free-free associated with Ultra Compact HII regions. Finally, we propose that what is observed in RCW 49 might not be specific of this HII region only, and that the excess of microwave emission in this type of sources might not have an "anomalous" origin, but rather simply be ascribed to stellar winds and/or shocks phenomena.

  14. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    PubMed

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  15. Regional Heterogeneity in the Rates of Warming from CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Caldeira, K.

    2015-12-01

    While it is commonly understood that the magnitudes of global warming from anthropogenic emissions are and will be spatially heterogeneous, little work has been done exploring heterogeneity in the timing of effects from an emission of carbon dioxide (CO2). Using the results from the Coupled Model Intercomparison Project v5 (CMIP5) abrupt4xco2 experiment, we explore regional differences in the timing, as opposed to magnitude, of the warming from emissions of CO2. Our analysis reveals a surprisingly high amount of regional diversity in the pace of realization of the warming effect of a CO2 emission, with relatively accelerated warming for areas such as the eastern United States and Central Asia and a relatively long lag between emission and warming effect for Australia and Amazonia. Figure 1 shows the ratio of the ensemble median rate of warming in the first decade after a change in CO2 concentration to the rate of warming for the remainder of the first century. Because estimates of social cost of carbon implicitly assume similar timing of warming for all regions, the observed effects have important implications for climate policy.

  16. The discrete and localized nature of the variable emission from active regions

    NASA Technical Reports Server (NTRS)

    Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita

    1994-01-01

    Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.

  17. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    NASA Astrophysics Data System (ADS)

    Xing, J.; Wang, S. X.; Chatani, S.; Zhang, C. Y.; Wei, W.; Hao, J. M.; Klimont, Z.; Cofala, J.; Amann, M.

    2011-04-01

    Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status), PC[0] (improvement of energy efficiencies and current environmental legislation), PC[1] (improvement of energy efficiencies and better implementation of environmental legislation), and PC[2] (improvement of energy efficiencies and strict environmental legislation). Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ). Under REF[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly maximum ozone in summer, PM2.5, total sulfur and nitrogen depositions will increase by 28%, 41%, 8%, 8%, 19% and 25%, respectively, over east China. Under the PC[2] emission scenario, the surface concentrations of SO

  18. Emission-line stars in the Canis Major star-formation region

    NASA Astrophysics Data System (ADS)

    Wiramihardja, S. D.; Kogure, T.; Nakano, M.; Yoshida, S.

    Using the Schmidt telescope of the Kiso Observatory, H-alpha-emission stars have been surveyed in the Canis Major star-formation region and its adjacent reference area. In the area of about 58 square degrees a total of 179 H-alpha-emission stars have been found in the magnitude range between V = 6 and 15 with a majority in the V = 11-14 range. Based on the color properties and on the location relative to the CMa R1 association, the stars are provisionally classified into two main groups of early-type H-alpha-emission stars and of T Tauri candidates. It is found that the early-type H-alpha-emission stars are distributed rather uniformly over the survey area in contrast to the group of T Tauri candidates which show good coincidence with the CMa R1 association in the surface distribution.

  19. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  20. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region

    SciTech Connect

    Song, Changchun; Xu, Xiaofeng; Sun, Xiaoxin; Tian, Hanqin; Sun, Li; Miao, Yuqing; Wang, Xianwei; Guo, Yuedong

    2012-01-01

    The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

  1. ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49

    SciTech Connect

    Paladini, Roberta; Ingallinera, Adriano; Agliozzo, Claudia; Umana, Grazia; Trigilio, Corrado; Tibbs, Christopher T.; Noriega-Crespo, Alberto; Dickinson, Clive

    2015-11-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persists on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.

  2. Spitzer IRAC Color Diagnostics for Extended Emission in Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-10-01

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H2 and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine & Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H2 emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  3. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Walterscheid, R. L.; Hickey, M. P.

    1991-01-01

    The paper theoretically examines the modification of the characteristics of OH nightglow from an extended emission region by eddy momentum and eddy thermal diffusivities. The reactions that account for OH decay are presented with the additional modifications demonstrating the importance of the upper limit of vertical integration of the extended source. When the vertical wavelengths are smaller than the thickness of the main OH emission region, oscillations cause the effects, particularly at long wavelengths. Eddy diffusion increases the vertical wavelength, and therefore the interference effects related to a finite range of vertical integration can be reduced by accounting for eddy diffusion. It is determined that the effects of eddy momentum and thermal diffusivities are important elements of gravity wave dynamics and should be considered when calculating OH emission perturbations and related variables.

  4. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    SciTech Connect

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  5. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  6. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Walterscheid, R. L.; Hickey, M. P.

    1991-01-01

    The paper theoretically examines the modification of the characteristics of OH nightglow from an extended emission region by eddy momentum and eddy thermal diffusivities. The reactions that account for OH decay are presented with the additional modifications demonstrating the importance of the upper limit of vertical integration of the extended source. When the vertical wavelengths are smaller than the thickness of the main OH emission region, oscillations cause the effects, particularly at long wavelengths. Eddy diffusion increases the vertical wavelength, and therefore the interference effects related to a finite range of vertical integration can be reduced by accounting for eddy diffusion. It is determined that the effects of eddy momentum and thermal diffusivities are important elements of gravity wave dynamics and should be considered when calculating OH emission perturbations and related variables.

  7. Comparison of CH4 Emission from Rice Paddy Soils between Coastal Zone and Inland Regions

    NASA Astrophysics Data System (ADS)

    Sun, M.; Li, X.

    2016-12-01

    Numerous measurements of methane (CH4) emission fluxes have been carried out in rice paddy soil between coastal zone and inland regions. However, the differences of CH4 emission from rice paddy soils in these two locations were unavailable. A database of CH4 emission in paddy rice was compiled from previous published references and field observations with major parameters including water regimes, fertilizer application, CH4 fluxes, and environmental variables. Results showed that CH4 emission from inland paddy fields was significantly higher than that in the coastal zone (p < 0.05). Fertilizer application and water management played an important role in CH4 emission. The application of organic fertilizer and continuous flooding significantly promoted CH4 emission from paddy fields. CH4 fluxes showed significantly positive correlations with organic matter, total nitrogen, available potassium and annual temperature (R2 = 0.39, 0.53, 0.27 and 0.23, p < 0.05), and negative correlations with pH and available phosphorus (R2 = 0.29 and 0.37, p < 0.05). Significant differences occurred in available potassium between inland and coastal rice paddy (p < 0.05), which might account for the difference of CH4 emission between inland and coastal rice paddy. The contrasting of CH4 fluxes between inland and coastal wetlands could improve our understanding of the roles of rice paddies in the regional CH4 regulation. Our results also have implications for informing rice paddy management and climate change policy making the efforts being made by agricultural organizations and enterprises to restore coastal rice paddies for mitigating CH4 emissions.

  8. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  9. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with

  10. New Radio Observations of Anomalous Microwave Emission in the H II Region RCW175

    NASA Astrophysics Data System (ADS)

    Battistelli, E. S.; Carretti, E.; Cruciani, A.; de Bernardis, P.; Génova-Santos, R.; Masi, S.; Naldi, A.; Paladini, R.; Piacentini, F.; Tibbs, C. T.; Verstraete, L.; Ysard, N.

    2015-03-01

    We have observed the H II region RCW175 with the 64 m Parkes telescope at 8.4 GHz and 13.5 GHz in total intensity, and at 21.5 GHz in both total intensity and polarization. High angular resolution ranging from 1 to 2.4 arcmin, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the H II region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component (T gas = 5800 K) with a relatively large hydrogen number density n H = 26.3/cm3 and a cold component (T gas = 100 K) with a hydrogen number density of n H = 150/cm3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to the spectral coverage and angular resolution of the Parkes observations, we have been able to derive one of the first AME/excess maps, at 13.5 GHz, showing clear evidence that the bulk of the anomalous emission arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5 GHz of 2.2 ± 0.2(rand.) ± 0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission

  11. 40 CFR 93.122 - Procedures for determining regional transportation-related emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or maintenance area VMT on off-network roadways within the urban transportation planning area, and on roadways outside the urban transportation planning area. (b) Regional emissions analysis in serious, severe... paragraphs (b) (1) through (3) of this section if their metropolitan planning area contains an urbanized...

  12. 40 CFR 93.122 - Procedures for determining regional transportation-related emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... growth in population and historical growth trends for VMT per person. These methods must also consider... population over 200,000. (1) By January 1, 1997, estimates of regional transportation-related emissions used... trends and other factors, and the results must be documented; (ii) Land use, population, employment, and...

  13. 40 CFR 93.122 - Procedures for determining regional transportation-related emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... growth in population and historical growth trends for VMT per person. These methods must also consider... population over 200,000. (1) By January 1, 1997, estimates of regional transportation-related emissions used... trends and other factors, and the results must be documented; (ii) Land use, population, employment, and...

  14. 40 CFR 93.122 - Procedures for determining regional transportation-related emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... growth in population and historical growth trends for VMT per person. These methods must also consider... population over 200,000. (1) By January 1, 1997, estimates of regional transportation-related emissions used... trends and other factors, and the results must be documented; (ii) Land use, population, employment, and...

  15. 40 CFR 93.122 - Procedures for determining regional transportation-related emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... growth in population and historical growth trends for VMT per person. These methods must also consider... population over 200,000. (1) By January 1, 1997, estimates of regional transportation-related emissions used... trends and other factors, and the results must be documented; (ii) Land use, population, employment, and...

  16. Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom.

    PubMed

    Hiscock, K M; Bateman, A S; Mühlherr, I H; Fukada, T; Dennis, P F

    2003-08-15

    Diffuse pollution of groundwater by agriculture has caused elevated concentrations of nitrate (NO3-) and nitrous oxide (N2O) in regional aquifers. N2O is an important "greenhouse" gas, yet there are few estimates of indirect emissions of N2O from regional aquifers. In this study, high concentrations of N2O (mean 602 nM) were measured in the unconfined Chalk aquifer of eastern England, in an area of intensive agriculture. In contrast, pristine groundwaters from upland regions of England and Scotland, with predominantly natural vegetation cover, were found to have much lower concentrations of N2O (mean 27 nM). A positive relationship between N2O and NO3- concentrations and delta18O-NO3 values of between 3.36 and 16.00/1000 suggest that nitrification is the principal source of N2O. A calculated emission factor (EF5-g) of 0.0019 for indirect losses of N2O from Chalk groundwater is an order of magnitude lower than the value of 0.015 currently used in the Intergovernmental Panel on Climate Change (IPCC) methodology for assessing agricultural emissions. A flux of N2O from the major UK aquifers of 0.04 kg N2O-N ha(-1) a(-1) has been calculated using two approaches and suggests that indirect losses of N2O from regional aquifers are much less significant (<1%) than direct emissions from agricultural soils.

  17. The response of European and Asian climate to global and regional aerosol emissions

    NASA Astrophysics Data System (ADS)

    Wilcox, Laura; Dunstone, Nick; Highwood, Eleanor; Bollasina, Massimo; Dong, Buwen; Sutton, Rowan

    2017-04-01

    Asia has the world's highest anthropogenic aerosol loading and has experienced a dramatic increase in emissions since the 1950s, which has continued in the 21st century, in stark contrast with European (and North American) emissions which started to decrease in the 1970s. We use a set of transient coupled model experiments (HadGEM2-GC2) to explore the regional climate effects of anthropogenic aerosol changes since the 1980s, with a focus on the European and Asian responses. Comparing simulations with globally varying aerosol emissions to an equivalent set with Asian emissions fixed at their 1971-1980 mean over Asia, we identify the contribution of Asian emissions to the total impact. Identifying thermodynamic and dynamic responses to global and regional aerosol changes, we diagnose atmospheric teleconnections and their interactions with local processes, and the mechanisms by which aerosol affects both European and Asian climate. It is found that Asian aerosols led to substantial changes in Asian climate, weakening the summer monsoon, which is a key driver of the observed precipitation changes there in recent decades. Asian emissions are also able to induce planetary-scale teleconnection patterns in both winter and summer. The impact of the regional diabatic heating anomaly propagates remotely by exciting northern hemisphere wave-trains which, enhanced by regional feedbacks, cause changes in near-surface climate over Europe. To examine the robustness of the mechanisms we identify in HadGEM2, we analyse similar sets of experiments from NorESM1-M and GFDL-CM3: models with very different climatologies and representations of aerosol processes.

  18. The "APEC Blue" phenomenon: Regional emission control effects observed from space

    NASA Astrophysics Data System (ADS)

    Huang, Kan; Zhang, Xingying; Lin, Yanfen

    2015-10-01

    Observations from space were used to evaluate the effect of emission control measures on the changes of air pollutants in Beijing and its surroundings during the 2014 Asia-Pacific Economic Cooperation (APEC) Summit held in Beijing. Compared to the past three years (2011-2013), NO2 tropospheric vertical column densities in 2014 were found to exhibit almost across-the-board significant reductions over the North China Plain, suggesting the effectiveness of the national policy on NOx emission reduction during China's 12th "Five-Year-Plan". During the APEC period (Nov. 3-11), AOD and AAOD were found reduced the most in Beijing, followed by Hebei province. Stringent emission control measures implemented in Beijing and the regional joint control over the surroundings especially in Hebei were responsible for the good air quality and so-called "APEC Blue". However, air quality plummeted during the post-APEC period (Nov. 12-30), which was largely related to the lifting of local and regional joint emission control measures. By applying a spatial correlation analysis method, the potential emission source regions impacting air quality of Beijing included widespread areas in Hebei, Shandong, Shanxi, and Tianjin in the past three years (2011-2013). While during the study period in 2014, areas impacting Beijing evidently shrank and were limited within Hebei, suggesting evident effects of intense emission perturbations on lowering the extent of regional transport. This study indicates short-term measures did fix the air pollution problems in China but a permanent solution is still a tremendous challenge.

  19. Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla

    2016-11-01

    Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.

  20. Gamma-ray continuum emission from the inner Galactic region as observed with INTEGRAL/SPI

    NASA Astrophysics Data System (ADS)

    Strong, A. W.; Diehl, R.; Halloin, H.; Schönfelder, V.; Bouchet, L.; Mandrou, P.; Lebrun, F.; Terrier, R.

    2005-12-01

    The diffuse continuum emission from the Galactic plane in the energy range 18-1000 keV has been studied using 16 Ms of data from the SPI instrument on INTEGRAL. With such an exposure we can exploit the imaging properties of SPI to achieve a good separation of point sources from the various diffuse components. Using a candidate-source catalogue derived with IBIS on INTEGRAL and a number of sky distribution models we obtained spectra resolved in Galactic longitude. We can identify spectral components of a diffuse continuum of power law shape with index about 1.7, a positron annihilation component with a continuum from positronium and the line at 511 keV, and a second, roughly power-law component from detected point sources. Our analysis confirms the concentration of positron annihilation emission in the inner region (|l|<10°), the disk (10°<|l|<30°) being at least a factor 7 weaker in this emission. The power-law component in contrast drops by only a factor 2, showing a quite different longitude distribution and spatial origin. Detectable sources constitute about 90% of the total Galactic emission between 20 and 60 keV, but have a steeper spectrum than the diffuse emission, their contribution to the total emission dropping rapidly to a small fraction at higher energies. The spectrum of diffuse emission is compatible with RXTE and COMPTEL at lower and higher energies respectively. In the SPI energy range the flux is lower than found by OSSE, probably due to the more complete accounting for sources by SPI. The power-law emission is difficult to explain as of interstellar origin, inverse Compton giving at most 10%, and instead a population of unresolved point sources is proposed as a possible origin, AXPs with their spectral hardening above 100 keV being plausible candidates. We present a broadband spectrum of the Galactic emission from 10 keV to 100 GeV.

  1. Model assessment of atmospheric pollution control schemes for critical emission regions

    NASA Astrophysics Data System (ADS)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  2. Evaluation of regional isoprene emission factors and modeled fluxes in California

    NASA Astrophysics Data System (ADS)

    Misztal, Pawel K.; Avise, Jeremy C.; Karl, Thomas; Scott, Klaus; Jonsson, Haflidi H.; Guenther, Alex B.; Goldstein, Allen H.

    2016-08-01

    Accurately modeled biogenic volatile organic compound (BVOC) emissions are an essential input to atmospheric chemistry simulations of ozone and particle formation. BVOC emission models rely on basal emission factor (BEF) distribution maps based on emission measurements and vegetation land-cover data but these critical input components of the models as well as model simulations lack validation by regional scale measurements. We directly assess isoprene emission-factor distribution databases for BVOC emission models by deriving BEFs from direct airborne eddy covariance (AEC) fluxes (Misztal et al., 2014) scaled to the surface and normalized by the activity factor of the Guenther et al. (2006) algorithm. The available airborne BEF data from approx. 10 000 km of flight tracks over California were averaged spatially over 48 defined ecological zones called ecoregions. Consistently, BEFs used by three different emission models were averaged over the same ecoregions for quantitative evaluation. Ecoregion-averaged BEFs from the most current land cover used by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v.2.1 resulted in the best agreement among the tested land covers and agreed within 10 % with BEFs inferred from measurement. However, the correlation was sensitive to a few discrepancies (either overestimation or underestimation) in those ecoregions where land-cover BEFs are less accurate or less representative for the flight track. The two other land covers demonstrated similar agreement (within 30 % of measurements) for total average BEF across all tested ecoregions but there were a larger number of specific ecoregions that had poor agreement with the observations. Independently, we performed evaluation of the new California Air Resources Board (CARB) hybrid model by directly comparing its simulated isoprene area emissions averaged for the same flight times and flux footprints as actual measured area emissions. The model simulation and the observed

  3. [Asbestos risk in the textile industry: final confirmation of data from the Lombardy Mesothelioma Registry].

    PubMed

    Chiappino, G; Mensi, C; Riboldi, L; Rivolta, G

    2003-01-01

    Cases of mesothelioma in non-asbestos textile workers have been frequently reported but the identification of asbestos dispersion sources in the workplaces has never been adequately performed. During 3 years of activity of the Mesothelioma Register for Lombardy, 40 cases (10.8% of all cases) were collected in textile workers engaged in all types of productive activities. The hypothesis that a significant asbestos risk for textile workers appeared not negligible. The research was aimed at the identification of asbestos dispersion sources in textile factories. Specific information was collected by technicians, maintenance personnel and other experts and direct inspections were carried out in numerous workplaces that had not yet undergone significant changes with respect to the past. Also the industrial machinery utilised in the previous 40-50 years was thoroughly examined. Epidemological evaluation of the recorded cases showed a widespread distribution in the different phases of textile production. Inspections also showed that a large amount of asbestos had been regularly used applied to the ceilings and also to the walls of factories in order to avoid both condensation of steam and reflection of noise. In addition, asbestos had also been widely used to insulate water and steam pipes. The braking systems of most of the machines also had asbestos gaskets, and on several looms some brakes operated continuously in order to keep the warp in constant tension. Our observations confirmed that since production techniques in the textile industry required working in damp and warm conditions with the noise of the rapidly moving machines, asbestos was very often used because of its absorbent and soundproofing qualities and its resistance to friction. We demonstrated that asbestos was thus widely used in the industry and this certainly produced considerable fibre dispersions in the atmosphere of the workplaces. Asbestos risk must therefore be recognised for all those who have

  4. Epidemiology of Mycobacterium tuberculosis infection in Pavia province, Lombardy, Northern Italy, 1998-2013.

    PubMed

    Fronti, Elisa; Vecchia, Marco; Scudeller, Luigia; Praticò, Liliana; Marone, Piero; Muzzi, Alba; Minoli, Lorenzo; Seminari, Elena

    2016-10-01

    This study investigated the epidemiology of tuberculosis in the last 16 years in the province of Pavia, Lombardy, Northern Italy. The objective was to evaluate the clinical pattern of tuberculosis in immigrant groups compared with Italians in an observational retrospective study conducted from 1998 to 2013. In all, 615 tuberculosis cases were admitted, 354 males (57.3%), median age 47-years, 425 (69.1%) Italian-born patients, 190 (30.9%) immigrants. The ratio between the immigrant group and the Italian-born group of patients increased from 1.7% to 54.5% in the study period (p=0.001). HIV was the most common comorbidity, affecting 48 patients (7.8%), followed by diabetes in 35 (5.7%) and COPD in 30 (4.9%). The overall admission-associated mortality was 5.5%. Italian-born patients were older than non-Italian born subjects and had at least one comorbidity, 162 (38.1%) and 22 (11.6%), respectively (p<0,0001). Mortality was increased among Italian-born compared with non-Italian-born patients (7.3% versus 1.6%, p=0.004). No significant variation in extra-pulmonary tuberculosis (EPTB) prevalence occurred. Considering specific form of EPTB, HIV infection was associated with an increased risk of EPTB (RR 2.02, 95%CI 1.09-3.74, p=0.026). There was a high risk of tuberculosis among immigrants, whereas a decreasing trend was consistently observed among Italian-born patients. Italian-born patients show a higher tuberculosis-associated mortality risk due to older age and comorbidities.

