Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Basis convergence of range-separated density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less
DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects
NASA Astrophysics Data System (ADS)
Albuquerque, E. L.; Fulco, U. L.; Freire, V. N.; Caetano, E. W. S.; Lyra, M. L.; de Moura, F. A. B. F.
2014-02-01
The purpose of this review is to present a comprehensive and up-to-date account of the main physical properties of DNA-based nanobiostructured devices, stressing the role played by their quasi-periodicity arrangement and correlation effects. Although the DNA-like molecule is usually described as a short-ranged correlated random ladder, artificial segments can be grown following quasiperiodic sequences as, for instance, the Fibonacci and Rudin-Shapiro ones. They have interesting properties like a complex fractal spectra of energy, which can be considered as their indelible mark, and collective properties that are not shared by their constituents. These collective properties are due to the presence of long-range correlations, which are expected to be reflected somehow in their various spectra (electronic transmission, density of states, etc.) defining another description of disorder. Although long-range correlations are responsible for the effective electronic transport at specific resonant energies of finite DNA segments, much of the anomalous spread of an initially localized electron wave-packet can be accounted by short-range pair correlations, suggesting that an approach based on the inclusion of further short-range correlations on the nucleotide distribution leads to an adequate description of the electronic properties of DNA segments. The introduction of defects may generate states within the gap, and substantially improves the conductance, specially of finite branches. They usually become exponentially localized for any amount of disorder, and have the property to tailor the electronic transport properties of DNA-based nanoelectronic devices. In particular, symmetric and antisymmetric correlations have quite distinct influence on the nature of the electronic states, and a diluted distribution of defects lead to an anomalous diffusion of the electronic wave-packet. Nonlinear contributions, arising from the coupling between electrons and the molecular vibrations, promote an electronic self-trapping, thus opening up the possibility of controlling the spreading of the electronic density by an external field. The main features of DNA-based nanobiostructured devices presented in this review will include their electronic density of states, energy profiles, thermodynamic properties, localization, correlation effects, scale laws, fractal and multifractal analysis, and anhydrous crystals of their bases, among others. New features, like other nanobiostructured devices, as well as the future directions in this field are also presented and discussed.
Electronic self-organization in the single-layer manganite $$\\rm Pr_{1-x}Ca_{1+x}MnO4$$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Fernandez-Baca, Jaime A
We use neutron scattering to investigate the doping evolution of the magnetic correlations in the single-layer manganitemore » $$\\rm Pr_{\\it 1-x}Ca_{\\it 1+x}MnO_4$$, away from the $x=0.5$ composition where the CE-type commensurate antiferromagnetic (AF) structure is stable. We find that short-range incommensurate spin correlations develop as the system is electron doped ($x<0.5$), which coexist with the CE-type AF order. This suggests that electron doping in this system induces an inhomogeneous electronic self-organization, where commensurate AF patches with $x=0.5$ are separated by electron-rich domain walls with short range magnetic correlations. This behavior is strikingly different than for the three-dimensional $$\\rm Pr_{\\it 1-x}Ca_{\\it x}MnO_3$$, where the long-range CE-type commensurate AF structure is stable over a wide range of electron or hole doping around $x=0.5$.« less
Vikramaditya, Talapunur; Lin, Shiang-Tai
2017-06-05
Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.
Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K
2017-10-20
Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokár, K.; Derian, R.; Mitas, L.
Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less
Effect of long-range correlation on the metal-insulator transition in a disordered molecular crystal
NASA Astrophysics Data System (ADS)
Unge, Mikael; Stafström, Sven
2006-12-01
Localization lengths of the electronic states in a disordered two-dimensional system, resembling highly anisotropic molecular crystals such as pentacene, have been calculated numerically using the transfer matrix method. The disorder is based on a model with small random fluctuations of induced molecular dipole moments which give rise to long-range correlated disorder in the on-site energies as well as a coupling between the on-site energies and the intermolecular interactions. Our calculations show that molecular crystals such as pentacene can exhibit states with very long localization lengths with a possibility to reach a truly metallic state.
NASA Astrophysics Data System (ADS)
da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.
2016-12-01
We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Junfeng; Shafer, Padraic; Mion, Thomas R.
Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO 2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa 2Cu 3O 7–x (YBCO) thin films grown epitaxially on La 0.7Ca 0.3MnO 3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, withmore » long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO 2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.« less
He, Junfeng; Shafer, Padraic; Mion, Thomas R.; ...
2016-03-01
Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO 2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa 2Cu 3O 7–x (YBCO) thin films grown epitaxially on La 0.7Ca 0.3MnO 3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, withmore » long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO 2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.« less
Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2007-01-01
Accurate electron-hydrogen and electron-hydrogenic cross sections are required to interpret fusion experiments, laboratory plasma physics and properties of the solar and astrophysical plasmas. We have developed a method in which the short-range and long-range correlations can be included at the same time in the scattering equations. The phase shifts have rigorous lower bounds and the scattering lengths have rigorous upper bounds. The phase shifts in the resonance region can be used to calculate very accurately the resonance parameters.
Microscopic origin of magnetism and magnetic interactions in ferropnictides
NASA Astrophysics Data System (ADS)
Johannes, M. D.; Mazin, I. I.
2009-06-01
One year after their initial discovery, two schools of thought have crystallized regarding the electronic structure and magnetic properties of ferropnictide systems. One postulates that these are itinerant weakly correlated metallic systems that become magnetic by virtue of spin-Peierls-type transition due to near nesting between the hole and the electron Fermi-surface pockets. The other argues that these materials are strongly or at least moderately correlated and the electrons are considerably localized and close to a Mott-Hubbard transition, with the local magnetic moments interacting via short-range superexchange. In this Rapid Communication we argue that neither picture is fully correct. The systems are moderately correlated but with correlations driven by Hund’s rule coupling rather than by the on-site Hubbard repulsion. The iron moments are largely local, driven by Hund’s intra-atomic exchange. Superexchange is not operative, and the interactions between the Fe moments are considerably long range and driven mostly by one-electron energies of all occupied states.
NASA Astrophysics Data System (ADS)
Cremer, Dieter
The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
NASA Astrophysics Data System (ADS)
Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.
2018-04-01
Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.
Short-range contacts govern the performance of industry-relevant battery cathodes
NASA Astrophysics Data System (ADS)
Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.
2018-05-01
Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with <5.5 wt% inactive material. Dry-mixing carbon black with active material decreases the relative fraction of bulk (free) carbon, as shown by small angle oscillatory shear and microscopy. More free carbon leads to a stronger gel network (more long-range particle contacts) and higher electronic conductivity of the dried films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.
Particle-hole symmetry in many-body theories of electron correlation
NASA Astrophysics Data System (ADS)
Kats, Daniel; Usvyat, Denis; Manby, Frederick R.
2018-06-01
Second-quantised creation and annihilation operators for fermionic particles anticommute, but the same is true for the creation and annihilation operators for holes. This introduces a symmetry into the quantum theory of fermions that is absent for bosons. In ab initio electronic structure theory, it is common to classify methods by the number of electrons for which the method returns exact results: for example Hartree-Fock theory is exact for one-electron systems, whereas coupled-cluster theory with single and double excitations is exact for two-electron systems. Here, we discuss the generalisation: methods based on approximate wavefunctions that are exact for n-particle systems are also exact for n-hole systems. Novel electron correlation methods that attempt to improve on the coupled-cluster framework sometimes retain this property, and sometimes lose it. Here, we argue for retaining particle-hole symmetry as a desirable design criterion of approximate electron correlation methods. Dispensing with it might lead to loss of n-representability of density matrices, and this in turn can lead to spurious long-range behaviour in the correlation energy.
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.
2016-04-01
Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.
A disorder-enhanced quasi-one-dimensional superconductor
Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-07-22
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.
Long-range correlation and market segmentation in bond market
NASA Astrophysics Data System (ADS)
Wang, Zhongxing; Yan, Yan; Chen, Xiaosong
2017-09-01
This paper investigates the long-range auto-correlations and cross-correlations in bond market. Based on Detrended Moving Average (DMA) method, empirical results present a clear evidence of long-range persistence that exists in one year scale. The degree of long-range correlation related to maturities has an upward tendency with a peak in short term. These findings confirm the expectations of fractal market hypothesis (FMH). Furthermore, we have developed a method based on a complex network to study the long-range cross-correlation structure and applied it to our data, and found a clear pattern of market segmentation in the long run. We also detected the nature of long-range correlation in the sub-period 2007-2012 and 2011-2016. The result from our research shows that long-range auto-correlations are decreasing in the recent years while long-range cross-correlations are strengthening.
Mehta, Virat; Biskup, Nevenko; Arenholz, E; ...
2015-04-23
We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO 3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO 3 and (La,Sr)(Al,Ta)O 3 substrates and the lowest values are found in thin films in compression on LaAlO 3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co 2+ and Co 3+ as well as lowmore » spin Co 3+ in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.« less
NASA Astrophysics Data System (ADS)
Mehta, V. V.; Biskup, N.; Jenkins, C.; Arenholz, E.; Varela, M.; Suzuki, Y.
2015-04-01
We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La ,Sr )(Al ,Ta )O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2 + and Co3 + as well as low spin Co3 + in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.
NASA Astrophysics Data System (ADS)
Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke
2018-03-01
We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.
Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
Soniat, Marielle; Rogers, David M; Rempe, Susan B
2015-07-14
A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.
Improving Density Functionals with Quantum Harmonic Oscillators
NASA Astrophysics Data System (ADS)
Tkatchenko, Alexandre
2013-03-01
Density functional theory (DFT) is the most widely used and successful approach for electronic structure calculations. However, one of the pressing challenges for DFT is developing efficient functionals that can accurately capture the omnipresent long-range electron correlations, which determine the structure and stability of many molecules and materials. Here we show that, under certain conditions, the problem of computing the long-range correlation energy of interacting electrons can be mapped to a system of coupled quantum harmonic oscillators (QHOs). The proposed model allows us to synergistically combine concepts from DFT, quantum chemistry, and the widely discussed random-phase approximation for the correlation energy. In the dipole limit, the interaction energy for a system of coupled QHOs can be calculated exactly, thereby leading to an efficient and accurate model for the many-body dispersion energy of complex molecules and materials. The studied examples include intermolecular binding energies, the conformational hierarchy of DNA structures, the geometry and stability of molecular crystals, and supramolecular host-guest complexes (A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012); R. A. DiStasio Jr., A. von Lilienfeld, A. Tkatchenko, PNAS 109, 14791 (2012); A. Tkatchenko, D. Alfe, K. S. Kim, J. Chem. Theory and Comp. (2012), doi: 10.1021/ct300711r; A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., arXiv:1210.8343v1).
Sheng, Zhigao; Feng, Qiyuan; Zhou, Haibiao; Dong, Shuai; Xu, Xueli; Cheng, Long; Liu, Caixing; Hou, Yubin; Meng, Wenjie; Sun, Yuping; Nakamura, Masao; Tokura, Yoshinori; Kawasaki, Masashi; Lu, Qingyou
2018-06-13
Constituent atoms and electrons determine matter properties together, and they can form long-range ordering respectively. Distinguishing and isolating the electronic ordering out from the lattice crystal is a crucial issue in contemporary materials science. However, the intrinsic structure of a long-range electronic ordering is difficult to observe because it can be easily affected by many external factors. Here, we present the observation of electronic multiple ordering (EMO) and its dynamics at the micrometer scale in a manganite thin film. The strong internal couplings among multiple electronic degrees of freedom in the EMO make its morphology robust against external factors and visible via well-defined boundaries along specific axes and cleavage planes, which behave like a multiple-ordered electronic crystal. A strong magnetic field up to 17.6 T is needed to completely melt such EMO at 7 K, and the corresponding formation, motion, and annihilation dynamics are imaged utilizing a home-built high-field magnetic force microscope. The EMO is parasitic within the lattice crystal house, but its dynamics follows its own rules of electronic correlation, therefore becoming distinguishable and isolatable as the electronic ordering. Our work provides a microscopic foundation for the understanding and control of the electronic ordering and the designs of the corresponding devices.
Work probability distribution for a ferromagnet with long-ranged and short-ranged correlations
NASA Astrophysics Data System (ADS)
Bhattacharjee, J. K.; Kirkpatrick, T. R.; Sengers, J. V.
2018-04-01
Work fluctuations and work probability distributions are fundamentally different in systems with short-ranged versus long-ranged correlations. Specifically, in systems with long-ranged correlations the work distribution is extraordinarily broad compared to systems with short-ranged correlations. This difference profoundly affects the possible applicability of fluctuation theorems like the Jarzynski fluctuation theorem. The Heisenberg ferromagnet, well below its Curie temperature, is a system with long-ranged correlations in very low magnetic fields due to the presence of Goldstone modes. As the magnetic field is increased the correlations gradually become short ranged. Hence, such a ferromagnet is an ideal system for elucidating the changes of the work probability distribution as one goes from a domain with long-ranged correlations to a domain with short-ranged correlations by tuning the magnetic field. A quantitative analysis of this crossover behavior of the work probability distribution and the associated fluctuations is presented.
Optical-model potential for electron and positron elastic scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvat, Francesc
2003-07-01
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less
NASA Astrophysics Data System (ADS)
Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias
2018-03-01
We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.
Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1 -xLax)3Ir2O7
NASA Astrophysics Data System (ADS)
Lu, Xingye; McNally, D. E.; Moretti Sala, M.; Terzic, J.; Upton, M. H.; Casa, D.; Ingold, G.; Cao, G.; Schmitt, T.
2017-01-01
We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1 -xLax )3Ir2 O7 (0 ≤x ≤0.065 ). With increasing doping x , the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x =0 to 0.05, followed by a transition to two-dimensional short range order between x =0.05 and 0.065. Because of the interactions between the Jeff=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1 -xLax )3Ir2 O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the Jeff=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.
Describing long-range charge-separation processes with subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less
Suppression of spin and optical gaps in phosphorene quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Sheng, Weidong
2018-05-01
Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.
Nonequilibrium Phase Precursors during a Photoexcited Insulator-to-Metal Transition in V2O3
NASA Astrophysics Data System (ADS)
Singer, Andrej; Ramirez, Juan Gabriel; Valmianski, Ilya; Cela, Devin; Hua, Nelson; Kukreja, Roopali; Wingert, James; Kovalchuk, Olesya; Glownia, James M.; Sikorski, Marcin; Chollet, Matthieu; Holt, Martin; Schuller, Ivan K.; Shpyrko, Oleg G.
2018-05-01
Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3 . Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.
Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors
NASA Astrophysics Data System (ADS)
Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.
Shot-noise measurements become a fundamental tool to probe carrier interactions in mesoscopic systems [1]. A matter of particular interest is the significance of Coulomb interaction which may keep nearby electrons more regularly spaced rather than strictly at random and lead to the noise reduction. That effect occurs in different physical situations. Among them are charge-limited ballistic transport, resonant tunneling, single-electron tunneling, etc. In this communication we address the problem of Coulomb correlations in ballistic conductors under the space-charge-limited transport conditions, and present for the first time a semiclassical self-consistent theory of shot noise in these conductors by solving analytically the kinetic equation coupled self-consistently with a Poisson equation. Basing upon this theory, exact results for current noise in a two-terminal ballistic conductor under the action of long-range Coulomb correlations has been derived. The noise reduction factor (in respect to the uncorrelated value) is obtained in a closed analytical form for a full range of biases ranging from thermal to shot-noise limits which describe perfectly the results of the Monte Carlo simulations for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds 0.01, which is of interest from the point of view of possible applications. Using these analytical results one may estimate a relative contribution to the noise from different groups of carriers (in energy space and/or real space) and to investigate in great detail the correlations between different groups of carriers. This leads us to suggest an electron energy spectroscopy experiment to probe the Coulomb correlations in ballistic conductors. Indeed, while the injected carriers are uncorrelated, those in the volume of the conductor are strongly correlated, as follows from the derived formulas for the fluctuation of the distribution function. Those correlations may be observed experimentally by making use of a combination of two already realized techniques: a hot-electron spectrometer [3,4] which allows one to analyze different energy groups of electrons collected at the contact and shot-noise measurements [5,6]. Such "shot noise reduction spectroscopy" allows one to measure the novel phenomena. In particular, we predict the (anti)correlation of the "tangent" electrons having the energy close to the potential barrier height, to all other electron energy groups collected at the receiving contact.
NASA Technical Reports Server (NTRS)
Thuemmel, Helmar T.; Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
For the calculation of electron molecule collision cross sections R-matrix methods automatically take advantage of the division of configuration space into an inner region (I) bounded by radius tau b, where the scattered electron is within the molecular charge cloud and the system is described by an correlated Configuration Interaction (CI) treatment in close analogy to bound state calculations, and an outer region (II) where the scattered electron moves in the long-range multipole potential of the target and efficient analytic methods can be used for solving the asymptotic Schroedinger equation plus boundary conditions.
Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P
2016-06-01
Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.
Role of short-range correlation in facilitation of wave propagation in a long-range ladder chain
NASA Astrophysics Data System (ADS)
Farzadian, O.; Niry, M. D.
2018-09-01
We extend a new method for generating a random chain, which has a kind of short-range correlation induced by a repeated sequence while retaining long-range correlation. Three distinct methods are considered to study the localization-delocalization transition of mechanical waves in one-dimensional disordered media with simultaneous existence of short and long-range correlation. First, a transfer-matrix method was used to calculate numerically the localization length of a wave in a binary chain. We found that the existence of short-range correlation in a long-range correlated chain can increase the localization length at the resonance frequency Ωc. Then, we carried out an analytical study of the delocalization properties of the waves in correlated disordered media around Ωc. Finally, we apply a dynamical method based on the direct numerical simulation of the wave equation to study the propagation of waves in the correlated chain. Imposing short-range correlation on the long-range background will lead the propagation to super-diffusive transport. The results obtained with all three methods are in agreement with each other.
Range-Separated Brueckner Coupled Cluster Doubles Theory
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2014-04-01
We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Scaling Behavior in Mitochondrial Redox Fluctuations
Ramanujan, V. Krishnan; Biener, Gabriel; Herman, Brian A.
2006-01-01
Scale-invariant long-range correlations have been reported in fluctuations of time-series signals originating from diverse processes such as heart beat dynamics, earthquakes, and stock market data. The common denominator of these apparently different processes is a highly nonlinear dynamics with competing forces and distinct feedback species. We report for the first time an experimental evidence for scaling behavior in NAD(P)H signal fluctuations in isolated mitochondria and intact cells isolated from the liver of a young (5-month-old) mouse. Time-series data were collected by two-photon imaging of mitochondrial NAD(P)H fluorescence and signal fluctuations were quantitatively analyzed for statistical correlations by detrended fluctuation analysis and spectral power analysis. Redox [NAD(P)H / NAD(P)+] fluctuations in isolated mitochondria and intact liver cells were found to display nonrandom, long-range correlations. These correlations are interpreted as arising due to the regulatory dynamics operative in Krebs' cycle enzyme network and electron transport chain in the mitochondria. This finding may provide a novel basis for understanding similar regulatory networks that govern the nonequilibrium properties of living cells. PMID:16565066
Pernal, Katarzyna
2012-05-14
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.
Ryan, Rebecca A.; Williams, Sophie; Martin, Andrew V.; Dilanian, Ruben A.; Darmanin, Connie; Putkunz, Corey T.; Wood, David; Streltsov, Victor A.; Jones, Michael W.M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sebastien; Messerschmidt, Marc; Seibert, M. Marvin; Curwood, Evan K.; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.; Abbey, Brian
2017-01-01
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data. PMID:28872125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Rebecca A.; Williams, Sophie; Martin, Andrew V.
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treatedmore » as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C 60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C 60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. Our paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.« less
Ryan, Rebecca A.; Williams, Sophie; Martin, Andrew V.; ...
2017-08-22
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treatedmore » as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C 60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C 60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. Our paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.
2018-02-01
It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.
Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics
Ahn, Jooeun; Hogan, Neville
2013-01-01
Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements. PMID:24086274
Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; ...
2014-10-09
In this study, long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window formore » long-range ET.« less
Stoudenmire, E M; Wagner, Lucas O; White, Steven R; Burke, Kieron
2012-08-03
We extend the density matrix renormalization group to compute exact ground states of continuum many-electron systems in one dimension with long-range interactions. We find the exact ground state of a chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold atom systems and to study density-functional theory in an exact setting. To illustrate, we find an interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.
Dean, M. P. M.; Cao, Y.; Liu, X.; ...
2016-05-09
Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity 1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently 5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr 2IrO 4. We find that the non-equilibrium state, 2more » ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less
Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption
NASA Astrophysics Data System (ADS)
Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.
2018-04-01
The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.
NASA Astrophysics Data System (ADS)
Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2017-05-01
The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.
Arbuznikov, Alexei V; Kaupp, Martin
2012-01-07
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.
Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy
Gwalani, B.; Alam, T.; Miller, C.; ...
2016-06-17
The present study involves a detailed experimental investigation of the concurrent compositional clustering and long-range ordering tendencies in a Ni-33 at.%Cr alloy, carried out by coupling synchrotron-based X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). Synchrotron-based XRD results clearly exhibited progressively increasing lattice contraction in the matrix with increasing isothermal aging time, at 475 degrees C, eventually leading to the development of long-range ordering (LRO) of the Pt2Mo-type. Detailed TEM and APT investigations revealed that this LRO in the matrix is manifested in the form of nanometer-scale ordered domains, and the spatial distribution, size, morphology andmore » compositional evolution of these domains have been carefully investigated. Here, the APT results also revealed the early stages of compositional clustering prior to the onset of long-range ordering in this alloy and such compositional clustering can potentially be correlated to the lattice contraction and previously proposed short-range ordering tendencies.« less
Mosaic organization of DNA nucleotides
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.
1994-01-01
Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.
Long-Range Rapidity Correlations in Heavy-Light Ion Collisions
NASA Astrophysics Data System (ADS)
Kovchegov, Yuri; Wertepny, Douglas
2013-04-01
We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger than the other. We calculate the two-gluon production cross section while including all-order saturation effects in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations, (iii) back-to-back correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus and may lead to long-range rapidity correlations for the produced particles without strong azimuthal angle dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around δφ=π with the other one centered around δφ=0 (here δφ is the azimuthal angle between the two produced gluons). This prediction is in agreement with the recent ALICE p+Pb data.
Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol; ...
2017-05-02
The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less
NASA Astrophysics Data System (ADS)
Cadeville, M. C.; Pierron-Bohnes, V.; Bouzidi, L.; Sanchez, J. M.
1993-01-01
Local and average electronic and magnetic properties of transition metal alloys are strongly correlated to the distribution of atoms on the lattice sites. The ability of some systems to form long range ordered structures at low temperature allows to discuss their properties in term of well identified occupation operators as those related to long range order (LRO) parameters. We show that using theoretical determinations of these LRO parameters through statistical models like the cluster variation method (CVM) developed to simulate the experimental phase diagrams, we are able to reproduce a lot of physical properties. In this paper we focus on two points: (i) a comparison between CVM results and an experimental determination of the LRO parameter by NMR at 59Co in a CoPt3 compound, and (ii) the modelling of the resistivity of ferromagnetic and paramagnetic intermetallic compounds belonging to Co-Pt, Ni-Pt and Fe-Al systems. All experiments were performed on samples in identified thermodynamic states, implying that kinetic effects are thoroughly taken into account.
Electron correlation and the self-interaction error of density functional theory
NASA Astrophysics Data System (ADS)
Polo, Victor; Kraka, Elfi; Cremer, Dieter
The self-interaction error (SIE) of commonly used DFT functionals has been systematically investigated by comparing the electron density distribution ρ( r ) generated by self-interaction corrected DFT (SIC-DFT) with a series of reference densities obtained by DFT or wavefunction theory (WFT) methods that cover typical electron correlation effects. Although the SIE of GGA functionals is considerably smaller than that of LDA functionals, it has significant consequences for the coverage of electron correlation effects at the DFT level of theory. The exchange SIE mimics long range (non-dynamic) pair correlation effects, and is responsible for the fact that the electron density of DFT exchange-only calculations resembles often that of MP4, MP2 or even CCSD(T) calculations. Changes in the electron density caused by SICDFT exchange are comparable with those that are associated with HF exchange. Correlation functionals contract the density towards the bond and the valence region, thus taking negative charge out of the van der Waals region where these effects are exaggerated by the influence of the SIE of the correlation functional. Hence, SIC-DFT leads in total to a relatively strong redistribution of negative charge from van der Waals, non-bonding, and valence regions of heavy atoms to the bond regions. These changes, although much stronger, resemble those obtained when comparing the densities of hybrid functionals such as B3LYP with the corresponding GGA functional BLYP. Hence, the balanced mixing of local and non-local exchange and correlation effects as it is achieved by hybrid functionals mimics SIC-DFT and can be considered as an economic way to include some SIC into standard DFT. However, the investigation shows also that the SIC-DFT description of molecules is unreliable because the standard functionals used were optimized for DFT including the SIE.
Han, Tzong-Ru T.; Zhou, Faran; Malliakas, Christos D.; Duxbury, Phillip M.; Mahanti, Subhendra D.; Kanatzidis, Mercouri G.; Ruan, Chong-Yu
2015-01-01
Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping–induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature–optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping–induced transition states and phase diagrams of complex materials with wide-ranging applications. PMID:26601190
Real-Time Quantum Dynamics of Long-Range Electronic Excitation Transfer in Plasmonic Nanoantennas.
Ilawe, Niranjan V; Oviedo, M Belén; Wong, Bryan M
2017-08-08
Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus
2015-01-01
Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263
NASA Astrophysics Data System (ADS)
Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad
2018-04-01
We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.
Anisotropic charge density wave in layered 1 T - TiS e 2
Qiao, Qiao; Zhou, Songsong; Tao, Jing; ...
2017-10-04
We present a three-dimensional study on the anisotropy of the charge density wave (CDW) in 1T-TiSe 2, by means of in situ atomically resolved electron microscopy at cryogenic temperatures in both reciprocal and real spaces. Using coherent nanoelectron diffraction, we observed short-range coherence of the in-plane CDW component while the long-range coherence of out-of-plane CDW component remains intact. An in-plane CDW coherence length of ~10 nm and an out-of-plane CDW coherence length of 17.5 nm, as a lower bound, were determined. The electron modulation was observed using electron energy-loss spectroscopy and verified by an orbital-projected density of states. Our integratedmore » approach reveals anisotropic CDW domains at the nanoscale, and illustrates electron modulation-induced symmetry breaking of a two-dimensional material in three dimensions, offering an opportunity to study the effect of reduced dimensionality in strongly correlated systems.« less
Long-Range Repulsion Between Spatially Confined van der Waals Dimers
NASA Astrophysics Data System (ADS)
Sadhukhan, Mainak; Tkatchenko, Alexandre
2017-05-01
It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.
Volatility of linear and nonlinear time series
NASA Astrophysics Data System (ADS)
Kalisky, Tomer; Ashkenazy, Yosef; Havlin, Shlomo
2005-07-01
Previous studies indicated that nonlinear properties of Gaussian distributed time series with long-range correlations, ui , can be detected and quantified by studying the correlations in the magnitude series ∣ui∣ , the “volatility.” However, the origin for this empirical observation still remains unclear and the exact relation between the correlations in ui and the correlations in ∣ui∣ is still unknown. Here we develop analytical relations between the scaling exponent of linear series ui and its magnitude series ∣ui∣ . Moreover, we find that nonlinear time series exhibit stronger (or the same) correlations in the magnitude time series compared with linear time series with the same two-point correlations. Based on these results we propose a simple model that generates multifractal time series by explicitly inserting long range correlations in the magnitude series; the nonlinear multifractal time series is generated by multiplying a long-range correlated time series (that represents the magnitude series) with uncorrelated time series [that represents the sign series sgn(ui) ]. We apply our techniques on daily deep ocean temperature records from the equatorial Pacific, the region of the El-Ninõ phenomenon, and find: (i) long-range correlations from several days to several years with 1/f power spectrum, (ii) significant nonlinear behavior as expressed by long-range correlations of the volatility series, and (iii) broad multifractal spectrum.
Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft
NASA Astrophysics Data System (ADS)
Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.
Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.
Magnetically driven metal-insulator transition in NaOsO3
NASA Astrophysics Data System (ADS)
Calder, Stuart
2013-03-01
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials, enjoying interest both for its fundamental nature and technological application. Various mechanisms producing MITs have been extensively considered over the years, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic one-dimensional lattice). One additional route to a MIT proposed by Slater in 1951, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention, particularly from an experimental viewpoint. Using neutron and x-ray scattering we have shown that the MIT in NaOsO3 is coincident with the onset of long-range commensurate magnetic order at 410 K. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in light of recent work on other 5d systems that contrastingly have been predicted to host a Mott spin-orbit insulating state. Work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE).
NASA Astrophysics Data System (ADS)
Krishnamurthy, V. V.; Russell, David J.; Hadden, Chad E.; Martin, Gary E.
2000-09-01
The development of a series of new, accordion-optimized long-range heteronuclear shift correlation techniques has been reported. A further derivative of the constant time variable delay introduced in the IMPEACH-MBC experiment, a STAR (Selectively Tailored Accordion F1 Refocusing) operator is described in the present report. Incorporation of the STAR operator with the capability of user-selected homonuclear modulation scaling as in the CIGAR-HMBC experiment, into a long-range heteronuclear shift correlation pulse sequence, 2J,3J-HMBC, affords for the first time in a proton-detected experiment the means of unequivocally differentiating two-bond (2JCH) from three-bond (3JCH) long-range correlations to protonated carbons.
Possible biomechanical origins of the long-range correlations in stride intervals of walking
NASA Astrophysics Data System (ADS)
Gates, Deanna H.; Su, Jimmy L.; Dingwell, Jonathan B.
2007-07-01
When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both “sensory” and “motor” noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, α. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (α<0.5), uncorrelated time series (α=0.5), long-range correlations (0.5<α<1.0), or Brownian motion (α>1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
NASA Astrophysics Data System (ADS)
Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen
2017-07-01
Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol
The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less
Topological Excitations of One-Dimensional Correlated Electron Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salkola, M.I.; Schrieffer, J.R.; Salkola, M.I.
1999-02-01
Elementary, low-energy excitations are examined by bosonization in one-dimensional systems with quasi-long-range order. A new, independently measurable attribute is introduced to describe such excitations. It is defined as a number w which determines how many times the phase of the order parameter winds as an excitation is transposed from far left to far right. The winding number is zero for electrons and holes with conventional quantum numbers, but it acquires a nontrivial value w=1 for neutral spin- (1) /(2) excitations and for spinless excitations with a unit electron charge. It may even be irrational, if the charge is irrational. Thus,more » these excitations are topological. {copyright} {ital 1999} {ital The American Physical Society }« less
What is measured by hyper-Rayleigh scattering from a liquid?
