Measured long-range repulsive Casimir-Lifshitz forces.
Munday, J N; Capasso, Federico; Parsegian, V Adrian
2009-01-08
Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.
Measured long-range repulsive Casimir–Lifshitz forces
Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian
2014-01-01
Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843
The Layered Structure of The Universe
NASA Astrophysics Data System (ADS)
Kursunoglu, Behram N.
2003-06-01
It has now become a habit for the cosmologists to introduce attraction or repulsion generating substances to describe the observed cosmological behavior of matter. Examples are dark energy to provide repulsive force to cause increasing acceleration accompanying the expansion of the universe, quintessence providing repulsive force. In this paper we believe that what is needed in the final analysis is attraction and repulsion. We show here that universe can be conceived to consist of attractive and repulsive layers of matter expanding with increasing acceleration. The generalized theory of gravitation as developed originally by Einstein and Schrödinger as a non-symmetric theory was modified by this author using Bianchi-Einstein Identities yielding coupling between the field and electric charge as well as between the field and magnetic charge, and there appears a fundamental length parameter ro where quintessence constitute magnetic repulsive layers while dark energy and all other kinds of names invented by cosmologists refer to attractive electric layers. This layered structure of the universe resembles the layered structure of the elementary particle predicted by this theory decades ago (1, 3, and 6). This implies a layer Doughnut structure of the universe. We have therefore, obtained a unification of the structure of the universe and the structure of elementary particles. Overall the forces consist of long range attractive, long range repulsive, short-range attractive, and short-range repulsive variety. We further discovered the existence of space oscillations whose roles in the expansion of the universe with increasing acceleration and further the impact in the propagation of the gravitational waves can be expected to play a role in their observation.
Charge ordering in ionic fluids mediate repulsive surface interactions
NASA Astrophysics Data System (ADS)
Dasbiswas, Kinjal; Ludwig, Nicholas B.; Zhang, Hao; Talapin, Dmitri; Vaikuntanathan, Suri
Recent experiments on ionic fluids, such as surface force measurements in organic ionic liquids and the observation of colloidal stability in inorganic molten salts, suggest the presence of long-ranged repulsive forces. These cannot be explained within the classical Debye-Hückel theory for dilute electrolytes. We argue that such repulsive interactions can arise from long-range (several nm) charge density oscillations induced by a surface that preferentially binds one of the ionic species in an ionic fluid. We present a continuum theory that accounts for such charge layering based on a frustrated Ising model that incorporates both long-range Coulombic and short-range steric interactions. The mean-field analytic treatment qualitatively matches results from molecular simulations. A careful analysis of the ionic correlation functions arising from such charge ordering may also explain the long electrostatic screening lengths observed in various ionic fluids and their non-monotonic dependence on the electrolyte concentration. We acknowledge the University of Chicago for support.
Long-Range Interaction Forces between Polymer-Supported Lipid Bilayer Membranes
Seitz, Markus; Park, Chad K.; Wong, Joyce Y.
2009-01-01
Much of the short-range forces and structures of softly supported DMPC bilayers has been described previously. However, one interesting feature of the measured force–distance profile that remained unexplained is the presence of a long-range exponentially decaying repulsive force that is not observed between rigidly supported bilayers on solid mica substrate surfaces. This observation is discussed in detail here based on recent static and dynamic surface force experiments. The repulsive forces in the intermediate distance regime (mica–mica separations from 15 to 40 nm) are shown to be due not to an electrostatic force between the bilayers but to compression (deswelling) of the underlying soft polyelectrolyte layer, which may be thought of as a model cytoskeleton. The experimental data can be fit by simple theoretical models of polymer interactions from which the elastic properties of the polymer layer can be deduced. PMID:21359166
Long-range repulsion of colloids driven by ion exchange and diffusiophoresis
Florea, Daniel; Musa, Sami; Huyghe, Jacques M. R.; Wyss, Hans M.
2014-01-01
Interactions between surfaces and particles in aqueous suspension are usually limited to distances smaller than 1 μm. However, in a range of studies from different disciplines, repulsion of particles has been observed over distances of up to hundreds of micrometers, in the absence of any additional external fields. Although a range of hypotheses have been suggested to account for such behavior, the physical mechanisms responsible for the phenomenon still remain unclear. To identify and isolate these mechanisms, we perform detailed experiments on a well-defined experimental system, using a setup that minimizes the effects of gravity and convection. Our experiments clearly indicate that the observed long-range repulsion is driven by a combination of ion exchange, ion diffusion, and diffusiophoresis. We develop a simple model that accounts for our data; this description is expected to be directly applicable to a wide range of systems exhibiting similar long-range forces. PMID:24748113
Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.
Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A
2016-02-14
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.
Searching for effective forces in laboratory insect swarms
NASA Astrophysics Data System (ADS)
Puckett, James G.; Kelley, Douglas H.; Ouellette, Nicholas T.
2014-04-01
Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.
Entropic Repulsion Between Fluctuating Surfaces
NASA Astrophysics Data System (ADS)
Janke, W.
The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.
Casimir repulsion in sphere-plate geometry
NASA Astrophysics Data System (ADS)
Pirozhenko, Irina G.; Bordag, Michael
2013-04-01
The electromagnetic vacuum energy is considered in the presence of a perfectly conducting plane and a ball with dielectric permittivity ɛ and magnetic permeability μ, μ≠1. The attention is focused on the Casimir repulsion in this system caused by the magnetic permeability of the sphere. In the case of a perfectly permeable sphere, μ=∞, the vacuum energy is estimated numerically. The short- and long-distance asymptotes corresponding to the repulsive force and respective low-temperature corrections and high-temperature limits are found for a wide range of μ. The constraints on the Casimir repulsion in this system are discussed.
NASA Astrophysics Data System (ADS)
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-01
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-07
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.
Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen
2005-06-21
The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.
Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1985-01-01
The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.
Phantom energy mediates a long-range repulsive force.
Amendola, Luca
2004-10-29
Scalar field models with nonstandard kinetic terms have been proposed in the context of k inflation, of Born-Infeld Lagrangians, of phantom energy and, more in general, of low-energy string theory. In general, scalar fields are expected to couple to matter inducing a new interaction. In this Letter I derive the cosmological perturbation equations and the Yukawa correction to gravity for such general models. I find three interesting results: first, when the field behaves as phantom energy (equation of state less than -1), then the coupling strength is negative, inducing a long-range repulsive force; second, the dark-energy field might cluster on astrophysical scales; third, applying the formalism to a Brans-Dicke theory with a general kinetic term it is shown that its Newtonian effects depend on a single parameter that generalizes the Brans-Dicke constant.
Dark matter, long-range forces, and large-scale structure
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami; Frieman, Joshua A.
1992-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.
Interactions regulating the head-to-tail directed assembly of biological Janus rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A. C.; Bachand, M.; Gomez, A.
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Interactions regulating the head-to-tail directed assembly of biological Janus rods
Greene, A. C.; Bachand, M.; Gomez, A.; ...
2017-03-31
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Dark matter and the equivalence principle
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gradwohl, Ben-Ami
1991-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. The astrophysical and cosmological implications of a long-range force coupled only to the dark matter are discussed and rather tight constraints on its strength are found. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). Such an interaction also has unusual implications for the growth of large-scale structure.
Interaction forces between DPPC bilayers on glass
Orozco-Alcaraz, Raquel; Kuhl, Tonya L.
2013-01-01
The Surface Force Apparatus (SFA) was utilized to obtain force-distance profiles between silica supported membranes formed by Langmuir-Blodgett deposition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). In the absence of a membrane, a long range electrostatic and short range steric repulsion is measured due to deprotonation of silica in water and roughness of the silica film. The electrostatic repulsion is partially screened by the lipid membrane and a van der Waals adhesion comparable to that measured with well packed DPPC membranes on mica is measured. This finding suggest that electrostatic interactions due to the underlying negatively charged silica are likely present in other systems of glass supported membranes. In contrast, the charge of an underlying mica substrate is almost completely screened when a lipid membrane is deposited on the mica. The difference in the two systems is attributed to stronger physisorption of zwitterionic lipids to molecularly smooth mica compared to rougher silica. PMID:23199333
Repulsive vacuum-induced forces on a magnetic particle
NASA Astrophysics Data System (ADS)
Sinha, Kanupriya
2018-03-01
We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.
NASA Astrophysics Data System (ADS)
Weymouth, Alfred J.; Riegel, Elisabeth; Matencio, Sonia; Giessibl, Franz J.
2018-04-01
One of the challenges of AFM, in contrast to STM, is that the measured signal includes both long-range and short-range components. The most accurate method for removing long-range components is to measure both on and off an adsorbate and to subtract the difference. This on-off method is challenging at room temperature due to thermal drift. By moving to a non-contact scheme in which the lateral component of the force interaction is probed, the measurement is dominated by short-range interactions. We use frequency-modulation lateral force microscopy to measure individual PTCDA molecules adsorbed on Ag/Si(111)-( √{3 }×√{3 } ). By fitting the data to a model potential, we can extract the depth and width of the potential. When the tip is closer to the sample, a repulsive feature can be observed in the data.
Angelescu, Daniel G; Caragheorgheopol, Dan
2015-10-14
The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.
Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.
Inui, Norio; Goto, Kosuke
2013-11-01
We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature.
Free cooling phase-diagram of hard-spheres with short- and long-range interactions
NASA Astrophysics Data System (ADS)
Gonzalez, S.; Thornton, A. R.; Luding, S.
2014-10-01
We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.
