Truncated Long-Range Percolation on Oriented Graphs
NASA Astrophysics Data System (ADS)
van Enter, A. C. D.; de Lima, B. N. B.; Valesin, D.
2016-07-01
We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.
Jammed systems of oriented needles always percolate on square lattices
NASA Astrophysics Data System (ADS)
Kondrat, Grzegorz; Koza, Zbigniew; Brzeski, Piotr
2017-08-01
Random sequential adsorption (RSA) is a standard method of modeling adsorption of large molecules at the liquid-solid interface. Several studies have recently conjectured that in the RSA of rectangular needles, or k -mers, on a square lattice, percolation is impossible if the needles are sufficiently long (k of order of several thousand). We refute these claims and present rigorous proof that in any jammed configuration of nonoverlapping, fixed-length, horizontal, or vertical needles on a square lattice, all clusters are percolating clusters.
One-dimensional long-range percolation: A numerical study
NASA Astrophysics Data System (ADS)
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 <σ <1 are reported. Our analysis is in agreement, up to a numerical precision ≈10-3 , with the mean-field result for the anomalous dimension η =2 -σ , showing that there is no correction to η due to correlation effects. The obtained values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.
Transport and percolation in complex networks
NASA Astrophysics Data System (ADS)
Li, Guanliang
To design complex networks with optimal transport properties such as flow efficiency, we consider three approaches to understanding transport and percolation in complex networks. We analyze the effects of randomizing the strengths of connections, randomly adding long-range connections to regular lattices, and percolation of spatially constrained networks. Various real-world networks often have links that are differentiated in terms of their strength, intensity, or capacity. We study the distribution P(σ) of the equivalent conductance for Erdoḧs-Rényi (ER) and scale-free (SF) weighted resistor networks with N nodes, for which links are assigned with conductance σ i ≡ e-axi, where xi is a random variable with 0 < xi < 1. We find, both analytically and numerically, that P(σ) for ER networks exhibits two regimes: (i) For σ < e-apc, P(σ) is independent of N and scales as a power law P(σ) ˜ sk/a-1 . Here pc = 1/
Unusual percolation in simple small-world networks.
Cohen, Reuven; Dawid, Daryush Jonathan; Kardar, Mehran; Bar-Yam, Yaneer
2009-06-01
We present an exact solution of percolation in a generalized class of Watts-Strogatz graphs defined on a one-dimensional underlying lattice. We find a nonclassical critical point in the limit of the number of long-range bonds in the system going to zero, with a discontinuity in the percolation probability and a divergence in the mean finite-cluster size. We show that the critical behavior falls into one of three regimes depending on the proportion of occupied long-range to unoccupied nearest-neighbor bonds, with each regime being characterized by different critical exponents. The three regimes can be united by a single scaling function around the critical point. These results can be used to identify the number of long-range links necessary to secure connectivity in a communication or transportation chain. As an example, we can resolve the communication problem in a game of "telephone."
Local texture and strongly linked conduction in spray-pyrolyzed TlBa2Ca2Cu3O(8+x) deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Local texture in polycrystalline TlBa2Ca2 Cu3O(8+x) deposits has been determined from transmission electron microscopy, electron backscatter diffraction patterns and x-ray diffraction. The small-grained deposits had excellent c-axis alignment and contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range conduction utilizes a percolative network of small angle grain boundaries at colony intersections.
Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...
2015-12-15
Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less
Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2018-05-01
Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).
NASA Astrophysics Data System (ADS)
Zierenberg, Johannes; Fricke, Niklas; Marenz, Martin; Spitzner, F. P.; Blavatska, Viktoria; Janke, Wolfhard
2017-12-01
We study long-range power-law correlated disorder on square and cubic lattices. In particular, we present high-precision results for the percolation thresholds and the fractal dimension of the largest clusters as a function of the correlation strength. The correlations are generated using a discrete version of the Fourier filtering method. We consider two different metrics to set the length scales over which the correlations decay, showing that the percolation thresholds are highly sensitive to such system details. By contrast, we verify that the fractal dimension df is a universal quantity and unaffected by the choice of metric. We also show that for weak correlations, its value coincides with that for the uncorrelated system. In two dimensions we observe a clear increase of the fractal dimension with increasing correlation strength, approaching df→2 . The onset of this change does not seem to be determined by the extended Harris criterion.
Percolation of spatially constraint networks
NASA Astrophysics Data System (ADS)
Li, Daqing; Li, Guanliang; Kosmidis, Kosmas; Stanley, H. E.; Bunde, Armin; Havlin, Shlomo
2011-03-01
We study how spatial constraints are reflected in the percolation properties of networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-range connections between sites on the lattice where two sites at distance r are chosen to be linked with probability p(r)~r-δ. Similar distributions have been found in spatially embedded real networks such as social and airline networks. We find that for networks embedded in two dimensions, with 2<δ<4, the percolation properties show new intermediate behavior different from mean field, with critical exponents that depend on δ. For δ<2, the percolation transition belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for δ>4 it belongs to the universality class of percolation in regular lattices. For networks embedded in one dimension, we find that, for δ<1, the percolation transition is mean field. For 1<δ<2, the critical exponents depend on δ, while for δ>2 there is no percolation transition as in regular linear chains.
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
NASA Astrophysics Data System (ADS)
Tzioufas, Achillefs
2018-04-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
NASA Astrophysics Data System (ADS)
Tzioufas, Achillefs
2018-06-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
Prych, Edmund A.
1995-01-01
Long-term average deep-percolation rates of water from precipitation on the U.S. Department of Energy Hanford Site in semiarid south-central Washington, as estimated by a chloride mass-balance method, range from 0.008 to 0.30 mm/yr (millimeters per year) at nine locations covered by a variety of fine-grain soils and vegetated with sagebrush and other deep-rooted plants plus sparse shallow-rooted grasses. Deep-percolation rates estimated using a chlorine-36 bomb-pulse method at three of the nine locations range from 2.1 to 3.4 mm/yr. Because the mass-balance method may underestimate percolation rates and the bomb-pulse method probably overestimates percolation rates, estimates by the two methods probably bracket actual rates. These estimates, as well as estimates by previous investigators who used different methods, are a small fraction of mean annual precipitation, which ranges from about 160 to 210 mm/yr at the different test locations. Estimates by the mass-balance method at four locations in an area that is vegetated only with sparse shallow-rooted grasses range from 0.39 to 2.0 mm/yr. Chlorine-36 data at one location in this area were sufficient only to determine that the upper limit of deep percolation is more than 5.1 mm/yr. Although estimates for locations in this area are larger than the estimates for locations with deep-rooted plants, they are at the lower end of the range of estimates for this area made by previous investigators.
On reducing terrorism power: a hint from physics
NASA Astrophysics Data System (ADS)
Galam, Serge; Mauger, Alain
2003-05-01
The September 11 attack on the US has revealed an unprecedented terrorism worldwide range of destruction. Recently, it has been related to the percolation of worldwide spread passive supporters. This scheme puts the suppression of the percolation effect as the major strategic issue in the fight against terrorism. Accordingly the world density of passive supporters should be reduced below the percolation threshold. In terms of solid policy, it means to neutralize millions of random passive supporters, which is contrary to ethics and out of any sound practical scheme. Given this impossibility we suggest instead a new strategic scheme to act directly on the value of the terrorism percolation threshold itself without harming the passive supporters. Accordingly we identify the space hosting the percolation phenomenon to be a multi-dimensional virtual social space which extends the ground earth surface to include the various independent terrorist-fighting goals. The associated percolating cluster is then found to create long-range ground connections to terrorism activity. We are thus able to modify the percolation threshold pc in the virtual space to reach p
On chemical distances and shape theorems in percolation models with long-range correlations
NASA Astrophysics Data System (ADS)
Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm
2014-08-01
In this paper, we provide general conditions on a one parameter family of random infinite subsets of {{Z}}^d to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Černý and Popov ["On the internal distance in the interlacement set," Electron. J. Probab. 17(29), 1-25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora ["On the chemical distance for supercritical Bernoulli percolation," Ann Probab. 24(2), 1036-1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.
Xia, Xiaodong; Hao, Jia; Wang, Yang; Zhong, Zheng; Weng, George J
2017-05-24
Highly aligned graphene-based nanocomposites are of great interest due to their excellent electrical properties along the aligned direction. Graphene fillers in these composites are not necessarily perfectly aligned, but their orientations are highly confined to a certain angle, [Formula: see text] with 90° giving rise to the randomly oriented state and 0° to the perfectly aligned one. Recent experiments have shown that electrical conductivity and dielectric permittivity of highly aligned graphene-polymer nanocomposites are strongly dependent on this distribution angle, but at present no theory seems to exist to address this issue. In this work we present a new effective-medium theory that is derived from the underlying physical process including the effects of graphene orientation, filler loading, aspect ratio, percolation threshold, interfacial tunneling, and Maxwell-Wagner-Sillars polarization, to determine these two properties. The theory is formulated in the context of preferred orientational average. We highlight this new theory with an application to rGO/epoxy nanocomposites, and demonstrate that the calculated in-plane and out-of-plane conductivity and permittivity are in agreement with the experimental data as the range of graphene orientations changes from the randomly oriented to the highly aligned state. We also show that the percolation thresholds of highly aligned graphene nanocomposites are in general different along the planar and the normal directions, but they converge into a single one when the statistical distribution of graphene fillers is spherically symmetric.
Percolation of fracture networks and stereology
NASA Astrophysics Data System (ADS)
Thovert, Jean-Francois; Mourzenko, Valeri; Adler, Pierre
2017-04-01
The overall properties of fractured porous media depend on the percolative character of the fracture network in a crucial way. The most important examples are permeability and transport. In a recent systematic study, a very wide range of regular, irregular and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. A simple and new model involving a dimensionless density and a new shape factor is proposed for the percolation threshold, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy to monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions. Moreover, and this is crucial for practical applications, the relevant quantities which are present in the expression of the percolation threshold can all be determined from trace maps. An exact and complete set of relations can be derived when the fractures are assumed to be Identical, Isotropically Oriented and Uniformly Distributed (I2OUD). Therefore, the dimensionless density of such networks can be derived directly from the trace maps and its percolating character can be a priori predicted. These relations involve the first five moments of the trace lengths. It is clear that the higher order moments are sensitive to truncation due to the boundaries of the sampling domain. However, it can be shown that the truncation effect can be fully taken into account and corrected, for any fracture shape, size and orientation distributions, if the fractures are spatially uniformly distributed. Systematic applications of these results are made to real fracture networks that we previously analyzed by other means and to numerically simulated networks. It is important to know if the stereological results and their applications can be extended to networks which are not I2OUD. In other words, for a given trace map, an equivalent I2OUD network is defined whose percolating character and permeability are readily deduced. The conditions under which these predicted properties are not too far from the real properties are under investigation.
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Haehnelt, Martin G.; Bosman, Sarah E. I.; Puchwein, Ewald
2018-01-01
High signal-to-noise observations of the Ly α forest transmissivity in the z = 7.085 quasi-stellar object (QSO) ULAS J1120+0641 show seven narrow transmission spikes followed by a long 240 cMpc h-1 trough. Here, we use radiative transfer simulations of cosmic reionization previously calibrated to match a wider range of Ly α forest data to show that the occurrence of seven transmission spikes in the narrow redshift range z = 5.85-6.1 is very sensitive to the exact timing of reionization. Occurrence of the spikes requires the most underdense regions of the intergalactic medium to be already fully ionized. The rapid onset of a long trough at z = 6.12 requires a strong decrease of the photoionization rate Γ at z ≳ 6.1 in this line of sight, consistent with the end of percolation at this redshift. The narrow range of reionization histories that we previously found to be consistent with a wider range of Ly α forest data have a reasonable probability of showing seven spikes and the mock absorption spectra provide an excellent match to the spikes and the trough in the observed spectrum of ULAS J1120+0641. Larger samples of high signal-to-noise searches for rare Ly α transmission spikes at z > 5.8 should therefore provide important further insights into the exact timing of the percolation of H II bubbles at the tail end of reionization.
Dimer covering and percolation frustration.
Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M
2015-09-01
Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.
NASA Astrophysics Data System (ADS)
Hicks, Jeremy; Li, Junying; Ying, Chen; Ural, Ant
2018-05-01
We study the effect of nanowire curviness on the percolation resistivity of transparent, conductive metal nanowire networks by Monte Carlo simulations. We generate curvy nanowires as one-dimensional sticks using 3rd-order Bézier curves. The degree of curviness in the network is quantified by the concept of curviness angle and curl ratio. We systematically study the interaction between the effect of curviness and five other nanowire/device parameters on the network resistivity, namely nanowire density, nanowire length, device length, device width, and nanowire alignment. We find that the resistivity exhibits a power law dependence on the curl ratio, which is a signature of percolation transport. In each case, we extract the power-law scaling critical exponents and explain the results using geometrical and physical arguments. The value of the curl ratio critical exponent is not universal, but increases as the other nanowire/device parameters drive the network toward the percolation threshold. We find that, for randomly oriented networks, curviness is undesirable since it increases the resistivity. For well-aligned networks, on the other hand, some curviness is highly desirable, since the resistivity minimum occurs for partially curvy nanowires. We explain these results by considering the two competing effects of curviness on the percolation resistivity. The results presented in this work can be extended to any network, film, or nanocomposite consisting of one-dimensional nanoelements. Our results show that Monte Carlo simulations are an essential predictive tool for both studying the percolation transport and optimizing the electronic properties of transparent, conductive nanowire networks for a wide range of applications.
Li, Yijun; Nie, Min; Wang, Qi
2018-01-10
Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.
Percolation in three-dimensional fracture networks for arbitrary size and shape distributions
NASA Astrophysics Data System (ADS)
Thovert, J.-F.; Mourzenko, V. V.; Adler, P. M.
2017-04-01
The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular, and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions.
Influence of the lower boundary in lysimeter observations
NASA Astrophysics Data System (ADS)
Weller, Ulrich; Richter, Katja; Gubis, Jozef; Vogel, Hans-Jörg
2014-05-01
Lysimeters are a valuable tool to study the water household in soils under close to natural conditions. One major drawback is that they are cut off at the lower boundary. This influences strongly the percolation of water. As long as water is leaching down in the soil, it is stagnating at the lower boundary until saturated conditions are reached and the water can percolate through the gravel filter, and under unsaturated conditions there is no flow at all at the lower boundary. In natural soils the water potential at the same depth differs considerably from the regime in a lysimeter. If the depth of the soil or the soil forming substrate is deep enough, the lower boundary is at the potential that allows the percolation of the long term mean of percolation. In other situations, a water table may influence the matric potential in the natural soil, or a less permeable layer may impede free drainage. In all these situations the matric potential at the depth of the lower boundary of the lysimeter will differ substantially in the natural soil. The latest generation of lysimeter therefore has a controlled lower boundary. The matric potential can be actively adjusted to a desired value over a broad range. Most applications connect the suction in the lysimeter to a reference value obtained in the field at the same depth in order to mimic the correct distribution of the soil water. In this presentation we demonstrate the long term influence of the different lower boundary regimes on percolation and evaporation of water based on soil physical models, and we show first field data on the practical implementations with several months of observations.
On the question of fractal packing structure in metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Jun; Asta, Mark; Ritchie, Robert O.
2017-07-25
This work addresses the long-standing debate over fractal models of packing structure in metallic glasses (MGs). Through detailed fractal and percolation analyses of MG structures, derived from simulations spanning a range of compositions and quenching rates, we conclude that there is no fractal atomic-level structure associated with the packing of all atoms or solute-centered clusters. The results are in contradiction with conclusions derived from previous studies based on analyses of shifts in radial distribution function and structure factor peaks associated with volume changes induced by pressure and compositional variations. Here in this paper, the interpretation of such shifts is shownmore » to be challenged by the heterogeneous nature of MG structure and deformation at the atomic scale. Moreover, our analysis in the present work illustrates clearly the percolation theory applied to MGs, for example, the percolation threshold and characteristics of percolation clusters formed by subsets of atoms, which can have important consequences for structure–property relationships in these amorphous materials.« less
NASA Astrophysics Data System (ADS)
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2018-03-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
NASA Astrophysics Data System (ADS)
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2017-12-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada
Yang, I.C.
2002-01-01
The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS/TSw although there is a small overlap.
Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.
2003-01-01
The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.
NASA Astrophysics Data System (ADS)
Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.
2017-09-01
The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.
Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres
Canning, John; Huyang, George; Ma, Miles; Beavis, Alison; Bishop, David; Cook, Kevin; McDonagh, Andrew; Shi, Dongqi; Peng, Gang-Ding; Crossley, Maxwell J.
2014-01-01
Percolation diffusion into long (11.5 cm) self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS). Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1) of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP) observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described. PMID:28348290
Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice
NASA Astrophysics Data System (ADS)
Pei, Anqi; Wang, Jun
2015-01-01
The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.
Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods
NASA Astrophysics Data System (ADS)
Jadrich, Ryan; Schweizer, Kenneth S.
2011-12-01
The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.
Neural field model to reconcile structure with function in primary visual cortex.
Rankin, James; Chavane, Frédéric
2017-10-01
Voltage-sensitive dye imaging experiments in primary visual cortex (V1) have shown that local, oriented visual stimuli elicit stable orientation-selective activation within the stimulus retinotopic footprint. The cortical activation dynamically extends far beyond the retinotopic footprint, but the peripheral spread stays non-selective-a surprising finding given a number of anatomo-functional studies showing the orientation specificity of long-range connections. Here we use a computational model to investigate this apparent discrepancy by studying the expected population response using known published anatomical constraints. The dynamics of input-driven localized states were simulated in a planar neural field model with multiple sub-populations encoding orientation. The realistic connectivity profile has parameters controlling the clustering of long-range connections and their orientation bias. We found substantial overlap between the anatomically relevant parameter range and a steep decay in orientation selective activation that is consistent with the imaging experiments. In this way our study reconciles the reported orientation bias of long-range connections with the functional expression of orientation selective neural activity. Our results demonstrate this sharp decay is contingent on three factors, that long-range connections are sufficiently diffuse, that the orientation bias of these connections is in an intermediate range (consistent with anatomy) and that excitation is sufficiently balanced by inhibition. Conversely, our modelling results predict that, for reduced inhibition strength, spurious orientation selective activation could be generated through long-range lateral connections. Furthermore, if the orientation bias of lateral connections is very strong, or if inhibition is particularly weak, the network operates close to an instability leading to unbounded cortical activation.
NASA Astrophysics Data System (ADS)
Deng, Wei; Wang, Jun
2015-06-01
We investigate and quantify the multifractal detrended cross-correlation of return interval series for Chinese stock markets and a proposed price model, the price model is established by oriented percolation. The return interval describes the waiting time between two successive price volatilities which are above some threshold, the present work is an attempt to quantify the level of multifractal detrended cross-correlation for the return intervals. Further, the concept of MF-DCCA coefficient of return intervals is introduced, and the corresponding empirical research is performed. The empirical results show that the return intervals of SSE and SZSE are weakly positive multifractal power-law cross-correlated, and exhibit the fluctuation patterns of MF-DCCA coefficients. The similar behaviors of return intervals for the price model is also demonstrated.
NASA Astrophysics Data System (ADS)
Picu, R. C.; Pal, A.; Lupulescu, M. V.
2016-04-01
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.
Local texture and grain boundary misorientations in high H(C) oxide superconductors
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Tkaczyk, J. E.; Sutliff, J.; Deluca, J. A.; Wang, Z. L.; Riley, G. N., Jr.
The orientations of hundreds of contiguous grains in high J(C) TlBa2Ca2Cu3O(x) deposits and (Bi, Pb)2 Sr2Ca2Cu3O(y) powder-in-tube tapes have been determined from electron back scatter diffraction patterns (EBSP). The misorientation angles and axes of rotation (angle/axis pairs) for grain boundaries connecting these grains were calculated. For both materials the population of low angle boundaries was found to be much larger than expected from calculations based on the macroscopic texture. The TlBa2Ca2Cu3O(x) deposits exhibit pronounced local texture which has been defined by EBSP and x-ray diffraction. Locally grains show significant in-plane (a-axis) alignment even though macroscopically a-axes are random, indicating the presence of colonies of grains with similar a-axis orientations. In (Bi, Pb)2 Sr2Ca2Cu3O(x) tapes no local texture was observed. In both materials the existence of connected networks of small angle grain boundaries can be inferred. Coincident site lattice (CSL) grain boundaries are also present in higher than expected numbers. Grain boundary energy thus appears to play a significant role in enhancing the population of potentially strongly-linked boundaries. We propose that long range strongly-linked conduction occurs through a percolative network small angle (and perhaps CSL) grain boundaries.
Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes.
de Castro, C P; Luković, M; Pompanin, G; Andrade, R F S; Herrmann, H J
2018-03-27
Motivated by the fact that many physical landscapes are characterized by long-range height-height correlations that are quantified by the Hurst exponent H, we investigate the statistical properties of the iso-height lines of correlated surfaces in the framework of Schramm-Loewner evolution (SLE). We show numerically that in the continuum limit the external perimeter of a percolating cluster of correlated surfaces with H ∈ [-1, 0] is statistically equivalent to SLE curves. Our results suggest that the external perimeter also retains the Markovian properties, confirmed by the absence of time correlations in the driving function and the fact that the latter is Gaussian distributed for any specific time. We also confirm that for all H the variance of the winding angle grows logarithmically with size.
Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network
NASA Astrophysics Data System (ADS)
Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing
2017-11-01
We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.
Effect of orientation on electrically conducting thermoplastic composite properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genetti, W.B.; Grady, B.P.
1996-10-01
Properties of electrically conducting composites made from low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene (PP) filled with nickel flake are being studied as a function of nickel concentration and draw ratio. The effect on electrical conduction, crystallinity, melt temperature, tensile modulus, and elongation at break are being tested. The melt temperature increases with increasing nickel concentration. The electrical conduction increases slowly with increased nickel concentration to the percolation volume fraction, then increases sharply. Orientation by uniaxial stretching of the films should allow conductive pathways to form throughout the polymer more easily by forcing particles closer together, thusmore » reducing the percolation volume fraction. This process could be caused by both alignment of the polymer chains and by stress induced crystallization that forces the particles into smaller amorphous regions.« less
Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning
Walsby, Anthony E; Holland, Daryl P
2005-01-01
Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271
NASA Astrophysics Data System (ADS)
Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto
2018-01-01
In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.
NASA Astrophysics Data System (ADS)
Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.
Quantum walks of two interacting particles on percolation graphs
NASA Astrophysics Data System (ADS)
Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo
2017-10-01
We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, A.; Specht, E.D.; Kroeger, D.M.
1995-05-22
Grain orientations and grain boundary misorientations in high-{ital J}{sub {ital c}}, powder-in-tube (PIT) (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} (Bi-2223) were determined using electron backscatter Kikuchi diffraction and x-ray microdiffraction. Data collected from over 113 spatially correlated grains, resulting in 227 grain boundaries, show that over 40% of the boundaries are {Sigma}1 or small angle (less than 15{degree}). In addition, 8% of the boundaries are within the Brandon criterion for CSLs (sigma larger than 1 and less than 50). Grain boundary ``texture maps`` derived from the electron microscope image and orientation data reveal the presence of percolative paths betweenmore » low energy boundaries.« less
Quantifying Potential Groundwater Recharge In South Texas
NASA Astrophysics Data System (ADS)
Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.
2015-12-01
Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.
Lee, Jinhwan; An, Kunsik; Won, Phillip; Ka, Yoonseok; Hwang, Hyejin; Moon, Hyunjin; Kwon, Yongwon; Hong, Sukjoon; Kim, Changsoon; Lee, Changhee; Ko, Seung Hwan
2017-02-02
Although solution processed metal nanowire (NW) percolation networks are a strong candidate to replace commercial indium tin oxide, their performance is limited in thin film device applications due to reduced effective electrical areas arising from the dimple structure and percolative voids that single size metal NW percolation networks inevitably possess. Here, we present a transparent electrode based on a dual-scale silver nanowire (AgNW) percolation network embedded in a flexible substrate to demonstrate a significant enhancement in the effective electrical area by filling the large percolative voids present in a long/thick AgNW network with short/thin AgNWs. As a proof of concept, the performance enhancement of a flexible phosphorescent OLED is demonstrated with the dual-scale AgNW percolation network compared to the previous mono-scale AgNWs. Moreover, we report that mechanical and oxidative robustness, which are critical for flexible OLEDs, are greatly increased by embedding the dual-scale AgNW network in a resin layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki
2013-12-23
The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.
Bootstrap percolation on spatial networks
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-10-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.
NASA Astrophysics Data System (ADS)
Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery
2017-12-01
It is known that the multifocal mechanism of genesis of structure of heterogeneous materials provokes intensive formation of internal boundaries. In the present papers, the dependence of the structure and properties of material on the characteristic size and shape, the number and size distribution, and the character of interaction of individual internal boundaries and their clusters is studied. The limitation on the applicability of the material damage coefficient is established; the effective information descriptor of internal boundaries is proposed. An idea of the effect of long-range interaction in irradiated solids on the realization of the second-order phase transition is introduced; a phenomenological percolation model of the effect is proposed.
Percolation under noise: Detecting explosive percolation using the second-largest component
NASA Astrophysics Data System (ADS)
Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.
2016-05-01
We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.
What is measured by hyper-Rayleigh scattering from a liquid?
NASA Astrophysics Data System (ADS)
Rodriquez, Micheal B.; Shelton, David P.
2018-04-01
Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.
Percolation in suspensions of hard nanoparticles: From spheres to needles
NASA Astrophysics Data System (ADS)
Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul
2015-09-01
We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.
Cluster formation and percolation in ethanol-water mixtures
NASA Astrophysics Data System (ADS)
Gereben, Orsolya; Pusztai, László
2017-10-01
Results of systematic molecular dynamics studies of ethanol-water mixtures, over the entire concentration range, were reported previously that agree with experimental X-ray diffraction data. These simulated systems are analyzed in this work to examine cluster formation and percolation, using four different hydrogen bond definitions. Percolation analyses revealed that each mixture (even the one containing 80 mol% ethanol) is above the 3D percolation threshold, with fractal dimensions, df, between 2.6 and 2.9, depending on concentration. Monotype water cluster formation was also studied in the mixtures: 3D water percolation can be found in systems with less than 40 mol% ethanol, with fractal dimensions between 2.53 and 2.84. These observations can be put in parallel with experimental data on some thermodynamic quantities, such as the excess partial molar enthalpy and entropy.
Connecting Core Percolation and Controllability of Complex Networks
Jia, Tao; Pósfai, Márton
2014-01-01
Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797
NASA Astrophysics Data System (ADS)
Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar
2017-12-01
The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water.
Urbic, T
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water
NASA Astrophysics Data System (ADS)
Urbic, T.
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
Mirrorless lasing from light emitters in percolating clusters
NASA Astrophysics Data System (ADS)
Burlak, Gennadiy; Rubo, Y. G.
2015-07-01
We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Standard and inverse bond percolation of straight rigid rods on square lattices
NASA Astrophysics Data System (ADS)
Ramirez, L. S.; Centres, P. M.; Ramirez-Pastor, A. J.
2018-04-01
Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k -mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj ,k and percolation threshold pc ,k are determined for a wide range of k (1 ≤k ≤120 ). pj ,k and pc ,k exhibit a decreasing behavior with increasing k , pj ,k →∞=0.7476 (1 ) and pc ,k →∞=0.0033 (9 ) being the limit values for large k -mer sizes. pj ,k is always greater than pc ,k, and consequently, the percolation phase transition occurs for all values of k . In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k -mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,k i, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,k i is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,k i=1 -pj ,k . The obtained results for pc,k i show that the inverse percolation threshold is a decreasing function of k in the range 1 ≤k ≤18 . For k >18 , all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed bonds pj,k i is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k =1 ) are much more effective than correlated attacks on groups of close nodes (large k 's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2018-01-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.
Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.
King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N
2012-02-28
We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.
Hunley, Matthew T; Pötschke, Petra; Long, Timothy E
2009-12-16
Nanoscale fibers with embedded, aligned, and percolated non-functionalized multiwalled carbon nanotubes (MWCNTs) were fabricated through electrospinning dispersions based on melt-compounded thermoplastic polyurethane/MWCNT nanocomposite, with up to 10 wt.-% MWCNTs. Transmission electron microscopy indicated that the nanotubes were highly oriented and percolated throughout the fibers, even at high MWCNT concentrations. The coupling of efficient melt compounding with electrospinning eliminated the need for intensive surface functionalization or sonication of the MWCNTs, and the high aspect ratio as well as the electrical and mechanical properties of the nanotubes were retained. This method provides a more efficient technique to generate one-dimensional nanofibers with aligned MWCNTs. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scale-free correlations in the geographical spreading of obesity
NASA Astrophysics Data System (ADS)
Gallos, Lazaros; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernan
2012-02-01
Obesity levels have been universally increasing. A crucial problem is to determine the influence of global and local drivers behind the obesity epidemic, to properly guide effective policies. Despite the numerous factors that affect the obesity evolution, we show a remarkable regularity expressed in a predictable pattern of spatial long-range correlations in the geographical spreading of obesity. We study the spatial clustering of obesity and a number of related health and economic indicators, and we use statistical physics methods to characterize the growth of the resulting clusters. The resulting scaling exponents allow us to broadly classify these indicators into two separate universality classes, weakly or strongly correlated. Weak correlations are found in generic human activity such as population distribution and the growth of the whole economy. Strong correlations are recovered, among others, for obesity, diabetes, and the food industry sectors associated with food consumption. Obesity turns out to be a global problem where local details are of little importance. The long-range correlations suggest influence that extends to large scales, hinting that the physical model of obesity clustering can be mapped to a long-range correlated percolation process.
Long-range ordering effect in electrodeposition of zinc and zinc oxide.
Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben
2007-05-01
In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.
Percolation Thresholds in Angular Grain media: Drude Directed Infiltration
NASA Astrophysics Data System (ADS)
Priour, Donald
Pores in many realistic systems are not well delineated channels, but are void spaces among grains impermeable to charge or fluid flow which comprise the medium. Sparse grain concentrations lead to permeable systems, while concentrations in excess of a critical density block bulk fluid flow. We calculate percolation thresholds in porous materials made up of randomly placed (and oriented) disks, tetrahedrons, and cubes. To determine if randomly generated finite system samples are permeable, we deploy virtual tracer particles which are scattered (e.g. specularly) by collisions with impenetrable angular grains. We hasten the rate of exploration (which would otherwise scale as ncoll1 / 2 where ncoll is the number of collisions with grains if the tracers followed linear trajectories) by considering the tracer particles to be charged in conjunction with a randomly directed uniform electric field. As in the Drude treatment, where a succession of many scattering events leads to a constant drift velocity, tracer displacements on average grow linearly in ncoll. By averaging over many disorder realizations for a variety of systems sizes, we calculate the percolation threshold and critical exponent which characterize the phase transition.
Global physics: from percolation to terrorism, guerilla warfare and clandestine activities
NASA Astrophysics Data System (ADS)
Galam, Serge
2003-12-01
The September 11 attack on the US has revealed an unprecedented terrorism with worldwide range of destruction. It is argued to result from the first worldwide percolation of passive supporters. They are people sympathetic to the terrorism cause but without being involved with it. They just do not oppose it in case they could. This scheme puts suppression of the percolation as the major strategic issue in the fight against terrorism. Acting on the population is shown to be useless. Instead a new strategic scheme is suggested to increase the terrorism percolation threshold and in turn suppress the percolation. The relevant associated space is identified as a multi-dimensional social space including both the ground earth surface and all various independent flags displayed by the terrorist group. Some hints are given on how to shrink the geographical spreading of terrorism threat. The model apply to a large spectrum of clandestine activities including guerilla warfare as well as tax evasion, corruption, illegal gambling, illegal prostitution and black markets.
NASA Astrophysics Data System (ADS)
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical percolation theory, the latter is applicable to such networks. Under these conditions, percolation theory permit us to reduced the number of elements (90% in average) that form clusters of the 100 DFNs, preserving the so-called backbone. In this way the calibration runs in these networks changed from several hours to just a second obtaining much better results.
NASA Astrophysics Data System (ADS)
Massango, Herieta; Kono, Koji; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi
2018-05-01
Complex permeability and permittivity spectra of Ni-Zn Ferrite/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. The electrical conductivity σ shows insulating properties in the volume fraction of Cu particles below φ = 0.14. A large jump in conductivity was observed between φ = 0.14 and 0.24 indicating that the Cu particles make metallic conduction between this interval. Hence, the percolation threshold φC, was estimated to be 0.14. A percolation-induced low frequency plasmonic state with negative permittivity spectrum was observed from φ = 0.14-0.24. Meanwhile the negative permeability was observed at φ = 0.16, 0.19 and 0.24. Hence the DNG characteristic was realized in these Cu volume content in the frequency range from 105 MHz to 2 GHz.
Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4
Chen, Xiang; Hogan, Tom; Walkup, D.; ...
2015-08-17
The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less
Statistical mechanics of high-density bond percolation
NASA Astrophysics Data System (ADS)
Timonin, P. N.
2018-05-01
High-density (HD) percolation describes the percolation of specific κ -clusters, which are the compact sets of sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently distributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ -type HD percolations amounts to the description of classical clusters' structure for which κ -clusters constitute κ -cores nested one into another. Such data are needed for description of a number of physical, biological, and information properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that the generating function for κ -clusters' size distribution can be obtained from the partition function of the specific q -state Potts-Ising model in the q →1 limit. Using this approach we find exact κ -clusters' size distributions for the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.
NASA Astrophysics Data System (ADS)
Al-Dahawi, Ali; Haroon Sarwary, Mohammad; Öztürk, Oğuzhan; Yıldırım, Gürkan; Akın, Arife; Şahmaran, Mustafa; Lachemi, Mohamed
2016-10-01
An experimental study was carried out to understand the electrical percolation thresholds of different carbon-based nano- and micro-scale materials in cementitious composites. Multi-walled carbon nanotubes (CNTs), graphene nanoplatelets (GNPs) and carbon black (CB) were selected as the nano-scale materials, while 6 and 12 mm long carbon fibers (CF6 and CF12) were used as the micro-scale carbon-based materials. After determining the percolation thresholds of different electrical conductive materials, mechanical properties and piezoresistive properties of specimens produced with the abovementioned conductive materials at percolation threshold were investigated under uniaxial compressive loading. Results demonstrate that regardless of initial curing age, the percolation thresholds of CNT, GNP, CB and CFs in ECC mortar specimens were around 0.55%, 2.00%, 2.00% and 1.00%, respectively. Including different carbon-based conductive materials did not harm compressive strength results; on the contrary, it improved overall values. All cementitious composites produced with carbon-based materials, with the exception of the control mixtures, exhibited piezoresistive behavior under compression, which is crucial for sensing capability. It is believed that incorporating the sensing attribute into cementitious composites will enhance benefits for sustainable civil infrastructures.
Prych, Edmund A.
1998-01-01
A chloride mass-balance method and a chlorine-36 isotope bomb-pulse method were used to estimate long-term average rates of deep percolation at at the U.S. Department of Energy Hanford Site. Because the bomb-pulse method typically gives an upper limit and the mass-balance method may underestimate, estimates from both methods probably bracket actual rates.
NASA Astrophysics Data System (ADS)
Hunt, Allen G.
2016-04-01
Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.
Explanation of the values of Hack's drainage basin, river length scaling exponent
NASA Astrophysics Data System (ADS)
Hunt, A. G.
2015-08-01
Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.
Long-Range Self-Study, 1975-1985.
ERIC Educational Resources Information Center
Williamsport Area Community Coll., PA.
This self-study contains recommendations and objectives for Williamsport Area Community College (WACC), a one-campus, vocational-technical oriented college in an industrial community in Pennsylvania. The methodology employed in producing this self-study is intended to form the framework for a continuous learning-oriented short and long-range…
Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.
2000-01-01
Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26-28, 1997. Percolation rates were not calculated for the September 27-October 6, 1997, period because a late summer flood removed the temperature sensors from the streambed. Investigators used a heat-and-water flow model, VS2DH (variably saturated, two- dimensional heat), to calculate near-surface streambed infiltration and percolation rates from temperatures measured in the stream and streambed. Near the stream-sediment interface, infiltration and percolation rates are comparable. Comparison of infiltration and percolation rates showed that infiltration rates were greater than percolation rates. The method used to calculate infiltration rates accounted for net loss or gain over the entire stream reach, whereas the method used to calculate percolation was dependent on point measurements and, as applied in this study, neglected the nonvertical component of heat and water fluxes. In general, using the ground-water method was less labor intensive than making a series of streamflow measurements and relied on temperature, an easily measured property. The ground-water method also eliminated the difficulty of measuring or estimating evaporation from the water surface and was therefore more direct. Both methods are difficult to use during periods of flood flow. The ground-water method has problems with the thermocouple-wire temperature sensors washing out during flood events. The surface- water method often cannot be used because of safety concerns for personnel making wading streamflow measurements.
Garcia-Prats, Alberto; González-Sanchis, María; Del Campo, Antonio D; Lull, Cristina
2018-10-15
Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Copyright © 2018 Elsevier B.V. All rights reserved.
Richter, Elisabeth; Hecht, Fabian; Schnellbacher, Nadine; Ternes, Thomas A; Wick, Arne; Wode, Florian; Coors, Anja
2015-11-01
The reuse of treated wastewater for irrigation and groundwater recharge can counteract water scarcity and reduce pollution of surface waters, but assessing its environmental risk should likewise consider effects associated to the soil. The present study therefore aimed at determining the impact of wastewater irrigation on the habitat quality of water after soil passage and of soil after percolation by applying bioassays and chemical analysis. Lab-scale columns of four different soils encompassing standard European soil and three field soils of varying characteristics and pre-contamination were continuously percolated with treated wastewater to simulate long-term irrigation. Wastewater and its percolates were tested for immobilization of Daphnia magna and growth inhibition of green algae (Pseudokirchneriella subcapitata) and water lentils (Lemna minor). The observed phytotoxicity of the treated wastewater was mostly reduced by soil passage, but in some percolates also increased for green algae. Chemical analysis covering an extensive set of wastewater-born organic pollutants demonstrated that many of them were considerably reduced by soil passage, particularly through peaty soils. Taken together, these results indicated that wastewater-born phytotoxic substances may be removed by soil passage, while existing soil pollutants (e.g. metals) may leach and impair percolate quality. Soils with and without wastewater irrigation were tested for growth of plants (Avena sativa, Brassica napus) and soil bacteria (Arthrobacter globiformis) and reproduction of collembolans (Folsomia candida) and oligochaetes (Enchytraeus crypticus, Eisenia fetida). The habitat quality of the standard and two field soils appeared to be deteriorated by wastewater percolation for at least one organism (enchytraeids, plants or bacteria), while for two pre-contaminated field soils it also was improved (for plants and/or enchytraeids). Wastewater percolation did not seem to raise soil concentrations of classical organic pollutants and priority substances, while a significant retention was found for zinc and several organic micropollutants, particularly in the peaty soils, thus matching these soils' observed higher removal efficiency. Overall, our results demonstrate that benefits of wastewater irrigation can come with the cost of deteriorating soil habitat quality and depend on the respective soil and considered test organism. The approach employed here represents a feasible tool to assess these integrated effects at lab-scale while being predictive for scenarios at field-scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new percolation model for composite solid electrolytes and dispersed ionic conductors
NASA Astrophysics Data System (ADS)
Risyad Hasyim, Muhammad; Lanagan, Michael T.
2018-02-01
Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.
NASA Astrophysics Data System (ADS)
Winey, Karen I.; Mutiso, Rose M.; Sherrott, Michelle C.; Rathmell, Aaron R.; Wiley, Benjamin J.