NASA Astrophysics Data System (ADS)
Rodriquez, Micheal B.; Shelton, David P.
2018-04-01
Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.
Electronic nature of the lock-in magnetic transition in Ce X Al4Si2
NASA Astrophysics Data System (ADS)
Gunasekera, J.; Harriger, L.; Dahal, A.; Maurya, A.; Heitmann, T.; Disseler, S. M.; Thamizhavel, A.; Dhar, S.; Singh, D. J.; Singh, D. K.
2016-04-01
We have investigated the underlying magnetism in newly discovered single crystal Kondo lattices Ce X Al4Si2 , where X = Rh, Ir. We show that the compound undergoes an incommensurate-to-commensurate magnetic transition at Tc=9.19 K (10.75 K in Ir). The spin correlation in the incommensurate phase is described by a spin density wave configuration of Ce ions, which locks in to the long-range antiferromagnetic order at T =Tc. The analysis of the experimental data, combined with the calculation of the electronic properties, suggests the role of the Fermi surface nesting as the primary mechanism behind this phenomenon.
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
NASA Astrophysics Data System (ADS)
Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.
2018-04-01
Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.
Polarized Sunyaev Zel'dovich tomography
NASA Astrophysics Data System (ADS)
Deutsch, Anne-Sylvie; Johnson, Matthew C.; Münchmeyer, Moritz; Terrana, Alexandra
2018-04-01
Secondary CMB polarization is induced by the late-time scattering of CMB photons by free electrons on our past light cone. This polarized Sunyaev Zel'dovich (pSZ) effect is sensitive to the electrons' locally observed CMB quadrupole, which is sourced primarily by long wavelength inhomogeneities. By combining the remote quadrupoles measured by free electrons throughout the Universe after reionization, the pSZ effect allows us to obtain additional information about large scale modes beyond what can be learned from our own last scattering surface. Here we determine the power of pSZ tomography, in which the pSZ effect is cross-correlated with the density field binned at several redshifts, to provide information about the long wavelength Universe. The signal we explore here is a power asymmetry in the cross-correlation between E or B mode CMB polarization and the density field. We compare this to the cosmic variance limited noise: the random chance to get a power asymmetry in the absence of a large scale quadrupole field. By computing the necessary transfer functions and cross-correlations, we compute the signal-to-noise ratio attainable by idealized next generation CMB experiments and galaxy surveys. We find that a signal-to-noise ratio of ~ 1‑10 is in principle attainable over a significant range of power multipoles, with the strongest signal coming from the first multipoles in the lowest redshift bins. These results prompt further assessment of realistically measuring the pSZ signal and the potential impact for constraining cosmology on large scales.
Segmentation of time series with long-range fractal correlations.
Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P
2012-06-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.
Long-range correlation in cosmic microwave background radiation.
Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi
2011-08-01
We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.
Feasibility study of parallel optical correlation-decoding analysis of lightning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descour, M.R.; Sweatt, W.C.; Elliott, G.R.
The optical correlator described in this report is intended to serve as an attention-focusing processor. The objective is to narrowly bracket the range of a parameter value that characterizes the correlator input. The input is a waveform collected by a satellite-borne receiver. In the correlator, this waveform is simultaneously correlated with an ensemble of ionosphere impulse-response functions, each corresponding to a different total-electron-count (TEC) value. We have found that correlation is an effective method of bracketing the range of TEC values likely to be represented by the input waveform. High accuracy in a computational sense is not required of themore » correlator. Binarization of the impulse-response functions and the input waveforms prior to correlation results in a lower correlation-peak-to-background-fluctuation (signal-to-noise) ratio than the peak that is obtained when all waveforms retain their grayscale values. The results presented in this report were obtained by means of an acousto-optic correlator previously developed at SNL as well as by simulation. An optical-processor architecture optimized for 1D correlation of long waveforms characteristic of this application is described. Discussions of correlator components, such as optics, acousto-optic cells, digital micromirror devices, laser diodes, and VCSELs are included.« less
Decay of superconducting correlations for gauged electrons in dimensions D ≤ 4
NASA Astrophysics Data System (ADS)
Tada, Yasuhiro; Koma, Tohru
2018-03-01
We study lattice superconductors coupled to gauge fields, such as an attractive Hubbard model in electromagnetic fields, with a standard gauge fixing. We prove upper bounds for a two-point Cooper pair correlation at finite temperatures in spatial dimensions D ≤ 4. The upper bounds decay exponentially in three dimensions and by power law in four dimensions. These imply the absence of the superconducting long-range order for the Cooper pair amplitude as a consequence of fluctuations of the gauge fields. Since our results hold for the gauge fixing Hamiltonian, they cannot be obtained as a corollary of Elitzur's theorem.
Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Sherman, A.
2018-05-01
The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U = 2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.
Holographic thermalization with initial long range correlation
Lin, Shu
2016-01-19
Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS 3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v 2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integratedmore » Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less
Wave-function-based approach to quasiparticle bands: Insight into the electronic structure of c-ZnS
NASA Astrophysics Data System (ADS)
Stoyanova, A.; Hozoi, L.; Fulde, P.; Stoll, H.
2011-05-01
Ab initio wave-function-based methods are employed for the study of quasiparticle energy bands of zinc-blende ZnS, with focus on the Zn 3d “semicore” states. The relative energies of these states with respect to the top of the S 3p valence bands appear to be poorly described as compared to experimental values not only within the local density approximation (LDA), but also when many-body corrections within the GW approximation are applied to the LDA or LDA + U mean-field solutions [T. Miyake, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.245213 74, 245213 (2006)]. In the present study, we show that for the accurate description of the Zn 3d states a correlation treatment based on wave-function methods is needed. Our study rests on a local Hamiltonian approach which rigorously describes the short-range polarization and charge redistribution effects around an extra hole or electron placed into the valence respective conduction bands of semiconductors and insulators. The method also facilitates the computation of electron correlation effects beyond relaxation and polarization. The electron correlation treatment is performed on finite clusters cut off the infinite system. The formalism makes use of localized Wannier functions and embedding potentials derived explicitly from prior periodic Hartree-Fock calculations. The on-site and nearest-neighbor charge relaxation lead to corrections of several eV to the Hartree-Fock band energies and gap. Corrections due to long-range polarization are of the order of 1.0 eV. The dispersion of the Hartree-Fock bands is only slightly affected by electron correlations. We find the Zn 3d “semicore” states to lie ~9.0 eV below the top of the S 3p valence bands, in very good agreement with values from valence-band x-ray photoemission.
Role of impurities on the optical properties of rectangular graphene flakes
NASA Astrophysics Data System (ADS)
Sadeq, Z. S.; Muniz, Rodrigo A.; Sipe, J. E.
2018-01-01
We study rectangular graphene flakes using mean field states as the basis for a configuration interaction calculation, which allows us to analyze the low lying electronic excited states including electron correlations beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake, but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also investigate the impact of both short and long range impurity potentials on the optical properties of these systems. We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong impurity potentials.
Structural and magnetic studies of nanocrystalline Y{sub 2}Ir{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Vinod Kumar, E-mail: vinodd@iitk.ac.in; Mukhopadhyay, Soumik
2015-06-24
In this paper, we discuss synthesis of Y{sub 2}Ir{sub 2}O{sub 7} nanoparticles via chemical solution process. Structural analysis shows single cubic phase with Fd-3m space group symmetry. The particle size and distribution were studied by Transmission Electron Microscopy experiments. The average particle size turns out to be 50nm, which is in good agreement with the XRD results. Magnetic characterization shows no evidence of long range ordering even in presence of strong correlations.
Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas
NASA Astrophysics Data System (ADS)
Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.
2018-02-01
We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.
2015-11-14
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less
Segmentation of time series with long-range fractal correlations
Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.
2012-01-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
Novel electrostatic attraction from plasmon fluctuations
Lau; Levine; Pincus
2000-05-01
In this Letter, we show that, at low temperatures, zero-point fluctuations of the plasmon modes of two mutually coupled 2D planar Wigner crystals give rise to a novel long-range attractive force. For the case where the distance d between two planar surfaces is large, this attractive force has an unusual power-law decay, which scales as d(-7/2), unlike other fluctuation-induced forces. Specifically, we note that its range is longer than the "standard" zero-temperature van der Waals interaction. This result may, in principle, be observed in bilayer electronic systems and provides insight into the nature of correlation effects for highly charged surfaces.
Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S
2008-10-03
We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.
Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers
Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya
2016-01-01
Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Bell, A J; Borras, K; Burgmeier, A; Campbell, A; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baur, S; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Jain, Sa; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Khein, L; Klyukhin, V; Kodolova, O; Lokhtin, I; Lukina, O; Myagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Ronga, F J; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Bartek, R; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Gecit, F H; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozcan, M; Ozdemir, K; Ozturk, S; Tali, B; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Fantasia, C; Gastler, D; Lawson, P; Rankin, D; Richardson, C; Rohlf, J; St John, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Gleyzer, S V; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Malek, M; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Brinkerhoff, A; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Saka, H; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Kumar, A; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Khukhunaishvili, A; Petrillo, G; Tan, P; Verzetti, M; Arora, S; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N
2016-04-29
Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb^{-1}. The correlations are studied over a broad range of pseudorapidity (|η|<2.4) and over the full azimuth (ϕ) as a function of charged particle multiplicity and transverse momentum (p_{T}). In high-multiplicity events, a long-range (|Δη|>2.0), near-side (Δϕ≈0) structure emerges in the two-particle Δη-Δϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0
Memory and long-range correlations in chess games
NASA Astrophysics Data System (ADS)
Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.
2014-01-01
In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.
The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.
Zheng, Xiaohui; Lian, Yi; Wang, Qiguang
2018-01-01
This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.
Long-Range Correlations in Sentence Series from A Story of the Stone
Yang, Tianguang; Gu, Changgui; Yang, Huijie
2016-01-01
A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion. PMID:27648941
Long-Range Correlations in Sentence Series from A Story of the Stone.
Yang, Tianguang; Gu, Changgui; Yang, Huijie
2016-01-01
A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion.
Engineered long-range interactions on a 2D array of trapped ions
NASA Astrophysics Data System (ADS)
Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.
2014-03-01
Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafafi, S.A.
1998-12-10
A novel general purpose density functional methodology for the computation of accurate electronic and thermodynamic properties of molecules and improved long-range behavior is reported. Assuming the separability of the exchange (E{sub x}) and correlation (E{sub c}) contributions to the total exchange-correlation energy functional (E{sub xc}), the E{sub x} term consists of a hybrid mixture of 37.5% Hartree-Fock exchange and the appropriate local spin density exchange using the adiabatic connection formula. He demonstrated that E{sub x} and its corresponding potential V{sub x} [=dE{sub x}/d{rho}(r)] have the proper asymptotic limits at r = 0 and r {r_arrow} {infinity}, E{sub c} consists ofmore » the Vosko, Wilk, and Nusair formula for the free-electron gas correlation energy and a generalized gradient approximation term with one adjustable parameter. V{sub c} [=dE{sub c}/d{rho}(r)] was shown to obey the r {r_arrow} {infinity} limit of the corresponding potential derived from exact atomic exchange-correlation computations; namely, V{sub c} is proportional to r{sup {minus}4}. Most importantly, he demonstrated that, at r values where dispersion forces are operating, V{sub c} is proportional to 1/r{sup n} (n = 4, 6, 8, {hor_ellipsis}). The reported method was denoted by K2-BVWN because it used two adjustable parameters in its formulation. The K2-BVWN scheme scales as N{sup 3}, where N is the number of basis functions, compared to {approximately}N{sup 7} for Gaussian-2 (G2) ab initio theory and related methods, {approximately}N{sup 5} for Barone`s mPW1,3PW, and {approximately}N{sup 4} for Becke`s three-parameter density functional approaches. The G2 data set complemented by the reported molecular systems investigated in this work was recommended as a critical test for evaluating novel ab initio and density functional methodologies. The K2-BVWN method has been implemented in the Gaussian series of programs.« less
Long-range correlations and asymmetry in the Bitcoin market
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, J.; Rodriguez, E.; Ibarra-Valdez, C.
2018-02-01
This work studies long-range correlations and informational efficiency of the Bitcoin market for the period from June 30, 2013 to June 3rd, 2017. To this end, the detrended fluctuation analysis (DFA) was implemented over sliding windows to estimate long-range correlations for price returns. It was found that the Bitcoin market exhibits periods of efficiency alternating with periods where the price dynamics are driven by anti-persistence. The pattern is replicated by prices samples at day, hour and second frequencies. The Bitcoin market also presents asymmetric correlations with respect to increasing and decreasing price trending, with the former trend linked to anti-persistence of returns dynamics.
Long-term, correlated emittance decrease in intense, high-brightness induction linacs
NASA Astrophysics Data System (ADS)
Carlsten, Bruce E.
1999-09-01
Simulations of high-brightness induction linacs often show a slow, long-term emittance decrease as the beam is matched from the electron gun into the linac. Superimposed on this long-term decrease are rapid emittance oscillations. These effects can be described in terms of correlations in the beam's radial phase space. The rapid emittance oscillations are due to transverse plasma oscillations, which stay nearly in phase for different radial positions within the beam. The initial emittance, just after the electron gun, is dominated by nonlinear focusing within the gun introduced by the anode exit hole. Due to the large space-charge force of an intense electron beam, the focusing of the beam through the matching section introduces an effective nonlinear force (from the change in the particles' potential energies) which counteracts the nonlinearities from the electron gun, leading to an average, long-term emittance decrease. Not all of the initial nonlinearity is removed by the matching procedure, and there are important consequences both for emittance measurements using solenoid focal length scans and for focusing the electron beam to a target.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2014-01-01
In previous papers [A. K. Bhatia, Phys. Rev. A 85, 052708 (2012); 86, 032709 (2012); 87, 042705 (2013)] electron-H, -He+, and -Li2+ P-wave scattering phase shifts were calculated using the variational polarized orbital theory. This method is now extended to the singlet and triplet D-wave scattering in the elastic region. The long-range correlations are included in the Schrodinger equation by using the method of polarized orbitals variationally. Phase shifts are compared to those obtained by other methods. The present calculation provides results which are rigorous lower bonds to the exact phase shifts. Using the presently calculated D-wave and previously calculated S-wave continuum functions, photoionization of singlet and triplet P states of He and Li+ are also calculated, along with the radiative recombination rate coefficients at various electron temperatures.
X-ray electron density investigation of chemical bonding in van der Waals materials
NASA Astrophysics Data System (ADS)
Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.
2018-03-01
Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.
A time-dependent order parameter for ultrafast photoinduced phase transitions.
Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U
2014-10-01
Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.
Haiduke, Roberto Luiz A; Bartlett, Rodney J
2018-05-14
Some of the exact conditions provided by the correlated orbital theory are employed to propose new non-empirical parameterizations for exchange-correlation functionals from Density Functional Theory (DFT). This reparameterization process is based on range-separated functionals with 100% exact exchange for long-range interelectronic interactions. The functionals developed here, CAM-QTP-02 and LC-QTP, show mitigated self-interaction error, correctly predict vertical ionization potentials as the negative of eigenvalues for occupied orbitals, and provide nice excitation energies, even for challenging charge-transfer excited states. Moreover, some improvements are observed for reaction barrier heights with respect to the other functionals belonging to the quantum theory project (QTP) family. Finally, the most important achievement of these new functionals is an excellent description of vertical electron affinities (EAs) of atoms and molecules as the negative of appropriate virtual orbital eigenvalues. In this case, the mean absolute deviations for EAs in molecules are smaller than 0.10 eV, showing that physical interpretation can indeed be ascribed to some unoccupied orbitals from DFT.
NASA Astrophysics Data System (ADS)
Haiduke, Roberto Luiz A.; Bartlett, Rodney J.
2018-05-01
Some of the exact conditions provided by the correlated orbital theory are employed to propose new non-empirical parameterizations for exchange-correlation functionals from Density Functional Theory (DFT). This reparameterization process is based on range-separated functionals with 100% exact exchange for long-range interelectronic interactions. The functionals developed here, CAM-QTP-02 and LC-QTP, show mitigated self-interaction error, correctly predict vertical ionization potentials as the negative of eigenvalues for occupied orbitals, and provide nice excitation energies, even for challenging charge-transfer excited states. Moreover, some improvements are observed for reaction barrier heights with respect to the other functionals belonging to the quantum theory project (QTP) family. Finally, the most important achievement of these new functionals is an excellent description of vertical electron affinities (EAs) of atoms and molecules as the negative of appropriate virtual orbital eigenvalues. In this case, the mean absolute deviations for EAs in molecules are smaller than 0.10 eV, showing that physical interpretation can indeed be ascribed to some unoccupied orbitals from DFT.
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Sciortino, F.; Simons, M.
1992-01-01
Here we discuss recent advances in applying ideas of fractals and disordered systems to two topics of biological interest, both topics having common the appearance of scale-free phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA nucleotide sequences have traditionally been analyzed using models which incorporate the possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range power law correlation. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene evolution increases the fractal complexity of the DNA landscapes, consistent with the intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis, whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state. We found, however, that under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A detailed study of multiparticle azimuthal correlations is presented using pp data at √s = 5.02 and 13 TeV, and p+Pb data at √ sNN = 5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants c n {4} and flow coefficients v n {4} = (-c n{4}) 1/4 for n = 2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of c n {4} are obtained as a function of the average number of charged particles permore » event, (N ch), using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to c n {4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c 2 {4}, and therefore a well-defined v 2 {4}, nearly independent of (N ch), which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v 2 {4} is found to be smaller than the v 2 {2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v 2 {4} and v 2 {2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A demore » tailed study of multiparticle azimuthal correlations is presented using pp data at $$\\sqrt{s}$$=5.02 and 13 TeV, and p+Pb data at s NN =5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants c n{4} and flow coefficients v n{4}=(-c n{4}) 1/4 for n=2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of c n{4} are obtained as a function of the average number of charged particles per event, N ch, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c 2{4}, and therefore a well-defined v 2{4}, nearly independent of N ch, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v 2{4} is found to be smaller than the v 2{2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v 2{4} and v 2{2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. Finally, the results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2018-02-12
A demore » tailed study of multiparticle azimuthal correlations is presented using pp data at $$\\sqrt{s}$$=5.02 and 13 TeV, and p+Pb data at s NN =5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants c n{4} and flow coefficients v n{4}=(-c n{4}) 1/4 for n=2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of c n{4} are obtained as a function of the average number of charged particles per event, N ch, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c 2{4}, and therefore a well-defined v 2{4}, nearly independent of N ch, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v 2{4} is found to be smaller than the v 2{2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v 2{4} and v 2{2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. Finally, the results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.« less
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Ruettinger, E. M.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, D. M. S.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2018-02-01
A detailed study of multiparticle azimuthal correlations is presented using p p data at √{s }=5.02 and 13 TeV, and p +Pb data at √{sNN}=5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants cn{4 } and flow coefficients vn{4 } =(-cn{4 } ) 1 /4 for n =2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of cn{4 } are obtained as a function of the average number of charged particles per event, <" close=">Nch>">Nch, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4 } . The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c2{4 } , and therefore a well-defined v2{4 } , nearly independent of
Aaboud, M.; Aad, G.; Abbott, B.; ...
2018-02-12
A detailed study of multiparticle azimuthal correlations is presented using pp data at √s = 5.02 and 13 TeV, and p+Pb data at √ sNN = 5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants c n {4} and flow coefficients v n {4} = (-c n{4}) 1/4 for n = 2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of c n {4} are obtained as a function of the average number of charged particles permore » event, (N ch), using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to c n {4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c 2 {4}, and therefore a well-defined v 2 {4}, nearly independent of (N ch), which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v 2 {4} is found to be smaller than the v 2 {2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v 2 {4} and v 2 {2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.« less
NASA Astrophysics Data System (ADS)
Bhatia, A. K.
2012-09-01
The P-wave hybrid theory of electron-hydrogen elastic scattering [Bhatia, Phys. Rev. A10.1103/PhysRevA.85.052708 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schrödinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-range-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A10.1103/PhysRevA.69.032714 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have also been calculated and compared with the results obtained using the Feshbach projection operator formalism [Bhatia and Temkin, Phys. Rev. A10.1103/PhysRevA.11.2018 11, 2018 (1975)] and also with the results of other calculations. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states, and the continuum in which these resonances are embedded.
Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature
NASA Astrophysics Data System (ADS)
Hernández-Santana, Senaida; Gogolin, Christian; Cirac, J. Ignacio; Acín, Antonio
2017-09-01
We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α ≥2 D , correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2012-01-01
The P-wave hybrid theory of electron-hydrogen elastic scattering [Phys. Rev. A 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schroedinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220- term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have been calculated and compared with the results obtained using the Feshbach projection operator formalism [Phys. Rev. A, 11, 2018 (1975)]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states and the continuum in which these resonance are embedded.
Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites
Jooss, Ch.; Wu, L.; Beetz, T.; Klie, R. F.; Beleggia, M.; Schofield, M. A.; Schramm, S.; Hoffmann, J.; Zhu, Y.
2007-01-01
Polarons, the combined motion of electrons in a cloth of their lattice distortions, are a key transport feature in doped manganites. To develop a profound understanding of the colossal resistance effects induced by external fields, the study of polaron correlations and the resulting collective polaron behavior, i.e., polaron ordering and transition from polaronic transport to metallic transport is essential. We show that static long-range ordering of Jahn–Teller polarons forms a polaron solid which represents a new type of charge and orbital ordered state. The related noncentrosymmetric lattice distortions establish a connection between colossal resistance effects and multiferroic properties, i.e., the coexistence of ferroelectric and antiferromagnetic ordering. Colossal resistance effects due to an electrically induced polaron solid–liquid transition are directly observed in a transmission electron microscope with local electric stimulus applied in situ using a piezo-controlled tip. Our results shed light onto the colossal resistance effects in magnetic field and have a strong impact on the development of correlated electron-device applications such as resistive random access memory (RRAM). PMID:17699633
Are Long-Range Structural Correlations Behind the Aggregration Phenomena of Polyglutamine Diseases?
Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste
2012-01-01
We have characterized the conformational ensembles of polyglutamine peptides of various lengths (ranging from to ), both with and without the presence of a C-terminal polyproline hexapeptide. For this, we used state-of-the-art molecular dynamics simulations combined with a novel statistical analysis to characterize the various properties of the backbone dihedral angles and secondary structural motifs of the glutamine residues. For (i.e., just above the pathological length for Huntington's disease), the equilibrium conformations of the monomer consist primarily of disordered, compact structures with non-negligible -helical and turn content. We also observed a relatively small population of extended structures suitable for forming aggregates including - and -strands, and - and -hairpins. Most importantly, for we find that there exists a long-range correlation (ranging for at least residues) among the backbone dihedral angles of the Q residues. For polyglutamine peptides below the pathological length, the population of the extended strands and hairpins is considerably smaller, and the correlations are short-range (at most residues apart). Adding a C-terminal hexaproline to suppresses both the population of these rare motifs and the long-range correlation of the dihedral angles. We argue that the long-range correlation of the polyglutamine homopeptide, along with the presence of these rare motifs, could be responsible for its aggregation phenomena. PMID:22577357
NASA Astrophysics Data System (ADS)
Gallier, Stany; Peters, François; Lobry, Laurent
2018-04-01
This work intends to evaluate the role of many-body long-range hydrodynamics by simulations of sheared neutrally buoyant non-Brownian, noncolloidal suspensions. Three-dimensional simulations of sheared suspensions are conducted with and without long-range hydrodynamics, for a volume fraction range between 0.1-0.62 (frictionless) and 0.1-0.56 (frictional). Discarding long-range hydrodynamics has only a moderate effect on viscosity for the range of volume fractions investigated and viscosities diverge with similar scaling laws; the critical fraction is found to be approximately 0.64 (frictionless) and 0.58 (frictional). Conversely, many-body hydrodynamics are found to affect diffusion and particle velocities, which are correlated on a longer range when long-range interactions are included, even in dense suspensions. This means that long-range hydrodynamics may not be significantly screened by crowding. Assuming only short-range lubrication interactions is therefore suitable for predicting viscosity in noncolloidal suspensions but becomes questionable when flow details (e.g., diffusion or velocity correlations) are needed.
Statistical regularities of Carbon emission trading market: Evidence from European Union allowances
NASA Astrophysics Data System (ADS)
Zheng, Zeyu; Xiao, Rui; Shi, Haibo; Li, Guihong; Zhou, Xiaofeng
2015-05-01
As an emerging financial market, the trading value of carbon emission trading market has definitely increased. In recent years, the carbon emission allowances have already become a way of investment. They are bought and sold not only by carbon emitters but also by investors. In this paper, we analyzed the price fluctuations of the European Union allowances (EUA) futures in European Climate Exchange (ECX) market from 2007 to 2011. The symmetric and power-law probability density function of return time series was displayed. We found that there are only short-range correlations in price changes (return), while long-range correlations in the absolute of price changes (volatility). Further, detrended fluctuation analysis (DFA) approach was applied with focus on long-range autocorrelations and Hurst exponent. We observed long-range power-law autocorrelations in the volatility that quantify risk, and found that they decay much more slowly than the autocorrelation of return time series. Our analysis also showed that the significant cross correlations exist between return time series of EUA and many other returns. These cross correlations exist in a wide range of fields, including stock markets, energy concerned commodities futures, and financial futures. The significant cross-correlations between energy concerned futures and EUA indicate the physical relationship between carbon emission and energy production process. Additionally, the cross-correlations between financial futures and EUA indicate that the speculation behavior may become an important factor that can affect the price of EUA. Finally we modeled the long-range volatility time series of EUA with a particular version of the GARCH process, and the result also suggests long-range volatility autocorrelations.
General formulation of long-range degree correlations in complex networks
NASA Astrophysics Data System (ADS)
Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke
2018-06-01
We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.
Power law cross-correlations between price change and volume change of Indian stocks
NASA Astrophysics Data System (ADS)
Hasan, Rashid; Mohammed Salim, M.
2017-05-01
We study multifractal long-range correlations and cross-correlations of daily price change and volume change of 50 stocks that comprise Nifty index of National Stock Exchange, Mumbai, using MF-DFA and MF-DCCA methods. We find that the time series of price change are uncorrelated, whereas anti-persistent long-range multifractal correlations are found in volume change series. We also find antipersistent long-range multifractal cross-correlations between the time series of price change and volume change. As multifractality is a signature of complexity, we estimate complexity parameters of the time series of price change, volume change, and cross-correlated price-volume change by fitting the fourth-degree polynomials to their multifractal spectra. Our results indicate that the time series of price change display high complexity, whereas the time series of volume change and cross-correlated price-volume change display low complexity.
Long and Short Range Correlations in Healthy and Pathologic Human Cardiac Prosses
NASA Astrophysics Data System (ADS)
Bunde, Armin
2001-03-01
Healthy sleep consists of several stages: deep sleep, light sleep and REM sleep. In this talk, recent work on the characterization of heart-rates in the three stages by long-range correlations is presented. Only in REM sleep, long-range correlations reminiscent to the wake phase occur, and the heart-rates show multifractal behaviour. In contrast, in non-REM phases, the heart-rates are uncorrelated above the typical breathing cycle time, pointing to a random regulation of the heartbeat during non-REM sleep. In deep sleep, the heart-rates show simple multifractal behaviour.
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.
2017-04-01
Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.
Long-range electron tunneling.
Winkler, Jay R; Gray, Harry B
2014-02-26
Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.
Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Nicol, Matthew; Kantz, Holger
2018-05-01
In its classical version, the theory of large deviations makes quantitative statements about the probability of outliers when estimating time averages, if time series data are identically independently distributed. We study large-deviation probabilities (LDPs) for time averages in short- and long-range correlated Gaussian processes and show that long-range correlations lead to subexponential decay of LDPs. A particular deterministic intermittent map can, depending on a control parameter, also generate long-range correlated time series. We illustrate numerically, in agreement with the mathematical literature, that this type of intermittency leads to a power law decay of LDPs. The power law decay holds irrespective of whether the correlation time is finite or infinite, and hence irrespective of whether the central limit theorem applies or not.
Redirected charge transport arising from diazonium grafting of carbon coated LiFePO4.
Madec, L; Seid, K A; Badot, J-C; Humbert, B; Moreau, P; Dubrunfaut, O; Lestriez, B; Guyomard, D; Gaubicher, J
2014-11-07
The morphological and the electrical properties of carbon coated LiFePO4 (LFPC) active material functionalized by 4-ethynylbenzene tetrafluoroboratediazonium salt were investigated. For this purpose, FTIR, Raman, XPS, High Resolution Transmission Electron Microscopy (HRTEM) and Broadband Dielectric Spectroscopy (BDS) were considered. Electronic conductivities of LFPC samples at room temperature were found to decrease in a large frequency range upon simple immersion in polar solvents and to decrease further upon functionalization. Due to their high dipole moment, strongly physisorbed molecules detected by XPS likely add barriers to electron hopping. Significant alteration of the carbon coating conductivity was only observed, however, upon functionalization. This effect is most presumably associated with an increase in the sp(3) content determined by Raman spectroscopy, which is a strong indication of the formation of a covalent bond between the organic layer and the carbon coating. In this case, the electron flux appears to be redirected and relayed by short-range (intra chain) and long-range (inter chain) electron transport through molecular oligomers anchored at the LFPC surface. The latter are controlled by tunnelling and slightly activated hopping, which enable higher conductivity at low temperature (T < 250 K). Alteration of the electron transport within the carbon coating also allows detection of a relaxation phenomenon that corresponds to small polaron hopping in bulk LiFePO4. XPS and HRTEM images allow a clear correlation of these findings with the island type oligomeric structure of grafted molecules.
Multibin long-range correlations
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
2011-06-01
A new method to study the long-range correlations in multiparticle production is developed. It is proposed to measure the joint factorial moments or cumulants of multiplicity distribution in several (more than two) bins. It is shown that this step dramatically increases the discriminative power of data.
Hydrodynamics and long range correlations
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
2011-04-01
It is shown that the recently proposed method of studying the long-range correlations in multiparticle production can be effectively used to verify the hydrodynamic nature of the longitudinal expansion of the partonic system created in the collision. The case of ALICE detector is explicitly considered.
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait
NASA Technical Reports Server (NTRS)
Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.
1995-01-01
Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.
Electronic correlation effects and the Coulomb gap at finite temperature.