Long-lived force patterns and deformation waves at repulsive epithelial boundaries
NASA Astrophysics Data System (ADS)
Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier
2017-10-01
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu
2016-04-15
The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channelsmore » of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits of inertial focusing for technological applications.« less
Ryoo, Won; Webber, Stephen E; Bonnecaze, Roger T; Johnston, Keith P
2006-01-31
Electrostatic repulsion stabilizes micrometer-sized water droplets with spacings greater than 10 microm in an ultralow dielectric medium, CO2 (epsilon = 1.5), at elevated pressures. The morphology of the water/CO2 emulsion is characterized by optical microscopy and laser diffraction as a function of height. The counterions, stabilized with a nonionic, highly branched, stubby hydrocarbon surfactant, form an extremely thick double layer with a Debye screening length of 8.9 microm. As a result of the balance between electrostatic repulsion and the downward force due to gravity, the droplets formed a hexagonal crystalline lattice at the bottom of the high-pressure cell with spacings of over 10 microm. The osmotic pressure, calculated by solving the Poisson-Boltzmann equation in the framework of the Wigner-Seitz cell model, is in good agreement with that determined from the sedimentation profile measured by laser diffraction. Thus, the long-ranged stabilization of the emulsion may be attributed to electrostatic stabilization. The ability to form new types of colloids in CO2 with electrostatic stabilization is beneficial because steric stabilization is often unsatisfactory because of poor solvation of the stabilizers.
From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces
Kanduč, Matej; Netz, Roland R.
2015-01-01
Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526
Self-arraying of charged levitating droplets.
Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent
2011-06-01
Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.
NASA Astrophysics Data System (ADS)
Rixman, Monica A.; Ortiz, Christine
2002-03-01
A critical determinant of the biocompatibility of implanted blood-contacting devices is the initial noncovalent adsorption of blood plasma proteins onto the biomaterial surface. Using high-resolution force spectroscopy, we have measured the complex intermolecular interaction forces between individual end-grafted PEO chains and a probe tip covalently bound with human serum albumin, the most abundant blood plasma protein in the human body. On approach, a long-range, nonlinear repulsive force is observed. Upon retraction, however, adhesion between the HSA probe tip and PEO chain occurs, which in many cases is strong enough to allow long-range adhesion and stretching of the individual PEO chains. The known PEO strain-induced conformational transition from the helical (ttg) to the planar (ttt) conformation is clearly observed and seen to shift to lower force values. Statistical analysis of adhesion data, comparison to a variety of control experiments, and theoretical modeling enable us to interpret these experimental results in terms of electrostatic interactions, hydrogen bonding, and steric forces.
Martoïa, F; Dumont, P J J; Orgéas, L; Belgacem, M N; Putaux, J-L
2016-02-14
In this study, we characterized and modeled the rheology of TEMPO-oxidized cellulose nanofibril (NFC) aqueous suspensions with electrostatically stabilized and unflocculated nanofibrous structures. These colloidal suspensions of slender and wavy nanofibers exhibited a yield stress and a shear thinning behavior at low and high shear rates, respectively. Both the shear yield stress and the consistency of these suspensions were power-law functions of the NFC volume fraction. We developed an original multiscale model for the prediction of the rheology of these suspensions. At the nanoscale, the suspensions were described as concentrated systems where NFCs interacted with the Newtonian suspending fluid through Brownian motion and long range fluid-NFC hydrodynamic interactions, as well as with each other through short range hydrodynamic and repulsive colloidal interaction forces. These forces were estimated using both the experimental results and 3D networks of NFCs that were numerically generated to mimic the nanostructures of NFC suspensions under shear flow. They were in good agreement with theoretical and measured forces for model colloidal systems. The model showed the primary role played by short range hydrodynamic and colloidal interactions on the rheology of NFC suspensions. At low shear rates, the origin of the yield stress of NFC suspensions was attributed to the combined contribution of repulsive colloidal interactions and the topology of the entangled NFC networks in the suspensions. At high shear rates, both concurrent colloidal and short (in some cases long) range hydrodynamic interactions could be at the origin of the shear thinning behavior of NFC suspensions.
NASA Astrophysics Data System (ADS)
Røyne, Anja; Dalby, Kim N.; Hassenkam, Tue
2015-06-01
The long-term mechanical strength of calcite-bearing rocks is highly dependent on the presence and nature of pore fluids, and it has been suggested that the observed effects are due to changes in nanometer-scale surface forces near fracture tips and grain contacts. In this letter, we present measurements of forces between two calcite surfaces in air and water-glycol mixtures using the atomic force microscope. We show a time- and load-dependent adhesion at low water concentrations and a strong repulsion in the presence of water, which is most likely due to hydration of the strongly hydrophilic calcite surfaces. We argue that this hydration repulsion can explain the commonly observed water-induced decrease in strength in calcitic rocks and single calcite crystals. Furthermore, this relatively simple experimental setup may serve as a useful tool for analyzing surface forces in other mineral-fluid combinations.
Electrostatics of colloids in mixtures
NASA Astrophysics Data System (ADS)
Samin, Sela; Tsori, Yoav
2013-03-01
We examine the force between two charged colloids immersed in salty aqueous mixtures close to the coexistence curve. In an initially water-poor phase, the short-range solvation-related forces promote the condensation of a water-rich phase at a distance in the range 1-100nm. This leads to a strong long-range attraction between the colloids and hence to a deep metastable or globally stable energetic state. Our calculations are in good agreement with recent experiments on the reversible aggregation of colloids in critical mixtures. The specific nature of the solvation energy of ions can lead to some surprising effects, whereby positively charged surfaces attract while negatively charged surfaces repel. For hydrophilic anions and hydrophobic cations, a repulsive interaction is predicted between oppositely charged and hydrophilic colloids even though both the electrostatic and adsorption forces alone are attractive.
NASA Astrophysics Data System (ADS)
Tang, Q. C.; Yang, Y. L.; Li, Xinxin
2011-12-01
This paper presents miniaturized energy harvesters, where the frequency up-conversion technique is used to improve the bandwidth of vibration energy harvesters. The proposed and developed miniature piezoelectric energy harvester utilizes magnetic repulsion forces to achieve non-contact frequency up-conversion, thereby avoiding mechanical collision and wear for long-term working durability. A pair of piezoelectric resonant cantilevers is micro-fabricated to generate electric power. A simplified model involving linear oscillators and magnetic interaction is deployed to demonstrate the feasibility of the device design. A bench-top harvester has been fabricated and characterized, resulting in average power generation of over 10 µW within a broad frequency range of 10-22 Hz under 1g acceleration.
A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere
NASA Astrophysics Data System (ADS)
Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.
1997-05-01
We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.
Povinelli, Michelle; Johnson, Steven; Lonèar, Marko; Ibanescu, Mihai; Smythe, Elizabeth; Capasso, Federico; Joannopoulos, J
2005-10-03
We have calculated the optically-induced force between coupled high-Q whispering gallery modes of microsphere resonators. Attractive and repulsive forces are found, depending whether the bi-sphere mode is symmetric or antisymmetric. The magnitude of the force is linearly proportional to the total power in the spheres and consequently linearly enhanced by Q. Forces on the order of 100 nN are found for Q=108, large enough to cause displacements in the range of 1mum when the sphere is attached to a fiber stem with spring constant 0.004 N/m.
Nanobubbles do not sit alone at the solid-liquid interface.
Peng, Hong; Hampton, Marc A; Nguyen, Anh V
2013-05-21
The unexpected stability and anomalous contact angle of gaseous nanobubbles at the hydrophobic solid-liquid interface has been an issue of debate for almost two decades. In this work silicon-nitride tipped AFM cantilevers are used to probe the highly ordered pyrolytic graphite (HOPG)-water interface with and without solvent-exchange (a common nanobubble production method). Without solvent-exchange the force obtained by the single force and force mapping techniques is consistent over the HOPG atomic layers and described by DLVO theory (strong EDL repulsion). With solvent-exchange the force is non-DLVO (no EDL repulsion) and the range of the attractive jump-in (>10 nm) over the surface is grouped into circular areas of longer range, consistent with nanobubbles, and the area of shorter range. The non-DLVO nature of the area between nanobubbles suggests that the interaction is no longer between a silicon-nitride tip and HOPG. Interfacial gas enrichment (IGE) covering the entire area between nanobubbles is suggested to be responsible for the non-DLVO forces. The absence of EDL repulsion suggests that both IGE and nanobubbles are not charged. The coexistence of nanobubbles and IGE provides further evidence of nanobubble stability by dynamic equilibrium. The IGE cannot be removed by contact mode scanning of a cantilever tip in pure water, but in a surfactant (SDS) solution the mechanical action of the tip and the chemical action of the surfactant molecules can successfully remove the enrichment. Strong EDL repulsion between the tip and nanobubbles/IGE in surfactant solutions is due to the polar heads of the adsorbed surfactant molecules.
NASA Astrophysics Data System (ADS)
Fisher, Matthew Lyle
Colloidal processing has been demonstrated as an effective technique for increasing the reliability of ceramic components by reducing the flaw populations in sintered bodies. The formation of long-range repulsive potentials produces a dispersed slurry which can be filtered to remove heterogeneities and truncate the flaw size distribution. When the pair potentials are changed from repulsive to weakly attractive, a short-range repulsive potential can be developed in the slurry state which prevents mass segregation, allows particles to consolidate to high volume fractions, and produces plastic consolidated bodies. Plastic behavior in saturated ceramic compacts would allow plastic shape forming technologies to be implemented on advanced ceramic powders. Two networks of different interparticle potential have been mixed to control the rheological properties of slurries and develop clay-like plasticity in consolidated bodies. The elastic modulus and yield stress of slurries were found to increase with volume fraction in a power law fashion. Consolidated bodies containing mixtures of alkylated and non-alkylated powder pack to high volume fraction and exhibit similar flow properties to clay. The mixing of aqueous networks of different pair potential can also be effective in tailoring the flow properties. The flow stress of saturated compacts has been adjusted by the addition of a second network of uncoated particles which is stabilized electrostatically. The influence of the addition of silica of various sizes on the viscosity and zeta potentials of alumina suspensions has been investigated. The adsorption of nano-silica to the surface of alumina shifts the iep. The amount of silica at which the maximum shift in zeta potential occurs is consistent with the silica required to produce the minimum viscosity. This level of silica on the surface is consistent with calculations of the amount necessary for dense random parking of silica spheres around alumina. The influence of counterion size on short range repulsive forces at high salt concentrations was investigated with alumina and silica slurries coagulated with the chlorides of Li+, Na+, K+, Cs+ and TMA+ (tetramethylammonium+). The results clearly show that the range of the repulsive forces correlated with the size of the unhydrated ion, namely stronger particle networks are achieved with smaller counterions. The findings are contradictory to the widely accepted hydration force model. Silica and alumina slurries were also studied at and below the iep where the indifferent electrolyte cations would not be expected to adsorb. It appears that a lyotropic sequence for excluded ions exists and is correlated to the hydration of ions and surfaces.