2013-03-01
Thin-film metal nanowire networks are being pursued as a viable alternative to the expensive and brittle indium tin oxide (ITO) for transparent conductors. For high performance applications, nanowire networks must exhibit high transmittance at low sheet resistance. Previously, we have used complimentary experimental, simulation and theoretical techniques to explore the effects of filler aspect ratio (L/D), orientation, and size-dispersity on the electrical conductivity of three-dimensional rod-networks in bulk polymer nanocomposites. We adapted our 3D simulation approach and analytical percolation model to study the electrical properties of thin-film rod-networks. By fitting our simulation results to experimental results, we determined the average effective contact resistance between silver nanowires. This contact resistance was then used to quantify how the sheet resistance depends on the aspect ratio of the rods and to show that networks made of nanowires with L/D greater than 100 yield sheet resistances lower than the required 100 Ohm/sq. We also report the critical area fraction of rods required to form a percolated network in thin-film networks and provide an analytical expression for the critical area fraction as a function of L/D.
Graphic analysis and multifractal on percolation-based return interval series
NASA Astrophysics Data System (ADS)
Pei, A. Q.; Wang, J.
2015-05-01
A financial time series model is developed and investigated by the oriented percolation system (one of the statistical physics systems). The nonlinear and statistical behaviors of the return interval time series are studied for the proposed model and the real stock market by applying visibility graph (VG) and multifractal detrended fluctuation analysis (MF-DFA). We investigate the fluctuation behaviors of return intervals of the model for different parameter settings, and also comparatively study these fluctuation patterns with those of the real financial data for different threshold values. The empirical research of this work exhibits the multifractal features for the corresponding financial time series. Further, the VGs deviated from both of the simulated data and the real data show the behaviors of small-world, hierarchy, high clustering and power-law tail for the degree distributions.
Measurement and evaluation of percolation drainage systems capacity in real conditions
NASA Astrophysics Data System (ADS)
Markovic, G.; Zelenakova, M.
2017-10-01
The drainage system must ensure a safe disposal of the surface water without endangering the buildings and safety of people. Despite the common use of rainwater infiltration facilities, there is still only limited data available evaluating the long-term capacity of such systems especially for underground infiltration facilities. This study presents experimental measurements and evaluation of long-term infiltration efficiency in real conditions and emphasizes the importance of hydrogeological survey. The measurements of infiltration efficiency were applied to an existing percolation drainage system - infiltration shafts. Infiltration shafts were made in year 2007 so that its drainage operation takes more than 8 years. This study was started in 2011 and still continues and presents 5 years measurements of infiltration efficiency for this infiltration facility.
Universality in the Evolution of Orientation Columns in the Visual Cortex
Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred
2011-01-01
The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599
Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.
Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X
2012-11-08
Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and 1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.
Percolation Analysis of a Wiener Reconstruction of the IRAS 1.2 Jy Redshift Catalog
NASA Astrophysics Data System (ADS)
Yess, Capp; Shandarin, Sergei F.; Fisher, Karl B.
1997-01-01
We present percolation analyses of Wiener reconstructions of the IRAS 1.2 Jy redshift survey. There are 10 reconstructions of galaxy density fields in real space spanning the range β = 0.1-1.0, where β = Ω0.6/b, Ω is the present dimensionless density, and b is the bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius R ~ 100 h-1 Mpc, percolation analysis reveals a slight ``meatball'' topology for the real space, galaxy distribution of the IRAS survey.
Two modes of longe-range orientation of DNA bases realized upon compaction.
Yevdokimov YuM; Salyanov, V I; Berg, H
1981-01-01
Formation of compact particles from linear DNA-anthracycline complexes is accompanied by appearance of intense bands in the CD spectra in the region of absorption of DNA bases (UV-region) and in the region of absorption of anthracycline chromophores (visible region). The intense (positive or negative) bands in the region of anthracycline absorption demonstrate an ordered helical location of anthracycline molecules on the DNA template. This fact, in its turn, is related to formation of the DNA superstructure in PEG-containing water-salt solutions with a long-range orientation of nitrogen bases. Possible types of DNA superstructures and the relation between the local- and the long-range order of bases in the DNA superstructure are discussed. PMID:6938929
Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria
2006-10-19
The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.
Magnetic assembly of transparent and conducting graphene-based functional composites
NASA Astrophysics Data System (ADS)
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-06-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.
Two-dimensional freezing criteria for crystallizing colloidal monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ziren; Han Yilong; Alsayed, Ahmed M.
Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At themore » freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.« less
The development of a code of practice for single house on-site wastewater treatment in Ireland.
Gill, L W
2011-01-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent. This created significant differences in terms of the hydraulic loading on the percolation areas with implications for the transport and attenuation of indicator microorganisms and nitrogen down through the subsoils and into the groundwater. The results of this work have formed a large input into the production of a new Code of Practice Wastewater Treatment and Disposal Systems Serving Single Houses. This has led to changes in the design of on-site hydraulic loading from 180 L per capita per day (L/c.d) down to 150 L/c.d. The range of acceptable subsoils receiving septic tank effluent has narrowed for more highly permeable subsoils following a series of tracer studies using bacteriophages. However, the range has been extended for lower permeability subsoils (range 0.08 down to 0.06 m/d) receiving secondary treated effluent in order to encourage the effluent to spread further along the trenches. The maximum individual length of percolation trenches receiving secondary effluent has also been reduced to 10 m to encourage dispersion on a wider area. This paper thus highlights how research can directly feed into a Code of Practice.
Getting the parking right for transit-oriented development.
DOT National Transportation Integrated Search
2012-03-01
Increasingly MPOs in Texas are incorporating Transit-Oriented Development (TOD) or similar : concepts into their long-range plans for the purpose of achieving sustainable transportation. : One major challenge to implementing these TOD-type strategies...
The treatment performance of different subsoils in Ireland receiving on-site wastewater effluent.
Gill, L W; O'Súlleabháin, C; Misstear, B D R; Johnston, P J
2007-01-01
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.
Effect of simple solutes on the long range dipolar correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in
2016-03-14
Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) havemore » a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.« less
Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite
NASA Astrophysics Data System (ADS)
Le Roux, V.; Bodinier, J.-L.; Alard, O.; O'Reilly, S. Y.; Griffin, W. L.
2009-03-01
Most peridotite massifs and mantle xenoliths show a wide range of isotopic variations, often involving significant decoupling between Hf, Nd and Sr isotopes. These variations are generally ascribed either to mingling of individual components of contrasted isotopic compositions or to time integration of parent-element enrichment by percolating melts/fluids, superimposed onto previous depletion event(s). However, strong isotopic decoupling may also arise during porous flow as a result of daughter-elements fractionation during solid-liquid interaction. Although porous flow is recognized as an important process in mantle rocks, its effects on mantle isotopic variability have been barely investigated so far. The peridotites of the Lherz massif (French Pyrenees) display a frozen melt percolation front separating highly refractory harzburgites from refertilized lherzolites. Isotopic signatures observed at the melt percolation front show a strong decoupling of Hf from Nd and Sr isotopes that cannot be accounted for by simple mixing involving the harzburgite protolith and the percolating melt. Using one dimensional percolation-diffusion and percolation-reaction modeling, we show that these signatures represent transient isotopic compositions generated by porous flow. These signatures are governed by a few critical parameters such as daughter element concentrations in melt and peridotite, element diffusivity, and efficiency of isotopic homogenization rather than by the chromatographic effect of melt transport and the refertilization reaction. Subtle variations in these parameters may generate significant inter-isotopic decoupling and wide isotopic variations in mantle rocks.
Percolation Analysis as a Tool to Describe the Topology of the Large Scale Structure of the Universe
NASA Astrophysics Data System (ADS)
Yess, Capp D.
1997-09-01
Percolation analysis is the study of the properties of clusters. In cosmology, it is the statistics of the size and number of clusters. This thesis presents a refinement of percolation analysis and its application to astronomical data. An overview of the standard model of the universe and the development of large scale structure is presented in order to place the study in historical and scientific context. Then using percolation statistics we, for the first time, demonstrate the universal character of a network pattern in the real space, mass distributions resulting from nonlinear gravitational instability of initial Gaussian fluctuations. We also find that the maximum of the number of clusters statistic in the evolved, nonlinear distributions is determined by the effective slope of the power spectrum. Next, we present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β = 0.1 to 1.0, where β=Ω0.6/b,/ Ω is the present dimensionless density and b is the linear bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R≈100h-1 Mpc, percolation analysis reveals a slight 'meatball' topology for the real space, galaxy distribution of the IRAS survey. Finally, we employ a percolation technique developed for pointwise distributions to analyze two-dimensional projections of the three northern and three southern slices in the Las Campanas Redshift Survey and then give consideration to further study of the methodology, errors and application of percolation. We track the growth of the largest cluster as a topological indicator to a depth of 400 h-1 Mpc, and report an unambiguous signal, with high signal-to-noise ratio, indicating a network topology which in two dimensions is indicative of a filamentary distribution. It is hoped that one day percolation analysis can characterize the structure of the universe to a degree that will aid theorists in confidently describing the nature of our world.
Local structural mechanism for frozen-in dynamics in metallic glasses
NASA Astrophysics Data System (ADS)
Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.
2018-04-01
The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.
Influence of anisotropy on percolation and jamming of linear k-mers on square lattice with defects
NASA Astrophysics Data System (ADS)
Tarasevich, Yu Yu; Laptev, V. V.; Burmistrov, A. S.; Shinyaeva, T. S.
2015-09-01
By means of the Monte Carlo simulation, we study the layers produced by the random sequential adsorption of the linear rigid objects (k-mers also known as rigid or stiff rods, sticks, needles) onto the square lattice with defects in the presence of an external field. The value of k varies from 2 to 32. The point defects randomly and uniformly placed on the substrate hinder adsorption of the elongated objects. The external field affects isotropic deposition of the particles, consequently the deposited layers are anisotropic. We study the influence of the defect concentration, the length of the objects, and the external field on the percolation threshold and the jamming concentration. Our main findings are (i) the critical defect concentration at which the percolation never occurs even at jammed state decreases for short k-mers (k < 16) and increases for long k-mers (k > 16) as anisotropy increases, (ii) the corresponding critical k-mer concentration decreases with anisotropy growth, (iii) the jamming concentration decreases drastically with growth of k-mer length for any anisotropy, (iv) for short k-mers, the percolation threshold is almost insensitive to the defect concentration for any anisotropy.
Bond-orientational order in liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1991-01-01
Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.
Entanglement percolation on a quantum internet with scale-free and clustering characters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Liang; Zhu Shiqun
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Entanglement percolation on a quantum internet with scale-free and clustering characters
NASA Astrophysics Data System (ADS)
Wu, Liang; Zhu, Shiqun
2011-11-01
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Switching plastic crystals of colloidal rods with electric fields
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033
Switching plastic crystals of colloidal rods with electric fields
NASA Astrophysics Data System (ADS)
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy
NASA Astrophysics Data System (ADS)
Fontana, Scott; Dadmun, Mark; Lowndes, Douglas
2003-03-01
Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.
Documentation of a deep percolation model for estimating ground-water recharge
Bauer, H.H.; Vaccaro, J.J.
1987-01-01
A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)
Electrical properties of dispersions of graphene in mineral oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteiro, O. R., E-mail: othon.monteiro@bakerhughes.com
2014-02-03
Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1 wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (σ(ω)) and permittivity (ε(ω)) were also measured. The conductivity of dispersions with particle contents much greater than themore » percolation threshold remains constant and equal to the DC conductivity at low frequencies ω with and followed a power-law σ(ω)∝ ω{sup s} dependence at very high frequencies with s≈0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.« less
Mechanical properties of heat-treated organic foams
NASA Astrophysics Data System (ADS)
Amaral-Labat, G.; Sahimi, Muhammad; Pizzi, A.; Fierro, V.; Celzard, Alain
2013-03-01
The mechanical properties of a class of cellular material were measured. The composition of the material was progressively modified, while its pore structure was kept unchanged. Rigid foam, prepared from a thermoset resin, was gradually converted into reticulated vitreous carbon foam by pyrolysis at increasingly higher heat-treatment temperatures (HHT). The corresponding changes in the Young's modulus Y and the compressive strength σ of the materials were measured over a wide range of porosities. The materials exhibit a percolation behavior with a zero percolation threshold. At very low densities the Young's modulus and the compressive strength appear to follow the power laws predicted by percolation theory near the percolation threshold. But, whereas the exponent τ associated with the power-law behavior of Y appears to vary significantly with the material's density and the HHT, the exponent associated with σ does not change much. The possible cause of the apparent and surprising nonuniversality of τ is discussed in detail, in the light of the fact that only the materials’ composition varies, not the structure of their pore space that could have caused the nonuniversality.
Percolation and permeability of fracture networks in Excavated Damaged Zones
NASA Astrophysics Data System (ADS)
Mourzenko, V.; Thovert, J.; Adler, P. M.
2012-12-01
Generally, the excavation process of a gallery generates fractures in its immediate vicinity. The corresponding zone which is called the Excavated Damaged Zone (EDZ), has a larger permeability than the intact surrounding medium. The properties of the EDZ are attracting more and more attention because of their potential importance in repositories of nuclear wastes. The EDZ which is induced by the excavation process may create along the galleries of the repositories a high permeability zone which could directly connect the storage area with the ground surface. Therefore, the studies of its properties are of crucial importance for applications such as the storage of nuclear wastes. Field observations (such as the ones which have been systematically performed at Mont Terri by [1, 2]) suggest that the fracture density is an exponentially decreasing function of the distance to the wall with a characteristic length of about 0.5 m and that the fracture orientation is anisotropic (most fractures are subparallel to the tunnel walls) and well approximated by a Fisher law whose pole is orthogonal to the wall. Numerical samples are generated according to these prescriptions. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [3]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole EDZ to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data for the EDZ transmissivity are presented. A simple parallel flow model is introduced. The flow properties of the EDZ vary with the distance z from the wall. However, the macroscopic pressure gradient does not depend on z, and the flow lines are in average parallel to the wall. Hence, the overall transmissivity is tentatively estimated by a parallel flow model, where a layer at depth z behaves as a fractured medium with uniform properties corresponding to the state at this position in the EDZ. It yields an explicit analytical expression for the transmissivity as a function of the heterogeneity and anisotropy parameters, and it successfully accounts for all the numerical data. Graphical tools are provided from which first estimates can be quickly and easily obtained. [1] Bossart P. et al, Eng. Geol., vol. 66, 19-38 (2002). [2] Thovert J.-F. et al, Eng. Geol., 117, 39-51 (2011). [3] Adler P.M. et al, Fractured porous media, Oxford U. Press, in press.
Huang, Ting; Lu, Renguo; Su, Chao; Wang, Hongna; Guo, Zheng; Liu, Pei; Huang, Zhongyuan; Chen, Haiming; Li, Tongsheng
2012-05-01
Herein, we have developed a rather simple composite fabrication approach to achieving molecular-level dispersion and planar orientation of chemically modified graphene (CMG) in the thermosetting polyimide (PI) matrix as well as realizing strong adhesion at the interfacial regions between reinforcing filler and matrix. The covalent adhesion of CMG to PI matrix and oriented distribution of CMG were carefully confirmed and analyzed by detailed investigations. Combination of covalent bonding and oriented distribution could enlarge the effectiveness of CMG in the matrix. Efficient stress transfer was found at the CMG/PI interfaces. Significant improvements in the mechanical performances, thermal stability, electrical conductivity, and hydrophobic behavior were achieved by addition of only a small amount of CMG. Furthermore, it is noteworthy that the hydrophilic-to-hydrophobic transition and the electrical percolation were observed at only 0.2 wt % CMG in this composite system. This facile methodology is believed to afford broad application potential in graphene-based polymer nanocomposites, especially other types of high-performance thermosetting systems.
Probabilistic approach to long range planning of manpower
NASA Technical Reports Server (NTRS)
Lejk, R. A.
1967-01-01
Publication presents a total long range planning model for project oriented organizations. The total model consists of planning systems which originate - /1/ at the project level and consolidate into an overall plan, and /2/ from a budetary ceiling and allocate to the individual projects. Analysis of /1/ and /2/ is provided for management decision making.
Percolation mechanism drives actin gels to the critically connected state
NASA Astrophysics Data System (ADS)
Lee, Chiu Fan; Pruessner, Gunnar
2016-05-01
Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.
Numerical study of electrical transport in co-percolative metal nanowire-graphene thin-films
NASA Astrophysics Data System (ADS)
Gupta, Man Prakash; Kumar, Satish
2016-11-01
Nanowires-dispersed polycrystalline graphene has been recently explored as a transparent conducting material for applications such as solar cells, displays, and touch-screens. Metal nanowires and polycrystalline graphene play synergetic roles during the charge transport in the material by compensating for each other's limitations. In the present work, we develop and employ an extensive computational framework to study the essential characteristics of the charge transport not only on an aggregate basis but also on individual constituents' levels in these types of composite thin-films. The method allows the detailed visualization of the percolative current pathways in the material and provides the direct evidence of current crowding in the 1-D nanowires and 2-D polygraphene sheet. The framework is used to study the effects of several important governing parameters such as length, density and orientation of the nanowires, grain density in polygraphene, grain boundary resistance, and the contact resistance between nanowires and graphene. We also present and validate an effective medium theory based generalized analytical model for the composite. The analytical model is in agreement with the simulations, and it successfully predicts the overall conductance as a function of several parameters including the nanowire network density and orientation and graphene grain boundaries. Our findings suggest that the longer nanowires (compared to grain size) with low angle orientation (<40°) with respect to the main carrier transport direction provide significant advantages in enhancing the conductance of the polygraphene sheet. We also find that above a certain value of grain boundary resistance (>60 × intra-grain resistance), the overall conductance becomes nearly independent of grain boundary resistance due to nanowires. The developed model can be applied to study other emerging transparent conducting materials such as nanowires, nanotubes, polygraphene, graphene oxide, and their hybrid nanostructures.
The dynamic and geometric phase transition in the cellular network of pancreatic islet
NASA Astrophysics Data System (ADS)
Wang, Xujing
2013-03-01
The pancreatic islet is a micro-organ that contains several thousands of endocrine cells, majority of which being the insulin releasing β - cells . - cellsareexcitablecells , andarecoupledtoeachother through gap junctional channels. Here, using percolation theory, we investigate the role of network structure in determining the dynamics of the β-cell network. We show that the β-cell synchronization depends on network connectivity. More specifically, as the site occupancy is reducing, initially the β-cell synchronization is barely affected, until it reaches around a critical value, where the synchronization exhibit a sudden rapid decline, followed by an slow exponential tail. This critical value coincides with the critical site open probability for percolation transition. The dependence over bond strength is similar, exhibiting critical-behavior like dependence around a certain value of bond strength. These results suggest that the β-cell network undergoes a dynamic phase transition when the network is percolated. We further apply the findings to study diabetes. During the development of diabetes, the β - cellnetworkconnectivitydecreases . Siteoccupancyreducesfromthe reducing β-cell mass, and the bond strength is increasingly impaired from β-cell stress and chronic hyperglycemia. We demonstrate that the network dynamics around the percolation transition explain the disease dynamics around onset, including a long time mystery in diabetes, the honeymoon phenomenon.
Batra, Saurabh; Cakmak, Miko
2015-12-28
In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.
NASA Astrophysics Data System (ADS)
Wang, Y.
2015-12-01
Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.
Magnetic assembly of transparent and conducting graphene-based functional composites
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-01-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243
NASA Astrophysics Data System (ADS)
Schreiner-McGraw, A.; Vivoni, E. R.; Browning, D. M.
2017-12-01
A critical hydrologic process in arid regions is the contribution of episodic streamflow in ephemeral channels to groundwater recharge. This process has traditionally been studied in channels that drain large watersheds (10s to 100s km2). In this study, we aim to characterize the provision of the ecosystem services of surface and groundwater supply in a first-order watershed (4.6 ha) in an arid piedmont slope of the Jornada Experimental Range (JER). We use an observational and modeling approach to estimate deep percolation. During a 6 year study period, we observed 428 mm of percolation (P) and 39 mm of runoff (Q); ratios of P to rainfall (R) of P/R = 0.27 and Q/R = 0.02. Utilizing an instrument network and site measurements, we determine that percolation occurs primarily inside channel reaches when these receive runoff from upland hillslopes and find that a monthly rainfall threshold of 62 mm is needed for significant percolation to be generated. In order to quantify the mechanisms leading to this threshold response, we develop a channel transmission loss module for the TIN-based Real-time Integrated Basin Simulator (tRIBS) and test the model thoroughly against the available observations over the study period. For these purposes, we make use of image classifications from Unmanned Aerial Vehicle flights, a ground-based phenocam, and species-level measurements to parameterize vegetation processes in the model. We then conduct an extensive set of sensitivity experiments to determine the relative roles of channel, soil, and vegetation properties on modifying the relation between monthly rainfall and percolation. Additionally, we test how the observed vegetation transitions in the JER over the last 150 years affect the deep percolation and runoff estimates. By quantifying mechanisms through which vegetation changes affect water resource provision, this work provides new insights on the ecohydrological controls on the water yield of arid piedmont slopes.
Size segregation in bedload sediment transport at the particle scale
NASA Astrophysics Data System (ADS)
Frey, P.; Martin, T.
2011-12-01
Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. After a certain time, a quasi-continuous area of smaller beads developed under moving and above quasi-immobile coarser beads (see figure). Results include the time evolution of segregating smaller beads, assessment of percolation velocity and streamwise and vertical velocity depth profiles.
The ABC (in any D) of logarithmic CFT
NASA Astrophysics Data System (ADS)
Hogervorst, Matthijs; Paulos, Miguel; Vichi, Alessandro
2017-10-01
Logarithmic conformal field theories have a vast range of applications, from critical percolation to systems with quenched disorder. In this paper we thoroughly examine the structure of these theories based on their symmetry properties. Our analysis is model-independent and holds for any spacetime dimension. Our results include a determination of the general form of correlation functions and conformal block decompositions, clearing the path for future bootstrap applications. Several examples are discussed in detail, including logarithmic generalized free fields, holographic models, self-avoiding random walks and critical percolation.
Neat, C E; Thomassen, M S; Osmundsen, H
1981-01-01
1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids. PMID:6272750
Design of long-term sludge-loading rates for forests under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crohn, D.M.
1995-09-01
A simple time series describing nitrate-nitrogen concentrations percolating form a sludge-amended forest is presented for the case where applications are made at several-year intervals. The time series converges to a quasi-steady-state solution that can be solved for an application rate limited by percolating nitrate-nitrogen concentrations. Excess nitrogen is commonly converted to nitrate, a form that leaches readily to pollute ground water. A chance constraint incorporates uncertainty associated with precipitation and evapotranspiration, the most important factors in determining the excess of water available for leaching. Design loading rates for eight New York state forest regions are discussed. If applications occur atmore » 3-year intervals, rates range form 0.2 to 5.3 Mg/ha dry weight depending on the design confidence level, local excess water patterns, forest nitrogen uptake, sludge type, and atmospheric nitrogen deposition rates. Results are compared to predictions made with FORSENTO, a comprehensive model for simulating sludge applications to northern hardwood forests. FORSENTO simulations suggest that mature hardwoods need only 12 kg/ha to support annually perennial material growth and that atmospheric nitrogen deposition may eventually meet or exceed needs of trees so that landspreading may not be sustainable indefinitely in some areas.« less
A numerical retroaction model relates rocky coast erosion to percolation theory
NASA Astrophysics Data System (ADS)
Sapoval, B.; Baldassarri, A.
2011-12-01
Rocky coasts are estimated to represent 75% of the world's shorelines [1]. We discuss various situations where the formation of rocky coast morphology could be attributed to the retroaction of the coast morphology on the erosive power of the see. In the case of rocky coasts, erosion can spontaneously create irregular seashores. But, in turn, the geometrical irregularity participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. There may then exist a mutual self-stabilization of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilization is discussed. It leads, through a complex avalanche dynamics of the earth-sea interface, to the spontaneous appearance of an irregular sea-shore. The final coast morphology is found to depend on the morphology/damping coupling of the coast and on the possible existence of built-in correlations within the coast lithologic properties. In the limit case where the morphology/damping coupling is weak and when the earth lithology distribution exhibit only short range correlations, the process spontaneously build fractal morphologies with a dimension close to 4/3 [2]. This dimension refers to the dimension of the accessible perimeter in percolation theory. However, even rugged but non-fractal sea-coasts morphology may emerge for strong damping or during the erosion process. When the distributions of the lithologies exhibit long range correlations, a variety of complex morphologies are obtained which mimics observed coastline complexity, well beyond simple fractality. This approach, which links erosion of rocky coasts to percolation theory, provide a natural frame to explain the frequent field observation that the statistics of erosion events follow power law behavior. In a somewhat different perspective, the design of breakwaters is suggested to be improved by using global irregular geometry with features sizes of the order of the wave-length of the sea oscillations. [1] R. A. Davis, Jr, D. M. Fitzgerald, Beaches and Coasts,(Blackwell, Oxford 2004). [2] B. Sapoval, A. Baldassarri, A. Gabrielli, Self-stabilized Fractality of Sea-coasts through Erosion, Phys. Rev. Lett. 93, 098501 (2004).
The Role of Percolation Theory in Developing Next Generation Smart Nanomaterials
NASA Astrophysics Data System (ADS)
Simien, Daneesh
2016-01-01
The incorporation of small volume fractions of nanoscale graphitic particles into varied base materials has been explored across fields ranging from automotive to aerospace to commercial plastics, with the goal of utilizing their enhanced thermal conductivity, electrical conductivity or mechanical strength. Percolation theory has emerged as a useful tool to aid in mapping and predicting the enhancement of properties based on the size and conductivity of incorporated single-walled carbon nanotubes relative to their less conductive base materials. These tools can aid researchers in the development of next generation smart nanomaterials. In this paper, we discuss the use of homogeneous fractions of length- or chirality-sorted single-walled carbon nanotubes (SWNTs) which are incorporated into thin film networks, and cement composites, and are evaluated in terms of their conductivity, mechanical properties and noise spectrum at critical percolation. We demonstrate that, near the percolation threshold, the conductivity of these highly characterized SWNT films exhibits a power law dependence on the network geometrical parameters. We also present our findings on the development of incorporated thin film SWNTs for the development of sensing technology for novel non-destructive failure diagnostic applications. SWNTs are able to be used as benign inclusions, capable of active sensing, when incorporated into cement-based composites for the purpose of detecting crack initiation. As such, we investigate the use of homogeneous length-sorted SWNTs that are randomly distributed in percolated networks capable of being an internal responsive net mechanism. Our findings demonstrate increased microstructure sensitivity of our networks for our shorter length nanotubes near their critical percolation threshold. This shows promise for the development of even more sensitive, embedded piezo-resistive SWNT-based sensors for preemptive failure detection technology.
Temperature-profile methods for estimating percolation rates in arid environments
Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward
2003-01-01
Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.
Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur
2003-06-01
The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.
Orientational order as the origin of the long-range hydrophobic effect.
Banerjee, Saikat; Singh, Rakesh S; Bagchi, Biman
2015-04-07
The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation-this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.
Orientational order as the origin of the long-range hydrophobic effect
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Singh, Rakesh S.; Bagchi, Biman
2015-04-01
The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation—this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.
NASA Astrophysics Data System (ADS)
Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser
2018-03-01
This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.
Altered visual perception in long-term ecstasy (MDMA) users.
White, Claire; Brown, John; Edwards, Mark
2013-09-01
The present study investigated the long-term consequences of ecstasy use on visual processes thought to reflect serotonergic functions in the occipital lobe. Evidence indicates that the main psychoactive ingredient in ecstasy (methylendioxymethamphetamine) causes long-term changes to the serotonin system in human users. Previous research has found that amphetamine-abstinent ecstasy users have disrupted visual processing in the occipital lobe which relies on serotonin, with researchers concluding that ecstasy broadens orientation tuning bandwidths. However, other processes may have accounted for these results. The aim of the present research was to determine if amphetamine-abstinent ecstasy users have changes in occipital lobe functioning, as revealed by two studies: a masking study that directly measured the width of orientation tuning bandwidths and a contour integration task that measured the strength of long-range connections in the visual cortex of drug users compared to controls. Participants were compared on the width of orientation tuning bandwidths (26 controls, 12 ecstasy users, 10 ecstasy + amphetamine users) and the strength of long-range connections (38 controls, 15 ecstasy user, 12 ecstasy + amphetamine users) in the occipital lobe. Amphetamine-abstinent ecstasy users had significantly broader orientation tuning bandwidths than controls and significantly lower contour detection thresholds (CDTs), indicating worse performance on the task, than both controls and ecstasy + amphetamine users. These results extend on previous research, which is consistent with the proposal that ecstasy may damage the serotonin system, resulting in behavioral changes on tests of visual perception processes which are thought to reflect serotonergic functions in the occipital lobe.
Percolation transition in carbon composite on the basis of fullerenes and exfoliated graphite
NASA Astrophysics Data System (ADS)
Berezkin, V. I.; Popov, V. V.
2018-01-01
The electrical conductivity of a carbon composite on the basis of C60 fullerenes and exfoliated graphite is investigated in the range of relative contents of components from 0 to 100%. The samples are obtained by the thermal treatment of the initial dispersed mixtures in vacuum in the diffusion-adsorption process and their further cold pressing. The resistivity of the samples gradually increases with an increase in the fraction of fullerenes, and a sharp transition from the conductive state to the dielectric one is observed after achieving certain concentrations of C60. The interpretation of the results within the percolation theory makes it possible to evaluate the percolation threshold (expressed as a relative content of graphite) as equal to 4.45 wt % and the critical conductivity index as equal to 1.85 (which is typical for three-dimensional twocomponent disordered media including those having pores).
NASA Astrophysics Data System (ADS)
Bedard, Antoine Joseph; Barbero, Ever J.
2018-03-01
Magnetoelectric (ME) composites can be produced by embedding magnetostrictive H particles in a piezoelectric E matrix derived from a piezoelectric powder precursor. Previously, using a bi-disperse hard-shell model (Barbero and Bedard in Comput Part Mech, 2018. https://doi.org/10.1007/s40571-017-0165-4), it has been shown that the electrical percolation threshold of the conductive H phase can be increased by decreasing the piezoelectric E particle size, relative to the H phase particle size, and by increasing short-range affinity between the E and H particles. This study builds on our previous study by exploring what happens during sintering of the ME composite when either the H or E particles undergo deformation. It was found that deformation of the H particles reduces the percolation threshold, and that deformation of E particles increases inter-phase H-E mechanical coupling, thus contributing to enhancing of ME coupling.
Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan
2017-12-27
Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.
Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain.
Gaiser, Patrick; Binz, Jonas; Gompf, Bruno; Berrier, Audrey; Dressel, Martin
2015-03-14
Tunable metal/dielectric composites are promising candidates for a large number of potential applications in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS). As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor of the composite can be tuned by application of strain. In this way the effective static permittivity εeff of the composite can be varied over a very large range. Once the Poisson's ratio of the composite is known, the strain dependent dielectric constant can be accurately described by effective medium theory without any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demonstrated that, starting above the percolation threshold in the metallic phase, applying strain provides the possibility to cross the percolation threshold into the insulating region. The change of regime from conductive phase down to insulating follows the description given by percolation theory and can be actively controlled.
Di Maria, Francesco; Gigliotti, Giovanni; Sordi, Alessio; Micale, Caterina; Zadra, Claudia; Massaccesi, Luisa
2013-08-01
An experimental apparatus was constructed to perform hybrid solid anaerobic digestion batch processing of the organic fraction of municipal solid waste. The preliminary process was carried out with a high total solids concentration of about 33% w w(-1) and with an initial organic load of about 340 kg VS kg(-1). The fresh organic fraction to inoculum ratio used to enhance the anaerobic process start-up was 0.910 kg VS kg VS(-1). The process was conducted by spreading the percolate on top of the mixture. The percolate was stored in a separate section of the apparatus with a mean hydraulic retention time of about 1 day. During the process, acetate, butyrate and propionate in the percolate reached concentrations ranging from 3000 to 11 000 mg L(-1). In spite of these high concentrations, the biomethane produced from both the solid and the percolate was quite high, at about 210 NL kg VS(-1). The digestate obtained at the end of the run showed rather good features for being classified as an organic fertilizer according to Italian law. However, a residual phytotoxicity level was detected by a standardized test showing a germination index of about 50%.
Job Orientation of Black and White College Graduates in Business.
ERIC Educational Resources Information Center
Brenner, O. C.; Tomkiewicz, Joseph
1982-01-01
Examined differences in job orientation between Black and White male and female business college graduates. Significant race differences were found. Factor analysis indicates that Blacks value long-range career objectives and structure considerably more than do Whites, while their preference for intrinsic and extrinsic factors was less pronounced.…
NASA Astrophysics Data System (ADS)
Roy, Bappaditya; Santra, S. B.
2018-05-01
A random growth lattice filling model of percolation with a touch and stop growth rule is developed and studied numerically on a two dimensional square lattice. Nucleation centers are continuously added one at a time to the empty lattice sites and clusters are grown from these nucleation centers with a growth probability g. For a given g (), the system passes through a critical point during the growth process where the transition from a disconnected to a connected phase occurs. The model is found to exhibit second order continuous percolation transitions as ordinary percolation for whereas for it exhibits weak first order discontinuous percolation transitions. The continuous transitions are characterized by estimating the values of the critical exponents associated with the order parameter fluctuation and the fractal dimension of the spanning cluster over the whole range of g. The discontinuous transitions, however, are characterized by a compact spanning cluster, lattice size independent fluctuation of the order parameter per lattice, departure from power law scaling in the cluster size distribution and weak bimodal distribution of the order parameter. The nature of transitions are further confirmed by studying the Binder cumulant. Instead of a sharp tricritical point, a tricritical region is found to occur for 0.5 < g < 0.8 within which the values of the critical exponents change continuously until the crossover from continuous to discontinuous transition is completed.
Nucleation versus percolation: Scaling criterion for failure in disordered solids
NASA Astrophysics Data System (ADS)
Biswas, Soumyajyoti; Roy, Subhadeep; Ray, Purusattam
2015-05-01
One of the major factors governing the mode of failure in disordered solids is the effective range R over which the stress field is modified following a local rupture event. In a random fiber bundle model, considered as a prototype of disordered solids, we show that the failure mode is nucleation dominated in the large system size limit, as long as R scales slower than Lζ, with ζ =2 /3 . For a faster increase in R , the failure properties are dominated by the mean-field critical point, where the damages are uncorrelated in space. In that limit, the precursory avalanches of all sizes are obtained even in the large system size limit. We expect these results to be valid for systems with finite (normalizable) disorder.
Cellular self-organization by autocatalytic alignment feedback
Junkin, Michael; Leung, Siu Ling; Whitman, Samantha; Gregorio, Carol C.; Wong, Pak Kin
2011-01-01
Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis. PMID:22193956
NASA Astrophysics Data System (ADS)
Xu, Fangbo; Xu, Zhiping; Yakobson, Boris I.
2014-08-01
We present a site-percolation model based on a modified FCC lattice, as well as an efficient algorithm of inspecting percolation which takes advantage of the Markov stochastic theory, in order to study the percolation threshold of carbon nanotube (CNT) fibers. Our Markov-chain based algorithm carries out the inspection of percolation by performing repeated sparse matrix-vector multiplications, which allows parallelized computation to accelerate the inspection for a given configuration. With this approach, we determine that the site-percolation transition of CNT fibers occurs at pc=0.1533±0.0013, and analyze the dependence of the effective percolation threshold (corresponding to 0.5 percolation probability) on the length and the aspect ratio of a CNT fiber on a finite-size-scaling basis. We also discuss the aspect ratio dependence of percolation probability with various values of p (not restricted to pc).
Finite-size scaling of clique percolation on two-dimensional Moore lattices
NASA Astrophysics Data System (ADS)
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Invasion percolation with memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharabaf, H.; Yortsos, Y.C.
Motivated by the problem of finding the minimum threshold path (MTP) in a lattice of elements with random thresholds {tau}{sub i}, we propose a new class of invasion processes, in which the front advances by minimizing or maximizing the measure S{sub n}={summation}{sub i}{tau}{sub i}{sup n} for real n. This rule assigns long-time memory to the invasion process. If the rule minimizes S{sub n} (case of minimum penalty), the fronts are stable and connected to invasion percolation in a gradient [J. P. Hulin, E. Clement, C. Baudet, J. F. Gouyet, and M. Rosso, Phys. Rev. Lett. {bold 61}, 333 (1988)] butmore » in a correlated lattice, with invasion percolation [D. Wilkinson and J. F. Willemsen, J. Phys. A {bold 16}, 3365 (1983)] recovered in the limit {vert_bar}n{vert_bar}={infinity}. For small n, the MTP is shown to be related to the optimal path of the directed polymer in random media (DPRM) problem [T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. {bold 254}, 215 (1995)]. In the large n limit, however, it reduces to the backbone of a mixed site-bond percolation cluster. The algorithm allows for various properties of the MTP and the DPRM to be studied. In the unstable case (case of maximum gain), the front is a self-avoiding random walk. {copyright} {ital 1997} {ital The American Physical Society}« less
Modelling chemical degradation of concrete during leaching with rain and soil water types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, D., E-mail: djacques@sckcen.b; Wang, L.; Martens, E.
2010-08-15
Percolation of external water through concrete results in the degradation of cement and changes the concrete pore water and solid phase composition. The assessment of long-term degradation of concrete is possible by means of model simulation. This paper describes simulations of chemical degradation of cement for different types of rain and soil water at an ambient earth surface temperature (10 {sup o}C). Rain and soil water types were derived using generic equations and measurement of atmospheric boundary conditions representative for North-Belgium. An up-to-date and consistent thermodynamic model is used to calculate the geochemical changes during chemical degradation of the concrete.more » A general pattern of four degradation stages was simulated with the third stage being the geochemically most complex stage involving reactions with calcium-silicate hydrates, AFm and AFt phases. Whereas the sequence of the dissolution reactions was relatively insensitive to the composition of the percolating water, the duration of the different reactions depends strongly on the percolating water composition. Major identified factors influencing the velocity of cement degradation are the effect of dry deposition and biological activity increasing the partial pressure of CO{sub 2(g)} in the soil air phase (and thus increasing the inorganic carbon content in the percolating water). Soil weathering processes have only a minor impact, at least for the relatively inert sandy material considered in this study.« less
Tarasevich, Yuri Yu; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I
2015-01-01
The effect of defects on the percolation of linear k-mers (particles occupying k adjacent sites) on a square lattice is studied by means of Monte Carlo simulation. The k-mers are deposited using a random sequential adsorption mechanism. Two models L(d) and K(d) are analyzed. In the L(d) model it is assumed that the initial square lattice is nonideal and some fraction of sites d is occupied by nonconducting point defects (impurities). In the K(d) model the initial square lattice is perfect. However, it is assumed that some fraction of the sites in the k-mers d consists of defects, i.e., is nonconducting. The length of the k-mers k varies from 2 to 256. Periodic boundary conditions are applied to the square lattice. The dependences of the percolation threshold concentration of the conducting sites p(c) vs the concentration of defects d are analyzed for different values of k. Above some critical concentration of defects d(m), percolation is blocked in both models, even at the jamming concentration of k-mers. For long k-mers, the values of d(m) are well fitted by the functions d(m)∝k(m)(-α)-k(-α) (α=1.28±0.01 and k(m)=5900±500) and d(m)∝log(10)(k(m)/k) (k(m)=4700±1000) for the L(d) and K(d) models, respectively. Thus, our estimation indicates that the percolation of k-mers on a square lattice is impossible even for a lattice without any defects if k⪆6×10(3).
Percolative effects on noise in pentacene transistors
NASA Astrophysics Data System (ADS)
Conrad, B. R.; Cullen, W. G.; Yan, W.; Williams, E. D.