  5. Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy).

    PubMed

    Perego, Alessia; Sanna, Mattia; Giussani, Andrea; Chiodini, Marcello Ermido; Fumagalli, Mattia; Pilu, Salvatore Roberto; Bindi, Marco; Moriondo, Marco; Acutis, Marco

    2014-11-15

    The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.

  6. Arctic climate response to regional aerosol emission changes between 1980 and 2005

    NASA Astrophysics Data System (ADS)

    Ekman, A.; Acosta Navarro, J. C.; Varma, V.; Riipinen, I.; Seland, O.; Kirkevag, A.; Struthers, H.; Iverson, T.; Hansson, H. C.

    2015-12-01

    Emissions of aerosols and their precursors have due to air quality regulations drastically decreased at northern hemisphere mid-latitudes during the latest decades. At the same time, emissions in the northern hemisphere tropics and subtropics have increased e.g. as a consequence of the strong economic growth in East Asia. Using the fully coupled ocean-atmosphere climate model NorESM, we assess the influence of these regional emission changes on climate with a particular focus on the Arctic. Different mechanisms that couple the localized forcing with the corresponding temperature response are also suggested. The European emission reductions of SO2 that have taken place since the 1980's, seem to have had a disproportionally large effect on the Arctic climate compared to the rest of the northern hemisphere. Locally, the Arctic warming due to the decreased SO2 exceeds 1K. The primary reason for this strong remote temperature response is an increased poleward dry-static heat transport, which is initiated by the enhanced meridional temperature gradient. Emission changes of other aerosol types and over other regions such as North America and Asia appear to have had a much smaller influence on recent Artic climate change. Possible reasons for this differential response will be discussed.

  7. X-rays from emission-line stars in the Herbig-Haro 1 region

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Angelini, Lorella

    1993-01-01

    We have observed the region in Orion containing Herbig-Haro 1 as well as a number of young, active stars. This observation shows a similar X-ray morphology to that in the first X-ray imaging observation about 10 years ago. The ROSAT High Resolution Instrument with its approximately arcsecond spatial resolution allows us in most cases to make definite optical identifications of the 0.1-2.4 keV X-ray sources. New identifications with emission-line stars are made, and prior identifications using lower resolution observations are confirmed or corrected. The X-ray emission previously detected from the vicinity of HH-1 is not associated with HH-1 but with a known T Tauri star. The observed relationships among X-ray, optical line, and infrared excess emission do not simply fall into the suggested classifications for T Tauri or T Tauri-like stars. This could be an indication of another X-ray emission region such as accretion disks that add to the emission from the stellar atmospheres.

  8. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Xiaonan; Wang, Xiaoke; Mu, Yujing; Ouyang, Zhiyun

    CH 4 emissions have been widely studied in various wetlands, such as boreal peatlands, rice paddies, and tropical swamps. However, little investigation has been carried out for CH 4 emissions from lakes or wetlands in arid regions where these freshwaters play a vital role in providing ecosystem services for local people. To quantify the spatial and temporal variations of CH 4 flux and understand its key controlling factors in shallow lakes in arid regions of Western China, CH 4 fluxes from Wuliangsu Lake were measured at different vegetation zones and water depths with a static chamber technique during a growing season from April to October in 2003. Results showed that the average emission flux of CH 4 from submerged plant ( Potamogeton pectinatus) growing zones was 2.16 mg CH 4 m -2 h -1, which was 85.8% lower than that from emergent macrophyte ( Phragmites australis) growing zones. CH 4 emissions increased with increasing water depth in Phragmites Community. Significant seasonal and diurnal variations of CH 4 emission were observed for P. australis during the plant growth stage, for P. pectinatus growing zones, however, the variations were minor. In addition to vegetation cover and water depth, bottom silt temperature and light intensity were also important factors influencing seasonal and diurnal variations of CH 4 flux from Phargmites growing zone.

  9. Year-round methane emissions from permafrost in a North-east Siberian region

    NASA Astrophysics Data System (ADS)

    Castro-Morales, Karel; Kaiser, Sonja; Kleinen, Thomas; Kwon, Min Jung; Kittler, Fanny; Zaehle, Sönke; Beer, Christian; Göckede, Mathias

    2017-04-01

    In recent decades, permafrost regions in northern latitudes are thawing as a response of climate warming. Soils in permafrost areas contain vast amounts of organic material that is released into the environment after thaw, providing new labile material for bacterial decomposition. As a result, higher production of methane in the anoxic soil layers and within anaerobic wetlands is anticipated, and this will be further released to the atmosphere. In order to assess the current large-scale methane emissions from a wetland permafrost-thaw affected area, we present results of year-round simulated methane emissions at regional scale for a section at the Russian far Northeast in Siberia, located in the low Arctic tundra and characterized by continuous permafrost. For this we use a newly developed process-based methane model built in the framework of the land surface model JSBACH. The model contains explicit permafrost processes and an improved representation of the horizontal extent of wetlands with a hydrological model (TOPMODEL). Model simulated distribution and horizontal extent of wetlands is evaluated against high-resolution remote sensing data. Total and individual regional methane emissions by ebullition, molecular diffusion, plant-mediated and emissions through snow are presented for 2014 and 2015. The model shows a reasonable seasonal transition between the individual methane emission paths. Most of the methane emissions to the atmosphere occur in summer (July, August, September), with the peak of the emissions during August. In this month, plant-mediated transport is the dominant emission path with about 15 mg CH4 m-2 d-1 in 2014, followed by ebullition (7 mg CH4 m-2 d-1) accounting for about half of the emissions thorough plants. Molecular diffusion is a minor contributor with only 0.006 mg CH4 m-2 d-1 at the peak of the summer emissions. Methane emissions through snow occur only during spring, fall and winter months, with higher emissions in spring and autumn

  10. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States.

    PubMed

    Yuksel, Tugce; Michalek, Jeremy J

    2015-03-17

    We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives.

  11. Interactive effects of environmental change and management strategies on regional forest carbon emissions.

    PubMed

    Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E

    2013-11-19

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.

  12. A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.

    PubMed

    Chan; Onaka

    2000-04-10

    We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.

  13. Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China

    NASA Astrophysics Data System (ADS)

    Kim, Jooil; Li, Shanlan; Kim, Kyung-Ryul; Stohl, Andreas; Mühle, Jens; Kim, Seung-Kyu; Park, Mi-Kyung; Kang, Dong-Jin; Lee, Gangwoong; Harth, Christina M.; Salameh, Peter K.; Weiss, Ray F.

    2010-06-01

    High-frequency in-situ measurements of a wide range of halogenated compounds including chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorinated compounds (PFCs), sulfur hexafluoride (SF6), and other chlorinated and brominated compounds have been made at Gosan (Jeju Island, Korea). Regional emissions of HCFC-22 (CHClF2) calculated from inverse modeling were combined with interspecies correlation methods to estimate national emissions for China, a major emitter of industrial halogenated gases. Our results confirm the signs of successful phase-out of primary ozone-depleting species such as CFCs, halons and many chlorinated or brominated compounds, along with substantial emissions of replacement HCFCs. Emissions derived for HFCs, PFCs, and SF6 were compared to published estimates and found to be a significant fraction of global totals. Overall, Chinese emissions of the halogenated compounds discussed here represent 19(14-17)% and 20(15-26)% of global emissions when evaluated in terms of their Ozone Depletion Potentials and 100-year Global Warming Potentials, respectively.

  14. H(2) emission arises outside photodissociation regions in ultraluminous infrared galaxies.

    PubMed

    Zakamska, Nadia L

    2010-05-06

    Ultraluminous infrared galaxies are among the most luminous objects in the local Universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, but left unresolved was the source of excitation for this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultraluminous infrared galaxies and demonstrate that dust obscuration affects star formation indicators but not molecular hydrogen. I thereby establish that the emission of H(2) is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is unexpected in light of the standard view that H(2) emission is directly associated with star-formation activity. I propose the alternative view that H(2) emission in these objects traces shocks in the surrounding material that are excited by interactions with nearby galaxies. Large-scale shocks cooling by means of H(2) emission may accordingly be more common than previously thought. In the early Universe, a boost in H(2) emission by this process may have accelerated the cooling of matter as it collapsed to form the first stars and galaxies, and would make these first structures more readily observable.

  15. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15

  16. Local and Regional Scale Impacts of Arctic Shipping Emissions Off the Coast of Northern Norway

    NASA Astrophysics Data System (ADS)

    Marelle, L.; Thomas, J. L.; Law, K.; Raut, J. C.; Jalkanen, J. P.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; Weinzierl, B.; Rose, M.

    2014-12-01

    Decreased sea ice extent due to warming has already resulted in the use of new shipping routes through the Arctic. Marine traffic is a source of air pollutants, including NOx, SO2, and aerosols, and is predicted to be an increasingly significant source of Arctic pollution in the future. Currently there are large uncertainties in both global and Arctic shipping emissions, leading to uncertainties in diagnosing current and future impacts of marine traffic on Arctic air quality and climate. This study focuses on the local scale, examining chemical/aerosol transformations occurring in individual ship plumes. Measurements of ship pollution in the Arctic taken during the EU ACCESS aircraft campaign (Arctic Climate Change, Economy and Society) in July 2012 are used to quantify the amount of pollution emitted from different ship types. This is combined with regional model (WRF-Chem) simulations to evaluate the impacts of shipping in northern Norway in summer 2012. The model is run at high resolution (2x2 km) combined with STEAMv2 (Ship Traffic Emission Assessment Model version 2) emissions (1x1 km, 15 minute resolution) produced for shipping activity during the measurement period. WRF-Chem model results are compared with 3 ship plumes sampled during ACCESS. The model shows that both the location and total amount of pollution in individual ship plumes are correctly represented. Given this, the model is used to investigate the regional influence of ship pollution off the coast of Norway on a weekly time scale during July 2012, focusing on ozone photochemistry in ship plumes, the evolution of aerosols, and investigating the fate of black carbon emitted from ships. We compare regional modeling results obtained using 15 minute resolution STEAMv2 emissions with results using weekly averaged emissions, which are more representative of emissions typically used by global models to study the impacts of shipping on air quality and climate.

  17. A new biogeochemical model to simulate regional scale carbon emission from lakes, ponds and wetlands

    NASA Astrophysics Data System (ADS)

    Bayer, Tina; Brakebusch, Matthias; Gustafsson, Erik; Beer, Christian

    2016-04-01

    Small aquatic systems are receiving increasing attention for their role in global carbon cycling. For instance, lakes and ponds in permafrost are net emitters of carbon to the atmosphere, and their capacity to process and emit carbon is significant on a landscape scale, with a global flux of 8-103 Tg methane per year which amounts to 5%-30% of all natural methane emissions (Bastviken et al 2011). However, due to the spatial and temporal highly localised character of freshwater methane emissions, fluxes remain poorly qualified and are difficult to upscale based on field data alone. While many models exist to model carbon cycling in individual lakes and ponds, we perceived a lack of models that can work on a larger scale, over a range of latitudes, and simulate regional carbon emission from a large number of lakes, ponds and wetlands. Therefore our objective was to develop a model that can simulate carbon dioxide and methane emission from freshwaters on a regional scale. Our resulting model provides an additional tool to assess current aquatic carbon emissions as well as project future responses to changes in climatic drivers. To this effect, we have combined an existing large-scale hydrological model (the Variable Infiltration Capacity Macroscale Hydrologic Model (VIC), Liang & Lettenmaier 1994), an aquatic biogeochemical model (BALTSEM, Savchuk et al., 2012; Gustafsson et al., 2014) and developed a new methane module for lakes. The resulting new process-based biogeochemical model is designed to model aquatic carbon emission on a regional scale, and to perform well in high-latitude environments. Our model includes carbon, oxygen and nutrient cycling in lake water and sediments, primary production and methanogenesis. Results of calibration and validation of the model in two catchments (Torne-Kalix in Northern Sweden and of a large arctic river catchment) will be presented.

  18. Compact sources of suprathermal microwave emission detected in quiescent active regions during lunar occultations

    NASA Astrophysics Data System (ADS)

    Correia, E.; Kaufmann, P.; Strauss, F. M.

    1992-04-01

    Solar quiescent active regions are known to exhibit radio emission from discrete structures. The knowledge of their dimensions and brightness temperatures is essential for understanding the physics of quiescent, confined plasma regions. Solar eclipses of 10 August, 1980 and 26 January, 1990, observed with high sensitivity and high time resolution at 22 GHz, allowed an unprecedented opportunity to identify Fresnel diffraction effects during lunar occultations of active regions. The results indicate the presence of quiescent discrete sources smaller than one arcsec in one dimension. Assuming symmetrical sources, their brightness temperatures were larger than 2 x 10 exp 7 K and 8 x 10 exp 7 K, for the 1980 and 1990 observations, respectively.

  19. Estimating emissions of toxic hydrocarbons from natural gas production sites in the Barnett Shale region

    NASA Astrophysics Data System (ADS)

    Marrero, J. E.; Townsend-Small, A.; Lyon, D. R.; Tsai, T.; Meinardi, S.; Blake, D. R.

    2015-12-01

    Throughout the past decade, shale gas operations have moved closer to urban centers and densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants (HAPs). These HAPs include gases like hexane, 1,3-butadiene and BTEX compounds, which can cause minor health effects from short-term exposure or possibly cancer due to prolonged exposure. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples revealed enhancements in several of these toxic volatile organic compounds (VOCs) downwind of natural gas well pads and compressor stations. Two methods were used to estimate the emission rate of several HAPs in the Barnett Shale. The first method utilized CH4 flux measurements derived from the Picarro Mobile Flux Plane (MFP) and taken concurrently with whole air samples, while the second used a CH4 emissions inventory developed for the Barnett Shale region. From these two approaches, the regional emission estimate for benzene (C6H6) ranged from 48 ± 16 to 84 ± 26 kg C6H6 hr-1. A significant regional source of atmospheric benzene is evident, despite measurement uncertainty and limited number of samples. The extent to which these emission rates equate to a larger public health risk is unclear, but is of particular interest as natural gas productions continues to expand.

  20. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    SciTech Connect

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan; Liu, Bo; Liu, Wen-Juan; Pan, Xiang; Jiang, Peng; Hao, Lei; Ji, Tuo; Shi, Xiheng; Zhang, Shaohua E-mail: zhouhongyan@pric.org.cn

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similar to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.

  1. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yisheng; Shao, Min; Lin, Yun; Luan, Shengji; Mao, Ning; Chen, Wentai; Wang, Ming

    2013-09-01

    Emissions from burning major agricultural residue were measured through laboratory simulations using a self-designed dilution chamber system. Emission factors of CO2, CO, non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs), PM10, PM2.5, OC and EC in PM2.5 were measured for burning rice straw in flaming and smoldering combustion, and for burning of sugarcane leaves. NMHCs emitted from crop straw open burning were dominated by C2 hydrocarbons (ethene, ethane, ethyne), contributing (53.4 ± 4.6)% in volume in rice straw burning emissions and 41.8% in sugarcane burning emissions, respectively. Acetone and aldehyde were major OVOCs species in open straw burning emissions. A survey was conducted to determine the fraction of field crop biomass burned during harvesting season and the amounts of household firewood and crop residue consumption in 2008. Information obtained from the survey, together with measured EFs for field burning of rice straw and sugarcane, and EFs from literatures for field burning of other agricultural residues, biofuel combustion and forest fires, were used in developing the source inventories of carbonaceous pollutants in the PRD region. The annual emissions of CO, VOCs (including NMHCs and OVOCs), NOx, PM2.5, OC and EC from burning biomass were estimated to be 186.38, 15.94, 4.93, 15.56, 7.10, 2.25 kt in the year 2008, respectively. These estimates are lower than previously published estimates by 23-63%. Open burning patterns (flaming and smoldering) and rural biofuel use contribute to the differences. Field burning of straw contributed mainly to VOCs, PM2.5 and OC emissions while the residential sector was the dominant source of EC, CO and NOx. The contributions of biomass burning to entire PRD emissions are estimated as 3.37-6.53%, respectively, for PM, and 1.82-3.17%, respectively, for VOCs, and 0.52-2.77%, respectively, for NOx.

  2. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    NASA Astrophysics Data System (ADS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  3. Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode

    NASA Astrophysics Data System (ADS)

    Solmon, Fabien; Sarrat, Claire; Serça, Dominique; Tulet, Pierre; Rosset, Robert

    Biogenic emission of isoprene and monoterpenes are modeled in order to study their impact on regional atmospheric chemistry and pollution in France. First, an emission potential inventory is developed using a fine scale landuse database, forest composition statistics, biometric data and species emission factors. Considering the main emission patterns, the results show consistency with previously published European and global inventories. When downscaling to sub-region of France, this database is likely to provide refined sources distribution, an important issue for regional atmospheric chemistry studies. The temporal evolution of biogenic fluxes with meteorological conditions is calculated on line in the MesoNH-C meso-scale atmospheric chemistry model. Leaf-level algorithms are integrated at the ecosystem scale using sub-grid prognostic surface temperature and canopy shading effects. Finally, ecosystem to landscape integration is performed by aggregating biogenic fluxes at the model grid cell scale. Uncertainties associated with these estimations are discussed with respect to different spatial scales. In the second part of the paper, these developments are used to study biogenic emission impacts on regional ozone formation. We focus on a summer pollution event over Paris and northern France, documented during the ESQUIF experiment. The introduction of biogenic fluxes led to an increase in simulated surface ozone concentrations, reaching 18-30% in the Paris plume and about 20-30% in some rural areas. This impact was mainly due to large biogenic fluxes as well as to the chemical conditions prevailing in the anthropogenic plumes reaching biogenic sources. In this situation, some comparisons with air quality measurements pointed out an improvement of simulated ozone concentrations when accounting for biogenic fluxes, both in urban plumes and over rural areas.

  4. Net radiative forcing and air quality responses to regional CO emission reductions

    NASA Astrophysics Data System (ADS)

    Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; Naik, V.; Collins, W. J.; West, J. J.

    2012-12-01

    Carbon monoxide (CO) emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005). Net radiative forcing (RF) is then estimated using the GFDL standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m-2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100-yr global warming potential (GWP100) are estimated as -0.124 mW m-2 (Tg CO yr-1)-1 and 1.34, respectively, for the global CO reduction, and ranging from -0.115 to -0.131 mW m-2 (Tg CO yr-1)-1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S-28° N) followed by the northern mid-latitudes (28° N-60° N), independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international climate agreements could adopt a globally uniform metric

  5. Net radiative forcing and air quality responses to regional CO emission reductions

    NASA Astrophysics Data System (ADS)

    Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; Naik, V.; Collins, W. J.; West, J. J.