Long range transport of colloids in aqueous solutions
NASA Astrophysics Data System (ADS)
Florea, Daniel; Musa, Sami; Huyghe, Jacques M. R. J.; Wyss, Hans M.
2013-03-01
Colloids in aqueous suspensions can experience strong, extremely long range repulsive forces near interfaces such as biological tissues, gels, ion exchange resins or metals. As a result exclusion zones extending over several millimeters can be formed. While this phenomenon has been previously described, a physical understanding of this process is still lacking. This exclusion zone formation is puzzling because the typical forces acting on colloidal particles are limited to much shorter distances and external fields that could drive the particles are absent. Here we study the exclusion zone formation in detail by following the time and distance-dependent forces acting on the particles. We present a simple model that accounts for our experimental data and directly links the exclusion zone formation to an already known physical transport phenomenon. We show that the effect can be tuned by changing the zeta potential of the particles or by varying the species present in the aqueous solution. We thus provide a direct physical explanation for the intriguing exclusion zone formation and we illustrate how this effect can be exploited in a range of industrial applications.
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R
2014-07-07
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.
Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja
2018-06-26
nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.
Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...
2015-12-15
Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less
Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions.
Zaman, A A; Singh, P; Moudgil, B M
2002-07-15
Rheological behavior of surfactant-stabilized colloidal dispersions of silica particles under extreme conditions (low pH, high ionic strength) has been investigated in relation to interparticle forces and stability of the dispersion. The surfactant used as the dispersing agent was C(12)TAB, a cationic surfactant. Stability analysis through turbidity measurements indicated that there is a sharp increase in the stability of the dispersion when the surfactant concentration is in the range of 8 to 10 mM in the system. The state of the dispersion changes from an unstable regime to a stable regime above a critical concentration of C(12)TAB in the system. In the case of interaction forces measured between the silica substrate and AFM tip, no repulsive force was observed up to a surfactant concentration of 8 mM and a transition from no repulsive forces to steric repulsive forces occurred between 8 and 10 mM. Rheological measurements as a function of C(12)TAB concentration indicated a significant decrease in the viscosity and linear viscoelastic functions of the dispersion over the same range of surfactant concentration (8 to 10 mM C(12)TAB), showing a strong correlation between the viscosity behavior, interparticle forces, and structure development in the dispersion.
Repulsive Casimir-Polder potential by a negative reflecting surface
NASA Astrophysics Data System (ADS)
Yuan, Qi-Zhang
2015-07-01
We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.
Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.
Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren
2016-01-26
Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
NASA Astrophysics Data System (ADS)
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Influence of long-range Coulomb interaction in velocity map imaging.
Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C
2017-07-07
The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.
Depletion forces on circular and elliptical obstacles induced by active matter
NASA Astrophysics Data System (ADS)
Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.
2016-12-01
Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.
Depletion forces on circular and elliptical obstacles induced by active matter.
Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P
2016-12-01
Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.
Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...
2016-06-23
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
Hayashi, Tomohiro; Tanaka, Yusaku; Koide, Yuki; Tanaka, Masaru; Hara, Masahiko
2012-08-07
The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion.
A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico
2018-01-01
A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.
An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods
NASA Astrophysics Data System (ADS)
Han, Jining; Herzfeld, Judith
1996-03-01
The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.
Long-Range Repulsion Between Spatially Confined van der Waals Dimers
NASA Astrophysics Data System (ADS)
Sadhukhan, Mainak; Tkatchenko, Alexandre
2017-05-01
It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altsybeev, Igor
2016-01-22
In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.
NASA Astrophysics Data System (ADS)
Kalampounias, Angelos G.; Papatheodorou, George N.
2018-06-01
Temperature dependent Raman spectra of boric oxide have been measured in a temperature range covering the glassy, supercooled and liquid state. The shift of the isotropic band assigned to boroxol rings relative to the anisotropic component upon heating the glass is measured and attributed to the Raman non-coincidence effect. The measured shift is associated with the competition between attraction and repulsion forces with increasing temperature. The relation of dephasing and orientational relaxation times to the non-coincidence effect of the condensed phases has been examined. We discuss our results in the framework of the current phenomenological status of the field in an attempt to separate the attraction and repulsion contributions corresponding to the observed non-coincidence effect.
Path planning for mobile robot using the novel repulsive force algorithm
NASA Astrophysics Data System (ADS)
Sun, Siyue; Yin, Guoqiang; Li, Xueping
2018-01-01
A new type of repulsive force algorithm is proposed to solve the problem of local minimum and the target unreachable of the classic Artificial Potential Field (APF) method in this paper. The Gaussian function that is related to the distance between the robot and the target is added to the traditional repulsive force, solving the problem of the goal unreachable with the obstacle nearby; variable coefficient is added to the repulsive force component to resize the repulsive force, which can solve the local minimum problem when the robot, the obstacle and the target point are in the same line. The effectiveness of the algorithm is verified by simulation based on MATLAB and actual mobile robot platform.
Liquid drops attract or repel by the inverted Cheerios effect.
Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H
2016-07-05
Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
MICROSCOPE limits for new long-range forces and implications for unified theories
NASA Astrophysics Data System (ADS)
Fayet, Pierre
2018-03-01
Many theories beyond the standard model involve an extra U (1 ) gauge group. The resulting gauge boson U , in general mixed with the Z and the photon, may be massless or very light and very weakly coupled. It may be viewed as a generalized dark photon interacting with matter through a linear combination [ɛQQ +ɛBB +ɛLL ]e , involving B -L in a grand-unified theory, presumably through B -L -.61 Q , inducing effectively a very small repulsive force between neutrons. This new force, if long-ranged, may manifest through apparent violations of the equivalence principle. They are approximately proportional to ɛB+ɛL/2 , times a combination involving mostly ɛL. New forces coupled to B -L or L should lead to nearly opposite values of the Eötvös parameter δ , and to almost the same limits for ɛB -L or ɛL, as long as no indication for δ ≠0 is found. We derive new limits from the first results of the MICROSCOPE experiment testing the equivalence principle in space. A long-range force coupled to [ɛQQ +ɛB -L(B -L )]e or [ɛQQ +ɛLL ]e should verify |ɛB -L| or |ɛL|<.8 10-24 , and a force coupled to [ɛQQ +ɛBB ]e , |ɛB|<5 10-24. We also discuss, within supersymmetric theories, how such extremely small gauge couplings g " , typically ≲10-24, may be related to a correspondingly large ξ " D " term associated with a huge initial vacuum energy density, ∝1 /g "2 . The corresponding hierarchy between energy scales, by a factor ∝1 /√{g " }≳1012 , involves a very large scale ˜ 1016 GeV , that may be associated with inflation, or supersymmetry breaking with a very heavy gravitino, leading to possible values of δ within the experimentally accessible range.
NASA Astrophysics Data System (ADS)
Das, Kaushik; Kundu, Sarathi; Mehan, Sumit; Aswal, V. K.
2016-02-01
Both short range attraction and long range electrostatic repulsion exist among globular protein Bovine Serum Albumin in solution below its isoelectric point (pI ≈ 4.8). At pD ≈ 4.0, below pI, protein has a net positive surface charge although local charge inhomogeneity presents. Small angle neutron scattering study reveals that in the presence of both mono-(Na+) and di-(Ni2+) valent ions attractive interaction increases and repulsive interaction decreases with the increase of salt concentration. However, for tri-valent (Fe3+) ions, both attractive and repulsive interaction increases with increasing salt concentration but the relative strength of repulsion is more than the attraction.
NASA Technical Reports Server (NTRS)
Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.
1996-01-01
Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.
Matsson, L
2001-12-01
A nonstationary interaction that controlsDNA replication and the cell cycle isderived from many-body physics in achemically open T cell. The model predictsa long range force F'(ξ) =- (κ/2) ξ(1 - ξ)(2 - ξ)between thepre-replication complexes (pre-RCs) boundby the origins in DNA, ξ = ϕ/N being the relativedisplacement of pre-RCs, ϕ the number of pre-RCs, N the number of replicons to be replicated,and κ the compressibilitymodulus in the lattice of pre-RCs whichbehaves dynamically like an elasticallybraced string. Initiation of DNAreplication is induced at the thresholdϕ = N by a switch ofsign of F''(ξ), fromattraction (-) and assembly in the G(1) phase (0<ϕ
Casimir forces between defects in one-dimensional quantum liquids
NASA Astrophysics Data System (ADS)
Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.
2005-08-01
We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.
Static holes in the geometrically frustrated bow-tie ladder
NASA Astrophysics Data System (ADS)
Martins, George B.; Brenig, Wolfram
2008-10-01
We investigate the doping of a geometrically frustrated spin ladder with static holes by a complementary approach using exact diagonalization and quantum dimers. Results for thermodynamic properties, the singlet density of states, the hole-binding energy and the spin correlations will be presented. For the undoped systems the ground state is non-degenerate, with translationally invariant nearest-neighbor spin correlations. For the doped case, we find that static holes polarize their vicinity through a localization of singlets, reducing the frustration. This polarization induces short range repulsive forces between two holes and an oscillatory behavior of the long range two-hole energy. For most quantities investigated, we find very good agreement between the quantum dimer approach and the results from exact diagonalization.
NASA Astrophysics Data System (ADS)
Warriner, Heidi E.; Safinya, Cyrus R.