2007-12-01
Noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies inversely with gate voltage, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooge's parameter varies as an inverse power law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.
Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity
Chavane, Frédéric; Sharon, Dahlia; Jancke, Dirk; Marre, Olivier; Frégnac, Yves; Grinvald, Amiram
2011-01-01
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread. PMID:21629708
Positional short-range order in the nematic phase of n BABAs
NASA Astrophysics Data System (ADS)
Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.
1991-10-01
The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.
A Comprehensive Analysis of Swiss Alpine Glaciers Using Helicopter-Borne Ground-Penetrating-Radar
NASA Astrophysics Data System (ADS)
Rabenstein, L.; Maurer, H.; Bauder, A.; Langhammer, L.; Lucas, C.; Rutishauser, A.; Lathion, P.
2014-12-01
Detailed information exists on the surface area of glaciers in Switzerland and long-term mass balance observations are available but because glacial thickness remains elusive and so only a rough estimate of the present ice volume is available. After the successful recording of approximately 1000 km of helicopter ground penetrating radar (GPR) profiles on Swiss glaciers during the last three years, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK) began an initiative to obtain for the first time an accurate estimate of the total ice volume located in the Swiss Alps. Steps towards this goal include the delineation of 3D bedrock topography beneath glacerized regions. The final ice volume estimation will comprise an ice flux computation model constrained by a dense network of helicopter-borne GPR profiles. Different systems that have been recently tested for acquiring helicopter GPR data in the Swiss Alps include towed systems (the HERA-G+ and the BGR-P30) and rigidly mounted systems of standard commercial GPR ground units (the GSSI and PulsEkko), all operating in the frequency range of 30 to 70 Mhz. Some measurements were ground-truthed using the same GPR antenna systems. Analyses of these data sets revealed a wealth of useful information on the glacier bed topography and some internal structures. For instance, at depths between 30 and 60 m, we often observe zones of low backscattering followed by a more reflective zone. In the glacial accumulation areas these features are interpreted as firn layers, in which the water percolates down to its base. The same test flights also provided useful technical information on the radar installation. For towed systems it is difficult to maintain a constant orientation of the antennas during the flight. In contrast, the rigidly mounted systems do not suffer from the orientation problem, but ringing effects are pronounced. We applied an SVD-based (singular value decomposition) multi-channel filter, which enabled this "system ringing" to be removed. Mostly, ground GPR surveys on coincident lines produce better quality GPR images of the glacier bed. However, it turned out that the orientation of the antennas relative to the glacier may be more important to retrieve good quality GPR data, than the surveying mode (airborne or ground).
Thermomechanical fatigue life prediction for several solders
NASA Astrophysics Data System (ADS)
Wen, Shengmin
Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.
Microstructural characterization, petrophysics and upscaling - from porous media to fractural media
NASA Astrophysics Data System (ADS)
Liu, J.; Liu, K.; Regenauer-Lieb, K.
2017-12-01
We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging satisfies the convergence criteria. For strongly heterogeneous rocks, however, thermodynamic convergence criteria may not meet; a continuum approach cannot be justified in this case.
Ground-water-recharge rates in Nassau and Suffolk counties, New York
Peterson, D.S.
1987-01-01
Groundwater is the sole source of freshwater in Nassau and Suffolk Counties on Long Island; therefore, the rate at which precipitation replenishes the groundwater system may affect future water supplies in some areas. Annual precipitation on Long Island averages 45 inches per year, but less than 23 inches , or 50%, recharges the ground-water system. (Recharge is precipitation that percolates to the ground-water system naturally; it does not include water from stormwater basins or injection wells.) The rate of recharge varies locally and ranges from 29% to 57% of precipitation, depending on land use, season, and amount of storm sewering in the area. Recharge was calculated by subtracting evapotranspiration and direct runoff values from known precipitation values. Evapotranspiration was calculated by the Thornwaite and Mather method, and direct runoff rates to streams were calculated from streamflow records and size of known storm-sewer service areas. This report includes maps that depict precipitation, evapotranspiration, and rates of natural recharge in Nassau and Suffolk Counties for use in future hydrologic studies on Long Island. (Author 's abstract)
The effect of normal load on polytetrafluoroethylene tribology.
Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B
2009-04-08
The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.
The effect of normal load on polytetrafluoroethylene tribology
NASA Astrophysics Data System (ADS)
Barry, Peter R.; Chiu, Patrick Y.; Perry, Scott S.; Sawyer, W. Gregory; Phillpot, Simon R.; Sinnott, Susan B.
2009-04-01
The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.
Electron transport within transparent assemblies of tin-doped indium oxide colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Grisolia, J.; Decorde, N.; Gauvin, M.; Sangeetha, N. M.; Viallet, B.; Ressier, L.
2015-08-01
Stripe-like compact assemblies of tin-doped indium oxide (ITO) colloidal nanocrystals (NCs) are fabricated by stop-and-go convective self-assembly (CSA). Systematic evaluation of the electron transport mechanisms in these systems is carried out by varying the length of carboxylate ligands protecting the NCs: butanoate (C4), octanoate (C8) and oleate (C18). The interparticle edge-to-edge distance L0, along with a number of carbon atoms in the alkyl chain of the coating ligand, are deduced from small-angle x-ray scattering (SAXS) measurements and exhibit a linear relationship with a slope of 0.11 nm per carbon pair unit. Temperature-dependent resistance characteristics are analyzed using several electron transport models: Efros-Shklovskii variable range hopping (ES-VRH), inelastic cotunneling (IC), regular island array and percolation. The analysis indicated that the first two models (ES-VRH and IC) fail to explain the observed behavior, and that only simple activated transport takes place in these systems under the experimental conditions studied (T = 300 K to 77 K). Related transport parameters were then extracted using the regular island array and percolation models. The effective tunneling decay constant βeff of the ligands and the Coulomb charging energy EC are found to be around 5.5 nm-1 and 25 meV, respectively, irrespective of ligand lengths. The theoretical tunneling decay constant β calculated using the percolation model is in the range 9 nm-1. Electromechanical tests on the ITO nanoparticle assemblies indicate that their sensitivities are as high as ˜30 and remain the same regardless of ligand lengths, which is in agreement with the constant effective βeff extracted from regular island array and percolation models.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.
2017-12-01
The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and with North Atlantic sea surface temperatures (represented by the Atlantic Multidecadal Oscillation; AMO). Thus, future surface melt rates in Western Greenland depend on the complex evolution of the GBI and AMO under anthropogenic forcing, both of which remain poorly constrained in 21st century model projections.
NASA Astrophysics Data System (ADS)
Cappon, Giacomo; Pedersen, Morten Gram
2016-05-01
Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.
Frozen into stripes: fate of the critical Ising model after a quench.
Blanchard, T; Picco, M
2013-09-01
In this article we study numerically the final state of the two-dimensional ferromagnetic critical Ising model after a quench to zero temperature. Beginning from equilibrium at T_{c}, the system can be blocked in a variety of infinitely long lived stripe states in addition to the ground state. Similar results have already been obtained for an infinite temperature initial condition and an interesting connection to exact percolation crossing probabilities has emerged. Here we complete this picture by providing an example of stripe states precisely related to initial crossing probabilities for various boundary conditions. We thus show that this is not specific to percolation but rather that it depends on the properties of spanning clusters in the initial state.
Schrumpf, Marion; Axmacher, Jan C; Zech, Wolfgang; Lehmann, Johannes; Lyaruu, Herbert V C
2007-04-15
At the lower parts of the forest belt at Mt. Kilimanjaro, selective logging has led to a mosaic of mature forest, old secondary forests ( approximately 60 years), and old clearings ( approximately 10 years) covered by shrub vegetation. These variations in the vegetation are reflected by differences in nutrient leaching from the canopy and in both amount and quality of litter reaching the ground, thereby also influencing mineralization rates and the composition of seepage water in litter percolate and soil solution. The aim of this study was to investigate how above- and belowground nutrient dynamics vary between regeneration stages, and if forest regeneration at the clearings is hampered by a deterioration of abiotic site conditions. K, Mg, Ca, Na and N compounds were analysed in rainfall, throughfall, organic layer percolate and the soil solution to a depth of 1.00 m at three clearings, three secondary forest and four mature forest sites. Element fluxes via throughfall showed only small variations among regeneration stages except for K and NO(3)-N. With 57-83 kg ha(-1) a(-1)and 2.6-4.1 kg ha(-1) a(-1) respectively, K and NO(3)-N fluxes via throughfall were significantly higher at the clearings than at the mature forest sites (32-37 and 0.7-1.0 kg ha(-1) a(-1) for K and NO(3)-N). In organic layer percolate and in soil solution at 0.15-m soil depth, concentrations of K, Mg, Ca and N were highest at the clearings. In the organic layer percolate, median K concentrations were e.g. 7.4 mg l(-1) for the clearings but only 1.4 mg l(-1) for the mature forests, and for NO(3)-N, median concentrations were 3.1 mg l(-1) for the clearings but only 0.92 mg l(-1) for the mature forest sites. Still, differences in annual means between clearings and mature forests were not always significant due to a high variability within the clearings. With the exception of NO(3)-N, belowground nutrient concentrations in secondary forests ranged between concentrations in mature forests and clearings. Vegetation type-specific differences decreased with increasing soil depths in the soil solution. Overall, the opening of the forest led to a higher spatial and seasonal variation of nutrient concentrations in the seepage water. These results suggest differences in both mineralization rates and in nutrient budgeting at different regeneration stages. Since nutrient availability was highest at the clearings and no compaction of the soil was observed, deterioration of soil properties did not seem to be the main reason for the impeded regeneration on the clearings.
López-Uceda, Antonio; Galvín, Adela P; Ayuso, Jesús; Jiménez, José Ramón; Vanwalleghem, Tom; Peña, Adolfo
2018-03-19
Extensive green roofs are urban construction systems that provide thermal regulation and sound proofing for the buildings involved, in addition to providing an urban heat island mitigation or water retention. On the other hand, policies towards reduction of energy consumption, a circular economy and sustainability are core in the European Union. Motivated by this, an experimental study was carried out to evaluate the environmental risk assessment according to release levels of polluting elements on leachates of different green roof substrate mixtures based on recycled aggregates from construction and demolition waste through (i) the performance in laboratory of two procedures: compliance and percolation tests and (ii) an upscaled experimental leaching test for long-term on-site prediction. Four plots were built on a building roof and covered with autochthonous Mediterranean plants in Córdoba, South of Spain. As growing substrate, four mixtures were used of a commercial growing substrate with different proportions of a fine mixed recycled aggregate ranging from 0 to 75% by volume. The results show that these mixtures were classified as non-hazardous materials according to legal limits of the Landfill Directive 2003/33/CE. The release levels registered in extensive green roofs were lower compared to the laboratory test data. This shows how laboratory conditions can overestimate the potential pollutant effect of these materials compared to actual conditions.
Non-criticality of interaction network over system's crises: A percolation analysis.
Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya
2017-11-20
Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.
Percolating transport in superconducting nanoparticle films
NASA Astrophysics Data System (ADS)
Fostner, Shawn; Nande, Amol; Smith, Alex; Martinez Gazoni, Rodrigo; Grigg, Jack; Temst, Kristiaan; Van Bael, Margriet J.; Brown, Simon A.
2017-12-01
Nanostructured and disordered superconductors exhibit many exotic fundamental phenomena, and also have many possible applications. We show here that films of superconducting lead nanoparticles with a wide range of particle coverages, exhibit non-linear V(I) characteristics that are consistent with percolation theory. Specifically, it is found that V ∝(I-Ic) a , where a = 2.1 ± 0.2, independent of both temperature and particle coverage, and that the measured critical currents (Ic) are also consistent with percolation models. For samples with low normal state resistances, this behaviour is observable only in pulsed current measurements, which suppress heating effects. We show that the present results are not explained by vortex unbinding [Berezinskii-Kosterlitz-Thouless] physics, which is expected in such samples, but which gives rise to a different power law behaviour. Finally, we compare our results to previous calculations and simulations, and conclude that further theoretical developments are required to explain the high level of consistency in the measured exponents a.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, whichmore » may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.« less
Strauch, Kellan R.; Linard, Joshua I.
2009-01-01
The U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, used the Soil and Water Assessment Tool to simulate streamflow and estimate percolation in north-central Nebraska to aid development of long-term strategies for management of hydrologically connected ground and surface water. Although groundwater models adequately simulate subsurface hydrologic processes, they often are not designed to simulate the hydrologically complex processes occurring at or near the land surface. The use of watershed models such as the Soil and Water Assessment Tool, which are designed specifically to simulate surface and near-subsurface processes, can provide helpful insight into the effects of surface-water hydrology on the groundwater system. The Soil and Water Assessment Tool was calibrated for five stream basins in the Elkhorn-Loup Groundwater Model study area in north-central Nebraska to obtain spatially variable estimates of percolation. Six watershed models were calibrated to recorded streamflow in each subbasin by modifying the adjustment parameters. The calibrated parameter sets were then used to simulate a validation period; the validation period was half of the total streamflow period of record with a minimum requirement of 10 years. If the statistical and water-balance results for the validation period were similar to those for the calibration period, a model was considered satisfactory. Statistical measures of each watershed model's performance were variable. These objective measures included the Nash-Sutcliffe measure of efficiency, the ratio of the root-mean-square error to the standard deviation of the measured data, and an estimate of bias. The model met performance criteria for the bias statistic, but failed to meet statistical adequacy criteria for the other two performance measures when evaluated at a monthly time step. A primary cause of the poor model validation results was the inability of the model to reproduce the sustained base flow and streamflow response to precipitation that was observed in the Sand Hills region. The watershed models also were evaluated based on how well they conformed to the annual mass balance (precipitation equals the sum of evapotranspiration, streamflow/runoff, and deep percolation). The model was able to adequately simulate annual values of evapotranspiration, runoff, and precipitation in comparison to reported values, which indicates the model may provide reasonable estimates of annual percolation. Mean annual percolation estimated by the model as basin averages varied within the study area from a maximum of 12.9 inches in the Loup River Basin to a minimum of 1.5 inches in the Shell Creek Basin. Percolation also varied within the studied basins; basin headwaters tended to have greater percolation rates than downstream areas. This variance in percolation rates was mainly was because of the predominance of sandy, highly permeable soils in the upstream areas of the modeled basins.
Dispersive dielectric and conductive effects in 2D resistor-capacitor networks.
Hamou, R F; Macdonald, J R; Tuncer, E
2009-01-14
How to predict and better understand the effective properties of disordered material mixtures has been a long-standing problem in different research fields, especially in condensed matter physics. In order to address this subject and achieve a better understanding of the frequency-dependent properties of these systems, a large 2D L × L square structure of resistors and capacitors was used to calculate the immittance response of a network formed by random filling of binary conductor/insulator phases with 1000 Ω resistors and 10 nF capacitors. The effects of percolating clusters on the immittance response were studied statistically through the generation of 10 000 different random network samples at the percolation threshold. The scattering of the imaginary part of the immittance near the dc limit shows a clear separation between the responses of percolating and non-percolating samples, with the gap between their distributions dependent on both network size and applied frequency. These results could be used to monitor connectivity in composite materials. The effects of the content and structure of the percolating path on the nature of the observed dispersion were investigated, with special attention paid to the geometrical fractal concept of the backbone and its influence on the behavior of relaxation-time distributions. For three different resistor-capacitor proportions, the appropriateness of many fitting models was investigated for modeling and analyzing individual resistor-capacitor network dispersed frequency responses using complex-nonlinear-least-squares fitting. Several remarkable new features were identified, including a useful duality relationship and the need for composite fitting models rather than either a simple power law or a single Davidson-Cole one. Good fits of data for fully percolating random networks required two dispersive fitting models in parallel or series, with a cutoff at short times of the distribution of relaxation times of one of them. In addition, such fits surprisingly led to cutoff parameters, including a primitive relaxation or crossover time, with estimated values comparable to those found for real dispersive materials.
Cascades on a class of clustered random networks
NASA Astrophysics Data System (ADS)
Hackett, Adam; Melnik, Sergey; Gleeson, James P.
2011-05-01
We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M. E. J. Newman, Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.103.058701103, 058701 (2009)]. A condition for the existence of global cascades is derived as well as a general criterion that determines whether increasing the level of clustering will increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site percolation, bond percolation, and Watts’ threshold model; in all cases analytical results give excellent agreement with numerical simulations.
Reversible first-order transition in Pauli percolation
NASA Astrophysics Data System (ADS)
Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill
2015-06-01
Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.
Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps
Antolík, Ján
2017-01-01
Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added. PMID:28408869
Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.
Wang, Zhenhua; Liu, Jun; Wu, Sizhu; Wang, Wenchuan; Zhang, Liqun
2010-03-28
Nano-strengthening by employing nanoparticles is necessary for high-efficiency strengthening of elastomers, which has already been validated by numerous researches and industrial applications, but the underlying mechanism is still an open challenge. In this work, we mainly focus our attention on studying the variation of the tensile strength of nanofilled elastomers by gradually increasing the filler content, within a low loading range. Interestingly, the percolation phenomenon is observed in the relationship between the tensile strength and the filler loading, which shares some similarities with the percolation phenomenon occurring in rubber toughened plastics. That is, as the loading of nanofillers (carbon black, zinc oxide) increases, the tensile strength of rubber nanocomposites (SBR, EPDM) increases slowly at first, then increases abruptly and finally levels off. Meanwhile, the bigger the particle size, the higher the filler content at the percolation point, and the lower the corresponding tensile strength of rubber nanocomposites. The concept of a critical particle-particle distance (CPD) is proposed to explain the observed percolation phenomenon. It is suggested that rubber strengthening through nanoparticles is attributed to the formation of stretched straight polymer chains between neighbor particles, induced by the slippage of adsorbed polymer chains on the filler surface during tension. Meanwhile, the factors to govern this CPD and the critical minimum particle size (CMPS) figured out in this work are both discussed and analyzed in detail. Within the framework of this percolation phenomenon, this paper also clearly answers two important and intriguing issues: (1) why is it necessary and essential to strengthen elastomers through nanofillers; (2) why does it need enough loading of nanofillers to effectively strengthen elastomers. Moreover, on the basis of the percolation phenomenon, we give out some guidance for reinforcement design of rubbery materials: the interfacial interactions between rubber and fillers cannot be complete chemical bonding, and partial physical absorption of macromolecular chains on the filler surface is necessary, otherwise the formation of stretched straight chains would be seriously hindered. There should exist such an optimum crosslinking density for a certain filler reinforced rubber system, and as well an optimum filler loading for rubber strengthening. Additionally, the different percolation behaviors of Young's modulus, the tensile strength and the electrical conductivity are compared and analyzed in our work. Lastly, molecular simulation indicates that it is not possible to strengthen glassy or hard polymer matrices by incorporating spherical nanoparticles. In general, by providing substantial experimental data and detailed analyses, this work is believed to promote the fundamental understanding of rubber reinforcement, as well provide better guidance for the design of high-performance and multi-functional rubber nanocomposites.
How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application
NASA Astrophysics Data System (ADS)
Ren, Jingli; Zhang, Liying; Siegmund, Stefan
2016-03-01
Inhomogeneous percolation, for its closer relationship with real-life, can be more useful and reasonable than homogeneous percolation to illustrate the critical phenomena and dynamical behaviour of complex networks. However, due to its intricacy, the theoretical framework of inhomogeneous percolation is far from being complete and many challenging problems are still open. In this paper, we first investigate inhomogeneous site percolation on Bethe Lattices with two occupation probabilities, and then extend the result to percolation with m occupation probabilities. The critical behaviour of this inhomogeneous percolation is shown clearly by formulating the percolation probability with given occupation probability p, the critical occupation probability , and the average cluster size where p is subject to . Moreover, using the above theory, we discuss in detail the diffusion behaviour of an infectious disease (SARS) and present specific disease-control strategies in consideration of groups with different infection probabilities.
Orientational order and rotational relaxation in the plastic crystal phase of tetrahedral molecules.
Rey, Rossend
2008-01-17
A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.
Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.
Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin
2010-03-10
Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.
NASA Astrophysics Data System (ADS)
Fardet, Tanguy; Bottani, Samuel; Métens, Stéphane; Monceau, Pascal
2018-06-01
The Quorum Percolation model (QP) has been designed in the context of neurobiology to describe the initiation of activity bursts occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. This paper aims at investigating an extension of the original QP model by taking into account the presence of inhibitory neurons in the cultures (IQP model). The first part of this paper is focused on an equivalence between the presence of inhibitory neurons and a reduction of the network connectivity. By relying on a simple topological argument, we show that the mean activation behavior of networks containing a fraction η of inhibitory neurons can be mapped onto purely excitatory networks with an appropriately modified wiring, provided that η remains in the range usually observed in neuronal cultures, namely η ⪅ 20%. As a striking result, we show that such a mapping enables to predict the evolution of the critical point of the IQP model with the fraction of inhibitory neurons. In a second part, we bridge the gap between the description of bursts in the framework of percolation and the temporal description of neural networks activity by showing how dynamical simulations of bursts with an adaptive exponential integrate-and-fire model lead to a mean description of bursts activation which is captured by Quorum Percolation.
Hidden Connectivity in Networks with Vulnerable Classes of Nodes
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Danziger, Michael M.; Zlatić, Vinko
2016-10-01
In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a "color-avoiding" percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.
Hoffmann, John P.; Blasch, Kyle W.; Pool, Don R.; Bailey, Matthew A.; Callegary, James B.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
A large fraction of ground water stored in the alluvial aquifers in the Southwest is recharged by water that percolates through ephemeral stream-channel deposits. The amount of water currently recharging many of these aquifers is insufficient to meet current and future demands. Improving the understanding of streambed infiltration and the subsequent redistribution of water within the unsaturated zone is fundamental to quantifying and forming an accurate description of streambed recharge. In addition, improved estimates of recharge from ephemeral-stream channels will reduce uncertainties in water-budget components used in current ground-water models.This chapter presents a summary of findings related to a focused recharge investigation along Rillito Creek in Tucson, Arizona. A variety of approaches used to estimate infiltration, percolation, and recharge fluxes are presented that provide a wide range of temporal- and spatial-scale measurements of recharge beneath Rillito Creek. The approaches discussed include analyses of (1) cores and cuttings for hydraulic and textural properties, (2) environmental tracers from the water extracted from the cores and cuttings, (3) seepage measurements made during sustained streamflow, (4) heat as a tracer and numerical simulations of the movement of heat through the streambed sediments, (5) water-content variations, (6) water-level responses to streamflow in piezometers within the stream channel, and (7) gravity changes in response to recharge events. Hydraulic properties of the materials underlying Rillito Creek were used to estimate long-term potential recharge rates. Seepage measurements and analyses of temperature and water content were used to estimate infiltration rates, and environmental tracers were used to estimate percolation rates through the thick unsaturated zone. The presence or lack of tritium in the water was used to determine whether or not water in the unsaturated zone infiltrated within the past 40 years. Analysis of water-level and temporal-gravity data were used to estimate recharge volumes. Data presented in this chapter were collected from 1999 though 2002. Precipitation and streamflow during this period were less than the long-term average; however, two periods of significant streamflow resulted in recharge—one in the summer of 1999 and the other in the fall/winter of 2000.Flux estimates of infiltration and recharge vary from less than 0.1 to 1.0 cubic meter per second per kilometer of streamflow. Recharge-flux estimates are larger than infiltration estimates. Larger recharge fluxes than infiltration fluxes are explained by the scale of measurements. Methods used to estimate recharge rates incorporate the largest volumetric and temporal scales and are likely to have fluxes from other nearby sources, such as unmeasured tributaries, whereas the methods used to estimate infiltration incorporate the smallest scales, reflecting infiltration rates at individual measurement sites.
Observations of Pronounced Greenland Ice Sheet Firn Warming and Implications for Runoff Production
NASA Technical Reports Server (NTRS)
Polashenski, Chris; Courville, Zoe; Benson, Carl; Wagner, Anna; Chen, Justin; Wong, Gifford; Hawley, Robert; Hall, Dorothy
2014-01-01
Field measurements of shallow borehole temperatures in firn across the northern Greenland ice sheet are collected during May 2013. Sites first measured in 19521955 are revisited, showing long-term trends in firn temperature. Results indicate a pattern of substantial firn warming (up to +5.7C) at midlevel elevations (1400-2500 m) and little temperature change at high elevations (2500 m). We find that latent heat transport into the firn due to meltwater percolation drives the observed warming. Modeling shows that heat is stored at depth for several years, and energy delivered from consecutive melt events accumulates in the firn. The observed warming is likely not yet in equilibrium with recent melt production rates but captures the progression of sites in the percolation facies toward net runoff production.
NASA Astrophysics Data System (ADS)
Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.
2015-06-01
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2016-03-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.
Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.
2015-01-01
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary. PMID:26047466
Mitropoulos, A C; Stefanopoulos, K L; Favvas, E P; Vansant, E; Hankins, N P
2015-06-05
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.
Correlation effects in nanoparticle composites: Percolation, packing and tunneling
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam
Percolation is one of the most fundamental and far-reaching physical phenomena, with major implications in a vast variety of fields. The work described in this thesis aims to understand the role of percolation effects in various, seemingly unrelated phenomena, such as the dielectric permittivity of metal-insulator composites, tunneling percolation, and the relationship between percolation and filling factors. Specifically, we investigated 1) the very large enhancement of the dielectric permittivity of a composite metal -- insulator system, RuO2 - CaCu3Ti4O12 (CCTO) near the percolation threshold. For RuO2/CCTO composites, an increase in the real part of the dielectric permittivity (initially about 10 3-104 at 10 kHz) by approximately an order of magnitude is observed in the vicinity of the percolation threshold. 2) In the same system, apart from a classical percolation transition associated with the appearance of a continuous conductance path through RuO2 nanoparticles, at least two additional tunneling percolation transitions are detected. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. 3) The filling factors of the composites of nanoparticles with different shapes have been studied as a function of volume fraction. Interestingly, like percolation, filling factors also obey critical power law behavior as a function of size ratio of constituent particles.
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.
2008-07-01
Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.
NASA Astrophysics Data System (ADS)
Ionov, Dmitri A.; Chazot, Gilles; Chauvel, Catherine; Merlet, Claude; Bodinier, Jean-Louis
2006-03-01
Spinel peridotite xenoliths in alkali basalts at Tok, SE Siberian craton range from fertile lherzolites to harzburgites and wehrlites; olivine-rich (70-84%) rocks are dominant. REE patterns in the lherzolites range from nearly flat for fertile rocks (14-17% cpx) to LREE-enriched; the enrichments are positively correlated with modal olivine, consistent with high-permeability of olivine-rich rocks during melt percolation. Clinopyroxene in olivine-rich Tok peridotites typically has convex-upward trace element patterns (La/Nd PM < 1 and Nd/Yb PM ≫ 1), which we consider as evidence for equilibration with evolved silicate liquids (with higher REE and lower Ti contents than in host basalts). Whole-rock patterns of the olivine-rich xenoliths range from convex-upward to LREE-enriched (La/Nd PM > 1); the LREE-enrichments are positively correlated with phosphorus abundances and are mainly hosted by accessory phosphates and P-rich cryptocrystalline materials. In addition to apatite, some Tok xenoliths contain whitlockite (an anhydrous, halogen-poor and Na-Mg-rich phosphate), which is common in meteorites and lunar rocks, but has not been reported from any terrestrial mantle samples. Some olivine-rich peridotites have generations of clinopyroxene with distinct abundances of Na, LREE, Sr and Zr. The mineralogical and trace element data indicate that the lithospheric mantle section represented by the xenoliths experienced a large-scale metasomatic event produced by upward migration of mafic silicate melts followed by percolation of low- T, alkali-rich melts and fluids. Chromatographic fractionation and fractional crystallisation of the melts close to the percolation front produced strong LREE-enrichments, which are most common in the uppermost mantle and are related to carbonate- and P 2O 5-rich derivatives of the initial melt. Reversal and gradual retreat of the percolation front during thermal relaxation to ambient geotherm ("retrograde" metasomatism) caused local migration and entrapment of small-volume residual fluids and precipitation of volatile-rich accessory minerals. A distinct metasomatic episode, which mainly produced "anhydrous" late-stage interstitial materials was concomitant with the alkali basaltic magmatism, which brought the xenoliths to the surface.
Percolator: Scalable Pattern Discovery in Dynamic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walkingmore » through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.« less
A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.
Halloran, John T; Rocke, David M
2018-05-04
Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .
Two-Dimensional SIR Epidemics with Long Range Infection
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2013-10-01
We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p( x)˜| x|- σ-2 for the probability that a site can infect another site a distance vector x apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2, and for the supercritical case with 0< σ<2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2 we find generic power laws with σ-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ in the regime 0< σ<2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder et al. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.
Evaluating Quality Circles in U.S. Industry: A Feasibility Study.
1982-06-30
are the following: whether the ,.-~. .- "i. 24 circle is cost-effective, whether it deals with long-range rather than crisis problems, whether the...Chapter 4. The evolution of the Japanese instruments took into consideration the nature of the Japanese work setting. To assist in the transculturation ...crises rather than implementing long-term change? Name____________________ Short-term, Long-Term, Title______________________ crisis on-going oriented
Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch
NASA Technical Reports Server (NTRS)
Collinsworth, A. M.; Torgan, C. E.; Nagda, S. N.; Rajalingam, R. J.; Kraus, W. E.; Truskey, G. A.
2000-01-01
Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.
NASA Astrophysics Data System (ADS)
Wang, Xujing
Living systems are characterized by complexity in structure and emergent dynamic orders. In many aspects the onset of a chronic disease resembles phase transition in a dynamic system: quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we investigate this idea in a real example, the insulin-producing pancreatic islet β-cells and the onset of type 1 diabetes. Within each islet, the β-cells are electrically coupled to each other, and function as a network with synchronized actions. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity, and the critical point where the islet cellular network loses site percolation, is consistent with laboratory and clinical observations of the threshold β-cell loss that causes islet functional failure. Numerical simulations confirm that the islet cellular network needs to be percolated for β-cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after disease onset and introduction of treatment, potentially explaining a long time mystery in the clinical study of type 1 diabetes: the honeymoon phenomenon. Based on these results, we hypothesized that the onset of T1D may be the result of a phase transition of the islet β-cell network. We further discuss the potential applications in identifying disease-driving factors, and the critical parameters that are predictive of disease onset.
Hezaveh, Samira; Samanta, Susruta; De Nicola, Antonio; Milano, Giuseppe; Roccatano, Danilo
2012-12-13
In this paper, we present a computational model of the adsorption and percolation mechanism of poloxamers (poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers) across a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. A coarse-grained model was used to cope with the long time scale of the percolation process. The simulations have provided details of the interaction mechanism of Pluronics with lipid bilayer. In particular, the results have shown that polymer chains containing a PPO block with a length comparable to the DMPC bilayer thickness, such as P85, tends to percolate across the lipid bilayer. On the contrary, Pluronics with a shorter PPO chain, such as L64 and F38, insert partially into the membrane with the PPO block part while the PEO blocks remain in water on one side of the lipid bilayer. The percolation of the polymers into the lipid tail groups reduces the membrane thickness and increases the area per lipid. These effects are more evident for P85 than L64 or F38. Our findings are qualitatively in good agreement with published small-angle X-ray scattering experiments that have evidenced a thinning effect of Pluronics on the lipid bilayer as well as the role of the length of the PPO block on the permeation process of the polymer through the lipid bilayer. Our theoretical results complement the experimental data with a detailed structural and dynamic model of poloxamers at the interface and inside the lipid bilayer.
Global patterns of tropical forest fragmentation
NASA Astrophysics Data System (ADS)
Taubert, Franziska; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Müller, Michael S.; Rödig, Edna; Wiegand, Thorsten; Huth, Andreas
2018-02-01
Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments—at maximum by a factor of 33 over 50 years—as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.
Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation
NASA Astrophysics Data System (ADS)
Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro
1996-08-01
Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.
Group percolation in interdependent networks
NASA Astrophysics Data System (ADS)
Wang, Zexun; Zhou, Dong; Hu, Yanqing
2018-03-01
In many real network systems, nodes usually cooperate with each other and form groups to enhance their robustness to risks. This motivates us to study an alternative type of percolation, group percolation, in interdependent networks under attack. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with intersimilarity structures, which have attracted much attention recently, onto the group percolation and confirm the nonexistence of continuous phase transitions.
Percolation analyses of observed and simulated galaxy clustering
NASA Astrophysics Data System (ADS)
Bhavsar, S. P.; Barrow, J. D.
1983-11-01
A percolation cluster analysis is performed on equivalent regions of the CFA redshift survey of galaxies and the 4000 body simulations of gravitational clustering made by Aarseth, Gott and Turner (1979). The observed and simulated percolation properties are compared and, unlike correlation and multiplicity function analyses, favour high density (Omega = 1) models with n = - 1 initial data. The present results show that the three-dimensional data are consistent with the degree of filamentary structure present in isothermal models of galaxy formation at the level of percolation analysis. It is also found that the percolation structure of the CFA data is a function of depth. Percolation structure does not appear to be a sensitive probe of intrinsic filamentary structure.
Pretransitional phenomena and pinning in liquid-crystalline blue phases
NASA Astrophysics Data System (ADS)
Demikhov, E.; Stegemeyer, H.; Tsukruk, V.
1992-10-01
Blue phases (BP's) in liquid-crystalline systems of high chirality exhibiting a short cholesteric temperature interval are investigated. In a BP I supercooled with respect to the cholesteric phase, the orientation of the cubic lattice with the (1,1,0) wave vector perpendicular to the substrate is spontaneously turned to a [200] orientation within small areas of several tenths of micrometers in diameter. A pinning of BP I lattice temperature waves is observed on the [200] orientational inhomogeneities. The pinning effect explains the observed saturation of the BP I lattice constant on decreasing temperature and its dependence on the cooling rate observed in supercooled region. A different type of cubic blue phase, BP S (``S'' represents supercooled), is observed transforming reversibly from the supercooled BP I but metastable with respect to the cholesteric phase. The BP S has two scales of order: a long-range orientational blue-phase-like order and a short-range positional smecticlike order.
Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy
NASA Astrophysics Data System (ADS)
Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam
2018-06-01
Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.
Weak percolation on multiplex networks
NASA Astrophysics Data System (ADS)
Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide
2014-04-01
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.
del Moral, F; Vázquez, J A; Ferrero, J J; Willisch, P; Ramírez, R D; Teijeiro, A; López Medina, A; Andrade, B; Vázquez, J; Salvador, F; Medal, D; Salgado, M; Muñoz, V
2009-09-01
Modern radiotherapy uses complex treatments that necessitate more complex quality assurance procedures. As a continuous medium, GafChromic EBT films offer suitable features for such verification. However, its sensitometric curve is not fully understood in terms of classical theoretical models. In fact, measured optical densities and those predicted by the classical models differ significantly. This difference increases systematically with wider dose ranges. Thus, achieving the accuracy required for intensity-modulated radiotherapy (IMRT) by classical methods is not possible, plecluding their use. As a result, experimental parametrizations, such as polynomial fits, are replacing phenomenological expressions in modern investigations. This article focuses on identifying new theoretical ways to describe sensitometric curves and on evaluating the quality of fit for experimental data based on four proposed models. A whole mathematical formalism starting with a geometrical version of the classical theory is used to develop new expressions for the sensitometric curves. General results from the percolation theory are also used. A flat-bed-scanner-based method was chosen for the film analysis. Different tests were performed, such as consistency of the numeric results for the proposed model and double examination using data from independent researchers. Results show that the percolation-theory-based model provides the best theoretical explanation for the sensitometric behavior of GafChromic films. The different sizes of active centers or monomer crystals of the film are the basis of this model, allowing acquisition of information about the internal structure of the films. Values for the mean size of the active centers were obtained in accordance with technical specifications. In this model, the dynamics of the interaction between the active centers of GafChromic film and radiation is also characterized by means of its interaction cross-section value. The percolation model fulfills the accuracy requirements for quality-control procedures when large ranges of doses are used and offers a physical explanation for the film response.
T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658
T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Amin, Mohd C I; Fell, John T
2004-01-01
Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
Plume-lithosphere interaction: Effects on the seismic anisotropy of the lithospheric mantle
NASA Astrophysics Data System (ADS)
Vauchez, A.; Tommasi, A.
2003-04-01
Interaction between a hot asthenospheric mantle and the base of the lithosphere above a mantle plume involves heat and mass transfer through melting and fluids percolation. These processes alter the mineralogy, microstructure and geochemical signature of the lithospheric mantle; altogether they lead to an asthenospherization, and thus to erosion of the lithosphere. Does this evolution modify or even erase the seismic anisotropy of the initial lithospheric mantle? In other words, is the structural memory of the lithospheric mantle preserved in such geodynamic situations? Insights on this process are provided by the measurement of the Lattice Preferred Orientation of rock-forming minerals and the computation of seismic properties of mantle rocks from the Ronda Peridotite Massif, and of xenoliths from Tanzania and Polynesia volcanoes. The Ronda massif displays clear microstructural and geochemical variations characterizing the limit between an ancient lithospheric mantle and its asthenospherized counterpart that has undergone partial melting and magmas percolation. The LPO measured in peridotites from both domains is quite similar and so are seismic properties, suggesting that the tectonic fabric inherited from previous deformation and the resulting seismic anisotropy are only slightly modified by asthenospherization. The Labait volcano in Tanzania sampled the Tanzania craton lithospheric mantle at depths between 150 km and less than 70 km. Although significant annealing and exaggerated grain growth of olivine occur between 70 km and 120 km the olivine LPO does not vary significantly, suggesting that the initial anisotropy of the lithospheric was preserved. Xenoliths from several Polynesian volcanoes display composition and geochemistry that suggest percolation of variable amounts of melt in the lithospheric mantle up to relatively shallow depths. Samples that have underwent the most percolation display very weak olivine LPO, and are almost seismically isotropic. Altogether the results of these studies suggest that asthenospherization does not necessarily erase the inherited seismic anisotropy of the older, previously structured, lithosphere. As far as melting and melt-rock interaction remain moderate the LPO of olivine, and thus the seismic anisotropy of the lithospheric mantle are largely preserved. However, when melt-rock interactions become large enough, then the lithospheric seismic anisotropy signature of the mantle may be erased.
Fractality of eroded coastlines of correlated landscapes.
Morais, P A; Oliveira, E A; Araújo, N A M; Herrmann, H J; Andrade, J S
2011-07-01
Using numerical simulations of a simple sea-coast mechanical erosion model, we investigate the effect of spatial long-range correlations in the lithology of coastal landscapes on the fractal behavior of the corresponding coastlines. In the model, the resistance of a coast section to erosion depends on the local lithology configuration as well as on the number of neighboring sea sides. For weak sea forces, the sea is trapped by the coastline and the eroding process stops after some time. For strong sea forces erosion is perpetual. The transition between these two regimes takes place at a critical sea force, characterized by a fractal coastline front. For uncorrelated landscapes, we obtain, at the critical value, a fractal dimension D=1.33, which is consistent with the dimension of the accessible external perimeter of the spanning cluster in two-dimensional percolation. For sea forces above the critical value, our results indicate that the coastline is self-affine and belongs to the Kardar-Parisi-Zhang universality class. In the case of landscapes generated with power-law spatial long-range correlations, the coastline fractal dimension changes continuously with the Hurst exponent H, decreasing from D=1.34 to 1.04, for H=0 and 1, respectively. This nonuniversal behavior is compatible with the multitude of fractal dimensions found for real coastlines.
NASA Astrophysics Data System (ADS)
Hofherr, O.; Wachten, Christian; Müller, C.; Reinecke, H.