    2013-05-01

    Carbon monoxide (CO) emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005). Net radiative forcing (RF) is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory) standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m-2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100) are estimated as -0.124 mW m-2 (Tg CO)-1 and 1.34, respectively, for the global CO reduction, and ranging from -0.115 to -0.131 mW m-2 (Tg CO)-1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S-28° N) followed by the northern midlatitudes (28° N-60° N), independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international climate agreements could adopt

  6. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  7. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  8. Drivers of diel and regional variations of halocarbon emissions from the tropical North East Atlantic

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Ziska, F.; Fuhlbrügge, S.; Atlas, E. L.; Peeken, I.; Krüger, K.; Wallace, D. W. R.

    2013-07-01

    Methyl iodide (CH3I}, bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1-5.4 pmol L-1 were equally distributed throughout the investigation area. CHBr3 of 1.0-42.4 pmol L-1 and CH2Br2 of 1.0-9.4 pmol L-1 were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely

  9. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  10. DUST EMISSION FROM EVOLVED AND UNEVOLVED H II REGIONS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Slater, C. T.; Oey, M. S.; Li, A.; Bernard, J.-Ph.; Paradis, D.; Churchwell, E.; Gordon, K. D.; Lawton, B.; Meixner, M.; Indebetouw, R.; Reach, W.T.

    2011-05-10

    We present a study of the dust properties of 12 classical and superbubble H II regions in the Large Magellanic Cloud. We use infrared photometry from Spitzer (8, 24, 70, and 160 {mu} m bands), obtained as part of the Surveying the Agents of a Galaxy's Evolution (SAGE) program, along with archival spectroscopic classifications of the ionizing stars to examine the role of stellar sources on dust heating and processing. Our infrared observations show surprisingly little correlation between the emission properties of the dust and the effective temperatures or bolometric magnitudes of stars in the H II regions, suggesting that the H II region evolutionary timescale is not on the order of the dust processing timescale. We find that the infrared emission of superbubbles and classical H II regions shows little differentiation between the two classes, despite the significant differences in age and morphology. We do detect a correlation of the 24 {mu} m emission from hot dust with the ratio of 70-160 {mu} m flux. This correlation can be modeled as a trend in the temperature of a minority hot dust component, while a majority of the dust remains significantly cooler.

  11. Spitzer-IRAC imagery and photometry of ultracompact H II regions with extended emission

    NASA Astrophysics Data System (ADS)

    de La Fuente, E.; Porras, A.; Grave, J. M. C.; Kumar, M. S. N.; Trinidad, M. A.; Kurtz, S.; Kemp, S.; Franco, J.; Quevedo, G.

    2009-11-01

    We present the results of a morphological study performed to a sample of Ultracompact (UC) H II regions with Extended Emission (EE) using Spitzer-IRAC imagery and 3.6 cm VLA conf. D radio-continuum (RC) maps. Some examples of the comparison between maps and images are presented. Usually there is an IR point source counterpart to the peak(s) of RC emission, at the position of the UC H II source. We find that the predominant EE morphology is the cometary, and in most cases is coincident with IR emission at 8.0 μm. Preliminary results of Spitzer-IRAC photometry of a sub-sample of 13 UC H II regions with EE (UC H II + EE) based on GLIMPSE legacy data are also presented. Besides, individual IRAC photometry was performed to 19 UC H II sources within these 13 regions. We show that UC H II sources lie on specific locus, both in IRAC color-color and AM-product diagnostic diagrams. Counts of young stellar sources are presented for each region, and we conclude that a proportion of ˜ 2%, ˜ 10%, and ˜ 88% of sources in UC H II + EE are, in average, Class I, II, and III, respectively.

  12. Trans-boundary Air Quality and Health Impacts of Emissions in Various Regions in China

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Yim, S. H. L.

    2015-12-01

    In last few decades, China has gone through a rapid development, resulting in urbanization and industrialization. However, the abundant economic achievements were gained at the cost of a sharp deterioration of air quality. Previous research has reported the adverse health outcome from outdoor air pollution in China. Nevertheless, the trans-boundary air quality and health impacts due to emissions in various regions in China have yet fully understood. Our study aims to comprehensively apportion the attribution of emissions in seven regions in China, which are defined based on their geographical locations, to air pollutions, as well as the resultant health impacts in their local areas and other regions, provinces, and cities in China. A regional air quality model is applied to simulate the physical and chemical processes of various pollutants in the atmosphere. The resultant health outcome, such as premature death, is estimated by using the concentration-response functions reported in the literature. We anticipate that our results would serve as a critical reference for research community and policy makers to mitigate the air quality and health impacts of emissions in China.

  13. Local to regional emission sources affecting mercury fluxes to New York lakes

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Driscoll, Charles T.; Engstrom, Daniel R.; Effler, Steven W.

    Lake-sediment records across the Northern Hemisphere show increases in atmospheric deposition of anthropogenic mercury (Hg) over the last 150 years. Most of the previous studies have examined remote lakes affected by the global atmospheric Hg reservoir. In this study, we present Hg flux records from lakes in an urban/suburban setting of central New York affected also by local and regional emissions. Sediment cores were collected from the Otisco and Skaneateles lakes from the Finger Lakes region, Cross Lake, a hypereutrophic lake on the Seneca River, and Glacial Lake, a small seepage lake with a watershed that corresponds with the lake area. Sediment accumulation rates and dates were established by 210Pb. The pre-anthropogenic regional atmospheric Hg flux was estimated to be 3.0 μg m -2 yr -1 from Glacial Lake, which receives exclusively direct atmospheric deposition. Mercury fluxes peaked during 1971-2001, and were 3 to more than 30 times greater than pre-industrial deposition. Land use change and urbanization in the Otisco and Cross watersheds during the last century likely enhanced sediment loads and Hg fluxes to the lakes. Skaneateles and Glacial lakes have low sediment accumulation rates, and thus are excellent indicators for atmospheric Hg deposition. In these lakes, we found strong correlations with emission records for the Great Lakes region that markedly increased in the early 1900s, and peaked during WWII and in the early 1970s. Declines in modern Hg fluxes are generally evident in the core records. However, the decrease in sediment Hg flux at Glacial Lake was interrupted and has increased since the early 1990s probably due to the operation of new local emission sources. Assuming the global Hg reservoir tripled since the pre-industrial period, the contribution of local and regional emission sources to central New York lakes was estimated to about 80% of the total atmospheric Hg deposition.

  14. Masses, Dimensionless Kerr Parameters, and Emission Regions in GeV Gamma-Ray-loud Blazars

    NASA Astrophysics Data System (ADS)

    Xie, G.-Z.; Ma, L.; Liang, E.-W.; Zhou, S.-B.; Xie, Z.-H.

    2003-11-01

    We have compiled sample of 17 GeV γ-ray-loud blazars, for which rapid optical variability and γ-ray fluxes are well observed, from the literature. We derive estimates of the masses, the minimum Kerr parameters amin, and the size of the emission regions of the supermassive black holes (SMBHs) for the blazars in the sample from their minimum optical variability timescales and γ-ray fluxes. The results show that (1) the masses derived from the optical variability timescale (MH) are significantly correlated with the masses from the γ-ray luminosity (MKNH); (2) the values of amin of the SMBHs with masses MH>=108.3 Msolar (three out of 17 objects) range from ~0.5 to ~1.0, suggesting that these SMBHs are likely to be Kerr black holes. For the SMBHs with MH<108.3 Msolar, however, amin=0, suggesting that a nonrotating black hole model cannot be ruled out for these objects. In addition, the values of the size of the emission region, r*, for the two kinds of SMBHs are significantly different. For the SMBHs with amin>0, the sizes of the emission regions are almost within the horizon (2rG) and marginally bound orbit (4rG), while for those with amin=0 they are in the range (4.3-66.4)rG, extending beyond the marginally stable orbit (6rG). These results may imply that (1) the rotational state, the radiating regions, and the physical processes in the inner regions for the two kinds of SMBH are significantly different and (2) the emission mechanisms of GeV γ-ray blazars are related to the SMBHs in their centers but are not related to the two different kinds of SMBH.

  15. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-01-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope (TMRT). One significant detection (in NGC7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 cm and 6 cm emissions detected in NGC7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  16. Estimating source regions of European emissions of trace gases from observations at Mace Head

    NASA Astrophysics Data System (ADS)

    Ryall, D. B.; Derwent, R. G.; Manning, A. J.; Simmonds, P. G.; O'Doherty, S.

    A technique is described for identifying probable source locations for a range of greenhouse and ozone-depleting trace gases from the long-term measurements made at Mace Head, Ireland. The Met. Office's dispersion model NAME is used to predict concentrations at Mace Head from all possible sources in Europe, then source regions identified as those which consistently lead to elevated concentrations at Mace Head. Estimates of European emissions and their distribution are presented for a number of trace gases for the period 1995-1998. Estimated emission patterns are realistic, given the nature and varied applications of the species considered. The results indicate that whilst there are limitations, useful information about source distribution can be extracted from continuous measurements at a remote site. It is probable that much improved estimates could be derived if observations were available from a number of sites. The ability to assess emissions has obvious implications in monitoring compliance with internationally agreed quota and protocols.

  17. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-04-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope. One significant detection (in NGC 7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 and 6 cm emissions detected in NGC 7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC 7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  18. Ammonia emissions, transport, and deposition downwind of agricultural areas at local to regional scales

    NASA Astrophysics Data System (ADS)

    Zondlo, Mark; Pan, Da; Golston, Levi; Sun, Kang; Tao, Lei

    2016-04-01

    Ammonia (NH3) emissions from agricultural areas show extreme spatiotemporal variations, yet agricultural emissions dominate the global NH3 budget and ammoniated aerosols are a dominant component of unhealthy fine particulate matter. The emissions of NH3 and their deposition near and downwind of agricultural areas is complex. As part of a multi-year field intensive along the Colorado Front Range (including the NASA DISCOVER-AQ and NSF FRAPPE field experiments), we have examined temporal emissions of NH3 from feedlots, regional transport of ammonia and ammoniated aerosols from the plains to relatively pristine regions in Rocky Mountain National Park, and dry deposition and re-emission of grassland NH3 in the park. Eddy covariance measurements at feedlots and natural grasslands in the mountains were conducted with newly-developed open-path, eddy covariance laser-based sensors for NH3 (0.7 ng NH3/m2/s detection limit at 10 Hz). These measurements were coupled with other NH3/NHx measurements from mobile laboratories, aircraft, and satellite to examine the transport of NH3 from agricultural areas to cleaner regions downwind. At the farm level, eddy covariance NH3 fluxes showed a strong diurnal component correlated with temperature regardless of the season but with higher absolute emissions in summer than winter. While farm-to-farm variability (N=62 feedlots) was high, similar diurnal trends were observed at all sites regardless of individual farm type (dairy, beef, sheep, poultry, pig). Deposition at scales of several km showed relatively small deposition (10% loss) based upon NH3/CH4 tracer correlations, though the NH3 concentrations were so elevated (up to ppmv) that these losses should not be neglected when considering near-farm deposition. Ammonia was efficiently transported at least 150 km during upslope events to the Colorado Front Range (ele. 3000-4000 m) based upon aircraft, mobile laboratory, and model measurements. The gas phase lifetime of NH3 was estimated to

  19. Greenhouse gas emissions of different land uses in the delta region of Red River, Vietnam

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Ha, Thu; An, Ngo The; Brüggemann, Nicolas

    2017-04-01

    Agricultural activities are responsible for up to a third of total anthropogenic GHG emissions. The subtropical/tropical delta areas of the large rivers in Southeast Asia are long-term history agricultural regions in the world. However, due to lack of field measurements, the estimation of the contribution of agro-ecosystems in the subtropical/tropical delta areas to global greenhouse gas emissions remains largely uncertain. Here, we conducted field experiments since January 2016 to quantify greenhouse gases (CO2, CH4 and N2O) emissions from four agricultural land uses of annual rice-rice, rice-vegetable, continuous vegetable system and fish pond in Red River delta region of Vietnam by using the transparent static chamber-gas chromatography technique. Higher N2O emissions were observed in the rice-vegetable and continuous vegetable systems, while lower N2O emissions were observed in the rice-rice and find pond systems. Compared to rice-rice system the cumulative N2O fluxes were on average twenty-fold higher in the rice-vegetable and continuous vegetable systems but significantly lower (75%) in the fish pond. Overall the net CO2 sinks were observed in the rice-rice system while other three land uses of rice-vegetable, continuous vegetable and fish pond acted as the net CO2 sources. The rice-rice and fish pond showed net CH4 emissions while variations of CH4 emissions (i.e. shifting between sources and sinks) along variations of soil moisture and temperature were observed in rice-vegetable and continuous vegetable systems. Compared to rice-rice system, the cumulative CH4 fluxes were significantly decreased by 100% for continuous vegetable system, 94% for rice-vegetable system and 89% for fish pond. Overall, the data suggest that conversion of traditional rice-rice paddy system to rice-vegetable, continuous vegetable system and find pond, which are currently undergoing driven by the economical requests and environmental changes (e.g., salinity intrusion) in this delta

  20. Atmospheric observations and emissions estimates of methane and nitrous oxide from regional to global scale

    NASA Astrophysics Data System (ADS)

    Kort, Eric Adam

    2011-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are the two most significant anthropogenic, long-lived, non-CO2 greenhouse gases, together perturbing the earth's energy balance by an amount comparable to that of CO2. This dissertation will focus on the use of atmospheric observations to quantify emissions of CH4 and N2O. First top-down emissions constraints on the regional scale, covering large areas of the U.S and southern Canada, are derived from airborne observations made in Spring of 2003. Using a receptor-oriented Lagrangian particle dispersion model provides robust validation of bottom-up emission estimates from EDGAR 32FT2000 and GEIA inventories. It is found that EDGAR CH4 emission rates are slightly low by a factor of 1.08 +/- 0.15 (2 sigma), while both EDGAR and GEIA N2O emissions are significantly too low, by factors of 2.62 +/- 0.50 and 3.05 +/- 0.61 respectively. This analysis is then extended over a full calendar year in 2004 with observations from NOAA's tall tower and aircraft profile network. EDGAR 32FT2000 CH 4 emissions are found to be consistent with observations, though the newer EDGAR v4.0 reduces CH4 emissions by 30%, and this reduction is not consistent with this study. Scaling factors found for N2O in May/June of 2003 (2.62 & 3.05) are found to hold for February-May of 2004, suggesting inventories are significantly too low in primary growing season coincident with significant fertilizer inputs. A new instrument for airborne observation of CO2, CH 4, N2O, and CO is introduced, and its operation and in-field performance are highlighted (demonstrated 1-sec precisions of 20 ppb, 0.5 ppb, 0.09 ppb, and 0.15 ppb respectively). Finally, global N2O observations collected with this sensor on the HIPPO (Hlaper Pole to Pole Observations) campaign are assessed. Comparison with a global model and subsequent inversion indicates strong, episodic inputs of nitrous oxide from tropical regions are necessary to bring observations and model in agreement. Findings

  1. Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.

    PubMed

    Yi, Sora; Yang, Heewon; Lee, Seung Hoon; An, Kyoung-Jin

    2014-06-01

    A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons CO2 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m(3), and public water supplies of 0.067 kg CO2 eq./m(3). Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. emission-line stars in molecular clouds. II. The M 42 region

    NASA Astrophysics Data System (ADS)

    Pettersson, Bertil; Armond, Tina; Reipurth, Bo

    2014-10-01

    We present a deep survey of Hα emission-line stars in the M 42 region using wide-field objective prism films. A total of 1699 Hα emission-line stars were identified, of which 1025 were previously unknown, within an area of 5.̊5 × 5.̊5 centred on the Trapezium Cluster. We present Hα strength estimates, positions, and JHKs photometry extracted from 2MASS, and comparisons to previous surveys. The spatial distribution of the bulk of the stars follows the molecular cloud as seen in CO and these stars are likely to belong to the very young population of stars associated with the Orion Nebula Cluster. Additionally, there is a scattered population of Hα emission-line stars distributed all over the region surveyed, which may consist partly of foreground stars associated with the young NGC 1980 cluster, as well as some foreground and background dMe or Be stars. The present catalogue adds a large number of candidate low-mass young stars belonging to the Orion population, selected independently of their infrared excess or X-ray emission. Full Table 2 is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A30

  3. Spatiotemporal assessment of CO2 emissions and its satellite remote sensing over Pakistan and neighboring regions

    NASA Astrophysics Data System (ADS)

    ul-Haq, Zia; Tariq, Salman; Ali, Muhammad

    2017-01-01

    For the first time, anthropogenic CO2 emissions and spatiotemporal variability of mid-tropospheric CO2 has been discussed using EDGAR database and Atmospheric Infrared Sounder (AIRS) onboard Aqua satellite observations. The EDGAR data indicate an increase of 147% in anthropogenic CO2 emissions from 66,101 to 163,737 Gg for Pakistan during the period of 1990-2008. Dera Ghazi Khan (Pakistan) is found with the highest increase of 260% of anthropogenic CO2 emissions followed by Delhi (India) 153%, Karachi (Pakistan) 66% and Lahore (Pakistan) 59% whereas a decreasing trend of -53% is observed for Kabul (Afghanistan) during 1990-2008. Industrial activities, road transportation, open field crop-waste burning, and energy production have been identified as major anthropogenic emission sources of CO2 in the studied region. AIRS CO2 retrievals over Pakistan and adjoining areas of India and Afghanistan show an averaged CO2 to be 383±5 ppm with a positive trend of 5.05% during December 2002 to February 2012. An elevated value of CO2 has been observed over northern mountainous and high human settlement regions. The seasonal analysis shows a spring maximum 385±5 ppm with a secondary peak in late autumn, and the highest increasing trend of 5.5% associated with winter. May and August showed maximum and minimum mean monthly values of 385±5 ppm and 382±5 ppm respectively. HYSPLIT trajectories of air masses movement have been drawn to track CO2 transport.

  4. Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region.

    PubMed

    Karion, Anna; Sweeney, Colm; Kort, Eric A; Shepson, Paul B; Brewer, Alan; Cambaliza, Maria; Conley, Stephen A; Davis, Ken; Deng, Aijun; Hardesty, Mike; Herndon, Scott C; Lauvaux, Thomas; Lavoie, Tegan; Lyon, David; Newberger, Tim; Pétron, Gabrielle; Rella, Chris; Smith, Mackenzie; Wolter, Sonja; Yacovitch, Tara I; Tans, Pieter

    2015-07-07

    We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.11 Tg CH4 yr(-1); 95% confidence interval (CI)). We estimate that 60 ± 11 × 10(3) kg CH4 hr(-1) (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPA's Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.

  5. CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?

    SciTech Connect

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Warren, Harry P.

    2011-11-20

    All theories that attempt to explain the heating of the high-temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the 'long nanoflare storm', where short-duration heating events occur infrequently on many sub-resolution strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that the long nanoflare storm scenario implies greater than five times more 1 MK emission than is actually observed for all plausible combinations of loop lengths, heating rates, and abundances. We conjecture that if the plasma had 'super coronal' abundances, the model may be able to match the observations at low temperatures.

  6. Spitzer characterization of dust in an anomalous emission region: the Perseus cloud

    NASA Astrophysics Data System (ADS)

    Tibbs, C. T.; Flagey, N.; Paladini, R.; Compiègne, M.; Shenoy, S.; Carey, S.; Noriega-Crespo, A.; Dickinson, C.; Ali-Haïmoud, Y.; Casassus, S.; Cleary, K.; Davies, R. D.; Davis, R. J.; Hirata, C. M.; Watson, R. A.