Sandow, B; Gloos, K; Rentzsch, R; Ionov, A N; Schirmacher, W
2001-02-26
We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type germanium, using tunneling spectroscopy on mechanically controllable break junctions. At low temperatures, the tunnel conductance shows a minimum at zero bias voltage due to the Coulomb gap. Above 1 K, the gap is filled by thermal excitations. This behavior is reflected in the variable-range hopping resistivity measured on the same samples: up to a few degrees Kelvin the Efros-Shklovskii lnR infinity T(-1/2) law is obeyed, whereas at higher temperatures deviations from this law occur. The type of crossover differs from that considered previously in the literature.
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.
2008-01-01
Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
NASA Astrophysics Data System (ADS)
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
Irrmischer, Mona; van der Wal, C Natalie; Mansvelder, Huibert D; Linkenkaer-Hansen, Klaus
2018-01-01
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.
Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations
van der Wal, C. Natalie; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus
2018-01-01
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability. PMID:29746529
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
2017-10-13
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
Long-range electron transport of ruthenium-centered multilayer films via a stepping-stone mechanism.
Terada, Kei-ichi; Nakamura, Hisao; Kanaizuka, Katsuhiko; Haga, Masa-aki; Asai, Yoshihiro; Ishida, Takao
2012-03-27
We studied electron transport of Ru complex multilayer films, whose structure resembles redox-active complex films known in the literature to have long-range electron transport abilities. Hydrogen bond formation in terms of pH control was used to induce spontaneous growth of a Ru complex multilayer. We made a cross-check between electrochemical measurements and I-V measurements using PEDOT:PSS to eliminate the risk of pinhole contributions to the mechanism and have found small β values of 0.012-0.021 Å(-1). Our Ru complex layers exhibit long-range electron transport but with low conductance. On the basis of the results of our theoretical-experimental collaboration, we propose a modified tunneling mechanism named the "stepping-stone mechanism", where the alignment of site potentials forms a narrow band around E(F), making resonant tunneling possible. Our observations may support Tuccito et al.'s proposed mechanism. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis
1996-10-01
An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.
Electron-electron correlation in two-photon double ionization of He-like ions
NASA Astrophysics Data System (ADS)
Hu, S. X.
2018-01-01
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.
Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
Sherman, A
2018-05-16
The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions [Formula: see text], temperatures [Formula: see text] and electron concentrations [Formula: see text] with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at [Formula: see text]. At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from [Formula: see text] at the highest temperatures to U = 2t at [Formula: see text] for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for [Formula: see text] to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for [Formula: see text]. For [Formula: see text] and [Formula: see text] doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.
NASA Astrophysics Data System (ADS)
Manmana, Salvatore R.; Möller, Marcel; Gezzi, Riccardo; Hazzard, Kaden R. A.
2017-10-01
We compute physical properties across the phase diagram of the t -J⊥ chain with long-range dipolar interactions, which describe ultracold polar molecules on optical lattices. Our results obtained by the density-matrix renormalization group indicate that superconductivity is enhanced when the Ising component Jz of the spin-spin interaction and the charge component V are tuned to zero and even further by the long-range dipolar interactions. At low densities, a substantially larger spin gap is obtained. We provide evidence that long-range interactions lead to algebraically decaying correlation functions despite the presence of a gap. Although this has recently been observed in other long-range interacting spin and fermion models, the correlations in our case have the peculiar property of having a small and continuously varying exponent. We construct simple analytic models and arguments to understand the most salient features.
Wu, Fu-Chiao; Cheng, Horng-Long; Yen, Chen-Hsiang; Lin, Jyu-Wun; Liu, Shyh-Jiun; Chou, Wei-Yang; Tang, Fu-Ching
2010-03-07
Electron transport (ET) properties of a series of fluorinated copper-phthalocyanine (F(16)CuPc) thin films, which were deposited at different substrate temperatures (T(sub)) ranging from 30 to 150 degrees C, have been investigated by quantum mechanical calculations of the reorganization energy (lambda(reorg)), X-ray diffraction (XRD), atomic force microscopy (AFM), and microRaman spectroscopy. Density functional theory calculations were used to predict the vibrational frequencies, normal mode displacement vectors, and electron-vibrational lambda(reorg) for the F(16)CuPc molecule. The electron mobilities (mu(e)) of F(16)CuPc thin films are strongly dependent on the T(sub), and the value of mu(e) increases with increasing T(sub) from 30 to 120 degrees C, at which point it reaches its maximum value. The importance of electron-vibrational coupling and molecular microstructures for ET properties in F(16)CuPc thin films are discussed on the basis of theoretical vibrational lambda(reorg) calculations and experimental observations of resonance Raman spectra. We observed a good correlation between mu(e) and the full-width-at-half-maximum of the vibrational bands, which greatly contributed to lambda(reorg) and/or which reflects the molecular microstructural quality of the active channel. In contrast, the crystal size analysis by XRD and surface grain morphology by AFM did not reveal a clear correlation with the ET behaviours for these different F(16)CuPc thin films. Therefore, we suggest that for organic films with weak intermolecular interactions, such as F(16)CuPc, optimized microscopic molecular-scale parameters are highly important for efficient long-range charge transport in the macroscopic devices.
Theoretical Studies of Relaxation and Optical Properties of Polymers
NASA Astrophysics Data System (ADS)
Jin, Bih-Yaw
1993-01-01
This thesis is composed of two parts. In the part one, the empirical correlation between the logarithm of tunneling splittings and the temperature at which the spin-lattice relaxation time is minimum for methyl groups in different molecular crystals is explained successfully by taking multiphonon processes into account. We show that one phonon transitions dominate in the low barrier limit. However, in the intermediate barrier range and high barrier limit, it is necessary to include multiphonon processes. We also show that the empirical correlation depends only logarithmically on the details of the phonon bath. In the part two, we have investigated the optical and relaxation properties of conjugated polymers. The connection between the vibronic picture of Raman scattering and the third order perturbation approach in solid state physics is clarified in chapter 2. Starting from the Kramers -Heissenberg-Dirac formula for Raman scattering, we derive expressions for the Condon and Herzberg-Teller terms from a simple two-level system to a two-band system, i.e. polyacetylene, by using traditional vibronic picture. Both the Condon and Herzberg-Teller terms contribute to two-band processes, while three-band processes consist only of Herzberg-Teller terms in the solid state limit. Close to resonance the Condon term dominates and converges to the usual solid state result. In the off-resonance region the Herzberg -Teller term is comparable to Condon term for both small molecule and solid state system. In chapter 3, we will concentrate on the lattice relaxation of the lowest optically allowed 1B_ {u} state, especially, the effect of electron correlation on the excited state geometric relaxation for finite polyenes. We have examined the competition between electron-electron interaction and electron-phonon coupling on the formation of localized lattice distortion in the 1B_{u} state for finite polyene with chain length up to 30 double bonds. The chain length dependence of the lattice relaxation in 1B _{u} state has been studied thoroughly within singly excited configuration interaction for short range Hubbard, extended Hubbard model and long-range Pariser -Parr-Pople model. We have found that local distortion is not favored until a critical chain length is reached. Beyond this critical length, which is a function of electron-electron interaction and electron-phonon coupling strength, a self -trapped exciton is formed rather than the separated soliton -antisoliton configuration as expected in the independent electron theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
Effect of simple solutes on the long range dipolar correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in
2016-03-14
Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) havemore » a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.« less
Anomalous diffusion and long-range correlations in the score evolution of the game of cricket
NASA Astrophysics Data System (ADS)
Ribeiro, Haroldo V.; Mukherjee, Satyam; Zeng, Xiao Han T.
2012-08-01
We investigate the time evolution of the scores of the second most popular sport in the world: the game of cricket. By analyzing, event by event, the scores of more than 2000 matches, we point out that the score dynamics is an anomalous diffusive process. Our analysis reveals that the variance of the process is described by a power-law dependence with a superdiffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describes all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.
A Study of Memory Effects in a Chess Database.
Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V
2016-01-01
A series of recent works studying a database of chronologically sorted chess games-containing 1.4 million games played by humans between 1998 and 2007- have shown that the popularity distribution of chess game-lines follows a Zipf's law, and that time series inferred from the sequences of those game-lines exhibit long-range memory effects. The presence of Zipf's law together with long-range memory effects was observed in several systems, however, the simultaneous emergence of these two phenomena were always studied separately up to now. In this work, by making use of a variant of the Yule-Simon preferential growth model, introduced by Cattuto et al., we provide an explanation for the simultaneous emergence of Zipf's law and long-range correlations memory effects in a chess database. We find that Cattuto's Model (CM) is able to reproduce both, Zipf's law and the long-range correlations, including size-dependent scaling of the Hurst exponent for the corresponding time series. CM allows an explanation for the simultaneous emergence of these two phenomena via a preferential growth dynamics, including a memory kernel, in the popularity distribution of chess game-lines. This mechanism results in an aging process in the chess game-line choice as the database grows. Moreover, we find burstiness in the activity of subsets of the most active players, although the aggregated activity of the pool of players displays inter-event times without burstiness. We show that CM is not able to produce time series with bursty behavior providing evidence that burstiness is not required for the explanation of the long-range correlation effects in the chess database. Our results provide further evidence favoring the hypothesis that long-range correlations effects are a consequence of the aging of game-lines and not burstiness, and shed light on the mechanism that operates in the simultaneous emergence of Zipf's law and long-range correlations in a community of chess players.
A Study of Memory Effects in a Chess Database
Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.
2016-01-01
A series of recent works studying a database of chronologically sorted chess games–containing 1.4 million games played by humans between 1998 and 2007– have shown that the popularity distribution of chess game-lines follows a Zipf’s law, and that time series inferred from the sequences of those game-lines exhibit long-range memory effects. The presence of Zipf’s law together with long-range memory effects was observed in several systems, however, the simultaneous emergence of these two phenomena were always studied separately up to now. In this work, by making use of a variant of the Yule-Simon preferential growth model, introduced by Cattuto et al., we provide an explanation for the simultaneous emergence of Zipf’s law and long-range correlations memory effects in a chess database. We find that Cattuto’s Model (CM) is able to reproduce both, Zipf’s law and the long-range correlations, including size-dependent scaling of the Hurst exponent for the corresponding time series. CM allows an explanation for the simultaneous emergence of these two phenomena via a preferential growth dynamics, including a memory kernel, in the popularity distribution of chess game-lines. This mechanism results in an aging process in the chess game-line choice as the database grows. Moreover, we find burstiness in the activity of subsets of the most active players, although the aggregated activity of the pool of players displays inter-event times without burstiness. We show that CM is not able to produce time series with bursty behavior providing evidence that burstiness is not required for the explanation of the long-range correlation effects in the chess database. Our results provide further evidence favoring the hypothesis that long-range correlations effects are a consequence of the aging of game-lines and not burstiness, and shed light on the mechanism that operates in the simultaneous emergence of Zipf’s law and long-range correlations in a community of chess players. PMID:28005922
Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4
Chen, Xiang; Hogan, Tom; Walkup, D.; ...
2015-08-17
The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less
Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
NASA Astrophysics Data System (ADS)
Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin
2015-01-01
The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.
Hu, S. X.
2018-01-18
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
Long-Range Correlations Between Transmitted and Reected Fluxes of Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.
2017-12-01
We study the long-range spatial correlations between intensity fluctuations in speckles formed by multiply scattered light. The correlation function between intensity fluctuations at the opposite boundaries of the slab are analyzed under the conditions of circular polarization memory. It shown that, until the scattered light is depolarized completely, the polarization and scalar contributions to the correlation function are of the same order of magnitude. As the slab thickness increases, their ratio falls off in inverse proportion to the thickness.
Minority games with score-dependent and agent-dependent payoffs
NASA Astrophysics Data System (ADS)
Ren, F.; Zheng, B.; Qiu, T.; Trimper, S.
2006-10-01
Score-dependent and agent-dependent payoffs of the strategies are introduced into the standard minority game. The intrinsic periodicity is consequently removed, and the stylized facts arise, such as long-range volatility correlations and “fat tails” in the distribution of the returns. The agent dependence of the payoffs is essential in producing the long-range volatility correlations. The new payoffs lead to a better performance in the dynamic behavior nonlocal in time, and can coexist with the inactive strategy. We also observe that the standard deviation σ2/N is significantly reduced, thus the efficiency of the system is distinctly improved. Based on this observation, we give a qualitative explanation for the long-range volatility correlations.
Ab initio study on the ground and low-lying states of BAlk (Alk = Li, Na, K) molecules.
Xiao, Ke-La; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2014-10-02
The potential energy curves (PECs) and dipole moment functions of (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states of BAlk (Alk = Li, Na, K) are calculated using multireference configuration interaction method and large all-electron basis sets. The effects of inner-shell correlation electron for BAlk are considered. The ro-vibrational energy levels are obtained by solving the Schrödinger equation of nuclear motion based on the ab initio PECs. The spectroscopic parameters are determined from the ro-vibrational levels with Dunham expansion. The PECs are fitted into analytical potential energy functions using the Morse long-range potential function. The dipole moment functions for the states of BAlk are presented. The transition dipole moments for (1)Σ(+) → (1)Π and (3)Σ(+) → (3)Π states of BAlk are obtained. The interactions between the outermost electron of Alk and B 2p electrons for (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states are also analyzed, respectively.
Khachatryan, Vardan
2016-04-27
Our results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb -1. The correlations are studied over a broad range of pseudorapidity (|η| < 2.4) and over the full azimuth (Φ) as a function of charged particle multiplicity and transverse momentum (p T). In high-multiplicity events, a long-range (|Δη| > 2.0), near-side (ΔΦ≈ 0) structure emerges in the two-particle Dh–Df correlation functions. The magnitude of the correlation exhibitsmore » a pronounced maximum in the range 1.0 < p T < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity. The overall correlation strength at √s = 13 TeV is similar to that found in earlier pp data at √s = 7 TeV, but is measured up to much higher multiplicity values. We observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.« less
Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.
Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin
2010-03-10
Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.
TMDs and GPDs at a future Electron-Ion Collider
Ent, Rolf
2016-06-21
With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less
Jacquemin, Denis; Moore, Barry; Planchat, Aurélien; Adamo, Carlo; Autschbach, Jochen
2014-04-08
Using a set of 40 conjugated molecules, we assess the performance of an "optimally tuned" range-separated hybrid functional in reproducing the experimental 0-0 energies. The selected protocol accounts for the impact of solvation using a corrected linear-response continuum approach and vibrational corrections through calculations of the zero-point energies of both ground and excited-states and provides basis set converged data thanks to the systematic use of diffuse-containing atomic basis sets at all computational steps. It turns out that an optimally tuned long-range corrected hybrid form of the Perdew-Burke-Ernzerhof functional, LC-PBE*, delivers both the smallest mean absolute error (0.20 eV) and standard deviation (0.15 eV) of all tested approaches, while the obtained correlation (0.93) is large but remains slightly smaller than its M06-2X counterpart (0.95). In addition, the efficiency of two other recently developed exchange-correlation functionals, namely SOGGA11-X and ωB97X-D, has been determined in order to allow more complete comparisons with previously published data.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
NASA Astrophysics Data System (ADS)
Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris
2016-07-01
World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.
NASA Astrophysics Data System (ADS)
Bel'dyugin, Igor'M.; Zolotarev, M. V.; Shinkareva, I. V.
1991-12-01
A statistical analysis was made of the simultaneous influence of an external noise and of the spread of resonance frequencies on the phase locking of optically coupled lasers under conditions of long-range and short-range interaction in terms of the theory of critical phenomena. Studies were made of the behavior of an order parameter (the total amplitude of the fields of an array of lasers), and of the stability and correlation relationships between lasers for cophasal and antiphase lasing regimes. It was found that the locking band of the lasers could be increased substantially by detuning the phase-locking frequency from the center of the active medium profile.
Optical conductivity of an interacting Weyl liquid in the collisionless regime
NASA Astrophysics Data System (ADS)
Roy, Bitan; Juričić, Vladimir
2017-10-01
Optical conductivity (OC) can serve as a measure of correlation effects in a wide range of condensed-matter systems. We show that the long-range tail of the Coulomb interaction yields a universal correction to the OC in a three-dimensional Weyl semimetal σ (Ω ) =σ0(Ω ) [1 +1/N +1 ] , where σ0(Ω ) =N e02Ω /(12 h v ) is the OC in the noninteracting system, with v as the actual (renormalized) Fermi velocity of Weyl quasiparticles at frequency Ω , and e0 is the electron charge in vacuum. Such universal enhancement of OC, which depends only on the number of Weyl nodes near the Fermi level (N ), is a remarkable consequence of an intriguing conspiracy among the quantum-critical nature of an interacting Weyl liquid, marginal irrelevance of the long-range Coulomb interaction, and violation of hyperscaling in three dimensions, and can directly be measured in recently discovered Weyl as well as Dirac materials. By contrast, a local density-density interaction produces a nonuniversal correction to the OC, stemming from the nonrenormalizable nature of the corresponding interacting field theory.
NASA Astrophysics Data System (ADS)
Delignières, Didier; Marmelat, Vivien
2014-01-01
In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.
Nanotextured phase coexistence in the correlated insulator V2O3
NASA Astrophysics Data System (ADS)
McLeod, Alexander
The Mott insulator-metal transition remains among the most studied phenomena in correlated electron physics. However, the formation of spontaneous spatial patterns amidst coexisting insulating and metallic phases remains poorly explored on the meso- and nanoscales. Here we present real-space evolution of the insulator-metal transition in a thin film of V2O3, the ``canonical'' Mott insulator, imaged at high spatial resolution by cryogenic near-field infrared microscopy. We resolve spontaneously nanotextured coexistence of metal and correlated Mott insulator phases near the insulator-metal transition (T = 160-180 K) associated with percolation and an underlying structural phase transition. Augmented with macroscopic temperature-resolved X-ray diffraction measurements of the same film, a quantitative analysis of nano-infrared images acquired across the transition suggests decoupling of electronic and structural transformations. Persistent low-temperature metallicity is accompanied by unconventional dimensional scaling among metallic ``puddles,'' implicating relevance of a long-range Coulombic interaction through the film's first-order insulator-metal transition. The speaker and co-authors acknowledge support from DOE-DE-SC0012375, DOE-DE-SC0012592, and AFOSR Grant No. FA9550-12-1-0381. The speaker also acknowledges support from a US Dept. of Energy Office of Science Graduate Fellowship (DOE SCGF).
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-03-01
This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.
NASA Astrophysics Data System (ADS)
Hao, Lin; Meyers, D.; Frederick, Clayton; Fabbris, Gilberto; Yang, Junyi; Traynor, Nathan; Horak, Lukas; Kriegner, Dominik; Choi, Yongseong; Kim, Jong-Woo; Haskel, Daniel; Ryan, Phil J.; Dean, M. P. M.; Liu, Jian
2017-07-01
We report an experimental investigation of the two-dimensional Jeff=1 /2 antiferromagnetic Mott insulator by varying the interlayer exchange coupling in [(SrIrO3)1 , (SrTiO3)m ] (m =1 , 2 and 3) superlattices. Although all samples exhibited an insulating ground state with long-range magnetic order, temperature-dependent resistivity measurements showed a stronger insulating behavior in the m =2 and m =3 samples than the m =1 sample which displayed a clear kink at the magnetic transition. This difference indicates that the blocking effect of the excessive SrTiO3 layer enhances the effective electron-electron correlation and strengthens the Mott phase. The significant reduction of the Néel temperature from 150 K for m =1 to 40 K for m =2 demonstrates that the long-range order stability in the former is boosted by a substantial interlayer exchange coupling. Resonant x-ray magnetic scattering revealed that the interlayer exchange coupling has a switchable sign, depending on the SrTiO3 layer number m , for maintaining canting-induced weak ferromagnetism. The nearly unaltered transition temperature between the m =2 and the m =3 demonstrated that we have realized a two-dimensional antiferromagnet at finite temperatures with diminishing interlayer exchange coupling.
Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease
NASA Technical Reports Server (NTRS)
Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.
1995-01-01
Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.
Scale-free correlations in the geographical spreading of obesity
NASA Astrophysics Data System (ADS)
Gallos, Lazaros; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernan
2012-02-01
Obesity levels have been universally increasing. A crucial problem is to determine the influence of global and local drivers behind the obesity epidemic, to properly guide effective policies. Despite the numerous factors that affect the obesity evolution, we show a remarkable regularity expressed in a predictable pattern of spatial long-range correlations in the geographical spreading of obesity. We study the spatial clustering of obesity and a number of related health and economic indicators, and we use statistical physics methods to characterize the growth of the resulting clusters. The resulting scaling exponents allow us to broadly classify these indicators into two separate universality classes, weakly or strongly correlated. Weak correlations are found in generic human activity such as population distribution and the growth of the whole economy. Strong correlations are recovered, among others, for obesity, diabetes, and the food industry sectors associated with food consumption. Obesity turns out to be a global problem where local details are of little importance. The long-range correlations suggest influence that extends to large scales, hinting that the physical model of obesity clustering can be mapped to a long-range correlated percolation process.
Statistical properties and correlation functions for drift waves
NASA Technical Reports Server (NTRS)
Horton, W.
1986-01-01
The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.
Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations
NASA Astrophysics Data System (ADS)
Song, Tianshu; Xia, Hui
2016-11-01
To analyze long-range temporal correlations in surface growth, we study numerically the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.
On chemical distances and shape theorems in percolation models with long-range correlations
NASA Astrophysics Data System (ADS)
Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm
2014-08-01
In this paper, we provide general conditions on a one parameter family of random infinite subsets of {{Z}}^d to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Černý and Popov ["On the internal distance in the interlacement set," Electron. J. Probab. 17(29), 1-25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora ["On the chemical distance for supercritical Bernoulli percolation," Ann Probab. 24(2), 1036-1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.
Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator
NASA Astrophysics Data System (ADS)
Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko
2017-07-01
In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.
How long is the memory of the US stock market?
NASA Astrophysics Data System (ADS)
Ferreira, Paulo; Dionísio, Andreia
2016-06-01
The Efficient Market Hypothesis (EMH), one of the most important hypothesis in financial economics, argues that return rates have no memory (correlation) which implies that agents cannot make abnormal profits in financial markets, due to the possibility of arbitrage operations. With return rates for the US stock market, we corroborate the fact that with a linear approach, return rates do not show evidence of correlation. However, linear approaches might not be complete or global, since return rates could suffer from nonlinearities. Using detrended cross-correlation analysis and its correlation coefficient, a methodology which analyzes long-range behavior between series, we show that the long-range correlation of return rates only ends in the 149th lag, which corresponds to about seven months. Does this result undermine the EMH?
Stable distribution and long-range correlation of Brent crude oil market
NASA Astrophysics Data System (ADS)
Yuan, Ying; Zhuang, Xin-tian; Jin, Xiu; Huang, Wei-qiang
2014-11-01
An empirical study of stable distribution and long-range correlation in Brent crude oil market was presented. First, it is found that the empirical distribution of Brent crude oil returns can be fitted well by a stable distribution, which is significantly different from a normal distribution. Second, the detrended fluctuation analysis for the Brent crude oil returns shows that there are long-range correlation in returns. It implies that there are patterns or trends in returns that persist over time. Third, the detrended fluctuation analysis for the Brent crude oil returns shows that after the financial crisis 2008, the Brent crude oil market becomes more persistence. It implies that the financial crisis 2008 could increase the frequency and strength of the interdependence and correlations between the financial time series. All of these findings may be used to improve the current fractal theories.
LETTER TO THE EDITOR: Evidence for global mixing in real influenza epidemics
NASA Astrophysics Data System (ADS)
Bonabeau, Eric; Toubiana, Laurent; Flahault, Antoine
1998-05-01
The spatiotemporal behaviour of the spread of influenza in France has been studied, and algebraic spatial correlations (with exponent 0305-4470/31/19/001/img5) spanning the whole territory have been found to be present as soon as the number of reported cases begins to increase, about 15 - 25 weeks before the peak of the epidemic. This result is surprising, as one would expect long-range correlations, if any, only in the vicinity of the maximum incidence, whereas our observations suggest that there exists an underlying non-trivial spatial structure at the very beginning of the observed epidemic. The observed long-range correlations are in fact present in the spatial distribution of the population. Correlations in the number of cases normalized by local population density are characterized by 0305-4470/31/19/001/img6. This suggests that the spread of the epidemic is statistically uniform in space over a complex substrate that already contains the observed long-range correlations.
Ising universality describes emergent long-range synchronization of coupled ecological oscillators
NASA Astrophysics Data System (ADS)
Noble, Andrew
Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation. By contrast, recent work shows how scale-invariant synchronization can emerge from locally coupled population dynamics. In particular, we have found that the transition from incoherence to long-range synchronization of coupled ecological two-cycles is described by the Ising universality class. I will discuss evidence that an Ising critical point describes long-range correlations found in data on the individual yields of female pistachio trees in a large orchard. NSF INSPIRE Grant No. 1344187.
Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behar Harpaz, S; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, B; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; Dewilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Duxfield, R; Dwuznik, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G J; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gandrajula, R P; Gao, Y S; Gaponenko, A; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Göpfert, T; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Kenyon, M; Keoshkerian, H; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Krejci, F; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, M K; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; Lecompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, D; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, B; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lundquist, J; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martinez Outschoorn, V; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McHedlidze, G; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Meguro, T; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Milutinovic-Dumbelovic, G; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Möser, N; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Muenstermann, D; Müller, T A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perepelitsa, D V; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poblaguev, A; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Raas, M; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rahimi, A M; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A; South, D; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Ye, J; Ye, S; Yen, A L; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J; Youssef, S; Yu, D; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Zeniš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L
2013-05-03
Two-particle correlations in relative azimuthal angle (Δø) and pseudorapidity (Δη) are measured in sqrt[s(NN)] = 5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (ΣE(T)(Pb)) summed over 3.1 < η < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < |Δ η | < 5) "near-side" (Δø ~ 0) correlation that grows rapidly with increasing ΣE(T)(Pb). A long-range "away-side" (Δø ~ π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣE(T)(Pb), is found to match the near-side correlation in magnitude, shape (in Δη and Δø) and ΣE(T)(Pb) dependence. The resultant Δø correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δø modulation for all ΣE(T)(Pb) ranges and particle p(T).
Strong coupling of a single electron in silicon to a microwave photon
NASA Astrophysics Data System (ADS)
Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.
2017-01-01
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.
Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems
NASA Astrophysics Data System (ADS)
Huo, Peng; Gajdošová, Katarína; Jia, Jiangyong; Zhou, You
2018-02-01
Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC (n , m), in pp and p+Pb collisions, and interpreted the non-zero SC (n , m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges. We argue that the reanalysis of SC (n , m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.
Entropy and long-range memory in random symbolic additive Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
Entropy and long-range memory in random symbolic additive Markov chains.
Melnik, S S; Usatenko, O V
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
A diagnostic for determining the quality of single-reference electron correlation methods
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Taylor, Peter R.
1989-01-01
It was recently proposed that the Euclidian norm of the t(sub 1) vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appopriate. This diagnostic, T(sub 1) is defined for use with self-consistent-field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T(sub 1) is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of non-dynamical electron correlation and is far superior to C(sub 0) from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T(sub 1) (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.
A diagnostic for determining the quality of single-reference electron correlation methods
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Taylor, Peter R.
1989-01-01
It was recently proposed that the Euclidian norm of the t sub 1 vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appropriate. This diagnostic, T sub 1, is defined for use with self consistent field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T sub 1 is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of nondynamical electron correlation and is far superior to C sub 0 from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T sub 1 (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.
Hard-spin mean-field theory: A systematic derivation and exact correlations in one dimension
Kabakcioglu
2000-04-01
Hard-spin mean-field theory is an improved mean-field approach which has proven to give accurate results, especially for frustrated spin systems, with relatively little computational effort. In this work, the previous phenomenological derivation is supplanted by a systematic and generic derivation that opens the possibility for systematic improvements, especially for the calculation of long-range correlation functions. A first level of improvement suffices to recover the exact long-range values of the correlation functions in one dimension.
NASA Astrophysics Data System (ADS)
Witt, Annette; Ehlers, Frithjof; Luther, Stefan
2017-09-01
We have analyzed symbol sequences of heart beat annotations obtained from 24-h electrocardiogram recordings of 184 post-infarction patients (from the Cardiac Arrhythmia Suppression Trial database, CAST). In the symbol sequences, each heart beat was coded as an arrhythmic or as a normal beat. The symbol sequences were analyzed with a model-based approach which relies on two-parametric peaks over the threshold (POT) model, interpreting each premature ventricular contraction (PVC) as an extreme event. For the POT model, we explored (i) the Shannon entropy which was estimated in terms of the Lempel-Ziv complexity, (ii) the shape parameter of the Weibull distribution that best fits the PVC return times, and (iii) the strength of long-range correlations quantified by detrended fluctuation analysis (DFA) for the two-dimensional parameter space. We have found that in the frame of our model the Lempel-Ziv complexity is functionally related to the shape parameter of the Weibull distribution. Thus, two complementary measures (entropy and strength of long-range correlations) are sufficient to characterize realizations of the two-parametric model. For the CAST data, we have found evidence for an intermediate strength of long-range correlations in the PVC timings, which are correlated to the age of the patient: younger post-infarction patients have higher strength of long-range correlations than older patients. The normalized Shannon entropy has values in the range 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ent, Rolf
With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less
Weak Long-Range Correlated Motions in a Surface Patch of Ubiquitin Involved in Molecular Recognition
2011-01-01
Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar couplings measured by NMR spectroscopy. In this work, we experimentally identified and characterized collective motions spanning four β-strands separated by up to 15 Å in ubiquitin. The observed correlations link molecular recognition sites and result from concerted conformational changes that are in part mediated by the hydrogen-bonding network. PMID:21634390
Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J
2007-10-01
Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.
Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.
Nesterov, Alexander I; Berman, Gennady P
2015-04-01
We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.
Phonon-induced localization of electron states in quasi-one-dimensional systems
NASA Astrophysics Data System (ADS)
Xiong, Ye
2007-02-01
It is shown that hot phonons with random phases can cause localization of electron states in quasi-one-dimensional systems. Owing to the nature of long-range correlation of the disorder induced by phonons, only the states at edges of one-dimensional (1D) subbands are localized, and the states inside the 1D subbands are still extended. As a result, the conductance exhibits gradual quantum steps in varying the gate potential. By increasing the temperature the degree of localization increases. In the localization regime the distribution of Lyapunov exponent (LE) is Gaussian and the relation of the mean-value and standard variance of LE to the system size obeys the single-parameter hypothesis. The mean value of LE can be used as an order parameter to distinguish the local and extended states.