2014-11-01
High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) accurately determine x-y-z coordinates of passive retroreflectors. Next-generation systems answer the need to measure an object`s rotational orientation (pitch, yaw, roll). So far, these devices are based either on photogrammetry or on enhanced retroreflectors. Here we present a new method to measure all six degrees of freedom in conjunction with a LT. The basic principle is to analyze the orientation to the LT's beam path by coupling-out laser radiation. The optical design is inspired by a cat's eye retroreflector equipped with an integrated beam splitter layer. The optical spherical aberration is compensated, which reduces the divergence angle for the reflected beam by one order of magnitude compared to an uncompensated standard system of the same size. The wave front distortion is reduced to less than 0.1 λ @ 633 nm for beam diameters up to 8 mm. Our active retroreflector is suitable for long-range measurements for a distance > 10 m.
NASA Astrophysics Data System (ADS)
Ryzhov, V. A.; Lashkul, A. V.; Matveev, V. V.; Molkanov, P. L.; Kurbakov, A. I.; Kiselev, I. A.; Lisunov, K. G.; Galimov, D.; Lähderanta, E.
2018-01-01
Two porous glassy carbon-based samples doped with Au and Co were investigated. The magnetization study as well as measurements of the nonlinear longitudinal response to a weak ac field (NLR) and electron magnetic resonance give evidences for a presence of magnetic nanoparticles (MNPs) embedded in paramagnetic/ferromagnetic matrix respectively, both samples being in magnetically phase-separated state at temperatures above 300 K. Matrix, forming by paramagnetic centers located in matrix outside the MNPs, reveals exchange interactions providing its ferromagnetic (FM) ordering below TC ≈ 210 K in Au-doped sample and well above 350 K in Co-doped one. For the former, NLR data suggest a percolation character of the matrix long-range FM order, which is mainly caused by a porous amorphous sample structure. Temperature dependence of the magnetization in the Au-doped sample evidences presence of antiferromagnetic (AF) interactions of MNPs with surrounding matrix centers. At magnetic ordering below TC these interactions promote origination of "domains" involving matrix fragment and surrounding MNPs with near opposite orientation of their moments that decreases the magnetostatic energy. On further cooling, the domains exhibit AF ordering below Tcr ∼ 140 K < TC, resulting in formation of a peculiar "ferrimagnet". The porous amorphous structure leads to absence of translational and other symmetry features through the samples that allows canted ordering of magnetic moments in domains and in whole sample providing "canted ferrimagnetism". At low temperatures Ttr ∼ 3 K, "order-oder" transition, evidencing the non-Heisenberg character of this magnetic material, occurs from ordering like "canted ferrimagnet" to FM alignment, which is stimulated by external magnetic field. The data for Co-doped sample imply the similar evolution of magnetic state but at higher temperatures above 350 K. This state exhibits more homogeneous arrangement of the FM nanoparticles and the FM matrix. Order-order transition occurs in it at higher Ttr ∼ 10-15 K as well and followed by formation of long-range FM ordering found earlier by neutron diffraction. Doping of carbon-based nanomaterials by magnetic metals provides advantages for their possible practical applications as Co-doped sample with higher TC (>350 K) and larger remanent magnetization evidences.
Percolation and epidemics in random clustered networks
NASA Astrophysics Data System (ADS)
Miller, Joel C.
2009-08-01
The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered networks, but the networks often contain preferential contacts in high degree nodes. We introduce a class of random clustered networks and a class of random unclustered networks with the same preferential mixing. Percolation in the clustered networks reduces the component sizes and increases the epidemic threshold compared to the unclustered networks.
NASA Astrophysics Data System (ADS)
Goldenberg, J.; Libai, B.; Solomon, S.; Jan, N.; Stauffer, D.
2000-09-01
A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass, Manage. Sci. 15 (1969) 215). This mean-field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al., Physica A 277 (2000) 239) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.
NASA Astrophysics Data System (ADS)
Hidas, Károly; Konc, Zoltán.; Garrido, Carlos J.; Tommasi, Andréa.; Vauchez, Alain; Padrón-Navarta, José Alberto; Marchesi, Claudio; Booth-Rea, Guillermo; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, María. Isabel; Gervilla, Fernando
2016-11-01
Mantle xenoliths in Pliocene alkali basalts of the eastern Betics (SE Iberia, Spain) are spinel ± plagioclase lherzolite, with minor harzburgite and wehrlite, displaying porphyroclastic or equigranular textures. Equigranular peridotites have olivine crystal preferred orientation (CPO) patterns similar to those of porphyroclastic xenoliths but slightly more dispersed. Olivine CPO shows [100]-fiber patterns characterized by strong alignment of [100]-axes subparallel to the stretching lineation and a girdle distribution of [010]-axes normal to it. This pattern is consistent with simple shear or transtensional deformation accommodated by dislocation creep. One xenolith provides evidence for synkinematic reactive percolation of subduction-related Si-rich melts/fluids that resulted in oriented crystallization of orthopyroxene. Despite a seemingly undeformed microstructure, the CPO in orthopyroxenite veins in composite xenoliths is identical to those of pyroxenes in the host peridotite, suggesting late-kinematic crystallization. Based on these observations, we propose that the annealing producing the equigranular microstructures was triggered by melt percolation in the shallow subcontinental lithospheric mantle coeval to the late Neogene formation of veins in composite xenoliths. Calculated seismic properties are characterized by fast propagation of P waves and polarization of fast S waves parallel to olivine [100]-axis (stretching lineation). These data are compatible with present-day seismic anisotropy observations in SE Iberia if the foliations in the lithospheric mantle are steeply dipping and lineations are subhorizontal with ENE strike, implying dominantly horizontal mantle flow in the ENE-WSW direction within vertical planes, that is, subparallel to the paleo-Iberian margin. The measured anisotropy could thus reflect a lithospheric fabric due to strike-slip deformation in the late Miocene in the context of WSW tearing of the subducted south Iberian margin lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Patrizia; Spinelli, Giovanni, E-mail: gspinelli@unisa.it; Tucci, Vincenzo
An experimental study has been carried out to prepare and characterize epoxy/amine-based composites filled with different percentages of partially exfoliated graphite (i.e. pEG) particles having an exfoliation degree of 56% in order to analyze the effect of the filler amounts on the electrical properties of the resulting nanocomposites. Moreover, in order to fully investigate the direct relationship between the physical properties of the employed filler and the results of the electrical characterization, a structural and morphological characterization of the pEG samples is carried out by means of various type of analysis such as X-ray diffraction patterns, micro-Raman and Scanning Electronmore » Microscopy (SEM) images. The DC electrical characterization reveals a percolation thresholds (EPT) that falls in the range [2–3] wt% and an electrical conductivity of about 0.66 S/m at the highest filler loading (6.5 wt%). From the analysis of the percolative curve it is possible to derive the percolation law parameters and in particular the critical exponent t, whose value (i.e. 1.2) reflects an effective 2D organization of the percolating structure consistent with the type of filler used (2-dimensional). Finally, an extensive analysis concerning the electrical properties in the frequency domain has been carried out in order to evaluate the effectiveness of pEG-loaded composites in terms of electromagnetic interference compatibility (EMC) and their applicability as radar absorbers materials (RAMs).« less
Models of the vestibular system and postural control
NASA Technical Reports Server (NTRS)
Young, L. R.; Weiss, A.
1974-01-01
Applications of control theory and systems analysis to the problem of orientation and posture control are discussed, with the possible long range goals of contributing to the development of hardware for rehabilitation of the handicapped.
Code of Federal Regulations, 2010 CFR
2010-10-01
...— (i) A substantiated diagnosis; (ii) Short-term and long-range goals; (iii) The specific treatment...) Describe attitudes and behavior; (6) Estimate intellectual functioning, memory functioning, and orientation...
Factors affecting water balance and percolate production for a landfill in operation.
Poulsen, Tjalfe G; Møoldrup, Per
2005-02-01
Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.
NASA Astrophysics Data System (ADS)
Kumar, Sanjiv; Singh, Amit Raj; Giri, Debaprasad; Kumar, Sanjay
2017-03-01
We investigate the force induced unfolding transitions of a polymer in presence of crowding particles over a wide range of conditions. The polymer conformations are specified by the reaction coordinate i.e. end-to-end distance and the quality of the solvent. Crowding distribution is obtained through the percolation process, which gives rise to a distribution of clusters of different shapes and sizes starting from isolated disorder sites up to clusters with an extent spanning the entire system. It was shown here that the polymer structures are altered by such distributions and induces an array of structural changes in the form of intermediate states. It was found that the mechanical stability of polymer was insensitive at lower concentration, but increases at higher concentration. This is in accordance with experiments. Exact results based on a short polymer revealed that there is emergence of a long tail in the unfolding force distributions. This is less visible at lower concentration, but has significant contribution at higher concentration. This important feature either was overlooked or not explored so far, and therefore, needs further investigation.
Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacy, Stephen; Allen, Jeffrey
Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudomore » Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.« less
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris
Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix.more » Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.« less
Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks
Piraveenan, Mahendra; Prokopenko, Mikhail; Hossain, Liaquat
2013-01-01
A number of centrality measures are available to determine the relative importance of a node in a complex network, and betweenness is prominent among them. However, the existing centrality measures are not adequate in network percolation scenarios (such as during infection transmission in a social network of individuals, spreading of computer viruses on computer networks, or transmission of disease over a network of towns) because they do not account for the changing percolation states of individual nodes. We propose a new measure, percolation centrality, that quantifies relative impact of nodes based on their topological connectivity, as well as their percolation states. The measure can be extended to include random walk based definitions, and its computational complexity is shown to be of the same order as that of betweenness centrality. We demonstrate the usage of percolation centrality by applying it to a canonical network as well as simulated and real world scale-free and random networks. PMID:23349699
Critical exponents of the explosive percolation transition
NASA Astrophysics Data System (ADS)
da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.
2014-04-01
In a new type of percolation phase transition, which was observed in a set of nonequilibrium models, each new connection between vertices is chosen from a number of possibilities by an Achlioptas-like algorithm. This causes preferential merging of small components and delays the emergence of the percolation cluster. First simulations led to a conclusion that a percolation cluster in this irreversible process is born discontinuously, by a discontinuous phase transition, which results in the term "explosive percolation transition." We have shown that this transition is actually continuous (second order) though with an anomalously small critical exponent of the percolation cluster. Here we propose an efficient numerical method enabling us to find the critical exponents and other characteristics of this second-order transition for a representative set of explosive percolation models with different number of choices. The method is based on gluing together the numerical solutions of evolution equations for the cluster size distribution and power-law asymptotics. For each of the models, with high precision, we obtain critical exponents and the critical point.
Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J
2010-03-15
A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.
2018-05-01
Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.
Characterization of a water-solid interaction in a partially ordered system.
Chakravarty, Paroma; Lubach, Joseph W
2013-11-04
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.
Dissolved organic matter in the unsaturated zone: the view from the cave
NASA Astrophysics Data System (ADS)
Baker, A.; Duan, W.; Rutlidge, H.; McDonough, L.; Oudone, P.; Meredith, K.; Andersen, M. S.; O'Carroll, D. M.; Coleborn, K.; Treble, P. C.
2017-12-01
Soil organic matter content is typically a few percent of the total soil composition. Diffuse recharge can mobilise some of this soil-derived organic matter. While soil pore water dissolved organic matter (DOM) concentrations are up to 100 ppm, the resulting groundwater dissolved organic matter concentration is typically less than 2ppm. Dissolved organic matter transported from the soil can be both biodegraded and sorbed to minerals, and the relative importance of these two processes in the unsaturated zone is poorly understood. Caves in karstified limestone uniquely provide direct access to water percolating from the soil to the groundwater. Cave percolation waters can be analysed for their DOM concentration and character. This provides insights into the extent and type of biological and chemical processing of DOM during transport from the soil to the groundwater. We determine the concentration and characteristics of DOM in cave percolation waters using liquid chromatography (LC-OCD) and optical spectrophotometry (fluorescence and absorbance). We sample DOM from multiple caves in SE Australia (Cathedral Cave, Wellington; South Glory and Harrie Wood Caves, Yarrangobilly), permitting comparison of unsaturated zone DOM properties at different depths (up to 30m below land surface) and different climate zones (montane and temperate). We use caves with long-term hydrological monitoring programs so that DOM in waters of contrasting residence times can be compared. Additionally, we compare these cave percolation water DOM characteristics to those from local and regional groundwater, sampled from nearby wells. Our results will help improve our understanding of how DOM is processed from soil to groundwater, and is also relevant to speleothem scientists interested in using organic matter preserved in speleothems as a paleoclimate or paleoenvironmental proxy.
Campbell, Michael G; Liu, Qingkun; Sanders, Aric; Evans, Julian S; Smalyukh, Ivan I
2014-04-11
Using liquid crystalline self-assembly of cellulose nanocrystals, we achieve long-range alignment of anisotropic metal nanoparticles in colloidal nanocrystal dispersions that are then used to deposit thin structured films with ordering features highly dependent on the deposition method. These hybrid films are comprised of gold nanorods unidirectionally aligned in a matrix that can be made of ordered cellulose nanocrystals or silica nanostructures obtained by using cellulose-based nanostructures as a replica. The ensuing long-range alignment of gold nanorods in both cellulose-based and nanoporous silica films results in a polarization-sensitive surface plasmon resonance. The demonstrated device-scale bulk nanoparticle alignment may enable engineering of new material properties arising from combining the orientational ordering of host nanostructures and properties of the anisotropic plasmonic metal nanoparticles. Our approach may also allow for scalable fabrication of plasmonic polarizers and nanoporous silica structures with orientationally ordered anisotropic plasmonic nanoinclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Oleg V.; N.S. Enikolopov Institute of Synthetic Polymer Materials of RAS, Profsoyuznaya st., Moscow, 117393; Kechek’yan, Alexander S.
Electrically conductive oriented polymer nano-composites of different compositions, based on the reactor powder of ultra-high-molecular-weight polyethylene (UHMWPE) with a special morphology, filled with particles of nanostructured graphite (NG), multi-walled carbon nanotubes (MWCNTs), and electrically conductive carbon black (CB), were investigated. Polymer composites were obtained via compaction of the mechanical mixture of the polymer and filler powder, followed by uniaxial deformation of the material under homogeneous shear (HS) conditions (all of the processing stages were conducted at room temperature). Resulted composites possess a high tensile strength, high level of the electrical conductivity and low percolation threshold, owing it to the formationmore » of the segregated conductive structure, The influence of the type of nanosized carbon filler, degree of the deformation under HS condition, temperature and etc. on the electrical conductivity and mechanical properties of strengthened conductive composites oriented under homogeneous shear conditions was investigated. Changes in the electrical conductivity of oriented composite materials during reversible “tension–shrinkage” cycles along the orientation axis direction were studied. A theoretical approach, describing the process of transformation of the conductive system as a response on polymer phase deformation and volume change, was proposed, based on the data received from the analysis of the conductivity behavior during the uniaxial deformation and thermal treatment of composites.« less
Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.
2000-04-03
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less
Hexatic smectic phase with algebraically decaying bond-orientational order
NASA Astrophysics Data System (ADS)
Agosta, Lorenzo; Metere, Alfredo; Dzugutov, Mikhail
2018-05-01
The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.
NASA Astrophysics Data System (ADS)
Perino, E. J.; Matoz-Fernandez, D. A.; Pasinetti, P. M.; Ramirez-Pastor, A. J.
2017-07-01
Monte Carlo simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of linear k-mers (also known as rods or needles) on a two-dimensional triangular lattice of linear dimension L, considering an isotropic RSA process and periodic boundary conditions. Extensive numerical work has been done to extend previous studies to larger system sizes and longer k-mers, which enables the confirmation of a nonmonotonic size dependence of the percolation threshold and the estimation of a maximum value of k from which percolation would no longer occur. Finally, a complete analysis of critical exponents and universality has been done, showing that the percolation phase transition involved in the system is not affected, having the same universality class of the ordinary random percolation.
Percolation Laws of a Fractal Fracture-Pore Double Medium
NASA Astrophysics Data System (ADS)
Zhao, Yangsheng; Feng, Zengchao; Lv, Zhaoxing; Zhao, Dong; Liang, Weiguo
2016-12-01
The fracture-pore double porosity medium is one of the most common media in nature, for example, rock mass in strata. Fracture has a more significant effect on fluid flow than a pore in a fracture-pore double porosity medium. Hence, the fracture effect on percolation should be considered when studying the percolation phenomenon in porous media. In this paper, based on the fractal distribution law, three-dimensional (3D) fracture surfaces, and two-dimensional (2D) fracture traces in rock mass, the locations of fracture surfaces or traces are determined using a random function of uniform distribution. Pores are superimposed to build a fractal fracture-pore double medium. Numerical experiments were performed to show percolation phenomena in the fracture-pore double medium. The percolation threshold can be determined from three independent variables (porosity n, fracture fractal dimension D, and initial value of fracture number N0). Once any two are determined, the percolation probability exists at a critical point with the remaining parameter changing. When the initial value of the fracture number is greater than zero, the percolation threshold in the fracture-pore medium is much smaller than that in a pore medium. When the fracture number equals zero, the fracture-pore medium degenerates to a pore medium, and both percolation thresholds are the same.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jingli; Chen, Cun; Wang, Gang
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Structure and Dynamics Ionic Block co-Polymer Melts: Computational Study
NASA Astrophysics Data System (ADS)
Aryal, Dipak; Perahia, Dvora; Grest, Gary S.
Tethering ionomer blocks into co-polymers enables engineering of polymeric systems designed to encompass transport while controlling structure. Here the structure and dynamics of symmetric pentablock copolymers melts are probed by fully atomistic molecular dynamics simulations. The center block consists of randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55 tethered to a hydrogenated polyisoprene (PI), end caped with poly(t-butyl styrene). We find that melts with f = 0.15 and 0.30 consist of isolated ionic clusters whereas melts with f = 0.55 exhibit a long-range percolating ionic network. Similar to polystyrene sulfonate, a small number of ionic clusters slow the mobility of the center of mass of the co-polymer, however, formation of the ionic clusters is slower and they are often intertwined with PI segments. Surprisingly, the segmental dynamics of the other blocks are also affected. NSF DMR-1611136; NERSC; Palmetto Cluster Clemson University; Kraton Polymers US, LLC.
Spin incommensurability and two phase competition in cobaltites.
Phelan, D; Louca, Despina; Kamazawa, K; Lee, S-H; Ancona, S N; Rosenkranz, S; Motome, Y; Hundley, M F; Mitchell, J F; Moritomo, Y
2006-12-08
The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
NASA Astrophysics Data System (ADS)
Barbero, Ever J.; Bedard, Antoine Joseph
2018-04-01
Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.
Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure
NASA Astrophysics Data System (ADS)
Grunlan, Jaime; Gerberich, William; Francis, Lorraine
2000-03-01
In an effort to lower the percolation threshold of carbon black-filled polymer composites, various polymer microstructures were examined. Composites were prepared using polyvinyl acetate (PVAc) latex, PVAc water-dispersible powder and polyvinylpyrrolidone (PVP) solution as the matrix starting material. Composites prepared using the particulate microstructures showed a significantly lowered percolation threshold relative to an equivalently prepared composite using the PVP solution. The PVAc latex-based composites has a percolation threshold of 3 volthe PVP solution-based composite yielded a percolation threshold near 15 voloccupied by polymer particles, the particulate matrix-based composites create a segregated CB network at low filler concentration.
Determination of Root Exudates in a Steril Continuous Flow Culture. I. The Culture Method
Richter, Martin; Wilms, Werner; Scheffer, Fritz
1968-01-01
A sterile plant culture consisting of culture vessels, culture solution container, collecting flasks for percolating nutrient solution, illumination and aeration systems and a suitable pump is described. Its difference with other culture methods is a very slow, continuous percolation of the nutrient solution through the rooting medium. Well defined and controllable conditions can thus be established in the rhizosphere over long culture periods. Samples can be collected at short intervals without disturbing the rhizosphere in any way nor endangering the sterility of the culture. One of the fundamental factors determining the special ecological characteristics of the plant rhizosphere is the liberation of organic and inorganic substances by the plant root. During the study of this phenomenon it became evident that the amount of substances liberated varies within wide limits (factors 100 to 1000) according to the conditions in which the root is developing. PMID:16656966
Template-assisted growth of transparent plasmonic nanowire electrodes
NASA Astrophysics Data System (ADS)
Caterina Giordano, Maria; Repetto, Diego; Mennucci, Carlo; Carrara, Angelica; Buatier de Mongeot, Francesco
2016-12-01
Self-organized nanowire arrays are confined by glancing-angle Au deposition on nanopatterned glass templates prepared by ion beam sputtering. The semi-transparent 1D nanowire arrays are extended over large cm2 areas and are endowed with excellent electrical conductivity competitive with the best transparent conductive oxides (sheet resistance in the range of 5-20 Ohm sq-1). In addition, the nanowires support localized surface plasmon (LSP) resonances, which are easily tunable into the visible and near infrared spectrum and are selectively excited with incident light polarized perpendicularly to the wires. Such substrates, thus, behave as multifunctional nanoelectrodes, which combine good optoelectronic performance with dichroic plasmonic excitation. The electrical percolation process of the Au nanoelectrodes was monitored in situ during growth at glancing angle, both on flat and nanopatterned glass templates. In the first case, we observed a universal scaling of the differential percolation rate, independently of the glancing deposition angle, while deviations from the universal scaling were observed when Au was confined on nanopatterned templates. In the latter case, the pronounced shadowing effect promotes the growth of locally connected 1D Au nanosticks on the ‘illuminated’ ripple ridges, thus, introducing strong anisotropies with respect to the case of a 2D percolating network.
NASA Astrophysics Data System (ADS)
Bell, Caroline; Nammari, Abdullah; Uttamchandani, Pranay; Rai, Amit; Shah, Pujan; Moore, Arden L.
2017-06-01
Diabetic individuals need simple, accurate, and cost effective means by which to independently assess their glucose levels in a non-invasive way. In this work, a sensor based on randomly oriented CuO nanowire networks supported by a polyethylene terephthalate thin film is evaluated as a flexible, transparent, non-enzymatic glucose sensing system analogous to those envisioned for future wearable diagnostic devices. The amperometric sensing characteristics of this type of device architecture are evaluated both before and after bending, with the system’s glucose response, sensitivity, lower limit of detection, and effect of applied bias being experimentally determined. The obtained data shows that the sensor is capable of measuring changes in glucose levels within a physiologically relevant range (0-12 mM glucose) and at lower limits of detection (0.05 mM glucose at +0.6 V bias) consistent with patient tears and saliva. Unlike existing studies utilizing a conductive backing layer or macroscopic electrode setup, this sensor demonstrates a percolation network-like trend of current versus glucose concentration. In this implementation, controlling the architectural details of the CuO nanowire network could conceivably allow the sensor’s sensitivity and optimal sensing range to be tuned. Overall, this work shows that integrating CuO nanowires into a sensor architecture compatible with transparent, flexible electronics is a promising avenue to realizing next generation wearable non-enzymatic glucose diagnostic devices.
Boson mode, Medium Range Structure and Intermediate Phase (IP) in (Na2O)x(B2O3)1-x glasses
NASA Astrophysics Data System (ADS)
Vignarooban, K.; Boolchand, P.; Micoulaut, M.; Malki, M.
2012-02-01
Raman scattering of titled glasses are examined using a T64000 Dispersive system. Scattering strengths of the Boson mode (40 cm-1, 70 cm-1) and the Boroxyl ring (BR) mode (808 cm-1) are found to decrease with increasing x at the same rate in the 0 < x < 20% soda range. Apparently, the 2D character of BRs embedded in a 3D network gives rise to the Boson mode.ootnotetextM. Flores-Ruiz and G. Naumis, PRB, 2011. 83: p. 184204 The triad of modes (705, 740, 770 cm-1) near the 808 cm-1 mode are found to display a maximum in scattering strength near x = 37% (705 cm-1), 33% (740 cm-1) and 25% (770 cm-1), suggesting that these are also ring modes of Na-tripentaborate (STPB), Na-diborate (SDB) and Na-triborate (STB) super-structures. Variations in Raman scattering strengths also suggest that STB percolate near x = 20%, the stress transition, while the STPB and SDTB percolate near x = 40%, the rigidity transition. These transitions were inferred from m-DSC experiments that show an intermediate phase in the 20% < x < 40% range in dry and homogeneous glasses.
Percolation technique for galaxy clustering
NASA Technical Reports Server (NTRS)
Klypin, Anatoly; Shandarin, Sergei F.
1993-01-01
We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.
Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica
NASA Technical Reports Server (NTRS)
Friedmann, E. I.; Kappen, L.; Meyer, M. A.; Nienow, J. A.
1993-01-01
Annual gross productivity of the lichen-dominated cryptoendolithic community was calculated from a computer analysis of photosynthetic response based on laboratory measurements of CO2 exchange and three years (1985-1988) of field nanoclimate data. Photosynthetic optimum increased from -3 to 2 degrees C between irradiance levels of 100 and 1500 micromoles photons m-2 s-1, while the upper compensation point rose from 1 to 17 degrees C. The mean yearly total time available for metabolic activity (temperature above -10 degrees C and moisture present) was 771.3 h for horizontal rock, 421.5 h for northeast-oriented sloped rock, and 1042.2 h for a small depression in horizontal rock (the characteristic site of occasional lichen apothecia). The calculated mean gross productivity value for a horizontal rock was 1215 mg C m-2 y-1, and net photosynthetic gain was 606 mg C m-2 y-1. Net ecosystem productivity (annual accretion of cellular biomass) estimated from long-term events amounted to only about 3 mg C m-2 y-1. The difference between these two values may represent the long-term metabolic costs of the frequent dehydration-rehydration and freezing-thawing cycles or of overwintering, and may account for the leaching of organic substances to the rock. The yearly gross productivity of the cryptoendolithic microbial community of the entire Ross Desert area was estimated at approximately 120,000-180,000 kg C. Of this, 600-900 kg C is in microbial biomass, and much of the rest is soluble compounds that leach into the rocks and possibly percolate to the valleys, providing a source of organic matter for lakes, rivers, and soils.
Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback
NASA Astrophysics Data System (ADS)
Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni
2018-04-01
Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.
Diffusion amid random overlapping obstacles: Similarities, invariants, approximations
Novak, Igor L.; Gao, Fei; Kraikivski, Pavel; Slepchenko, Boris M.
2011-01-01
Efficient and accurate numerical techniques are used to examine similarities of effective diffusion in a void between random overlapping obstacles: essential invariance of effective diffusion coefficients (Deff) with respect to obstacle shapes and applicability of a two-parameter power law over nearly entire range of excluded volume fractions (ϕ), except for a small vicinity of a percolation threshold. It is shown that while neither of the properties is exact, deviations from them are remarkably small. This allows for quick estimation of void percolation thresholds and approximate reconstruction of Deff (ϕ) for obstacles of any given shape. In 3D, the similarities of effective diffusion yield a simple multiplication “rule” that provides a fast means of estimating Deff for a mixture of overlapping obstacles of different shapes with comparable sizes. PMID:21513372
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
2016-03-04
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Purcell effect at the percolation transition
Szilard, Daniela; Kort-Kamp, Wilton Junior de Melo; Rosa, Felipe S. S.; ...
2016-10-01
Here, we investigate the spontaneous emission rate of a two-level quantum emitter next to a composite medium made of randomly distributed metallic inclusions embedded in a dielectric host matrix. In the near field, the Purcell factor can be enhanced by two orders of magnitude relative to the case of a homogeneous metallic medium and reaches its maximum precisely at the insulator-metal transition. By unveiling the role of the decay pathways in the emitter's lifetime, we demonstrate that, close to the percolation threshold, the radiation emission process is dictated by electromagnetic absorption in the heterogeneous medium. We show that our findingsmore » are robust against change in material properties and shape of inclusions and apply for different effective-medium theories as well as for a wide range of transition frequencies.« less
Ferromagnetism and spin glass ordering in transition metal alloys (invited)
NASA Astrophysics Data System (ADS)
Crane, S.; Carnegie, D. W., Jr.; Claus, H.
1982-03-01
Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.
Buzás, P; Eysel, U T; Kisvárday, Z F
1998-11-01
Pyramidal cells mediating long-range corticocortical connections have been assumed to play an important role in visual perceptual mechanisms [C.D. Gilbert, Horizontal integration and cortical dynamics, Neuron 9 (1992) 1-13]. However, no information is available as yet on the specificity of individual pyramidal cells with respect to functional maps, e.g., orientation map. Here, we show a combination of techniques with which the functional topography of single pyramidal neurons can be explored in utmost detail. To this end, we used optical imaging of intrinsic signals followed by intracellular recording and staining with biocytin in vivo. The axonal and dendritic trees of the labelled neurons were reconstructed in three dimensions and aligned with corresponding functional orientation maps. The results indicate that, contrary to the sharp orientation tuning of neurons shown by the recorded spike activity, the efferent connections (axon terminal distribution) of the same pyramidal cells were found to terminate at a much broader range of orientations. Copyright 1998 Elsevier Science B.V.
Aerodynamics and Percolation: Unfolding Laminar Separation Bubble on Airfoils
NASA Astrophysics Data System (ADS)
Traphan, Dominik; Wester, Tom T. B.; Gülker, Gerd; Peinke, Joachim; Lind, Pedro G.
2018-04-01
As a fundamental phenomenon of fluid mechanics, recent studies suggested laminar-turbulent transition belonging to the universality class of directed percolation. Here, the onset of a laminar separation bubble on an airfoil is analyzed in terms of the directed percolation model using particle image velocimetry data. Our findings indicate a clear significance of percolation models in a general flow situation beyond fundamental ones. We show that our results are robust against fluctuations of the parameter, namely, the threshold of turbulence intensity, that maps velocimetry data into binary cells (turbulent or laminar). In particular, this percolation approach enables the precise determination of the transition point of the laminar separation bubble, an important problem in aerodynamics.
Statistical analysis of oil percolation through pressboard measured by optical recording
NASA Astrophysics Data System (ADS)
Rogalski, Przemysław; Kozak, Czesław
2017-08-01
The paper presents a measuring station used to measure the percolation of transformer oil by electrotechnical pressboard. Nytro Taurus insulating oil manufactured by Nynas company percolation rate by the Pucaro company pressboard investigation was made. Approximately 60 samples of Pucaro made pressboard, widely used for insulation of power transformers, was measured. Statistical analysis of oil percolation times were performed. The measurements made it possible to determine the distribution of capillary diameters occurring in the pressboard.
Karamon, Jacek; Ziomko, Irena; Cencek, Tomasz; Sroka, Jacek
2008-10-01
The modification of flotation method for the examination of diarrhoeic piglet faeces for the detection of Isospora suis oocysts was elaborated. The method was based on removing fractions of fat from the sample of faeces by centrifugation with a 25% Percoll solution. The investigations were carried out in comparison to the McMaster method. From five variants of the Percoll flotation method, the best results were obtained when 2ml of flotation liquid per 1g of faeces were used. The limit of detection in the Percoll flotation method was 160 oocysts per 1g, and was better than with the McMaster method. The efficacy of the modified method was confirmed by results obtained in the examination of the I. suis infected piglets. From all faecal samples, positive samples in the Percoll flotation method were double the results than that of the routine method. Oocysts were first detected by the Percoll flotation method on day 4 post-invasion, i.e. one-day earlier than with the McMaster method. During the experiment (except for 3 days), the extensity of I. suis invasion in the litter examined by the Percoll flotation method was higher than that with the McMaster method. The obtained results show that the modified flotation method with the use of Percoll could be applied in the diagnostics of suckling piglet isosporosis.
Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...
2016-04-25
Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less
Do diatoms percolate through soil and can they be used for tracing the origin of runoff?
NASA Astrophysics Data System (ADS)
De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe
2015-04-01
Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in the marl columns, indicating highest active macroporosity in these columns. Although the sample size of this study was small, it is suspected that the highest diatom percolation percentages of the marl columns is linked to its greater macroporosity and most importantly, diatoms can percolate through soil (macro-) pores.
Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves
2002-11-01
Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).
Permeability During Magma Expansion and Compaction
NASA Astrophysics Data System (ADS)
Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.
2017-12-01
Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.
NASA Astrophysics Data System (ADS)
Martinez-Garcia, Ricardo; Calabrese, Justin M.; Hernandez-Garcia, Emilio; Lopez, Cristobal
2014-05-01
Regular patterns and spatial organization of vegetation have been observed in many arid and semiarid ecosystems worldwide, covering a diverse range of plant taxa and soil types. A key common ingredient in these systems is that plant growth is severely limited by water availability, and thus plants likely compete strongly for water. The study of such patterns is especially interesting because their features may reveal much about the underlying physical and biological processes that generated them in addition to giving information on the characteristics of the ecosystem. It is possible, for instance, to infer their resilience against anthropogenic disturbances or climatic changes that could cause abrupt shifts in the system and lead it to a desert state. Therefore much research has focused on identifying the underlying mechanisms that can produce spatial patterning in water-limited systems (Klausmeier, 1999). They are believed to arise from the interplay between long-range competition and facilitation processes acting at smaller distances (Borgogno et al., 2009). This combination of mechanisms is justified by arguing that water percolates more readily through the soil in vegetated areas (short range), and that plants compete for water resources over greater distances via long lateral roots (long range). However, recent studies have shown that even in the limit of local facilitation patterns may still appear (Martinez-Garcia et al., 2013). In this work (Martinez-Garcia et al., 2013b), we show that, under rather general conditions, long-range competition alone is the minimal ingredient to shape gapped and stripped vegetation patterns typical of models that also account for facilitation in addition to competition. To this end we propose a simple, general model for the dynamics of vegetation, which includes only long-range competition between plants. Competition is introduced through a nonlocal term, where the kernel function quantifies the intensity of the interaction and its range. When the finite range of the competitive interaction is considered used kernel functions with a finite range, whose Fourier transform may have negative values, patterns emerge in the system. This is a rather general condition if we consider the finite length of the roots responsible of long-range competition for water in plant ecosystems.Therefore, our findings support the notion that, under fairly broad conditions, only competition is required for patterns to occur and suggest that the role of short-range facilitation mechanisms may not be as fundamental to pattern formation as has previously been thought. REFERENCES: C.A. Klausmeier, Science, 284, 1826-1828 (1999). F. Borgogno, P. D'Odorico, F. Laio and L. Ridolfi, Reviews of Geophysics, 4, RG1005 (2009). R. Martinez-Garcia, J.M. Calabrese, and C. Lopez, Journal of Theoretical Biology, 333, 156-165 (2013). R. Martinez-Garcia, J. M. Calabrese, E. Hernandez-Garcia, and C. Lopez, Geophysical Research Letters, 40, 6143-6147,(2013).
Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio
2017-03-01
Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We alsomore » study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.« less
Emergent scar lines in chaotic advection of passive directors
NASA Astrophysics Data System (ADS)
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg A.
2017-12-01
We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier work focused on topological singularities in the orientation field, which we find to play a negligible role at long times. We use the standard map as a simple time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows produces persistent patterns in passive scalar advection and we find that a different kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined as the time since their stretching reached a maximum.
NASA Astrophysics Data System (ADS)
Ponevchinsky, V. V.; Goncharuk, A. I.; Vasil'ev, V. I.; Lebovka, N. I.; Soskin, M. S.
2009-10-01
This work discusses optical singularities and electrical conductivity behavior in a thin electrooptical cell filled with composites including multi-walled carbon nanotubes (MWCNTs) and nematic liquid crystal (LC). The MWCNTs with high aspect ratio L/d~300 ÷ 1000 and nematic LC 5CB (4-pentyl-40-cyanobiphenyl) were used. The composites were prepared by introduction of MWCNTs (0.0001÷0.1% wt) into LC solvent with subsequent sonication. The increase of MWCNT concentration (between 0.005÷0.05 % wt) resulted in self-organization of MWCNTs and formation of micronsized aggregates with fractal boundaries. The visually observed formation of spanning MWCNT networks near the percolation threshold at ~0.025 % wt was accompanied with transition from non-conductive to conductive state and generation of optical singularities. The observed effects were explained by the strong interactions between MWCNTs and LC medium and planar orientation of 5CB molecules near the lateral surface of MWCNTs. It was speculated that optical singularities arose as a results of interaction of an incident laser beam with LC perturbed interfacial shells covering the MWCNT clusters. Behavior of the interfacial shell thickness in external electric field and in the vicinity of the nematic to isotropic transition was discussed.
Capillary controls on brine percolation in rock salt
NASA Astrophysics Data System (ADS)
Hesse, M. A.; Prodanovic, M.; Ghanbarzadeh, S.
2016-12-01
The ability the microstructure in rock salt to evolve to minimize the surface energy of the pore-space exerts an important control on brine percolation. The behavior is especially interesting under conditions when brine is wetting the grain boundaries and the pore network percolates at very low porosities, below the transport threshold in typical porous media. We present pore-scale simulations of texturally equilibrated pore spaces in real polycrystalline materials. This allows us to probe the basic physical properties of these materials, such as percolation and trapping thresholds as well as permeability-porosity relationships. Laboratory experiments in NaCl-H2O system are consistent with the computed percolation thresholds. Field data from hydrocarbon exploration wells in rock salt show that fluid commonly invades the lower section of the salt domes. This is consistent with laboratory measurements that show that brine begins to wet the salt grain boundaries with increasing pressure and temperature and theoretical arguments suggesting this would lead to fluid invasion. In several salt domes, however, fluid have percolated to shallower depths, apparently overcoming a substantial percolation threshold. This is likely due to the shear deformation in salt domes, which is not accounted for in theory and experiments.
Active hydrodynamics of synchronization and ordering in moving oscillators
NASA Astrophysics Data System (ADS)
Banerjee, Tirthankar; Basu, Abhik
2017-08-01
The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
Orientational ordering of lamellar structures on closed surfaces
NASA Astrophysics Data System (ADS)
Pȩkalski, J.; Ciach, A.
2018-05-01
Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.
NASA Astrophysics Data System (ADS)
Hattori, Y.; Ushiki, H.; Engl, W.; Courbin, L.; Panizza, P.
2005-08-01
Within the framework of an effective medium approach and a mean-field approximation, we present a simple lattice model to treat electrical percolation in the presence of attractive interactions. We show that the percolation line depends on the magnitude of interactions. In 2 dimensions, the percolation line meets the binodal line at the critical point. A good qualitative agreement is observed with experimental results on a ternary AOT-based water-in-oil microemulsion system.
Effect of link oriented self-healing on resilience of networks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2016-08-01
Many real, complex systems, such as the human brain and skin with their biological networks or intelligent material systems consisting of composite functional liquids, exhibit a noticeable capability of self-healing. Here, we study a network model with arbitrary degree distributions possessing natural link oriented recovery mechanisms, whereby a failed link can be recovered if its two end nodes maintain a sufficient proportion of functional links. These mechanisms are pertinent for many spontaneous healing and manual repair phenomena, interpolating smoothly between complete healing and no healing scenarios. We show that the self-healing strategies have profound impact on resilience of homogeneous and heterogeneous networks employing a percolation threshold, fraction of giant cluster, and link robustness index. The self-healing effect induces distinct resilience characteristics for scale-free networks under random failures and intentional attacks, and a resilience crossover has been observed at certain level of self-healing. Our work highlights the significance of understanding the competition between healing and collapsing in the resilience of complex networks.
Study of percolation behavior depending on molecular structure design
NASA Astrophysics Data System (ADS)
Yu, Ji Woong; Lee, Won Bo
Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.
Strategic Planning for Higher Education.
ERIC Educational Resources Information Center
Kotler, Philip; Murphy, Patrick E.
1981-01-01
The framework necessary for achieving a strategic planning posture in higher education is outlined. The most important benefit of strategic planning for higher education decision makers is that it forces them to undertake a more market-oriented and systematic approach to long- range planning. (Author/MLW)
Papadopoulos, A G; Charistos, N D; Muñoz-Castro, A
2017-06-20
The induced shielding cone is one of the most characteristic aspects of aromatic species. Herein, we explore its behavior under different orientations of the applied magnetic field by evaluating the overall and dissected π- and σ-electron contributions. Our results shed light onto the orientation dependence behavior of the shielding cone, unraveling a characteristic pattern upon rotation of the aromatic ring. This pattern decreases the long range of the magnetic response, such that it resembles the behavior under constant molecular tumbling in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
No-Enclave Percolation Corresponds to Holes in the Cluster Backbone.