    2011-12-01

    Anomalous microwave emission is known to exist in the Perseus cloud. One of the most promising candidates to explain this excess of emission is electric dipole radiation from rapidly rotating very small dust grains, commonly referred to as spinning dust. Photometric data obtained with the Spitzer Space Telescope have been reprocessed and used in conjunction with the dust emission model DUSTEM to characterize the properties of the dust within the cloud. This analysis has allowed us to constrain spatial variations in the strength of the interstellar radiation field (χISRF), the mass abundances of the polycyclic aromatic hydrocarbons (PAHs) and the very small grains (VSGs) relative to the big grains (YPAH and YVSG), the column density of hydrogen (NH) and the equilibrium dust temperature (Tdust). The parameter maps of YPAH, YVSG and χISRF are the first of their kind to be produced for the Perseus cloud, and we used these maps to investigate the physical conditions in which anomalous emission is observed. We find that in regions of anomalous emission the strength of the ISRF, and consequently the equilibrium temperature of the dust, is enhanced while there is no significant variation in the abundances of the PAHs and the VSGs or the column density of hydrogen. We interpret these results as an indication that the enhancement in χISRF might be affecting the properties of the small stochastically heated dust grains resulting in an increase in the spinning dust emission observed at 33 GHz. This is the first time that such an investigation has been performed, and we believe that this type of analysis creates a new perspective in the field of anomalous emission studies, and represents a powerful new tool for constraining spinning dust models.

  7. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Roiger, A.; Thomas, J. L.; Schlager, H.; Law, K.; Kim, J.; Reiter, A.; Schaefler, A.; Weinzierl, B.; Rose, M.; Raut, J.; Marelle, L.

    2013-12-01

    Arctic sea ice has decreased dramatically in the past few decades, which has opened the Arctic Ocean to transit shipping and hydrocarbon extraction. These anthropogenic activities are expected to increase emissions of air pollutants and climate forcers (e.g. aerosols, ozone) in the Arctic troposphere significantly in the future. However, large knowledge gaps exist how these emissions influence regional air pollution and Arctic climate. Here we present an overview on the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign, which primarily focused on studying emissions from emerging Arctic pollution sources. During the ACCESS campaign in July 2012, the DLR Falcon was based in Andenes, Norway, and was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species). During nine scientific flights, emissions from different ship types (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) were probed off the Norwegian Coast. The emissions from these increasing pollution sources showed distinct differences in chemical and aerosol composition. To put the emerging local pollution within a broader context, we also measured sulfur-rich emissions originating from industrial activities on the Kola Peninsula and black carbon containing biomass burning plumes imported from Siberian wildfires. We will present an overview on the trace gas and aerosol properties of the different emission sources, and discuss the influence of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  8. [County scale characteristics of CO2 emission's spatial-temporal evolution in the Beijing-Tianjin-Hebei Metropolitan Region].

    PubMed

    Wang, Hao; Chen, Cao-Cao; Pan, Tao; Liu, Chun-Lan; Chen, Long; Sun, Li

    2014-01-01

    CO2 emission spatial distribution is characterized by stages. The study on regional distribution characteristics and evolution can supply important evidence for CO2 emission reduction. Based on CO2 emission data of 128 county areas in the Beijing-Tianjin-Hebei Metropolitan Region (BTHMR) from 1990 to 2009, the spatial pattern and spatial dependence of CO2 emission were discussed by using cartogram and spatial autocorrelation analysis methods. The results show that the total emission of CO2 increased year by year. Average annual growth of CO2 emission after 2002 was 3.7 times higher than before. Different cities have different emission growth trends which can be categorized into three types. The spatial pattern of CO2 emission appeared to be the layered cluster. The Global Moran'I decreased from 1.44 in 1990 to 0.09 in 1998 and then increased slowly to 0.10 in 2009. The spatial distribution of high CO2 emission area changed from 'Double Centers' into 'Four Centers' and the spatial distribution of low CO2 emission area changed less. There were four different change types of local spatial autocorrelation: remaining unchanged or weakening in most regions, enhancing in some regions of Tangshan, transforming in some regions of Tianjin and Xuanhua county. Since the spatial pattern and autocorrelation in low/high CO2 emission area bear different evolution process, the local conditions and interactions with perimeter zones should be considered when formulating emission reduction plan. The discussion of spatial pattern and autocorrelation is very important for understanding spatial evolution pattern of CO2 emission and developing strategic emission reduction planning, and also provides a base for the study on low carbon development in metropolitan area.

  9. Transboundary Atmospheric Pollution of Oil-Gas Industry Emissions from North Caspian region of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Zakarin, E.; Balakay, L.; Mirkarimova, B.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2012-04-01

    The Atyraus region (Republic of Kazahstan) is occupied with more than 60 oil-gas fields which are actively developing. Moreover, a new world largest field so-called Kashagan has been discovered on the Caspian Sea shelf and its exploitation is planned by the end of 2012. In our study, this region has been selected as a source region of sulphates emissions accounting about 15 tons (2009 estimates). Three locations have been chosen in the region covering adjacent Caspian Sea aquatoria, and emissions were equally distributed among these locations (with an emission rate of 4.72*10-4 kg/sec). From original sulphates emissions between 46-82% are subjected to atmospheric transport away from the sources. Releases were considered to be continuous. The long-term modelling of atmospheric transport, dispersion and deposition of sulphates was done employing the Lagrangian type model called DERMA, run at the NEC SX6 supercomputing facilities. After each day of release the atmospheric transport has been tracked for the next 2 week period. Input meteorological 3D fields were obtained from the ECMWF data archives. The generated output included air concentration (at model levels), time integrated air concentration, dry and wet deposition (at the surface). The results of dispersion modelling had been post-processed and integrated into GIS environment (using ArcGIS). These have been further used to calculate annual averaged and summary concentration and deposition fields for administrative regions, counties and cities of Kazakhstan, as well as territories of the neighboring countries. It has been found that on an annual scale, the dominating atmospheric transport of pollution from the Atyraus region is toward east and north-east, mostly due to prevailing westerlies. Although on a hemispheric scale, the wet deposition dominates over dry (63 vs. 37%), for Kazakhstan the wet deposition contribution is slightly larger (65%). For Turkmenistan, dry deposition is almost twice higher compared

  10. Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Jiang, Jonathan H.; Gu, Yu; Diner, David; Worden, John; Liou, Kuo-Nan; Su, Hui; Xing, Jia; Garay, Michael; Huang, Lei

    2017-05-01

    Understanding long-term trends in aerosol loading and properties is essential for evaluating the health and climatic effects of these airborne particulates as well as the effectiveness of pollution control policies. While many studies have used satellite data to examine the trends in aerosol optical depth (AOD), very few have investigated the trends in aerosol properties associated with particle size, morphology, and light absorption. In this study, we investigate decadal-scale (13-15 year) trends in aerosol loading and properties during 2001-2015 over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). We use observations from MISR (Multi-angle Imaging SpectroRadiometer) and MODIS (Moderate resolution Imaging Spectroradiometer). Relationships between aerosol property trends and air pollutant emission changes are examined. We find that annual mean AOD shows pronounced decreasing trends over EUS and WEU regions, as a result of considerable emission reductions in all major pollutants except for mineral dust and ammonia (NH3). Over the ECC region, AOD increases before 2006 due to emission increases induced by rapid economic development, fluctuates between 2006 and 2011, and subsequently decreases after 2011 in conjunction with effective emission reduction in anthropogenic primary aerosols, sulfur dioxide (SO2), and nitrogen oxides (NOx). The fraction of small-size AOD (<0.7 μm diameter), Ångstrom exponent and single-scattering albedo have generally decreased, while the fractions of large-size (>1.4 μm diameter), nonspherical and absorbing AOD have generally shown increasing trends over EUS and WEU regions, indicating that fine and light-scattering aerosol constituents have been more effectively reduced than coarse and light-absorbing constituents. These trends are consistent with the larger reduction ratios in SO2 and NOx emissions than in primary aerosols, including mineral dust and black carbon (BC

  11. DIRECT SPECTROSCOPIC IDENTIFICATION OF THE ORIGIN OF 'GREEN FUZZY' EMISSION IN STAR-FORMING REGIONS

    SciTech Connect

    De Buizer, James M.; Vacca, William D.

    2010-07-15

    'Green fuzzies' or 'extended green objects' were discovered in the recent Spitzer GLIMPSE survey data. These extended sources have enhanced emission in the 4.5 {mu}m IRAC channel images (which are generally assigned to be green when making three-color RGB images from Spitzer data). Green fuzzies are frequently found in the vicinities of massive young stellar objects (MYSO), and it has been established that they are in some cases associated with outflows. Nevertheless, the spectral carrier(s) of this enhanced emission is (are) still uncertain. Although it has been suggested that Br {alpha}, H{sub 2}, [Fe II], and/or broad CO emission may be contributing to and enhancing the 4.5 {mu}m flux from these objects, to date there have been no direct observations of the 4-5 {mu}m spectra of these objects. Here we report on the first direct spectroscopic identification of the origin of the green fuzzy emission. We obtained spatially resolved L- and M-band spectra for two green fuzzy sources using NIRI on the Gemini North telescope. In the case of one source, G19.88 - 0.53, we detect three individual knots of green fuzzy emission around the source. The knots exhibit a pure molecular hydrogen line emission spectrum, with the 4.695 {mu}m {nu} = 0-0 S(9) line dominating the emission in the 4-5 {mu}m wavelength range, and no detected continuum component. Our data for G19.88 - 0.53 prove that green fuzzy emission can be due primarily to emission lines of molecular hydrogen within the bandpass of the IRAC 4.5 {mu}m channel. However, the other target observed, G49.27 - 0.34, does not exhibit any line emission and appears to be an embedded MYSO with a cometary UC H II region. We suggest that the effects of extinction in the 3-8 {mu}m wavelength range and an exaggeration in the color stretch of the 4.5 {mu}m filter in IRAC RGB images could lead to embedded sources such as this one falsely appearing 'green'.

  12. A quantification of methane emissions from the Bakken shale play region of North Dakota

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Karion, A.; Aikin, K. C.; Kort, E. A.; Newberger, T.; Smith, M. L.; Sweeney, C.; Trainer, M.; Wolter, S.

    2014-12-01

    Natural gas extracted from shale formations accounts for 40% of the domestic U.S. natural gas supply. Although natural gas combustion emits less carbon dioxide per energy produced than other fossil fuels, this climate benefit may be offset by the methane emitted to the atmosphere through leaks in the natural gas production and distribution infrastructure. To better understand the climate impacts of the oil and natural gas extracted from the Bakken shale play in North Dakota, we present airborne measurements of methane taken over this region aboard a NOAA Twin Otter aircraft during Spring 2014. Using the mass balance technique, we estimate methane emissions from the region with four flights intended for this purpose in May 2014. We further attribute these methane emissions to the oil and gas industry using measurements of ethane and other hydrocarbons aboard the Twin Otter.

  13. Atmospheric emitted radiance interferometer (AERI): Status and the aerosol explanation for extra window region emissions

    SciTech Connect

    Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Dirkx, T.P.

    1996-04-01

    High spectral resolution observations of downwelling emission from 3 to 19 microns have been made by the Atmospheric Emitted Radiance Interferometer (AERI) Prototype at the Southern Great Plains (SGP) Cloud and Radiative Testbed (CART) site for over two years. The spectral data set from AERI provides a basis for improving clear sky radiative transfer; determining the radiative impact of clouds, including the derivation of cloud radiative properties; defining the influences of aerosols in the window regions; and retrieving boundary layer state properties, including temperature, water vapor, and other trace gases. The data stream of radiometrically and spectrally calibrated radiances is routinely provided by Pacific Northwest Laboratory (PNL) to those science teams requesting it, and further information on the instrument and data characteristics is available in the ARM Science Team proceedings for 1993 and 1994 and in several conference publications. This paper describes the AERI status, calibration, field experiment wit a new AERI-01 and schedule, window region emissions, and future AERI plans.

  14. The contribution of ship emissions to air pollution in the North Sea regions.

    PubMed

    Matthias, Volker; Bewersdorff, Ines; Aulinger, Armin; Quante, Markus

    2010-06-01

    As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution. This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased.

  15. Observations and trends of emissions from gas flaring in the Persian Gulf region using OMI

    NASA Astrophysics Data System (ADS)

    He, H.; Soltanieh, M.; Dickerson, R. R.

    2014-12-01

    Gas flaring associated with oil production is common where there is no local market for natural gas (mostly methane) and emits large amount of air pollutants and greenhouse gases to the atmosphere. OMI NO2, SO2 and Aerosol Index (AI) observations from 2005 to 2013 were analyzed, and successfully characterize emissions from major flaring sources in the Persian Gulf region. The SO2/NO2 ratio can distinguish flaring regions with relatively high SO2 component, from urban and industrial areas, where domestic heating, internal combustion of motor vehicles and power generation with a relatively high NO2 component dominate. Concentrations of these gases over facilities for production and export of oil reflect the economic recession of 2008/9 and reduced oil exports due to sanctions imposed in 2012. A nearby site involved primarily in copper smelting show no such trend. These temporal trends are being analyzed to improve emissions estimates.

  16. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    NASA Astrophysics Data System (ADS)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  17. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    NASA Astrophysics Data System (ADS)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  18. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy

    NASA Astrophysics Data System (ADS)

    Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Peng, P.; Sheng, G.; Fu, J.

    2015-03-01

    Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~ 4.17 (Cl-) mg vehicle-1 km-1, contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM2.5mass, EC, OC, WSII except Cl- and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic

  19. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy

    NASA Astrophysics Data System (ADS)

    Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Sheng, G.; Fu, J.

    2014-11-01

    Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~4.17 (Cl-) mg vehicle-1 km-1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was measured and it was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0-93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A snapshot of the 2013 characteristic

  20. On the long term impact of emissions from central European cities on regional air-quality

    NASA Astrophysics Data System (ADS)

    Huszar, P.; Belda, M.; Halenka, T.

    2015-11-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air-quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001-2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20 % emission perturbation of NOx and/or NMVOC. The validation of the modeling system's air-quality related outputs using AirBase and EMEP surface measurements showed satisfactory reproduction of the monthly variation for ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2). In terms of hourly correlations, reasonable values are achieved for ozone (r around 0.5-0.8) and for NO2 (0.4-0.6), but SO2 is poorly or not correlated at all with measurements (r around 0.2-0.5). The modeled fine particulates (PM2.5) are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. EC air-quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70 % for NOx and SO2, and up to 60 % for PM2.5), but the contribution is large over rural areas as well (10-20 %). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to other sources from rural areas and minor cities. Further

  1. Inverse Modeling to Improve Emission Inventory for PM10 Forecasting in East Asia Region Focusing on Korea.

    NASA Astrophysics Data System (ADS)

    Koo, Y. S.; Choi, D.; Kwon, H. Y.; Han, J.

    2014-12-01

    The aerosol transports from China and Mongolia along the Northwestern wind have large influence on the air quality in Korea and the assessment of the emission in the East Asia region is an important factor in air quality forecasting in Korea. In order to obtain working PM10 emission inventory for the PM10 forecast modeling over East Asia, the Bayesian approach with CAMx (Comprehensive Air-quality Model with extension) forward model was applied. The surface observations of PM10 from EANET (Acid Deposition Monitoring Network in East Asia), API (Air Pollution Index) sites over China and AAQMS (Ambient Air Quality Monitoring Stations) in Korea were used for the inverse modelling. The predicted PM10 concentrations with a priori emission were compared with observations at monitoring sites in China and Korea. The comparison showed that PM10 concentrations with a priori emissions were generally under-predicted. The result also indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were under-estimated in particular. Optimized a posteriori PM10 emissions over East Asia from inverse modelling analysis ware proposed. A posteriori PM10 emissions were much lower than the a priori emission where the soil dust emissions were prevailing. This implied that the dust emission module still had large uncertainty and it was necessary to further research on the improvement of in-line emission modelling for the soil dust. In contrast, a posteriori anthropogenic emissions from industrialized areas such as Beijing and Shenyang sites were slightly higher than a priori emission at regions. Especially, a posteriori PM10 emissions increased in Korea and in Northeast region of China. The predictions of PM10 with proposed a posteriori emission showed better agreement with the observations, implying that the inverse modelling minimized the discrepancies in the model estimation by improving PM10 emissions in East Asia. Further details of inverse modeling

  2. VizieR Online Data Catalog: OH maser emission from star forming regions (Szymczak+, 2004)

    NASA Astrophysics Data System (ADS)

    Szymczak, M.; Gerard, E.

    2003-11-01

    High sensitivity observations of all four transitions of the ground state at 18cm of OH in both senses of circular polarization have been carried out with the Nancay radio telescope. The sample was a set of 100 star forming regions detected in a recent unbiased survey of 6668MHz methanol masers (Szymczak et al., 2002A&A...392..277S). OH maser emission was found in 55 objects of which 31 were not previously catalogued. (4 data files).

  3. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter

    USGS Publications Warehouse

    Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.

    2003-01-01

    Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.

  4. HOT DIFFUSE EMISSION IN THE NUCLEAR STARBURST REGION OF NGC 2903

    SciTech Connect

    Yukita, Mihoko; Irwin, Jimmy A.; Swartz, Douglas A.; Tennant, Allyn F.; Soria, Roberto

    2012-10-20

    We present a deep Chandra observation of the central regions of the late-type barred spiral galaxy NGC 2903. The Chandra data reveal soft (kT{sub e} {approx} 0.2-0.5 keV) diffuse emission in the nuclear starburst region and extending {approx}2' ({approx}5 kpc) to the north and west of the nucleus. Much of this soft hot gas is likely to be from local active star-forming regions; however, besides the nuclear region, the morphology of hot gas does not strongly correlate with the bar or other known sites of active star formation. The central {approx}650 pc radius starburst zone exhibits much higher surface brightness diffuse emission than the surrounding regions and a harder spectral component in addition to a soft component similar to the surrounding zones. We interpret the hard component as also being of thermal origin with kT{sub e} {approx} 3.6 keV and to be directly associated with a wind fluid produced by supernovae and massive star winds similar to the hard diffuse emission seen in the starburst galaxy M82. The inferred terminal velocity for this hard component, {approx}1100 km s{sup -1}, exceeds the local galaxy escape velocity suggesting a potential outflow into the halo and possibly escape from the galaxy gravitational potential. Morphologically, the softer extended emission from nearby regions does not display an obvious outflow geometry. However, the column density through which the X-rays are transmitted is lower in the zone to the west of the nucleus compared to that from the east and the surface brightness is relatively higher suggesting some of the soft hot gas originates from above the disk: viewed directly from the western zone but through the intervening disk of the host galaxy along sight lines from the eastern zone. There are several point-like sources embedded in the strong diffuse nuclear emission zone. Their X-ray spectra show them to likely be compact binaries. None of these detected point sources are coincident with the mass center of the

  5. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data.

  6. Predicted emission lines from giant HII regions ionized by aging star clusters.

    NASA Astrophysics Data System (ADS)

    Garcia-Vargas, M. L.; Bressan, A.; Diaz, A. I.

    1995-07-01

    We have computed theoretical models of the emission line spectra of giant extragalactic HII regions (GEHR) in which a single star cluster is assumed to be responsible for the ionization. Ionizing clusters, of different masses and metallicities, were constructed assuming that they formed in a single burst and with a Salpeter Initial Mass Function. Their evolution was then followed in detail up to an age of 5.4Myr after which they lack the high energy photons needed to keep the regions ionized. The integrated spectral energy distribution of every cluster has been computed for a set of discrete ages representative of relevant phases of their evolution and have been processed by the photoionization code CLOUDY, in order to obtain the corresponding emission line spectra of the ionized gas at optical and infrared wavelengths. A wide range of initial compositions, spanning from about 1/20 (Z=0.001) to 2.5 solar (Z=0.05), and total masses, between about 1-6x10^4^Msun_ has been considered. Gas and stars are assumed to have the same metallicity and this has been taken into account both in the stellar evolution and atmosphere models and in the nebular gas producing a consistent set of models. In this paper we present the synthetic emission line spectra of the ionized regions which are discussed in detail in Garcia-Vargas et al. (1995).