1997-03-01
Using two complimentary techniques, we have measured repulsive interactions in the L_α phase of very flexible membranes composed of the surfactant C12E5 and small amounts of polymer-lipids derived from polyethylene glycol (PEG-DMPE 5000, PEG-DMPE 2000 and PEG-DMPE 550). In the first method, the lamellar repeat distance of samples in equilibrium with a dextran solution of known osmotic pressure is determined, yielding a direct measurement of pressure versus distance. These data immediately differentiate the repulsive interaction between flexible polymer-decorated membranes from polymer-brush forces found in rigid lamellar systems. In the second method, fits to high-resolution x-ray data yield the η parameter, proportional to (κB)-1\\over2, where B is the layer compressional modulus and κ is the bending rigidity of a single membrane. Combining the two types of data to eliminate B, one can quantitatively determine the κ of a decorated membrane as a function of polymer-lipid concentration. For the bare C12E5 membrane, where κ is known , a direct comparison of the compressibility modulus values derived via the two methods is also possible. This work supported by NSF-DMR-9624091; PRF-31352-AC7 CULAR-STB/UC:96-118.
Dark matter repulsion could thwart direct detection
Davoudiasl, Hooman
2017-11-20
We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less
Dark matter repulsion could thwart direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoudiasl, Hooman
We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
Polymers with nearest- and next nearest-neighbor interactions on the Husimi lattice
NASA Astrophysics Data System (ADS)
Oliveira, Tiago J.
2016-04-01
The exact grand-canonical solution of a generalized interacting self-avoid walk (ISAW) model, placed on a Husimi lattice built with squares, is presented. In this model, beyond the traditional interaction {ω }1={{{e}}}{ɛ 1/{k}BT} between (nonconsecutive) monomers on nearest-neighbor (NN) sites, an additional energy {ɛ }2 is associated to next-NN (NNN) monomers. Three definitions of NNN sites/interactions are considered, where each monomer can have, effectively, at most two, four, or six NNN monomers on the Husimi lattice. The phase diagrams found in all cases have (qualitatively) the same thermodynamic properties: a non-polymerized (NP) and a polymerized (P) phase separated by a critical and a coexistence surface that meet at a tricritical (θ-) line. This θ-line is found even when one of the interactions is repulsive, existing for {ω }1 in the range [0,∞ ), i.e., for {ɛ }1/{k}BT in the range [-∞ ,∞ ). Thus, counterintuitively, a θ-point exists even for an infinite repulsion between NN monomers ({ω }1=0), being associated to a coil-‘soft globule’ transition. In the limit of an infinite repulsive force between NNN monomers, however, the coil-globule transition disappears, and only NP-P continuous transition is observed. This particular case, with {ω }2=0, is also solved exactly on the square lattice, using a transfer matrix calculation where a discontinuous NP-P transition is found. For attractive and repulsive forces between NN and NNN monomers, respectively, the model becomes quite similar to the semiflexible-ISAW one, whose crystalline phase is not observed here, as a consequence of the frustration due to competing NN and NNN forces. The mapping of the phase diagrams in canonical ones is discussed and compared with recent results from Monte Carlo simulations on the square lattice.
Investigation of electric charge on inertial particle dynamics in turbulence
NASA Astrophysics Data System (ADS)
Lu, Jiang; Shaw, Raymond
2014-11-01
The behavior of electrically charged, inertial particles in homogeneous, isotropic turbulence is investigated. Both like-charged and oppositely-charged particle interactions are considered. Direct numerical simulations (DNS) of turbulence in a periodic box using the pseudospectral numerical method are performed, with Lagrangian tracking of the particles. We study effects of mutual electrostatic repulsion and attraction on the particle dynamics, as quantified by the radial distribution function (RDF) and the radial relative velocity. For the like-charged particle case, the Coulomb force leads to a short range repulsion behavior and an RDF reminiscent of that for a dilute gas. For the oppositely-charged particle case, the Coulomb force increases the RDF beyond that already occurring for neutral inertial particles. For both cases, the relative velocities are calculated as a function of particle separation distance and show distinct deviations from the expected scaling within the dissipation range. This research was supported by NASA Grant NNX113AF90G.
Effective interactions between inclusions in an active bath
NASA Astrophysics Data System (ADS)
Zaeifi Yamchi, Mahdi; Naji, Ali
2017-11-01
We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions and active particles. In a non-chiral active bath, we first corroborate previous findings on effective two-body repulsion mediated between the inclusions by elucidating the detailed non-monotonic features of the two-body force profiles, including a primary maximum and a secondary hump at larger separations that was not previously reported. We then show that these features arise directly from the formation, and sequential overlaps, of circular layers (or "rings") of active particles around the inclusions, as the latter are brought to small surface separations. These rings extend to radial distances of a few active-particle radii from the surface of inclusions, giving the hard-core inclusions relatively thick, soft, repulsive "shoulders," whose multiple overlaps then enable significant (non-pairwise) three-body forces in both non-chiral and chiral active baths. The resulting three-body forces can even exceed the two-body forces in magnitude and display distinct repulsive and attractive regimes at intermediate to large self-propulsion strengths. In a chiral active bath, we show that, while active particles still tend to accumulate at the immediate vicinity of the inclusions, they exhibit strong depletion from the intervening region between the inclusions and partial depletion from relatively thick, circular zones further away from the inclusions. In this case, the effective, predominantly repulsive interactions between the inclusions turn to active, chirality-induced, depletion-type attractions, acting over an extended range of separations.
NASA Astrophysics Data System (ADS)
Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration
Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).
Bakhti, Mostafa; Snaidero, Nicolas; Schneider, David; Aggarwal, Shweta; Möbius, Wiebke; Janshoff, Andreas; Eckhardt, Matthias; Nave, Klaus-Armin; Simons, Mikael
2013-02-19
During the development of the central nervous system (CNS), oligodendrocytes wrap their plasma membrane around axons to form a multilayered stack of tightly attached membranes. Although intracellular myelin compaction and the role of myelin basic protein has been investigated, the forces that mediate the close interaction of myelin membranes at their external surfaces are poorly understood. Such extensive bilayer-bilayer interactions are usually prevented by repulsive forces generated by the glycocalyx, a dense and confluent layer of large and negatively charged oligosaccharides. Here we investigate the molecular mechanisms underlying myelin adhesion and compaction in the CNS. We revisit the role of the proteolipid protein and analyze the contribution of oligosaccharides using cellular assays, biophysical tools, and transgenic mice. We observe that differentiation of oligodendrocytes is accompanied by a striking down-regulation of components of their glycocalyx. Both in vitro and in vivo experiments indicate that the adhesive properties of the proteolipid protein, along with the reduction of sialic acid residues from the cell surface, orchestrate myelin membrane adhesion and compaction in the CNS. We suggest that loss of electrostatic cell-surface repulsion uncovers weak and unspecific attractive forces in the bilayer that bring the extracellular surfaces of a membrane into close contact over long distances.
Repulsive Casimir force in Bose–Einstein Condensate
NASA Astrophysics Data System (ADS)
Mehedi Faruk, Mir; Biswas, Shovon
2018-04-01
We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.
Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection
NASA Astrophysics Data System (ADS)
Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.
2017-05-01
We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0 % to 80 % filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ˜80 % to 100 % filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ˜80 % filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.
Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.
Keller, Nicholas; Berndsen, Zachary T; Jardine, Paul J; Smith, Douglas E
2017-05-01
We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Perfect mixing of immiscible macromolecules at fluid interfaces
NASA Astrophysics Data System (ADS)
Sheiko, Sergei S.; Zhou, Jing; Arnold, Jamie; Neugebauer, Dorota; Matyjaszewski, Krzysztof; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Rubinstein, Michael
2013-08-01
The difficulty of mixing chemically incompatible substances—in particular macromolecules and colloidal particles—is a canonical problem limiting advances in fields ranging from health care to materials engineering. Although the self-assembly of chemically different moieties has been demonstrated in coordination complexes, supramolecular structures, and colloidal lattices among other systems, the mechanisms of mixing largely rely on specific interfacing of chemically, physically or geometrically complementary objects. Here, by taking advantage of the steric repulsion between brush-like polymers tethered to surface-active species, we obtained long-range arrays of perfectly mixed macromolecules with a variety of polymer architectures and a wide range of chemistries without the need of encoding specific complementarity. The net repulsion arises from the significant increase in the conformational entropy of the brush-like polymers with increasing distance between adjacent macromolecules at fluid interfaces. This entropic-templating assembly strategy enables long-range patterning of thin films on sub-100 nm length scales.
Tetramers of Two Heavy and Two Light Bosons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-07-01
This article considers the bound states of two heavy and two light bosons, when a short-range force attracts the bosons of different mass, and a short-range force repels the light bosons. The existence of such four-body bound states results from the competition between these two forces. For a given strength of the attraction, the critical strength of the repulsion necessary to unbind the four particles is calculated. This study is motivated by the experimental realisation of impurity atoms immersed in an atomic Bose-Einstein condensate, and aims at determining in which regime only one boson contributes to binding two impurities.
Stretching of a polymer chain anchored to a surface: the massive field theory approach
NASA Astrophysics Data System (ADS)
Usatenko, Zoryana
2014-09-01
Taking into account the well-known correspondence between the field theoretical φ4 O(n)-vector model in the limit n → 0 and the behaviour of long-flexible polymer chains, the investigation of stretching of an ideal and a real polymer chain with excluded volume interactions in a good solvent anchored to repulsive and inert surfaces is performed. The calculations of the average stretching force which arises when the free end of a polymer chain moves away from a repulsive or inert surface are performed up to one-loop order of the massive field theory approach in fixed space dimensions d = 3. The analysis of the obtained results indicates that the average stretching force for a real polymer chain anchored to a repulsive surface demonstrates different behaviour for the cases \\tilde{z}\\ll1 and \\tilde{z}\\gg1 , where \\tilde{z}=z^\\prime/Rz . Besides, the results obtained in the framework of the massive field theory approach are in good agreement with previous theoretical results for an ideal polymer chain and results of a density functional theory approach for the region of small applied forces when deformation of a polymer chain in the direction of the applied force is not bigger than the linear extension of a polymer chain in this direction. The better agreement between these two methods is observed in the case where the number of monomers increases and the polymer chain becomes longer.