Hu, Hao; Ziff, Robert M; Deng, Youjin
2016-10-28
The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ=1.82(1) as found for the NEP model. An argument is given that τ=1+d_{B}/2≈1.822 for backbone holes, where d_{B} is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ=1+d_{f}/2=187/96≈1.948, where d_{f} is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ=1.91(6). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at p_{c}, signifying explosive percolation behavior.
Memory decay and loss of criticality in quorum percolation
NASA Astrophysics Data System (ADS)
Renault, Renaud; Monceau, Pascal; Bottani, Samuel
2013-12-01
In this paper, we present the effects of memory decay on a bootstrap percolation model applied to random directed graphs (quorum percolation). The addition of decay was motivated by its natural occurrence in physical systems previously described by percolation theory, such as cultured neuronal networks, where decay originates from ionic leakage through the membrane of neurons and/or synaptic depression. Surprisingly, this feature alone appears to change the critical behavior of the percolation transition, where discontinuities are replaced by steep but finite slopes. Using different numerical approaches, we show evidence for this qualitative change even for very small decay values. In experiments where the steepest slopes can not be resolved and still appear as discontinuities, decay produces nonetheless a quantitative difference on the location of the apparent critical point. We discuss how this shift impacts network connectivity previously estimated without considering decay. In addition to this particular example, we believe that other percolation models are worth reinvestigating, taking into account similar sorts of memory decay.
Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites
NASA Astrophysics Data System (ADS)
Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi
2017-11-01
Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.
Applications of laser ranging and VLBI observations for selenodetic control
NASA Technical Reports Server (NTRS)
Fajemirokun, F. A.
1971-01-01
The observation equations necessary to utilize lunar laser ranging and very long baseline interferometry measurements were developed for the establishment of a primary control network on the moon. The network consists of coordinates of moon points in the selenodetic Cartesian coordinate system, which is fixed to the lunar body, oriented along the three principal axes of inertia of the moon, and centered at the lunar center of mass. The observation equations derived are based on a general model in which the unknown parameters included: the selenodetic Cartesian coordinates, the geocentric coordinates of earth stations, parameters of the orientation of the selenodetic coordinate system with respect to a fixed celestial system, the parameters of the orientation of the average terrestrial coordinate system with respect to a fixed celestial coordinate system, and the geocentric coordinates of the center of mass of the moon, given by a lunar ephemeris.
Sol-gel derived polymer composites for energy storage and conversion
NASA Astrophysics Data System (ADS)
Han, Kuo
Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical conduction are still open issues to be addressed before full potential can be realized. Herein we report the percolative composites based on ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) as the matrix and sol-gel derived SiO2 coated reduced graphene oxide nanosheets as the filler. By capitalizing on the SiO2 surface layers which have high electrical resistivity and breakdown strength, the composites exhibit superior dielectric performance as compared to the respective composites containing bare reduced graphene oxide nanosheet fillers. In addition to greatly reduced dielectric loss, little change in dielectric loss has been observed within medium frequency range (ie. 300 KHz-3 MHz) in the prepared composites even with a filler concentration beyond the percolation threshold, indicating significantly suppressed energy dissipation and the feasibility of using the conductor-insulator composites beyond the percolation threshold. Moreover, remarkable breakdown strength of 80 MV/m at the percolation threshold has been achieved in the composite, which far exceeds those of conventional percolative composites (lower than 0.1 MV/m in most cases) and thus enables the applications of the percolative composites at high electric fields. This work offers a new avenue to the percolative polymer composites exhibiting high permittivity, reduced loss and excellent breakdown strength for electrical energy storage applications. Flexible piezoelectric materials have attracted extensive attention because they can provide a practical way to scavenge energy from the environment and motions. It also provides the possibility to fabricate wearable and self-powered energy generator for powering small electronic devices. In the dissertation a new composite including BTO 3D structure and PDMS has been successfully fabricated using the sol-gel process. The structure, flexibility, dielectric and piezoelectric properties have been well studied. The new material shows a high g33 value of more than 400 mV m/N. Moreover, the durability of this composite has been confirmed by cycle tests even though the BTO structure falls apart into small pieces in the PDMS matrix. The unique morphology of the composite allows the broken piece to connect with each other to generate power under stress. This work also opens a new route toward flexible piezoelectric composites.
NASA Technical Reports Server (NTRS)
Dolan, R. (Principal Investigator); Hayden, B. P.; Heywood, J. E.
1975-01-01
The author has identified the following significant results. Atlantic coast barrier island shorelines are seldom straight, but rather sinuous. These shoreline curvatures range in size from cusps to capes. Significant relationships exist between the orientation of shoreline segments within the larger of these sinuous features and shoreline dynamics, with coefficients ranging up to .9. Orientation of the shoreline segments of Assateague Island (60 km) and the Outer Banks of North Carolina (130 km) was measured from LANDSAT 2 imagery (1:80,000) and high altitude aerial photography (1:120,000). Long term trends in shoreline dynamics were established by mapping shoreline and storm-surge penetration changes.
Loya, Fred; Novakovic-Agopian, Tatjana; Binder, Deborah; Rossi, Annemarie; Rome, Scott; Murphy, Michelle; Chen, Anthony J-W
2017-01-01
Primary Objective. To investigate the long-term use and perceived benefit(s) of strategies included in Goal-Oriented Attentional Self-Regulation (GOALS) training (Novakovic-Agopian et al., 2011) by individuals with acquired brain injury (ABI) and chronic executive dysfunction. Research Design. Longitudinal follow-up of training. Methods and Procedures. Sixteen participants with chronic ABI participated in structured telephone interviews 20 months (range 11 to 31 months) following completion of GOALS training. Participants responded to questions regarding the range of strategies they continued to utilize, perceived benefit(s) of strategy use, situations in which strategy use was found helpful, and functional changes attributed to training. Results. Nearly all participants (94%) reported continued use of at least one trained strategy in their daily lives, with 75% of participants also reporting improved functioning resulting from training. However, there was considerable variability with respect to the specific strategies individuals found helpful as well as the perceived impact of training on overall functioning. Conclusions. GOALS training shows promising long-term benefits for individuals in the chronic phase of brain injury. Identifying individual- and injury-level factors that account for variability in continued strategy use and the perceived long-term benefits of training will help with ongoing intervention development.
Novakovic-Agopian, Tatjana; Binder, Deborah; Rossi, Annemarie; Rome, Scott; Murphy, Michelle; Chen, Anthony J.-W.
2017-01-01
Primary Objective. To investigate the long-term use and perceived benefit(s) of strategies included in Goal-Oriented Attentional Self-Regulation (GOALS) training (Novakovic-Agopian et al., 2011) by individuals with acquired brain injury (ABI) and chronic executive dysfunction. Research Design. Longitudinal follow-up of training. Methods and Procedures. Sixteen participants with chronic ABI participated in structured telephone interviews 20 months (range 11 to 31 months) following completion of GOALS training. Participants responded to questions regarding the range of strategies they continued to utilize, perceived benefit(s) of strategy use, situations in which strategy use was found helpful, and functional changes attributed to training. Results. Nearly all participants (94%) reported continued use of at least one trained strategy in their daily lives, with 75% of participants also reporting improved functioning resulting from training. However, there was considerable variability with respect to the specific strategies individuals found helpful as well as the perceived impact of training on overall functioning. Conclusions. GOALS training shows promising long-term benefits for individuals in the chronic phase of brain injury. Identifying individual- and injury-level factors that account for variability in continued strategy use and the perceived long-term benefits of training will help with ongoing intervention development. PMID:28265472
Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents
NASA Astrophysics Data System (ADS)
Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.
2016-01-01
Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 <τ (g )≤2.5 . This pattern reveals a necessary condition for a hybrid transition in cluster aggregation processes, which is comparable to the power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.
Stability in the Social Percolation Models for Two to Four Dimensions
NASA Astrophysics Data System (ADS)
Huang, Zhi-Feng
The social percolation model proposed by Solomon et al. as well as its modification are studied in two to four dimensions for the phenomena of self-organized criticality. Stability in the models is obtained and the systems are shown to automatically drift towards the percolation threshold.
Quantum entanglement percolation
NASA Astrophysics Data System (ADS)
Siomau, Michael
2016-09-01
Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.
Percolation of the site random-cluster model by Monte Carlo method
NASA Astrophysics Data System (ADS)
Wang, Songsong; Zhang, Wanzhou; Ding, Chengxiang
2015-08-01
We propose a site random-cluster model by introducing an additional cluster weight in the partition function of the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility per site χp, as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the percolating cluster. We find that for different exponents of cluster weight q =1.5 , 2, 2.5 , 3, 3.5 , and 4, the numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of the site random-cluster model and the bond random-cluster model are completely identical. For larger values of q , we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the percolation of traditional statistical models.
Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields
NASA Astrophysics Data System (ADS)
Kimura, M.
2004-12-01
Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.
NASA Astrophysics Data System (ADS)
Ji, Bing; Tsai, Chin-Chun; Stwalley, William C.
1995-04-01
A modified internuclear distance criterion, RLR- m, as the lower bound for the region of validity of the inverse-power expansion of the diatomic long-range potential is proposed. This new criterion takes into account the spatial orientation of the atomic orbitals while retaining the simplicity of the traditional Le Roy radius, RLR for the interaction of S state atoms. Recent experimental and theoretical results for various excited states in Na 2 suggest that this proposed RLR- m is an appropriate generalization of RLR.
Trigo-Mouriño, Pablo; de la Fuente, M Carmen; Gil, Roberto R; Sánchez-Pedregal, Víctor M; Navarro-Vázquez, Armando
2013-10-25
The conformational state of 8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one-bond and long-range C-H residual dipolar coupling (RDC) data along with DFT computations and (3)J(HH) coupling-constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown-chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I
2014-05-01
We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh
2016-07-01
Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.
Modeling intragranular diffusion in low-connectivity granular media
NASA Astrophysics Data System (ADS)
Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong
2012-03-01
Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.
1998-07-01
facilities No existing infrastructure or utilities Yucatan Peninsula, Mexico Not on DOD property Expense due to logistics Matagorda Island... nutritive or harmful substances from the soil by percolation of a liquid Lead—a heavy metal which can accumulate in the body and cause a variety of negative...THE YUCATAN PENINSULA, MEXICO ............ 2-74 2.3.3 LAUNCH FROM MATAGORDA ISLAND, TEXAS ..................... 2-74 2.3.4 LAUNCH FROM BOCA CHICA KEY
NASA Astrophysics Data System (ADS)
Lu, Xuekun; Heenan, Thomas M. M.; Bailey, Josh J.; Li, Tao; Li, Kang; Brett, Daniel J. L.; Shearing, Paul R.
2017-10-01
This study aims to correlate the active triple phase boundaries (TPBs) to the variation of as-prepared anode microstructures and Ni densifications based on the reconstructed 3D volume of an SOFC anode, providing a point of comparison with theoretical studies that reveal the relationship of TPBs and the material microstructure using randomly packed spheres models. The TPB degradation mechanisms are explained using a particle network model. The results indicate that in low porosity regime, the TPBs sharply increase with the porosity until the percolation threshold (10%); at intermediate porosity (10%-25%), a balance of surface area between three phases is more critical than that of volume fraction to reach the optimal TPB density; in the high porosity regime (>25%), the TPBs start to drop due to the shrinkage and detachment of Ni/YSZ interfaces. The TPB density is inversely proportional to the degree of Ni densification as long as the Ni content is above the percolation threshold (35%) and can be improved by 70% within 7% change of porosity provided that the over-densification is mitigated. This has implications for the design of SOFC microstructures as well for electrode durability, where Ni agglomeration is known to deleteriously impact long-term operation.
Design of orienting and aiming instrument based on fiber optic gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Zhijun; Wang, Limin; Sun, Jiyu
2007-12-01
In order to improve the ground viability of missile weapon system, a quick orienting and aiming instrument is cried for the missile launching in modern war. The fiber optic gyroscope (FOG) based on Sagnac effect is a new type of all solid state rotation rate sensor that detects angular changes or angular rates relative to inertial space, which has many fine characteristics compared with traditional mechanical electronic gyro, such as low cost, light weight, long life, high reliability, wide dynamic range, etc. For the need of missile photoelectric aiming facility, It is necessary to design and manufacture a set of orienting and aiming instrument based on single axis FOG, to solve the close quarters aiming of missile launching, to measure the azimuth reference. Based on practical project, the principle of FOG orienting system and laser collimation theodolite aiming system is discussed and studied in this paper. Orienting and aiming system are constructed in the same basement. The influence of platform tilt on the precision of orientation is analyzed. An accelerator is used to compensate deviation caused by base tilt. The aiming precision affected by eccentricity of the encoders for laser collimation theodolite and the FOG orientation system are analyzed. The test results show that the aiming accuracy is 6' in three minutes. It is suitable for missile aiming in short range.
Entanglement Theories: Packing vs. Percolation
NASA Astrophysics Data System (ADS)
Wool, Richard
2007-03-01
There are two emergent theories of polymer entanglements, the Packing Model (Fetters, Lohse, Graessley, Milner, Whitten, ˜'98) and the Percolation Model (Wool ˜'93). The Packing model suggests that the entanglement molecular weight Me is determined by Me = K p^3, where the packing length parameter p = V/R^2 in which V is the volume of the chain (V=M/ρNa), R is the end-to end vector of the chain, and K 357 ρNa, is an empirical constant. The Percolation model states that an entanglement network develops when the number of chains per unit area σ, intersecting any load bearing plane, is equal to 3 times the number of chain segments (1/a cross-section), such that when 3aσ =1 at the percolation threshold, Me 31 MjC∞, in which Mj is the step molecular weight and C∞ is the characteristic ratio. There are no fitting parameters in the Percolation model. The Packing model predicts that Me decreases rapidly with chain stiffness, as Me˜1/C∞^3, while the Percolation model predicts that Me increases with C∞, as Me˜C∞. The Percolation model was found to be the correct model based on computer simulations (M. Bulacu et al) and a re-analysis of the Packing model experimental data. The Packing model can be derived from the Percolation model, but not visa versa, and reveals a surprising accidental relation between C∞ and Mj in the front factor K. This result significantly impacts the interpretation of the dynamics of rheology and fracture of entangled polymers.
Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard
NASA Astrophysics Data System (ADS)
Dahan, Ofer
2016-04-01
Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models where then used to assess the long term impact of various agricultural setups on the quantity and quality of groundwater recharge. Relevant publications: Turkeltaub et al., WRR. 2016; Turkeltaub et al., J. Hydrol. 2015: Dahan et al., HESS 2014. Baram et al., J. Hydrol. 2012.
Potts and percolation models on bowtie lattices
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Wang, Yancheng; Li, Yang
2012-08-01
We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q=1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff [J. Phys. A0305-447010.1088/0305-4470/39/49/003 39, 15083 (2006)]. For the q=2 Potts model on a bowtie A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of the Potts model on a bowtie A lattice with noninteger q. Our numerical results, which are accurate up to seven significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on a bowtie A lattice, and the threshold is sc=0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on a bowtie A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.
Percolation study for the capillary ascent of a liquid through a granular soil
NASA Astrophysics Data System (ADS)
Cárdenas-Barrantes, Manuel Antonio; Muñoz, José Daniel; Araujo, Nuno Machado
2017-06-01
Capillary rise plays a crucial role in the construction of road embankments in flood zones, where hydrophobic compounds are added to the soil to suppress the rising of water and avoid possible damage of the pavement. Water rises through liquid bridges, menisci and trimers, whose width and connectivity depends on the maximal half-length λ of the capillary bridges among grains. Low λs generate a disconnect structure, with small clusters everywhere. On the contrary, for high λ, create a percolating cluster of trimers and enclosed volumes that form a natural path for capillary rise. Hereby, we study the percolation transition of this geometric structure as a function of λ on a granular media of monodisperse spheres in a random close packing. We determine both the percolating threshold λc = (0.049 ± 0.004)R (with R the radius of the granular spheres), and the critical exponent of the correlation length v = 0.830 ± 0.051, suggesting that the percolation transition falls into the universality class of ordinary percolation.
NASA Astrophysics Data System (ADS)
The, Matthew; MacCoss, Michael J.; Noble, William S.; Käll, Lukas
2016-11-01
Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as q values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator's processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method—grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from http://percolator.ms/ under an Apache 2.0 license.
The, Matthew; MacCoss, Michael J; Noble, William S; Käll, Lukas
2016-11-01
Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as q values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator's processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method-grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein-in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from http://percolator.ms/ under an Apache 2.0 license. Graphical Abstract ᅟ.
Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.
Loh, Yen Lee; Karki, Pragalv
2017-10-25
Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].
Percolation in real multiplex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Radicchi, Filippo
2016-12-01
We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.
Optimal percolation on multiplex networks.
Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo
2017-11-16
Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.
Long Wavelength Ripples in the Nearshore
NASA Astrophysics Data System (ADS)
Alcinov, T.; Hay, A. E.
2008-12-01
Sediment bedforms are ubiquitous in the nearshore environment, and their characteristics and evolution have a direct effect on the hydrodynamics and the rate of sediment transport. The focus of this study is long wavelength ripples (LWR) observed at two locations in the nearshore at roughly 3m water depth under combined current and wave conditions in Duck, North Carolina. LWR are straight-crested bedforms with wavelengths in the range of 20-200cm, and steepness of about 0.1. They occur in the build up and decay of storms, in a broader range of values of the flow parameters compared to other ripple types. The main goal of the study is to test the maximum gross bedform-normal transport (mGBNT) hypothesis, which states that the orientation of ripples in directionally varying flows is such that the gross sediment transport normal to the ripple crest is maximized. Ripple wavelengths and orientation are measured from rotary fanbeam images and current and wave conditions are obtained from electromagnetic (EM) flowmeters and an offshore pressure gauge array. Preliminary tests in which transport direction is estimated from the combined flow velocity vectors indicate that the mGBNT is not a good predictor of LWR orientation. Results from tests of the mGBNT hypothesis using a sediment transport model will be presented.
NASA Astrophysics Data System (ADS)
Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.
2010-04-01
Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.
NASA Astrophysics Data System (ADS)
Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.
2010-10-01
Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.
Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics
NASA Astrophysics Data System (ADS)
Becker, M.; Allen, E. M.; Hutchinson, A.
2014-12-01
Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls into question the relevance of simple wetting models for predicting percolation behavior in infiltration basins.
High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x
NASA Astrophysics Data System (ADS)
Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.
2017-02-01
The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x = 0.5 +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx ≈ 0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.
NASA Astrophysics Data System (ADS)
Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.
2017-12-01
The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.
Statistics of rocky coast erosion and percolation theory
NASA Astrophysics Data System (ADS)
Baldassarri, A.; Sapoval, B.
2012-04-01
The dynamics of rocky coasts is an erratic phenomenon featuring numerous small erosion events, but sometimes large dramatic collapses. In this sense, its study should not limit or rely on average erosion rates. Recent studies, based on historical as well as recent data, have indicated that the frequency of magnitude of erosion events display long tail distribution, similar to what observed in landslide. In other words the time evolution of a coast morphology does not enter the classical category of Gaussian process, but rather that of critical systems in physics. We recently proposed a minimal dynamical model of rocky coast erosion which is able to reproduce the diversity of rocky coast morphologies and their dynamics. This model is based on a single, simple ingredient, the retroaction of the coast morphology on the erosive power of the sea. It follows from the idea that erosion can spontaneously create irregular seashores, but, in turn, the geometrical irregularity of the coast participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. The resulting mutual self-stabilization dynamics of the sea erosion power and coastal irregular morphology leads spontaneously the system to a critical dynamics. Our results indicate then that rocky coast erosion and the statistical theory of percolation are closely related. In this framework, the sometimes fractal geometry of coastlines can be recovered and understood in terms of fractal dimension of the external perimeter of a percolation cluster. From a more practical point of view, the analogy with percolation interfaces means that the coast constitutes a strong, but possibly fragile, barrier to sea erosion, emerging from a self-organised selection process. Accordingly, the effect of a slow weathering degradation of the rocks mechanical properties, as well as other perturbations from natural or human cause, can trigger random and large erosion events difficult to predict and control. To the extent that these ideas apply, natural coasts should be "preserved" and managed with care.
Vegetative soil covers for hazardous waste landfills
NASA Astrophysics Data System (ADS)
Peace, Jerry L.
Shallow land burial has been the preferred method for disposing of municipal and hazardous wastes in the United States because it is the simplest, cheapest, and most cost-effective method of disposal. Arid and semiarid regions of the western United States have received considerable attention over the past two decades in reference to hazardous, radioactive, and mixed waste disposal. Disposal is based upon the premise that low mean annual precipitation, high evapotranspiration, and low or negligible recharge, favor waste isolation from the environment for long periods of time. The objective of this study is to demonstrate that containment of municipal and hazardous wastes in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers utilizing natural soils and native vegetation i.e., vegetative soil covers, will meet the technical equivalency criteria prescribed by the U.S. Environmental Protection Agency for hazardous waste landfills. Vegetative soil cover design combines layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem that maintains the natural water balance. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards' equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data from 1919 to 1996 are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 1 m (3 ft) cover is the minimum design thickness necessary to meet the U.S. Environmental Protection Agency-prescribed technical equivalency criteria of 31.5 mm/year and 1 x 10-7 cm/second for net annual percolation and average flux, respectively. Increasing cover thickness to 1.2 m (4 ft) or 1.5 m (5 ft) results in limited additional improvement in cover performance. Under historical climatic conditions, net annual percolation and average flux through a 1 m (3 ft) cover is directed upward at 0.28 mm/year and 9.03 x 10-10 cm/second, respectively, for a soil cover with vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanhong; Gao, Ping; Bi, Kaifeng
Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.
Robin A. J. Taylor; Daniel A. Herms; Louis R. Iverson
2008-01-01
The dispersal of organisms is rarely random, although diffusion processes can be useful models for movement in approximately homogeneous environments. However, the environments through which all organisms disperse are far from uniform at all scales. The emerald ash borer (EAB), Agrilus planipennis, is obligate on ash (Fraxinus spp...
'Metal'-like transport in high-resistance, high aspect ratio two-dimensional electron gases.
Backes, Dirk; Hall, Richard; Pepper, Michael; Beere, Harvey; Ritchie, David; Narayan, Vijay
2016-01-13
We investigate the striking absence of strong localisation observed in mesoscopic two-dimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity [Formula: see text]. In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a 'metal'-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into the more conventional framework of the 2D MIT.
NASA Astrophysics Data System (ADS)
Najeh, I.; Ben Mansour, N.; Mbarki, M.; Houas, A.; Nogier, J. Ph.; El Mir, L.
2009-10-01
Electrical conducting carbon (ECC) porous structures were explored by changing the pyrolysis temperature of organic xerogel compounds prepared by sol-gel method from resorcinol-formaldehyde (RF) mixtures in acetone using picric acid as catalyst. The effect of this preparation parameter on the structural and electrical properties of the obtained ECCs was studied. The analysis of the obtained results revealed that the polymeric insulating xerogel phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers to move inside the structure with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity of the obtained ECC structures shows a semi-conducting behaviour and the I( V) characteristics present a negative differential resistance. The results obtained from STM micrographs revealed that the obtained ECC structures consist of porous electrical conducting carbon materials.
Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?
Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081
Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?
Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Jiang, Wei; Liu, Feng
2018-02-01
We developed a 2D disk-stick percolation model to investigate the electrical percolation behavior of an insulating thin film reinforced with 1D and 2D conductive nanofillers via Monte Carlo simulation. Numerical predictions of the percolation threshold in single component thin films showed good agreement with the previous published work, validating our model for investigating the characteristics of the percolation phenomena. Parametric studies of size effect, i.e., length of 1D nanofiller and diameter of 2D nanofiller, were carried out to predict the electrical percolation threshold for hybrid systems. The relationships between the nanofillers in two hybrid systems was established, which showed differences from previous linear assumption. The effective electrical conductance was evaluated through Kirchhoff’s current law by transforming it into a resistor network. The equivalent resistance was obtained from the distribution of nodal voltages by solving a system of linear equations with a Gaussian elimination method. We examined the effects of stick length, relative concentration, and contact patterns of 1D/2D inclusions on electrical performance. One novel aspect of our study is its ability to investigate the effective conductance of nanocomposites as a function of relative concentrations, which shows there is a synergistic effect when nanofillers with different dimensionalities combine properly. Our work provides an important theoretical basis for designing the conductive networks and predicting the percolation properties of multicomponent nanocomposites.
The shape and size distribution of H II regions near the percolation transition
NASA Astrophysics Data System (ADS)
Bag, Satadru; Mondal, Rajesh; Sarkar, Prakash; Bharadwaj, Somnath; Sahni, Varun
2018-06-01
Using Shapefinders, which are ratios of Minkowski functionals, we study the morphology of neutral hydrogen (H I) density fields, simulated using seminumerical technique (inside-out), at various stages of reionization. Accompanying the Shapefinders, we also employ the `largest cluster statistic' (LCS), originally proposed in Klypin & Shandarin, to study the percolation in both neutral and ionized hydrogen. We find that the largest ionized region is percolating below the neutral fraction x_{H I}≲ 0.728 (or equivalently z ≲ 9). The study of Shapefinders reveals that the largest ionized region starts to become highly filamentary with non-trivial topology near the percolation transition. During the percolation transition, the first two Shapefinders - `thickness' (T) and `breadth' (B) - of the largest ionized region do not vary much, while the third Shapefinder - `length' (L) - abruptly increases. Consequently, the largest ionized region tends to be highly filamentary and topologically quite complex. The product of the first two Shapefinders, T × B, provides a measure of the `cross-section' of a filament-like ionized region. We find that, near percolation, the value of T × B for the largest ionized region remains stable at ˜7 Mpc2 (in comoving scale) while its length increases with time. Interestingly, all large ionized regions have similar cross-sections. However, their length shows a power-law dependence on their volume, L ∝ V0.72, at the onset of percolation.
Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi
2017-01-01
The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757
Application of the coherent anomaly method to percolation
NASA Astrophysics Data System (ADS)
Takayasu, Misako; Takayasu, Hideki
1988-03-01
Applying the coherent anomaly method (CAM) to site percolation problems, we estimate the percolation threshold pc and critical exponents. We obtain pc=0.589, β=0.140, γ=2.426 on the two-dimensional square lattice. These values are in good agreement with the values already known. We also investigate higher-dimensional cases by this method.
Application of the Coherent Anomaly Method to Percolation
NASA Astrophysics Data System (ADS)
Takayasu, Misako; Takayasu, Hideki
Applying the coherent anomaly method (CAM) to site percolation problems, we estimate the percolation threshold ϱc and critical exponents. We obtain pc = 0.589, Β=0.140, Γ = 2.426 on the two-dimensional square lattice. These values are in good agreement with the values already known. We also investigate higher-dimensional cases by this method.
Second look at the spread of epidemics on networks
NASA Astrophysics Data System (ADS)
Kenah, Eben; Robins, James M.
2007-09-01
In an important paper, Newman [Phys. Rev. E66, 016128 (2002)] claimed that a general network-based stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to a bond percolation model, where the bonds are the edges of the contact network and the bond occupation probability is equal to the marginal probability of transmission from an infected node to a susceptible neighbor. In this paper, we show that this isomorphism is incorrect and define a semidirected random network we call the epidemic percolation network that is exactly isomorphic to the SIR epidemic model in any finite population. In the limit of a large population, (i) the distribution of (self-limited) outbreak sizes is identical to the size distribution of (small) out-components, (ii) the epidemic threshold corresponds to the phase transition where a giant strongly connected component appears, (iii) the probability of a large epidemic is equal to the probability that an initial infection occurs in the giant in-component, and (iv) the relative final size of an epidemic is equal to the proportion of the network contained in the giant out-component. For the SIR model considered by Newman, we show that the epidemic percolation network predicts the same mean outbreak size below the epidemic threshold, the same epidemic threshold, and the same final size of an epidemic as the bond percolation model. However, the bond percolation model fails to predict the correct outbreak size distribution and probability of an epidemic when there is a nondegenerate infectious period distribution. We confirm our findings by comparing predictions from percolation networks and bond percolation models to the results of simulations. In the Appendix, we show that an isomorphism to an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model.
NASA Astrophysics Data System (ADS)
Graeter, K.; Osterberg, E. C.; Hawley, R. L.; Thundercloud, Z. R.; Marshall, H. P.; Ferris, D. G.; Lewis, G.
2016-12-01
Predictions of the Greenland Ice Sheet's (GIS) contribution to sea-level rise in a warming climate depend on our ability to model the surface mass balance (SMB) processes occurring across the ice sheet. These processes are poorly constrained in the percolation zone, the region of the ice sheet where surface melt refreezes in the firn, thus preventing that melt from directly contributing to GIS mass loss. In this way, the percolation zone serves as a buffer to higher temperatures increasing mass loss. However, it is unknown how the percolation zone is evolving in a changing climate and to what extent the region will continue to serve as a buffer to future runoff. We collected seven shallow ( 22-30 m) firn cores from the Western Greenland percolation zone in May-June 2016 as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Here we present data on melt layer stratigraphy, density, and annual accumulation for each core to determine: (1) the temporal and spatial accumulation and melt refreeze patterns in the percolation zone of W. Greenland over the past 40 - 55 years, and (2) the impacts of changing melt and refreeze patterns on the near-surface density profile of the percolation zone. Three of the GreenTrACS firn cores re-occupy firn core sites collected in the 1970's-1990's, allowing us to more accurately quantify the evolution of the percolation zone surface melt and firn density during the most recent decades of summertime warming. This work is the basis for broader investigations into how changes in W. Greenland summertime climate are impacting the SMB of the Greenland Ice Sheet.
Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.
Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng
2018-04-20
In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.
Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng
2018-04-01
In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.
Sexual orientation data collection and progress toward Healthy People 2010.
Sell, R L; Becker, J B
2001-06-01
Without scientifically obtained data and published reports, it is difficult to raise awareness and acquire adequate resources to address the health concerns of lesbian, gay, and bisexual Americans. The Department of Health and Human Services must recognize gaps in its information systems regarding sexual orientation data and take immediate steps to monitor and eliminate health disparities as delineated in Healthy People 2010. A paper supported by funding from the Office of the Assistant Secretary for Planning and Evaluation explores these concerns and suggests that the department (1) create work groups to examine the collection of sexual orientation data; (2) create a set of guiding principles to govern the process of selecting standard definitions and measures; (3) recognize that racial/ethnic, immigrant-status, age, socioeconomic, and geographic differences must be taken into account when standard measures of sexual orientation are selected; (4) select a minimum set of standard sexual orientation measures; and (5) develop a long-range strategic plan for the collection of sexual orientation data.
Orientation Tuning in the Visual Cortex of 3-Month-old Human Infants
Baker, Thomas J.; Norcia, Anthony M.; Candy, T. Rowan
2016-01-01
Sensitivity to orientation is critical for making a whole and complete picture of the world. We measured the orientation tuning of mechanisms inthe visual cortex of typically developing 3-month-olds and adults using a nonlinear analysis of the two-input steady-state visually evoked potential (VEP). Two gratings, one a fixed test and the other a variable orientation masker were tagged with distinct temporal frequencies and the corresponding evoked responses were measured at the harmonics of the test and masker frequencies and at a frequency equal to the sum of the two stimulus frequencies. The magnitude of the sum frequency component depended strongly on the relative orientation of the test and masker in both infants and adults. The VEP tuning bandwidths of the 3-month-olds measured at the sum frequency were similar to those of adults, suggesting that behavioral immaturities in functions such as orientation discrimination and contour integration may result from other immaturities in long-range lateral projections or feedback mechanisms. PMID:21236289
Sexual orientation data collection and progress toward Healthy People 2010.
Sell, R L; Becker, J B
2001-01-01
Without scientifically obtained data and published reports, it is difficult to raise awareness and acquire adequate resources to address the health concerns of lesbian, gay, and bisexual Americans. The Department of Health and Human Services must recognize gaps in its information systems regarding sexual orientation data and take immediate steps to monitor and eliminate health disparities as delineated in Healthy People 2010. A paper supported by funding from the Office of the Assistant Secretary for Planning and Evaluation explores these concerns and suggests that the department (1) create work groups to examine the collection of sexual orientation data; (2) create a set of guiding principles to govern the process of selecting standard definitions and measures; (3) recognize that racial/ethnic, immigrant-status, age, socioeconomic, and geographic differences must be taken into account when standard measures of sexual orientation are selected; (4) select a minimum set of standard sexual orientation measures; and (5) develop a long-range strategic plan for the collection of sexual orientation data. PMID:11392926
Connectedness percolation of hard deformed rods
NASA Astrophysics Data System (ADS)
Drwenski, Tara; Dussi, Simone; Dijkstra, Marjolein; van Roij, René; van der Schoot, Paul
2017-12-01
Nanofiller particles, such as carbon nanotubes or metal wires, are used in functional polymer composites to make them conduct electricity. They are often not perfectly straight cylinders but may be tortuous or exhibit kinks. Therefore we investigate the effect of shape deformations of the rod-like nanofillers on the geometric percolation threshold of the dispersion. We do this by using connectedness percolation theory within a Parsons-Lee type of approximation, in combination with Monte Carlo integration for the average overlap volume in the isotropic fluid phase. We find that a deviation from a perfect rod-like shape has very little effect on the percolation threshold, unless the particles are strongly deformed. This demonstrates that idealized rod models are useful even for nanofillers that superficially seem imperfect. In addition, we show that for small or moderate rod deformations, the universal scaling of the percolation threshold is only weakly affected by the precise particle shape.
Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek
2016-01-01
A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856
Percolation analysis of nonlinear structures in scale-free two-dimensional simulations
NASA Technical Reports Server (NTRS)
Dominik, Kurt G.; Shandarin, Sergei F.
1992-01-01
Results are presented of applying percolation analysis to several two-dimensional N-body models which simulate the formation of large-scale structure. Three parameters are estimated: total area (a(c)), total mass (M(C)), and percolation density (rho(c)) of the percolating structure at the percolation threshold for both unsmoothed and smoothed (with different scales L(s)) nonlinear with filamentary structures, confirming early speculations that this type of model has several features of filamentary-type distributions. Also, it is shown that, by properly applying smoothing techniques, many problems previously considered detrimental can be dealt with and overcome. Possible difficulties and prospects with the use of this method are discussed, specifically relating to techniques and methods already applied to CfA deep sky surveys. The success of this test in two dimensions and the potential for extrapolation to three dimensions is also discussed.
Roles and Responsibilities--Single College Orientation.
ERIC Educational Resources Information Center
Fonte, Richard
Austin Community College (ACC) is undergoing reorganization in an attempt to create a "single college" organizational structure to replace its current "campus with five competing colleges" model. By doing so, ACC hopes to create an atmosphere in which short and long range planning efforts are aimed at the overall good of the…
Toward a Field of Interfaith Studies
ERIC Educational Resources Information Center
Patel, Eboo
2013-01-01
Scholars from a range of fields have long taken an interest in how people who orient around religion differently interact with one another. Indeed, this phenomenon has been the subject of important works in political science ("The Clash of Civilizations" by Samuel Huntington), sociology ("American Grace" by Robert Putnam and…
NASA Technical Reports Server (NTRS)
Arumugam, Darmindra D. (Inventor)
2017-01-01
Methods and systems for non-line-of-sight positioning are disclosed for arbitrarily short to long ranges, where positioning is achieved using a single anchor not requiring tri-/multi-lateration or tri-/multi-angulation. Magnetoquasistatic fields can be used to determine position and orientation of a device in two or three dimensions. Two or three axis coils can be used in receivers and transmitters. The magnetoquasistatic equations are solved in different scenarios, taking into consideration the image signals originating from the interaction between the fields and ground/earth.
Terahertz absorption in graphite nanoplatelets/polylactic acid composites
NASA Astrophysics Data System (ADS)
Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.; Ivanov, E.; Krastev, R.; Kotsilkova, R.; Ogrin, F. Y.; Kuzhir, P.
2018-04-01
The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26–37 GHz) and terahertz (0.2–1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.
Physical nature of longevity of light actinides in dynamic failure phenomenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchaev, A. Ya., E-mail: uchaev@expd.vniief.ru; Punin, V. T.; Selchenkova, N. I.
It is shown in this work that the physical nature of the longevity of light actinides under extreme conditions in a range of nonequilibrium states of t ∼ 10{sup –6}–10{sup –10} s is determined by the time needed for the formation of a critical concentration of a cascade of failure centers, which changes connectivity of the body. These centers form a percolation cluster. The longevity is composed of waiting time t{sub w} for the appearance of failure centers and clusterization time t{sub c} of cascade of failure centers, when connectivity in the system of failure centers and the percolation clustermore » arise. A unique mechanism of the dynamic failure process, a unique order parameter, and an equal dimensionality of the space in which the process occurs determine the physical nature of the longevity of metals, including fissionable materials.« less
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
Growth dominates choice in network percolation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
Bounds for percolation thresholds on directed and undirected graphs
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
2015-03-01
Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
NASA Astrophysics Data System (ADS)
Kolesnikov, B. P.
2017-11-01
The presented work belongs to the issue of searching for the effective kinetic properties of macroscopically disordered environments (MDE). These properties characterize MDE in general on the sizes which significantly exceed the sizes of macro inhomogeneity. The structure of MDE is considered as a complex of interpenetrating percolating and finite clusters consolidated from homonymous components, topological characteristics of which influence on the properties of the whole environment. The influence of percolating clusters’ fractal substructures (backbone, skeleton of backbone, red bonds) on the transfer processes during crossover (a structure transition from fractal to homogeneous condition) is investigated based on the offered mathematical approach for finding the effective conductivity of MDEs and on the percolating cluster model. The nature of the change of the critical conductivity index t during crossover from the characteristic value for the area close to percolation threshold to the value corresponded to homogeneous condition is demonstrated. The offered model describes the transfer processes in MDE with the finite conductivity relation of «conductive» and «low conductive» phases above and below percolation threshold and in smearing area (an analogue of a blur area of the second-order phase transfer).
NASA Astrophysics Data System (ADS)
Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing
2011-12-01
In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.
The Emergence of the Worldship (I): The Shift from Planet-Based to Space-Based Civilisation
NASA Astrophysics Data System (ADS)
Ashworth, S.
Design concepts for passenger-carrying interstellar vehicles may be organised according to speed of travel and payload mass. The most likely design solutions fall on a scale which ranges from the high speed, low mass rapid transport at one end to the low speed, high mass multi-generation worldship at the other. The medium speed, medium mass cruiser is defined as an intermediate case. Using an energy-based analysis, it is shown that the rapid transport is a less plausible case. The more credible options for human interstellar flight are the multi-generation cruiser and worldship, in either case requiring the construction of an artificial mobile world-like environment for the sustainable support of a town- to city-sized community of travellers. This could be made possible by a shift in the dominant mode of human civilisation from planetary to space-based life. The long-term consequences for interstellar colonisation are illustrated with reference to the percolation theory presented by Geoffrey Landis.
Jenkins, Edward D.; Glover, Robert E.
1964-01-01
The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in areas of shallow water table, by seepage into Fountain and Jimmy Camp Creeks, and through wells. About 3 to 4 mgd (million gallons per day) of ground water moves through the Fountain Valley alluvium at a velocity of about 15 feet per day. About 1 mgd of ground water moves through the Jimmy Camp Valley alluvium at a velocity of about 6 feet per day. Most of the wells in the area are drilled, but a few are dug. Many large-diameter wells are used for irrigation and public supply: one of the wells
NASA Astrophysics Data System (ADS)
Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke
2018-03-01
We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.