  7. EVN maps of 5 cm line OH emission from star-forming regions

    NASA Astrophysics Data System (ADS)

    Desmurs, J.-F.; Baudry, A.; Graham, D. A.

    We have used three antennas of the EVN (Effelsberg, Medicina and Jodrell Bank) to observe in W3(OH) and in five other star-forming regions, simultaneously, and for the first time, the two main lines of the 2φ 3/2, J= 5/2 excited state of OH with right and left circularly polarized feeds. The data were correlated with the MkIII MPIfR correlator in Bonn and processed with the AIPS package at the Observatoire de Bordeaux. In W3(OH) we made cleaned maps of all individual channels for each line and polarization. These maps made with a 5×6.5 mas beam reveal complex kinematics and spatial structure with both extended emission and unresolved features. This fact and polarization properties demon-strate the masing nature of the emission. Maser features are identified by searching for emission over adjacent channels, and adjacent positions (within about one synthesized beam) in both polarizations after we had mapped and selected one channel as a phase reference. We have been able to identify OH Zeeman pairs and to estimate the magnetic field strength across W3(OH); the field varies from about 1 to 10 mG. At the time of this conference, three other star-forming regions (M17, ON1 and W51) show fringes while two other regions are still incompletely processed.

  8. PAH 8μm Emission as a Diagnostic of HII Region Optical Depth

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.

    2017-01-01

    PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.

  9. Mapping of topsoil organic carbon in agro-ecosystems of a flat terrain area (Lombardy) by means of legacy soil data, climatic data and NDVI time series predictors with machine learning methods

    NASA Astrophysics Data System (ADS)

    Schillaci, Calogero; Saia, Sergio; Braun, Andreas; Acutis, Marco

    2017-04-01

    Topsoil organic carbon plays an important role in the agricultural yield, yield potential, and to deliver many ecosystem services, such as the potential to reduce greenhouse gas (GHG) emission from soil. In particular, SOC content sturdily affects soil properties, thus the precision of its estimation can support broad-scale agricultural and environmental management policy. Soils in temperate agro-ecosystem are generally highly productive and cropland occupies about 60% of their surface (Ramankutty et al 2008). In such contexts, lands is frequently subjected to SOC degrading operations, mostly ploughing, with drawbacks on soil fertility and erosion. In temperate agro-ecosystems, a strong role in SOC maintenance can be played by manure and residues inputs after husbandry and related activities and return of plant biomass to the soil (Acutis et al 2014). In this perspective, soil management can have a major role in SOC spatial distribution to maintain soil fertility and ecosystem services in a target area. Due to the considerable importance of SOC on both agronomical and ecological aspects of the agro-ecosystems, regional soil surveys over the years frequently take into account the measurement of SOC concentration and often stock. In the present study, we integrated a highly detailed legacy SOC dataset with climatic data and RS data to produce a reliable SOC maps from a farm to a district scale. In particular, the Normalized Difference Vegetation Index (NDVI)was used after the computation of its average value in a given pixel derived from several approximately cloud-free images. The input dataset was made of about 3000 Ap horizons implemented of SOC concentration, texture, bulk density and metadata. Climatic data (Worldclim), soil type (from the pedological map 1:250000 WRB), and a time series NDVI were applied. The NDVI data were derived from a set of Landsat 5 scenes (path 193, row 28,29) whereas the path 194, (row 28 and 29) contributes for less than one fourth of

  10. [Achievement of the therapeutic goals for dyslipidemia in clinical practice: results of a survey among general practice physicians from Lombardy].

    PubMed

    Tragni, Elena; Catapano, Alberico L; Bertelli, Alessandra; Poli, Andrea

    2003-12-01

    Currently available guidelines suggest that hypolipidemic drugs should be used in subjects at high risk for coronary heart disease (CHD). Very often, however, physicians fail to comply with the targets (total or LDL cholesterol) that are proposed by the Consensus Panels. The aim of this survey was to evaluate the efficacy of a hypocholesterolemic treatment in achieving the therapeutic target according to Adult Treatment Panel II guidelines in a sample of general practitioners from Lombardy, a region of northern Italy. Eighty-five general practitioners reported in a standardized manner data on the presence of major and minor coronary risk factors from at least 15 patients from their database for a total of 1275 patients. Treatment targets for LDL cholesterol were 100 mg/dl in patients with existing cardiovascular disease (class I), 130 mg/dl for patients with > or = 2 CHD risk factors (class II), and 160 mg/dl for the others (class III). Results on the efficacy of the therapy were divided into the following categories: 1) to target, 2) failure to reach the target by < or = 30 mg/dl, 3) failure to reach the target by > 30 mg/dl. Data were analyzed by means of the CSS statistical software. Overall 58.2% of the patients were males and the average age of the population was 59.2 +/- 10.1 years; 20.4% were diabetics, 34.5% smokers, 48.8% hypertensives, 16.9% had a previous myocardial infarction, 14.9% were suffering of stable angina, and 8.1% had undergone coronary artery bypass grafting and/or coronary angioplasty. Moreover 33.9% had a positive family history for CHD. Class I patients were 31.7% of the population, class II 52.9%, and class III 15.4%. Plasma lipid levels before treatment were on average 294 +/- 37 mg/dl for total cholesterol, 211 +/- 37 mg/dl for LDL cholesterol, 45 +/- 16 mg/dl for HDL cholesterol, and 195 +/- 104 mg/dl for plasma triglycerides. Of the patients 78.8% received dietary counseling, while 94.7% received hypolipidemic treatment (89.9% were

  11. Mapping CO2 emission in highly urbanized region using standardized microbial respiration approach

    NASA Astrophysics Data System (ADS)

    Vasenev, V. I.; Stoorvogel, J. J.; Ananyeva, N. D.

    2012-12-01

    Urbanization is a major recent land-use change pathway. Land conversion to urban has a tremendous and still unclear effect on soil cover and functions. Urban soil can act as a carbon source, although its potential for CO2 emission is also very high. The main challenge in analysis and mapping soil organic carbon (SOC) in urban environment is its high spatial heterogeneity and temporal dynamics. The urban environment provides a number of specific features and processes that influence soil formation and functioning and results in a unique spatial variability of carbon stocks and fluxes at short distance. Soil sealing, functional zoning, settlement age and size are the predominant factors, distinguishing heterogeneity of urban soil carbon. The combination of these factors creates a great amount of contrast clusters with abrupt borders, which is very difficult to consider in regional assessment and mapping of SOC stocks and soil CO2 emission. Most of the existing approaches to measure CO2 emission in field conditions (eddy-covariance, soil chambers) are very sensitive to soil moisture and temperature conditions. They require long-term sampling set during the season in order to obtain relevant results. This makes them inapplicable for the analysis of CO2 emission spatial variability at the regional scale. Soil respiration (SR) measurement in standardized lab conditions enables to overcome this difficulty. SR is predominant outgoing carbon flux, including autotrophic respiration of plant roots and heterotrophic respiration of soil microorganisms. Microbiota is responsible for 50-80% of total soil carbon outflow. Microbial respiration (MR) approach provides an integral CO2 emission results, characterizing microbe CO2 production in optimal conditions and thus independent from initial difference in soil temperature and moisture. The current study aimed to combine digital soil mapping (DSM) techniques with standardized microbial respiration approach in order to analyse and

  12. Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study

    SciTech Connect

    Farkas, T.; Wolf, A.P.; Jaeger, J.; Brodie, J.D.; Christman, D.R.; Fowler, J.S.

    1984-03-01

    Thirteen diagnosed schizophrenics and 11 normal controls were studied with a method using the PETT III positron emission tomograph (PET) and fluorodeoxyglucose labeled with fluorine 18. Each subject also had a computed tomographic (CT) scan. For each subject, two brain levels, one through the basal ganglia and one through the semioval center, were analyzed for the mean regional metabolic glucose rate. Specifically, relationships between frontal and posterior regions were evaluated. The CT scans of matching levels were superimposed on the functional PET images to provide anatomic criteria for region of interest selection. While no whole-slice metabolic differences were apparent between groups, schizophrenics had significantly lower activity in the frontal lobes, relative to posterior regions. The medicated and drug-free groups did not differ from one another in these regards. Trait v state dependency of the phenomenon was analyzed, and several technological limitations were considered.

  13. The Emission-Line Spectrum of KUG 1031+398 and the Intermediate Line Region Controversy

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Véron, P.; Véron-Cetty, M.-P.

    We present results based on the analysis of optical spectra of the Narrow-Line Seyfert 1 (NLS1) galaxy KUG 1031+398, for which evidence was reported of a line-emitting region "intermediate" (both in terms of velocity and density) between the conventional Broad and Narrow Line Regions (BLR and NLR, respectively). From our observations and modeling of the spectra, we get a consistent decomposition of the line profiles into four components: an extended H II region with unresolved lines, two distinct Seyfert-type clouds identified with the NLR, and a relatively narrow "broad line" component emitting only Balmer lines but no forbidden lines. Therefore, although we find this object to be exceptional in having line-emission from the BLR with almost the same width as the narrow lines, our interpretation of the data does not support the existence of an "intermediate" line region (ILR).

  14. Drilling down on methane emissions in the US Four Corners region

    NASA Astrophysics Data System (ADS)

    Petron, G.

    2016-12-01

    Two years ago the Four Corners region became known as the largest methane hotspot in the US [Kort et al., 2014]. More specifically, satellite based methane columns over the San Juan Basin had the largest enhancements above the regional mean column and this feature pertained between 2003 and 2009. The methane "hotpsot" designation hides a more complex reality. The region is home to large scale coal, oil, coalbed methane and natural gas extraction and processing which all can emit methane. Portions of the Fruitland coal outcrop on the Colorado side also have been degassing methane for decades. Other minor methane sources in the area include landfills and a few animal operations. In April 2015, a large airborne and ground-based campaign investigated the Four Corners methane hotspot to further characterize methane emissions in the region. In this talk we will summarize what has been learned and which questions remain.

  15. On the long-term impact of emissions from central European cities on regional air quality

    NASA Astrophysics Data System (ADS)

    Huszar, P.; Belda, M.; Halenka, T.

    2016-02-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001-2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20 % emission perturbation of NOx and/or non-methane volatile organic compounds (NMVOC). The modeling system's air quality related outputs were evaluated using AirBase, and EMEP surface measurements showed reasonable reproduction of the monthly variation for ozone (O3), but the annual cycle of nitrogen dioxide (NO2) and sulfur dioxide (SO2) is more biased. In terms of hourly correlations, values achieved for ozone and NO2 are 0.5-0.8 and 0.4-0.6, but SO2 is poorly or not correlated at all with measurements (r around 0.2-0.5). The modeled fine particulates (PM2.5) are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. European air quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70 % for NOx and SO2, and up to 60 % for PM2.5), but the contribution is large over rural areas as well (10-20 %). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to

  16. Emissions of air pollutants from road transport in Lebanon and other countries in the Middle East region

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Afif, Charbel

    2012-12-01

    Road transport is a major contributor to pollutant emissions in the Middle East region (MEA). Emissions originating from this sector have a significant impact on the atmosphere, health and the climate change. Identification and quantification of these emissions in this region is of great importance in order to develop emissions reductions strategies. For this purpose and because a detailed emission inventory for road transport is nonexistent for Lebanon (a small developing country in the MEA region) and for its capital city Beirut, a spatially-resolved and temporally-allocated emission inventory for road transport was developed for Lebanon and for the city of Beirut using a bottom-up approach where possible. In order to compare emissions between developed and non-developed cities on the Mediterranean basin, road transport emissions originating in normal (February-June and September-November) and touristic periods (July-August and December-January) were compared between Beirut, Barcelona and Athens, respectively. The comparison obtained between Beirut, Barcelona and Athens showed that emissions per capita for CO and SO2 are highest in Beirut while emissions of particulate matter were highest in Barcelona. The different patterns between these cities showed that emissions increases in winter in Beirut and Barcelona (11 and 9% respectively) and decreases in the city of Athens by 9%. In summer, an increase of 15% in traffic intensities is observed in Athens while in Beirut and Barcelona, traffic intensities decrease by 10 and 40% respectively. At a national level, emissions were calculated for 14 countries in the MEA in order to inter compare them with those of Lebanon. The results show that in the MEA, the highest contributors to total carbon monoxide (CO) and nitrogen oxides (NOx) emissions (78 and 79% respectively), are countries having a population that exceeds 20 million inhabitants such as Iran, Saudi Arabia, Iraq, Turkey and Egypt. For Lebanon, emissions per

  17. Quantification of methane emissions from natural gas extraction from the Haynesville, Fayetteville, and northeastern Marcellus shale regions

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Trainer, M.; De Gouw, J. A.; Warneke, C.; Parrish, D. D.

    2013-12-01

    We present airborne measurements of methane over three regions of natural gas extraction taken aboard a NOAA WP-3D research aircraft in June and July, 2013, as part of the Southeast Nexus (SENEX) field project. The three regions are (1) the Haynesville and (2) Fayetteville shale plays, located in eastern Texas/western Louisiana and western Arkansas, respectively, and (3) a part of the Marcellus shale play located in northeastern Pennsylvania. From these measurements, we derive methane emission rate estimates by calculating the methane advection flux in the planetary boundary layer downwind of the region, minus the methane flux upwind of the region. By attributing the methane emissions to natural gas extraction, we place an upper limit on the natural gas emissions from the region. We then compare this emission to the total volume of natural gas extracted from the region to derive an upper limit on the natural gas leak rate from extraction operations.

  18. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A.

    2003-01-01

    mixtures, and that separate treatment for these groups may be required in future air quality model simulations. The post-processing model used here overestimates the organic particle formation relative to measurements, lacks the complexity of a regional air quality model, and is not intended as an alternative to the latter. Results from the post-processing model do, however, provide guidance for the treatment of organic gases and particles in future air quality modeling work. Future air quality model simulations should attempt to speciate primary particulate organic compounds and include more detailed organic compound classes. Future emissions profile measurements should speciate gaseous high-molecular-mass organic compounds and primary organics emitted in particulate form (primary particle emissions are only available as a total particulate mass in currently available emissions data).

  19. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.

    PubMed

    Li, Cheng; Yuan, Zibing; Ou, Jiamin; Fan, Xiaoli; Ye, Siqi; Xiao, Teng; Shi, Yuqi; Huang, Zhijiong; Ng, Simon K W; Zhong, Zhuangmin; Zheng, Junyu

    2016-12-15

    Ship emissions contribute significantly to air pollution and impose health risks to residents along the coastal area. By using the refined data from the Automatic Identification System (AIS), this study developed a highly resolved ship emission inventory for the Pearl River Delta (PRD) region, China, home to three of ten busiest ports in the world. The region-wide SO2, NOX, CO, PM10, PM2.5, and VOC emissions in 2013 were estimated to be 61,484, 103,717, 10,599, 7155, 6605, and 4195t, respectively. Ocean going vessels were the largest contributors of the total emissions, followed by coastal vessels and river vessels. In terms of ship type, container ship was the leading contributor, followed by conventional cargo ship, dry bulk carrier, fishing ship, and oil tanker. These five ship types accounted for >90% of total emissions. The spatial distributions of emissions revealed that the key emission hot spots all concentrated within the newly proposed emission control area (ECA) and ship emissions within ECA covered >80% of total ship emissions in the PRD, highlighting the importance of ECA in emissions reduction in the PRD. The uncertainties of emission estimates of pollutants were quantified, with lower bounds of -24.5% to -21.2% and upper bounds of 28.6% to 33.3% at 95% confidence intervals. The lower uncertainties in this study highlighted the powerfulness of AIS data in improving ship emission estimates. The AIS-based bottom-up methodology can be used for developing and upgrading ship emission inventory and formulating effective control measures on ship emissions in other port regions wherever possible.

  20. Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region, China.

    PubMed

    Wu, Jing; Fang, Xuekun; Martin, Jonathan W; Zhai, Zihan; Su, Shenshen; Hu, Xia; Han, Jiarui; Lu, Sihua; Wang, Chen; Zhang, Jianbo; Hu, Jianxin

    2014-02-01

    Although many studies have been conducted in recent years on the emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) at the large regional (such as East Asia) and national scales, relatively few studies have been conducted for cities or metropolitan areas. In this study, 192 air samples were collected in the Pearl River Delta (PRD) region of China in November 2010. The atmospheric mixing ratios of six halocarbons were analyzed, including trichlorofluoromethane (CFC-11, CCl3F), dichlorodifluoromethane (CFC-12, CCl2F2), monochlorodifluoromethane (HCFC-22, CHClF2), 1,1-dichloro-1-fluoroethane (HCFC-141b, CH3CCl2F), 1-dichloro-1,1-fluoroethane (HCFC-142b, CH3CClF2), and 1,1,1,2-tetrafluoroethane (HFC-134a, CH2FCF3), and their emissions were estimated based on an interspecies correlation method using HCFC-22 as the reference species. The results showed no significant change in the regional concentration and emission of CFC in the past 10years, suggesting that the continuous regional emission of CFC has had no significant effect on the CFC regional concentration in the PRD region. Concentrations and emissions of HCFCs and HFCs are significantly higher compared to previous research in the PRD region (P<0.05). The largest emission was for HCFC-22, most likely due to its substitution for CFC-12 in the industrial and commercial refrigeration subsector, and the rapid development of the room air-conditioner and extruded polystyrene subsectors. The PRD's ODP-weighted emissions of the target HCFCs provided 9% (7-12%) of the national emissions for the corresponding species. The PRD's GWP-weighted emissions of the target HCFCs and HFC-134a account for 10% (7-12%) and 8% (7-9%), respectively, of the national emissions for the corresponding species, and thus are important contributions to China's total emissions.

  1. Hydrogeological Controls on Regional-Scale Indirect Nitrous Oxide Emission Factors for Rivers.

    PubMed

    Cooper, Richard J; Wexler, Sarah K; Adams, Christopher A; Hiscock, Kevin M

    2017-09-19

    Indirect nitrous oxide (N2O) emissions from rivers are currently derived using poorly constrained default IPCC emission factors (EF5r) which yield unreliable flux estimates. Here, we demonstrate how hydrogeological conditions can be used to develop more refined regional-scale EF5r estimates required for compiling accurate national greenhouse gas inventories. Focusing on three UK river catchments with contrasting bedrock and superficial geologies, N2O and nitrate (NO3(-)) concentrations were analyzed in 651 river water samples collected from 2011 to 2013. Unconfined Cretaceous Chalk bedrock regions yielded the highest median N2O-N concentration (3.0 μg L(-1)), EF5r (0.00036), and N2O-N flux (10.8 kg ha(-1) a(-1)). Conversely, regions of bedrock confined by glacial deposits yielded significantly lower median N2O-N concentration (0.8 μg L(-1)), EF5r (0.00016), and N2O-N flux (2.6 kg ha(-1) a(-1)), regardless of bedrock type. Bedrock permeability is an important control in regions where groundwater is unconfined, with a high N2O yield from high permeability chalk contrasting with significantly lower median N2O-N concentration (0.7 μg L(-1)), EF5r (0.00020), and N2O-N flux (2.0 kg ha(-1) a(-1)) on lower permeability unconfined Jurassic mudstone. The evidence presented here demonstrates EF5r can be differentiated by hydrogeological conditions and thus provide a valuable proxy for generating improved regional-scale N2O emission estimates.