High precision laser ranging by time-of-flight measurement of femtosecond pulses
NASA Astrophysics Data System (ADS)
Lee, Joohyung; Lee, Keunwoo; Lee, Sanghyun; Kim, Seung-Woo; Kim, Young-Jin
2012-06-01
Time-of-flight (TOF) measurement of femtosecond light pulses was investigated for laser ranging of long distances with sub-micrometer precision in the air. The bandwidth limitation of the photo-detection electronics used in timing femtosecond pulses was overcome by adopting a type-II nonlinear second-harmonic crystal that permits the production of a balanced optical cross-correlation signal between two overlapping light pulses. This method offered a sub-femtosecond timing resolution in determining the temporal offset between two pulses through lock-in control of the pulse repetition rate with reference to the atomic clock. The exceptional ranging capability was verified by measuring various distances of 1.5, 60 and 700 m. This method is found well suited for future space missions based on formation-flying satellites as well as large-scale industrial applications for land surveying, aircraft manufacturing and shipbuilding.
Relative phase asynchrony and long-range correlation of long-term solar magnetic activity
NASA Astrophysics Data System (ADS)
Deng, Linhua
2017-07-01
Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.
On the origin of long-range correlations in texts.
Altmann, Eduardo G; Cristadoro, Giampaolo; Esposti, Mirko Degli
2012-07-17
The complexity of human interactions with social and natural phenomena is mirrored in the way we describe our experiences through natural language. In order to retain and convey such a high dimensional information, the statistical properties of our linguistic output has to be highly correlated in time. An example are the robust observations, still largely not understood, of correlations on arbitrary long scales in literary texts. In this paper we explain how long-range correlations flow from highly structured linguistic levels down to the building blocks of a text (words, letters, etc..). By combining calculations and data analysis we show that correlations take form of a bursty sequence of events once we approach the semantically relevant topics of the text. The mechanisms we identify are fairly general and can be equally applied to other hierarchical settings.
NASA Astrophysics Data System (ADS)
Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke
2017-08-01
The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.
Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke
2017-08-04
The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.
Blood-Forsythe, Martin A; Markovich, Thomas; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán
2016-03-01
An accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al. , J. Chem. Phys. , 2014, 140 , 18A508], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent agreement with the wavefunction theory reference geometries of these systems (at a fraction of the computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular interactions, we optimized the C 60 @C 60 H 28 buckyball catcher host-guest complex. In our analysis, we also find that neglecting the implicit nuclear coordinate dependence arising from the charge density partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD forces, with relative errors of ∼20% (on average) that can extend well beyond 100%.
Fractal landscape analysis of DNA walks
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.
1992-01-01
By mapping nucleotide sequences onto a "DNA walk", we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that imply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.
Long-range multiplicity correlations in proton-proton collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzdak, Adam
The forward-backward long-range multiplicity correlations in proton-proton collisions are investigated in the model with two independent sources of particles: one left- and one right-moving wounded nucleon. A good agreement with the UA5 Collaboration proton-antiproton data at the c.m. energy of 200 GeV is observed. For comparison the model with only one source of particles is also discussed.
Ma, Guo -Liang; Bzdak, Adam
2014-11-04
In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.
Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.
Fractals in biology and medicine
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
Minard, Janice P; Thomas, Nicola J; Olajos-Clow, Jennifer G; Wasilewski, Nastasia V; Jenkins, Blaine; Taite, Ann K; Day, Andrew G; Lougheed, M Diane
2016-01-01
To validate electronic versions of the Mini Pediatric and Pediatric Asthma Caregiver's Quality of Life Questionnaires (MiniPAQLQ and PACQLQ, respectively), determine completion times and correlate QOL of children and caregivers. A total of 63 children and 64 caregivers completed the paper and electronic MiniPAQLQ or PACQLQ. Agreement between versions of each questionnaire was summarized by intraclass correlation coefficients (ICC). The correlation between MiniPAQLQ and PACQLQ scores from child-caregiver pairs was assessed using Pearson's correlation coefficient. There was no significant difference (mean difference = 0.1, 95% CI -0.1, 0.2) in MiniPAQLQ Overall Scores between paper (5.9 ± 1.0, mean ± SD) and electronic (5.8 ± 1.0) versions, or any of the domains. ICCs ranged from 0.89 (Overall) to 0.86 (Emotional Function). Overall PACQLQ scores for both versions were comparable (5.9 ± 0.9 and 5.8 ± 1.0; mean difference = 0.0; 95% CI -0.1, 0.2). ICCs ranged from 0.81 (Activity Limitation) to 0.88 (Emotional Function). The electronic PACQLQ took 26 s longer (95% CI 11, 41; p < 0.001). Few participants (3-11%) preferred the paper format. MiniPAQLQ and PACQLQ scores were significantly correlated (all p < 0.05) for Overall (r paper = 0.33, r electronic = 0.27) and Emotional Function domains (r paper = 0.34, r electronic = 0.29). These electronic QOL questionnaires are valid, and asthma-related QOL of children and caregivers is related.
Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, G.L., E-mail: g.giorgi@inrim.it; Roncaglia, M.; Raffa, F.A.
2015-10-15
During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiledmore » through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.« less
Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana
2014-05-01
The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations decaying as r(-4), resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper, we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wave-number nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations scaling with r(-(d+1)) in d Euclidean space dimensions. A numerical and analytical analysis of the pore-size distribution for a binary maximally random jammed system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.
Beyond BCS pairing in high-density neutron matter
NASA Astrophysics Data System (ADS)
Rios, A.; Ding, D.; Dussan, H.; Dickhoff, W. H.; Witte, S. J.; Polls, A.
2018-01-01
Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations into pairing properties. Short-range correlations are treated including the appropriate fragmentation of single-particle states, and they suppress the gaps substantially. Long-range correlations dress the pairing interaction via density and spin modes, and provide a relatively small correction. We use three different interactions as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.
NASA Astrophysics Data System (ADS)
Mendive-Tapia, Eduardo; Staunton, Julie B.
2017-05-01
We describe a disordered local moment theory for long-period magnetic phases and investigate the temperature and magnetic field dependence of the magnetic states in the heavy rare earth elements (HREs), namely, paramagnetic, conical and helical antiferromagnetic (HAFM), fan, and ferromagnetic (FM) states. We obtain a generic HRE magnetic phase diagram which is consequent on the response of the common HRE valence electronic structure to f -electron magnetic moment ordering. The theory directly links the first-order HAFM-FM transition to the loss of Fermi surface nesting, induced by this magnetic ordering, as well as provides a template for analyzing the other phases and exposing where f -electron correlation effects are particularly intricate. Gadolinium, for a range of hexagonal, close-packed lattice constants c and a , is the prototype, described ab initio, and applications to other HREs are made straightforwardly by scaling the effective pair and quartic local moment interactions that emerge naturally from the theory with de Gennes factors and choosing appropriate lanthanide-contracted c and a values.
Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices
NASA Astrophysics Data System (ADS)
Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens
2018-05-01
We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.
NASA Astrophysics Data System (ADS)
Tarzia, M.; Biroli, G.
2008-06-01
We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.
Fidelity Study of Superconductivity in Extended Hubbard Models
NASA Astrophysics Data System (ADS)
Plonka, Nachum; Jia, Chunjing; Moritz, Brian; Wang, Yao; Devereaux, Thomas
2015-03-01
The role of strong electronic correlations on unconventional superconductivity remains an important open question. Here, we explore the influence of long-range Coulomb interactions, present in real material systems, through nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing large scale, numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that these extended interactions enhance charge fluctuations with various wave vectors. These suppress superconductivity in general, but in certain parameter regimes superconductivity is sustained. This has implications for tuning extended interactions in real materials.
Ghosh, Soumen; Cramer, Christopher J; Truhlar, Donald G; Gagliardi, Laura
2017-04-01
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e. , systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. We recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functional theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet-triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet-triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.
Strong coupling of a single electron in silicon to a microwave photon.
Mi, X; Cady, J V; Zajac, D M; Deelman, P W; Petta, J R
2017-01-13
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots. Copyright © 2017, American Association for the Advancement of Science.
Close-range photogrammetry with video cameras
NASA Technical Reports Server (NTRS)
Burner, A. W.; Snow, W. L.; Goad, W. K.
1985-01-01
Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.
Close-Range Photogrammetry with Video Cameras
NASA Technical Reports Server (NTRS)
Burner, A. W.; Snow, W. L.; Goad, W. K.
1983-01-01
Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.
Correlated bursts and the role of memory range
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
2015-08-01
Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories. By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process, implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated bursts.
Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...
2015-02-26
A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less
NASA Astrophysics Data System (ADS)
Drachta, Jürgen T.; Kreil, Dominik; Hobbiger, Raphael; Böhm, Helga M.
2018-03-01
Correlations, highly important in low-dimensional systems, are known to decrease the plasmon dispersion of two-dimensional electron liquids. Here we calculate the plasmon properties, applying the 'Dynamic Many-Body Theory', accounting for correlated two-particle-two-hole fluctuations. These dynamic correlations are found to significantly lower the plasmon's energy. For the data obtained numerically, we provide an analytic expression that is valid across a wide range both of densities and of wave vectors. Finally, we demonstrate how this can be invoked in determining the actual electron densities from measurements on an AlGaAs quantum well.
Electronic behavior of highly correlated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, A.
1988-10-01
This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms,more » coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs.« less
Scaling Exponents in Financial Markets
NASA Astrophysics Data System (ADS)
Kim, Kyungsik; Kim, Cheol-Hyun; Kim, Soo Yong
2007-03-01
We study the dynamical behavior of four exchange rates in foreign exchange markets. A detrended fluctuation analysis (DFA) is applied to detect the long-range correlation embedded in the non-stationary time series. It is for our case found that there exists a persistent long-range correlation in volatilities, which implies the deviation from the efficient market hypothesis. Particularly, the crossover is shown to exist in the scaling behaviors of the volatilities.
Multifractal behavior of an air pollutant time series and the relevance to the predictability.
Dong, Qingli; Wang, Yong; Li, Peizhi
2017-03-01
Compared with the traditional method of detrended fluctuation analysis, which is used to characterize fractal scaling properties and long-range correlations, this research provides new insight into the multifractality and predictability of a nonstationary air pollutant time series using the methods of spectral analysis and multifractal detrended fluctuation analysis. First, the existence of a significant power-law behavior and long-range correlations for such series are verified. Then, by employing shuffling and surrogating procedures and estimating the scaling exponents, the major source of multifractality in these pollutant series is found to be the fat-tailed probability density function. Long-range correlations also partly contribute to the multifractal features. The relationship between the predictability of the pollutant time series and their multifractal nature is then investigated with extended analyses from the quantitative perspective, and it is found that the contribution of the multifractal strength of long-range correlations to the overall multifractal strength can affect the predictability of a pollutant series in a specific region to some extent. The findings of this comprehensive study can help to better understand the mechanisms governing the dynamics of air pollutant series and aid in performing better meteorological assessment and management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hao, Lin; Meyers, D.; Frederick, Clayton; ...
2017-07-14
We report an experimental investigation of the two-dimensional J eff=1/2 antiferromagnetic Mott insulator by varying the interlayer exchange coupling in [(SrIrO 3) 1, (SrTiO 3) m] (m=1, 2 and 3) superlattices. Although all samples exhibited an insulating ground state with long-range magnetic order, temperature-dependent resistivity measurements showed a stronger insulating behavior in the m = 2 and m = 3 samples than the m = 1 sample which displayed a clear kink at the magnetic transition. This difference indicates that the blocking effect of the excessive SrTiO 3 layer enhances the effective electron-electron correlation and strengthens the Mott phase. Themore » significant reduction of the Néel temperature from 150 K for m = 1 to 40 K for m = 2 demonstrates that the long-range order stability in the former is boosted by a substantial interlayer exchange coupling. Resonant x-ray magnetic scattering revealed that the interlayer exchange coupling has a switchable sign, depending on the SrTiO 3 layer number m, for maintaining canting-induced weak ferromagnetism. In conclusion, the nearly unaltered transition temperature between the m = 2 and the m = 3 demonstrated that we have realized a two-dimensional antiferromagnet at finite temperatures with diminishing interlayer exchange coupling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Lin; Meyers, D.; Frederick, Clayton
We report an experimental investigation of the two-dimensional J eff=1/2 antiferromagnetic Mott insulator by varying the interlayer exchange coupling in [(SrIrO 3) 1, (SrTiO 3) m] (m=1, 2 and 3) superlattices. Although all samples exhibited an insulating ground state with long-range magnetic order, temperature-dependent resistivity measurements showed a stronger insulating behavior in the m = 2 and m = 3 samples than the m = 1 sample which displayed a clear kink at the magnetic transition. This difference indicates that the blocking effect of the excessive SrTiO 3 layer enhances the effective electron-electron correlation and strengthens the Mott phase. Themore » significant reduction of the Néel temperature from 150 K for m = 1 to 40 K for m = 2 demonstrates that the long-range order stability in the former is boosted by a substantial interlayer exchange coupling. Resonant x-ray magnetic scattering revealed that the interlayer exchange coupling has a switchable sign, depending on the SrTiO 3 layer number m, for maintaining canting-induced weak ferromagnetism. In conclusion, the nearly unaltered transition temperature between the m = 2 and the m = 3 demonstrated that we have realized a two-dimensional antiferromagnet at finite temperatures with diminishing interlayer exchange coupling.« less
Empirical mode decomposition and long-range correlation analysis of sunspot time series
NASA Astrophysics Data System (ADS)
Zhou, Yu; Leung, Yee
2010-12-01
Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the proposed EMD-based method—are further compared, and possible reasons for the different results are given. Two numerical experiments are designed for quantitatively evaluating the performances of these three methods in removing periodic trends with inexact/exact cycles and in detecting the possible crossover points.
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
NASA Astrophysics Data System (ADS)
Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.
2018-03-01
The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
Aidala, C.; Akiba, Y.; Alfred, M.; ...
2017-03-24
Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.; Akiba, Y.; Alfred, M.
Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less
NASA Astrophysics Data System (ADS)
Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M. H.; Kim, M.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration
2017-03-01
We present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow v2 in high-multiplicity p +Au collisions at √{s NN}=200 GeV. A comparison of these results to previous measurements in high-multiplicity d +Au and 3He+Au collisions demonstrates a relation between v2 and the initial collision eccentricity ɛ2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured v2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caram, Justin R.; Lewis, Nicholas H. C.; Fidler, Andrew F.
2012-03-14
Long-lived excitonic coherence in photosynthetic proteins has become an exciting area of research because it may provide design principles for enhancing the efficiency of energy transfer in a broad range of materials. In this publication, we provide new evidence that long-lived excitonic coherence in the Fenna-Mathew-Olson pigment-protein (FMO) complex is consistent with the assumption of cross correlation in the site basis, indicating that each site shares bath fluctuations. We analyze the structure and character of the beating crosspeak between the two lowest energy excitons in two-dimensional (2D) electronic spectra of the FMO Complex. To isolate this dynamic signature, we usemore » the two-dimensional linear prediction Z-transform as a platform for filtering coherent beating signatures within 2D spectra. By separating signals into components in frequency and decay rate representations, we are able to improve resolution and isolate specific coherences. This strategy permits analysis of the shape, position, character, and phase of these features. Simulations of the crosspeak between excitons 1 and 2 in FMO under different regimes of cross correlation verify that statistically independent site fluctuations do not account for the elongation and persistence of the dynamic crosspeak. To reproduce the experimental results, we invoke near complete correlation in the fluctuations experienced by the sites associated with excitons 1 and 2. This model contradicts ab initio quantum mechanic/molecular mechanics simulations that observe no correlation between the energies of individual sites. This contradiction suggests that a new physical model for long-lived coherence may be necessary. The data presented here details experimental results that must be reproduced for a physical model of quantum coherence in photosynthetic energy transfer.« less
Current transport properties and phase diagram of a Kitaev chain with long-range pairing
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Paganelli, Simone; Lepori, Luca
2018-04-01
We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges. The method relies on the effects of the finite mass of the subgap edge modes in the long-range regime (which survives in the thermodynamic limit) on the single-particle scattering coefficients through the chain connected to two normal leads. Specifically, we show that, when the leads are biased at a voltage V with respect to the superconducting chain, the Fano factor is either zero (in the short-range correlated phase) or 2 e (in the long-range correlated phase). As a result, we find that the Fano factor works as a directly measurable quantity to probe the quantum phase transition between the two phases. In addition, we note a remarkable "critical fractionalization effect" in the Fano factor, which is exactly equal to e along the quantum critical line. Finally, we note that a dual implementation of our proposed device makes it suitable as a generator of large-distance entangled two-particle states.
Noble, Andrew E.; Machta, Jonathan; Hastings, Alan
2015-01-01
Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation (the Moran effect). In contrast, we show how long-range synchronization can emerge over distances much longer than the length scales of either dispersal or environmental correlation. In particular, we demonstrate that the transition from incoherence to long-range synchronization of two-cycle oscillations in noisy spatial population models is described by the Ising universality class of statistical physics. This result shows, in contrast to all previous work, how the Ising critical transition can emerge directly from the dynamics of ecological populations. PMID:25851364
Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2010-03-01
This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|<2). Assuming that non-flow correlations are of the order that is observed in p+p collisions for long-range correlations (|Δη|>2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.
2010-10-01
modernization has occurred during the last decade, much of the current training infrastructure (including physical and electronic simulations of targets and...delivered air-to-groWld weapons (including precision- guidance systems and stand-off [i.e., long-range] capabilities), electronic sensing and... electronically score pilot performance and record it for post-mission replay. The STA will consist of 640 acres, of which up to 400 acres will be developed
Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis.
Buldyrev, S V; Goldberger, A L; Havlin, S; Mantegna, R N; Matsa, M E; Peng, C K; Simons, M; Stanley, H E
1995-05-01
An open question in computational molecular biology is whether long-range correlations are present in both coding and noncoding DNA or only in the latter. To answer this question, we consider all 33301 coding and all 29453 noncoding eukaryotic sequences--each of length larger than 512 base pairs (bp)--in the present release of the GenBank to dtermine whether there is any statistically significant distinction in their long-range correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding sequences have practically no correlations in the range from 10 bp to 100 bp (spectral exponent beta=0.00 +/- 0.04, where the uncertainty is two standard deviations). In contrast, for noncoding sequences, the average value of the spectral exponent beta is positive (0.16 +/- 0.05) which unambiguously shows the presence of long-range correlations. We also separately analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp and find a larger region of power-law behavior. We calculate the probability that these two data sets (coding and noncoding) were drawn from the same distribution and we find that it is less than 10(-10). We obtain independent confirmation of these findings using the method of detrended fluctuation analysis (DFA), which is designed to treat sequences with statistical heterogeneity, such as DNA's known mosaic structure ("patchiness") arising from the nonstationarity of nucleotide concentration. The near-perfect agreement between the two independent analysis methods, FFT and DFA, increases the confidence in the reliability of our conclusion.
Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis
NASA Technical Reports Server (NTRS)
Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Matsa, M. E.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
An open question in computational molecular biology is whether long-range correlations are present in both coding and noncoding DNA or only in the latter. To answer this question, we consider all 33301 coding and all 29453 noncoding eukaryotic sequences--each of length larger than 512 base pairs (bp)--in the present release of the GenBank to dtermine whether there is any statistically significant distinction in their long-range correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding sequences have practically no correlations in the range from 10 bp to 100 bp (spectral exponent beta=0.00 +/- 0.04, where the uncertainty is two standard deviations). In contrast, for noncoding sequences, the average value of the spectral exponent beta is positive (0.16 +/- 0.05) which unambiguously shows the presence of long-range correlations. We also separately analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp and find a larger region of power-law behavior. We calculate the probability that these two data sets (coding and noncoding) were drawn from the same distribution and we find that it is less than 10(-10). We obtain independent confirmation of these findings using the method of detrended fluctuation analysis (DFA), which is designed to treat sequences with statistical heterogeneity, such as DNA's known mosaic structure ("patchiness") arising from the nonstationarity of nucleotide concentration. The near-perfect agreement between the two independent analysis methods, FFT and DFA, increases the confidence in the reliability of our conclusion.
NASA Astrophysics Data System (ADS)
Hollett, Joshua W.; Pegoretti, Nicholas
2018-04-01
Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.
A general range-separated double-hybrid density-functional theory
NASA Astrophysics Data System (ADS)
Kalai, Cairedine; Toulouse, Julien
2018-04-01
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.
Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems
Huo, Peng; Gajdosova, Katarina; Jia, Jiangyong; ...
2017-12-18
Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n, m), in pp and p+Pb collisions, and interpreted the non-zero SC(n, m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges.more » As a result, we argue that the reanalysis of SC(n, m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.« less
Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Peng; Gajdosova, Katarina; Jia, Jiangyong
Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n, m), in pp and p+Pb collisions, and interpreted the non-zero SC(n, m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges.more » As a result, we argue that the reanalysis of SC(n, m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.« less
Quantum effects on compressional Alfven waves in compensated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linearmore » and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.« less
NASA Astrophysics Data System (ADS)
Varotsos, Costas A.; Efstathiou, Maria N.
2017-05-01
A substantial weakness of several climate studies on long-range dependence is the conclusion of long-term memory of the climate conditions, without considering it necessary to establish the power-law scaling and to reject a simple exponential decay of the autocorrelation function. We herewith show one paradigmatic case, where a strong long-range dependence could be wrongly inferred from incomplete data analysis. We firstly apply the DFA method on the solar and volcanic forcing time series over the tropical Pacific, during the past 1000 years and the results obtained show that a statistically significant straight line fit to the fluctuation function in a log-log representation is revealed with slope higher than 0.5, which wrongly may be assumed as an indication of persistent long-range correlations in the time series. We argue that the long-range dependence cannot be concluded just from this straight line fit, but it requires the fulfilment of the two additional prerequisites i.e. reject the exponential decay of the autocorrelation function and establish the power-law scaling. In fact, the investigation of the validity of these prerequisites showed that the DFA exponent higher than 0.5 does not justify the existence of persistent long-range correlations in the temporal evolution of the solar and volcanic forcing during last millennium. In other words, we show that empirical analyses, based on these two prerequisites must not be considered as panacea for a direct proof of scaling, but only as evidence that the scaling hypothesis is plausible. We also discuss the scaling behaviour of solar and volcanic forcing data based on the Haar tool, which recently proved its ability to reliably detect the existence of the scaling effect in climate series.
Electrodynamics of quantum spin liquids
NASA Astrophysics Data System (ADS)
Dressel, Martin; Pustogow, Andrej
2018-05-01
Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.
Spread of Correlations in Long-Range Interacting Quantum Systems
NASA Astrophysics Data System (ADS)
Hauke, P.; Tagliacozzo, L.
2013-11-01
The nonequilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issue by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power law with distance ∝r-α, α>0. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for α>2, weakly long range for 1<α<2 without a clear light cone but with a finite propagation speed of almost all excitations, and fully nonlocal for α<1 with instantaneous transmission of correlations. This last regime breaks generalized Lieb-Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasiparticles remains valid, allowing an intuitive interpretation of our findings via divergences of quasiparticle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
Antiferromagnetic Chern Insulators in Noncentrosymmetric Systems
NASA Astrophysics Data System (ADS)
Jiang, Kun; Zhou, Sen; Dai, Xi; Wang, Ziqiang
2018-04-01
We investigate a new class of topological antiferromagnetic (AF) Chern insulators driven by electronic interactions in two-dimensional systems without inversion symmetry. Despite the absence of a net magnetization, AF Chern insulators (AFCI) possess a nonzero Chern number C and exhibit the quantum anomalous Hall effect (QAHE). Their existence is guaranteed by the bifurcation of the boundary line of Weyl points between a quantum spin Hall insulator and a topologically trivial phase with the emergence of AF long-range order. As a concrete example, we study the phase structure of the honeycomb lattice Kane-Mele model as a function of the inversion-breaking ionic potential and the Hubbard interaction. We find an easy z axis C =1 AFCI phase and a spin-flop transition to a topologically trivial x y plane collinear antiferromagnet. We propose experimental realizations of the AFCI and QAHE in correlated electron materials and cold atom systems.
Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W
2012-05-07
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
Accurate van der Waals coefficients from density functional theory
Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn
2012-01-01
The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765
In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface
Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...
2017-05-12
Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less
Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.
None
2017-12-09
The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pTâs of 1-3GeV/c, 2.0< |??|<4.8 and ?fË0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
Our results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb -1. The correlations are studied over a broad range of pseudorapidity (|η| < 2.4) and over the full azimuth (Φ) as a function of charged particle multiplicity and transverse momentum (p T). In high-multiplicity events, a long-range (|Δη| > 2.0), near-side (ΔΦ≈ 0) structure emerges in the two-particle Dh–Df correlation functions. The magnitude of the correlation exhibitsmore » a pronounced maximum in the range 1.0 < p T < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity. The overall correlation strength at √s = 13 TeV is similar to that found in earlier pp data at √s = 7 TeV, but is measured up to much higher multiplicity values. We observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.« less
Impurity-induced modulations in PdxNbSe3 coupled to charge-density-wave formation
NASA Astrophysics Data System (ADS)
Xue, Q.; Gong, Y.; Drake, D. L.; Qian, J.; Coleman, R. V.
1996-01-01
Very dilute amounts of Pd in PdxNbSe3 introduce long-range electronic modulations of wavelength 7b0, 4b0, 3b0, and 2b0 at room temperature as the Pd concentration increases in the range x=0.002 to x=0.02 while the low-temperature charge-density waves (CDW's) initially remain unchanged. For x>=0.02 the low-temperature CDW's are quenched while the NbSe3 structure remains intact, and the high-temperature modulations disappear, indicating a clear correlation between the two effects. The magnetoquantum oscillations due to magnetic breakdown first detect the band-structure shift followed by the sudden quenching of the nested Fermi surface sheets. The atomic force microscope scans show substantial charge transfer between chains caused by the Pd doping.
Collisionless damping of flows in the TJ-II stellarator
NASA Astrophysics Data System (ADS)
Sánchez, E.; Kleiber, R.; Hatzky, R.; Borchardt, M.; Monreal, P.; Castejón, F.; López-Fraguas, A.; Sáez, X.; Velasco, J. L.; Calvo, I.; Alonso, A.; López-Bruna, D.
2013-01-01
The results of global linear gyrokinetic simulations of residual flows carried out with the code EUTERPE in the TJ-II three-dimensional geometry are reported. The linear response of the plasma to potential perturbations homogeneous in a magnetic surface shows several oscillation frequencies: a Geodesic-acoustic-mode-like frequency, in qualitative agreement with the formula given by Sugama and Watanabe (2006 Plasma Phys. 72 825), and a much lower frequency oscillation in agreement with the predictions of Mishchenko et al (2008 Phys. Plasmas 15 072309) and Helander et al (2011 Plasma Phys. Control. Fusion 53 054006) for stellarators. The dependence of both oscillations on ion and electron temperatures and the magnetic configuration is studied. The low-frequency oscillations are in the frequency range supporting the long-range correlations between potential signals experimentally observed in TJ-II.
NASA Astrophysics Data System (ADS)
Kembro, Jackelyn M.; Flesia, Ana Georgina; Gleiser, Raquel M.; Perillo, María A.; Marin, Raul H.
2013-12-01
Detrended Fluctuation Analysis (DFA) is a method that has been frequently used to determine the presence of long-range correlations in human and animal behaviors. However, according to previous authors using statistical model systems, in order to correctly use DFA different aspects should be taken into account such as: (1) the establishment by hypothesis testing of the absence of short term correlation, (2) an accurate estimation of a straight line in the log-log plot of the fluctuation function, (3) the elimination of artificial crossovers in the fluctuation function, and (4) the length of the time series. Taking into consideration these factors, herein we evaluated the presence of long-range correlation in the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus). In our study, modeling the data with the general autoregressive integrated moving average (ARFIMA) model, we rejected the hypothesis of short-range correlations (d=0) in all cases. We also observed that DFA was able to distinguish between the artificial crossover observed in the temporal pattern of locomotion of Japanese quail and the crossovers in the correlation behavior observed in mosquito larvae locomotion. Although the test duration can slightly influence the parameter estimation, no qualitative differences were observed between different test durations.
Metal-Insulator Transition in Epitaxial Pyrochlore Iridates Bi2Ir2O7 thin Films
NASA Astrophysics Data System (ADS)
Chu, Jiun-Haw; Liu, Jian; Yi, Di; Rayan-Serrao, C.; Suresha, S.; Marti, Xavi; Riggs, Scott; Shapiro, Max; Ian, Fisher; Ramesh, R.
2013-03-01
Recently there is a surge of interest in searching for topological order in correlated electronic systems such as transition metal oxides. The strong spin-orbit interaction of 5d electrons and the geometric frustration in the crystal lattice make the pyrochlore iridate(A2Ir2O7) an ideal candidate to achieve this goal. Pioneering experiments on bulk polycrystalline and single crystal samples revealed a temperature dependent metal-insulator transition coupled to a long range magnetic order, and the transition temperature can be tuned by either A-site ionic radius or an external pressure. In this talk we present our efforts to understand and control the metal-insulator transition and the underlying electronic structure of pyrochlore iridates via epitaxial Bi2Ir2O7 thin films. Bulk Bi2Ir2O7 is located at the metallic side of the phase diagram. However as the film's thickness decreases the transport evolves from a metallic to a strongly localized character. Resonant X-ray spectroscopy suggests that the density of states near Fermi level is dominated by the Ir Je ff =1/2 states. Intriguingly, the magnetoresistance shows a linear field dependence over a wide range of fields at low temperatures, which is possibly consistent with the existence of Dirac nodes.
Coupled opto-electronic oscillator
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor); Maleki, Lute (Inventor)
1999-01-01
A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.
Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer.
Matsushita, Daisuke; Uji, Hirotaka; Kimura, Shunsaku
2018-06-06
Electron transfer (ET) reactions via helical peptides composed of -(Aib-Pro)n- were studied in self-assembled monolayers and compared with -(Ala-Aib)n- peptides. Short Aib-Pro peptides showed slightly higher ET rates due to the better electronic coupling of the Pro residue. But, the 24mer Aib-Pro peptide showed a smaller ET rate than the corresponding Ala-Aib peptide. On the basis of DFT calculations, the deceleration of the ET rate of the longer Aib-Pro peptide is considered to be due to the smaller number of active modes of accordion-like oscillations than the Ala-Aib peptide, which has a strong influence on a long-range ET reaction.
Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.
2012-01-01
Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698
Photoassociation of cold (RbCs)2 tetramers in the ground electronic state
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Côté, Robin
2017-04-01
We theoretically investigate prospects for photoassociative formation of cold (RbCs)2 tetramers from a pair of ultracold RbCs molecules. The long-range region of the potential energy surface (PES) of the lowest electronic state of (RbCs)2 can be affected by orienting both RbCs molecules by an external electric field. In fact, we find a long-range barrier that supports long-range shelf states for relative angles between the dimers' internuclear axes smaller than about 20°. We show that these shelf states can be populated by spontaneous decay from the first excited electronic state which can be efficiently populated by photoassociation from the scattering continuum at ultracold temperatures. The vibrationally excited ground-state tetramer molecules formed this way have sufficiently long lifetimes to allow experimental detection. Moreover, for the relative angles between the dimers close to 20°, the proposed approach may result in production of deeply bound tetramers. Partially supported by the NASA Postdoctoral Program at the NASA Ames Research Center, administered by USRA and the MURI US Army Research Office Grant No. W911NF-14-1-0378 (MG), and by the PIF program of the National Science Foundation Grant No. PHY-141556.
Correlation approach to identify coding regions in DNA sequences
NASA Technical Reports Server (NTRS)
Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1994-01-01
Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.
Long range coherence in free electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1984-01-01
The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.; ...
2017-01-19
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
Multifractal Cross Wavelet Analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
Reflectance of topologically disordered photonic-crystal films
NASA Astrophysics Data System (ADS)
Vigneron, Jean-Pol; Lousse, Virginie M.; Biro, Laszlo P.; Vertesy, Zofia; Balint, Zolt
2005-04-01
Periodicity implies the creation of discretely diffracted beams while various departures from periodicity lead to broadened scattering angles. This effect is investigated for disturbed lattices exhibiting randomly varying periods. In the Born approximation, the diffused reflection is shown to be related to a pair correlation function constructed from the distribution of the film scattering power. The technique is first applied to a natural photonic crystal found on the ventral side of the wings of the butterfly Cyanophrys remus, where scanning electron microscopy reveals the formation of polycrystalline photonic structures. Second, the disorder in the distribution of the cross-ribs on the scales another butterfly, Lycaena virgaureae, is investigated. The irregular arrangement of scatterers found in chitin structure of this insect produces light reflection in the long-wavelength part of the visible range, with a quite unusual broad directionality. The use of the pair correlation function allows to propose estimates of the diffusive spreading in these very different systems.
Xu, Xin; Goddard, William A
2004-03-02
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
NASA Astrophysics Data System (ADS)
Xu, Xin; Goddard, William A., III
2004-03-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
Xu, Xin; Goddard, William A.
2004-01-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235
NASA Astrophysics Data System (ADS)
Ogunsua, B. O.; Laoye, J. A.
2018-05-01
In this paper, the Tsallis non-extensive q-statistics in ionospheric dynamics was investigated using the total electron content (TEC) obtained from two Global Positioning System (GPS) receiver stations. This investigation was carried out considering the geomagnetically quiet and storm periods. The micro density variation of the ionospheric total electron content was extracted from the TEC data by method of detrending. The detrended total electron content, which represent the variation in the internal dynamics of the system was further analyzed using for non-extensive statistical mechanics using the q-Gaussian methods. Our results reveals that for all the analyzed data sets the Tsallis Gaussian probability distribution (q-Gaussian) with value q > 1 were obtained. It was observed that there is no distinct difference in pattern between the values of qquiet and qstorm. However the values of q varies with geophysical conditions and possibly with local dynamics for the two stations. Also observed are the asymmetric pattern of the q-Gaussian and a highly significant level of correlation for the q-index values obtained for the storm periods compared to the quiet periods between the two GPS receiver stations where the TEC was measured. The factors responsible for this variation can be mostly attributed to the varying mechanisms resulting in the self-reorganization of the system dynamics during the storm periods. The result shows the existence of long range correlation for both quiet and storm periods for the two stations.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.
2015-08-01
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J
2015-08-12
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
Hidden asymmetry and long range rapidity correlations
NASA Astrophysics Data System (ADS)
Bialas, A.; Bzdak, A.; Zalewski, K.
2012-04-01
Interpretation of long-range rapidity correlations in terms of the fluctuating rapidity density distribution of the system created in high-energy collisions is proposed. When applied to recent data of the STAR Collaboration, it shows a substantial asymmetric component in the shape of this system in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at central rapidity. This effect may seriously influence the hydrodynamic expansion of the system.
Schramm-Loewner evolution of the accessible perimeter of isoheight lines of correlated landscapes
NASA Astrophysics Data System (ADS)
Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
Real landscapes exhibit long-range height-height correlations, which are quantified by the Hurst exponent H. We give evidence that for negative H, in spite of the long-range nature of correlations, the statistics of the accessible perimeter of isoheight lines is compatible with Schramm-Loewner evolution curves and therefore can be mapped to random walks, their fractal dimension determining the diffusion constant. Analytic results are recovered for H=-1 and H=0 and a conjecture is proposed for the values in between. By contrast, for positive H, we find that the random walk is not Markovian but strongly correlated in time. Theoretical and practical implications are discussed.
Self-affinity in the dengue fever time series
NASA Astrophysics Data System (ADS)
Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.
2016-06-01
Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.
Linking scales in sea ice mechanics
Weiss, Jérôme; Dansereau, Véronique
2017-01-01
Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell–elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025300
Linking scales in sea ice mechanics
NASA Astrophysics Data System (ADS)
Weiss, Jérôme; Dansereau, Véronique
2017-02-01
Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.
NASA Astrophysics Data System (ADS)
Babich, Leonid; Bochkov, Evgenii
2017-11-01
The hypothetical mechanism of electric field amplification at contact of positive and negative streamers in a streamer corona up to magnitudes required for the generation of runaway electrons and secondary Bremsstrahlung in the x-ray range, observed in long spark discharges in the open atmosphere, is analyzed. The development of two streamers, moving towards each other in interelectrode gaps of the centimetre range, is numerically simulated at applied voltages from 73 to 250 kV. It is shown that the size of the domain with strong electric field, with intensity sufficient for the thermal electron runaway, is of 1-2 mm. The mean field intensity in this domain increases up to magnitudes of ≈250-280 kV cm-1. The maximum energy, to which electrons are capable of energizing in such field, is in the range of 20-70 keV. However, the electron energy is limited by an extremely small life-time of the strong field domain (less than 20 ps).
Detrended fluctuation analysis of short datasets: An application to fetal cardiac data
NASA Astrophysics Data System (ADS)
Govindan, R. B.; Wilson, J. D.; Preißl, H.; Eswaran, H.; Campbell, J. Q.; Lowery, C. L.
2007-02-01
Using detrended fluctuation analysis (DFA) we perform scaling analysis of short datasets of length 500-1500 data points. We quantify the long range correlation (exponent α) by computing the mean value of the local exponents αL (in the asymptotic regime). The local exponents are obtained as the (numerical) derivative of the logarithm of the fluctuation function F(s) with respect to the logarithm of the scale factor s:αL=dlog10F(s)/dlog10s. These local exponents display huge variations and complicate the correct quantification of the underlying correlations. We propose the use of the phase randomized surrogate (PRS), which preserves the long range correlations of the original data, to minimize the variations in the local exponents. Using the numerically generated uncorrelated and long range correlated data, we show that performing DFA on several realizations of PRS and estimating αL from the averaged fluctuation functions (of all realizations) can minimize the variations in αL. The application of this approach to the fetal cardiac data (RR intervals) is discussed and we show that there is a statistically significant correlation between α and the gestation age.
Boundary Information Inflow Enhances Correlation in Flocking
NASA Astrophysics Data System (ADS)
Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco
2013-04-01
The most conspicuous trait of collective animal behavior is the emergence of highly ordered structures. Less obvious to the eye, but perhaps more profound a signature of self-organization, is the presence of long-range spatial correlations. Experimental data on starling flocks in 3D show that the exponent ruling the decay of the velocity correlation function, C(r)˜1/rγ, is extremely small, γ≪1. This result can neither be explained by equilibrium field theory nor by off-equilibrium theories and simulations of active systems. Here, by means of numerical simulations and theoretical calculations, we show that a dynamical field applied to the boundary of a set of Heisenberg spins on a 3D lattice gives rise to a vanishing exponent γ, as in starling flocks. The effect of the dynamical field is to create an information inflow from border to bulk that triggers long-range spin-wave modes, thus giving rise to an anomalously long-ranged correlation. The biological origin of this phenomenon can be either exogenous—information produced by environmental perturbations is transferred from boundary to bulk of the flock—or endogenous—the flock keeps itself in a constant state of dynamical excitation that is beneficial to correlation and collective response.
23 CFR 450.214 - Development and content of the long-range statewide transportation plan.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., Tribal, and local agencies responsible for land use management, natural resources, environmental... transportation plans to inventories of natural or historic resources, if available. (j) A long-range statewide...) in electronically accessible formats and means, such as the World Wide Web, as described in § 450.210...
23 CFR 450.214 - Development and content of the long-range statewide transportation plan.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., Tribal, and local agencies responsible for land use management, natural resources, environmental... transportation plans to inventories of natural or historic resources, if available. (j) A long-range statewide...) in electronically accessible formats and means, such as the World Wide Web, as described in § 450.210...
23 CFR 450.214 - Development and content of the long-range statewide transportation plan.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., Tribal, and local agencies responsible for land use management, natural resources, environmental... transportation plans to inventories of natural or historic resources, if available. (j) A long-range statewide...) in electronically accessible formats and means, such as the World Wide Web, as described in § 450.210...
Robust image alignment for cryogenic transmission electron microscopy.
McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning
2017-03-01
Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.
Fortmann, Carsten; Wierling, August; Röpke, Gerd
2010-02-01
The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.
NASA Astrophysics Data System (ADS)
Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.
2015-05-01
The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.
Zhang, Lijuan; Qi, Dongdong; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang
2011-02-01
The molecular and electronic structures together with the electronic absorption spectra of a series of metal free meso-ferrocenylporphyrins, namely 5-ferrocenylporphyrin (1), 5,10-diferrocenylporphyrin (2), 5,15-diferrocenylporphyrin (3), 5,10,15-triferrocenylporphyrin (4), and 5,10,15,20-tetraferrocenylporphyrin (5) have been studied with the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. For the purpose of comparative studies, metal free porphyrin without any ferrocenyl group (0) and isolated ferrocene (6) were also calculated. The effects of the number and position of meso-attached ferrocenyl substituents on their molecular and electronic structures, atomic charges, molecular orbitals, and electronic absorption spectra of 1-5 were systematically investigated. The orbital coupling is investigated in detail, explaining well the long range coupling of ferrocenyl substituents connected via porphyrin core and the systematic change in the electronic absorption spectra of porphyrin compounds. Copyright © 2010 Elsevier Inc. All rights reserved.
Correlation of CVD Diamond Electron Emission with Film Properties
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.
1996-03-01
Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.
Electron correlations in partially filled lowest and excited Landau levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojs, Arkadiusz
2001-03-15
The electron correlations near the half-filling of the lowest and excited Landau levels (LL's) are studied using numerical diagonalization. It is shown that in the low-lying states electrons avoid pair states with relative angular momenta R corresponding to positive anharmonicity of the interaction pseudopotential V(R). In the lowest LL, the superharmonic behavior of V(R) causes Laughlin correlations (avoiding pairs with R=1) and the Laughlin-Jain series of incompressible ground states. In the first excited LL, V(R) is harmonic at short range and a different series of incompressible states results. Similar correlations occur in the paired Moore-Read {nu}=5/2 state and in themore » {nu}=7/3 and 8/3 states, all having small total parentage from R=1 and 3 and large parentage from R=5. The {nu}=7/3 and 8/3 states are different from Laughlin {nu}=1/3 and 2/3 states and, in finite systems, occur at a different LL degeneracy (flux). The series of Laughlin-correlated states of electron pairs at {nu}=2+2/(q{sub 2}+2)=8/3, 5/2, 12/5, and 7/3 is proposed, although only in the {nu}=5/2 state pairing has been confirmed numerically. In the second excited LL, V(R) is subharmonic at short range and (near the half-filling) the electrons group into spatially separated larger {nu}=1 droplets to minimize the number of strongly repulsive pair states at R=3 and 5.« less
Long-range correlation of the membrane potential in neocortical neurons during slow oscillation
Volgushev, Maxim; Chauvette, Sylvain; Timofeev, Igor
2012-01-01
Large amplitude slow waves are characteristic for the summary brain activity, recorded as electroencephalogram (EEG) or local field potentials (LFP), during deep stages of sleep and some types of anesthesia. Slow rhythm of the synchronized EEG reflects an alternation of active (depolarized, UP) and silent (hyperpolarized, DOWN) states of neocortical neurons. In neurons, involvement in the generalized slow oscillation results in a long-range synchronization of changes of their membrane potential as well as their firing. Here, we aimed at intracellular analysis of details of this synchronization. We asked which components of neuronal activity exhibit long-range correlations during the synchronized EEG? To answer this question, we made simultaneous intracellular recordings from two to four neocortical neurons in cat neocortex. We studied how correlated is the occurrence of active and silent states, and how correlated are fluctuations of the membrane potential in pairs of neurons located close one to the other or separated by up to 13 mm. We show that strong long-range correlation of the membrane potential was observed only (i) during the slow oscillation but not during periods without the oscillation, (ii) during periods which included transitions between the states but not during within-the-state periods, and (iii) for the low-frequency (<5 Hz) components of membrane potential fluctuations but not for the higher-frequency components (>10 Hz). In contrast to the neurons located several millimeters one from the other, membrane potential fluctuations in neighboring neurons remain strongly correlated during periods without slow oscillation. We conclude that membrane potential correlation in distant neurons is brought about by synchronous transitions between the states, while activity within the states is largely uncorrelated. The lack of the generalized fine-scale synchronization of membrane potential changes in neurons during the active states of slow oscillation may allow individual neurons to selectively engage in short living episodes of correlated activity—a process that may be similar to dynamical formation of neuronal ensembles during activated brain states. PMID:21854963
NASA Astrophysics Data System (ADS)
Zierenberg, Johannes; Fricke, Niklas; Marenz, Martin; Spitzner, F. P.; Blavatska, Viktoria; Janke, Wolfhard
2017-12-01
We study long-range power-law correlated disorder on square and cubic lattices. In particular, we present high-precision results for the percolation thresholds and the fractal dimension of the largest clusters as a function of the correlation strength. The correlations are generated using a discrete version of the Fourier filtering method. We consider two different metrics to set the length scales over which the correlations decay, showing that the percolation thresholds are highly sensitive to such system details. By contrast, we verify that the fractal dimension df is a universal quantity and unaffected by the choice of metric. We also show that for weak correlations, its value coincides with that for the uncorrelated system. In two dimensions we observe a clear increase of the fractal dimension with increasing correlation strength, approaching df→2 . The onset of this change does not seem to be determined by the extended Harris criterion.
NASA Astrophysics Data System (ADS)
Prodhan, Suryoday; Ramasesha, S.
2018-05-01
The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.
Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.
Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J
2014-01-01
Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.
Quantum-state transfer through long-range correlated disordered channels
NASA Astrophysics Data System (ADS)
Almeida, Guilherme M. A.; de Moura, Francisco A. B. F.; Lyra, Marcelo L.
2018-05-01
We study quantum-state transfer in XX spin-1/2 chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform almost perfect quantum-state transmissions even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough, with the cost of having long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest that coexistence between localized and delocalized states can diminish effects of static perturbations in solid-state devices for quantum communication.
Hu, Jing; Zheng, Yi; Gao, Jianbo
2013-01-01
Understanding the causal relation between neural inputs and movements is very important for the success of brain-machine interfaces (BMIs). In this study, we analyze 104 neurons’ firings using statistical, information theoretic, and fractal analysis. The latter include Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA), and wavelet multifractal analysis. We find neuronal firings are highly non-stationary, and Fano factor analysis always indicates long-range correlations in neuronal firings, irrespective of whether those firings are correlated with movement trajectory or not, and thus does not reveal any actual correlations between neural inputs and movements. On the other hand, MF-AFA and wavelet multifractal analysis clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a “re-setting” effect at the start of each reaching task, in the sense that within the movement correlated neurons the spike trains’ long-range dependences persisted about the length of time the monkey used to switch between task executions. A new task execution re-sets their activity, making them only weakly correlated with their prior activities on longer time scales. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses. PMID:24130549
Four-state rock-paper-scissors games in constrained Newman-Watts networks.
Zhang, Guo-Yong; Chen, Yong; Qi, Wei-Kai; Qing, Shao-Meng
2009-06-01
We study the cyclic dominance of three species in two-dimensional constrained Newman-Watts networks with a four-state variant of the rock-paper-scissors game. By limiting the maximal connection distance Rmax in Newman-Watts networks with the long-range connection probability p , we depict more realistically the stochastic interactions among species within ecosystems. When we fix mobility and vary the value of p or Rmax, the Monte Carlo simulations show that the spiral waves grow in size, and the system becomes unstable and biodiversity is lost with increasing p or Rmax. These results are similar to recent results of Reichenbach et al. [Nature (London) 448, 1046 (2007)], in which they increase the mobility only without including long-range interactions. We compared extinctions with or without long-range connections and computed spatial correlation functions and correlation length. We conclude that long-range connections could improve the mobility of species, drastically changing their crossover to extinction and making the system more unstable.
Entanglement and fluctuations in the XXZ model with power-law interactions
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso
2017-06-01
We investigate the ground-state properties of the spin-1 /2 XXZ model with power-law-decaying (1 /rα ) interactions, which describe spins interacting with long-range transverse (XX) ferromagnetic interactions and longitudinal (Z) antiferromagnetic interactions, or hard-core bosons with long-range repulsion and hopping. The long-range nature of the couplings allows us to quantitatively study the spectral, correlation, and entanglement properties of the system by making use of linear spin-wave theory, supplemented with density-matrix renormalization group in one-dimensional systems. Our most important prediction is the existence of three distinct coupling regimes, depending on the decay exponent α and number of dimensions d : (1) a short-range regime for α >d +σc (where σc=1 in the gapped Néel antiferromagnetic phase exhibited by the XXZ model, and σc=2 in the gapless XY ferromagnetic phase), sharing the same properties as those of finite-range interactions (α =∞ ); (2) a long-range regime α
Balance and muscle power of children with Charcot-Marie-Tooth.
Silva, Tais R; Testa, Amanda; Baptista, Cyntia R J A; Marques, Wilson; Mattiello-Sverzut, Ana C
2014-01-01
In certain diseases, functional constraints establish a greater relationship with muscle power than muscle strength. However, in hereditary peripheral polyneuropathies, no such relationship was found in the literature. In children with Charcot-Marie-Tooth (CMT), to identify the impact of muscle strength and range of movement on the static/dynamic balance and standing long jump based on quantitative and functional variables. The study analyzed 19 participants aged between 6 and 16 years, of both genders and with clinical diagnoses of CMT of different subtypes. Anthropometric data, muscle strength of the lower limbs (hand-held dynamometer), ankle and knee range of movement, balance (Pediatric Balance Scale) and standing long jump distance were obtained by standardized procedures. For the statistical analysis, Pearson and Spearman correlation coefficients were used. There was a strong positive correlation between balance and the muscle strength of the right plantar flexors (r=0.61) and dorsiflexors (r=0.59) and a moderate correlation between balance and the muscle strength of inversion (r=0.41) and eversion of the right foot (r=0.44). For the long jump and range of movement, there was a weak positive correlation with right and left plantar flexion (r=0.20 and r=0.12, respectively) and left popliteal angle (r=0.25), and a poor negative correlation with left dorsiflexion (r=-0.15). The data on the patients analyzed suggests that the maintenance of distal muscle strength favors performance during balance tasks, while limitations in the range of movement of the legs seem not to be enough to influence the performance of the horizontal long jump.
Long-range correlations and charge transport properties of DNA sequences
NASA Astrophysics Data System (ADS)
Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui
2010-04-01
By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, J.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Cortina Gil, E.; De Favereau De Jeneret, J.; Delaere, C.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.; Cabrera, A.; Moreno, B. Gomez; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Khalil, S.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Fedi, G.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; LeGrand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Lomidze, D.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Dietz-Laursonn, E.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Bontenackels, M.; Davids, M.; Duda, M.; Flügge, G.; Geenen, H.; Giffels, M.; Haj Ahmad, W.; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.; Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Pitzl, D.; Raspereza, A.; Raval, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schröder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Stiliaris, E.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.; Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.; Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gomber, B.; Gupta, P.; Jain, S.; Jain, S.; Khurana, R.; Kumar, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Mondal, N. K.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.; Azzia, P.; Bacchetta, N.; Bellan, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Checchia, P.; De Mattia, M.; Dorigo, T.; Gasparini, F.; Gonella, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Passaseo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.; Biasini, M.; Bilei, G. M.; Caponeri, B.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foò, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.; Heo, S. G.; Nam, S. K.; Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D.; Son, D. C.; Son, T.; Kim, Zero; Kim, J. Y.; Song, S.; Choi, S.; Hong, B.; Jeong, M. S.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.; Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Tam, J.; Butler, P. H.; Doesburg, R.; Silverwood, H.; Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Caballero, I. Gonzalez; Lloret Iglesias, L.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Coarasa Perez, J. A.; Curé, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gomez-Reino Garrido, R.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Racz, A.; Rodrigues Antunes, J.; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tadel, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Bortignon, P.; Caminada, L.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Martinez Ruiz del Arbol, P.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M.-C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.; Aguiló, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.; Chang, Y. H.; Chen, K. H.; Dutta, S.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Ekenel, A.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Yilmaz, S.; Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.; Deliomeroglu, M.; Demir, D.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.; Basso, L.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.; Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.; Hatakeyama, K.; Liu, H.; Bose, T.; Carrera Jarrin, E.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; T, W.; Vlimant, J. R.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.; Agostino, L.; Alexander, J.; Cassel, D.; Chatterjee, A.; Das, S.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Biselli, A.; Cirino, G.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.; Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.; Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hamdan, S.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.; Barfuss, A. f.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y.-J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Cushman, P.; Dahmes, B.; DeBenedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.; Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Lopes Pegna, D.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Jindal, P.; Parashar, N.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Yan, M.; Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Mattson, M.; Milstène, C.; Sakharov, A.; Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Flood, K.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Palmonari, F.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.
2011-07-01
First measurements of dihadron correlationsfor charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76TeV over a broad range in relative pseudorapidity (∆η) and the full range of relative azimuthal angle (∆ϕ). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (∆ϕ ≈ π) azimuthal correlation is observed at all ∆η, as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in ∆η are observed for particles with similar ϕ values. This phenomenon, also known as the "ridge", persists up to at least |∆η| = 4. For particles with transverse momenta ( p T) of2-4 GeV/ c, the ridge is found to be most prominent when these particles are correlated with particles of p T = 2-6 GeV/ c, and to be much reduced when paired with particles of p T = 10-12 GeV/ c.
A theory of solar type 3 radio bursts
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.
1979-01-01
Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.
Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite
Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru
2016-01-01
When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874
Emergent gauge fields and their nonperturbative effects in correlated electrons
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Tanaka, Akihiro
2015-06-01
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one-dimensional physics, and subsequently finding natural generalizations to higher dimensions.
Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Tanaka, Akihiro
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one dimensional physics, and subsequently finding natural generalizations to higher dimensions.
Nitric Oxide Produced by Energetic Electron Precipitation During a Geomagnetic Storm in April 2010
NASA Astrophysics Data System (ADS)
Smith-Johnsen, C.; Nesse, T. H.; Glesnes Ødegaard, L. K.; Orsolini, Y.; Stordal, F.; Hendrickx, K.; Megner, L. S.
2015-12-01
In April 2010 a relativistic electron precipitation (REP) event occurred. A coronal mass ejection (CME) caused the Dst-index to reach -80nT, followed by solar wind speeds of over 600 km/s lasting for three days. Electron fluxes measured by the NOAA POES satellites were increased by an order of magnitude and stayed elevated for three days. We investigate the atmospheric nitric oxide (NO) response to these incoming energetic electrons. By combining the low and medium energy electron fluxes from the Total Energy Detector (TED) and Medium Energy Proton and Electron Detector (MEPED) on the NOAA POES satellites we get a continuous energy spectrum ranging from 1-1100 keV, which corresponds to atmospheric altitudes of 50-150km. The multiple NOAA satellites enables us to construct global maps of the precipitating electrons. The energy spectra of the incoming electron fluxes are compared to NO measurements from The Solar Occultation for Ice Experiment (SOFIE) on board the Aeronomy of Ice in the Mesosphere (AIM) satellite and NO from Sub-Millimeter Radiometer (SMR) on the Odin satellite. The correlation between the incoming electrons and the increase of NO is strongly affected by NO's long lifetime when not exposed to sunlight. Winds from Whole Atmosphere Community Climate Model (WACCM) and the empirical wind model HWM07 are used to take into account the transport of NO in order to understand the total impact of the incoming electrons.
NASA Astrophysics Data System (ADS)
Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn
The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. r.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Galanti, M.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zucchetta, A.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; Moon, D. H.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.; CMS Collaboration
2015-03-01
A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charged leptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of 19.6 (20.5 ) fb-1 in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at √{s }=8 TeV . No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presented as a function of the long-lived particle's mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range 125 - 1000 GeV /c2 decays into a pair of long-lived neutral bosons in the mass range 20 - 350 GeV /c2 , each of which can then decay to dileptons, the upper limits obtained are typically in the range 0.2-10 fb for mean proper decay lengths of the long-lived particles in the range 0.01-100 cm. In the case of the lowest Higgs mass considered (125 GeV /c2 ), the limits are in the range 2-50 fb. These limits are sensitive to Higgs boson branching fractions as low as 1 0-4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com
The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of researchmore » results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.« less
Characteristic energy range of electron scattering due to plasmaspheric hiss
Ma, Q.; Li, W.; Thorne, R. M.; ...
2016-11-15
In this paper, we investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4–200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L =more » 2–6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV–1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Finally, our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, B. J.; Rosenkranz, S.; Kang, H. J.
2015-07-01
Utilizing single-crystal synchrotron x-ray scattering, we observe distorted CuO 2 planes in the electron- doped superconductor Pr 1-xLaCe xCuO 4+δ , x =0.12. Resolution-limited rods of scattering are indicative of a long-range two-dimensional 2√2 × 2√2 superstructure in the a-b plane, adhering to planar space-group symmetry p4gm, which is subject to stacking disorder perpendicular to the planes. This superstructure is present only in annealed, superconducting samples, but not in the as-grown, nonsuperconducting samples. These long-range distortions of the CuO 2 planes, which are generally considered to be detrimental to superconductivity, have avoided detection to date due to the challenges ofmore » observing and interpreting subtle diffuse-scattering features.« less
NASA Astrophysics Data System (ADS)
The QCD Evolution 2016 workshop was held at the National Institute for Subatomic Physics (Nikhef) in Amsterdam, May 30 - June 3, 2016. The workshop is a continuation of a series of workshops held during five consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2016. The program of QCD Evolution 2016 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
NASA Astrophysics Data System (ADS)
2017-05-01
The QCD Evolution 2017 workshop was held at Jefferson Lab, May 22-26, 2017. The workshop is a continuation of a series of workshops held during six consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM, and in 2016 at the National Institute for Subatomic Physics (Nikhef) in Amsterdam. With the rapid developments in our understanding of the evolution of parton distributions including TMDs, GPDs, low-x, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2017. The program of QCD Evolution 2017 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to RHIC and LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
Commensurability and stability in nonperiodic systems
Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.
2005-01-01
We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763
Search for three-nucleon short-range correlations in light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Z.; Solvignon, P.; Nguyen, D.
Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.
Search for three-nucleon short-range correlations in light nuclei
Ye, Z.; Solvignon, P.; Nguyen, D.; ...
2018-06-18
Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.
Focused Research Group in Correlated Electron and Complex Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziqiang
While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedralmore » environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new discoveries and the resolution to outstanding and unresolved issues. It should be emphasized that the DOE funding provided the crucial support for the close and meaningful collaborations of the focused research group that go far beyond simply putting the research papers from each group together. Indeed, the majority of the publications involved multiple PIs and collaborations between theory and experiments.« less
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Gao, Jianbo; Hu, Jing; Mao, Xiang; Perc, Matjaž
2012-01-01
Culturomics was recently introduced as the application of high-throughput data collection and analysis to the study of human culture. Here, we make use of these data by investigating fluctuations in yearly usage frequencies of specific words that describe social and natural phenomena, as derived from books that were published over the course of the past two centuries. We show that the determination of the Hurst parameter by means of fractal analysis provides fundamental insights into the nature of long-range correlations contained in the culturomic trajectories, and by doing so offers new interpretations as to what might be the main driving forces behind the examined phenomena. Quite remarkably, we find that social and natural phenomena are governed by fundamentally different processes. While natural phenomena have properties that are typical for processes with persistent long-range correlations, social phenomena are better described as non-stationary, on–off intermittent or Lévy walk processes. PMID:22337632
Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...
2014-11-19
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
NASA Astrophysics Data System (ADS)
Diosdado, A. Muñoz; Cruz, H. Reyes; Hernández, D. Bueno; Coyt, G. Gálvez; González, J. Arellanes
2008-08-01
Heartbeat fluctuations exhibit temporal structure with fractal and nonlinear features that reflect changes in the neuroautonomic control. In this work we have used the detrended fluctuation analysis (DFA) to analyze heartbeat (RR) intervals of 54 healthy subjects and 40 patients with congestive heart failure during 24 hours; we separate time series for sleep and wake phases. We observe long-range correlations in time series of healthy persons and CHF patients. However, the correlations for CHF patients are weaker than the correlations for healthy persons; this fact has been reported by Ashkenazy et al. [1] but with a smaller group of subjects. In time series of CHF patients there is a crossover, it means that the correlations for high and low frequencies are different, but in time series of healthy persons there are not crossovers even if they are sleeping. These crossovers are more pronounced for CHF patients in the sleep phase. We decompose the heartbeat interval time series into magnitude and sign series, we know that these kinds of signals can exhibit different time organization for the magnitude and sign and the magnitude series relates to nonlinear properties of the original time series, while the sign series relates to the linear properties. Magnitude series are long-range correlated, while the sign series are anticorrelated. Newly, the correlations for healthy persons are different that the correlations for CHF patients both for magnitude and sign time series. In the paper of Ashkenazy et al. they proposed the empirical relation: αsign≈1/2(αoriginal+αmagnitude) for the short-range regime (high frequencies), however, we have found a different relation that in our calculations is valid for short and long-range regime: αsign≈1/4(αoriginal+αmagnitude).
Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung
2013-04-04
Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.
Dynamics of correlations in long-range quantum systems follwing a quantum quench
NASA Astrophysics Data System (ADS)
Cevolani, Lorenzo; Carleo, Giuseppe; Sanchez-Palencia, Laurent
We study how and how fast correlations can spread in a quantum system abruptly driven out of equilibrium by a quantum quench. This protocol can be experimentally realized and it allow to address fundamental questions concerning the quasi-locality principle in isolated quantum systems with both short- and long-range interactions. We focus on two different models describing, respectively, lattice bosons, and spins. Our study is based on a combined approach, based on one hand on accurate many-body numerical calculations and on the other hand on a quasi-particle microscopic theory. We find that, for sufficiently fast decaying interaction potential the propagation is ballistic and the Lieb-Robinson bounds for long-range interactions are never attained. When the interactions are really long-range, the scenario is completely different in the two cases. In the bosonic system the locality is preserved and a ballistic propagation is still present while in the spin system an instantaneous propagation of correlations completely destroys locality. Using the microscopic point of view we can quantitatively describe all the different regimes, from instantaneous to ballistic, found in the spin model and we explain how locality is protected in the bosonic model leading to a ballistic propagation. ERC (FP7/2007-2013 No. 256294), QUIC (H2020 No. 641122).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.
Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are inmore » balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.« less
Linking scales in sea ice mechanics.
Weiss, Jérôme; Dansereau, Véronique
2017-02-13
Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels.
Ing, Nicole L; Spencer, Ryan K; Luong, Son H; Nguyen, Hung D; Hochbaum, Allon I
2018-03-27
Examples of long-range electronic conductivity are rare in biological systems. The observation of micrometer-scale electronic transport through protein wires produced by bacteria is therefore notable, providing an opportunity to study fundamental aspects of conduction through protein-based materials and natural inspiration for bioelectronics materials. Borrowing sequence and structural motifs from these conductive protein fibers, we designed self-assembling peptides that form electronically conductive nanofibers under aqueous conditions. Conductivity in these nanofibers is distinct for two reasons: first, they support electron transport over distances orders of magnitude greater than expected for proteins, and second, the conductivity is mediated entirely by amino acids lacking extended conjugation, π-stacking, or redox centers typical of existing organic and biohybrid semiconductors. Electrochemical transport measurements show that the fibers support ohmic electronic transport and a metallic-like temperature dependence of conductance in aqueous buffer. At higher solution concentrations, the peptide monomers form hydrogels, and comparisons of the structure and electronic properties of the nanofibers and gels highlight the critical roles of α-helical secondary structure and supramolecular ordering in supporting electronic conductivity in these materials. These findings suggest a structural basis for long-range electronic conduction mechanisms in peptide and protein biomaterials.
Allegrini, P; Balocchi, R; Chillemi, S; Grigolini, P; Hamilton, P; Maestri, R; Palatella, L; Raffaelli, G
2003-06-01
We analyze RR heartbeat sequences with a dynamic model that satisfactorily reproduces both the long- and the short-time statistical properties of heart beating. These properties are expressed quantitatively by means of two significant parameters, the scaling delta concerning the asymptotic effects of long-range correlation, and the quantity 1-pi establishing the amount of uncorrelated fluctuations. We find a correlation between the position in the phase space (delta, pi) of patients with congestive heart failure and their mortality risk.
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Jiang, Zhi-Qiang; Gu, Gao-Feng; Xiong, Xiong; Zhou, Wei-Xing
2015-10-01
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
The Fine-Scale Functional Correlation of Striate Cortex in Sighted and Blind People
Butt, Omar H.; Benson, Noah C.; Datta, Ritobrato
2013-01-01
To what extent are spontaneous neural signals within striate cortex organized by vision? We examined the fine-scale pattern of striate cortex correlations within and between hemispheres in rest-state BOLD fMRI data from sighted and blind people. In the sighted, we find that corticocortico correlation is well modeled as a Gaussian point-spread function across millimeters of striate cortical surface, rather than degrees of visual angle. Blindness produces a subtle change in the pattern of fine-scale striate correlations between hemispheres. Across participants blind before the age of 18, the degree of pattern alteration covaries with the strength of long-range correlation between left striate cortex and Broca's area. This suggests that early blindness exchanges local, vision-driven pattern synchrony of the striate cortices for long-range functional correlations potentially related to cross-modal representation. PMID:24107953
Off-axis beam dynamics in rf-gun-based electron photoinjectors
Huang, R.; Mitchell, Chad; Papadopoulos, C.; ...
2016-11-22
The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less
Off-axis beam dynamics in rf-gun-based electron photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, R.; Mitchell, Chad; Papadopoulos, C.
The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less
NASA Astrophysics Data System (ADS)
Dondi, Michele; Ardit, Matteo; Cruciani, Giuseppe
2013-06-01
An original approach has been developed herein to explore the correlations between short- and long-range structural properties of solid solutions. X-ray diffraction (XRD) and electronic absorption spectroscopy (EAS) data were combined on a (Ca,Sr,Ba)2(Mg0.7Co0.3)Si2O7 join to determine average and local distances, respectively. Instead of varying the EAS-active ion concentration along the join, as has commonly been performed in previous studies, the constant replacement of Mg2+ by a minimal fraction of a similar size cation (Co2+) has been used to assess the effects of varying second-nearest neighbor cations (Ca, Sr, Ba) on the local distances of the first shell. A comparison between doped and un-doped series has shown that, although the overall symmetry of the Co-centered T1-site was retained, greater relaxation occurs at the CoO4 tetrahedra which become increasingly large and more distorted than the MgO4 tetrahedra. This is indicated by an increase in both the quadratic elongation (λT1) and the bond angle variance (σ2T1) distortion indices, as the whole structure expands due to an increase in size in the second-nearest neighbors. This behavior highlights the effect of the different electronic configurations of Co2+ (3d7) and Mg2+ (2p6) in spite of their very similar ionic size. Furthermore, although the overall symmetry of the Co-centered T1-site is retained, relatively limited (<10 deg) angular variations in O-Co2+-O occur along the solid solution series and large changes are found in molar absorption coefficients showing that EAS Co2+-bands are highly sensitive to change in the local structure.
Hearing: An Overlooked Fact in Relationship to Dyslexia.
ERIC Educational Resources Information Center
Johansen, Kjeld
Sophisticated neurological research shows that early problems with auditory perception can result in long-range negative effects for the linguistic processes in general, and such long-range effects must be assumed to be correlated with induced degenerative changes in the auditory system and perhaps in the brain's linguistic sector. This research…
Universal characteristics of fractal fluctuations in prime number distribution
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-11-01
The frequency of occurrence of prime numbers at unit number spacing intervals exhibits self-similar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations and population dynamics. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualizes the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations or an inter-connected network with associated long-range correlations. The model predictions are as follows: (1) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (2) Fractals signify quantum-like chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (3) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organization of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Long; Ma, Yong-Tao; Zhai, Yu; Li, Hui
2018-03-01
A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.
Brambila, Danilo S; Harvey, Alex G; Houfek, Karel; Mašín, Zdeněk; Smirnova, Olga
2017-08-02
We present the first ab initio multi-channel photoionization calculations for NO 2 in the vicinity of the 2 A 1 / 2 B 2 conical intersection, for a range of nuclear geometries, using our newly developed set of tools based on the ab initio multichannel R-matrix method. Electronic correlation is included in both the neutral and the scattering states of the molecule via configuration interaction. Configuration mixing is especially important around conical intersections and avoided crossings, both pertinent for NO 2 , and manifests itself via significant variations in photoelectron angular distributions. The method allows for a balanced and accurate description of the photoionization/photorecombination for a number of different ionic channels in a wide range of photoelectron energies up to 100 eV. Proper account of electron correlations is crucial for interpreting time-resolved signals in photoelectron spectroscopy and high harmonic generation (HHG) from polyatomic molecules.
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.
2015-01-01
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653
Joint multifractal analysis based on wavelet leaders
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
Role of electron concentration in softening and hardening of ternary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1975-01-01
Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei-Li; Jian, Tian; Lopez, Gary V.
2014-03-07
The electronic structures of actinide systems are extremely complicated and pose considerable challenges both experimentally and theoretically because of significant electron correlation and relativistic effects. Here we report an investigation of the electronic structure and chemical bonding of uranium dioxides, UO{sub 2}{sup −} and UO{sub 2}, using photoelectron spectroscopy and relativistic quantum chemistry. The electron affinity of UO{sub 2} is measured to be 1.159(20) eV. Intense detachment bands are observed from the UO{sub 2}{sup −} low-lying (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} orbitals and the more deeply bound O2p-based molecular orbitals which are separated by a large energy gap from themore » U-based orbitals. Surprisingly, numerous weak photodetachment transitions are observed in the gap region due to extensive two-electron transitions, suggesting strong electron correlations among the (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}{sup −} and the (7sσ{sub g}){sup 1}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}. These observations are interpreted using multi-reference ab initio calculations with inclusion of spin-orbit coupling. The strong electron correlations and spin-orbit couplings generate orders-of-magnitude more detachment transitions from UO{sub 2}{sup −} than expected on the basis of the Koopmans’ theorem. The current experimental data on UO{sub 2}{sup −} provide a long-sought opportunity to arbitrating various relativistic quantum chemistry methods aimed at handling systems with strong electron correlations.« less
The nuclear contacts and short range correlations in nuclei
NASA Astrophysics Data System (ADS)
Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.
2018-05-01
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayebjee, Murad J. Y.; Sanders, Samuel N.; Kumarasamy, Elango
Singlet fission, in which two triplet excitons are generated from a single absorbed photon, is a key third-generation solar cell concept. Conservation of angular momentum requires that singlet fission populates correlated multiexciton states, which can subsequently dissociate to generate free triplets. However, little is known about electronic and spin correlations in these systems since, due to its typically short lifetime, the multiexciton state is challenging to isolate and study. Here, we use bridged pentacene dimers, which undergo intramolecular singlet fission while isolated in solution and in solid matrices, as a unimolecular model system that can trap long-lived multiexciton states. Wemore » also combine transient absorption and time-resolved electron spin resonance spectroscopies to show that spin correlations in the multiexciton state persist for hundreds of nanoseconds. Furthermore, we confirm long-standing predictions that singlet fission produces triplet pair states of quintet character. Finally, we compare two different pentacene–bridge–pentacene chromophores, systematically tuning the coupling between the pentacenes to understand how differences in molecular structure affect the population and dissociation of multiexciton quintet states.« less
Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui
2014-01-01
The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372
Novel Quantum Criticality in Two Dimensional Topological Phase transitions
Cho, Gil Young; Moon, Eun-Gook
2016-01-01
Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality. PMID:26791803
Mamashli, Fahimeh; Khan, Sheraz; Bharadwaj, Hari; Losh, Ainsley; Pawlyszyn, Stephanie M; Hämäläinen, Matti S; Kenet, Tal
2018-06-26
Autism spectrum disorder (ASD) is characterized neurophysiologically by, among other things, functional connectivity abnormalities in the brain. Recent evidence suggests that the nature of these functional connectivity abnormalities might not be uniform throughout maturation. Comparing between adolescents and young adults (ages 14-21) with ASD and age- and IQ-matched typically developing (TD) individuals, we previously documented, using magnetoencephalography (MEG) data, that local functional connectivity in the fusiform face areas (FFA) and long-range functional connectivity between FFA and three higher order cortical areas were all reduced in ASD. Given the findings on abnormal maturation trajectories in ASD, we tested whether these results extend to preadolescent children (ages 7-13). We found that both local and long-range functional connectivity were in fact normal in this younger age group in ASD. Combining the two age groups, we found that local and long-range functional connectivity measures were positively correlated with age in TD, but negatively correlated with age in ASD. Last, we showed that local functional connectivity was the primary feature in predicting age in ASD group, but not in the TD group. Furthermore, local functional connectivity was only correlated with ASD severity in the older group. These results suggest that the direction of maturation of functional connectivity for processing of faces from childhood to young adulthood is itself abnormal in ASD, and that during the processing of faces, these trajectory abnormalities are more pronounced for local functional connectivity measures than they are for long-range functional connectivity measures. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gippius, A. A.; Zhurenko, S. V.; Hu, R.; Petrovic, C.; Baenitz, M.
2018-02-01
Sb,123121 nuclear quadrupole resonance (NQR) was applied to Fe(Sb1-xTex)2 in the low doping regime (x =0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3 d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1 /T1(T ) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb2 with a clear signature of the charge and spin gap formation in 1 /T1(T ) T [˜exp/(Δ kBT ) ] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1 /T1(T ) T ˜T-n˜T-0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ =(Cel/T ) showing a power-law divergence γ (T ) ˜T-m˜(1/T1T ) 1 /2˜T-n /2˜Cel/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1 /T1(T ) T ˜T-0.72 . According to the specific heat divergence a power law with n =2 m =0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1 /T1(T ) T ˜T-3 /4 behavior. Furthermore Te-doped FeSb2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the Sb,123121 NQR spectrum for the 5% sample. This has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb-Te dumbbell.
Gippius, A. A.; Zhurenko, S. V.; Hu, R.; ...
2018-02-12
121,123Sb nuclear quadrupole resonance (NQR) was applied to Fe(Sb 1-xTe x) 2 in the low doping regime (x = 0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1/T 1 (T) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb 2 with a clear signaturemore » of the charge and spin gap formation in 1/T 1(T)T[~exp/(Δk BT)] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1/T 1(T)T ~ T -n ~ T -0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ = (C el/T) showing a power-law divergence γ (T) ~ T -m ~ (1/T 1T) 1/2 ~ T -n/2 ~ C el/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1/T 1(T)T ~ T -0.72 . According to the specific heat divergence a power law with n = 2 m = 0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1/T 1(T)T ~ T -3/4 behavior. Furthermore Te-doped FeSb 2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the 121,123Sb NQR spectrum for the 5% sample. Lastly, this has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb-Te dumbbell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gippius, A. A.; Zhurenko, S. V.; Hu, R.
121,123Sb nuclear quadrupole resonance (NQR) was applied to Fe(Sb 1-xTe x) 2 in the low doping regime (x = 0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1/T 1 (T) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb 2 with a clear signaturemore » of the charge and spin gap formation in 1/T 1(T)T[~exp/(Δk BT)] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1/T 1(T)T ~ T -n ~ T -0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ = (C el/T) showing a power-law divergence γ (T) ~ T -m ~ (1/T 1T) 1/2 ~ T -n/2 ~ C el/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1/T 1(T)T ~ T -0.72 . According to the specific heat divergence a power law with n = 2 m = 0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1/T 1(T)T ~ T -3/4 behavior. Furthermore Te-doped FeSb 2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the 121,123Sb NQR spectrum for the 5% sample. Lastly, this has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb-Te dumbbell.« less
Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S
2003-12-01
As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.
Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.
2010-02-01
The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.
Electron Lenses for the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Valishev, Alexander; Bruce, Roderik
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less
Doping effect on charge ordering in the spinel compound AlV_2-xCr_xO_4
NASA Astrophysics Data System (ADS)
Horibe, Yoichi; Kurushima, Kosuke; Mori, Shigeo; Shingu, Masao; Katsufuji, Takuro
2004-03-01
It is reported that AlV_2O4 with the spinel-type structure shows the charge-ordering (CO) behavior below 700K.[1] Because the average valence of V is V^2.5+ in this compound, the CO structure is characterized by the unique CO pattern with V^2+:V^4+=3:1. In this talk, we will report doping effect on the CO structure in AlV_2O_4. In particular, we will focus on changes of microstructure related to the CO structure by Cr doping by transmission electron microscopy. Firstly we confirmed that AlV_2O4 has a long-ranged CO structure characterized by a single wave vector q=(1/2)[111]. On the other hand, we found the presence of diffuse scatterings at the (1/2)[111] and (1/2)[1-11]-type positions in AlV_1.875Cr_0.125O4 at room temperature. This means that the CO structure in AlV_1.875Cr_0.125O4 has two wave vectors of q=(1/2)[111] and q=the (1/2)[1-11]. Furthermore, the long-ranged CO structure in AlV_2O4 changes into the short-ranged one by substituting Cr ions into the V ones. The correlation length of CO in x=0.125 can be estimated to be about 5 nm. Our results suggest that the Cr doping destroyed the CO correlation effectively. It is revealed that by substituting Cr ions to V ones, the CO state is suppressed drastically and disappeared with x > 0.125. [1] K. Matsuno et al., J. Phys. Soc. Jpn 70, 1456 (2001)
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Kantz, Holger
2016-04-01
As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).
Space electronics technology summary
NASA Technical Reports Server (NTRS)
1976-01-01
An overview is given of current electronics R and D activities, potential future thrusts, and related NASA payoffs. Major increases in NASA mission return and significant concurrent reductions in mission cost appear possible through a focused, long range electronics technology program. The overview covers: guidance assessments, navigation and control, and sensing and data acquisition processing, storage, and transfer.
Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E
2011-03-01
The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.
NASA Astrophysics Data System (ADS)
Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.
2014-12-01
A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that intramolecular back ET was occurring in the inverted region of the Marcus parabola correlating rates and driving forces for electron transfer processes. In addition, evidence for triplet excited states as a product of either incomplete ET or back ET was found. The differences in behavior of the three catenates upon photoexcitation are analyzed in terms of the energy levels of the various intermediate states and the driving forces for EnT and ET processes.
Dynamics of bid-ask spread return and volatility of the Chinese stock market
NASA Astrophysics Data System (ADS)
Qiu, Tian; Chen, Guang; Zhong, Li-Xin; Wu, Xiao-Run
2012-04-01
The bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect and the multifractal nature. By investigating the autocorrelation function and the Detrended Fluctuation Analysis (DFA), we find that the spread return is the lack of long-range memory, while the spread volatility is long-range time correlated. Besides, the spread volatilities of different stocks present long-range cross-correlations. Moreover, by applying the Multifractal Detrended Fluctuation Analysis (MF-DFA), the spread return is observed to possess a strong multifractality, which is similar to the dynamics of a variety of financial quantities. Different from the spread return, the spread volatility exhibits a weak multifractal nature.
Amorphization driven by defect-induced mechanical instability.
Jiang, Chao; Zheng, Ming-Jie; Morgan, Dane; Szlufarska, Izabela
2013-10-11
Using ab initio molecular dynamics simulations, we perform a comparative study of the defect accumulation process in silicon carbide (SiC) and zirconium carbide (ZrC). Interestingly, we find that the fcc Si sublattice in SiC spontaneously and gradually collapses following the continuous introduction of C Frenkel pairs (FPs). Above a critical amorphization dose of ~0.33 displacements per atom (dpa), the pair correlation function exhibits no long-range order. In contrast, the fcc Zr sublattice in ZrC remains structurally stable against C sublattice displacements up to the highest dose of 1.0 dpa considered. Consequently, ZrC cannot be amorphized by the accumulation of C FPs. We propose defect-induced mechanical instability as the key mechanism driving the amorphization of SiC under electron irradiation.
Long-range ordering effect in electrodeposition of zinc and zinc oxide.
Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben
2007-05-01
In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.
Daniels, Tracey; Goodacre, Lynne; Sutton, Chris; Pollard, Kim; Conway, Steven; Peckham, Daniel
2011-08-01
People with cystic fibrosis have a high treatment burden. While uncertainty remains about individual patient level of adherence to medication, treatment regimens are difficult to tailor, and interventions are difficult to evaluate. Self- and clinician-reported measures are routinely used despite criticism that they overestimate adherence. This study assessed agreement between rates of adherence to prescribed nebulizer treatments when measured by self-report, clinician report, and electronic monitoring suitable for long-term use. Seventy-eight adults with cystic fibrosis were questioned about their adherence to prescribed nebulizer treatments over the previous 3 months. Self-report was compared with clinician report and stored adherence data downloaded from the I-Neb nebulizer system. Adherence measures were expressed as a percentage of the prescribed regimen, bias was estimated by the paired difference in mean (95% CI) patient and clinician reported and actual adherence. Agreement between adherence measures was calculated using intraclass correlation coefficients (95% CI), and disagreements for individuals were displayed using Bland-Altman plots. Patient-identified prescriptions matched the medical record prescription. Median self-reported adherence was 80% (interquartile range, 60%-95%), whereas median adherence measured by nebulizer download was 36% (interquartile range, 5%-84.5%). Nine participants overmedicated and underreported adherence. Median clinician report ranged from 50% to 60%, depending on profession. Extensive discrepancies between self-report and clinician report compared with nebulizer download were identified for individuals. Self- and clinician-reporting of adherence does not provide accurate measurement of adherence when compared with electronic monitoring. Using inaccurate measures has implications for treatment burden, clinician prescribing practices, cost, and accuracy of trial data.
Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.
Batchelor, John C; Yeates, Stephen G; Casson, Alexander J
2016-08-01
Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.
Disorder-Induced Quantum Beats in Two-Dimensional Spectra of Excitonically Coupled Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkus, Vytautas; Dong, Hui; Fleming, Graham R.
2016-01-21
Here, a study is presented showing the conditions when long-lived electronic quantum coherences originating from recently proposed inhomogeneous broadening mechanism are enhanced and reflected in the two-dimensional electronic spectra of the excitonically coupled molecular dimer. We show that depending on the amount of inhomogeneous broadening, the excitonically coupled molecular system can establish long-lived electronic coherences, caused by a disordered subensemble, for which the dephasing due to static energy disorder becomes significantly reduced. On the basis of these considerations, we present explanations for why the electronic or vibrational coherences were or were not observed in a range of recent experiments.
NASA Astrophysics Data System (ADS)
Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.
2017-06-01
Temperature-dependent reflectivity measurements in the frequency range 75-8000 cm-1 were performed on BaFe2(As0.77P0.23)2 single crystals under pressure up to ˜5 GPa . The obtained optical conductivity spectra have been analyzed to extract the electron-boson spectral density α2F (Ω ) . A sharp resonance peak was observed in α2F (Ω ) upon the superconducting transition, persisting throughout the applied pressure range. The energy and temperature dependences of this peak are consistent with the superconducting gap opening. Furthermore, several similarities with other experimental probes such as inelastic neutron scattering (INS) [D. S. Inosov et al., Nat. Lett. 6, 178 (2010), 10.1038/nphys1483] give evidence for the coupling to a bosonic mode, possibly due to spin fluctuations. Moreover, electronic correlations have been calculated via spectral weight analysis, which revealed that the system stays in the strongly correlated regime throughout the applied pressure range. However, a comparison to the parent compound showed that the electronic correlations are slightly decreased with P doping. The investigation of the phase diagram obtained by our optical study under pressure also revealed the coexistence of the spin-density wave and the superconducting regions, where the coexistence region shifts to the lower pressure range with increasing P content. Moreover, the optimum pressure range, where the highest superconducting transition temperature has been obtained, shows a nonlinear decrease with increasing P content.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
Quiet-Time Suprathermal (˜0.1 - 200 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Wang, Linghua; Yang, Liu; Tao, Jiawei; Zong, Qiugang; Li, Gang; Wimmer-Schweingruber, Robert; He, Jiansen; Tu, Chuanyi; Bale, Stuart
2017-04-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-200 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. The observed energy spectrum of both (beaming) strahl and (isotropic) halo electrons at ˜0.1-1.5 keV generally fits to a Kappa distribution function with an index κ and effective temperature Teff, while the observed energy spectrum of nearly isotropic superhalo electrons at ˜20-200 keV generally fits to a power-law function, J ˜ E-β. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl density and halo density. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. For the superhalo population, the spectral index β ranges from ˜1.6 to ˜3.7 and the integrated density nsup ranges from 10-8 cm-3 to 10-5 cm-3, with no clear association with the sunspot number. In solar cycle 23 (24), the distribution of β has a broad maximum between 2.4 and 2.8 (2.0 and 2.4). All the strahl, halo and superhalo populations show no obvious correlation with the solar wind core population. These results reflect the nature of the generation of solar wind suprathermal electrons.
Optimisation of 12 MeV electron beam simulation using variance reduction technique
NASA Astrophysics Data System (ADS)
Jayamani, J.; Termizi, N. A. S. Mohd; Kamarulzaman, F. N. Mohd; Aziz, M. Z. Abdul
2017-05-01
Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 107 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 107 to 20 × 107. In this study, 5 MeV electron cut-off with 10 × 107 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy.
NASA Astrophysics Data System (ADS)
Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun
2017-09-01
By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.
2015-04-01
The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for example, tide gauge records), calling for a careful application of time series analysis tools when studying such data.
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.
NASA Astrophysics Data System (ADS)
Liao, Yunxiang; Levchenko, Alex; Foster, Matthew S.
2017-11-01
We derive the finite temperature Keldysh response theory for interacting fermions in the presence of quenched short-ranged disorder, as applicable to any of the 10 Altland-Zirnbauer classes in an Anderson delocalized phase with at least a U(1) continuous symmetry. In this formulation of the interacting Finkel'stein nonlinear sigma model, the statistics of one-body wave functions are encoded by the constrained matrix field, while physical correlations follow from the hydrodynamic density or spin response field, which decouples the interactions. Integrating out the matrix field first, we obtain weak (anti) localization and Altshuler-Aronov quantum conductance corrections from the hydrodynamic response function. This procedure automatically incorporates the correct infrared cutoff physics, and in particular gives the Altshuler-Aronov-Khmelnitsky (AAK) equations for dephasing of weak (anti)localization due to electron-electron collisions. We explicate the method by deriving known quantumcorrections in two dimensions for the symplectic metal class AII, as well as the spin-SU(2) invariant superconductor classes C and CI. We show that quantum conductance corrections due to the special modes at zero energy in nonstandard classes are automatically cut off by temperature, as previously expected, while the Wigner-Dyson class Cooperon modes that persist to all energies are cut by dephasing. We also show that for short-ranged interactions, the standard self-consistent solution for the dephasing rate is equivalent to a particular summation of diagrams via the self-consistent Born approximation. This should be compared to the corresponding AAK solution for long-ranged Coulomb interactions, which exploits the Markovian noise correlations induced by thermal fluctuations of the electromagnetic field. We discuss prospects for exploring the many-body localization transition as a dephasing catastrophe in short-range interacting models, as encountered by approaching from the ergodic side.
Laboratory Measurements of X-Ray Emissions From Centimeter-Long Streamer Corona Discharges
NASA Astrophysics Data System (ADS)
da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; LaBelle, J.; Dwyer, J.
2017-11-01
We provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in negative electrical discharges with voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. Centimeter long streamer corona discharges produce bursts of X-ray radiation, emitted by a source highly compact in space and time, leading to photon pileup. Median photon burst energies vary between 33 and 96 keV in 100 kV discharges. Statistical analysis of 5,000+ discharges shows that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when streamers are not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. In an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and the electron acceleration is not necessarily correlated with streamer collisions.
Long-range correlations and burstiness in written texts: Universal and language-specific aspects
NASA Astrophysics Data System (ADS)
Constantoudis, Vassilios; Kalimeri, Maria; Diakonos, Fotis; Karamanos, Konstantinos; Papadimitriou, Constantinos; Chatzigeorgiou, Manolis; Papageorgiou, Harris
2016-08-01
Recently, methods from the statistical physics of complex systems have been applied successfully to identify universal features in the long-range correlations (LRCs) of written texts. However, in real texts, these universal features are being intermingled with language-specific influences. This paper aims at the characterization and further understanding of the interplay between universal and language-specific effects on the LRCs in texts. To this end, we apply the language-sensitive mapping of written texts to word-length series (wls) and analyse large parallel (of same content) corpora from 10 languages classified to four families (Romanic, Germanic, Greek and Uralic). The autocorrelation functions of the wls reveal tiny but persistent LRCs decaying at large scales following a power-law with a language-independent exponent ˜0.60-0.65. The impact of language is displayed in the amplitude of correlations where a relative standard deviation >40% among the analyzed languages is observed. The classification to language families seems to play a significant role since, the Finnish and Germanic languages exhibit more correlations than the Greek and Roman families. To reveal the origins of the LRCs, we focus on the long words and perform burst and correlation analysis in their positions along the corpora. We find that the universal features are linked more to the correlations of the inter-long word distances while the language-specific aspects are related more to their distributions.
Theory of electron transfer and molecular state in DNA
NASA Astrophysics Data System (ADS)
Endres, Robert Gunter
2002-09-01
In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have embarked on a theoretical effort to ascertain what conditions might induce such remarkable behavior. We use a combination of an ab initio density functional theory method and a parameterized Huckel-Slater-Koster model. Our focus here is to examine whether any likely DNA structures or environments can yield reduced activation gaps to conduction or enhanced electronic overlaps. In particular, we study a hypothetical stretched ribbon structure, A-, and B-form DNA, and the effects of counterions and humidity. Unlike solids, DNA and other molecules are considered soft condensed matter. Hence, we study the influence of vibrations upon the electronic structure of DNA. We calculate parameters for charge transfer rates between adjacent bases. We find good agreement between our estimated rates and recent experimental data assuming that torsional vibrations limit the charge transfer most significantly.
Singular dynamics and emergence of nonlocality in long-range quantum models
NASA Astrophysics Data System (ADS)
Lepori, L.; Trombettoni, A.; Vodola, D.
2017-03-01
We discuss how nonlocality originates in long-range quantum systems and how it affects their dynamics at and out of equilibrium. We focus in particular on the Kitaev chains with long-range pairings and on the quantum Ising chain with long-range antiferromagnetic coupling (both having a power-law decay with exponent α). By studying the dynamic correlation functions, we find that for every finite α two different behaviours can be identified, one typical of short-range systems and the other connected with locality violation. The latter behaviour is shown related also with the known power-law decay tails previously observed in the static correlation functions, and originated by modes—having in general energies far from the minima of the spectrum—where particular singularities develop as a consequence of the long-rangedness of the system. We refer to these modes as to ‘singular’ modes, and as to ‘singular dynamics’ to their dynamics. For the Kitaev model they are manifest, at finite α, in derivatives of the quasiparticle energy, the order of the derivatives at which the singularity occurs is increasing with α. The features of the singular modes and their physical consequences are clarified by studying an effective theory for them and by a critical comparison of the results from this theory with the lattice ones. Moreover, a numerical study of the effects of the singular modes on the time evolution after various types of global quenches is performed. We finally present and discuss the presence of singular modes and their consequences in interacting long-range systems by investigating in the long-range Ising quantum chain, both in the deep paramagnetic regime and at criticality, where they also play a central role for the breakdown of conformal invariance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H., E-mail: lhlewis@neu.edu
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{submore » 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
Long-range electron transfer in a model for DNA
NASA Astrophysics Data System (ADS)
Endres, R. G.; Cox, D. L.