NASA Astrophysics Data System (ADS)
Matthews, G. Peter; Maurizio Laudone, G.; Whalle, W. Richard; Bird, Nigel; Gregory, Andrew; Cardenas, Laura; Misselbrook, Tom
2010-05-01
Nitrous oxide is the fourth most important greenhouse gas. It is 300 times more potent than carbon dioxide, and two-thirds of anthropogenic nitrous oxide is emitted by agricultural land. This presentation will begin with a brief overview of the laboratory measurements of nitrous oxide emission from carefully characterised soils, presented in more detail by Cardenas et al.. The measurements were made in a twelve-chamber, gas chromatographic apparatus at North Wyke Research (formerly IGER). The presentation will then continue with a description of a void network model of sufficient accuracy and authenticity that it can be used to explain and predict the nitrous oxide production, and the modelling of the biological, chemical and physical processes for the production of nitrous oxide within the constructed network. Finally, conclusions will be drawn from a comparison of the model results with experiment. The void network model Nitrous oxide is produced by microbial activity located in ‘hotspots' within the microstructure of soil, and nutrients and gases flow or diffuse to and from these hotspots through the water or gas-filled macro-porosity. It is clear, therefore, that a network model to describe and explain nitrous oxide production must encompass the full size range of pore space active within the process, which covers 6 orders of magnitude, and must make realistic suppositions about the positional relationship of the hotspots relative to the soil macro-porosity. Previous experimental (Tsakiroglou, C. D. et al, European J.Soil Sci., 2008) and theoretical approaches to the modelling of soil void structure cannot generally meet these two requirements. We have therefore built on the success of the previous uni-porous model of soil (Matthews, G. P. et al, Wat.Resour.Res, 2010), and the concept of a critical percolation path, to develop a dual porous model (Laudone, G. M. et al, European J.Soil Sci., 2010) with the following features: • A porous unit cell, with periodic boundary conditions, and with a critical percolation path with the correct percolation characteristics and void volume of the macro-porosity of the soil. • A solid phase between the pores of the large unit cell, with the correct volume of the fraction of larger soil aggregates (larger 1 mm). • All the remaining pores of the large unit cell, which are not part of the critical percolation path, filled with smaller unit cells, which account for the micro-porosity of the soil sample. We describe the construction of a model that closely matches the following characteristics of a specific example of typical arable soil, taken from the Warren field of the Rothamsted experimental farm at Woburn, although the model can be used for a wide range of soils: (i) macroporosity and microporosity as measured by the water retention curve, (ii) the shape of the water retention characteristic under a wide range of tensions, (iii) the soil texture, and (iv) the extent of irreducible water content. Process model We will describe the insertion of Michaelis-Menten kinetics and Crank-Nicholson diffusion equations into the precisely scaled model, building on previous diffusion modelling (Laudone, G. M. et al, Chem.Eng.Sci., 2008). Comparison with experiment A comparison with experimental results sheds light on (i) the positional relationships of aerobic and anaerobic bacteria relative to the critical percolation path, (ii) the relationship between the critical percolation path and the preferential / critical flow path (Figure 4), (iii) the extent of ignorance about the reaction kinetics of some of the fundamental processes occurring, (iv) the soil conditions that cause nitrous oxide emission, and (v) the effect of soil compaction on the emission. Acknowledgement This presentation is a summary of the some of the work of the BBSRC funded U.K. soil research consortium "Soil Programme for Quality and Resilience" (BB/E001793/1 and others), of which Matthews is principal investigator.
Variable percolation threshold of composites with fiber fillers under compression
NASA Astrophysics Data System (ADS)
Lin, Chuan; Wang, Hongtao; Yang, Wei
2010-07-01
The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
NASA Astrophysics Data System (ADS)
Bobnar, V.; Hrovat, M.; Holc, J.; Filipič, C.; Levstik, A.; Kosec, M.
2009-02-01
An exceptionally high dielectric constant was obtained by making use of the conductive percolative phenomenon in all-ceramic composite, comprising of Pb2Ru2O6.5 with high electrical conductivity denoted as the conductive phase and ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) perovskite systems. Structural analysis revealed a uniform distribution of conductive ceramic grains within the PMN-PT matrix. Consequently, the dielectric response in the PMN-PT-Pb2Ru2O6.5 composite follows the predictions of the percolation theory. Thus, close to the percolation point exceptionally high values of the dielectric constant were obtained—values higher than 105 were detected at room temperature at 1 kHz. Fit of the data, obtained for samples of different compositions, revealed critical exponent and percolation point, which reasonably agree with the theoretically predicted values.
Invasion percolation between two sites in two, three, and four dimensions
NASA Astrophysics Data System (ADS)
Lee, Sang Bub
2009-06-01
The mass distribution of invaded clusters in non-trapping invasion percolation between an injection site and an extraction site has been studied, in two, three, and four dimensions. This study is an extension of the recent study focused on two dimensions by Araújo et al. [A.D. Araújo, T.F. Vasconcelos, A.A. Moreira, L.S. Lucena, J.S. Andrade Jr., Phys. Rev. E 72 (2005) 041404] with respect to higher dimensions. The mass distribution exhibits a power-law behavior, P(m)∝m. It has been found that the index α for pe
Percolation in education and application in the 21st century
NASA Astrophysics Data System (ADS)
Adler, Joan; Elfenbaum, Shaked; Sharir, Liran
2017-03-01
Percolation, "so simple you could teach it to your wife" (Chuck Newman, last century) is an ideal system to introduce young students to phase transitions. Two recent projects in the Computational Physics group at the Technion make this easy. One is a set of analog models to be mounted on our walls and enable visitors to switch between samples to see which mixtures of glass and metal objects have a percolating current. The second is a website enabling the creation of stereo samples of two and three dimensional clusters (suited for viewing with Oculus rift) on desktops, tablets and smartphones. Although there have been many physical applications for regular percolation in the past, for Bootstrap Percolation, where only sites with sufficient occupied neighbours remain active, there have not been a surfeit of condensed matter applications. We have found that the creation of diamond membranes for quantum computers can be modeled with a bootstrap process of graphitization in diamond, enabling prediction of optimal processing procedures.
Melchert, O; Katzgraber, Helmut G; Novotny, M A
2016-04-01
We estimate the critical thresholds of bond and site percolation on nonplanar, effectively two-dimensional graphs with chimeralike topology. The building blocks of these graphs are complete and symmetric bipartite subgraphs of size 2n, referred to as K_{n,n} graphs. For the numerical simulations we use an efficient union-find-based algorithm and employ a finite-size scaling analysis to obtain the critical properties for both bond and site percolation. We report the respective percolation thresholds for different sizes of the bipartite subgraph and verify that the associated universality class is that of standard two-dimensional percolation. For the canonical chimera graph used in the D-Wave Systems Inc. quantum annealer (n=4), we discuss device failure in terms of network vulnerability, i.e., we determine the critical fraction of qubits and couplers that can be absent due to random failures prior to losing large-scale connectivity throughout the device.
Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions
NASA Astrophysics Data System (ADS)
Loh, Yen Lee; Karki, Pragalv
2017-10-01
Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as ( p-p_c){\\hspace{0pt}}1.3 as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as ( p_c-p){\\hspace{0pt}}-1.3 below percolation, and as L2 ( p-p_c){\\hspace{0pt}}1.3 above percolation. For models lacking self-capacitances, the electric susceptibility scales as ( p_c-p){\\hspace{0pt}}-1.3 . Including a self-capacitance on each node changes the critical behavior to approximately ( p_c-p){\\hspace{0pt}}-2.52 .
Wastewater movement near four treatment and disposal sites in Yellowstone National Park, Wyoming
Cox, E.R.
1986-01-01
The U.S. Geological Survey, in cooperation with the National Park Service, studied the effects on nearby streams and lakes of treated wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and water level and water quality data were collected from 1974 through 1982. Groundwater mounds occur under the lagoons as percolation of effluents occurs. The percolating effluents mix with groundwater and form plumes of water that contain chemical constituents from the effluents. These plumes move down the hydraulic gradient toward groundwater discharge areas. The directions of movement of percolating effluents have been determined by analyzing water samples from wells near the lagoons for specific conductance, chloride concentration, and nitrite plus nitrate concentration. Other constituents and properties also were determined. The percolating effluents are diluted by groundwater and have no discernible effects on the quality of water in the nearby streams and lakes. (USGS)
Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations
NASA Technical Reports Server (NTRS)
Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.
1993-01-01
We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.
NASA Astrophysics Data System (ADS)
Gershunov, A.; Guirguis, K.; Shulgina, T.; Clemesha, R.; Ralph, M.
2017-12-01
Atmospheric Rivers (ARs) contribute the lion's share of water resources for California, but can also cause flooding and draw heavily on emergency resources of state and local governments. Comprehensive probabilistic tools relating landfalling ARs to pre-existing weather/climate conditions could be useful for subseasonal forecasting, emergency preparedness and water resource management. We examine ARs targeting the Northern California coast using long-term observations of synoptic-scale circulation, high-resolution precipitation, and a seven-decade-long catalog of AR landfalls to quantify distinct orientations of landfalling ARs. Using a probabilistic approach to relate these historic events to precursor weather patterns, we identify synoptic circulation patterns that precede AR landfalls at various lead times in the range of 0-30 days. Examination of the evolution of these precursor patterns reveals subtle but important differences in the atmospheric states that lead to AR landfalls versus those that don't. Synoptic precursors can also differentiate between orientations of ARs at landfall, which produce rather different precipitation patterns over the region's complex topography. Moreover, low-frequency climate forcing appears to modulate the likelihood of AR landfalls, as well as their preferred orientations. These results provide a link between seasonal and subseasonal timescales and suggest a new approach toward extended-range prediction of land-falling atmospheric rivers and their related precipitation.
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.
Finner, Shari P; Kotsev, Mihail I; Miller, Mark A; van der Schoot, Paul
2018-01-21
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which-in the absence of a field-is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations
NASA Astrophysics Data System (ADS)
Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul
2018-01-01
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Wenzel, Tim; Stillhart, Cordula; Kleinebudde, Peter; Szepes, Anikó
2017-08-01
Drug load plays an important role in the development of solid dosage forms, since it can significantly influence both processability and final product properties. The percolation threshold of the active pharmaceutical ingredient (API) corresponds to a critical concentration, above which an abrupt change in drug product characteristics can occur. The objective of this study was to identify the percolation threshold of a poorly water-soluble drug with regard to the dissolution behavior from immediate release tablets. The influence of the API particle size on the percolation threshold was also studied. Formulations with increasing drug loads were manufactured via roll compaction using constant process parameters and subsequent tableting. Drug dissolution was investigated in biorelevant medium. The percolation threshold was estimated via a model dependent and a model independent method based on the dissolution data. The intragranular concentration of mefenamic acid had a significant effect on granules and tablet characteristics, such as particle size distribution, compactibility and tablet disintegration. Increasing the intragranular drug concentration of the tablets resulted in lower dissolution rates. A percolation threshold of approximately 20% v/v could be determined for both particle sizes of the API above which an abrupt decrease of the dissolution rate occurred. However, the increasing drug load had a more pronounced effect on dissolution rate of tablets containing the micronized API, which can be attributed to the high agglomeration tendency of micronized substances during manufacturing steps, such as roll compaction and tableting. Both methods that were applied for the estimation of percolation threshold provided comparable values.
Kim, Jae-Woong; Kwon, Moon-Seok; Yenuga, Sree Sushma; Kwon, Young-Hoooo
2010-06-01
The study purpose was to investigate the effects of target distance on pivot hip, trunk, pelvis, and kicking leg movements in Taekwondo roundhouse kick. Twelve male black-belt holders executed roundhouse kicks for three target distances (Normal, Short, and Long). Linear displacements of the pivot hip and orientation angles of the pelvis, trunk, right thigh, and right shank were obtained through a three-dimensional video motion analysis. Select displacements, distances, peak orientation angles, and angle ranges were compared among the conditions using one-way repeated measure ANOVA (p < 0.05). Several orientation angle variables (posterior tilt range, peak right-tilted position, peak right-rotated position, peak left-rotated position, and left rotation range of the pelvis; peak hyperextended position and peak right-flexed position of the trunk; peak flexed position, flexion range and peak internal-rotated position of the hip) as well as the linear displacements of the pivot hip and the reach significantly changed in response to different target distances. It was concluded that the adjustment to different target distances was mainly accomplished through the pivot hip displacements, hip flexion, and pelvis left rotation. Target distance mainly affected the reach control function of the pelvis and the linear balance function of the trunk.
Heidari, Banafsheh; Gifani, Minoo; Shirazi, Abolfazl; Zarnani, Amir-Hassan; Baradaran, Behzad; Naderi, Mohammad Mehdi; Behzadi, Bahareh; Borjian-Boroujeni, Sara; Sarvari, Ali; Lakpour, Niknam; Akhondi, Mohammad Mehdi
2014-04-01
The well documented source for adult multipotent stem cells is Spermatogonial Stem Cells (SSCs). They are the foundation of spermatogenesis in the testis throughout adult life by balancing self-renewal and differentiation. The aim of this study was to assess the effect of percoll density gradient and differential plating on enrichment of undifferentiated type A spermatogonia in dissociated cellular suspension of goat testes. Additionally, we evaluated the separated fractions of the gradients in percoll and samples in differential plating at different times for cell number, viability and purification rate of goat SSCs in culture. Testicular cells were successfully isolated from one month old goat testis using two-step enzymatic digestion and followed by two purification protocols, differential plating with different times of culture (3, 4, 5, and 6 hr) and discontinuous percoll density with different gradients (20, 28, 30, and 32%). The difference of percentage of undifferentiated SSCs (PGP9.5 positive) in each method was compared using ANOVA and comparison between the highest percentage of corresponding value between two methods was carried out by t-test using Sigma Stat (ver. 3.5). The highest PGP9.5 (94.6±0.4) and the lowest c-Kit positive (25.1±0.7) in Percoll method was significantly (p ≤ 0.001) achieved in 32% percoll gradient. While the corresponding rates in differential plating method for the highest PGP9.5 positive cells (81.3±1.1) and lowest c-Kit (17.1±1.4) was achieved after 5 hr culturing (p < 0.001). The enrichment of undifferentiated type A spermatogonia using Percoll was more efficient than differential plating method (p < 0.001). Percoll density gradient and differential plating were efficient and fast methods for enrichment of type A spermatogonial stem cells from goat testes.
Heidari, Banafsheh; Gifani, Minoo; Shirazi, Abolfazl; Zarnani, Amir-Hassan; Baradaran, Behzad; Naderi, Mohammad Mehdi; Behzadi, Bahareh; Borjian-Boroujeni, Sara; Sarvari, Ali; Lakpour, Niknam; Akhondi, Mohammad Mehdi
2014-01-01
Background The well documented source for adult multipotent stem cells is Spermatogonial Stem Cells (SSCs). They are the foundation of spermatogenesis in the testis throughout adult life by balancing self-renewal and differentiation. The aim of this study was to assess the effect of percoll density gradient and differential plating on enrichment of undifferentiated type A spermatogonia in dissociated cellular suspension of goat testes. Additionally, we evaluated the separated fractions of the gradients in percoll and samples in differential plating at different times for cell number, viability and purification rate of goat SSCs in culture. Methods Testicular cells were successfully isolated from one month old goat testis using two-step enzymatic digestion and followed by two purification protocols, differential plating with different times of culture (3, 4, 5, and 6 hr) and discontinuous percoll density with different gradients (20, 28, 30, and 32%). The difference of percentage of undifferentiated SSCs (PGP9.5 positive) in each method was compared using ANOVA and comparison between the highest percentage of corresponding value between two methods was carried out by t-test using Sigma Stat (ver. 3.5). Results The highest PGP9.5 (94.6±0.4) and the lowest c-Kit positive (25.1±0.7) in Percoll method was significantly (p ≤ 0.001) achieved in 32% percoll gradient. While the corresponding rates in differential plating method for the highest PGP9.5 positive cells (81.3±1.1) and lowest c-Kit (17.1±1.4) was achieved after 5 hr culturing (p < 0.001). The enrichment of undifferentiated type A spermatogonia using Percoll was more efficient than differential plating method (p < 0.001). Conclusion Percoll density gradient and differential plating were efficient and fast methods for enrichment of type A spermatogonial stem cells from goat testes. PMID:24834311
Multiscale mechanisms of cell migration during development: theory and experiment.
McLennan, Rebecca; Dyson, Louise; Prather, Katherine W; Morrison, Jason A; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M
2012-08-01
Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner.
Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites
NASA Astrophysics Data System (ADS)
Sengezer, Engin C.; Seidel, Gary D.; Bodnar, Robert J.
2017-09-01
Dielectrophoresis under the application of AC electric fields is one of the primary fabrication techniques for obtaining aligned carbon nanotube (CNT)-polymer nanocomposites, and is used here to generate long range alignment of CNTs at the structural level. The degree of alignment of CNTs within this long range architecture is observed via polarized Raman spectroscopy so that its influence on the electrical conductivity and piezoresistive response in both the alignment and transverse to alignment directions can be assessed. Nanocomposite samples consisting of randomly oriented, well dispersed single-wall carbon nanotubes (SWCNTs) and of long range electric field aligned SWCNTs in a photopolymerizable monomer blend (urethane dimethacrylate and 1,6-hexanediol dimethacrylate) are quantitatively and qualitatively evaluated. Piezoresistive sensitivities in form of gauge factors were measured for randomly oriented, well dispersed specimens with 0.03, 0.1 and 0.5 wt% SWCNTs and compared with gauge factors in both the axial and transverse to SWCNT alignment directions for electric field aligned 0.03 wt% specimens under both quasi-static monotonic and cyclic tensile loading. Gauge factors in the axial direction were observed to be on the order of 2, while gauge factors in the transverse direction demonstrated a 5 fold increase with values on the order of 10 for aligned specimens. Based on Raman analysis, it is believed the higher sensitivity of the transverse direction is related to architectural evolution of misaligned bridging structures which connect alignment structures under load due to Poisson’s contraction.
Horst, Renata; Maicki, Tomasz; Trąbka, Rafał; Albrecht, Sindy; Schmidt, Katharina; Mętel, Sylwia; von Piekartz, Harry
2017-05-01
To compare the short- and long-term effects of a structural-oriented (convential) with an activity-oriented physiotherapeutic treatment in patients with frozen shoulder. Double-blinded, randomized, experimental study. Outpatient clinic. We included patients diagnosed with a limited range of motion and pain in the shoulder region, who had received a prescription for physiotherapy treatment, without additional symptoms of dizziness, a case history of headaches, pain and/or limited range of motion in the cervical spine and/or temporomandibular joint. The study group received treatment during the performance of activities. The comparison group was treated with manual therapy and proprioceptive neuromuscular facilitation (conventional therapy). Both groups received 10 days of therapy, 30 minutes each day. Range of motion, muscle function tests, McGill pain questionnaire and modified Upper Extremity Motor Activity Log were measured at baseline, after two weeks of intervention and after a three-month follow-up period without therapy. A total of 66 patients were randomized into two groups: The activity-oriented group ( n = 33, mean = 44 years, SD = 16 years) including 20 male (61%) and the structural-oriented group ( n = 33, mean = 47 years, SD = 17 years) including 21 male (64%). The activity-oriented group revealed significantly greater improvements in the performance of daily life activities and functional and structural tests compared with the group treated with conventional therapy after 10 days of therapy and at the three-month follow-up ( p < 0.05). Therapy based on performing activities seems to be more effective for pain reduction and the ability to perform daily life activities than conventional treatment methods.
Friedman, M Isabel; Delaney, Margaret M; Schmidt, Kathleen; Quinn, Carolyn; Macyk, Irene
2013-01-01
New graduate RN retention in the first year of employment is a challenge for hospitals, ranging from a low of 25% to a high of 64%. In 2005, hospitals in New York state spent 11.7% of their nursing budgets on temporary nursing staffing. The objectives of this study were to determine the retention and costs associated with the employment of new graduate RNs before and after the initiation of specialized year-long pediatric critical care, emergency department, and hematology/oncology orientation programs. The major study findings were improved retention of 84% to 94%, significant retention between the two groups at 9 months, and an annual financial savings related to decreased nursing turnover in the specialized orientation group. Specialized orientation programs that support new graduate RNs have documented increased RN retention and decreased RN turnover. In concert with the increased retention and decreased turnover, health care finances were positively impacted by specialized orientation programs.
Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity
2015-01-01
We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo. PMID:26491877
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
NASA Astrophysics Data System (ADS)
Yuan, Lijian
This thesis investigates the structure-property relations for the calcium silicate hydrate (C-S-H) gel phase in hardened cement pastes (HCP). Studies were performed with the purpose of gaining insight into the origin of the electromechanical behavior and exploring the dynamic nature of the pore structures of HCP during water transport by using an electrically induced strain method. Emphasis was placed on the fundamental characteristics of the electrically induced strains, the role that electrically stimulated water transport through the interconnecting pore structures in HCP plays, as well as the mechanism underlying the induced strains. Reversible and irreversible components of the induced strains were distinguished under ac electric field. Evidence showed that the reversible strains were due to redistribution of water along the structure of the pore network of specimens, whereas the irreversible strains were related to long-range water transport toward the surface of specimens. In contrast, the contractive strains were found following the water loss during measurements. Investigations as a function of measurement frequency revealed a strong relaxation of the induced strains in the frequency range from 6.7 × 10sp{-3} to 1 Hz. The strong relaxation in the induced strains with electric field was found to be due to space charge polarization and a creep-like deformation. The induced strains were shown to be strongly affected by changes in the gel pore structures. The magnitude of the induced strains was found to be significantly dependent on the moisture content adsorbed. Evidence of a critical percolation of pore solution was also observed. A strong decrease in the induced strains was observed with decreasing temperature due to the influence of ice formation. This decrease was interpreted in terms of a decrease in the electroosmotic volumetric flux and hydraulic permeability with decreasing temperature. The strong non-linearity in the induced strains was found with respect to the electric field strength. The presence of non-linear electric streaming current vs. electric field characteristics was examined, which was modeled by using an electrokinetic equation of state. Evidence of an anomalous temperature dependence in both electrical conductivity and dielectric permitivity was observed, indicating the presence of anomalies associated with a percolation-like transition.
Combinations of Earth Orientation Measurements: SPACE2001, COMB2001, and POLE2001
NASA Technical Reports Server (NTRS)
Gross, Richard S.
2002-01-01
Independent Earth-orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth-orientation series, SPACE2001, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28.0, 1976 to January 19.0, 2002 at daily intervals. The space-geodetic measurements used to generate SPACE2001 have been combined with optical astrometric measurements to form two additional combined Earth-orientation series: (1) COMB2001, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20.0, 1962 to January 15.0, 2002 at five-day intervals, and (2) POLE2001, consisting of values and uncertainties for polar motion and its rates that span from January 20, 1900 to December 21, 2001 at 30.4375-day intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushko, M. L.; Rosso, K. M.
Atomic-to-mesoscale simulations were used to reveal the origin of oriented attachment between anatase TiO2 nanoparticles in aqueous HCl solutions. Analysis of the distance and pH dependence of interparticle interactions demonstrates that ion correlation forces are responsible for facet-specific attraction and rotation into lattice co-alignment at long-range. These forces give rise to a metastable solvent separated capture minimum on the disjoining pressure-distance curve, with the barrier to attachment largely due to steric hydration forces from structured intervening solvent.
On Equivalence between Critical Probabilities of Dynamic Gossip Protocol and Static Site Percolation
NASA Astrophysics Data System (ADS)
Ishikawa, Tetsuya; Hayakawa, Tomohisa
The relationship between the critical probability of gossip protocol on the square lattice and the critical probability of site percolation on the square lattice is discussed. Specifically, these two critical probabilities are analytically shown to be equal to each other. Furthermore, we present a way of evaluating the critical probability of site percolation by approximating the saturation of gossip protocol. Finally, we provide numerical results which support the theoretical analysis.
NASA Astrophysics Data System (ADS)
Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich
2000-03-01
We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.
Social percolation and the influence of mass media
NASA Astrophysics Data System (ADS)
Proykova, Ana; Stauffer, Dietrich
2002-09-01
In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.
Connectivity percolation in suspensions of attractive square-well spherocylinders.
Dixit, Mohit; Meyer, Hugues; Schilling, Tanja
2016-01-01
We have studied the connectivity percolation transition in suspensions of attractive square-well spherocylinders by means of Monte Carlo simulation and connectedness percolation theory. In the 1980s the percolation threshold of slender fibers has been predicted to scale as the fibers' inverse aspect ratio [Phys. Rev. B 30, 3933 (1984)PRBMDO1098-012110.1103/PhysRevB.30.3933]. The main finding of our study is that the attractive spherocylinder system reaches this inverse scaling regime at much lower aspect ratios than found in suspensions of hard spherocylinders. We explain this difference by showing that third virial corrections of the pair connectedness functions, which are responsible for the deviation from the scaling regime, are less important for attractive potentials than for hard particles.
Some observations on soil freezing in forest and range lands of the Pacific Northwest.
Charles E. Hale
1950-01-01
It is well known that freezing and thawing of the surface soil and humus greatly affect their capacity to absorb water. Post and Dreibelbis (1) in Ohio reported that percolation was materially reduced or ceased entirely when the frost depth was three inches or greater. They also stated that "freezing of the surface soil undoubtedly has considerable influence on...
Groundwater quality in the Northern Coast Ranges Basins, California
Mathany, Timothy M.; Belitz, Kenneth
2015-01-01
Recharge to the groundwater system is primarily from mixture of ambient sources, including direct percolation of precipitation and irrigation waters, infiltration of runoff from surrounding hills/areas, seepage from rivers and creeks, and subsurface inflow (from non-alluvial geologic units that bound the alluvial basins). The primary sources of discharge are evaporation, discharge to streams, and water pumped for municipal supply and irrigation.
Timing of pyroxenite formation in supra-subduction Josephine Ophiolite, Oregon.
NASA Astrophysics Data System (ADS)
Hough, T.; Le Roux, V.; Kurz, M. D.
2017-12-01
The Josephine ophiolite is a partly dismembered ophiolite located in southern Oregon and northwestern California (USA). It displays a large ( 640 km2) mantle section that is mostly composed of depleted spinel harzburgite and lherzolite re-equilibrated at temperatures of 900 °C. In addition, the peridotite section of the ophiolite contains minor dunites and pyroxenite veins ranging from orthopyroxenites to clinopyroxenites. Using field, petrological and geochemical data, previous studies have shown that the peridotite experienced 10-20% of hydrous flux melting. In addition, clinopyroxene and orthopyroxene in harzburgites show variable degrees of light rare-earth element (LREE) enrichment, which suggests percolation and re-equilibration with small fractions of boninite melt. Overall, the trace element concentrations of pyroxenes indicate that the harzburgites experienced particularly high degrees of melting in the mantle wedge. We collected a number of orthopyroxenite and clinopyroxenite veins in the mantle section of the Josephine Ophiolite. Here we present the major and rare-earth element (REE) contents of pyroxene in 4 orthopyroxenites and 2 clinopyroxenites and calculate the major element and REE closure temperatures for individual veins. We show that individual pyroxenites record drastic variations in their degree of REE depletion, indicating that multiple generations of melts percolated the peridotite. The pyroxenite veins also record higher REE closure temperatures (>1200 ºC) compared to the surrounding peridotite, potentially indicating rapid cooling after emplacement. REE closure temperatures are also higher than major element closure temperatures. In parallel, we analyzed Sr isotopes by MC-ICPMS in pyroxene separates from 4 veins. Results indicate that the maximum age of emplacement of orthopyroxenite veins corresponds to the age of exhumation. Some clinopyroxenites may have formed during earlier melt percolation events. This study supports the idea that the composition of melts that percolate the mantle wedge can be highly variable and that orthopyroxenites may be the last type of veins to form in those environments.
NASA Astrophysics Data System (ADS)
Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo
2014-05-01
Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.
Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films
NASA Astrophysics Data System (ADS)
Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn
2015-03-01
Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.
Dielectric and microstructure properties of polymer carbon black composites
NASA Astrophysics Data System (ADS)
Brosseau, C.; Boulic, F.; Queffelec, P.; Bourbigot, C.; Le Mest, Y.; Loaec, J.; Beroual, A.
1997-01-01
Dielectric and physicochemical properties of a composite material prepared by incorporating carbon black particles into a polymer matrix were investigated. Two types of carbon blacks, having very different structures of aggregates, were used. The volume fraction of the carbon blacks ranged from 0.2% to 7%, i.e. below and above the percolation threshold concentration observed from the measurements of dc conductivity. The composite samples were characterized in terms of: swelling by a compatible solvent, electron paramagnetic resonance (EPR) response, and frequency variation of permittivity. First, the article attempts to evaluate the diffusion coefficient of an appropriate solvent in these materials. Sorption kinetics experiments with toluene indicate that the initial uptake of solvent exhibits a square root dependence in time as a consequence of Fick's law and permit to evaluate the effective diffusion coefficient in the range 10-11-10-12 m2 s-1 depending on the volume fraction of the carbon black in the sample. Second, the analysis of the carbon black concentration dependence of the intensity and linewidth of the EPR signals indicates that EPR is an important experimental probe of the structure of the elasticity network. The most notable feature of the present work is that we find a correlation of the percolation threshold concentration which is detected from the dc electrical conductivity with moments of the EPR lines. The conclusions on the elasticity networks deduced from swelling measurements are confirmed by EPR data carried out on swollen samples. On qualitative grounds the role of the specific surface of carbon black is further analyzed. It is suggested that the elasticity network is mainly controlled by secondary (respectively primary) aggregates for samples containing low (respectively high) specific surface carbon blacks. Last, the article reports precise experimental data on the permittivity of these composite materials as a function of frequency. Thanks to a sensitive measurement technique using an impedance analyzer, we are able to measure the complex permittivity and permeability values of the samples in the frequency range from 108 to 1010 Hz. It is found that the real part of the permittivity is a function of frequency f, via a power law expression ɛ'=af-b, where a and b are two parameters depending upon carbon black concentration, in the range of frequency investigated. The data analysis reaffirms the result that percolation threshold is a key parameter for characterizing the topological arrangement in these structures.
Marketing-oriented organizations: an integrated approach.
Stensrud, R; Arrington, B
1988-03-01
Organizations can be oriented toward marketing from a production, product, sales, or marketing perspective. Strategies, structures, and cultures, which reflect a company's basic orientation, must be integrated to ensure that marketing efforts communicate a clear corporate position. In a study of 31 hospitals, the Center for Health Services Education Research, St. Louis University, found that no hospital's organization fit neatly into a single category. For example, a hospital may have some service lines that were marketing oriented while other lines were production oriented. The majority of hospitals, however, were product oriented, focusing on productivity and financial performance rather than on market factors. The most effective sales orientation was observed in the for-profits. Their selling efforts, however, tended to be internally focused, with product development activities divorced from the planning and marketing functions. Only the for-profit hospitals showed the beginning of a marketing orientation. Developing a marketing orientation, especially in line divisions, requires a careful, well-orchestrated effort and the presence of several key factors: Access to capital and an emphasis on long-range planning and strategic spending The availability of hospital-specific market research. Key distribution channels. Talented middle managers. Up-to-date systems and structures equipped to serve new values and strategies. Leaders capable of communicating to the organization a vision of its role in the community.
Percolation dans des reseaux realistes de nanostructures de carbone
NASA Astrophysics Data System (ADS)
Simoneau, Louis-Philippe
Carbon nanotubes have very interesting mechanical and electrical properties for various applications in electronics. They are highly resistant to deformation and can be excellent conductors or semiconductors. However, manipulating individual nanotubes to build structured devices remains very difficult. There is no method for controlling all of the electrical properties, the orientation and the spatial positioning of a large number of nanotubes. The fabrication of disordered networks of nanotubes is much easier, and these systems have a good electrical conductivity which makes them very interesting, especially as materials of transparent and flexible electrodes. There are three main methods of production used to make networks of nanotubes: the solution deposition, the direct growth on substrate and the embedding in a polymer matrix. The solution deposition method can form networks of various densities on a variety of substrates, the direct growth of nanotubes allows the creation of very clean networks on substrates such as SiO2, and the embedding in a polymer matrix can give composite volumes containing varying amounts of nanotubes. Many parameters such as the length of the tubes, their orientation or their tortuosity influence the properties of these networks and the presence of structural disorder complicates the understanding of their interactions. Predicting the properties of a network, such as conductivity, from a few characteristics such as size and density of the tubes can be difficult. This task becomes even more complex if one wants to identify the parameters that will optimize the performance of a device containing the material. We chose to address the carbon nanotube networks problem by developing a series of computer simulation tools that are mainly based on the Monte Carlo method. We take into account a large number of parameters to describe the characteristics of the networks, which allows for a more reliable representation of real networks as well as versatility in the choice of network components that can be simulated. The tools we have developed, grouped together in the RPH-HPN software Reseaux percolatifs hybrides - Hybrid Percolation Networks, construct random networks, detect contact between the tubes, translate the systems to equivalent electrical circuits and calculate global properties. An infinity of networks can have the same basic characteristics (size, diameter, etc.) and therefore the properties of a particular random network are not necessarily representative of the average properties of all networks. To obtain those general properties, we simulate a large number of random networks with the same basic characteristics and the average of the quantities is determined. The network constituent elements can be spheres, rods or snakes. The use of such geometries for network elements makes contact detection simple and quick, and more faithfully reproduce the form of carbon nanotubes. We closely monitor the geometrical and electrical properties of these elements through stochastic distributions of our choice. We can choose the length, diameter, orientation, chirality, tortuosity and impenetrable nature of the elements in order to properly reproduce real networks characteristics. We have considered statistical distribution functions that are rectangular, Gaussian, and Lorentzian, but all other distributions that can be expressed mathematically can also be envisioned. During the creation of a particular network, we generate the elements one by one. Each of their properties is sampled from a preselected distribution. Efficient algorithms used in various fields were adapted to our needs to manage the detection of contacts, clusters and percolation. In addition, we model more realistic contact between rigid nanotubes using an original method used to create the network that does not require a relaxation phase. Finally, we use Kirchhoff's laws to solve the equivalent electrical circuit conventionally. First, we evaluated the impact of a simplification widely used in other nanotube networks simulations studies. Values of the contact resistance at the junction between two nanotubes that are reported in the literature vary over a wide range, while almost all the simulations use a unique value for this parameter. Therefore, we assessed the effect of the presence of various stochastic distributions of contact resistances on the electrical properties of the networks. To do this, we used the experimental results of our collaborators in order to reproduce them by simulation. Our results show that, despite the existence of a wide range of contact resistance values, the nature of the statistical distribution has little impact on the conductivity obtained by simulation. Use of a single value for all connections of a network gives a total conductivity comparable to the experimental conductivity, and similar to that obtained using Gaussian, Lorentzian and uniform rectangular distributions. In fact, the dominant factor is not the type of distribution used to represent the resistance, but the central value of the distribution. Furthermore, we showed by studying bimodal distributions that the presence of lower resistance paths, even in small proportion, can rapidly increase the conductivity of the network. However, the type of stochastic distribution used to sample the spatial orientation of the nanotubes has a significant impact. We observed different behaviors for each of the three forms of distribution of orientation angles that we studied. In each case, a different distribution width maximize the conductivity of the networks. To optimize the conductivity, this distribution width, which is actually the deviation from the main direction, should in general be narrow. The formation of conductive paths is greatly enhanced in the presence of a majority of tubes closely aligned with the conduction direction and a small portion of tubes randomly aligned. The portion of misaligned tubes strongly contributes to the connectivity of nanotubes network by linking several clusters of aligned tubes. In order to increase the realism of our simulations, we also studied the influence of the interpenetrability of nanotubes on the electrical properties of networks. To do this, we describe the nanotubes with mutually impenetrable rigid cores that are surrounded by permeable shells. Thus, by varying the radius of the rigid cores, we have shown that a decrease in the interpenetrability of the nanotubes can increase the conductivity of the networks up to five orders of magnitude. We attribute this increase in conductivity to a greater connectivity of the nanotubes in the network. The more tubes are impenetrable, the more they push back against each other, and the better is the spreading of connected clusters in space. The second parameter on which we focused to improve the realism is the tortuosity of the nanotubes. We investigated the electrical properties of networks where the nanotubes are segmented into ten sections joined end to end. The angle between two consecutive segments is sampled from a uniform rectangular distribution and the variation of the bounds of this distribution allows us to vary the general tortuosity of the network. We observe that the more the tubes are tortuous, the higher the percolation threshold is, and the lower is the total conductivity. This can be nearly two orders of magnitude lower for networks with twisted tubes. We further note that the increase of the percolation threshold is attenuated when the wavy nanotubes have rigid cores. As part of our project, we have developed tools that, to the best of our knowledge, offer the best physical representation of nanotubes in a network of carbon nanotubes to date. This allowed us to study networks of complex geometries and measure the importance of the statistical distributions of parameters in optimizing the conductivity of networks. We have also established that the rigid tube-tube contacts and the nanotube tortuosity have strong impacts on the percolation threshold and conductivity. This work has demonstrated the importance of modeling for the understanding and the adequate description of complex processes, and the development needed to accurately reproduce the behavior of real systems. These tools can now be used to guide the creation of nanotube networks with targeted properties, and also to explore even more complex systems containing for example mixtures of nanotubes and quantum dots.
NASA Astrophysics Data System (ADS)
Hunt, Allen G.; Sahimi, Muhammad
2017-12-01
We describe the most important developments in the application of three theoretical tools to modeling of the morphology of porous media and flow and transport processes in them. One tool is percolation theory. Although it was over 40 years ago that the possibility of using percolation theory to describe flow and transport processes in porous media was first raised, new models and concepts, as well as new variants of the original percolation model are still being developed for various applications to flow phenomena in porous media. The other two approaches, closely related to percolation theory, are the critical-path analysis, which is applicable when porous media are highly heterogeneous, and the effective medium approximation—poor man's percolation—that provide a simple and, under certain conditions, quantitatively correct description of transport in porous media in which percolation-type disorder is relevant. Applications to topics in geosciences include predictions of the hydraulic conductivity and air permeability, solute and gas diffusion that are particularly important in ecohydrological applications and land-surface interactions, and multiphase flow in porous media, as well as non-Gaussian solute transport, and flow morphologies associated with imbibition into unsaturated fractures. We describe new applications of percolation theory of solute transport to chemical weathering and soil formation, geomorphology, and elemental cycling through the terrestrial Earth surface. Wherever quantitatively accurate predictions of such quantities are relevant, so are the techniques presented here. Whenever possible, the theoretical predictions are compared with the relevant experimental data. In practically all the cases, the agreement between the theoretical predictions and the data is excellent. Also discussed are possible future directions in the application of such concepts to many other phenomena in geosciences.
1983-09-01
many broad-based and long- associated with the Upper Mississippi les of such problems include increasing water quality issues, balancing growth 1...farther west. In the pioneer the end of the St. Paul District portion sites (disturbed sites without previous growth where Mississippi River. species of...have a high water table in lower areas. The percolation rate is generally less than 10 minutes per inch. These *soils tend to be acid and low in
Effect of non-classical current paths in networks of 1-dimensional wires
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.
1996-04-01
At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.
Berríos, Soledad; López Fenner, Julio; Maignan, Aude
2018-06-19
We show that an inhomogeneous Bernoulli site percolation process running upon a fullerene's dual [Formula: see text] can be used for representing bivalents attached to the nuclear envelope in mouse Mus M. Domesticus 2n = 40 meiotic spermatocytes during pachytene. It is shown that the induced clustering generated by overlapping percolation domains correctly reproduces the probability distribution observed in the experiments (data) after fine tuning the parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moscicki, J. K.; Sokolowska, D.; Dziob, D.