  2. THE OFF-CENTERED SEYFERT-LIKE COMPACT EMISSION IN THE NUCLEAR REGION OF NGC 3621

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Silva, Patricia da

    2016-02-01

    We analyze an optical data cube of the nuclear region of NGC 3621, taken with the integral field unit of the Gemini Multi-object Spectrograph. We found that the previously detected central line emission in this galaxy actually comes from a blob, located at a projected distance of 2.″14 ± 0.″08 (70.1 ± 2.6 pc) from the stellar nucleus. Only diffuse emission was detected in the rest of the field of view, with a deficit of emission at the position of the stellar nucleus. Diagnostic diagram analysis reveals that the off-centered emitting blob has a Seyfert 2 spectrum. We propose that the line-emitting blob may be a “fossil” emission-line region or a light “echo” from an active galactic nucleus (AGN), which was significantly brighter in the past. Our estimates indicate that the bolometric luminosity of the AGN must have decreased by a factor of ∼13–500 during the past ∼230 yr. A second scenario to explain the morphology of the line-emitting areas in the nuclear region of NGC 3621 involves no decrease of the AGN bolometric luminosity and establishes that the AGN is highly obscured toward the observer but not toward the line-emitting blob. The third scenario proposed here assumes that the off-centered line-emitting blob is a recoiling supermassive black hole, after the coalescence of two black holes. Finally, an additional hypothesis is that the central X-ray source is not an AGN, but an X-ray binary. This idea is consistent with all the scenarios we proposed.

  3. DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Klimchuk, J. A. E-mail: stephen.bradshaw@rice.edu

    2013-02-20

    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

  4. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment

    NASA Astrophysics Data System (ADS)

    Roiger, Anke; Thomas, Jennie L.; Schlager, Hans; Law, Kathy; Kim, Jin; Reiter, Anja; Schäfler, Andreas; Weinzierl, Bernadett; Rose, Maximilian; Raut, Jean-Christophe; Marelle, Louis

    2014-05-01

    Arctic change has opened the region to new industrial activities, most notably transit shipping and resource extraction. The impacts that Arctic industrialization will have on pollutants and Arctic climate are not well understood. In order to understand how shipping and offshore oil/gas extraction impact on Arctic tropospheric chemistry and composition, we conducted the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign. The campaign was conducted in July 2012 using the DLR Falcon research aircraft, based in Andenes, Norway. The Falcon was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species) to characterize these emissions and their atmospheric chemistry. The Falcon performed nine scientific flights to study emissions from different ships (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) off the Norwegian Coast. Distinct differences in chemical and aerosol composition were found in emissions from these increasing pollution sources. We also studied the composition of biomass burning plumes imported from Siberian wildfires to put the emerging local pollution within a broader context. In addition to our measurements, we used a regional chemical transport model to study the influence of emerging pollution sources on gas and aerosol concentrations in the region. We will present an overview on the measured trace gas and aerosol properties of the different emission sources and discuss the impact of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  5. AN ASSESSMENT OF THE ENERGY BUDGETS OF LOW-IONIZATION NUCLEAR EMISSION REGIONS

    SciTech Connect

    Eracleous, Michael; Hwang, Jason A.; Flohic, Helene M. L. G.

    2010-03-10

    Using the spectral energy distributions (SEDs) of the weak active galactic nuclei (AGNs) in 35 low-ionization nuclear emission regions (LINERs) presented in a companion paper, we assess whether photoionization by the weak AGN can power the emission-line luminosities measured through the large (few-arcsecond) apertures used in ground-based spectroscopic surveys. Spectra taken through such apertures are used to define LINERs as a class and constrain non-stellar photoionization models for LINERs. Therefore, our energy budget test is a self-consistency check of the idea that the observed emission lines are powered by an AGN. We determine the ionizing luminosities and photon rates by integrating the observed SEDs and by scaling a template SED. We find that even if all ionizing photons are absorbed by the line-emitting gas, more than half of the LINERs in this sample suffer from a deficit of ionizing photons. In 1/3 of LINERs the deficit is severe. If only 10% of the ionizing photons are absorbed by the gas, there is an ionizing photon deficit in 85% of LINERs. We disfavor the possibility that additional electromagnetic power, either obscured or emitted in the unobservable far-UV band, is available from the AGN. Therefore, we consider other power sources such as mechanical heating by compact jets from the AGN and photoionization by either young or old stars. Photoionization by young stars may be important in a small fraction of cases. Mechanical heating can provide enough power in most cases but it is not clear how this power would be transferred to the emission-line gas. Photoionization by post asymptotic giant branch stars is an important power source; it provides more ionizing photons than the AGN in more than half of the LINERs and enough ionizing photons to power the emission lines in 1/3 of the LINERs. It appears likely that the emission-line spectra of LINERs obtained from the ground include the sum of emission from different regions where different power sources

  6. Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tsai, Wai Yan

    2007-12-01

    Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in

  7. CO{sub 2} emissions reduction using energy conservation measures: EPA Region IV`s experience

    SciTech Connect

    Berish, C.; Day, R.; Sibold, K.; Tiller, J.

    1994-12-31

    EPA Region 4 concluded in a recent comparative environmental risk evaluation that global climate change could substantially impact the Southeast. To address this risk, Region 4 developed an action plan to promote cost-effective pollution prevention and reduce greenhouse gas emissions, The regional plan contains programs that aye specific to Region 4 as well as geographic components of the national Climate Change Action Plan. Sources of carbon dioxide emissions were targeted for pollution prevention based on an energy model that allows the user to create energy efficiency scenarios in four sectors: residential, commercial, industrial, and transportation. Activities were selected using the modeled information on sector reduction potentials and resource and cost-effectiveness criteria. Given the high level of uncertainty associated with climate change projections, the programs developed are all cost effective, prevent pollution and/or result in sound adaptation policies. Currently, policy makers at national, regional, and local levels are deciding on what types of energy efficiency programs to implement. The region`s action plan is composed of several programs and approaches. The authors have developed implemented, and/or participated in the following: energy scenario model. EARTHWALK (residential energy conservation); energy conservation in affordable homes (new residences); Cool Communities Program (strategic tree planting and light colored surfaces); EPA`s Green Lights Program; WAVE (water conservation), the Plant Protection Center; QUEST TO SAVE THE EARTH (outreach tools); energy and water use planning for the 1996 Olympic Games, and planning for sea-level rise. Reviewing the practices of the above programs will be the focus of this paper.

  8. Regional cerebral glucose metabolism during sevoflurane anaesthesia in healthy subjects studied with positron emission tomography.

    PubMed

    Schlünzen, L; Juul, N; Hansen, K V; Gjedde, A; Cold, G E

    2010-05-01

    The precise mechanism by which sevoflurane exerts its effects in the human brain remains unknown. In the present study, we quantified the effects of sevoflurane on regional cerebral glucose metabolism (rGMR) in the human brain measured with positron emission tomography. Eight volunteers underwent two dynamic 18F-fluorodeoxyglucose positron emission tomography (PET) scans. One scan assessed conscious-baseline metabolism and the other scan assessed metabolism during 1 minimum alveolar concentration (MAC) sevoflurane anaesthesia. Cardiovascular and respiratory parameters were monitored and bispectral index responses were registered. Statistical parametric maps and conventional regions of interest analysis were used to determine rGMR differences. All subjects were unconsciousness at 1.0 MAC sevoflurane. Cardiovascular and respiratory parameters were constant over time. In the awake state, rGMR ranged from 0.24 to 0.35 mumol/g/min in the selected regions. Compared with the conscious state, total GMR decreased 56% in sevoflurane anaesthesia. In white and grey matter, GMR was averaged 42% and 58% of normal, respectively. Sevoflurane reduced the absolute rGMR in all selected areas by 48-71% of the baseline (P< or = 0.01), with the most significant reductions in the lingual gyrus (71%), occipital lobe in general (68%) and thalamus (63%). No increases in rGMR were observed. Sevoflurane caused a global whole-brain metabolic reduction of GMR in all regions of the human brain, with the most marked metabolic suppression in the lingual gyrus, thalamus and occipital lobe.

  9. HCFC-22 emissions at global and regional scales between 1995 and 2010: Trends and variability

    NASA Astrophysics Data System (ADS)

    Fortems-Cheiney, A.; Chevallier, F.; Saunois, M.; Pison, I.; Bousquet, P.; Cressot, C.; Wang, H. J.; Yokouchi, Y.; Artuso, F.

    2013-07-01

    HCFC‒22 (CHClF2, chlorodifluoromethane) is an ozone‒depleting substance, the consumption of which is controlled under the Montreal Protocol. Within a Bayesian inversion framework, we use measurements of HCFC‒22 atmospheric concentrations to constrain estimates of HCFC‒22 emissions, at the grid point 3.75°×2.5° and 8 day resolution, from January 1995 to December 2010. Starting from a new gridded bottom‒up inventory which is then optimized, our method shows continuously rising global emissions, from 182±11 Gg in 1995 to the maximum of 410±9 Gg in 2009. This is mainly due to an increase of emissions in developing regions, particularly in Eastern Asia, and occurs despite the current phase‒out in developed countries. The high temporal resolution of our inversion (8 day) allows to reveal some of the emission seasonality, the global posterior sources ranging from 25 Gg/month in November to 42 Gg/month in July, for example, in 2010.

  10. APIFLAME v1.0: high-resolution fire emission model and application to the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Turquety, S.; Menut, L.; Bessagnet, B.; Anav, A.; Viovy, N.; Maignan, F.; Wooster, M.

    2014-04-01

    This paper describes a new model for the calculation of daily, high-resolution (up to 1 km) fire emissions, developed in the framework of the APIFLAME (Analysis and Prediction of the Impact of Fires on Air quality ModEling) project. The methodology relies on the classical approach, multiplying the burned area by the fuel load consumed and the emission factors specific to the vegetation burned. Emissions can be calculated on any user-specified domain, horizontal grid, and list of trace gases and aerosols, providing input information on the burned area (location, extent), and emission factors of the targeted species are available. The applicability to high spatial resolutions and the flexibility to different input data (including vegetation classifications) and domains are the main strength of the proposed algorithm. The modification of the default values and databases proposed does not require any change in the core of the model. The code may be used for the calculation of global or regional inventories. However, it has been developed and tested more specifically for Europe and the Mediterranean area. A regional analysis of fire activity and the resulting emissions in this region is provided. The burning season extends from June to October in most regions, with generally small but frequent fires in eastern Europe, western Russia, Ukraine and Turkey, and large events in the Mediterranean area. The resulting emissions represent a significant fraction of the total yearly emissions (on average amounting to ~ 30% of anthropogenic emissions for PM2.5, ~ 20% for CO). The uncertainty regarding the daily carbon emissions is estimated at ~ 100% based on an ensemble analysis. Considering the large uncertainties regarding emission factors, the potential error on the emissions for the various pollutants is even larger. Comparisons with other widely used emission inventories show good correlations but discrepancies of a factor of 2-4 in the amplitude of the emissions, our results

  11. Localizing the γ-ray emission region during the 2014 June outburst of 3C 454.3

    NASA Astrophysics Data System (ADS)

    Coogan, Rosemary T.; Brown, Anthony M.; Chadwick, Paula M.

    2016-05-01

    In 2014 May-July, the flat spectrum radio quasar 3C 454.3 exhibited strong flaring behaviour. Observations with the Large Area Telescope detector on-board the Fermi Gamma-ray Space Telescope captured the γ-ray flux at energies 0.1 ≤ Eγ ≤ 300 GeV increasing fivefold during this period, with two distinct peaks in emission. The γ-ray emission is analysed in detail, in order to study the emission characteristics and put constraints on the location of the emission region. We explore variability in the spectral shape of 3C 454.3, search for evidence of a spectral cutoff, quantify the significance of very high energy emission and investigate whether or not an energy-dependence of the emitting electron cooling exists. γ-ray intrinsic doubling time-scales as small as τint = 0.68 ± 0.01 h at a significance of >5σ are found, providing evidence of a compact emission region. Significant Eγ, emitted ≥ 35 GeV and Eγ, emitted ≥ 50 GeV emission are also observed. The location of the emission region can be constrained to r ≥ 1.3 × R_{BLR}^{out}, a location outside the broad-line region. The spectral variation of 3C 454.3 also suggests that these flares may be originating further downstream of the supermassive black hole than the emission before and after the flares.

  12. Source region and growth analysis of narrowband Z-mode emission at Saturn

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Yoon, P. H.; Písa, D.; Ye, S.-Y.; Santolík, O.; Arridge, C. S.; Gurnett, D. A.; Coates, A. J.

    2016-12-01

    Intense Z-mode emission is observed in the lower density region near the inner edge of the Enceladus torus at Saturn, where these waves may resonate with MeV electrons. The source mechanism of this emission, which is narrow-banded and most intense near 5 kHz, is not well understood. We survey the Cassini Radio and Plasma Wave Science data to isolate several probable source regions near the inner edge of the Enceladus density torus. Electron phase space distributions are obtained from the Cassini Electron Spectrometer, part of the Cassini Plasma Spectrometer investigation. We perform a plasma wave growth analysis to conclude that an electron temperature anisotropy and possibly a weak loss cone can drive the Z mode as observed. Electrostatic electron acoustic waves and perhaps weak beam modes are also found to be unstable coincident with the Z mode. Quasi-steady conditions near the Enceladus density torus may result in the observations of narrowband Z-mode emission at Saturn.

  13. Regional Emissions Data Base and Evaluation System (REDES): Technical and system documentation of Version 2. 0

    SciTech Connect

    Rausch, J.V.; Boyd, G.A.

    1990-11-01

    The US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) program has solicited proposals from the private sector to demonstrate innovative technologies that allow the clean use of coal as an energy source. To aid in evaluating the potential of these proposed technologies to reduce environmental residuals, DOE and ICCT Source Evaluation Board asked Argonne National Laboratory to develop a series of data bases and a personal-computer-based model. Argonne created version 1.0 of the Regional Emissions Data Base and Evaluation System (REDES) in 1988. Version 1.0 was revised, and Version 2.0 was released in 1989. Version 2.0 of REDES is available to the public through the National Energy Software Center (telephone 708-972-7250). In 1988, Argonne National Laboratory published Regional Emissions Data Base and Evaluation System (REDES), report ANL/EES-TM-351, to document Version 1.0 of the REDES data bases and the computer model. In 1990, Argonne prepared this report to describe the changes and improvements that were made to Version 1.0 of REDES to create Version 2.0. Together with ANL/EES/TM-351, this report provides the user with a complete description of REDES, which is designed to forecast the change in emissions that could result from using a particular clean coal technology. 29 figs., 6 tabs.

  14. On altitude structure of centimeter-wave radio emission of solar active regions

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Yasnov, L. V.

    2013-07-01

    A method is presented for the direct measurement of the heights of the radio emission of solar active regions when they are located at the limb in order to reconstruct the vertical structure of the magnetic field in solar active regions. The method involves an analysis of radio source positions in the scans based on high frequency resolution one-dimensional centimeter-wave measurements performed on the RATAN-600 radio telescope. Radio sources are difficult to identify at many frequencies when observed at the limb at zero position angle because of abrupt signal variations at the solar limb. To eliminate edge effects on the scan, special observing periods are used (near vernal and autumnal equinoxes), when the source at the limb is located far from the scan edge because of the large position angle of the Sun. As a result of these observations, the spectra of relative heights are constructed for a number of sources for the period from 2007 through 2012. Source heights are shown to generally increase with wavelength. The height difference between the 5 and 2 cm emission is equal to 5.2 ± 2.0 Mm, and the corresponding height difference between the 8 and 2 cm emission is equal to 9.6 ± 3.0 Mm. It is shown that such characteristics can be obtained for a field generated by a dipole submerged under the photosphere at a depth of 17 Mm irrespective of the possible reduction of relative altitudes to absolute altitudes.

  15. Mobile Laboratory Observations of Methane Emissions in the Barnett Shale Region.

    PubMed

    Yacovitch, Tara I; Herndon, Scott C; Pétron, Gabrielle; Kofler, Jonathan; Lyon, David; Zahniser, Mark S; Kolb, Charles E

    2015-07-07

    Results of mobile ground-based atmospheric measurements conducted during the Barnett Shale Coordinated Campaign in spring and fall of 2013 are presented. Methane and ethane are continuously measured downwind of facilities such as natural gas processing plants, compressor stations, and production well pads. Gaussian dispersion simulations of these methane plumes, using an iterative forward plume dispersion algorithm, are used to estimate both the source location and the emission magnitude. The distribution of emitters is peaked in the 0-5 kg/h range, with a significant tail. The ethane/methane molar enhancement ratio for this same distribution is investigated, showing a peak at ∼1.5% and a broad distribution between ∼4% and ∼17%. The regional distributions of source emissions and ethane/methane enhancement ratios are examined: the largest methane emissions appear between Fort Worth and Dallas, while the highest ethane/methane enhancement ratios occur for plumes observed in the northwestern potion of the region. Individual facilities, focusing on large emitters, are further analyzed by constraining the source location.

  16. X-ray narrow emission lines from the nuclear region of NGC 1365

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Page, M. J.

    2016-11-01

    Context. NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM-Newton Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365, in order to analyse and characterise in a uniform way the soft X-ray narrow-line emitting gas in the nucleus. Aims: We characterise the narrow-line emitting gas visible by XMM-Newton RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. Methods: This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 × 1023 cm-2, and only one observation of the nine we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using Gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoionised line emission models representing the AGN line emission. The collisional and photoionised emission line models are fitted together (rather than holding either one constant), on top of a physical continuum and absorption model. Results: The X-ray narrow emission line spectrum of NGC 1365 is well represented by a combination of two collisionally ionised (kT of 220 ± 10 and 570 ± 15 eV) and three photoionised (log ξ of 1.5 ± 0.2, 2.5 ± 0.2, 1.1 ± 0.2) phases of emitting gas, all with higher than solar nitrogen abundances. This physical model was fitted to the 2012-13 stacked spectrum, and yet also fits well to the 2004-07 stacked spectrum, without changing any characteristics of the emitting gas phases. Our 2004-07 results are consistent with previous emission line work using these data, with five additional

  17. Positron-emission tomography of brain regions activated by recognition of familiar music.

    PubMed

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S

    2006-05-01

    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  18. Emission Measure Distribution for an Active Region Using Coordinated SERTS and YOHKOH SXT Observations

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Saba, J. L. R.; Strong, K. T.; Winter, H. D.; Brosius, J. W.

    1999-09-01

    Often the derived temperature of an active region reflects the method and the nature of the instrument used in its measurement. The emission measure (i.e., the amount of emitting material) derived from spectroscopic observations usually depends on assumptions about the absolute elemental abundances and ionization fractions of the emitting ions. Yet establishing the distribution of emission measure with temperature is the first step needed to proceed with most of the interesting physics of active regions--including heating processes, cooling timescales, and loop stability. Accurately characterizing the thermal distribution of the coronal plasma requires data which can resolve multithermal features and constrain both low- and high-temperature emission. To model the temperature distribution of NOAA Active Region 7563, we have combined broadband filter data from the Yohkoh Soft X-Ray Telescope (SXT) with simultaneous spectral line data from the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) taken during its flight on 1993 August 17. We have used a forward-folding technique to determine the emission measure distribution of the active region loops. We have found that (1) the SXT response functions are sensitive to both the elemental abundances and the ionization fractions assumed to compute the solar spectrum that is folded through the instrument effective area; (2) the relative calibration between the SERTS and the SXT instruments must be adjusted by a factor of 2 (a value consistent with the absolute measurement uncertainty of the 1993 SERTS flight) no matter which abundances or iron ionization fractions are used; (3) the two-peaked differential emission measure previously determined using SERTS data alone is not consistent with the SXT data: including the SXT data as a high-temperature constraint in the analysis requires that the emission above about 3 MK drop off steeply rather than extending out to 6 MK. The sensitivity of the SXT filter response

  19. A Multi-wavelength Investigation of RCW175: An H II Region Harboring Spinning Dust Emission

    NASA Astrophysics Data System (ADS)

    Tibbs, C. T.; Paladini, R.; Compiègne, M.; Dickinson, C.; Alves, M. I. R.; Flagey, N.; Shenoy, S.; Noriega-Crespo, A.; Carey, S.; Casassus, S.; Davies, R. D.; Davis, R. J.; Molinari, S.; Elia, D.; Pestalozzi, M.; Schisano, E.