Electrostatics at the nanoscale.
Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A
2011-04-01
Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.
Polymer Brushes under High Load
Balko, Suzanne M.; Kreer, Torsten; Costanzo, Philip J.; Patten, Tim E.; Johner, Albert; Kuhl, Tonya L.; Marques, Carlos M.
2013-01-01
Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties. PMID:23516470
Electrostatic forces in planetary rings
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Shan, Linhua; Havnes, O.
1988-01-01
The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong
2017-07-05
Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...
2017-07-05
Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong
Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
Spectral long-range interaction of temporal incoherent solitons.
Xu, Gang; Garnier, Josselin; Picozzi, Antonio
2014-02-01
We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.
Probing surface charge potentials of clay basal planes and edges by direct force measurements.
Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe
2008-11-18
The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the surface element integrated DLVO model. The point of zero charge of the muscovite edge surface was estimated to be pH 7-8.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.
2014-05-01
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric S. G.; Bernate, Jorge A.; Yang, Mengfei
2016-12-01
Within the past decade, the separation of particles via continuous flow through microfluidic devices has been developed largely through an Edisonian approach whereby devices have been developed based on observation and intuition. This is particularly true in the development of vector chromatography at vanishingly small Reynolds number for non-Brownian particles. Note that this latter phenomenon has its origins in the irreversible forces that are at work in the device, since Stokes flow reversibility typically prohibits their function otherwise. We present a numerical simulation of the vector separation of non-Brownian particles of different sizes and deformabilities in the Stokes flow through channels whose lower surface is composed of slanted cavities. The simulations are designed to understand the physical principles behind the separation as well as to provide design criteria for devices for separating particles in a given size and flexibility range. The numerical simulations are Stokes flow boundary element simulations using techniques defined elsewhere in the literature, but including a close-range repulsive force between the particles and the slanted cavities. We demonstrate that over a range of repulsive force that is comparable to the roughness in the experimental devices, the separation data (particularly in particle size) are predicted quantitatively and are a very weak function of the range of the force. We then vary the geometric parameters of the simulated devices to demonstrate the sensitivity of the separation efficiency to these parameters, thus making design predictions as to which devices are appropriate for separating particles in different size, shape, and deformability ranges.
NASA Astrophysics Data System (ADS)
Raudino, Antonio; Pannuzzo, Martina
2010-01-01
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance→short-distance transition in determining the whole fusion kinetics.
Raudino, Antonio; Pannuzzo, Martina
2010-01-28
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance-->short-distance transition in determining the whole fusion kinetics.
Van-der-Waals interaction of atoms in dipolar Rydberg states
NASA Astrophysics Data System (ADS)
Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.
2018-02-01
An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power-12 dependence C 6( n) ∝ n 12 for the dipolar states of the Rydberg manifold.
NASA Astrophysics Data System (ADS)
Castelain, Mickaël; Pignon, Frédéric; Piau, Jean-Michel; Magnin, Albert
2008-04-01
We used an optical tweezer to investigate the adhesion of yeast Saccharomyces cerevisiae onto a glass substrate at the initial contact. Micromanipulation of free-living objects with single-beam gradient optical trap enabled to highlight mechanisms involved in this initial contact. As a function of the ionic strength and with a displacement parallel to the glass surface, the yeast adheres following different successive ways: (i) Slipping and rolling at 1.5mM NaCl, (ii) slipping, rolling, and sticking at 15mM NaCl, and (iii) only sticking at 150mM. These observations were numerous and reproducible. A kinetic evolution of these adhesion phenomena during yeast movement was clearly established. The nature, range, and relative intensity of forces involved in these different adhesion mechanisms have been worked out as a quantitative analysis from Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO theories. Calculations show that the adhesion mechanisms observed and their affinity with ionic strength were mainly governed by the Lifshitz-van der Waals interaction forces and the electrical double-layer repulsion to which are added specific contact forces linked to "sticky" glycoprotein secretion, considered to be the main forces capable of overcoming the short-range Lewis acid-base repulsions.
Dynamics of Two Interactive Bubbles in An Acoustic Field - Part II: Experiments
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Liu, Ching-Shi
1996-11-01
The motion of two air bubbles levitated in water, in the presence of a high-frequency acoustic field is experimentally studied. The interaction force between them is named "secondary Bjerknes force" and may be significant in microgravity environments; in our experiments the buoyancy effect is compensated through the action of the "primary Bjerknes forces" - interaction between each bubble oscillation and external sound field. The stationary sound field is produced by a piezoceramic tranducer, in the range of 22-24 kHz. The experiments succesfully demonstrate the existence of three patterns of interaction between bubbles of various sizes: attraction, repulsion and oscillation. Bubbles attraction is quantitatively studied using a high speed video, for "large" bubbles (in the range 0.5-2 mm radius); bubbles repulsion and oscillations are only observed with a regular video, for "small" bubbles (around the resonance size at these frequencies, 0.12 mm). Velocities and accelerations of each bubble are computed from the time history of the motion. The theoretical equations of motion are completed with a drag force formula for single bubbles and solved numerically. Experimental results, for the case of two attracting bubbles, are in good agreement with the numerical model, especially for values of the mutual distance greater than 3 large bubble radii.
Bond lifetime and diffusion coefficient in colloids with short-range interactions.
Ndong Mintsa, E; Germain, Ph; Amokrane, S
2015-03-01
We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.
The origin of and conditions for clustering in fluids with competing interactions
NASA Astrophysics Data System (ADS)
Jadrich, Ryan; Bollinger, Jonathan; Truskett, Thomas
2015-03-01
Fluids with competing short-range attractions and long-range repulsions exhibit a rich phase behavior characterized by intermediate range order (IRO), as quantified via the static structure factor. This phase behavior includes cluster formation depending upon density-controlled packing effects and the magnitude and range of the attractive and repulsive interactions. Such model systems mimic (to zeroth order) screened, charge-stabilized, aqueous colloidal dispersions of, e.g., proteins. We employ molecular dynamics simulations and integral equation theory to elucidate a more fundamental microscopic explanation for IRO-driven clustering. A simple criterion is identified that indicates when dynamic, amorphous clustering emerges in a polydisperse system, namely when the Ornstein-Zernike thermal correlation length in the system exceeds the repulsive potential tail range. Remarkably, this criterion also appears tightly correlated to crystalline cluster formation in a monodisperse system. Our new gauge is compared to another phenomenological condition for clustering which is when the IRO peak magnitude exceeds ~ 2.7. Ramifications of crystalline versus amorphous clustering are discussed and potential ways of using our new measure in experiment are put forward.
NASA Astrophysics Data System (ADS)
Ferrier-Barbut, Igor; Pfau, Tilman
2018-01-01
A liquid exists when interactions that attract its constituent particles to each other are counterbalanced by a repulsion acting at higher densities. Other characteristics of liquids are short-range correlations and the existence of surface tension (1). Ultracold atom experiments provide a privileged platform with which to observe exotic states of matter, but the densities are far too low to obtain a conventional liquid because the atoms are too far apart to create repulsive forces arising from the Pauli exclusion principle of the atoms' internal electrons. The observation of quantum liquid droplets in an ultracold mixture of two quantum fluids is now reported on page 301 of this issue by Cabrera et al. (2) and a recent preprint by Semeghini et al. (3). Unlike conventional liquids, these liquids arise from a weak attraction and repulsive many-body correlations in the mixtures.
Topological interactions in spacetimes with thick line defects
NASA Astrophysics Data System (ADS)
Moraes, Fernando; Carvalho, A. M.; Costa, Ismael V.; Oliveira, F. A.; Furtado, Claudio
2003-08-01
In this work we study the topologically induced electric self-energy and self-force on a long, straight, wire in two distinct, but similar, spacetimes: (i) the Gott-Hiscock thick cosmic string spacetime, and (ii) the spacetime of a continuous distribution of infinitely thin cosmic strings over a disk of finite radius. In each case we obtain the electric self-energy and self-force both in the internal and external regions of the defect distribution. The self-force is always repulsive, independently of the sign of the charge, and is maximum on the string’s surface, in both cases.
Shear thinning in non-Brownian suspensions.
Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie
2018-02-14
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J
2015-10-23
Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
Electron Bubbles in Superfluid (3) 3 He-A: Exploring the Quasiparticle-Ion Interaction
NASA Astrophysics Data System (ADS)
Shevtsov, Oleksii; Sauls, J. A.
2017-06-01
When an electron is forced into liquid ^3He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3, where m_3 is the mass of a ^3He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3He-A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, J.
2015-04-28
The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolytemore » (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.« less
Parameterization of aerosol scavenging due to atmospheric ionization under varying relative humidity
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tinsley, Brian A.
2017-05-01
Simulations and parameterizations of the modulation of aerosol scavenging by electric charges on particles and droplets for different relative humidities have been made for 3 μm radii droplets and a wide range of particle radii. For droplets and particles with opposite-sign charges, the attractive Coulomb force increases the collision rate coefficients above values due to other forces. With same-sign charges, the repulsive Coulomb force decreases the rate coefficients, and the short-range attractive image forces become important. The phoretic forces are attractive for relative humidity less than 100% and repulsive for relative humidity greater than 100% and have increasing overall effect for particle radii up to about 1 μm. There is an analytic solution for rate coefficients if only inverse square forces are present, but due to the presence of image forces, and for larger particles the intercept, weight, and the flow around the particle affecting the droplet trajectory, the simulated results usually depart far from the analytic solution. We give simple empirical parameterization formulas for some cases and more complex parameterizations for more exact fits to the simulated results. The results can be used in cloud models with growing droplets, as in updrafts, as well as with evaporating droplets in downdrafts. There is considered to be little scavenging of uncharged ice-forming nuclei in updrafts, but with charged ice-forming nuclei it is possible for scavenging in updrafts in cold clouds to produce contact ice nucleation. Scavenging in updrafts below the freezing level produces immersion nuclei that promote enhanced freezing as droplets rise above it.
Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions
NASA Astrophysics Data System (ADS)
Chu, Baojin; Salem, David R.
2017-10-01
Modified drop weight impact tests were performed on Si O2 -ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface. This study presents key experimental results to help understand the mechanisms underlying various stress-induced solidification phenomena.
Diffusing colloidal probes of protein-carbohydrate interactions.
Eichmann, Shannon L; Meric, Gulsum; Swavola, Julia C; Bevan, Michael A
2013-02-19
We present diffusing colloidal probe measurements of weak, multivalent, specific protein-polysaccharide interactions mediated by a competing monosaccharide. Specifically, we used integrated evanescent wave and video microscopy methods to monitor the three-dimensional Brownian excursions of conconavilin A (ConA) decorated colloids interacting with dextran-functionalized surfaces in the presence of glucose. Particle trajectories were interpreted as binding lifetime histograms, binding isotherms, and potentials of mean force. Binding lifetimes and isotherms showed clear trends of decreasing ConA-dextran-specific binding with increasing glucose concentration, consistent with expectations. Net potentials were accurately captured by superposition of a short-range, glucose-independent ConA-dextran repulsion and a longer-range, glucose-dependent dextran bridging attraction modeled as a harmonic potential. For glucose concentrations greater than 100 mM, the net ConA-dextran potential was found to have only a nonspecific repulsion, similar to that of bovine serum albumin (BSA) decorated colloids over dextran determined in control experiments. Our results demonstrate the first use of optical microscopy methods to quantify the connections between potentials of mean force and the binding behavior of ConA-decorated colloids on dextran-functionalized surfaces.
Study of Vacuum Energy Physics for Breakthrough Propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit
2004-01-01
This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The role of long-range forces in the formation of thin liquid films on metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyory, J.R.; Muller, R.H.
1987-06-01
White-light multiple beam interference is used to study the drainage of aqueous electrolytes from vertically optically smooth platinum and gold plates. Bulk liquid is in contact with the bottom of the metal plate. For short times following the lowering of the bulk liquid level, the change in the film profile agrees with that expected from viscous drainage. However, at long times, the film profile deviates from that expected and eventually becomes independent of time at a thickness between 0.08 and 0.25 micrometers. These profiles are best represented by a function dependent on the inverse cube root of height. The thicknessmore » of the equilibrium film profiles with increasing electrolyte concentration. A model based on long range van der Waals interactions resulting in a repulsive force between the interfaces of the film is shown to predict the correct profile shape, and for dilute electrolytes, the correct film thickness. This model also predicts increasing film thickness for increasing electrolyte concentration. The strength of this interaction is characterized by the Hamaker constant which can be calculated from the dielectric functions evaluated at imaginary frequencies of the film and substrate. For metals, this function is generated from spectral absorption data, limiting behavior for low and high frequencies, and by use of the Kramers-Kronig transformation. Hamaker constants calculated from the dielectric functions generated in this manner agree well with those derived from film profiles for dilute electrolytes.« less
Do the repulsive and attractive pair forces play separate roles for the physics of liquids?
Bøhling, Lasse; Veldhorst, Arno A; Ingebrigtsen, Trond S; Bailey, Nicholas P; Hansen, Jesper S; Toxvaerd, Søren; Schrøder, Thomas B; Dyre, Jeppe C
2013-01-23
According to standard liquid-state theory repulsive and attractive pair forces play distinct roles for the physics of liquids. This paradigm is put into perspective here by demonstrating a continuous series of pair potentials that have virtually the same structure and dynamics, although only some of them have attractive forces of significance. Our findings reflect the fact that the motion of a given particle is determined by the total force on it, whereas the quantity usually discussed in liquid-state theory is the individual pair force.
Fluxoids configurations in finite superconducting networks
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Haham, Noam; Shaulov, Avner A.; Yeshurun, Yosef
2017-12-01
Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for the total energy of the ladders as a function of the loops vorticities and the applied magnetic field. This expression shows that fluxoids can be treated as repulsively interacting objects driven towards the ladder center by the applied field. Distinctive repulsive interactions between fluxoids are obtained depending on the ratio l between the loops length and the common width of adjacent loops. A 'short range' and a 'long range' interactions obtained for l ≳ 1 and l ≪ 1, respectively, give rise to remarkably different fluxoid configurations. The different configurations of fluxoids in different types of ladders are illustrated by simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.
2015-06-24
Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werhahn, Jasper C.; Miliordos, Evangelos; Xantheas, Sotiris S.
2015-01-05
We introduce new generalized (reverting to the original) and extended (not reverting to the original) 4-parameter forms of the (B-2) Potential Energy Function (PEF) of Wang etal. (L.-P. Wang, J. Chen and T. van Voorhis, J. Chem. Theor. Comp. 9, 452 (2013)), which is itself a modification of the Buckingham exponential-6 PEF. The new forms have a tunable, singularity-free short-range repulsion and an adjustable long-range attraction. They produce fits to high quality ab initio data for the X–(H2O), X=F, Cl, Br, I and M+(H2O), M=Li, Na, K, Rb, Cs dimers that are between 1 and 2 orders of magnitude bettermore » than the original 3-parameter (B-2) and modified Buckingham exponential-6 PEFs. They are also slightly better than the 4-parameter generalized Buckingham exponential-6(gBe-6) and of comparable quality with the 4-parameter extended Morse (eM) PEFs introduced recently by us.« less
An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets
NASA Astrophysics Data System (ADS)
Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo
2015-01-01
Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.
Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo
2015-01-01
Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
Subpiconewton intermolecular force microscopy.
Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T
1997-02-24
We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.
Effects of Coulomb Repulsion on the Phase Diagram of the Asakura-Oosawa Model
NASA Astrophysics Data System (ADS)
Haaga, Jason; Pemberton, Elizabeth; Gunton, James; Rickman, Jeffrey
We investigate the effect of adding a screened Coulomb charge to a model colloidal system interacting via the Asakura-Oosawa depletion potential. This model has previously been used to study the early stages of amelogenin self-assembly, a crucial process in the formation of dental enamel, by Li et al (BiophysicalJournal 101, 2502 (2011). By employing Monte Carlo simulations, we explore the role of interaction strengths and ranges on phase behavior. We find that charge strength and range have a strong influence on the stable, in the case of long range depletion potential, or metastable, in the case of short range depletion, fluid-fluid phase separation. Coulomb repulsion narrows and flattens the coexistence curve with increasing charge. This talk will also discuss solid-solid transitions present for certain interaction ranges. This work is supported by the G. Harold and Leila Y. Mathers Foundation.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Sample positioning in microgravity
NASA Technical Reports Server (NTRS)
Sridharan, Govind (Inventor)
1991-01-01
Repulsion forces arising from laser beams are provided to produce mild positioning forces on a sample in microgravity vacuum environments. The system of the preferred embodiment positions samples using a plurality of pulsed lasers providing opposing repulsion forces. The lasers are positioned around the periphery of a confinement area and expanded to create a confinement zone. The grouped laser configuration, in coordination with position sensing devices, creates a feedback servo whereby stable position control of a sample within microgravity environment can be achieved.
Sample positioning in microgravity
NASA Technical Reports Server (NTRS)
Sridharan, Govind (Inventor)
1993-01-01
Repulsion forces arising from laser beams are provided to produce mild positioning forces on a sample in microgravity vacuum environments. The system of the preferred embodiment positions samples using a plurality of pulsed lasers providing opposing repulsion forces. The lasers are positioned around the periphery of a confinement area and expanded to create a confinement zone. The grouped laser configuration, in coordination with position sensing devices, creates a feedback servo whereby stable position control of a sample within microgravity environment can be achieved.
Synchronization of a self-sustained cold-atom oscillator
NASA Astrophysics Data System (ADS)
Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.
2018-04-01
Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.
TWO-PHASE FORMATION IN SOLUTIONS OF TOBACCO MOSAIC VIRUS AND THE PROBLEM OF LONG-RANGE FORCES
Oster, Gerald
1950-01-01
In a nearly salt-free medium, a dilute tobacco mosaic virus solution of rod-shaped virus particles of uniform length forms two phases; the bottom optically anisotropic phase has a greater virus concentration than has the top optically isotropic phase. For a sample containing particles of various lengths, the bottom phase contains longer particles than does the top and the concentrations top and bottom are nearly equal. The longer the particles the less the minimum concentration necessary for two-phase formation. Increasing the salt concentration increases the minimum concentration. The formation of two phases is explained in terms of geometrical considerations without recourse to the concept of long-range attractive forces. The minimum concentration for two-phase formation is that concentration at which correlation in orientation between the rod-shaped particles begins to take place. This concentration is determined by the thermodynamically effective size and shape of the particles as obtained from the concentration dependence of the osmotic pressure of the solutions measured by light scattering. The effective volume of the particles is introduced into the theory of Onsager for correlation of orientation of uniform size rods and good agreement with experiment is obtained. The theory is extended to a mixture of non-uniform size rods and to the case in which the salt concentration is varied, and agreement with experiment is obtained. The thermodynamically effective volume of the particles and its dependence on salt concentration are explained in terms of the shape of the particles and the electrostatic repulsion between them. Current theories of the hydration of proteins and of long-range forces are critically discussed. The bottom layer of freshly purified tobacco mosaic virus samples shows Bragg diffraction of visible light. The diffraction data indicate that the virus particles in solution form three-dimensional crystals approximately the size of crystalline inclusion bodies found in the cells of plants suffering from the disease. PMID:15422102
Design of a 7-DOF slave robot integrated with a magneto-rheological haptic master
NASA Astrophysics Data System (ADS)
Hwang, Yong-Hoon; Cha, Seung-Woo; Kang, Seok-Rae; Choi, Seung-Bok
2017-04-01
In this study, a 7-DOF slave robot integrated with the haptic master is designed and its dynamic motion is controlled. The haptic master is made using a controllable magneto-rheological (MR) clutch and brake and it provides the surgeon with a sense of touch by using both kinetic and kinesthetic information. Due to the size constraint of the slave robot, a wire actuating is adopted to make the desired motion of the end-effector which has 3-DOF instead of a conventional direct-driven motor. Another motions of the link parts that have 4-DOF use direct-driven motor. In total system, for working as a haptic device, the haptic master need to receive the information of repulsive forces applied on the slave robot. Therefore, repulsive forces on the end-effector are sensed by using three uniaxial torque transducer inserted in the wire actuating system and another repulsive forces applied on link part are sensed by using 6-axis transducer that is able to sense forces and torques. Using another 6-axis transducer, verify the reliability of force information on final end of slave robot. Lastly, integrated with a MR haptic master, psycho-physical test is conducted by different operators who can feel the different repulsive force or torque generated from the haptic master which is equivalent to the force or torque occurred on the end-effector to demonstrate the effectiveness of the proposed system.