2014-02-15
A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.
NASA Astrophysics Data System (ADS)
Martyniuk, P.; Gawron, W.; Madejczyk, P.; Rogalski, A.
2017-08-01
The vast majority of HgCdTe detectors designed to detect long wavelength (8-14 μm) infrared radiation must be cooled to achieve the required performance. It must be stressed that cooling requirement is both expensive and bulky and the main objective is to reach higher operating temperature condition preserving near background limited performance and high speed response. In order to reach that goal the thermal generation rate needs to be reduced below the photon generation rate. Except Auger 7, p-type HgCdTe active layers are mostly limited by technology dependent Shockley-Read-Hall generation-recombination processes. One of the ways to reduce of the trap density is a growth of the (1 0 0) HgCdTe epilayers on GaAs substrates. In addition, that orientation allows reaching lower carrier concentration in comparison to the commonly used (1 1 1) orientation (5 × 1015-1016 cm-3). In this paper we report on theoretical utmost performance of (1 0 0) HgCdTe Auger suppressed photodetectors grown on GaAs substrates. (1 0 0) HgCdTe orientation allows to reduce p-type doping to the level of ∼5 × 1014 cm-3 in analyzed long wavelength range. In addition Shockley-Read-Hall traps could be reduced to the level of ∼4.4 × 108 cm-3 resulting in suppression of the dark current by nearly two orders of magnitude within the range ∼20 ÷ 0.31 A/cm2 and detectivity, ∼1010-1011 cmHz1/2/W at temperature 230 K, voltage 200 mV.
Percolation of spatially constrained Erdős-Rényi networks with degree correlations.
Schmeltzer, C; Soriano, J; Sokolov, I M; Rüdiger, S
2014-01-01
Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.
NASA Astrophysics Data System (ADS)
Dong, Shuai; Wang, Xiaojie
2017-04-01
In this study, various amounts of carbonyl iron particles (CIPs) were cured into polydimethylsiloxane (PDMS) matrix under a magnetic field up to 1.0 T to create anisotropy of conductive composite materials. The electrical resistivity for the longitudinal direction was measured as a function of filler volume fraction to understand the electrical percolation behavior. The electrical percolation threshold (EPT) of CIPs-PDMS composite cured under a magnetic field can be as low as 0.1 vol%, which is much less than most of those studies in particulate composites. Meanwhile, the effects of compressive strain on the electrical properties of CIPs-PDMS composites were also investigated. The strain sensitivity depends on filler volume fraction and decreases with the increasing of compressive strain. It has been found that the composites containing a small amount of CI particles curing under a magnetic field exhibit a high strain sensitivity of over 150. Based on the morphological observation of the composite structures, a two-dimensional stick percolation model for the CIPs-PDMS composites has been established. The Monte Carlo simulation is performed to obtain the percolation probability. The simulation results in prediction of the values of EPTs are close to that of experimental measurements. It demonstrates that the low percolation behavior of CIPs-PDMS composites is due to the average length of particle chains forming by external magnetic field.
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
Influence of polyethylene glycol on percolation dynamics of reverse microemulsions
NASA Astrophysics Data System (ADS)
Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.
2018-04-01
We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.
Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng
To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).
Arikan, Ş; Kalender, H; Simsek, O
2010-12-01
The aim of the present study was to evaluate the effects of cholesterol on progesterone production during long-term culturing of luteal cell subpopulations at early and late luteal stages of the goat corpora lutea. Corpora lutea were collected from Angora goats on days 5 and 15 of the oestrous cycle. Luteal cells were isolated by collagenase digestion. The cells were separated into two distinct subpopulations by Percoll density-gradient centrifugation. Both subpopulations of luteal cells staining positively for 3β-HSD activities (5 × 10(4) cell/well) were cultured with or without 22(R)-hydroxycholesterol (22R-HC) in serum-free culture medium for periods of up to 7 days. Cells were incubated with serum (10%) for the first 18 h of incubation followed by serum-free medium. Cell treatment (10 and 20 μg/ml) was performed on days 1, 3 and 5. Treatment of cells with both concentrations of 22R-HC resulted in significant (p < 0.01) and dose-dependent stimulation (p > 0.05) on progesterone production in both fractions of cells throughout 7 days of incubation. Treatment of the cells with cholesterol resulted in 2.5- and 9.0-fold increases in progesterone accumulation on day 3 of incubation. Steroid production was maintained throughout the incubations when cells are incubated in serum-free media treated with cholesterol and ITS premix. Cells collected from higher density of percoll layers produced 2.82 and 2.32 times more progesterone, in comparison to the lover density percoll layer, on days 5 and 15 of the oestrous cycle in untreated cell groups, respectively. Progesterone accumulation was decreased as incubation time advanced in all groups of untreated cells. These results demonstrated that goat luteal cell subpopulations secrete substantial amounts of progesterone in response to cholesterol treatment at least for 7 days, and cholesterol is required as progesterone precursor for maintaining a high-level steroidogenesis during long-life culturing of both cell subpopulations. © 2010 Blackwell Verlag GmbH.
Graphene: A partially ordered non-periodic solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Dongshan; Wang, Feng, E-mail: fengwang@uark.edu
2014-10-14
Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allowmore » large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic.« less
Long-Term Orientation and Educational Performance. Working Paper 174
ERIC Educational Resources Information Center
Figlio, David; Giuliano, Paola; Özek, Umut; Sapienza, Paola
2017-01-01
We use remarkable population-level administrative education and birth records from Florida to study the role of Long-Term Orientation on the educational attainment of immigrant students living in the US. Controlling for the quality of schools and individual characteristics, students from countries with long-term oriented attitudes perform better…
Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presentedmore » in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.« less
Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.
Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang
2017-10-24
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.
Inorganic arsenic removal in rice bran by percolating cooking water.
Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A
2017-11-01
Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.
Piezoresistive strain sensing of carbon black /silicone composites above percolation threshold
NASA Astrophysics Data System (ADS)
Shang, Shuying; Yue, Yujuan; Wang, Xiaoer
2016-12-01
A series of flexible composites with a carbon black (CB) filled silicone rubber matrix were made by an improved process in this work. A low percolation threshold with a mass ratio of 2.99% CB was achieved. The piezoresistive behavior of CB/silicone composites above the critical value, with the mass ratio of carbon black to the silicone rubber ranging from 0.01 to 0.2, was studied. The piezoresistive behavior was different from each other for the composites with different CB contents. But, the composites show an excellent repeatability of piezoresistivity under cyclic compression, no matter with low filler content or with high filler content. The most interesting phenomena were that the plots of gauge factor versus strain of the composites with different CB contents constructed a master curve and the curve could be well fitted by a function. It was showed that the gauge factor of the composites was strain-controlled showing a promising prospect of application.
NASA Astrophysics Data System (ADS)
Azuma, Keisuke; Sakajiri, Koichi; Okabe, Takashi; Matsumoto, Hidetoshi; Kang, Sungmin; Watanabe, Junji; Tokita, Masatoshi
2017-09-01
We investigated the sheet resistance (R s) and transmittance (T) of seamless two-dimensional networks of 50-nm-thick aluminum (Al) nanowires (NWs) with widths (W) ranging from 380 to 1410 nm. The Al NWs were fabricated by wet-etching of Al metalized polyester films with using polystyrene (PS) nanofibers as the mask. The PS nanofibers were deposited by the electrospinning of a PS solution and adhered to the film by annealing. W and the area coverage (φ) were increased with increasing PS solution concentration and deposition time, respectively. With increasing φ from 3 to 34%, T and R s decreased from 99 to 75% and from 800 to 10 Ω/sq, respectively, and the network with W = 878 nm at φ = 0.21 attained values of T = 91% and R s = 31 Ω/sq. The conductivity increases with φ with an exponent of 2, demonstrating that seamless NW networks are characterized by the zero percolation threshold.
Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.
Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich
2003-02-01
We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.
Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; ...
2015-12-01
Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J.P. Koutchouk,more » CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called ''configurations,'' where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. Furthermore, for all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.« less
Percolation of secret correlations in a network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leverrier, Anthony; Garcia-Patron, Raul; Research Laboratory of Electronics, MIT, Cambridge, MA 02139
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.
NASA Astrophysics Data System (ADS)
Fessel, Adrian; Oettmeier, Christina; Bernitt, Erik; Gauthier, Nils C.; Döbereiner, Hans-Günther
2012-08-01
We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition. It is generally applicable to percolation as seen, e.g., in vascular networks.
News and views in discontinuous phase transitions
NASA Astrophysics Data System (ADS)
Nagler, Jan
2014-03-01
Recent progress in the theory of discontinuous percolation allow us to better understand the the sudden emergence of large-scale connectedness both in networked systems and on the lattice. We analytically study mechanisms for the amplification of critical fluctuations at the phase transition point, non-self-averaging and power law fluctuations. A single event analysis allow to establish criteria for discontinuous percolation transitions, even on the high-dimensional lattice. Some applications such as salad bowl percolation, and inverse fragmentation are discussed.
Fluid Percolation Within AN Ocean-Continent Transition
NASA Astrophysics Data System (ADS)
Kaczmarek, M.; Reddy, S. M.
2013-12-01
Divergent plate boundaries, such as ocean-continent transitions (OCT) are the perfect target to study mechanisms activated during extension leading to localisation of deformation. The Platta-Totalp massifs in the Eastern Central Alps (Grison, Switzerland) represent a type example of a zone of exhumed continental mantle and offer a complete stratigraphic sequence of an OCT. A detailed study of the geochemistry and microstructures is undertaken to characterise the deformation in such setting. The mantle rocks are spinel lherzolites and harzburgites, into which gabbros and basaltic dykes were intruded, and are partially covered by ophicarbonates. Previous work across the Platta reveals that mantle rocks close to the continent may represent spinel peridotite mixed with (garnet)-pyroxenite layers while the ultramafic rocks at some distance from the continent are pyroxenite-poor peridotites that equilibrated in the plagioclase stability field (Muntener et al. 2004). Fieldwork across the mantle sequence shows localization of deformation with metric or centimetric shear-zones. Peridotites in shear-zones close to the continent have an ultra-mylonitic texture, and contain amphibole testifying fluid percolation. In a centimetric shear-zone amphibole is observed within a matrix made up of a mixture of pyroxenes, olivine, amphibole and spinel with a grain size from 1 to 8 μm, and as round grains (grain size from 30 to 50μm) embedded in the fine-grained matrix. The host peridotite, which is also deformed, contains larger grains of amphibole with a grain size up to 400 μm. The chemical composition of the amphibole changes from large to small grains, increasing in K2O and decreasing in TiO2 (wt%) indicating an evolution of the percolating fluid during the localisation of deformation. Another ultra-mylonite (grain size ~ 5μm) from the same mantle sequence displays unmixed areas of clinopyroxene-amphibole and olivine-orthopyroxene, which are folded together. The chemical composition of the amphibole has a lower TiO2 and K2O content than in the other sample. From the continent to the ocean, the clinopyroxene shows a decrease in Na2O for a similar Cr2O3 (wt%) content. However, clinopyroxene compositions indicate a decrease in Al2O3, Na2O, and Cr2O3 (wt%) and homogenisation of the compositions in the fine-grained matrix in the entire sequence suggesting a concordant decrease in temperature. A detailed study of the peridotite textures and geochemistry is combined with analysis of the crystallographic preferred orientation using the EBSD method to determine the deformation mechanisms activated during extension. Mapping of individual porphyroclastic clinopyroxenes and large grains of amphiboles within the host (deformed) peridotite display cumulative misorientation angles up to 35 degrees. Moreover, the patterns of dispersion indicate intra-grain composite deformation leading to a grain size reduction. Our preliminary results indicate fluid percolation and chemical variation during localisation of deformation. This study will constrain the localisation of the deformation related to decreasing temperatures and fluid percolation within extensional setting such as OCT. Ref: Muntener et al. 2004, EPSL, 221, 293-308
NASA Astrophysics Data System (ADS)
Kreitler, Charles W.; Browning, Lawrence A.
1983-02-01
Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.
Long-range stripe nanodomains in epitaxial (110) BiFeO 3 thin films on (100) NdGaO 3 substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Yogesh; Agarwal, Radhe; Phatak, Charudatta
Here, we report the observation of ferroelectric and ferroelastic nanodomains in (110)-oriented BiFeO 3 (BFO) thin films epitaxially grown on low symmetric (100) NdGaO 3 (NGO) substrate. We observed long range ordering of ferroelectric 109° stripe nanodomains separated by periodic vertical domain walls in as-grown 130 nm thick BFO films. The effect of La 0.67Sr 0.33CoO 3 (LSCO) conducting interlayer on domain configurations in BFO/NGO film was also observed with relatively short range-ordering of stripe domains due to the modified electrostatic boundary conditions in BFO/LSCO/NGO film. Additional studies on B-site doping of Nb ions in BFO films showed change inmore » the domain structures due to doping induced change in lattice anisotropy while maintaining the stripe domain morphology with 109° domain wall. Finally, this long-range array of ferroelectric and ferroelastic domains can be useful for optoelectronic devices and ferroelastic templates for strain coupled artificial magnetoelectric heterostructures.« less
Long-range stripe nanodomains in epitaxial (110) BiFeO 3 thin films on (100) NdGaO 3 substrate
Sharma, Yogesh; Agarwal, Radhe; Phatak, Charudatta; ...
2017-07-07
Here, we report the observation of ferroelectric and ferroelastic nanodomains in (110)-oriented BiFeO 3 (BFO) thin films epitaxially grown on low symmetric (100) NdGaO 3 (NGO) substrate. We observed long range ordering of ferroelectric 109° stripe nanodomains separated by periodic vertical domain walls in as-grown 130 nm thick BFO films. The effect of La 0.67Sr 0.33CoO 3 (LSCO) conducting interlayer on domain configurations in BFO/NGO film was also observed with relatively short range-ordering of stripe domains due to the modified electrostatic boundary conditions in BFO/LSCO/NGO film. Additional studies on B-site doping of Nb ions in BFO films showed change inmore » the domain structures due to doping induced change in lattice anisotropy while maintaining the stripe domain morphology with 109° domain wall. Finally, this long-range array of ferroelectric and ferroelastic domains can be useful for optoelectronic devices and ferroelastic templates for strain coupled artificial magnetoelectric heterostructures.« less
NASA Astrophysics Data System (ADS)
Yang, Yunpeng
Controlled ceramic processing is required to produce ceramic parts with few strength-limiting defects and the economic forming of near net shape components. Temperature induced forming (TIF) is a novel ceramic forming process that uses colloidal processing to form ceramic green bodies by physical gelation. The dissertation research shows that TIF alumina suspensions (>40vol%) can be successfully fabricated by using 0.4wt% of ammonium citrate powder and <0.1wt% poly (acrylic acid) (PAA). It is found that increasing the volume fraction of alumina or the molecular weight of polymer will increase the shear viscosity and shear modulus. Larger molecular weight PAA tends to decrease the volume fraction gelation threshold of the alumina suspensions. The author is the first in this field to utilize the continuous percolation theory to interpret the evolution of the storage modulus with temperature for the TIF alumina suspensions. A model that relates the storage modulus with temperature and the volume fraction of solids is proposed. Calculated results using this percolation model show that the storage modulus of the suspensions can be affected by the volume fraction of solids, temperature, volume fraction gelation threshold and the percolation nature. The parameters in this model have been derived from the experimental data. The calculated results fit the measured data well. For the PAA-free TIF alumina suspensions, it is found that the ionization reaction of the magnesium citrate, which is induced by the pH or temperature of the suspensions, controls the flocculation of the suspensions. The percolation theory model was successfully applied to this type of suspension. Compared with the PAA addition TIF suspensions, these suspensions reflect a higher degree of percolation nature, as indicated by a larger value of percolation exponent. These results show that the percolation model proposed in this dissertation can be used to predict the gelation degree of the TIF suspensions. Complex-shape engineering ceramic parts have been successfully fabricated by direct casting using the TIF alumina suspensions, which has a relative density of ˜65%. The sintered sample at 1550°C for 2h is translucent and has a uniform grain size.
Li, Xiaoe; Nazeeruddin, Mohammad K; Thelakkat, Mukundan; Barnes, Piers R F; Vilar, Ramón; Durrant, James R
2011-01-28
We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ∼60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide bandgap inorganic materials for battery and sensing applications.
Predictability of drug release from water-insoluble polymeric matrix tablets.
Grund, Julia; Körber, Martin; Bodmeier, Roland
2013-11-01
The purpose of this study was to extend the predictability of an established solution of Fick's second law of diffusion with formulation-relevant parameters and including percolation theory. Kollidon SR (polyvinyl acetate/polyvinylpyrrolidone, 80/20 w/w) matrix tablets with various porosities (10-30% v/v) containing model drugs with different solubilities (Cs=10-170 mg/ml) and in different amounts (A=10-90% w/w) were prepared by direct compression and characterized by drug release and mass loss studies. Drug release was fitted to Fick's second law to obtain the apparent diffusion coefficient. Its changes were correlated with the total porosity of the matrix and the solubility of the drug. The apparent diffusion coefficient was best described by a cumulative normal distribution over the range of total porosities. The mean of the distribution coincided with the polymer percolation threshold, and the minimum and maximum of the distribution were represented by the diffusion coefficient in pore-free polymer and in aqueous medium, respectively. The derived model was verified, and the applicability further extended to a drug solubility range of 10-1000 mg/ml. The developed mathematical model accurately describes and predicts drug release from Kollidon SR matrix tablets. It can efficiently reduce experimental trials during formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.
Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.
Grossberg, S; Mingolla, E
1993-03-01
A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.
NASA Astrophysics Data System (ADS)
Basch, V.; Rampone, E.; Crispini, L.; Ferrando, C.; Ildefonse, B.; Godard, M.
2017-12-01
Recent studies investigate the replacive formation of hybrid troctolites from mantle peridotites after multiple stages of melt-rock reactions. However, none of these studies are conducted in a field-controlled geological setting displaying the clear evolution from peridotite to dunite to troctolite. We investigated the Mt.Maggiore and Erro Tobbio ophiolitic peridotites. They both preserve structural and chemical records of two distinct melt-rock interaction stages, from a reactive melt percolation at spinel facies to plagioclase-bearing melt impregnation at shallower lithospheric depths. We performed EBSD and in situ geochemical analyses to document the textural, structural and geochemical variations of the olivine matrix during melt-rock interactions and the associated evolution from peridotite to dunite to troctolite. The olivine-saturated reactive melt percolation leads to the dissolution of mantle pyroxenes in peridotite, and to the formation of replacive dunite. At shallower level, melt impregnation leads to the crystallization of plagioclase in the dunite, and to the formation of hybrid troctolite. The latter is characterized by textural, structural and geochemical features acquired during dunitization and impregnation processes. We documented a textural evolution of the olivine matrix (decrease in grain area, tortuosity and aspect ratio) during impregnation, with a progressive corrosion of mantle olivines by a reactive melt. As a result, olivine in the hybrid troctolites occurs both as coarse deformed relicts and disrupted undeformed grains. During melt-rock interactions, the variation in olivine Crystallographic Preferred Orientation is related to the local melt/rock ratio involved in the percolation process. At high melt/rock ratio, a change from axial-[100] to axial-[010] is observed, with the disaggregation of the solid matrix. REE-enriched compositions are observed in olivine of dunites and troctolites. A geochemical modeling of melt-rock interactions (Plate Model) fits the observed evolution of modal composition with the measured trace element composition variability. The combined field, structural, and geochemical investigation of the evolution from a mantle protolith to the product of the reactions truly supports the hybrid origin of an olivine-rich troctolite.
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
NASA Astrophysics Data System (ADS)
Aller, M. F.; Aller, H. D.; Hughes, P. A.
2003-03-01
Using UMRAO centimeter-band total flux density and linear polarization monitoring observations of the complete Pearson-Readhead extragalactic source sample obtained between 1984 August and 2001 March, we identify the range of variability in extragalactic objects as functions of optical and radio morphological classification and relate total flux density variations to structural changes in published coeval VLBI maps in selected objects. As expected, variability is common in flat- or inverted-spectrum (α<=0.5) core-dominated QSOs and BL Lac objects. Unexpectedly, we find flux variations in several steep-spectrum sample members, including the commonly adopted flux standard 3C 147. Such variations are characteristically several-year rises or declines or infrequent outbursts, requiring long-term observations for detection: we attribute them to the brightening of weak core components, a change that is suppressed by contributions from extended structure in all but the strongest events, and identify a wavelength dependence for the amplitude of this variability consistent with the presence of opacity in some portions of the jet flow. One morphological class of steep-spectrum objects, the compact symmetric objects (CSOs), characteristically shows only low-level variability. We examine the statistical relation between fractional polarization and radio class based on the data at 14.5 and 4.8 GHz. The blazars typically exhibit flat-to-inverted polarization spectra, a behavior attributed to opacity effects. Among the steep-spectrum objects, the lobe-dominated FR I galaxies have steep fractional polarization spectra, while the FR II galaxies exhibit fractional polarization spectra ranging from inverted to steep, with no identifiable common property that accounts for the range in behavior. For the CSO/gigahertz-peaked spectrum sources, we verify that the fractional polarizations at 4.8 GHz are only of the order of a few tenths of a percent, but at 14.5 GHz we find significantly higher polarizations, ranging from 1% to 3%; this frequency dependence supports a scenario invoking Faraday depolarization by a circumnuclear torus. We have identified preferred orientations of the electric vector of the polarized emission (EVPA) at 14.5 and 4.8 GHz in roughly half of the objects and compared these with orientations of the flow direction indicated by VLBI morphology. When comparing the distributions of the orientation offsets for the BL Lac objects and the QSOs, we find differences in both range and mean value, in support of intrinsic class differences. In the shock-in-jet scenario, we attribute this to the allowed range of obliquities of shocks developing in the flow relative to the flow direction: in the BL Lac objects the shocks are nearly transverse to the flow direction, while in the QSOs they include a broader range of obliquities and can be at large angles to it. The fact that we find long-term stability in EVPA over many events implies that a dominant magnetic field orientation persists; in the core-dominated objects, with small contribution from the underlying quiescent jet, this plausibly suggests that the magnetic field has a long-term memory, with subsequent shock events exhibiting similar EVPA orientation, or, alternatively, the presence of a standing shock in the core. We have looked for systematic, monotonic changes in EVPA, which might be expected in the emission from a precessing jet, a model currently invoked for some AGNs; none were identified. Further, we carried out a Scargle periodogram analysis of the total flux density observations, but found no strong evidence for periodicity in any of the sample sources. The only well-established case in support of both jet precession and periodic variability remains the non-sample member OJ 287.
Effect of site disorder on the ground state of a frustrated spin dimer quantum magnet
NASA Astrophysics Data System (ADS)
Hristov, Alexander; Shapiro, Maxwell; Lee, Minseong; Rodenbach, Linsey; Choi, Eun Sang; Park, Ju-Hyun; Munsie, Tim; Luke, Graeme; Fisher, Ian
Ba3Mn2O8 is a geometrically frustrated spin dimer quantum magnet. Pairs of Mn 5+ (S = 1) ions are strongly coupled via antiferromagnetic exchange to yield a singlet ground state, with excited triplet and quintuplet states. Isovalent substitution of V5+ (S = 0) for Mn breaks dimers, resulting in unpaired S = 1 spins, the ground state of which is investigated here for compositions spanning the range 0 <= x <= 1 of Ba3(Mn1-xVx)2O8. From a theoretical perspective, for dimers occupying an unfrustrated bipartite lattice, such site disorder is anticipated to yield long range magnetism for unpaired Mn spins both in the dilute limit where x is small, a phenomena known as order-by-disorder, and in the proximity of x = 1 / 2 where the system is maximally disordered and close to a percolation threshold. In this frustrated system, however, our experiments find evidence of spin freezing for six compositions 0 . 05 <= x <= 0 . 85 . In this regime, we find entropy removed at an energy scale independent of the freezing temperature. We discuss the possibility of a spin-glass to random singlet transition for critical compositions in the two dilute limits x -> 0 and x -> 1 . NSF DMR-Award 1205165.
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.
2013-12-01
Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.
Effect of Percolation on the Cubic Susceptibility of Metal Nanoparticle Composites
NASA Technical Reports Server (NTRS)
Smith, David D.; Bender, Matthew W.; Boyd, Robert W.
1998-01-01
Generalized two-dimensional and three-dimensional Maxwell Garnett and Bruggeman geometries reveal that a sign reversal in the cubic susceptibility occurs for metal nanoparticle composites near the percolation threshold.
Percolation of binary disk systems: Modeling and theory
Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.
2017-01-12
The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less
Percolation Magnetism in Ferroelectric Nanoparticles
NASA Astrophysics Data System (ADS)
Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.
2017-06-01
Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.
Critical current simulation in granular superconductors above the percolation threshold
NASA Astrophysics Data System (ADS)
Riedinger, Roland
1992-02-01
In the phase-coherent regime without applied external magnetic field, the critical superconducting current is limited by intragranular junctions which behave like Josephson junctions. We study the percolation aspects specific to lattices of such junctions and/or the mixing of superconductor with normal grains by averaging over configurations. We illustrate on 2 and 3 dimensional examples. The power laws valid near the percolation threshold are valid well above it, in two and three dimensions. We discuss the other models limiting the superconducting current, the vortex creep and superconducting order parameter fluctuations. Dans la limite de champ magnétique nul et de cohérence de phase du paramètre d'ordre supraconducteur, le courant supraconducteur maximal dans un réseau est limité par les jonctions intergranulaires qui se comportent comme des jonctions Josephson. Nous analysons les problèmes de percolation spécifiques aux réseaux de jonctions et du mélange de grains normaux et supraconducteurs. Nous donnons des exemples bidimensionnels et tridimensionnels ; après moyenne sur les configurations et analyse en taille finie, nous montrons que les lois de puissance valables au voisinage du seuil de percolation s'étendent sur un grand domaine au-delà du seuil de percolation, à deux et trois dimensions. Nous discutons les autres modèles limitant le courant supraconducteur, ancrage de vortex et fluctuations du paramètre d'ordre.
NASA Astrophysics Data System (ADS)
Seyrich, Maximilian; Sornette, Didier
2016-04-01
We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power sa (with a>1) of the cluster sizes s, similarly to a generalized percolation susceptibility. The power sa of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold pc. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.
NASA Astrophysics Data System (ADS)
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.
NASA Astrophysics Data System (ADS)
Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal
2017-04-01
Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.
An Attempt to Quantify the Economic Benefits of Scientific Research, Science Policy Studies No. 4.
ERIC Educational Resources Information Center
Byatt, I. C. R.; Cohen, A. V.
This paper presents a possible methodology for measuring and predicting the future course of the long-range economic benefits of "curiosity-oriented" research. The basic premise is that much pure research tends to give rise to major industries in about one generation. Each industry will have some total economic benefit which can be…
NASA Astrophysics Data System (ADS)
Reeves, Jodi Lynn
Microstructural barriers to supercurrent occur on many length scales in all high temperature oxide superconductors. Eliminating microstructural barriers is key to making these potentially valuable materials more favorable for commercial applications. In silver-sheathed Bi2Sr2CaCu 2Ox (Bi-2212) tapes and multifilaments, the principal barriers on the scale of 10--100's of micrometers are bubbling, porosity, second phase particles, and poorly aligned grains. In state-of-the-art YBa2 Cu3Ox (YBCO) coated conductors, supercurrent barriers on the 0.1--100mum scale are grain boundaries. This thesis work clarifies the role of grain boundaries in the nickel substrate of RABiTS (Rolling Assisted Biaxially Textured Substrate) coated conductors. Plan-view SEM imaging, focused ion beam cutting, magneto-optical imaging and grain orientation mapping were used to determine barriers to supercurrent. Experiments showed enhanced magnetic flux penetration, and hence reduced Jc, in the YBCO above nearly all nickel grain boundaries with misorientation angles (theta) greater than 5°, independent of the rotation axis. Monochromatic backscattered electron Kikuchi pattern percolation maps imply there is a fully connected current path through the YBCO microstructure within the chosen tolerance angle criterion of the map. However, it is the grain boundary map that displays the constrictions of the current path. Therefore, grain boundary maps are better tools for illustrating supercurrent barriers than percolation maps. Grain boundary maps and grain orientation maps were used to investigate how the texture of the substrate was transferred to the buffer layers and to the superconductor. Most grasp boundaries in the nickel were replicated in the buffer and superconductor layers with the same misorientation angle. Anisotropic growth and/or surface energy minimization may be responsible for the improvement in c-axis alignment in the YBCO over the buffer layer. However, the YBCO mosaic spread did not eliminate high angle grain boundaries, since >5° boundaries were still seen in YBCO grain boundary maps. The results of this study on microstructural current barriers show that Jc improvements in RABiTS-type coated conductors require eliminating theta > 5° boundaries in the nickel substrate.
NASA Astrophysics Data System (ADS)
Kang, M.; Zhang, H.; Fu, P.
2017-12-01
Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, S.
1992-01-01
An equivalent circuit model was postulated for PFSI (perfluoro-sulfanate-ionomer) polymers. It successfully models three different dielectric relaxation mechanisms taking place within long and short sidechain PFSI's in an alternating electric field. The three dielectric processes are long-range ion inter-cluster hopping in the low frequency region, short-range intra-cluster polarization occurred in frequencies at about 10[sup 3] to 10[sup 6] Hz, and Debye-like orientation of water molecules taking place at very high frequencies. When membranes are annealed in the proximity of the glass transition temperature of ionic clusters, the packing of sulfonate groups becomes more efficient. This is by the fact thatmore » the symmetrical parameter of the distribution of relaxation time of the Cole-Cole equation increases with annealing time. The cluster activities of the long and short sidechain polymers act differently in different electrolyte solutions. The sidechains of the long sidechain polymer act like a spring, it contracts while the material was equilibrated in low concentration solutions and it expands as equilibrated in concentrated solutions. The cluster dimension of the long sidechain material does not vary too much. The cluster dimension of short sidechain polymers can vary significantly on different electrolyte solutions.« less
The Impact of First-Year Seminars on College Students' Life-Long Learning Orientations
ERIC Educational Resources Information Center
Padgett, Ryan D.; Keup, Jennifer R.; Pascarella, Ernest T.
2013-01-01
Using longitudinal data from the Wabash National Study of Liberal Arts Education, this study measured the impact of first-year seminars on college students' life-long learning orientations. The findings suggest that first-year seminars enhance students' life-long learning orientations and that the effect of first-year seminars is mediated through…
NASA Astrophysics Data System (ADS)
Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol
2014-07-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.
Effects of epidemic threshold definition on disease spread statistics
NASA Astrophysics Data System (ADS)
Lagorio, C.; Migueles, M. V.; Braunstein, L. A.; López, E.; Macri, P. A.
2009-03-01
We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size
Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold
NASA Astrophysics Data System (ADS)
Yang, Wenhu; Yu, Shuhui; Sun, Rong; Ke, Shanming; Huang, Haitao; Du, Ruxu
2011-11-01
A type of Ni/CCTO/PVDF three-phase percolative composite was prepared, in which the filler content (volume fraction) of Ni and CCTO was set at 60 vol%. The dependence of permittivity, electrical modulus and ac conductivity on the concentration of Ni and CCTO fillers near the percolation threshold was investigated in detail. The permittivity of the composites dramatically increased as the Ni content approached 24 vol%. This unique physical mechanism was realized as the formation of conductive channels near the percolation threshold. Analysis on the electrical modulus showed that the conductive channels are governed by three relaxation processes induced by the fillers (Ni, CCTO) and PVDF matrix, which are the interfacial polarization derived from the interfaces between fillers (Ni, CCTO) and PVDF matrix, and the polarization of CCTO ceramic filler and PVDF matrix. The conductivity behaviour with various Ni loadings and temperature suggested that the transition from an insulating to a conducting state should be induced by charge tunnelling between Ni-Ni particles, Ni-CCTO fillers and Ni-PVDF matrix. These findings demonstrated that the tunnelling conduction in the composite can be attributed to the unique physical mechanism near the percolation threshold.
Crossover from isotropic to directed percolation
NASA Astrophysics Data System (ADS)
Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin
2012-08-01
We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2
Geometric structure of percolation clusters.
Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin
2014-01-01
We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
Strain transients in the Gulf of Corinth (Greece)
NASA Astrophysics Data System (ADS)
Canitano, Alexandre; Bernard, Pascal; Linde, Alan; Sacks, Selwyn; Boudin, Frederick
2010-05-01
The Gulf of Corinth (Greece) is one of the most seismic regions in Europe, producing some earthquakes of magnitude greater than 5.8 in the last 35 years, 1 to 1.5 cm/yr of north-south extension, and frequent seismic swarms. This structure is a 110 km long, N110E oriented graben bounded by systems of very recent normal faults. This zone thus provides an ideal site for investigating in situ the physics of earthquake sources and for developing efficient seismic hazard reduction procedures. The Corinth Rift Laboratory (CRL) project is concentrated in the western part of the rift, around the city of Aigion, where instrumental seismicity and strain rate is highest. The CRL Network is made up about fifteen seismic stations as well as tiltmeters, strainmeters or GPS in order to study the local seismicity, and to observe and model the short and long term mechanics of the normal fault system. The instrumental seismicity in the Aigion zone clearly shows a strong concentration of small earthquakes between 5 and 10 km. In order to study slow transient deformation, two borehole strainmeters have been installed in the Gulf (Trizonia, Monasteraki). The strainmeter installed in the Trizonia island is continuously recording the horizontal strain at 150m depth with a resolution better than 10-9. The dominant signal is the earth and sea tidal effects (few 10-7 strain), this one is modulated by the mechanical effects of the free oscillations of the Gulf with periods between 8 and 40 min. The barometric pressure fluctuations acts in combination with the mean sea level variation at longer periods and both effects are not independant. The comparison between the strain data and the two forcing signals (sea-level, barometric pressure) shows clearly a non zero phase delay of the sea-level. The analysis of time correlations between the signals in differents frequency range exhibits that the sea level delay and the strainmeter/sea-level coupling coefficient are increasing with period (about 1/10 of a period for 10-40 hrs period range). This analysis allows us to estimate a transfert function for each forcing signal but the physical interpretation of the sea-level function is difficult. As the strainmeter is at 150m depth, below the shoreline, a sea water percolation on land would increase the effect of sea level fluctuation, and be more efficient at longer periods. This interpretation and the study of the mechanical effects on strainmeter allow us to accurate the sea level admittance and to remove the water effect from the strain data. This residual signals are studied in order to find slow transient signatures, especially during the reported seismic swarms.
Percolation and epidemics in a two-dimensional small world
NASA Astrophysics Data System (ADS)
Newman, M. E.; Jensen, I.; Ziff, R. M.
2002-02-01
Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant diseases. In this paper we give an analytic solution of this model using a combination of generating function methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the position of the percolation threshold and the typical size of disease outbreaks as a function of the density of ``shortcuts'' in the small-world network. Our results agree with scaling hypotheses and numerical simulations for the same model.
Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition
Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I
2011-01-01
One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087
Mesons in strong magnetic fields: (I) General analyses
Hattori, Koichi; Kojo, Toru; Su, Nan
2016-03-21
Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ 2 QCD with Λ QCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus amore » large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B 2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less
NASA Astrophysics Data System (ADS)
Olekhno, N. A.; Beltukov, Y. M.
2018-05-01
Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric nanocomposites. Two-dimensional networks are applied when considering thin films despite the fact that such networks correspond to the two-dimensional electrodynamics [Clerc et al., J. Phys. A 29, 4781 (1996), 10.1088/0305-4470/29/16/006]. In the present work, we propose a model of two-dimensional systems with the three-dimensional Coulomb interaction and show that this model is equivalent to the planar network with long-range capacitive links between distant sites. In the case of a metallic film, we obtain the well-known dispersion of two-dimensional plasmons ω ∝√{k } . We study the evolution of resonances with a decrease in the metal filling factor within the framework of the proposed model. In the subcritical region with the metal filling p lower than the percolation threshold pc, we observe a gap with Lifshitz tails in the spectral density of states (DOS). In the supercritical region p >pc , the DOS demonstrates a crossover between plane-wave two-dimensional plasmons and resonances of finite clusters.
'Fracking', Induced Seismicity and the Critical Earth
NASA Astrophysics Data System (ADS)
Leary, P.; Malin, P. E.
2012-12-01
Issues of 'fracking' and induced seismicity are reverse-analogous to the equally complex issues of well productivity in hydrocarbon, geothermal and ore reservoirs. In low hazard reservoir economics, poorly producing wells and low grade ore bodies are many while highly producing wells and high grade ores are rare but high pay. With induced seismicity factored in, however, the same distribution physics reverses the high/low pay economics: large fracture-connectivity systems are hazardous hence low pay, while high probability small fracture-connectivity systems are non-hazardous hence high pay. Put differently, an economic risk abatement tactic for well productivity and ore body pay is to encounter large-scale fracture systems, while an economic risk abatement tactic for 'fracking'-induced seismicity is to avoid large-scale fracture systems. Well productivity and ore body grade distributions arise from three empirical rules for fluid flow in crustal rock: (i) power-law scaling of grain-scale fracture density fluctuations; (ii) spatial correlation between spatial fluctuations in well-core porosity and the logarithm of well-core permeability; (iii) frequency distributions of permeability governed by a lognormality skewness parameter. The physical origin of rules (i)-(iii) is the universal existence of a critical-state-percolation grain-scale fracture-density threshold for crustal rock. Crustal fractures are effectively long-range spatially-correlated distributions of grain-scale defects permitting fluid percolation on mm to km scales. The rule is, the larger the fracture system the more intense the percolation throughput. As percolation pathways are spatially erratic and unpredictable on all scales, they are difficult to model with sparsely sampled well data. Phenomena such as well productivity, induced seismicity, and ore body fossil fracture distributions are collectively extremely difficult to predict. Risk associated with unpredictable reservoir well productivity and ore body distributions can be managed by operating in a context which affords many small failures for a few large successes. In reverse view, 'fracking' and induced seismicity could be rationally managed in a context in which many small successes can afford a few large failures. However, just as there is every incentive to acquire information leading to higher rates of productive well drilling and ore body exploration, there are equal incentives for acquiring information leading to lower rates of 'fracking'-induced seismicity. Current industry practice of using an effective medium approach to reservoir rock creates an uncritical sense that property distributions in rock are essentially uniform. Well-log data show that the reverse is true: the larger the length scale the greater the deviation from uniformity. Applying the effective medium approach to large-scale rock formations thus appears to be unnecessarily hazardous. It promotes the notion that large scale fluid pressurization acts against weakly cohesive but essentially uniform rock to produce large-scale quasi-uniform tensile discontinuities. Indiscriminate hydrofacturing appears to be vastly more problematic in reality than as pictured by the effective medium hypothesis. The spatial complexity of rock, especially at large scales, provides ample reason to find more controlled pressurization strategies for enhancing in situ flow.
Mayo, John W.
2008-01-01
The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance being impermeable surfaces).
Percolation and Reinforcement on Complex Networks
NASA Astrophysics Data System (ADS)
Yuan, Xin
Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe--in the context of both traditional percolation and k-core percolation--the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdḧs-Renyi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks.