    2012-08-01

    Using infrared, radio continuum, and spectral observations, we performed a detailed investigation of the H II region RCW175. We determined that RCW175, which actually consists of two separate H II regions, G29.1-0.7 and G29.0-0.6, is located at a distance of 3.2 ± 0.2 kpc. Based on the observations we infer that the more compact G29.0-0.6 is less evolved than G29.1-0.7 and was possibly produced as a result of the expansion of G29.1-0.7 into the surrounding interstellar medium. We compute a star formation rate for RCW175 of (12.6 ± 1.9) × 10-5 M ⊙ yr-1, and identified six possible young stellar object candidates within its vicinity. Additionally, we estimate that RCW175 contains a total dust mass of 215 ± 53 M ⊙. RCW175 has previously been identified as a source of anomalous microwave emission (AME), an excess of emission at centimeter wavelengths often attributed to electric dipole radiation from the smallest dust grains. We find that the AME previously detected in RCW175 is not correlated with the smallest dust grains (polycyclic aromatic hydrocarbons or small carbonaceous dust grains), but rather with the exciting radiation field within the region. This is a similar result to that found in the Perseus molecular cloud, another region which harbors AME, suggesting that the radiation field may play a pivotal role in the production of this new Galactic emission mechanism. Finally, we suggest that these observations may hint at the importance of understanding the role played by the major gas ions in spinning dust models.

  20. The Solar Active Region Differential Emission Measure from 1 to 20 MK

    NASA Astrophysics Data System (ADS)

    McTiernan, J. M.

    2004-12-01

    In this work we determine the differential emission measure (DEM) for solar active regions during non-flaring times, using a combination of RHESSI and GOES12-SXI data. Approximately 3000 measurements of non-flare RHESSI spectra were obtained between January 2003 and September 2004. Most of these spectra were taken close enough to times of SXI images to allow for calculation of the DEM. Each DEM is calculated using the same process as used with YOHKOH data from solar flares as presented by McTiernan, Fisher and Li, (1999). We will use the data to compare with predictions of the nanoflare model of solar heating (Cargill and Klimchuk, 2004). We will also check for correlations between the high temperature emission measure and total X-ray brightness and also solar flare activity.

  1. Field emission current fluctuations due to lithium adsorbed on the W(111) region

    NASA Astrophysics Data System (ADS)

    Biernat, T.; Kleint, Ch.; Mȩclewski, R.

    1991-04-01

    Field emission current fluctuations for lithium adsorbed on the tungsten (111) region were investigated by a probe-hole field emission microscope. The coverage dependence of the noise power as well as spectral density functions W(ƒ) at different temperatures were obtained. The spectral density functions have been analysed in terms of the Timm and van der Ziel concentration fluctuation model. Using Comer's method the surface diffusion energies and prefactors have been determined for submonolayer coverages of lithium. They are strongly coverage dependent. The activation energy varies non-monotonically between 0.41 and 0.53 eV and the prefactor between 2.4 × 10 -4 and 1.3 × 10 -2 cm 2/s in the Li surface concentration interval (0.5-3.7) × 10 14 cm -2. The results are compared with those obtained for the W(111)/K system.

  2. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  3. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  4. Effects of atomic oxygen on OH Meinel emission bands in the MLT region

    NASA Astrophysics Data System (ADS)

    Von Savigny, Christian; Lednyts'kyy, Olexandr

    The OH Meinel airglow is one of the most prominent features of the terrestrial nightglow and has been employed for several decades to remotely sense the mesopause region. However, some aspects of the OH kinetics are still not fully understood. In this contribution we present recent results on the importance of quenching by atomic oxygen on the vertical distribution of different OH Meinel bands. OH Meinel emissions from different vibrational levels are known to occur at slightly different altitudes in the terrestrial airglow with emissions originating from higher vibrational levels peaking at higher altitudes. Our earlier model studies suggested quenching by atomic oxygen to be a principal cause of these vertical shifts. Here we employ the tropical mesopause region - characterized by pronounced semiannual variations - as a natural laboratory to test the hypothesis that vertical shifts between different OH Meinel bands are a consequence of quenching by atomic oxygen. Multiyear nighttime satellite measurements of OH(3-1) and OH(6-2) volume emission rate profiles and atomic oxygen with SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) on Envisat are used. The MLT atomic oxygen profiles are retrieved from measurements of the O(1S-1D) green line emission based on the accepted 2-step excitation scheme and a semi-empirical photochemical model. The results clearly demonstrate that vertical shifts between the OH bands investigated are indeed correlated with the amount of atomic oxygen in the upper mesosphere, corroborating the hypothesis that quenching by atomic oxygen is a driver for the vertical shifts between different OH Meinel bands.

  5. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  6. Optimization of Bayesian Emission tomographic reconstruction for region of interest quantitation

    SciTech Connect

    Qi, Jinyi

    2003-01-10

    Region of interest (ROI) quantitation is an important task in emission tomography (e.g., positron emission tomography and single photon emission computed tomography). It is essential for exploring clinical factors such as tumor activity, growth rate, and the efficacy of therapeutic interventions. Bayesian methods based on the maximum a posteriori principle (or called penalized maximum likelihood methods) have been developed for emission image reconstructions to deal with the low signal to noise ratio of the emission data. Similar to the filter cut-off frequency in the filtered backprojection method, the smoothing parameter of the image prior in Bayesian reconstruction controls the resolution and noise trade-off and hence affects ROI quantitation. In this paper we present an approach for choosing the optimum smoothing parameter in Bayesian reconstruction for ROI quantitation. Bayesian reconstructions are difficult to analyze because the resolution and noise properties are nonlinear and object-dependent. Building on the recent progress on deriving the approximate expressions for the local impulse response function and the covariance matrix, we derived simplied theoretical expressions for the bias, the variance, and the ensemble mean squared error (EMSE) of the ROI quantitation. One problem in evaluating ROI quantitation is that the truth is often required for calculating the bias. This is overcome by using ensemble distribution of the activity inside the ROI and computing the average EMSE. The resulting expressions allow fast evaluation of the image quality for different smoothing parameters. The optimum smoothing parameter of the image prior can then be selected to minimize the EMSE.

  7. Characteristics and Evolution of the Magnetic Field and Chromospheric Emission in an Active Region Core Observed by Hinode

    DTIC Science & Technology

    2010-06-30

    ar X iv :1 00 6. 57 76 v1 [ as tr o- ph .S R ] 3 0 Ju n 20 10 CHARACTERISTICS AND EVOLUTION OF THE MAGNETIC FIELD AND CHROMOSPHERIC EMISSION IN...describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope...extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic, but actually

  8. An integrated approach for estimation of methane emissions from wetlands and lakes in high latitude regions

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.; Podest, E.; Bohn, T. J.; Lettenmaier, D. P.; Schroeder, R.; McDonald, K. C.

    2009-04-01

    In recent years, there has been increasing evidence of significant alteration in the extent of lakes and wetlands in high latitude regions due in part to thawing permafrost, as well as other changes governing surface and subsurface hydrology. Methane is a 23 times more efficient greenhouse gas than carbon dioxide; changes in surface water extent, and the associated subsurface anaerobic conditions, are important controls on methane emissions in high latitude regions. Methane emissions from wetlands vary substantially in both time and space, and are influenced by plant growth, soil organic matter decomposition, methanogenesis, and methane oxidation controlled by soil temperature, water table level and net primary productivity (NPP). The understanding of spatial and temporal heterogeneity of surface saturation, thermal regime and carbon substrate in northern Eurasian wetlands from point measurements are limited. In order to better estimate the magnitude and variability of methane emissions from northern lakes and wetlands, we present an integrated assessment approach based on remote sensing image classification, land surface modeling and process-based ecosystem modeling. Wetlands classifications based on L-band JERS-1 SAR (100m) and ALOS PALSAR (~30m) are used together with topographic information to parameterize a lake and wetland algorithm in the Variable Infiltration Capacity (VIC) land surface model at 25 km resolution. The enhanced VIC algorithm allows subsurface moisture exchange between surface water and wetlands and includes a sub-grid parameterization of water table position within the wetland area using a generalized topographic index. Average methane emissions are simulated by using the Walter and Heimann methane emission model based on temporally and spatially varying soil temperature, net primary productivity and water table generated from the modified VIC model. Our five preliminary study areas include the Z. Dvina, Upper Volga, Yeloguy, Syum, and Chaya

  9. Greenhouse Gas Emissions in the Brazilian Semiarid Region: Environmental, Climate and Social Constraints

    NASA Astrophysics Data System (ADS)

    Sousa Neto, E. R.; Ometto, J. P.; Aguiar, A. P. D.; Mata, M. V.

    2014-12-01

    Removing a forest to open new agricultural lands, which has been very intensive in countries like Brazil during the last decades, contributes to about 12% of the global anthropogenic emissions. Forest cover removal releases carbon dioxide (CO2) and other greenhouse gases (GEE) like methane (CH4) and nitrous oxide (N2O), as a result of burning trees, followed by gradual decomposition of the forest biomass left on the ground while pasture or crop plantations are being established. In Brazil, the 2nd Brazilian National Communication to the United Nations Framework Convention on Climate Change (UNFCCC) presents the mean annual net CO2 emissions caused by changes in land use (LUC) in each Brazilian biome and the first place in the ranking is occupied by the Amazon Rainforest Biome (860,874 Gg), followed by Savannah (302,715 Gg), Atlantic Forest (79,109 Gg), Caatinga (37,628 Gg), Pantanal (16,172 Gg) and Pampa (-102 Gg) (MCT 2010). Despite these results, the estimates of CO2 emissions caused by LUC in the Brazilian semiarid region (Caatinga) are very limited and scarce, and associated to uncertainties directly related to the estimated biomass in different types of vegetation which are spatially distributed within the biome, as well as the correct representation of the dynamics of the deforestation process itself, and the more accurate mapping use and land cover. Based on such facts, this project is estimating the emissions of the main greenhouse gases (CO2, N2O and CH4) caused by land use changes in an area of Caatinga biome in Pernambuco State through the model INPE-EM. So far, it is known that from decades of 1940 up to 1995, Caatinga biome has contributed with about 3.2 % to total land use change emissions in the country, and recently (1990-2005), the contributions of Caatinga are even higher (over 30%), according to the 2nd Brazilian National Communication (2010). By means means of the model INPE-EM (data still being acquired), we are trying to diminish the

  10. Greenhouse gas emissions in the Brazilian semiarid region: environmental, climate and social constraints

    NASA Astrophysics Data System (ADS)

    Sousa-Neto, Eráclito; Ometto, Jean

    2014-05-01

    The process of removing a forest to open new agricultural lands, which has been very intensive in developing countries like Brazil during the last decades (Lapola et al, 2014), contributes to about 12% of the global anthropogenic emissions (Le Quéré et al., 2009). Forest cover removal releases carbon dioxide (CO2) and other greenhouse gases (GEE) like methane (CH4) and nitrous oxide (N2O), as a result of burning trees, followed by gradual decomposition of the forest biomass left on the ground while pasture or crop plantations are being established (Ramankutty et al., 2007). In Brazil, the 2nd Brazilian National Communication to the United Nations Framework Convention on Climate Change (UNFCCC), presents the mean annual net CO2 emissions caused by changes in land use in each Brazilian biome and the first place in the ranking is occupied by the Amazon Rainforest Biome (860,874 Gg), followed by Savannah (302,715 Gg), Atlantic Forest (79,109 Gg), Caatinga (37,628 Gg), Pantanal (16,172 Gg) and Pampa (-102 Gg) (MCT 2010). Despite these results, the estimates of CO2 emissions caused by land use changes in the Brazilian semiarid region (Caatinga) are very limited and scarce, and associated to uncertainties which are directly related to the estimated biomass in different types of vegetation which are spatially distributed within the biome, as well as the correct representation of the dynamics of the deforestation process itself, and the more accurate mapping use and land cover. Based on such facts, this project is estimating the emissions of the main greenhouse gases (CO2, N2O and CH4) caused by land use changes in an area of Caatinga biome in Pernambuco State through the model INPE-EM. So far, it is known that from decades of 1940 up to 1995, Caatinga biome has contributed with about 3.2 % to total land use change emissions in the country (Leite et al, 2012), and recently (1990-2005), the contributions of Caatinga are even higher (over 30%), according to the 2nd

  11. Regional changes in extravascular lung water detected by positron emission tomography

    SciTech Connect

    Schuster, D.P.; Marklin, G.F.; Mintun, M.A.

    1986-04-01

    Regional measurements of extravascular lung water (rEVLW) were made with positron emission tomography (PET) and 15O-labeled radionuclides. The label used to measure the total lung water (TLW) content fully equilibrated with TLW prior to scanning in both dogs with normal and low cardiac outputs, and nearly so in areas of lung made edematous by oleic acid injury (the TLW values used were 97% of maximum values). Regional EVLW measurements made by PET (EVLW-PET) and gravimetric techniques in both normal and edematous lung were closely correlated (r = 0.93), and EVLW-PET increased from an average of 0.20 to 0.37 mlH/sub 2/O/ml lung (P less than 0.05) after regional lung injury. PET measurements of regional blood volume always decreased (from an average of 0.12 to 0.09 ml blood/ml lung (P less than 0.05)) after cardiac output was lowered by hemorrhage in a separate set of animals. Total EVLW (by thermodye indicator dilution) did not change. Likewise, regional EVLW remained constant in areas below the left atrium but decreased in areas above the left atrium. We conclude that PET measurements are accurate, noninvasive, and reproducible and that regional changes may be detected even when measurements of total EVLW by other methods may fail to change significantly.

  12. Impact of Aircraft Emissions on Reactive Nitrogen over the North Atlantic Flight Corridor Region

    NASA Technical Reports Server (NTRS)

    Koike, M.; Kondo, Y.; Ikeda, H.; Gregory, G. L.; Anderson, B. E.; Sachse, G. W.; Blake, D.; Liu, S. C.; Singh, H. B.; Thompson, A.

    1999-01-01

    The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over

  13. An analysis of the impacts of global climate and emissions changes on regional tropospheric ozone

    NASA Technical Reports Server (NTRS)

    John, Kuruvilla; Crist, Kevin C.; Carmichael, Gregory R.

    1994-01-01

    Many of the synergistic impacts resulting from future changes in emissions as well as changes in ambient temperature, moisture, and UV flux have not been quantified. A three-dimensional regional-scale photo-chemical model (STEM-2) is used in this study to evaluate these perturbations to trace gas cycles over the eastern half of the United States of America. The model was successfully used to simulate a regional-scale ozone episode (base case - June 1984) and four perturbations scenarios - viz., perturbed emissions, temperature, water vapor column, and incoming UV flux cases, and a future scenario (for the year 2034). The impact of these perturbation scenarios on the distribution of ozone and other major pollutants such as SO2 and sulfates were analyzed in detail. The spatial distribution and the concentration of ozone at the surface increased by about 5-15 percent for most cases except for the perturbed water vapor case. The regional scale surface ozone concentration distribution for the year 2034 (future scenario) showed an increase of non-attainment areas. The rural areas of Pennsylvania, West Virginia, and Georgia showed the largest change in the surface ozone field for the futuristic scenario when compared to the base case.

  14. MICS-Asia II: Impact of global emissions on regional air quality in Asia

    NASA Astrophysics Data System (ADS)

    Holloway, Tracey; Sakurai, Tatsuya; Han, Zhiwei; Ehlers, Susanna; Spak, Scott N.; Horowitz, Larry W.; Carmichael, Gregory R.; Streets, David G.; Hozumi, Y.; Ueda, Hiromasa; Park, S. U.; Fung, Christopher; Kajino, M.; Thongboonchoo, Narisara; Engardt, Magnuz; Bennet, Cecilia; Hayami, Hiroshi; Sartelet, Karine; Wang, Zifa; Matsuda, K.; Amann, Markus

    This study quantifies the seasonality and geographic variability of global pollutant inflow to Asia. Asia is often looked to as a major source of intercontinental air pollution transport with rising emissions and efficient pollutant export processes. However, the degree to which foreign emissions have been imported to Asia has not been thoroughly examined. The Model Inter-Comparison Study for Asia (MICS-Asia) is an international collaboration to study air pollution transport and chemistry in Asia. Using the global atmospheric chemistry Model of Ozone and Related Tracers (MOZART v. 2.4), and comparing results with a suite of regional models participating in MICS-Asia, we find that imported O 3 contributes significantly throughout Asia. The choice of upper boundary condition is found to be particularly important for O 3, even for surface concentrations. Both North America and Europe contribute to ground-level O 3 concentrations throughout the region, though the seasonality of these two sources varies. North American contributions peak at over 10% of monthly mean O 3 during winter months in East Asia, compared to Europe's spring- and autumn-maxima (5-8%). In comparison to observed data from the Acid Deposition Monitoring Network in East Asia (EANET), MOZART concentrations for O 3 generally fall within the range of the MICS models, but MOZART is unable to capture the fine spatial variability of shorter-lived species as well as the regional models.

  15. Estimates of spatially and temporally resolved constrained black carbon emission over the Indian region using a strategic integrated modelling approach

    NASA Astrophysics Data System (ADS)

    Verma, S.; Reddy, D. Manigopal; Ghosh, S.; Kumar, D. Bharath; Chowdhury, A. Kundu

    2017-10-01

    We estimated the latest spatially and temporally resolved gridded constrained black carbon (BC) emissions over the Indian region using a strategic integrated modelling approach. This was done extracting information on initial bottom-up emissions and atmospheric BC concentration from a general circulation model (GCM) simulation in conjunction with the receptor modelling approach. Monthly BC emission (83-364 Gg) obtained from the present study exhibited a spatial and temporal variability with this being the highest (lowest) during February (July). Monthly BC emission flux was considerably high (> 100 kg km- 2) over the entire Indo-Gangetic plain (IGP), east and the west coast during winter months. This was relatively higher over the central and western India than over the IGP during summer months. Annual BC emission rate was 2534 Gg y- 1 with that over the IGP and central India respectively comprising 50% and 40% of the total annual BC emissions over India. A high relative increase was observed in modified BC emissions (more than five times the initial emissions) over the most part of the IGP, east coast, central/northwestern India. The relative predominance of monthly BC emission flux over a region (as depicted from z-score distribution maps) was inferred being consistent with the prevalence of region- and season-specific anthropogenic activity.

  16. CH4 and N2O Emissions from Rice Paddy Soils in Vietnam - Identifying Regional Hotspots and Quantifying the Total Emission Strength using a Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Werner, C.; Kraus, D.; Mai, T. V.; Butterbach-Bahl, K.

    2016-12-01

    Agriculture is the economic backbone for over two thirds of Vietnam's population, providing food security, employment and income. However, agriculture in Vietnam is challenged by climate change and climate extremes and at the same time, agriculture remains a key source of greenhouse gas (GHG) emissions. The first bi-annual update report (BUR1), published in 2014 indicated that while the proportion of GHG emissions from agriculture had fallen from 43.1% to 33.2% from 2000 to 2010, the emission total increased from 65.1 mio to 88.4 mio t CO2e. Reducing GHG emissions from agriculture has thus become a key issue within the national strategy of GHG emission management. Here we present first data using IPCC Tier 3 modeling for quantifying the source strength of rice based crop systems for CH4 and N2O. We used LandscapeDNDC and linked it to a newly developed spatial landuse and land management database (climate, soil properties, and detailed field management data). Site application showed good agreement of simulated biomass, yield and GHG emissions with field observations, providing confidence for model use at national scale. Our results also show good agreement with national yield data and total annual emissions of the simulated period (2006-2015) ranged from 1060 - 1502 kt CH4 and 6.2 - 7.7 kt N2O, respectively. The dominating emission hotspot for CH4 is the Mekong Delta region with its double and triple rice cropping systems (819 kt CH4/yr, Fig. 1). With regard to N2O, emission hotspots have been identified to be closely related to regions with high fertilizer use and single to double rice cropping systems (Fig. 1). Though, our emission estimates are likely representing the best of current knowledge on national GHG emissions from rice based systems in Vietnam, the uncertainty is significant as information on rice system management remains vague. Sensitivity studies show that changes in field management affecting the soil organic carbon dynamics (duration of flooding

  17. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    PubMed

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-03-09

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NOx emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NOx emissions during the study period, while energy efficiency and technology improvement factors offset total NOx emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NOx emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NOx emissions.