Silva Lopez, Carlos; Nieto Faza, Olalla; De Proft, Frank; Kolocouris, Antonios
2016-11-15
The interactions of axial substituents in monosubstituted cyclohexane rings are studied in this work using an array of different computational techniques. Additionally, the anomalous axial preference for some bulky substituents is related to stabilizing dispersion interactions. We find that the C-H ax ···Y ax contacts for various substituents with distances ranging from 2 to ∼5 Å may include attractive dispersion forces that can affect the conformational equilibrium; these forces co-exist with Pauli repulsive forces effected by Y ax group due to van der Waals sphere penetration. At distances between 2 and 3 Å stabilizing electron transfer interactions were calculated and the combination of natural bond orbital and QTAIM analysis showed that, in certain cases, Y ax = t Bu, C ax -O or C ax = O or S ax = O or C ax = S this interaction can be characterized as an improper H-bond. DFT-D3 and non-covalent interactions calculations (NCIs) in cyclohexane derivatives with Y ax = SiOR 3 including H Yax ···H cy surfaces at distances ranging between 4 and 6 Å suggest that dispersion has a clear effect on the experimentally observed stabilization of the axial conformer. NCIs computed from the reduced density gradient help to visually identify and analyze these interactions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali
2007-01-01
Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.
Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.
Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M
2017-06-09
We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.
New laser power sensor using weighing method
NASA Astrophysics Data System (ADS)
Pinot, P.; Silvestri, Z.
2018-01-01
We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.
Repulsive nature of optical potentials for high-energy heavy-ion scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2010-10-15
The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less
NASA Astrophysics Data System (ADS)
Rode, Stefan; Bennett, Robert; Yoshi Buhmann, Stefan
2018-04-01
We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors, which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electromagnetic conductor plates, resulting in a universal analytic expression that connects the attractive Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of electromagnetism.
Calculation of noncontact forces between silica nanospheres.
Sun, Weifu; Zeng, Qinghua; Yu, Aibing
2013-02-19
Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.
Origins of the anomalous stress behavior in charged colloidal suspensions under shear.
Kumar, Amit; Higdon, Jonathan J L
2010-11-01
Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.
Examining the origins of the hydration force between lipid bilayers using all-atom simulations.
Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B
2010-05-01
Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.
Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection
Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.
2018-01-01
We compare forces resisting DNA packaging in bacteriophage phi29 inferred from optical tweezers studies with forces driving DNA ejection inferred from osmotic pressure studies. Ejection forces from 0–80% filling are consistent with a model that assumes a repulsive DNA-DNA interaction potential derived from DNA condensation studies and predicts an inverse spool DNA conformation. Forces resisting packaging from ~80–100% filling are also consistent with this model. However, that electron microscopy does not reveal a spool conformation suggests that this model overestimates bending rigidity and underestimates repulsion. Below 80% filling, inferred ejection forces are higher than those resisting packaging. Although unexpected, this suggests that most force that builds during packaging is available to drive DNA ejection. PMID:28618627
van der Waals torque and force between anisotropic topological insulator slabs
NASA Astrophysics Data System (ADS)
Lu, Bing-Sui
2018-01-01
We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the nonretardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anisotropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of π . Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides an instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is nonretarded or static.
Controlling Casimir force via coherent driving field
NASA Astrophysics Data System (ADS)
Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid
2016-04-01
A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.
Interaction between colloidal particles on an oil-water interface in dilute and dense phases.
Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro
2015-05-20
The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.
Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy.
Johnson; Yuan; Lenhoff
2000-03-15
The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.
Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties
NASA Astrophysics Data System (ADS)
Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro
2013-12-01
We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.
Looking through the mirror: optical microcavity-mirror image photonic interaction.
Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F
2012-05-07
Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale.
NASA Astrophysics Data System (ADS)
Endo, M.; Hori, T.; Koyama, K.; Yamaguchi, I.; Arai, K.; Kaiho, K.; Yanabu, S.
2008-02-01
Using a high temperature superconductor, we constructed and tested a model Superconducting Fault Current Limiter (SFCL). SFCL which has a vacuum interrupter with electromagnetic repulsion mechanism. We set out to construct high voltage class SFCL. We produced the electromagnetic repulsion switch equipped with a 24kV vacuum interrupter(VI). There are problems that opening speed becomes late. Because the larger vacuum interrupter the heavier weight of its contact. For this reason, the current which flows in a superconductor may be unable to be interrupted within a half cycles of current. In order to solve this problem, it is necessary to change the design of the coil connected in parallel and to strengthen the electromagnetic repulsion force at the time of opening the vacuum interrupter. Then, the design of the coil was changed, and in order to examine whether the problem is solvable, the current limiting test was conducted. We examined current limiting test using 4 series and 2 parallel-connected YBCO thin films. We used 12-centimeter-long YBCO thin film. The parallel resistance (0.1Ω) is connected with each YBCO thin film. As a result, we succeed in interrupting the current of superconductor within a half cycle of it. Furthermore, series and parallel-connected YBCO thin film could limit without failure.
Measurement of intercolumnar forces between parallel guanosine four-stranded helices.
Mariani, P; Saturni, L
1996-01-01
The deoxyguanosine-5'-monophosphate in aqueous solution self-associates into stable structures, which include hexagonal and cholesteric columnar phases. The structural unit is a four-stranded helix, composed of a stacked array of Hoogsteen-bonded guanosine quartets. We have measured by osmotic stress method the force per unit length versus interaxial distance between helices in the hexagonal phase under various ionic conditions. Two contributions have been recognized: the first one is purely electrostatic, is effective at large distances, and shows a strong dependence on the salt concentration of the solution. The second contribution is short range, dominates at interaxial separations smaller than about 30-32 A, and rises steeply as the columns approach each other, preventing the coalescence of the helices. This repulsion has an exponential nature and shows a magnitude and a decay length insensitive to the ionic strength of the medium. Because these features are distinctive of the hydration force detected between phospholipid bilayers or between several linear macromolecules (DNA, polysaccharides, collagen), we conclude that the dominant force experienced by deoxyguanosine helices approaching contact is hydration repulsion. The observed decay length of about 0.7 A has been rationalized to emerge from the coupling between the 3-A decay length of water solvent and the helically ordered structure of the hydrophilic groups on the opposing surfaces. The present results agree with recent measurements, also showing the dependence of the hydration force decay on the structure of interacting surfaces and confirm the correlations between force and structure. Images FIGURE 1 PMID:8744324
NASA Astrophysics Data System (ADS)
Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar
2018-04-01
Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.
Neural cryptography with feedback.
Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido
2004-04-01
Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.
Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.
Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu
2017-11-29
Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.
Stability and minimum size of colloidal clusters on a liquid-air interface.
Pergamenshchik, V M
2012-02-01
A vertical force applied to each of two colloids, trapped at a liquid-air interface, induces their logarithmic pairwise attraction. I recently showed [Phys. Rev. E 79, 011407 (2009)] that in clusters of size R much larger than the capillary length λ, the attraction changes to that of a power law and is much stronger due to a many-body effect, and I derived two equations that describe the equilibrium coarse-grained meniscus profile and colloid density in such clusters. In this paper, this theory is shown also to describe small clusters with R≪ λ provided the number N of colloids therein is sufficiently large. An analytical solution for a small circular cluster with an arbitrary short-range power-law pairwise repulsion is found. The energy of a cluster is obtained as a function of its radius R and colloid number N. As in large clusters, the attraction force and energy universally scale with the distance L between colloids as L(-3) and L(-2), respectively, for any repulsion forces. The states of an equilibrium cluster, predicted by the theory, are shown to be stable with respect to small perturbations of the meniscus profile and colloid density. The minimum number of colloids in a circular cluster, which sustains the thermal motion, is estimated. For standard parameters, it can be very modest, e.g., in the range 20-200, which is in line with experimental findings on reversible clusterization on a liquid-air interface. © 2012 American Physical Society
Glass transition temperature of polymer nano-composites with polymer and filler interactions
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi
2012-02-01
We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.
Electrostatics of polymer translocation events in electrolyte solutions.
Buyukdagli, Sahin; Ala-Nissila, T
2016-07-07
We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.
Molla, Shahnawaz; Bhattacharjee, Subir
2007-10-09
The ability of dielectrophoretic (DEP) forces created using a microelectrode array to levitate particles in a colloidal suspension is studied experimentally and theoretically. The experimental system employs microfabricated electrode arrays on a glass substrate to apply repulsive DEP forces on polystyrene latex particles suspended in an aqueous medium. A numerical model based on the convection-diffusion-migration equation is presented to calculate the concentration distribution of colloidal particles in shear flow under the influence of a repulsive DEP force field. The results obtained from the numerical simulations are compared against trajectory analysis results and experimental data. The results indicate that by incorporating ac electric field-induced DEP forces in a shear flow, particle accumulation and deposition on the flow channel surfaces can be significantly reduced or even completely averted. The mathematical model is then used to indicate how the deposition behavior is modified in the presence of a permeable substrate, representative of tangential flow membrane filtration operations. The results indicate that the repulsive dielectrophoretic (DEP) forces imparted to the particles suspended in the feed can be employed to mitigate membrane fouling in a cross-flow filtration process.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended, negatively charged surface coat, the glycocalyx. Different charge distribution profiles within the glycocalyx are analysed. It is shown that charged glycocalices on the apical surface of the hair cells can support spatial separation between adjacent stereocilia in the hair bundles through electrostatic repulsion between stereocilia. The charge density profile within the glycocalyx is a crucial parameter. In fact, attraction instead of repulsion between adjacent stereocilia will be observed if the charge of the glycocalyx is concentrated near the membrane of the stereocilia, thereby making this type of charge distribution unlikely. The forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena that have been recorded from the periphery of the auditory and vestibular systems.