2001-03-01
Long-range electron transfer (ET) between well separated donor (D) and acceptor (A) sites through quantum mechanical tunneling is essential to many biological processes like respiration, photosynthesis and possibly DNA repair and damage. We are investigating the distance dependence of the electronic transition matrix element H_DA and hence of the electron transfer rate in a model for DNA. Fluorescence quenching in DNA at D-A distances of 40 Åand more suggests ET with an unusually high decay length β-1 of order 10 Å (S.O.Kelley and J.K.Barton, in:Metal Ions in Biological Systems), A.Sigel and H.Sigel, Eds., Marcel Dekker, New York, Vol.36, 1999. Assuming strong electron interactions on the D complex and suitable energetics, this could be explained by formation of a many electron Kondo boundstate. We obtain H_DA from the splitting between the two lowest adiabatic electronic eigenenergies, which constitute the potential energy surfaces (PES) of the nuclear motion in lowest order Born-Oppenheimer approximation. The PES are constructed by coupling D and A to local breathing modes and by making a semi-analytical variational ansatz for the adiabatic eigenstates. The results from the PES are compared with results from the Mulliken-Hush algorithm.
Short-Range Nucleon-Nucleon Correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Higinbotham
2011-10-01
Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...
2018-05-04
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Electronic holographic moire in the micron range
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Sciammarella, Federico M.
2001-06-01
The basic theory behind microscopic electronic holographic moire is presented. Conditions of observation are discussed, and optimal parameters are established. An application is presented as an example where experimental result are statistically analyzed and successfully correlated with an independent method of measurement of the same quantity.
Long-range anticorrelations and non-Gaussian behavior of the heartbeat
NASA Technical Reports Server (NTRS)
Peng, C.-K.; Mietus, J.; Hausdorff, J. M.; Havlin, S.; Stanley, H. E.; Goldberger, A. L.
1993-01-01
We find that the successive increments in the cardiac beat-to-beat intervals of healthy subjects display scale-invariant, long-range anticorrelations (up to 10 exp 4 heart beats). Furthermore, we find that the histogram for the heartbeat intervals increments is well described by a Levy (1991) stable distribution. For a group of subjects with severe heart disease, we find that the distribution is unchanged, but the long-range correlations vanish. Therefore, the different scaling behavior in health and disease must relate to the underlying dynamics of the heartbeat.
Statistical and linguistic features of DNA sequences
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.
Contributed review: Review of integrated correlative light and electron microscopy.
Timmermans, F J; Otto, C
2015-01-01
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.
NASA Astrophysics Data System (ADS)
Chan, J. A.; Montanari, B.; Chan, W. L.; Harrison, N. M.
Periodic hybrid-exchange density functional theory calculations have been used to investigate the magnetic properties of two classes of organic magnets, namely the bi-metallic CrIII cyanides and the polymerized rhombohedral C60 fullerenes (Rh-C60). For the systems KMII[CrIII(CN)6] with M II=V, Mn, Ni and CrIII[CrIII(CN)6], the magnetic ordering energies, Mulliken populations, and spin density plots are reported for the optimized geometries. The qualitative nature of the magnetic coupling mechanism is consistent with that observed in previous unrestricted Hartree-Fock calculations, but the coupling energies computed here are significantly higher. The increased coupling is found to be a result of both changes in the geometry and the electronic structure resulting from the more reliable treatment of electronic exchange and correlation effects. The existence of long-range coupling between local spin moments is investigated in three different defective Rh-C60 structures: (i) a previously proposed prototype structure, where an atom is removed from the C60 cage; (ii) a related structure in which vacancies in nearby cages are brought closer together in pairs; and (iii) a structure where the intra-fullerene bond between the two inter-fullerene bonds is broken spontaneously after applying isotropic pressure to one layer of the Rh-C60 structure. All of these structures are characterized by low flat spin polarized bands at the Fermi edge and localized spin moments around the defects, but no evidence of long-range magnetic coupling is found.
Functional neuroimaging of extraversion-introversion.
Lei, Xu; Yang, Tianliang; Wu, Taoyu
2015-12-01
Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.
Transition from disordered to long-range ordered nanoparticles on Al2O3/Ni3Al(111)
NASA Astrophysics Data System (ADS)
Alyabyeva, N.; Ouvrard, A.; Zakaria, A.-M.; Charra, F.; Bourguignon, B.
2018-06-01
Application of preparation recipes of the literature failed to produce an ordered array of NPs on our particular Ni3Al sample. This has motivated a systematic survey of Pd NP nucleation as a function of experimental parameters. We have shown that the increase of oxidation temperature during the preparation of Al2O3 ultra-thin film on Ni3Al(111) leads to a transition from disordered to long-range ordered Pd nanoparticle (NP) nucleation. Alumina films were prepared at different temperatures ranging from 990 to 1140 K. Crystallinity, electronic structure of the alumina film and Pd nucleation and growth have been investigated using Low Energy Electron Diffraction and Scanning Tunnelling Microscopy. NP density and long-range order nucleation along the so-called "dot structure" of 4.2 nm periodicity, strongly increase for temperatures higher than a threshold value of 1070 ± 20 K. This transition relies on the alumina film improvement and suggests that the modulation of Pd adsorption energy at nucleation centres which is necessary to nucleate NPs at ordered sites, requires higher preparation temperature. Long-range ordered NPs with a high density were obtained 140 K above reported recipes in the literature. This optimized temperature has been tested on a fresh sample (issued from the same supplier) for which just a few cleanings were enough to obtain long-range ordered NPs. Presumably the variability of the optimal oxidation temperature for our samples with respect to the literature is related to fluctuations of the stoichiometry from sample to sample.
Homonuclear long-range correlation spectra from HMBC experiments by covariance processing.
Schoefberger, Wolfgang; Smrecki, Vilko; Vikić-Topić, Drazen; Müller, Norbert
2007-07-01
We present a new application of covariance nuclear magnetic resonance processing based on 1H--13C-HMBC experiments which provides an effective way for establishing indirect 1H--1H and 13C--13C nuclear spin connectivity at natural isotope abundance. The method, which identifies correlated spin networks in terms of covariance between one-dimensional traces from a single decoupled HMBC experiment, derives 13C--13C as well as 1H--1H spin connectivity maps from the two-dimensional frequency domain heteronuclear long-range correlation data matrix. The potential and limitations of this novel covariance NMR application are demonstrated on two compounds: eugenyl-beta-D-glucopyranoside and an emodin-derivative. Copyright (c) 2007 John Wiley & Sons, Ltd.
Long-range energy transport in single supramolecular nanofibres at room temperature
NASA Astrophysics Data System (ADS)
Haedler, Andreas T.; Kreger, Klaus; Issac, Abey; Wittmann, Bernd; Kivala, Milan; Hammer, Natalie; Köhler, Jürgen; Schmidt, Hans-Werner; Hildner, Richard
2015-07-01
Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.
π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon
NASA Astrophysics Data System (ADS)
Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas
2017-07-01
Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.
Real-space imaging of fractional quantum Hall liquids
NASA Astrophysics Data System (ADS)
Hayakawa, Junichiro; Muraki, Koji; Yusa, Go
2013-01-01
Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.
Two types of electron events in solar flares
NASA Technical Reports Server (NTRS)
Daibog, E. I.; Kurt, V. G.; Logachev, Y. I.; Stolpovsky, V. G.
1985-01-01
The fluxes and spectra of the flare electrons measured on board Venera-I3 and I4 space probes are compared with the parameters of the hard (E sub x approximately 55 keV) and thermal X-ray bursts. The electron flux amplitude has been found to correlate with flare importance in the thermal X-ray range (r approximately 0.8). The following two types of flare events have been found in the electron component of SCR. The electron flux increase is accompanied by a hard X-ray burst and the electron spectrum index in the approximately 25 to 200 keV energy range is gamma approximately 2 to 3. The electron flux increase is not accompanied by a hard X-ray burst and the electron spectrum is softer (Delta gamma approximately 0.7 to 1.0).
Comparison of tympanic and rectal temperature in febrile patients.
Sehgal, Arvind; Dubey, N K; Jyothi, M C; Jain, Shilpa
2002-04-01
To compare tympanic membrane temperature and rectal temperature in febrile pediatric patients. Sixty febrile children were enrolled as continuous enrollment at initial triage. Two readings of ear temperature were taken in each child with Thermoscan infrared thermometer. Rectal temperature was recorded by a digital electronic thermometer. Comparison of both the techniques was done and co-relation co-efficients calculated. Parental preference for both techniques was assessed. It was observed that mean ear temperature was 38.9+/-0.90 C and that for rectal temperature was 38.8+/-0.80 degrees C. The correlation coefficient between the two was 0.994 (p < 0.01). Coefficients for both sites were comparable over a wide age range. The difference between readings taken from two ears was not significant. Temperature ranges over which readings were recorded were quite wide for both techniques. Parental preference for tympanic thermometry over rectal thermometry was noticed. Tympanic thermometry utilizes pyro-electric sensors, to detect infra-red rays emitted from the surface of tympanic membrane. Ear temperatures correlates well with rectal temperatures which have long been considered as "core" temperatures. Parents prefer the technique of ear thermometry which is quick (2 sec), safe and non-invasive and patient resistance for this is also less. A non-invasive, non-mucous device which is accurate over a wide range of temperature could be very useful.
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
NASA Astrophysics Data System (ADS)
Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo
2018-04-01
A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.
Khachatryan, Vardan
2015-03-18
A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charged leptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of 19.6 (20.5) fb –1 in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at √s=8 TeV. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signalmore » are presented as a function of the long-lived particle’s mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range 125–1000 GeV/c 2 decays into a pair of long-lived neutral bosons in the mass range 20–350 GeV/c 2, each of which can then decay to dileptons, the upper limits obtained are typically in the range 0.2–10 fb for mean proper decay lengths of the long-lived particles in the range 0.01–100 cm. In the case of the lowest Higgs mass considered (125 GeV/c 2), the limits are in the range 2–50 fb. As a result, these limits are sensitive to Higgs boson branching fractions as low as 10 –4.« less
Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder.
Gong, Wei; Li, Pengfei; Zhang, Yunheng; Feng, Xuhui; Major, Joshua; DeVoto, Douglas; Paret, Paul; King, Charles; Narumanchi, Sreekant; Shen, Sheng
2018-06-13
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term "supersolder" to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional solders and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.
Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer
Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R.; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele
2017-01-01
The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate–enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA’s highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt–substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B12-dependent biochemistry and represents an effective mode of RDase catalysis. PMID:28671181
Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer.
Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele
2017-07-03
The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B 12 -dependent biochemistry and represents an effective mode of RDase catalysis.
Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity.
Horwitz, Anna; Mortensen, Erik L; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (Δ C ).The correlation is most pronounced for the anterior brain region (Δ C A ).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of Δ C A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (Δ C ) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. Δ C in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between Δ C and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (Δ C A ) is a better predictor of memory than power in multivariate models. The sensitivity of Δ C A for detecting low memory capacity is 92%. Finally, Δ C A was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the Δ C is a predictor of memory performance may be useful in cognitive neuropsychological testing.
Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity
Horwitz, Anna; Mortensen, Erik L.; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC).The correlation is most pronounced for the anterior brain region (ΔCA).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of ΔCA for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (ΔC) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. ΔC in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between ΔC and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (ΔCA) is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the ΔC is a predictor of memory performance may be useful in cognitive neuropsychological testing. PMID:29311868
Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z
2013-01-01
The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.
Rabilloud, Franck
2014-10-14
Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.
Role of temperature on static correlational properties in a spin-polarized electron gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in; Kumar, Krishan
We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with themore » simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.« less
Large-moment antiferromagnetic order in overdoped high-Tc superconductor 154SmFeAsO1-xDx
NASA Astrophysics Data System (ADS)
Iimura, Soshi; Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C.; Otomo, Toshiya; Hosono, Hideo
2017-05-01
In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1-xDx, and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.
Savitzky, Benjamin H.; Admasu, Alemayehu S.; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F.
2018-01-01
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides. PMID:29382750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swulius, Matthew T.; Chen, Songye; Jane Ding, H.
2011-04-22
Highlights: {yields} No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. {yields} Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm)more » helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less
Atomic Scale Medium Range Order and Relaxation Dynamics in Metallic Glass
NASA Astrophysics Data System (ADS)
Zhang, Pei
We studied the atomic scale structure of bulk metallic glass (BMG) with the combination of fluctuation electron microscopy (FEM) and hybrid reverse Monte Carlo (HRMC) simulation. Medium range order (MRO), which occupies the length scale between short range order (SRO) and long-range order, plays an important role on the properties of metallic glass, but the characterization of MRO in experiment is difficult because conventional techniques are not sensitive to the structure at MRO scale. Compared with the X-ray and neutron which can measure SRO by two-body correlation functions, FEM is an effective way to detect MRO structure through three and four-body correlation functions, providing information about the size, distribution, and internal structure of MRO combing HRMC modeling. Thickness estimation is necessary in FEM experiment and HRMC calculation, so in Chapter 3, we measured the elastic and inelastic mean free paths of metallic glass alloys based on focused ion beam prepared thin samples with measured thickness gradients. We developed a model based on the Wentzel atomic model to predict the elastic mean free path for other amorphous materials. In Chapter 4, we studied the correlation of MRO and glass forming ability ZrCuAl alloy. Results from Variable resolution fluctuation microscopy show that in Zr50Cu35Al15 the crystal-like clusters shrink but become more ordered, while icosahedral-like clusters grow. Compared with Zr50Cu45Al5, Zr50Cu35Al15 with poorer glass forming ability exhibits more stable crystal-like structure under annealing, indicating that destabilizing crystal-like structures is important to achieve better glass forming ability in this alloy. In Chapter 5, we studied the crystallization and MRO structural in deformed and quenched Ni60Nb40 metallic glass. The deformed Ni60Nb40 contains fewer icosahedral-like Voronoi clusters and more crystal-like and bcc-like Voronoi clusters. The crystal-like and bcc-like medium range order clusters may be the structural origin for its lower crystallization temperature compared with quenched alloy. Dynamics heterogeneity is proposed to be the microscopic origin of the dynamic nature of glass transition. Some experimental evidence and simulation have indicated that different regions of materials indeed relax at fast or slow rate. However, the spatial distribution of relaxation time visualized from the experiment as the direct evidence of heterogeneous dynamics is still challenging. We proposed to measure the structural dynamics of supercooled metallic glasses with electron correlation microscopy (ECM) technique at the nanometer scale. ECM was developed as a way to measure structural relaxation times of liquids with nanometer-scale spatial resolution using the coherent electron scattering equivalent of photon correlation spectroscopy. In chapter 6, we studied the experimental requirements of ECM to obtain reliable results. For example, the trajectory length must be at least 40 times the relaxation time to obtain a well-converged g2( t), and the time per frame must be less than 0.1 time the relaxation time to obtain sufficient sampling. ECM experiment was firstly realized in scanning transmission electron microscopy (STEM) mode and applied to measure the structural relaxation time of Pd based metallic glass. In order to overcome the drift problem and capture the spatial information, we developed ECM experiment in dark field (DF) mode. In Chapter 7, through DF-ECM, we visualized the spatially heterogeneous dynamics by in-situ heating Pt57.5Cu14.7Ni 5.3P22.5 nanowire into supercooled liquid state, and quantify the size of the heterogeneity by four-point correlation function. The thickness effect and temporal evolution of the heterogeneous domain were also discussed. Additionally, a fast near-surface dynamics was discovered, providing an effective mechanism for surface crystallization of liquids by homogeneous nucleation.
Assaraf, Roland
2014-12-01
We show that the recently proposed correlated sampling without reweighting procedure extends the locality (asymptotic independence of the system size) of a physical property to the statistical fluctuations of its estimator. This makes the approach potentially vastly more efficient for computing space-localized properties in large systems compared with standard correlated methods. A proof is given for a large collection of noninteracting fragments. Calculations on hydrogen chains suggest that this behavior holds not only for systems displaying short-range correlations, but also for systems with long-range correlations.
Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A
2016-04-01
We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.
Quintet multiexciton dynamics in singlet fission
Tayebjee, Murad J. Y.; Sanders, Samuel N.; Kumarasamy, Elango; ...
2016-10-17
Singlet fission, in which two triplet excitons are generated from a single absorbed photon, is a key third-generation solar cell concept. Conservation of angular momentum requires that singlet fission populates correlated multiexciton states, which can subsequently dissociate to generate free triplets. However, little is known about electronic and spin correlations in these systems since, due to its typically short lifetime, the multiexciton state is challenging to isolate and study. Here, we use bridged pentacene dimers, which undergo intramolecular singlet fission while isolated in solution and in solid matrices, as a unimolecular model system that can trap long-lived multiexciton states. Wemore » also combine transient absorption and time-resolved electron spin resonance spectroscopies to show that spin correlations in the multiexciton state persist for hundreds of nanoseconds. Furthermore, we confirm long-standing predictions that singlet fission produces triplet pair states of quintet character. Finally, we compare two different pentacene–bridge–pentacene chromophores, systematically tuning the coupling between the pentacenes to understand how differences in molecular structure affect the population and dissociation of multiexciton quintet states.« less
X-ray emissions from centimeter-long streamer corona discharges
NASA Astrophysics Data System (ADS)
da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; Labelle, J. W.; Dwyer, J. R.
2017-12-01
In this work we provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in electrical discharges of negative polarity. They can be easily detected at voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. We show that centimeter-long streamer corona discharges produce bursts of X-ray radiation that are emitted by a source that is highly compact in space and time. Therefore, the emitted X-ray photons arrive together at the detector and pile up. Median burst energies vary between 33-96% of the total 100 keV available electrostatic energy that an electron can acquire in the gap. We present detailed statistical analysis of 5000+ discharges, showing that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when: the streamer corona discharge is not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. We show that for an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and that the runaway electron acceleration is not correlated with streamer collisions, as inferred in meter-long discharges. The described experiment is a promising way for measuring the runaway electron distribution very close to the source and its dependence on the applied voltage.
A theory of local and global processes which affect solar wind electrons. 2: Experimental support
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Olbert, S.
1979-01-01
The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E kT sub c; the transthermals with kT sub c E 7 kT sub c and the extrathermals E 7 kT sub c. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal "temperature" should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU.
Correlated phonons and the Tc-dependent dynamical phonon anomalies
NASA Astrophysics Data System (ADS)
Hakioğlu, T.; Türeci, H.
1997-11-01
Anomalously large low-temperature phonon anharmonicities can lead to static as well as dynamical changes in the low-temperature properties of the electron-phonon system. In this work, we focus our attention on the dynamically generated low-temperature correlations in an interacting electron-phonon system using a self-consistent dynamical approach in the intermediate coupling range. In the context of the model, the polaron correlations are produced by the charge-density fluctuations which are generated dynamically by the electron-phonon coupling. Conversely, the latter is influenced in the presence of the former. The purpose of this work is to examine the dynamics of this dual mechanism between the two using the illustrative Fröhlich model. In particular, the influence of the low-temperature phonon dynamics on the superconducting properties in the intermediate coupling range is investigated. The influence on the Holstein reduction factor as well as the enhancement in the zero-point fluctuations and in the electron-phonon coupling are calculated numerically. We also examine these effects in the presence of superconductivity. Within this model, the contribution of the electron-phonon interaction as one of the important elements in the mechanisms of superconductivity can reach values as high as 15-20% of the characteristic scale of the lattice vibrational energy. The second motivation of this work is to understand the nature of the Tc-dependent temperature anomalies observed in the Debye-Waller factor, dynamical pair correlations, and average atomic vibrational energies for a number of high-temperature superconductors. In our approach we do not claim nor believe that the electron-phonon interaction is the primary mechanism leading to high-temperature superconductivity. Nevertheless, our calculations suggest that the dynamically induced low-temperature phonon correlation model can account for these anomalies and illustrates their possible common origin. Finally, the relevance of incorporating these low-temperature effects into more realistic models of high-temperature superconductivity including both the charge and spin degrees and other similar ideas existing in the literature are discussed.
Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates
Nie, Laimei; Tarjus, Gilles; Kivelson, Steven Allan
2014-01-01
The cuprate high-temperature superconductors have been the focus of unprecedentedly intense and sustained study not only because of their high superconducting transition temperatures, but also because they represent the most exquisitely investigated examples of highly correlated electronic materials. In particular, the pseudogap regime of the phase diagram exhibits a variety of mysterious emergent behaviors. In the last few years, evidence from NMR and scanning tunneling microscopy (STM) studies, as well as from a new generation of X-ray scattering experiments, has accumulated, indicating that a general tendency to short-range–correlated incommensurate charge density wave (CDW) order is “intertwined” with the superconductivity in this regime. Additionally, transport, STM, neutron-scattering, and optical experiments have produced evidence—not yet entirely understood—of the existence of an associated pattern of long-range–ordered point-group symmetry breaking with an electron-nematic character. We have carried out a theoretical analysis of the Landau–Ginzburg–Wilson effective field theory of a classical incommensurate CDW in the presence of weak quenched disorder. Although the possibilities of a sharp phase transition and long-range CDW order are precluded in such systems, we show that any discrete symmetry-breaking aspect of the charge order—nematicity in the case of the unidirectional (stripe) CDW we consider explicitly—generically survives up to a nonzero critical disorder strength. Such “vestigial order,” which is subject to unambiguous macroscopic detection, can serve as an avatar of what would be CDW order in the ideal, zero disorder limit. Various recent experiments in the pseudogap regime of the hole-doped cuprates are readily interpreted in light of these results. PMID:24799709
Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni
NASA Astrophysics Data System (ADS)
Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.
2017-10-01
Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent, fit 1.0 the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress 'overfitting'.« less
Ji, G F; Zhang, J S; Ma, Long; Fan, P; Wang, P S; Dai, J; Tan, G T; Song, Y; Zhang, C L; Dai, Pengcheng; Normand, B; Yu, Weiqiang
2013-09-06
We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe0.94Co0.06As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation rate 1/(75)T1T, first increase strongly with pressure but fall again at P>Popt=2.2 GPa. Neither long-ranged magnetic order nor a structural phase transition is encountered up to 2.5 GPa. The superconducting transition temperature Tc shows a pressure dependence identical to the spin fluctuations. Our observations demonstrate that magnetic correlations and superconductivity are optimized simultaneously as a function of the electronic structure, thereby supporting very strongly a magnetic origin of superconductivity.
Three-dimensional self-organization of crystalline gold nanoparticles in amorphous alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Chunming; Zhou Honghui; Wei Wei
Multilayered heterostructures containing gold nanoparticles embedded in amorphous alumina matrices were deposited on silicon (001) substrates using pulsed laser deposition. The three-dimensional ordering of gold nanoparticles within these multilayered heterostructures was investigated using cross-sectional transmission electron microscopy and image Fourier transformation. Self-organization of gold nanoparticles along the vertical direction was observed in films grown at 20 and at 320 deg. C. Self-organization occurred by means of two different growth modes; both vertically correlated growth (top-on-top) and anticorrelated growth (top-on-middle) mechanisms were observed. The results of these studies suggest that the driving force for vertical ordering in this material is relatedmore » to the long-range elastic interactions among the nanoparticles within the growing films.« less
Yang, Jing; Jin, Qi-Yu; Zhang, Biao; Shen, Hong-Bin
2016-08-15
Inter-residue contacts in proteins dictate the topology of protein structures. They are crucial for protein folding and structural stability. Accurate prediction of residue contacts especially for long-range contacts is important to the quality of ab inito structure modeling since they can enforce strong restraints to structure assembly. In this paper, we present a new Residue-Residue Contact predictor called R2C that combines machine learning-based and correlated mutation analysis-based methods, together with a two-dimensional Gaussian noise filter to enhance the long-range residue contact prediction. Our results show that the outputs from the machine learning-based method are concentrated with better performance on short-range contacts; while for correlated mutation analysis-based approach, the predictions are widespread with higher accuracy on long-range contacts. An effective query-driven dynamic fusion strategy proposed here takes full advantages of the two different methods, resulting in an impressive overall accuracy improvement. We also show that the contact map directly from the prediction model contains the interesting Gaussian noise, which has not been discovered before. Different from recent studies that tried to further enhance the quality of contact map by removing its transitive noise, we designed a new two-dimensional Gaussian noise filter, which was especially helpful for reinforcing the long-range residue contact prediction. Tested on recent CASP10/11 datasets, the overall top L/5 accuracy of our final R2C predictor is 17.6%/15.5% higher than the pure machine learning-based method and 7.8%/8.3% higher than the correlated mutation analysis-based approach for the long-range residue contact prediction. http://www.csbio.sjtu.edu.cn/bioinf/R2C/Contact:hbshen@sjtu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs 2CuBr 4
Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...
2015-11-27
We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs 2CuBr 4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs 2CuBr 4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above T N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even belowmore » T N the high-energy spin dynamics in Cs 2CuBr 4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less
Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.
Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D
2012-11-26
We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times with only slight variations in the peak intensities. A time-frequency analysis shows that in the case of a two-cycle probe pulse the sole contribution of one long and associated short trajectory correlates with the attenuation of a whole range of frequencies in the plateau region for R < 4a(0) whereas the observed red shift for R > 4a(0), even in the plateau region, correlates with a single electron return within one-half laser cycle.
Polaron mobility obtained by a variational approach for lattice Fröhlich models
NASA Astrophysics Data System (ADS)
Kornjača, Milan; Vukmirović, Nenad
2018-04-01
Charge carrier mobility for a class of lattice models with long-range electron-phonon interaction was investigated. The approach for mobility calculation is based on a suitably chosen unitary transformation of the model Hamiltonian which transforms it into the form where the remaining interaction part can be treated as a perturbation. Relevant spectral functions were then obtained using Matsubara Green's functions technique and charge carrier mobility was evaluated using Kubo's linear response formula. Numerical results were presented for a wide range of electron-phonon interaction strengths and temperatures in the case of one-dimensional version of the model. The results indicate that the mobility decreases with increasing temperature for all electron-phonon interaction strengths in the investigated range, while longer interaction range leads to more mobile carriers.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.
1979-01-01
A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.
NASA Astrophysics Data System (ADS)
Glattli, D. C.; Roulleau, P.
2016-08-01
We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.
Correlated and uncorrelated heart rate fluctuations during relaxing visualization
NASA Astrophysics Data System (ADS)
Papasimakis, N.; Pallikari, F.
2010-05-01
The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (<40 interbeat intervals) and the decrease of the scaling exponent at longer scales (40-512 interbeat intervals). In certain cases, the scaling exponent during relaxing visualization indicates the breakdown of long-range correlations. These characteristics have been previously seen in the HRV dynamics during non-REM sleep.
The Statistical Studies of 0.5-100 keV Electrons Near The ICME-drivens At 1 AU
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, W.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.
2017-12-01
We present a statistical survey of the 0.5 - 100 keV electrons near the ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 74 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, θBn, magnetic compression ratio rB, and magnetosonic Mach number Ms. After averaging the electron data in the 10-minute interval immediately after the shock to obtain the sheath electron fluxes, Jsheath, and in the 2-hour quiet-time interval before the shock to obtain the pre-event electron fluxes, Jpre-event, we calculate the flux ratio, α, of Jsheath over Jpre-event. We find that, in the 59 quasi-perpendicular shocks, both Jsheath and Jpre-event are positively correlated with Ms and α is positively correlated with rB. In the 15 quasi-parallel cases, α is positively correlated with Ms, while neither Jsheath nor Jpre-event has any correlation with the shock parameters. Furthermore, we find that both the pre-event and sheath electron fluxes generally fit well to a double power-law spectrum, . At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, and it becomes larger in the sheah than in the pre-event in nearly a half of the 74 cases and remains the same in the other half of the cases. At 2 - 100 keV, the fitted index β2 ranges from 1.9 to 3.4, similar to the spectral indexes of solar wind superhalo electrons at quiet times (Wang et al., 2015). And β2 becomes larger in the sheah than in the pre-event in over half of the cases. In addition, neither β1 nor β2 is consistent with the diffusive shock theoretical predication. These results suggest that the shock drift acceleration may play a more important role in electron acceleration than the diffusive shock acceleration near 1 AU, and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons.
Solvation and Evolution Dynamics of an Excess Electron in Supercritical CO2
NASA Astrophysics Data System (ADS)
Wang, Zhiping; Liu, Jinxiang; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang
2012-05-01
We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.
Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás
2014-02-01
The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.
Lu, Deyu
2016-08-05
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
Patra, Bikash; Jana, Subrata; Samal, Prasanjit
2018-03-28
The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.
Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee
2016-11-09
The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.
The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.
Garcia-Campayo, Javier; Navarro-Gil, Mayte; Andrés, Eva; Montero-Marin, Jesús; López-Artal, Lorena; Demarzo, Marcelo Marcos Piva
2014-01-10
Self-compassion is a key psychological construct for assessing clinical outcomes in mindfulness-based interventions. The aim of this study was to validate the Spanish versions of the long (26 item) and short (12 item) forms of the Self-Compassion Scale (SCS). The translated Spanish versions of both subscales were administered to two independent samples: Sample 1 was comprised of university students (n = 268) who were recruited to validate the long form, and Sample 2 was comprised of Aragon Health Service workers (n = 271) who were recruited to validate the short form. In addition to SCS, the Mindful Attention Awareness Scale (MAAS), the State-Trait Anxiety Inventory-Trait (STAI-T), the Beck Depression Inventory (BDI) and the Perceived Stress Questionnaire (PSQ) were administered. Construct validity, internal consistency, test-retest reliability and convergent validity were tested. The Confirmatory Factor Analysis (CFA) of the long and short forms of the SCS confirmed the original six-factor model in both scales, showing goodness of fit. Cronbach's α for the 26 item SCS was 0.87 (95% CI = 0.85-0.90) and ranged between 0.72 and 0.79 for the 6 subscales. Cronbach's α for the 12-item SCS was 0.85 (95% CI = 0.81-0.88) and ranged between 0.71 and 0.77 for the 6 subscales. The long (26-item) form of the SCS showed a test-retest coefficient of 0.92 (95% CI = 0.89-0.94). The Intraclass Correlation (ICC) for the 6 subscales ranged from 0.84 to 0.93. The short (12-item) form of the SCS showed a test-retest coefficient of 0.89 (95% CI: 0.87-0.93). The ICC for the 6 subscales ranged from 0.79 to 0.91. The long and short forms of the SCS exhibited a significant negative correlation with the BDI, the STAI and the PSQ, and a significant positive correlation with the MAAS. The correlation between the total score of the long and short SCS form was r = 0.92. The Spanish versions of the long (26-item) and short (12-item) forms of the SCS are valid and reliable instruments for the evaluation of self-compassion among the general population. These results substantiate the use of this scale in research and clinical practice.
Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers
NASA Astrophysics Data System (ADS)
Franklin, Michael Ray
Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.
Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice
2012-11-05
In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.
DOE R&D Accomplishments Database
Prigogine, I.
1989-10-01
As in the previous period, our work has been concerned with the study of the properties of nonequilibrium systems and especially with the mechanism of self-organization. As is well-known, the study of self-organization began with the investigation of hydrodynamical or chemical instabilities studied from the point of view of macroscopic physics. The main outcome is that nonequilibrium generates spatial correlations of macroscopic physics. The main outcome is that nonequilibrium generated spatial correlations of macroscopic range whose characteristics length is an intrinsic property and whose amplitude is determined by nonequilibrium constraints. A survey of the macroscopic approach to nonequilibrium states is given in the paper. "Nonequilibrium States and Long Range Correlations in Chemical Dynamics", by G. Nicolis at al. However, over the last few years important progress has been made in the simulation of nonequilibrium situations using mainly molecular dynamics. It appears now that processes corresponding to self-organization as well as the appearance of long-range correlations can be obtained in this way starting from a program involving Newtonian dynamics (generally the laws of interaction correspond to hard spheres or hard disks). Examples of such types of studies leading to Benard instabilities, to chemical clocks, or to spatial structure formation are given in this report. As a result, we may now view self-organization as a direct expression of tan appropriate microscopic dynamics. This is the reason why we have devoted much work to the study of large Poincare systems (LPS) involving continuous sets of resonances. These systems have been shown to lead, according to the constraints, either to equilibrium situations or to nonequilibrium states involving long range correlations. We discuss LPS in the frame of classical mechanics.
Electron-correlation study of Y III-Tc VII ions using a relativistic coupled-cluster theory
NASA Astrophysics Data System (ADS)
Das, Arghya; Bhowmik, Anal; Nath Dutta, Narendra; Majumder, Sonjoy
2018-01-01
Spectroscopic properties, useful for plasma diagnostics and astrophysics, of a few rubidium-like ions are studied here. We choose one of the simplest, but correlationally challenging series where d- and f-orbitals are present in the core and/or valence shells with 4d {}2{D}3/2 as the ground state. We study different correlation characteristics of this series and make precise calculations of electronic structure and rates of electromagnetic transitions. Our calculated lifetimes and transition rates are compared with other available experimental and theoretical values. Radiative rates of vacuum ultraviolet electromagnetic transitions of the long lived Tc6+ ion, useful in several areas of physics and chemistry, are estimated. To the best of our knowledge, there is no literature for most of these transitions.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
The valence-fluctuating ground state of plutonium
Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; ...
2015-07-10
A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less
Raeber, Alexandra E; Wong, Bryan M
2015-05-12
We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.
Ab initio calculation of electron–phonon coupling in monoclinic β-Ga{sub 2}O{sub 3} crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Krishnendu, E-mail: kghosh3@buffalo.edu; Singisetti, Uttam, E-mail: uttamsin@buffalo.edu
2016-08-15
The interaction between electrons and vibrational modes in monoclinic β-Ga{sub 2}O{sub 3} is theoretically investigated using ab-initio calculations. The large primitive cell of β-Ga{sub 2}O{sub 3} gives rise to 30 phonon modes all of which are taken into account in transport calculation. The electron-phonon interaction is calculated under density functional perturbation theory and then interpolated using Wannier–Fourier interpolation. The long-range interaction elements between electrons and polar optical phonon (POP) modes are calculated separately using the Born effective charge tensor. The direction dependence of the long-range POP coupling in a monoclinic crystal is explored and is included in the transport calculations.more » Scattering rate calculations are done using the Fermi golden rule followed by solving the Boltzmann transport equation using the Rode's method to estimate low field mobility. A room temperature mobility of 115 cm{sup 2}/V s is observed. Comparison with recent experimentally reported mobility is done for a wide range of temperatures (30 K–650 K). It is also found that the POP interaction dominates the electron mobility under low electric field conditions. The relative contribution of the different POP modes is analyzed and the mode 21 meV POP is found to have the highest impact on low field electron mobility at room temperature.« less
NASA Astrophysics Data System (ADS)
Gauthier, Nicolas; Fennell, Amy; Uldry, Anne-Christine; Delley, Bernard; Sibille, Romain; White, Jonathan; Niedermayer, Christof; Pomjakushin, Vladimir; Kenzelmann, Michel; Prevost, Bobby; Desilets-Benoit, Alexandre; Bianchi, Andrea D.; Dabkowska, Hanna A.; Nilsen, Goran; Regnault, Louis-Pierre
The simultaneous occurence of geometrical frustration and low dimensionality can lead to strongly correlated fluctuating ground states. In the SrLn2O4 compounds, the Ln magnetic ions form one-dimensional (1D) zig-zag chains that have both of these characteristics, offering a playground to study novel states of matter. In SrDy2O4, the two inequivalent Dy3+ sites are Ising-like with perpendicular easy-axes, favouring the decoupling of neighbouring zig-zag chains. No long range order is observed down to T = 60 mK in zero field but diffuse neutron scattering indicates short range correlations that are consistent with those of the 1D Ising zig-zag chain model. AC susceptibility measurements indicate a slowing down of the fluctuations at low temperatures. We attribute this behaviour to the domain walls in the zig-zag chains. Experimental evidence of a dimensionality crossover at low temperatures in SrDy2O4 suggest that the domains walls are trapped because of interchain interactions, precluding long-range order to the lowest temperatures.
MacArthur, D.W.; Allander, K.S.; Bounds, J.A.
1994-01-25
A detector for atmospheric radon using a long range alpha detector as its sensing element is described. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding. 3 figures.
MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.
1994-01-01
A detector for atmospheric radon using a long range alpha detector as its sensing element. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding.
[Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].
Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju
2010-10-01
The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.
Pseudogap and electronic structure of electron-doped Sr2IrO4
NASA Astrophysics Data System (ADS)
Moutenet, Alice; Georges, Antoine; Ferrero, Michel
2018-04-01
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around (π /2 ,π /2 ) , while a pseudogap opens near (π ,0 ) . Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.
Fractal Tempo Fluctuation and Pulse Prediction
Rankin, Summer K.; Large, Edward W.; Fink, Philip W.
2010-01-01
WE INVESTIGATED PEOPLES’ ABILITY TO ADAPT TO THE fluctuating tempi of music performance. In Experiment 1, four pieces from different musical styles were chosen, and performances were recorded from a skilled pianist who was instructed to play with natural expression. Spectral and rescaled range analyses on interbeat interval time-series revealed long-range (1/f type) serial correlations and fractal scaling in each piece. Stimuli for Experiment 2 included two of the performances from Experiment 1, with mechanical versions serving as controls. Participants tapped the beat at ¼- and ⅛-note metrical levels, successfully adapting to large tempo fluctuations in both performances. Participants predicted the structured tempo fluctuations, with superior performance at the ¼-note level. Thus, listeners may exploit long-range correlations and fractal scaling to predict tempo changes in music. PMID:25190901
NASA Technical Reports Server (NTRS)
Lee, Choon-Ki; Han, Shin-Chan; Dieter,Bilitza; Ki-Weon,Seo
2012-01-01
The 27-day variations of topside ionosphere are investigated using the in-situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of approx. 370 km and approx. 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in-situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic processes that is not controlled by the solar extreme ultraviolet radiation.
van Vliet, Simon; Dal Co, Alma; Winkler, Annina R; Spriewald, Stefanie; Stecher, Bärbel; Ackermann, Martin
2018-04-25
Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone. Copyright © 2018 Elsevier Inc. All rights reserved.
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...
2012-05-30
Measurements from the CMS experiment at the LHC of dihadron correlations for charged particles produced in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2. 76 TeV are presented. The results are reported as a function of the particle transverse momenta (p T ) and collision centrality over a broad range in relative pseudorapidity (Δη) and the full range of relative azimuthal angle (Δmore » $$\\phi$$). The observed two-dimensional correlation structure in Δη and Δ$$\\phi$$ is characterised by a narrow peak at (Δη,Δ$$\\phi$$)≈(0,0) from jet-like correlations and a long-range structure that persists up to at least |Δη|=4. An enhancement of the magnitude of the short-range jet peak is observed with increasing centrality, especially for particles of p T around 1-2 GeV/c. The long-range azimuthal dihadron correlations are extensively studied using a Fourier decomposition analysis. The extracted Fourier coefficients are found to factorise into a product of single-particle azimuthal anisotropies up to p T ≈3-3. 5 GeV/c for at least one particle from each pair, except for the second-order harmonics in the most central PbPb events. Various orders of the single-particle azimuthal anisotropy harmonics are extracted for associated particle p T of 1-3 GeV/c, as a function of the trigger particle p T up to 20 GeV/c and over the full centrality range.« less
Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data
NASA Astrophysics Data System (ADS)
von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo
2018-02-01
Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which seem to belong to a more general class of stochastic processes, in which multiscale variance effects produce Hurst phenomena without long-range dependence. In our experimental data, the Hurst phenomenon and long-range memory appear as different system properties that should be estimated and interpreted independently.
Long range order and two-fluid behavior in heavy electron materials
Shirer, Kent R.; Shockley, Abigail C.; Dioguardi, Adam P.; ...
2012-09-24
The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments hybridizes with the background conduction electrons. Because the transfer of spectral weight between the localized and itinerant electronic degrees of freedom is gradual, the Kondo liquid typically coexists with the local moment component until the material orders at lowmore » temperatures. The two-fluid formula captures this behavior in a broad range of materials in the paramagnetic state. In order to investigate two-fluid behavior and the onset and physical origin of different long range ordered ground states in heavy electron materials, we have extended Knight shift measurements to URu 2Si 2, CeIrIn 5, and CeRhIn 5. In CeRhIn 5 we find that the antiferromagnetic order is preceded by a relocalization of the Kondo liquid, providing independent evidence for a local moment origin of antiferromagnetism. In URu 2Si 2 the hidden order is shown to emerge directly from the Kondo liquid and so is not associated with local moment physics. Lastly, our results imply that the nature of the ground state is strongly coupled with the hybridization in the Kondo lattice in agreement with phase diagram proposed by Yang and Pines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lun C.; Shao, Xi; Reames, Donald V.
2014-05-10
Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts.more » The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.« less
Quench field sensitivity of two-particle correlation in a Hubbard model
Zhang, X. Z.; Lin, S.; Song, Z.
2016-01-01
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080
Remote detection of electronic devices
Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM
2012-09-25
An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.
NASA Astrophysics Data System (ADS)
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.
2017-12-01
In this work, we report the successful synthesis of a new intermetallic compound Tm2 Ni0.93 Si2.93 that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits a large magnetic entropy change (-Δ S_M˜13.7 J kg-1 K-1) and adiabatic temperature change (Δ T_ad˜4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long-range magnetic ordering down to 2 K, the metastable nature of low-temperature spin dynamics and short-range magnetic correlations are considered to be responsible for such a large magnetocaloric effect over a wide temperature region.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2014-10-09
We present measurements of two-particle correlation functions and the first five azimuthal harmonics, v 1 to v 5, using 28 nb₋1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √ sNN =5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|ΔΦ|2π/3) over the transverse momentum range 0.4T<12 GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fouriermore » decomposed to obtain the harmonics v n as a function of p T and event activity. The extracted v n values for n = 2 to 5 decrease with n. The v 2 and v 3 values are found to be positive in the measured p T range. The v 1 is also measured as a function of p T and is observed to change sign around p T ≈ 1.5–2.0 GeV and then increase to about 0.1 for p T>4 GeV. The v 2(p T), v 3(p T), and v 4(p T) are compared to the v n coefficients in Pb+Pb collisions at √ sNN = 2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average p T of particles produced in the two collision systems.« less
Harnik, Paul G; Maherali, Hafiz; Miller, Joshua H; Manos, Paul S
2018-03-01
The geographic ranges of taxa change in response to environmental conditions. Yet whether rates of range movement (biotic velocities) are phylogenetically conserved is not well known. Phylogenetic conservatism of biotic velocities could reflect similarities among related lineages in climatic tolerances and dispersal-associated traits. We assess whether late Quaternary biotic velocities were phylogenetically conserved and whether they correlate with climatic tolerances and dispersal-associated traits. We used phylogenetic regression and nonparametric correlation to evaluate associations between biotic velocities, dispersal-associated traits, and climatic tolerances for 28 woody plant genera and subgenera in North America. The velocities with which woody plant taxa shifted their core geographic range limits were positively correlated from time step to time step between 16 and 7 ka. The strength of this correlation weakened after 7 ka as the pace of climate change slowed. Dispersal-associated traits and climatic tolerances were not associated with biotic velocities. Although the biotic velocities of some genera were consistently fast and others consistently slow, biotic velocities were not phylogenetically conserved. The rapid late Quaternary range shifts of plants lacking traits that facilitate frequent long-distance dispersal has long been noted (i.e., Reid's Paradox). Our results are consistent with this paradox and show that it remains robust when phylogenetic information is taken into account. The lack of association between biotic velocities, dispersal-associated traits, and climatic tolerances may reflect several, nonmutually exclusive processes, including rare long-distance dispersal, biotic interactions, and cryptic refugia. Because late Quaternary biotic velocities were decoupled from dispersal-associated traits, trait data for genera and subgenera cannot be used to predict longer-term (millennial-scale) floristic responses to climate change.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
Stochastic nature of series of waiting times.
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H; Salehi, E; Behjat, E; Qorbani, M; Nezhad, M Khazaei; Zirak, M; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Stochastic nature of series of waiting times
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Roos, Matthias; Hofmann, Marius; Link, Susanne; Ott, Maria; Balbach, Jochen; Rössler, Ernst; Saalwächter, Kay; Krushelnitsky, Alexey
2015-12-01
Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.
Spin-orbit coupled systems in the atomic limit: rhenates, osmates, iridates
NASA Astrophysics Data System (ADS)
Paramekanti, Arun; Singh, David J.; Yuan, Bo; Casa, Diego; Said, Ayman; Kim, Young-June; Christianson, A. D.
2018-06-01
Motivated by RIXS experiments on a wide range of complex heavy oxides, including rhenates, osmates, and iridates, we discuss the theory of RIXS for site-localized t2 g orbital systems with strong spin-orbit coupling. For such systems, we present exact diagonalization results for the spectrum at different electron fillings, showing that it accesses "single-particle" and "multiparticle" excitations. This leads to a simple picture for the energies and intensities of the RIXS spectra in Mott insulators such as double perovskites which feature highly localized electrons, and yields estimates of the spin-orbit coupling and Hund's coupling in correlated 5 d oxides. We present new higher resolution RIXS data at the Re L3 edge in Ba2YReO6 which finds a previously unresolved peak splitting, providing further confirmation of our theoretical predictions. Using ab initio electronic structure calculations on Ba2M ReO6 (with M =Re , Os, Ir) we show that while the atomic limit yields a reasonable effective Hamiltonian description of the experimental observations, effects such as t2 g-eg interactions and hybridization with oxygen are important. Our ab initio estimate for the strength of the intersite exchange coupling shows that, compared to the d3 systems, the exchange is one or two orders of magnitude weaker in the d2 and d4 materials, which may partly explain the suppression of long-range magnetic order in the latter compounds. As a way to interpolate between the site-localized picture and our electronic structure band calculations, we discuss the spin-orbital levels of the M O6 cluster. This suggests a possible role for intracluster excitons in Ba2YIrO6 which may lead to a weak breakdown of the atomic Jeff=0 picture and to small magnetic moments.
Cubic Calorimeter for High-Energy Electrons in Ultra-Long Ballooning
NASA Technical Reports Server (NTRS)
Moiseev, Alexander A.; Mitchell, John W.; Ormes, Jonathan F.; Streitmatter, Robert E.
2003-01-01
The concept and optimization study of a balloon-borne instrument to study high-energy (from 100 GeV to 5 TeV) cosmic ray electrons will be presented. This energy range of electrons is very interesting for the study of cosmic ray propagation and the search for the nearby sources of high-energy electrons. The instrument is based on a cubic design that allows the detection from all sides. Proton rejection is provided by stringent track analysis, which allows defining when an electron shower is exhausted while the hadron shower continues development. The collecting power of a nominal balloon-borne instrument using this concept will be over 2 square meters sr. This will provide approximately 3,000 electron events above 500 GeV for 3-month long ULDB flight. This instrument will also be capable of detecting sharp features in the high energy gamma-ray spectrum such as gamma-ray lines originating from the dark matter annihilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A. J.; Voss, L. F.; Beck, P. R.
We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.
Bortnik, A T; Iakupova, L P
1991-01-01
Cross-correlation analysis of interdependence of the background spike activity was carried out for pairs of adjacent neurons simultaneously recorded in the incubated slices of the neocortex of guinea-pig. Statistical correlation of spike discharges was detected in 16 out of 26 recorded pairs of the neurons. Significant correlation was observed mainly in the range of +/- 100 ms from the null point. Cross-correlation had symmetric or asymmetric maxima up to 150 ms long and negative shifts up to 200 ms long. More complex positive-negative types of cross-correlations were also obtained. The data were compared to those known from other authors for the intact brain. The contribution of intrinsic intracortical interactions and extrinsic afferent influences in these correlations of activity is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen
The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently microorganisms have adapted multi-heme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Angstroms. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces effciently, remains a mystery so far inaccessible to experiment. To shed light on this criticalmore » topic, we carried out extensive computer simulations to calculate Marcus theory quantities for electron transfer along the ten heme cofactors in the recently crystallized outer membrane cytochrome MtrF. The combination of electronic coupling matrix elements with free energy calculations of heme redox potentials and reorganization energies for heme-to-heme electron transfer allows the step-wise and overall electron transfer rate to be estimated and understood in terms of structural and dynamical characteristics of the protein. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 104-105 s-1, consistent with recently measured rates for the related MtrCAB protein complex. Intriguingly, this flux must navigate thermodynamically uphill steps past low potential hemes. Our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: Thermodynamically uphill steps occur only between electronically well connected stacked heme pairs. This suggests that the protein evolved to harbor low potential hemes, presumably necessary for reduction of certain soluble substrates, without slowing down electron ow. These findings are particularly profound in light of the apparently well conserved staggered cross heme wire structural motif in functionally related outer-membrane proteins.« less
López-Carballeira, Diego; Ruipérez, Fernando
2016-04-01
The evaluation of four high-level composite methods based on the modification of Gaussian-3 (G3) theory for radicals and 18 exchange-correlation density functionals, including modern long-range and dispersion-corrected functionals, in the modelization of singlet diradicals has been performed in this work. Structural parameters and properties such as singlet-triplet gaps, electron affinities, ionization potentials, dipole moments, enthalpies of formation, and bond dissociation energies have been calculated in a set of six well-characterized singlet diradicals, and benchmarked against experimental data and wavefunction-based CASSCF/CASPT2 calculations. The complexity of the open-shell singlet ground state is revealed in the difficulties to properly represent the diradical character reported by some DFT functionals, specially those that do not comprise a certain amount of Hartree-Fock exchange in their formulation. We find that STGs, EAs, dipole moments, and thermochemical properties are, in general, satisfactorily calculated, while for IPs larger deviations with respect to the experiments are found in all cases. The best overall performance is accounted for by hybrid functionals, including some of the long-range corrected functionals, but also pure functionals, comprising the kinetic energy density in their formulation, are found to be competent. Composite methods perform satisfactorily, especially G3(MP2)-RAD and G3X(MP2)-RAD, which calculate singlet-triplet gaps and electron affinities more accurately. On the other hand, G3-RAD and G3X-RAD provide better ionization potentials. This study emphasizes that the use of recently developed functionals, within the broken symmetry approximation, is an appropriate tool for the simulation of organic singlet diradicals, with similar accuracy compared to more expensive composite methods. Nevertheless, suitable selection of the methodology is still crucial for the accomplishment of accurate results.
Effect of short-range correlations on the single proton 3s1/2 wave function in 206Pb
NASA Astrophysics Data System (ADS)
Shlomo, S.; Talmi, I.; Anders, M. R.; Bonasera, G.
2018-02-01
We consider the experimental data for difference, Δρc (r), between the charge density distributions of the isotones 206Pb - 205Tl, deduced by analysis of elastic electron scattering measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects of two-body short-range correlations. This is done by: (a) Determining the corresponding single particle potential (mean-field), employing a novel method, directly from the single particle proton density and its first and second derivatives. We also carried out least-square fits to parametrized single particle potentials; (b) Determining the short-range correlations effect by employing the Jastrow correlated many-body wave function to derive a correlation factor for the single particle density distribution. The 3s 1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. The calculated charge density difference, Δρc (r), obtained with the inclusion of the short-range correlation effect does not reproduce the experimental data.
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru
2009-02-01
An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.
Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Feng, Xuhui; Major, Joshua
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term 'supersolder' to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional soldersmore » and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.« less
Sound waves and resonances in electron-hole plasma
NASA Astrophysics Data System (ADS)
Lucas, Andrew
2016-06-01
Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.
Electron acceleration in solar flares
NASA Technical Reports Server (NTRS)
Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan
1989-01-01
For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.
Influence of electron irradiation on the structural and thermal properties of silk fibroin films
NASA Astrophysics Data System (ADS)
Asha, S.; Sangappa, Sanjeev, Ganesh
2015-06-01
Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.
TeV electron measurement with CREST experiment
NASA Astrophysics Data System (ADS)
Park, Nahee; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Muller, D.; Musser, J.; Nutter, S.
CREST, the Cosmic Ray Electron Synchrotron Telescope is a balloon-borne experiment de-signed to measure the spectrum of multi-TeV electrons by the detection of the x-ray synchrotron photons generated in the magnetic field of the Earth. Electrons in the TeV range are expected to reflect the properties of local sources because fluxes from remote locations are suppressed by radiative losses during propagation. Since CREST needs to intersect only a portion of the kilometers-long trail of photons generated by the high-energy electron, the method yields a larger effective area than the physical size of the detector, boosting detection areas. The in-strument is composed of an array of 1024 BaF2 crystals and a set of scintillating veto counters. A long duration balloon flight in Antarctica is currently planned for the 2010-11 season.
Hydrodynamic description of transport in strongly correlated electron systems.
Andreev, A V; Kivelson, Steven A; Spivak, B
2011-06-24
We develop a hydrodynamic description of the resistivity and magnetoresistance of an electron liquid in a smooth disorder potential. This approach is valid when the electron-electron scattering length is sufficiently short. In a broad range of temperatures, the dissipation is dominated by heat fluxes in the electron fluid, and the resistivity is inversely proportional to the thermal conductivity, κ. This is in striking contrast to the Stokes flow, in which the resistance is independent of κ and proportional to the fluid viscosity. We also identify a new hydrodynamic mechanism of spin magnetoresistance.
Szczecinski, Robert J; Chong, Samantha Y; Chater, Philip A; Hughes, Helen; Tucker, Matthew G; Claridge, John B; Rosseinsky, Matthew J
2014-04-08
The functional properties of materials can arise from local structural features that are not well determined or described by crystallographic methods based on long-range average structural models. The room temperature (RT) structure of the Bi perovskite Bi 2 Mn 4/3 Ni 2/3 O 6 has previously been modeled as a locally polar structure where polarization is suppressed by a long-range incommensurate antiferroelectric modulation. In this study we investigate the short-range local structure of Bi 2 Mn 4/3 Ni 2/3 O 6 , determined through reverse Monte Carlo (RMC) modeling of neutron total scattering data, and compare the results with the long-range incommensurate structure description. While the incommensurate structure has equivalent B site environments for Mn and Ni, the local structure displays a significantly Jahn-Teller distorted environment for Mn 3+ . The local structure displays the rock-salt-type Mn/Ni ordering of the related Bi 2 MnNiO 6 high pressure phase, as opposed to Mn/Ni clustering observed in the long-range average incommensurate model. RMC modeling reveals short-range ferroelectric correlations between Bi 3+ cations, giving rise to polar regions that are quantified for the first time as existing within a distance of approximately 12 Å. These local correlations persist in the commensurate high temperature (HT) phase, where the long-range average structure is nonpolar. The local structure thus provides information about cation ordering and B site structural flexibility that may stabilize Bi 3+ on the A site of the perovskite structure and reveals the extent of the local polar regions created by this cation.
Spin-orbit coupling and transport in strongly correlated two-dimensional systems
NASA Astrophysics Data System (ADS)
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2017-05-01
Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Conway, A. M.; Voss, L. F.
Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less
Peyrard, N; Dieckmann, U; Franc, A
2008-05-01
Models of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host's interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation's performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network's clustering coefficient, as well as of new geometrical measures, such as a network's square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation-extended to incorporate long-range correlations according to our method-is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence.
Non-local propagation of correlations in long-range interacting quantum systems
NASA Astrophysics Data System (ADS)
Lee, A. C.; Richerme, P.; Gong, Z.-X.; Senko, C.; Smith, J.; Foss-Feig, M.; Michalakis, S.; Gorshkov, A. V.; Monroe, C.
2014-05-01
The maximum speed with which information can propagate in a many body quantum system can dictate how demanding the system is to describe numerically and also how quickly disparate sites can become correlated. While these kinds of phenomena may be difficult or even impossible for classical computers to describe, trapped ions provide an excellent platform for investigating this rich quantum many-body physics. Using single-site resolved state-dependent imaging, we experimentally determine the spatial and time-dependent correlations of a far-from-equilibrium quantum many-body system evolving under a long-range Ising- or XY-model Hamiltonian. For varying interaction ranges, we extract the shape of the ``light'' cone and measure the velocity with which correlations propagate through the system. In many cases, we find increasing propagation velocities, which violate the prediction for short-range interactions and, in one instance, cannot be explained by any existing theory. Our results show that even for modest system sizes, trapped ion quantum simulators are well poised to study complex many-body physics which are intractable to classical methods. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
Valous, Nektarios A; Drakakis, Konstantinos; Sun, Da-Wen
2010-10-01
The visual texture of pork ham slices reveals information about the different qualities and perceived image heterogeneity, which is encapsulated as spatial variations in geometry and spectral characteristics. Detrended Fluctuation Analysis (DFA) detects long-range correlations in nonstationary spatial sequences, by a self-similarity scaling exponent alpha. In the current work, the aim is to investigate the usefulness of alpha, using different colour channels (R, G, B, L*, a*, b*, H, S, V, and Grey), as a quantitative descriptor of visual texture in sliced ham surface patterns for the detection of long-range correlations in unidimensional spatial series of greyscale intensity pixel values at 0 degrees , 30 degrees , 45 degrees , 60 degrees , and 90 degrees rotations. Images were acquired from three qualities of pre-sliced pork ham, typically consumed in Ireland (200 slices per quality). Results indicated that the DFA approach can be used to characterize and quantify the textural appearance of the three ham qualities, for different image orientations, with a global scaling exponent. The spatial series extracted from the ham images display long-range dependence, indicating an average behaviour around 1/f-noise. Results indicate that alpha has a universal character in quantifying the visual texture of ham surface intensity patterns, with no considerable crossovers that alter the behaviour of the fluctuations. Fractal correlation properties can thus be a useful metric for capturing information embedded in the visual texture of hams. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
., "Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy," perovskites for optoelectronic and electronic applications," Chem. Soc. Rev. 45, 655-689 (2016). Yang, M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, Makoto, E-mail: kuwahara@esi.nagoya-u.ac.jp; Saitoh, Koh; Tanaka, Nobuo
2014-11-10
The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had amore » high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.« less
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
Correlations with Non-Photonic Electrons in√ sNN = 200 GeV Au+Au Collisions in STAR
NASA Astrophysics Data System (ADS)
Dunkelberger, Lloyd Edward, Jr.
At sufficiently high temperatures and densities quarks and gluons exist in a deconfined state called Quark Gluon Plasma (QGP). QGP existed in the Universe shortly after the Big Bang, and today is created in accelerator based experiments which collide heavy nuclei at high energies. Results from these experiments point to a hot, dense and strongly interacting state of deconfined quarks and gluons. The study of heavy flavor probes (those originating from c and b quarks) is an active area of research in heavy ion collisions. Heavy quarks are produced in the initial hard scatterings of collisions and thus are sensitive to the entire evolution of the medium. They also potentially have different sensitivity to medium induced energy loss compared to light flavors. This dissertation investigates the interactions of heavy flavor quarks with the medium by studying correlations between electrons from heavy flavor decays and hadrons. At high transverse momentum, the direction of the electron is highly correlated with the direction of the parent heavy flavor meson. We look for evidence of energy loss in the QGP as well as jet induced effects on the medium. We present electron-hadron correlations from Au+Au collisions in a wide range of centrality bins as well as correlations from p+p. The datasets used are the best currently available due to high statistics and low material in the detector. We also investigate the dependence on the orientation of the trigger particle to the event plane to look for path length dependent effects on the correlation as well as non-flow contributions to electron electron v2.
Range parameters of slow gold ions implanted into light targets
NASA Astrophysics Data System (ADS)
Kuzmin, V.
2009-08-01
Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.
Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A
2014-01-01
Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico-basal ganglia-thalamocortical circuits play a role in the modulation of the serial correlations of timing fluctuations exhibited in skilled musical performance.
NASA Astrophysics Data System (ADS)
Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H. Eugene
2011-04-01
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes “bad news” for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H Eugene
2011-04-01
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
Orbital disproportionation of electronic density is a universal feature of alkali-doped fullerides
Iwahara, Naoya; Chibotaru, Liviu F.
2016-01-01
Alkali-doped fullerides show a wide range of electronic phases in function of alkali atoms and the degree of doping. Although the presence of strong electron correlations is well established, recent investigations also give evidence for dynamical Jahn–Teller instability in the insulating and the metallic trivalent fullerides. In this work, to reveal the interplay of these interactions in fullerides with even electrons, we address the electronic phase of tetravalent fulleride with accurate many-body calculations within a realistic electronic model including all basic interactions extracted from first principles. We find that the Jahn–Teller instability is always realized in these materials too. In sharp contrast to the correlated metals, tetravalent system displays uncorrelated band-insulating state despite similar interactions present in both fullerides. Our results show that the Jahn–Teller instability and the accompanying orbital disproportionation of electronic density in the degenerate lowest unoccupied molecular orbital band is a universal feature of fullerides. PMID:27713426
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.