  18. Regional Air Quality in central México and emissions inventories

    NASA Astrophysics Data System (ADS)

    Gerardo Ruiz-Suarez, Luis; Torres-Jardón, Ricardo; Agustín García-Reynoso, José; Santos García-Yee, José; Barrera-Huertas, Hugo; Alejandro Torres-Jaramillo, Jorge; Robles-Roldán, Miguel Angel; Gutierrez López, Wilfrido; García-Espinoza, Manuel; Castro-Romero, Telma

    2014-05-01

    Four air quality field campaigns, from 2009 to 2012, during March-April were carried out in several sites in urban, rural and semi-rural sites in Central México. One of the sites was in the Chalco Gap southeast of MCMA (2011), another in the state of Morelos (2011), other two in the state of Puebla (2009 and 2012). All these sites are South and East of the Mexico Basin. The main object of those campaigns was to document regional air quality, mainly in rural and periurban sites, including the photochemical age of regional polluted plumes as they were transported away from the main metropolitan areas within the region. In this paper, we focus on comparisons between observed CO/NOx, and CO/SO2 ratios with those from the National Emissions Inventory and form local inventories reported in state air quality management programs. Comparisons were made with data between 05:00 to 08:00 h to minimize effects photochemical activity and the fast evolution of MLH occurring between 08:00 and 09:00 due to high insolation. Comparisons among observed ratios show a fairly consistent ratio, whereas ratios from emissions inventory are widely variable and only in few sites compare reasonable well with observed ones, indicating the need for homologation of emissions inventories in the country. Also Ozone, CO, NOx and NOy observed time series are compared with WRF-Chem model results for the same campaign periods to evaluate its performance outside MCMA. In addition, observed surface wind speeds and early morning MLH obtained with a tethered balloon are also compared with modeled values to help understanding discrepancies in the trace gases comparisons.

  19. A comparative study of US EPA 1996 and 1999 emission inventories in the west Gulf of Mexico coast region, USA.

    PubMed

    Lin, Che-Jen; Ho, Thomas C; Chu, Hsing-wei; Yang, Heng; Mojica, Martha J; Krishnarajanagar, Nagesh; Chiou, Paul; Hopper, Jack R

    2005-06-01

    Emission inventory is one of the required inputs to air quality models. To assist in the urban and regional modeling efforts, United States Environmental Protection Agency (EPA) has compiled a National Emission Inventory (NEI) for criterion pollutants, and the precursors of ozone and particulate matter (PM). In December 2002, EPA released the 1999 NEI estimates (NEI99), which represent the most recent national emission data. However, the data sets are not in model-ready format for air quality simulations. This present work converts the NEI99 Final Version 2 data sets into Inventory Data Analyzer (IDA) format and processes the data using the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system to generate a gridded emission inventory in a domain covering the west Gulf Coast Region, USA. The spatial and diurnal emission characteristics of the gridded emission inventories are then assessed and compared with those of the National Emission Trend 1996 (NET96). The NEI99 database contains more complete emission records in both area and point sources. It is also found that NEI99 data exhibit greater emissions with respect to point and mobile sources but smaller emissions with respect to area sources when compared to the corresponding gridded NET96 data in the same study domain. The most distinct differences between the NEI99 and NET96 databases are CO emission of mobile sources, SO2 emissions of point sources, and VOC/PM/NH3/NOx emissions of area and non-road sources. The gridded NEI99 data show low VOC/NOx ratios (<2-5) in the urban areas of the study domain.

  20. Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam.

    PubMed

    Tung, H D; Tong, H Y; Hung, W T; Anh, N T N

    2011-06-15

    This paper reports on a 2-year emissions monitoring program launched by the Centre for Environmental Monitoring of the Vietnam Environment Administration which aimed at determining emission factors and emission inventories for two typical types of vehicle in Hanoi, Vietnam. The program involves four major activities. A database for motorcycles and light duty vehicles (LDV) in Hanoi was first compiled through a questionnaire survey. Then, two typical driving cycles were developed for the first time for motorcycles and LDVs in Hanoi. Based on this database and the developed driving cycles for Hanoi, a sample of 12 representative test vehicles were selected to determine vehicle specific fuel consumption and emission factors (CO, HC, NOx and CO(2)). This set of emission factors were developed for the first time in Hanoi with due considerations of local driving characteristics. In particular, it was found that the emission factors derived from Economic Commission for Europe (ECE) driving cycles and adopted in some previous studies were generally overestimated. Eventually, emission inventories for motorcycles and LDVs were derived by combining the vehicle population data, the developed vehicle specific emission factors and vehicle kilometre travelled (VKT) information from the survey. The inventory suggested that motorcycles contributed most to CO, HC and NOx emissions while LDVs appeared to be more fuel consuming.

  1. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    USGS Publications Warehouse

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  2. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    SciTech Connect

    Rodriguez-Esnard, T.; Trinidad, M. A.; Migenes, V. E-mail: trinidad@astro.ugto.mx

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  3. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  4. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    NASA Astrophysics Data System (ADS)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  5. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  6. A search for H-alpha-emission objects in a region in ARA

    NASA Astrophysics Data System (ADS)

    Vega, E. I.; Rabolli, M.; Feinstein, A.; Muzzio, J. C.

    1980-09-01

    A search for H-alpha-emission objects covering an area of 25 sq deg in the Ara region of the Milky Way resulted in the discovery of 124 objects. The limiting magnitude of the survey is about R equals 14.5. More than two-thirds of the objects were not previously known. UBV photographic photometry was also obtained for objects brighter than V equals 15.4, B equals 16.3, and U equals 16.4; the photometric data allow us to make a preliminary discussion of the early-type objects which suggests that most of them lie beyond the Sagittarius arm.

  7. Kinematical and Physical Properties of the Central Emission Regions of Active Galaxy Mrk 817

    NASA Astrophysics Data System (ADS)

    Ilic, D.

    2009-09-01

    Active Galactic Nuclei (AGN) are among the most spectacular objects in the sky since they produce enormous amounts of energy in a tiny volume, having luminosities of L ≈ 10^{42} - 10^{48} erg s^{-1}. AGN emit in the continuum, as well as in the spectral lines, from γ and X-ray to the far infrared and radio domain. Their emission lines can be classified as narrow (NELs) or broad emission lines (BELs) according to their widths, and they are formed in two different emission regions, the narrow line region (NLR) and broad line region (BLR). In this work we study the physical and kinematical properties of the emission line regions of Seyfert 1.5 galaxy Mrk 817. The spectrum of this AGN has both BELs and NELs, which show interesting substructures (such as shoulders or bumps), that classify this galaxy to be Seyfert 1.5 galaxy. The investigation is based on four sets of observations that are obtained with the following telescopes: 2.5m Isaac Newton Telescope and 4.2m William Herschel Telescope of the La Palma Observatory at Canary Islands, 2.6m Shain Telescope of the Crimean Astrophysical Observatory and 2m telescope of the Rozhen Observatory in Bulgaria (Ilić 2006, Ilić et al. 2006). We find that in Mrk 817 the NELs and BELs are very complex, indicating that structure of both the NLR and BLR is stratified and consists of at least two sub-regions with different kinematical properties. The BELs of Mrk 817 can be fitted with the two-component model, where the core of the line is coming from a spherical region with isotropic velocity distribution, and wings are affected by a low inclined accretion disc (or disc-like emitting region). Our analysis of the disc parameters shows that the minimal inner radius of the disc cannot be smaller than 0.4 lt-days and that the disc should be smaller then 39 lt-days (for a black hole mass of 4.9 × 10^7 M_{⊙}), that is in the agreement with the results obtained by Kaspi et al. (2000), who estimated the dimensions of the BLR of Mrk

  8. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    NASA Astrophysics Data System (ADS)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.

  9. Female breast cancer in Lombardy, Italy (2002-2009): a case-control study on occupational risks.

    PubMed

    Oddone, Enrico; Edefonti, Valeria; Scaburri, Alessandra; Vai, Tiziana; Crosignani, Paolo; Imbriani, Marcello

    2013-09-01

    The role of occupational exposures in breast cancer development is still uncertain and, to our knowledge, no studies have been recently carried out in Italy to provide a comprehensive estimation of this possible risk. Based on administrative data, a case-control study was carried out recruiting all incident cases of female breast cancer in the period 2002-2009, aged between 35 and 69 years, residing in Lombardy, Italy. Controls were randomly sampled from all women residing in Lombardy as of December 31, 2005. Occupational histories, including blue-collar status, were available from 1974 through record linkage with a social security pension database, and were obtained for 11,188 cases and 25,329 controls. Adjusted odds ratios (ORs) and corresponding 90% confidence intervals (CIs) were calculated using multiple unconditional logistic regression models, including terms for sectors of longest employment and for duration of employment. Multiple comparisons were accounted for according to the Benjamini-Hochberg method. The ORs for female breast cancer were modestly but significantly increased for employment in electrical manufacturing (OR 1.12, 90%CI 1.04-1.21), textile (OR 1.08, 90%CI 1.02-1.15), paper (OR 1.25, 90%CI 1.06-1.46) and rubber (OR 1.26, 90%CI 1.03-1.54) industries. Analysis by duration of employment within sectors showed significantly increased ORs for electrical manufacturing and rubber industries. After adjustment for multiple comparisons no estimates remained statistically significant. Although with several limitations, our results point to a possible role of exposures in electrical manufacturing, textile, paper and rubber industries in the process leading to breast cancer. An in-dept study for the electrical manufacturing industry has been already planned. Copyright © 2013 Wiley Periodicals, Inc.

  10. APIFLAME v1.0: high resolution fire emission model and application to the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Turquety, S.; Menut, L.; Bessagnet, B.; Anav, A.; Viovy, N.; Maignan, F.; Wooster, M.

    2013-11-01

    This paper describes a new model for the calculation of daily, high-resolution (up to 1 km) fire emissions, developed in the framework of the APIFLAME project (Analysis and Prediction of the Impact of Fires on Air quality ModEling). The methodology relies on the classical approach, multiplying the burned area by the fuel load and the emission factors specific to the vegetation burned. Emissions can be calculated on any user-specified domain, horizontal grid, and list of trace gases and aerosols, providing input information on the burned area (location, extent) and emission factors of the targeted species are available. The strength of the proposed algorithm is its high resolution and its flexibility in terms of domain and input data (including the vegetation classification). The modification of the default values and databases proposed does not require changes in the core of the model. The code may be used for the calculation of global or regional inventories. However, it has been developed and tested more specifically for Europe and the Mediterranean area. In this region, the burning season extends from June to October in most regions, with generally small but frequent fires in Eastern Europe, Western Russia, Ukraine and Turkey, and large events in the Mediterranean area. The resulting emissions represents a significant fraction of the total yearly emissions (on average amounting to ~30% of anthropogenic emissions for PM2.5, ~20% for CO). The uncertainty on the daily carbon emissions was estimated to ~100% based on an ensemble analysis. Considering the large uncertainties on emission factors, the potential error on the emissions for the various pollutants is even larger. Comparisons to other widely used emission inventories shows good correlations but discrepancies of a factor of 2-4 on the amplitude of the emissions, our results being generally on the higher end.

  11. Quantifying baseline emission factors of air pollutants in China's regional power grids.

    PubMed

    Cai, Wenjia; Wang, Can; Jin, Zhugang; Chen, Jining

    2013-04-16

    Drawing lessons from the clean development mechanism (CDM), this paper developed a combined margin methodology to quantify baseline emission factors of air pollutants in China's regional power grids. The simple average of baseline emission factors of SO2, NOX, and PM2.5 in China's six power grids in 2010 were respectively 1.91 kg/MWh, 1.83 kg/MWh and 0.32 kg/MWh. Several low-efficient mitigation technologies, such as low nitrogen oxide burner (LNB), were suggested to be replaced or used together with other technologies in order to virtually decrease the grid's emission factor. The synergies between GHG and air pollution mitigation in China's power sector was also notable. It is estimated that in 2010, that every 1% CO2 reduction in China's power generation sector resulted in the respective coreduction of 1.1%, 0.5%, and 0.8% of SO2, NOX, and PM2.5. Wind is the best technology to achieve the largest amount of coabatement in most parts of China. This methodology is recommended to be used in making comprehensive air pollution control strategies and in cobenefits analysis in future CDM approval processes.

  12. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  13. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  14. Benchmark Test of Differential Emission Measure Codes and Multi-thermal Energies in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Boerner, Paul; Caspi, Amir; McTiernan, James M.; Ryan, Daniel; Warren, Harry

    2015-10-01

    We compare the ability of 11 differential emission measure (DEM) forward-fitting and inversion methods to constrain the properties of active regions and solar flares by simulating synthetic data using the instrumental response functions of the Solar Dynamics Observatory/ Atmospheric Imaging Assembly (SDO/AIA) and EUV Variability Experiment (SDO/EVE), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the Geostationary Operational Environmental Satellite/ X-ray Sensor (GOES/XRS). The codes include the single-Gaussian DEM, a bi-Gaussian DEM, a fixed-Gaussian DEM, a linear spline DEM, the spatial-synthesis DEM, the Monte-Carlo Markov Chain DEM, the regularized DEM inversion, the Hinode/ X-Ray Telescope (XRT) method, a polynomial spline DEM, an EVE+GOES, and an EVE+RHESSI method. Averaging the results from all 11 DEM methods, we find the following accuracies in the inversion of physical parameters: the EM-weighted temperature Tw^{fit}/Tw^{sim}=0.9±0.1, the peak emission measure EMp^{fit}/EMp^{sim}=0.6±0.2, the total emission measure EMt^{fit}/EMt^{sim}=0.8±0.3, and the multi-thermal energies E_{th}^{fit}/EM_{th}^{approx}=1.2±0.4. We find that the AIA spatial-synthesis, the EVE+GOES, and the EVE+RHESSI method yield the most accurate results.

  15. The Power Source(s) of Nearby Low-Ionization Nuclear Emission Regions

    NASA Astrophysics Data System (ADS)

    Molina, Mallory; Eracleous, Michael; Maoz, Dan; Barth, Aaron J.; Walsh, Jonelle; Ho, Luis C.; Shields, Joseph C.

    2015-01-01

    The majority of low-ionization nuclear emission regions (LINERs) harbor supermassive black holes (SMBHs) with very low accretion rates. Since SMBHs spend most of their lifetimes in these low-accretion rate states, understanding LINERs is important for understanding active galactic nuclei (AGN) in the context of galaxy evolution. On scales of ~100 pc, the energy budget of LINERs appears to be deficient when the only source of power considered is the AGN. Thus, other energy sources are likely to contribute to the excitation of the emission-line gas. To probe these sources, we observed three nearby, bright LINERs, NGC 1052, NGC 4278 and NGC 4579, with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). We specifically looked at the 0.1-1 arcsecond (corresponding to 5-50 pc) scale to find what and how far from the nucleus these other energy sources are. After subtracting both the unresolved nuclear light and the spatially-extended starlight, we measured a number of diagnostic emission line ratios. We find that line ratios, such as [O III]/[O II] and [O III]/H-beta change as a function of distance from the nucleus. Within 5 pc, the line ratios suggest AGN photoionization. At larger distances the line ratios seem to be inconsistent with AGN photoionization, but they appear to be consistent with excitation by hot stars or shocks.

  16. Regionalization of Methane Emissions in the Amazon Basin with Multi-temporal Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Hess, L. L.; Forsberg, B. R.; Hamilton, S. K.; Novo, E. M.

    2002-12-01

    Remote sensing of the Amazon basin with passive and active microwave techniques were applied to determine the temporally varying extent of inundation and associated vegetation, and used in conjunction with field measurements to calculate regional rates of methane emission from wetlands to the atmosphere. Monthly inundation areas were derived from analysis of the 37-GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer (1979 -87) for the mainstem Amazon floodplain in Brazil, the Llanos de Moxos (Beni and Mamore rivers) in Bolivia, the Bananal Island (Araguaia River) and Roraima savannas. Data from the Japanese Earth Resources Satellite-1, L-band synthetic aperture radar were used to determine inundation and wetland vegetation for Amazon basin less than 500 m above sea level at high water (May-June 1996) and low water (October 1995). Although all the measurements of methane emission from aquatic habitats have been performed in the deeply inundated, central basin in open water, flooded forests or floating macrophytes, our basin-wide remote sensing has revealed large areas of seasonally flooded savannas. Therefore, improvements in basin-wide estimates of methane emission will require field studies in wetlands such as those in Bolivia, Roraima and the Bananal.

  17. Objective Quantification of the Regional Distribution of Radioactivity in Cerebral Emission Computed Tomography

    NASA Astrophysics Data System (ADS)

    Harris, Gordon Jonathan

    It is essential in the analysis of emission computed tomography (ECT) scans of the living human brain to be able to reliably and objectively obtain regional quantitative data. Therefore, the following thesis describes new methods for the analysis of the regional distribution of radioactivity in brain ECT images, which reduces the variability inherent in observer guided region of interest placement. The analysis methods developed include the definition of a cortical ring for producing a "cortical circumferential profile" of the cortical distribution of radioactivity. This method treats the cortex as a continuous annulus on the outer brain rim. The outer boundary of the brain can be defined either manually, or using a matched, registered magnetic resonance image (MRI), which can also be used for analysis of discrete subcortical regions, a difficult task using ECT images alone. The methods developed here were then applied to the analysis of alterations in the regional cerebral perfusion patterns which are seen in neuro-psychiatric illness. Alzheimer's Dementia, Obsessive-Compulsive Disorder and HIV Dementia were all found to have perfusion abnormalities compared to matched control groups.

  18. Dynamic Evaluation of Regional Air Quality Model's Response to Emission Reductions in the Presence of Uncertain Emission Inventories

    EPA Science Inventory

    A method is presented and applied for evaluating an air quality model’s changes in pollutant concentrations stemming from changes in emissions while explicitly accounting for the uncertainties in the base emission inventory. Specifically, the Community Multiscale Air Quality (CMA...

  19. Dynamic Evaluation of Regional Air Quality Model's Response to Emission Reductions in the Presence of Uncertain Emission Inventories

    EPA Science Inventory

    A method is presented and applied for evaluating an air quality model’s changes in pollutant concentrations stemming from changes in emissions while explicitly accounting for the uncertainties in the base emission inventory. Specifically, the Community Multiscale Air Quality (CMA...

  20. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production.

    PubMed

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Zhang, Weifeng; Zhang, Fusuo

    2014-01-01

    The overuse of Nitrogen (N) fertilizers on smallholder farms in rapidly developing countries has increased greenhouse gas (GHG) emissions and accelerated global N consumption over the past 20 years. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from 1,726 on-farm experiments to optimize N management across 12 agroecological subregions in the intensive Chinese smallholder maize belt. The grain yield and GHG emission intensity of this regional N management approach was investigated and compared to field-specific N management and farmers' practices. The regional N rate ranged from 150 to 219 kg N ha(-1) for the 12 agroecological subregions. Grain yields and GHG emission intensities were consistent with this regional N management approach compared to field-specific N management, which indicated that this regional N rate was close to the economically optimal N application. This regional N management approach, if widely adopted in China, could reduce N fertilizer use by more than 1.4 MT per year, increase maize production by 31.9 MT annually, and reduce annual GHG emissions by 18.6 MT. This regional N management approach can minimize net N losses and reduce GHG emission intensity from over- and underapplications, and therefore can also be used as a reference point for regional agricultural extension employees where soil and/or plant N monitoring is lacking.