Galdón, Eduardo; Casas, Marta; Gayango, Manuel; Caraballo, Isidoro
2016-12-01
The deep understanding of products and processes has become a requirement for pharmaceutical industries to follow the Quality by Design principles promoted by the regulatory authorities. With this aim, SeDeM expert system was developed as a useful preformulation tool to predict the likelihood to process drugs and excipients through direct compression. SeDeM system is a step forward in the rational development of a formulation, allowing the normalisation of the rheological parameters and the identification of the weaknesses and strengths of a powder or a powder blend. However, this method is based on the assumption of a linear behavior of disordered systems. As percolation theory has demonstrated, powder blends behave as non-linear systems that can suffer abrupt changes in their properties near to geometrical phase transitions of the components. The aim of this paper was to analyze for the first time the evolution of the SeDeM parameters in drug/excipient powder blends from the point of view of the percolation theory and to compare the changes predicted by SeDeM with the predictions of Percolation theory. For this purpose, powder blends of lactose and theophylline with varying concentrations of the model drug have been prepared and the SeDeM analysis has been applied to each blend in order to monitor the evolution of their properties. On the other hand, percolation thresholds have been estimated for these powder blends where critical points have been found for important rheological parameters as the powder flow. Finally, the predictions of percolation theory and SeDeM have been compared concluding that percolation theory can complement the SeDeM method for a more accurate estimation of the Design Space. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi
2015-06-01
We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.
Point-to-point connectivity prediction in porous media using percolation theory
NASA Astrophysics Data System (ADS)
Tavagh-Mohammadi, Behnam; Masihi, Mohsen; Ganjeh-Ghazvini, Mostafa
2016-10-01
The connectivity between two points in porous media is important for evaluating hydrocarbon recovery in underground reservoirs or toxic migration in waste disposal. For example, the connectivity between a producer and an injector in a hydrocarbon reservoir impact the fluid dispersion throughout the system. The conventional approach, flow simulation, is computationally very expensive and time consuming. Alternative method employs percolation theory. Classical percolation approach investigates the connectivity between two lines (representing the wells) in 2D cross sectional models whereas we look for the connectivity between two points (representing the wells) in 2D aerial models. In this study, site percolation is used to determine the fraction of permeable regions connected between two cells at various occupancy probabilities and system sizes. The master curves of mean connectivity and its uncertainty are then generated by finite size scaling. The results help to predict well-to-well connectivity without need to any further simulation.
Fluid leakage near the percolation threshold
NASA Astrophysics Data System (ADS)
Dapp, Wolf B.; Müser, Martin H.
2016-02-01
Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.
Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
NASA Astrophysics Data System (ADS)
Watters, Arianna L.; Palmese, Giuseppe R.
2014-09-01
Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.
Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics
NASA Astrophysics Data System (ADS)
Wang, Min; Wang, Jun
A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.
Tightness of Salt Rocks and Fluid Percolation
NASA Astrophysics Data System (ADS)
Lüdeling, C.; Minkley, W.; Brückner, D.
2016-12-01
Salt formations are used for storage of oil and gas and as waste repositiories because of their excellent barrier properties. We summarise the current knowledge regarding fluid tightness of saliferous rocks, in particular rock salt. Laboratory results, in-situ observations and natural analogues, as well as theoretical and numerical investigations, indicate that pressure-driven percolation is the most important mechanism for fluid transport: If the fluid pressure exceeds the percolation threshold, i.e. the minor principal stress, the fluid can open up grain boundaries, create connected flow paths and initiate directed migration in the direction of major principal stress. Hence, this mechanism provides the main failure mode for rock salt barriers, where integrity can be lost if the minor principal stress is lowered, e.g. due to excavations or thermomechanical uplift. We present new laboratory experiments showing that there is no fluid permeation below the percolation threshold also at high temperatures and pressures, contrary to recent claims in the literature.
Morgan, Debra G; Kosteniuk, Julie G; Stewart, Norma J; O'Connell, Megan E; Kirk, Andrew; Crossley, Margaret; Dal Bello-Haas, Vanina; Forbes, Dorothy; Innes, Anthea
2015-01-01
Community-based services are important for improving outcomes for individuals with dementia and their caregivers. This study examined: (a) availability of rural dementia-related services in the Canadian province of Saskatchewan, and (b) orientation of services toward six key attributes of primary health care (i.e., information/education, accessibility, population orientation, coordinated care, comprehensiveness, quality of care). Data were collected from 71 rural Home Care Assessors via cross-sectional survey. Basic health services were available in most communities (e.g., pharmacists, family physicians, palliative care, adult day programs, home care, long-term care facilities). Dementia-specific services typically were unavailable (e.g., health promotion, counseling, caregiver support groups, transportation, week-end/night respite). Mean scores on the primary health care orientation scales were low (range 12.4 to 17.5/25). Specific services to address needs of rural individuals with dementia and their caregivers are limited in availability and fit with primary health care attributes.
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function
Guo, Ya; Xu, Quan; Canzio, Daniele; Shou, Jia; Li, Jinhuan; Gorkin, David U.; Jung, Inkyung; Wu, Haiyang; Zhai, Yanan; Tang, Yuanxiao; Lu, Yichao; Wu, Yonghu; Jia, Zhilian; Li, Wei; Zhang, Michael Q.; Ren, Bing; Krainer, Adrian R.; Maniatis, Tom; Wu, Qiang
2015-01-01
SUMMARY CTCF/cohesin play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters, and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. The findings reveal how 3D chromosome architecture can be encoded by genome sequence. PMID:26276636
NASA Astrophysics Data System (ADS)
Pikulik, L. G.; Chernyavskii, V. A.; Grib, A. F.
2000-06-01
Spectral studies of induced quasi-crystal properties (which can be quantitatively characterised by the difference in the refractive indices of ordinary and extraordinary waves, Δn=no—ne) in Rhodamine 6G and Rhodamine 4C solutions in glycerine excited in the visible and UV ranges of the absorption spectrum are presented. It is demonstrated that the observed spectral dependences of Δn of these dye solutions excited in the visible (long-wavelength) and UV (short-wavelength) ranges of the absorption spectrum can be interpreted in terms of an oscillator model of a molecule. The proposed method for the analysis of induced optical anisotropy in solutions of organic compounds allows the relative orientation of oscillators in a molecule and, thus, the relative orientation of electronic transitions in a molecule to be determined in a reliable way.
Percolation and permeability of heterogeneous fracture networks
NASA Astrophysics Data System (ADS)
Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François
2013-04-01
Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data for transmissivity are presented. A simple parallel flow model is introduced. The flow properties of the medium vary with the distance z from the wall. However, the macroscopic pressure gradient does not depend on z, and the flow lines are in average parallel to the wall. Hence, the overall transmissivity is tentatively estimated by a parallel flow model, where a layer at depth z behaves as a fractured medium with uniform properties corresponding to the state at this position in the medium. It yields an explicit analytical expression for the transmissivity as a function of the heterogeneity and anisotropy parameters, and it successfully accounts for all the numerical data. Graphical tools are provided from which first estimates can be quickly and easily obtained. A short overview of the second class of heterogeneous media will be given. [1] Barton C.A., Zoback M.D., J. Geophys. Res., 97B, 5181-5200 (1992). [2] Bossart P. et al, Eng. Geol., vol. 66, 19-38 (2002). [3] Thovert J.-F. et al, Eng. Geol., 117, 39-51 (2011). [4] Adler P.M. et al, Fractured porous media, Oxford U. Press, 2012.
Clarke, John S.; Painter, Jaime A.
2014-01-01
Septic systems were identified at 241,733 locations in a 2,539-square-mile (mi2) study area that includes all or parts of 12 counties in the Metropolitan Atlanta, Georgia, area. Septic system percolation may locally be an important component of streamflow in small drainage basins where it augments natural groundwater recharge, especially during extreme low-flow conditions. The amount of groundwater reaching streams depends on how much is intercepted by plants or infiltrates to deeper parts of the groundwater system that flows beyond a basin divide and does not discharge into streams within a basin. The potential maximum percolation from septic systems in the study area is 62 cubic feet per second (ft3/s), of which 52 ft3/s is in the Chattahoochee River Basin and 10 ft3/s is in the Flint River Basin. These maximum percolation rates represent 0.4 to 5.7 percent of daily mean streamflow during the 2011–12 period at the farthest downstream gaging site (station 02338000) on the Chattahoochee River, and 0.5 to 179 percent of daily mean streamflow at the farthest downstream gaging site on the Flint River (02344350). To determine the difference in base flow between basins having different septic system densities, hydrograph separation analysis was completed using daily mean streamflow data at streamgaging stations at Level Creek (site 02334578), with a drainage basin having relatively high septic system density of 101 systems per square mile, and Woodall Creek (site 02336313), with a drainage basin having relatively low septic system density of 18 systems per square mile. Results indicated that base-flow yield during 2011–12 was higher at the Level Creek site, with a median of 0.47 cubic feet per second per square mile ([ft3/s]/mi2), compared to a median of 0.16 (ft3/s)/mi2, at the Woodall Creek site. At the less urbanized Level Creek site, there are 515 septic systems with a daily maximum percolation rate of 0.14 ft3/s, accounting for 11 percent of the base flow in September 2012. At the more urban Woodall Creek site, there are 50 septic systems with an average daily maximum percolation rate of 0.0097 ft3/s, accounting for 5 percent of base flow in September 2012. Streamflow measurements at 133 small drainage basins (less than 5 mi2 in area) during September 2012 indicated no statistically significant difference in streamflow or specific conductance between basins having high and low density of septic systems (HDS and LDS, respectively). The median base-flow yield was 0.04 (f3/s)/mi2 for HDS sites, ranging from 0 to 0.52 (ft3/s)/mi2, and 0.10 (ft3/s)/mi2 for LDS sites, ranging from 0 to 0.49 (ft3/s)/mi2. A Wilcoxon rank-sum test indicated the median base-flow yields for HDS and LDS sites were not statistically different, with a p-value of 0.345. Because of the large size of the study area and associated variations in basin characteristics, data collected in September 2012 were also evaluated on the basis of the basins physical characteristics in an attempt to reduce or eliminate other basin characteristics that might affect base flow. Basins were evaluated based on geologic area, four geographic subareas, and 45-meter (147.6 ft) buffer zone; there were no statistically significant differences between median base-flow yield for HDS and LDS basins. It is probable that detection of the contribution from septic system percolation in base flow at many of the sites visited in September 2012 was obscured by a combination of the limitations of measurement accuracy and evapotranspiration. Detection of septic system percolation may also have been complicated by leaky water and sewer mains, which may have resulted in higher streamflows in LDS basins relative to HDS basins.
Percolation Features on Climate Network under Attacks of El Niño Events
NASA Astrophysics Data System (ADS)
Lu, Z.
2015-12-01
Percolation theory under different attacks is one of the main research areas in complex networks but never be applied to investigate climate network. In this study, for the first time we construct a climate network of surface air temperature field to analyze its percolation features. Here, we regard El Niño event as a kind of naturally attacks generated from Pacific Ocean to attack its upper climate network. We find that El Niño event leads an abrupt percolation phase transition to the climate network which makes it splitting and unstable suddenly. Comparing the results of the climate network under three different forms of attacks, including most connected attack (MA), localized attack (LA) and random attack (RA) respectively, it is found that both MA and LA lead first-order transition and RA leads second-order transition to the climate network. Furthermore, we find that most real attacks consist of all these three forms of attacks. With El Niño event emerging, the ratios of LA and MA increase and dominate the style of attack while RA decreasing. It means the percolation phase transition due to El Niño events is close to first-order transition mostly affected by LA and MA. Our research may help us further understand two questions from perspective of percolation on network: (1) Why not all warming in Pacific Ocean but El Niño events could affect the climate. (2) Why the climate affected by El Niño events changes abruptly.
Conductive paint-filled cement paste sensor for accelerated percolation
NASA Astrophysics Data System (ADS)
Laflamme, Simon; Pinto, Irvin; Saleem, Hussam S.; Elkashef, Mohamed; Wang, Kejin; Cochran, Eric
2015-04-01
Cementitious-based strain sensors can be used as robust monitoring systems for civil engineering applications, such as road pavements and historic structures. To enable large-scale deployments, the fillers used in creating a conductive material must be inexpensive and easy to mix homogeneously. Carbon black (CB) particles constitute a promising filler due to their low cost and ease of dispersion. However, a relatively high quantity of these particles needs to be mixed with cement in order to reach the percolation threshold. Such level may influence the physical properties of the cementitious material itself, such as compressive and tensile strengths. In this paper, we investigate the possibility of utilizing a polymer to create conductive chains of CB more quickly than in a cementitious-only medium. This way, while the resulting material would have a higher conductivity, the percolation threshold would be reached with fewer CB particles. Building on the principle that the percolation threshold provides great sensing sensitivity, it would be possible to fabricate sensors using less conducting particles. We present results from a preliminary investigation comparing the utilization of a conductive paint fabricated from a poly-Styrene-co-Ethylene-co-Butylene-co-Styrene (SEBS) polymer matrix and CB, and CB-only as fillers to create cementitious sensors. Preliminary results show that the percolation threshold can be attained with significantly less CB using the SEBS+CB mix. Also, the study of the strain sensing properties indicates that the SEBS+CB sensor has a strain sensitivity comparable to the one of a CB-only cementitious sensor when comparing specimens fabricated at their respective percolation thresholds.
NASA Astrophysics Data System (ADS)
Nazarieh, F.; Ansari, H.; Ziaei, A. N.; Izady, A.; Davari, K.; Brunner, P.
2018-05-01
The time required for deep percolating water to reach the water table can be considerable in areas with a thick vadose zone. Sustainable groundwater management, therefore, has to consider the spatial and temporal dynamics of groundwater recharge. The key parameters that control the lag time have been widely examined in soil physics using small-scale lysimeters and modeling studies. However, only a small number of studies have analyzed how deep-percolation rates affect groundwater recharge dynamics over large spatial scales. This study examined how the parameters influencing lag time affect groundwater recharge in a semi-arid catchment under irrigation (in northeastern Iran) using a numerical modeling approach. Flow simulations were performed by the MODFLOW-NWT code with the Vadose-Zone Flow (UZF) Package. Calibration of the groundwater model was based on data from 48 observation wells. Flow simulations showed that lag times vary from 1 to more than 100 months. A sensitivity analysis demonstrated that during drought conditions, the lag time was highly sensitive to the rate of deep percolation. The study illustrated two critical points: (1) the importance of providing estimates of the lag time as a basis for sustainable groundwater management, and (2) lag time not only depends on factors such as soil hydraulic conductivity or vadose zone depth but also depends on the deep-percolation rates and the antecedent soil-moisture condition. Therefore, estimates of the lag time have to be associated with specific percolation rates, in addition to depth to groundwater and soil properties.
Analysis of temperature profiles for investigating stream losses beneath ephemeral channels
Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa
2002-01-01
Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.
2016-01-01
Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540
Cleanup Verification Package for the 116-K-2 Effluent Trench
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2006-04-04
This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.
Tu, Chengjian; Sheng, Quanhu; Li, Jun; Ma, Danjun; Shen, Xiaomeng; Wang, Xue; Shyr, Yu; Yi, Zhengping; Qu, Jun
2015-11-06
The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator-associated combinations; therefore, Percolator enhanced the reliability for both identification and quantification. The analyses were performed using the specific programs embedded in Proteome Discoverer, Scaffold, and an in-house algorithm (BuildSummary). These results provide valuable guidelines for the optimal interpretation of proteomic results and the development of fit-for-purpose protocols under different situations.
NASA Astrophysics Data System (ADS)
Heilig, Achim; Eisen, Olaf; MacFerrin, Michael; Tedesco, Marco; Fettweis, Xavier
2018-06-01
Increasing melt over the Greenland Ice Sheet (GrIS) recorded over the past several years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as a meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness have been observed in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N, 46.2856° W) at 2120 m a.s.l. The radar is capable of quasi-continuously monitoring changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well for both timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg m-2 into firn beneath the summer surface of 2015. We find that continuous observations of liquid water content, percolation depths and rates for the seasonal mass fluxes are sufficiently accurate to provide valuable information for validation of model approaches and help to develop a better understanding of liquid water retention and percolation in perennial firn.
Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures
NASA Astrophysics Data System (ADS)
Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.
Synchronized oscillations and acoustic fluidization in confined granular materials
NASA Astrophysics Data System (ADS)
Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.
2018-01-01
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
Hicks, D.W.; Gill, H.E.; Longsworth, S.A.
1987-01-01
Large withdrawals of groundwater in the 1500 sq mi Albany area of southwestern Georgia have lowered water levels in deep aquifers as much as 140 ft. This study was conducted to evaluate the development potential of the shallow Upper Floridan aquifer as an alternate source of groundwater, especially for public supply. The Upper Floridan stores and transmits large quantities of water, mainly in a zone of high permeability in the lower part of the aquifer. The transmissivity of the aquifer ranges from < 10,000 sq ft/day northwest of Albany, to as much as 150 ,000 sq ft/day south and southeast of Albany. Twenty-eight years of agricultural and industrial pumping has not produced a long-term decline of the water level in the Upper Floridan; the aquifer system remains at equilibrium. The Upper Floridan yields hard, calcium bicarbonate-type water but concentrations do not exceed State drinking water standards. In most of the study area , contaminants applied to or spilled on the land surface eventually can be expected to percolate through the overburden and reach the aquifer. Thus, it is important that wells be sited away from areas that have been used for the storage and disposal of potential contaminants and, probably to a lesser extent, the application of agricultural chemicals. In the area of greatest development potential east of the Flint River, wells may penetrate major groundwater conduits. By limiting drawdown during well development and during production, the likelihood of causing sinkholes to form can be minimized. Closed depressions, or sinks, throughout the Dougherty Plain probably are unsuitable as well sites, because (1) they are subject to flooding, (2) they collect water from upgradient areas and could concentrate potential contaminants, (3) water probably percolates through their bottoms and could transport contaminants into the aquifer, and (4) the depressions may overlie limestone cavities filled with sand or clay that could interfere with well yield, development, and production. (Author 's abstract)
Roy, Susmita; Bagchi, Biman
2013-07-21
Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H2O to 1H2O:1DMSO and 1H2O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H2O and 2DMSO:1H2O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.
EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.
Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca
2014-11-11
With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge obtained from this study is applicable to understand the role of interfaces in ternary nanocomposites with different combinations of nanofillers.
1985-12-01
resonator optics consist of two porro prisms which are oriented 900 from one another about the cavity’s optical axis. In other words, the roof edges of each... prism are perpendicular to one another. The Nd:YAG laser rod measures 5 mm in diameter by 75 mm long and is optically pumped by a Xenon flashlamp. Q...Switching of the laser is performed by a Pockels Cell. A dielectric polarizer is sealed between two right angle prisms which are joined symetrically
Hopson, R.F.; Hillhouse, J.W.; Howard, K.A.
2008-01-01
Analysis of the strikes of 3841 dikes in 47 domains in the 500-km-long Late Jurassic Independence dike swarm indicates a distribution that is skewed clockwise from the dominant northwest strike. Independence dike swarm azimuths tend to cluster near 325?? ?? 30??, consistent with initial subparallel intrusion along much of the swarm. Dike azimuths in a quarter of the domains vary widely from the dominant trend. In domains in the essentially unrotated Sierra Nevada block, mean dike azimuths range mostly between 300?? and 320??, with the exception of Mount Goddard (247??). Mean dike azimuths in domains in the Basin and Range Province in the Argus, Inyo, and White Mountains areas range from 291?? to 354?? the mean is 004?? in the El Paso Mountains. In the Mojave Desert, mean dike azimuths range from 318?? to 023??, and in the eastern Transverse Ranges, they range from 316?? to 051??. Restoration for late Cenozoic vertical-axis rotations, suggested by paleodeclinations determined from published studies from nearby Miocene and younger rocks, shifts dike azimuths into better agreement with azimuths measured in the tectonically stable Sierra Nevada. This confirms that vertical-axis tectonic rotations explain some of the dispersion in orientation, especially in the Mojave Desert and eastern Transverse Ranges, and that the dike orientations can be a useful if imperfect guide to tectonic rotations where paleomagnetic data do not exist. Large deviations from the main trend of the swarm may reflect (1) clockwise rotations for which there is no paleomagnetic evidence available, (2) dike intrusions of other ages, (3) crack filling at angles oblique or perpendicular to the main swarm, (4) pre-Miocene rotations, or (5) unrecognized domain boundaries between dike localities and sites with paleomagnetic determinations. ?? 2008 The Geological Society of America.
Parameterizing the Transport Pathways for Cell Invasion in Complex Scaffold Architectures
Ashworth, Jennifer C.; Mehr, Marco; Buxton, Paul G.; Best, Serena M.
2016-01-01
Interconnecting pathways through porous tissue engineering scaffolds play a vital role in determining nutrient supply, cell invasion, and tissue ingrowth. However, the global use of the term “interconnectivity” often fails to describe the transport characteristics of these pathways, giving no clear indication of their potential to support tissue synthesis. This article uses new experimental data to provide a critical analysis of reported methods for the description of scaffold transport pathways, ranging from qualitative image analysis to thorough structural parameterization using X-ray Micro-Computed Tomography. In the collagen scaffolds tested in this study, it was found that the proportion of pore space perceived to be accessible dramatically changed depending on the chosen method of analysis. Measurements of % interconnectivity as defined in this manner varied as a function of direction and connection size, and also showed a dependence on measurement length scale. As an alternative, a method for transport pathway parameterization was investigated, using percolation theory to calculate the diameter of the largest sphere that can travel to infinite distance through a scaffold in a specified direction. As proof of principle, this approach was used to investigate the invasion behavior of primary fibroblasts in response to independent changes in pore wall alignment and pore space accessibility, parameterized using the percolation diameter. The result was that both properties played a distinct role in determining fibroblast invasion efficiency. This example therefore demonstrates the potential of the percolation diameter as a method of transport pathway parameterization, to provide key structural criteria for application-based scaffold design. PMID:26888449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, B. S., E-mail: bsrosen@wisc.edu; Hammer, C. G.; Kunugi, K. A.
Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression{sup ®} 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibratedmore » optical density (OD) was determined for 96 Gafchromic{sup ®} EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to {sup 60}Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3 rotational dependence was found to have a strong dependence on dose (0.1% and 34% at 30 mGy and 5 Gy, respectively). The preferred EBT3 polymerization axis angle was constant within experimental uncertainties. In its most sensitive orientation, the LDS-measured EBT3 sensitivity was 7.13 × 10{sup −4} ± 9.2 × 10{sup −6} AU/mGy, which represented a 4.5 fold increase over the Epson of 1.58 × 10{sup −4} ± 9.8 × 10{sup −6} AU/mGy. To first order approximations, EBT3 response was linear up to 500 mGy to within 0.80% and to within 7.5% for the most sensitive LDS and the Epson orientations, respectively. The corresponding single-hit and percolation model relative residual norms were 0.082 and 0.074 for LDS as compared to 0.29 and 0.18 for the Epson, which represented a significant increase in LDS-measured agreement with the simple physical model. Less sensitive LDS and the Epson orientations showed a marked decrease in the physical model agreement, which suggested that suboptimal readout device characteristics may be the origin of the complex sensitometric functional forms currently required for accurate RCF dosimetry. Conclusions: The prototype densitometer was shown to be superior to a conventional scanner for quantitative RCF dosimetry based on physical models of film response. The Epson was shown to be a reliable tool for routine RCF dosimetry in a clinical setting, yet calibration to primary optical standards did not mitigate the necessity for complex, empirical functional form fitting.« less
ERIC Educational Resources Information Center
Foley, John P., Jr.
The document presents immediate and long range plans for the systematic injection of Symbolic Integrated Maintenance Systems (SIMS) and Fully Proceduralized Job Performance Aids (FPJPA) materials into the current technical order system and the inclusion of job-oriented training matched to FPJPA into the training system of the Air Force. The text…
Photoassociation of cold (RbCs)2 tetramers in the ground electronic state
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Côté, Robin
2017-04-01
We theoretically investigate prospects for photoassociative formation of cold (RbCs)2 tetramers from a pair of ultracold RbCs molecules. The long-range region of the potential energy surface (PES) of the lowest electronic state of (RbCs)2 can be affected by orienting both RbCs molecules by an external electric field. In fact, we find a long-range barrier that supports long-range shelf states for relative angles between the dimers' internuclear axes smaller than about 20°. We show that these shelf states can be populated by spontaneous decay from the first excited electronic state which can be efficiently populated by photoassociation from the scattering continuum at ultracold temperatures. The vibrationally excited ground-state tetramer molecules formed this way have sufficiently long lifetimes to allow experimental detection. Moreover, for the relative angles between the dimers close to 20°, the proposed approach may result in production of deeply bound tetramers. Partially supported by the NASA Postdoctoral Program at the NASA Ames Research Center, administered by USRA and the MURI US Army Research Office Grant No. W911NF-14-1-0378 (MG), and by the PIF program of the National Science Foundation Grant No. PHY-141556.
FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.
2015-03-23
A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.
Is the kinetoplast DNA a percolating network of linked rings at its critical point?
NASA Astrophysics Data System (ADS)
Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo
2015-05-01
In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.
NASA Astrophysics Data System (ADS)
Hing, P.
2011-11-01
Percolation theory deals with the behaviour of connected clusters in a system. Originally developed for studying the flow of liquid in a porous body, the percolation theory has been extended to quantum computation and communication, entanglement percolation in quantum networks, cosmology, chaotic situations, properties of disordered solids, pandemics, petroleum industry, finance, control of traffic and so on. In this paper, the application of various models of the percolation theory to predict and explain the properties of a specially developed family of dense sintered and highly refractory Al2O3-W composites for potential application in high intensity discharge light sources such as high pressure sodium lamps and ceramic metal halide lamps are presented and discussed. The low cost, core-shell concept can be extended to develop functional composite materials with unusual dielectric, electrical, magnetic, superconducting, and piezoelectric properties starting from a classical insulator. The core shell concept can also be applied to develop catalysts with high specific surface areas with minimal amount of expensive platinium, palladium or rare earth nano structured materials for light harvesting, replicating natural photosynthesis, in synthetic zeolite composites for the cracking and separation of crude oil. There is also possibility of developing micron and nanosize Faraday cages for quantum devices, nano electronics and spintronics. The possibilities are limitless.
Effect of drug particle size in ultrasound compacted tablets. Continuum percolation model approach.
Millán, Mónica; Caraballo, Isidoro
2006-03-09
The main objective of this work is to study the influence of the drug particle size on the pharmaceutical availability of ultrasound compacted tablets. Inert matrix systems containing different drug particle sizes were prepared using both, an ultrasound-assisted press and a traditional eccentric machine. Potassium chloride was used as drug model and Eudragit RS-PM as matrix forming excipient. The excipient particle size was kept constant. The cross-sectional microphotographs of ultrasound tablets show the existence of a quasi-continuum medium. Keeping constant the drug load, US-tablets showed very similar release rates, whereas for traditional tablets, an increase in the particle size resulted in a clear decrease in the release rate. In these tablets, the excipient forms an almost continuum medium. In an infinite theoretical system of these characteristics, the size of the drug particles will not modify the percolation threshold. The percolation of the excipient in this system can be assimilated to a continuum percolation model. In accordance with the proposed model, a lower influence of the drug particle size on the drug release rate was obtained for the US-tablets in comparison with traditional tablets. This fact can be indicative of the similarity of the drug percolation thresholds in these systems.
Prediction of vein connectivity using the percolation approach: model test with field data
NASA Astrophysics Data System (ADS)
Belayneh, M.; Masihi, M.; Matthäi, S. K.; King, P. R.
2006-09-01
Evaluating the uncertainty in fracture connectivity and its effect on the flow behaviour of natural fracture networks formed under in situ conditions is an extremely difficult task. One widely used probabilistic approach is to use percolation theory, which is well adapted to estimate the connectivity and conductivity of geometrical objects near the percolation threshold. In this paper, we apply scaling laws from percolation theory to predict the connectivity of vein sets exposed on the southern margin of the Bristol Channel Basin. Two vein sets in a limestone bed interbedded with shales on the limb of a rollover fold were analysed for length, spacing and aperture distributions. Eight scan lines, low-level aerial photographs and mosaics of photographs taken with a tripod were used. The analysed veins formed contemporaneously with the rollover fold during basin subsidence on the hanging wall of a listric normal fault. The first vein set, V1, is fold axis-parallel (i.e. striking ~100°) and normal to bedding. The second vein set, V2, strikes 140° and crosscuts V1. We find a close agreement in connectivity between our predictions using the percolation approach and the field data. The implication is that reasonable predictions of vein connectivity can be made from sparse data obtained from boreholes or (limited) sporadic outcrop.
A novel approach to model hydraulic and electrical conductivity in fractal porous media
NASA Astrophysics Data System (ADS)
Ghanbarian, B.; Daigle, H.; Sahimi, M.
2014-12-01
Accurate prediction of conductivity in partially-saturated porous media has broad applications in various phenomena in porous media, and has been studied intensively since the 1940s by petroleum, chemical and civil engineers, and hydrologists. Many of the models developed in the past are based on the bundle of capillary tubes. In addition, pore network models have also been developed for simulating multiphase fluid flow in porous media and computing the conductivity in unsaturated porous media. In this study, we propose a novel approach using concepts from the effective-medium approximation (EMA) and percolation theory to model hydraulic and electrical conductivity in fractal porous media whose pore-size distributions exhibit power-law scaling. In our approach, the EMA, originally developed for predicting electrical conductivity of composite materials, is used to predict the effective conductivity, from complete saturation to some intermediate water content that represents a crossover point. Below the crossover water content, but still above a critical saturation (percolation threshold), a universal scaling predicted by percolation theory, a power law that expresses the dependence of the conductivity on the water content (less a critical water saturation) with an exponent of 2, is invoked to describe the effective conductivity. In order to evaluate the accuracy of the approach, experimental data were used from the literature. The predicted hydraulic conductivities for most cases are in excellent agreement with the data. In a few cases the theory underestimates the hydraulic conductivities, which correspond to porous media with very broad pore-size distribution in which the largest pore radius is more than 7 orders of magnitude greater than the smallest one. The approach is also used to predict the saturation dependence of the electrical conductivity for experiments in which capillary pressure data are available. The results indicate that the universal scaling of the electrical conductivity is valid from the percolation threshold all the way up to the complete saturation point. Our results confirm those reported previously by Ewing and Hunt (2006) who argued that the electrical conductivity should follow universal scaling over the entire range of saturation.
Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.
2006-01-01
Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos Shale. The boron concentration and δ11B value for the water sample from Antelope Wash, being distinctly different from water samples from other sites, is evidence that water in Antelope Wash may contain a substantial component of regional ground-water flow.
Retraction of cold drawn polyethylene: the influence of lamellar thickeness and density
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1971-01-01
The role of crystal morphology in the retraction of oriented, linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep and relaxation type tests. Characterizations of specimens were made using wide and small angle X-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
Retraction of cold-drawn polyethylene - Influence of lamellar thickness and density.
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1972-01-01
The role of crystal morphology in the retraction of oriented linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep- and relaxation-type tests. Characterizations of specimens were made using wide- and small-angle x-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long-range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
NASA Astrophysics Data System (ADS)
Møll Nilsen, Halvor; Lie, Knut-Andreas; Andersen, Odd
2015-06-01
MRST-co2lab is a collection of open-source computational tools for modeling large-scale and long-time migration of CO2 in conductive aquifers, combining ideas from basin modeling, computational geometry, hydrology, and reservoir simulation. Herein, we employ the methods of MRST-co2lab to study long-term CO2 storage on the scale of hundreds of megatonnes. We consider public data sets of two aquifers from the Norwegian North Sea and use geometrical methods for identifying structural traps, percolation-type methods for identifying potential spill paths, and vertical-equilibrium methods for efficient simulation of structural, residual, and solubility trapping in a thousand-year perspective. In particular, we investigate how data resolution affects estimates of storage capacity and discuss workflows for identifying good injection sites and optimizing injection strategies.
2014-01-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value. PMID:25024690
Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol
2014-01-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 10(5) S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.
Nonlinear dynamics in cardiac conduction
NASA Technical Reports Server (NTRS)
Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.
1988-01-01
Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.
Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites
NASA Astrophysics Data System (ADS)
Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud
2013-06-01
We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.
NASA Astrophysics Data System (ADS)
Santhosh Kumar, K.; Das, Sarmistha; Eswara Phanindra, V.; Rana, D. S.
2017-12-01
The metal-insulator transition (MIT) in correlated systems is a central phenomenon that possesses potential for several emerging technologies. We investigate the kinetics of such MIT in perovskite nickelates by studying the terahertz (THz) low-energy charge dynamics in orthorhombic and tetragonal symmetries of Pr0.5Nd0.5NiO3 thin films. The THz conductivity of the orthorhombic thin film is dominated by Drude behavior in the entire temperature range, albeit a dominant anomaly at and around the MIT region. The tetragonal thin film exhibits different overall THz conductivity dynamics though, i.e. of a Drude-Smith (DS) type in the entire temperature range, the DS coefficient signifying dominant backscattering peaks in the MIT region. While the overall THz dynamics profile is different for the two films, a unique yet similar sensitivity of the I-M transition regions of both films to THz frequencies underlines the fundamental origin of the bi-critical phase around MIT of the nickelates. The peculiar behavior around the I-M transition, as evaluated in the framework of a percolative path approximation based Dyre expression, emphasizes the importance of critical metallic volume fraction (f c) for the percolation conduction, as an f c of ~0.645 obtained for the present case, along with evidence for the absence of super-heating.
Hydrological simulation of a small ungauged agricultural watershed Semrakalwana of Northern India
NASA Astrophysics Data System (ADS)
Mishra, Himanshu; Denis, Derrick Mario; Suryavanshi, Shakti; Kumar, Mukesh; Srivastava, Santosh Kumar; Denis, Anjelo Francis; Kumar, Rajendra
2017-10-01
A study was conducted to develop a hydrological model for agriculture dominated Semra watershed (4.31 km2) and Semrakalwana village at Allahabad using a semi distributed Soil and Water Assessment Tool (SWAT) model. In model evaluation it was found that the SWAT does not require much calibration, and therefore, can be employed in unguaged watershed. A seasonal (Kharif, Rabi and Zaid seasons) and annual water budget analysis was performed to quantify various components of the hydrologic cycle. The average annual surface runoff varied from 379 to 386 mm while the evapotranspiration of the village was in the range of 359-364 mm. The average annual percolation and return flow was found to be 265-272 mm and 147-255 mm, respectively. The initial soil water content of the village was found in the range of 328-335 mm while the final soil water content was 356-362 mm. The study area fall under a rain-fed river basin (Tons River basin) with no contribution from snowmelt, the winter and summer season is highly affected by less water availability for crops and municipal use. Seasonal (Rabi, Kharif and Zaid crop seasons) and annual water budget of Semra watershed and Semrakalwana village evoke the need of conservation structures such as check dams, farm ponds, percolation tank, vegetative barrier, etc. to reduce monsoon runoff and conserve it for basin requirements for winter and summer period.
Modification of local order in FePd films by low energy He{sup +} irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, D. G.; Tancziko, F.; Sajti, Sz.
2008-07-01
Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L1{sub 0} FePd phase fraction. Therefore, the formation and transformation of the L1{sub 0} phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L1{sub 0} phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He{sup +} irradiationmore » was investigated at fluences up to 14.9x10{sup 15} ions/cm{sup 2}. X-ray diffraction and conversion electron Moessbauer spectroscopy revealed that with increasing fluence, the L1{sub 0} FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He{sup +} irradiation, the lattice parameter c of the FePd L1{sub 0} structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe{sub 47}Pd{sub 53} to Fe{sub 54}Pd{sub 46}, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L1{sub 0} phase were found at different fluences by conversion electron Moessbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4x10{sup 15} ions/cm{sup 2} is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L1{sub 0} phase.« less
ECS: efficient communication scheduling for underwater sensor networks.
Hong, Lu; Hong, Feng; Guo, Zhongwen; Li, Zhengbao
2011-01-01
TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols.
Morales, P; Vantman, D; Barros, C; Vigil, P
1991-03-01
Several techniques have been used for selecting motile spermatozoa including Percoll and albumin gradients, swim-up, and glass wool filtration. A high yield of motile spermatozoa as well as an enhancement of motility are the most desirable features of a practical method. An equally important consideration is whether or not these techniques select functionally normal spermatozoa. In this study we have compared two methods for separation of motile cells, swim-up and Percoll gradient. Normal semen samples from 12 different men were used in this study. Each sample was simultaneously processed by swim-up and Percoll gradient using modified Tyrode's medium. After the sperm concentration was adjusted to 1 x 10(7) spermatozoa/ml, the suspensions were incubated at 37 degrees C, 5% CO2 in air. In each suspension the percentage of sperm recovery, percentage of motile spermatozoa, percentage of acrosome reacted spermatozoa (either spontaneously or stimulated with human follicular fluid), percentage of zona-free hamster oocytes penetrated, and number of spermatozoa bound to the human zona pellucida were determined. The results obtained indicated that the percentage of sperm recovery was higher with the Percoll gradient than with the swim-up procedure (P less than 0.001). However, no significant differences were found between these two sperm populations in the percentage of motile cells, in the percentage of acrosome reacted spermatozoa, and in the percentage of zona-free hamster oocytes penetrated. In addition, the number of spermatozoa bound per zona pellucida was similar for spermatozoa selected by Percoll or swim-up. We conclude that there were no functional differences between the spermatozoa selected by either method.
Arsenic Transport and Transformation Associated with MSMA Application on a Golf Course Green
Feng, Min; Schrlau, Jill E.; Snyder, Raymond; Snyder, George H.; Chen, Ming; Cisar, John L.; Cai, Yong
2008-01-01
The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The objective of this work was to understand the behavior of arsenic species in percolate water from monosodium methanearsonate (MSMA) applied golf course greens, as well as to determine the influences of root-zone media for United State Golf Association (USGA) putting green construction on arsenic retention and species conversion. The field test was established at the Fort Lauderdale Research and Education Center (FLREC), University of Florida. Percolate water was collected after MSMA application for speciation and total arsenic analyses. The results showed that the substrate composition significantly influenced arsenic mobility and arsenic species transformation in the percolate water. In comparison to uncoated sands (S) and uncoated sands and peat (S + P), naturally coated sands and peat (NS + P) showed a higher capacity of preventing arsenic from leaching into percolate water, implying that the coatings of sands with clay reduce arsenic leaching. Arsenic species transformation occurred in soil, resulting in co-occurrence of four arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in percolate water. The results indicated that substrate composition can significantly affect both arsenic retention in soil and arsenic speciation in percolate water. The clay coatings on the soil particles and the addition of peat in the soil changed the arsenic bioavailability, which in turn controlled the microorganism-mediated arsenic transformation. To better explain and understand arsenic transformation and transport after applying MSMA in golf green, a conceptual model was proposed. PMID:15853401
Fire forbids fifty-fifty forest
Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E.; Flores, Bernardo M.; Xu, Chi; Scheffer, Marten
2018-01-01
Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse. PMID:29351323
How does public opinion become extreme?
NASA Astrophysics Data System (ADS)
Ramos, Marlon; Shao, Jia; Reis, Saulo D. S.; Anteneodo, Celia; Andrade, José S.; Havlin, Shlomo; Makse, Hernán A.
2015-05-01
We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are “very conservative” versus “moderate to very conservative” ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual “stubbornness” that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people’s ties.
Critical behavior and correlations on scale-free small-world networks: Application to network design
NASA Astrophysics Data System (ADS)
Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.
2011-06-01
We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.
Fire forbids fifty-fifty forest.
van Nes, Egbert H; Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E; Flores, Bernardo M; Xu, Chi; Scheffer, Marten
2018-01-01
Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse.
How does public opinion become extreme?
Ramos, Marlon; Shao, Jia; Reis, Saulo D. S.; Anteneodo, Celia; Andrade, José S.; Havlin, Shlomo; Makse, Hernán A.
2015-01-01
We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are “very conservative” versus “moderate to very conservative” ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual “stubbornness” that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people’s ties. PMID:25989484
How does public opinion become extreme?
Ramos, Marlon; Shao, Jia; Reis, Saulo D S; Anteneodo, Celia; Andrade, José S; Havlin, Shlomo; Makse, Hernán A
2015-05-19
We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are "very conservative" versus "moderate to very conservative" ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual "stubbornness" that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people's ties.
Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong
2017-03-28
This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.