A particle-particle collision strategy for arbitrarily shaped particles at low Stokes numbers
NASA Astrophysics Data System (ADS)
Daghooghi, Mohsen; Borazjani, Iman
2016-11-01
We present a collision strategy for particles with any general shape at low Stokes numbers. Conventional collision strategies rely upon a short -range repulsion force along particles centerline, which is a suitable choice for spherical particles and may not work for complex-shaped particles. In the present method, upon the collision of two particles, kinematics of particles are modified so that particles have zero relative velocity toward each other along the direction in which they have the minimum distance. The advantage of this novel technique is that it guaranties to prevent particles from overlapping without unrealistic bounce back at low Stokes numbers, which may occur if repulsive forces are used. This model is used to simulate sedimentation of many particles in a vertical channel and suspensions of non-spherical particles under simple shear flow. This work was supported by the American Chemical Society (ACS) Petroleum Research Fund (PRF) Grant Number 53099-DNI9. The computational resources were partly provided by the Center for Computational Research (CCR) at the University at Buffalo.
Repulsive force actuated rotary micromirror
NASA Astrophysics Data System (ADS)
He, Siyuan; Ben Mrad, Ridha
2004-09-01
In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.
Casimir Repulsion between Metallic Objects in Vacuum
2010-08-27
levitation , as the particle is unstable to displacements away from the symmetry axis. DOI: 10.1103/PhysRevLett.105.090403 PACS numbers: 03.70.+k, 03.65.w...force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime...ever be repulsive? In this Letter, we answer this question in the affirmative by showing that a small elongated metal particle centered above a thin
Casimir repulsion between metallic objects in vacuum.
Levin, Michael; McCauley, Alexander P; Rodriguez, Alejandro W; Reid, M T Homer; Johnson, Steven G
2010-08-27
We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.
Extended Fluorescent Resonant Energy Transfer in DNA Constructs
NASA Astrophysics Data System (ADS)
Oh, Taeseok
This study investigates the use of surfactants and metal cations for the enhancement of long range fluorescent resonant energy transfer (FRET) and the antenna effect in DNA structures with multiple fluorescent dyes. Double-stranded (ds) DNA structures were formed by hybridization of 21mer DNA oligonucleotides with different arrangements of three fluorescent TAMRA donor dyes with two different complementary 21mer oligonucleotides with one fluorescent TexasRed acceptor dye. In such DNA structures, hydrophobic interactions between the fluorescent dyes in close proximity produces dimerization which along with other quenching mechanisms leads to significant reduction of fluorescent emission properties. Addition of the surfactants Triton X-100, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) along with sodium cations (Na+) and divalent magnesium cations (Mg 2+) were tested for their ability to reduce quenching of the fluorescent dyes and improve overall fluorescent emission, the long range FRET and the antenna effect properties. When the neutral (uncharged) surfactant Triton X-100 was added to the FRET ds-DNA hybrid structures with three TAMRA donors and one TexasRed acceptor, dye dimerization and emission quenching remained unaffected. However, for the positively charged CTAB surfactant at concentrations of 100 uM or higher, the neutralization of the negatively charged ds-DNA backbone by the cationic surfactant micelles was found to reduce TAMRA dye dimerization and emission quenching and improve TexasRed quantum yield, resulting in much higher FRET efficiencies and an enhanced antenna effect. This improvement is likely due to the CTAB molecules covering or sheathing the fluorescent donor and acceptor dyes which breaks up the dimerized dye complexes and prevents further quenching from interactions with water molecules and guanine bases in the DNA structure. While the negatively charged SDS surfactant alone was not able to reduce dimerization and emission quenching due to repulsive forces between DNA and SDS micelles, the addition of cations such as sodium ions (Na+) and divalent magnesium ions (Mg2+) did lead to a significant reduction in the dimerization and emission quenching resulting in much higher FRET efficiency and an enhanced antenna effect. It appears that when the repulsive electrostatic forces are screened by the cations (Mg2+ in particular), the SDS micelles can approach the FRET ds-DNA structures thereby sheathing or insulating the TAMRA and TexasRed dyes. Overall, the study provides a viable strategy for using combinations of surfactants and cations to reduce adverse fluorescent dye and other quenching mechanisms and improve the overall long distance FRET efficiency and the antenna effect in DNA structures with multi-donor and single acceptor fluorescent dye groups.
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
Three-Dimensional Tracking of Interfacial Hopping Diffusion
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Wu, Haichao; Schwartz, Daniel K.
2017-12-01
Theoretical predictions have suggested that molecular motion at interfaces—which influences processes including heterogeneous catalysis, (bio)chemical sensing, lubrication and adhesion, and nanomaterial self-assembly—may be dominated by hypothetical "hops" through the adjacent liquid phase, where a diffusing molecule readsorbs after a given hop according to a probabilistic "sticking coefficient." Here, we use three-dimensional (3D) single-molecule tracking to explicitly visualize this process for human serum albumin at solid-liquid interfaces that exert varying electrostatic interactions on the biomacromolecule. Following desorption from the interface, a molecule experiences multiple unproductive surface encounters before readsorption. An average of approximately seven surface collisions is required for the repulsive surfaces, decreasing to approximately two and a half for surfaces that are more attractive. The hops themselves are also influenced by long-range interactions, with increased electrostatic repulsion causing hops of longer duration and distance. These findings explicitly demonstrate that interfacial diffusion is dominated by biased 3D Brownian motion involving bulk-surface coupling and that it can be controlled by influencing short- and long-range adsorbate-surface interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
NASA Astrophysics Data System (ADS)
Gupta, A. P.; Shanker, Jai
1980-02-01
The relation between long wavelength optical mode frequencies and the Anderson-Gruneisen parameter δ for alkali halides studied by Madan suffers from a mathematical error which is rectified in the present communication. A theoretical analysis of δ is presented adopting six potential functions for the short range repulsion energy. Values of δ and γTO calculated from the Varshni-Shukla potential are found in closest agreement with experimental data.
Repulsion of polarized particles from two-dimensional materials
NASA Astrophysics Data System (ADS)
Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.
2018-05-01
Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 <ℏ ω <(5 /3 ) μc , where μc is the chemical potential tunable electrically or by chemical doping.
NASA Astrophysics Data System (ADS)
Khan, Mehbub; Hao, Yun; Hsu, Jong-Ping
2018-01-01
Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
Monte Carlo study of the honeycomb structure of anthraquinone molecules on Cu(111)
NASA Astrophysics Data System (ADS)
Kim, Kwangmoo; Einstein, T. L.
2011-06-01
Using Monte Carlo calculations of the two-dimensional (2D) triangular lattice gas model, we demonstrate a mechanism for the spontaneous formation of honeycomb structure of anthraquinone (AQ) molecules on a Cu(111) plane. In our model long-range attractions play an important role, in addition to the long-range repulsions and short-range attractions proposed by Pawin, Wong, Kwon, and Bartels [ScienceSCIEAS0036-807510.1126/science.1129309 313, 961 (2006)]. We provide a global account of the possible combinations of long-range attractive coupling constants which lead to a honeycomb superstructure. We also provide the critical temperature of disruption of the honeycomb structure and compare the critical local coverage rate of AQ’s where the honeycomb structure starts to form with the experimental observations.
Fidelity study of superconductivity in extended Hubbard models
NASA Astrophysics Data System (ADS)
Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.
2015-07-01
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Simultaneous shape repulsion and global assimilation in the perception of aspect ratio
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223
NASA Astrophysics Data System (ADS)
Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.
2016-06-01
Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.
Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B
2016-06-07
Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.
Indium nanowires at the silicon surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
2016-07-15
Conductive indium nanowires up to 50 nm in width and up to 10 μm in length are fabricated on the surface of silicon by local resputtering from the probe of an atomic-force microscope. The transfer of indium from the probe of the atomic-force microscope onto the silicon surface is initiated by applying a potential between the probe and the surface as they approach each other to spacings, at which the mutual repulsive force is ~10{sup –7} N. The conductivity of the nanowires ranges from 7 × 10{sup –3} to 4 × 10{sup –2} Ω cm, which is several orders ofmore » magnitude lower than that in the case of the alternative technique of heat transfer.« less
Gauge field back reaction on a black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, D.; Kephart, T.W.
1993-02-15
The order-[h bar] fluctuations of gauge fields in the vicinity of a black hole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back reaction are included, the formation of a wormholelike object could occur.
Electron Pairing, Repulsion, and Correlation: A Simplistic Approach
ERIC Educational Resources Information Center
Olsson, Lars-Fride; Kloo, Lars
2004-01-01
The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.
Numerical experiments with flows of elongated granules
NASA Technical Reports Server (NTRS)
Elrod, Harold G.; Brewe, David E.
1992-01-01
Theory and numerical results are given for a program simulating two dimensional granular flow (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely wide slider. Each granule is simulated by a central repulsive force field ratcheted with force restitution factor to introduce dissipation. Transmission of angular momentum between particles occurs via Coulomb friction. The effect of granular hardness is explored. Gaps from 7 to 28 particle diameters are investigated, with solid fractions ranging from 0.2 to 0.9. Among features observed are: slip flow at boundaries, coagulation at high densities, and gross fluctuation in surface stress. A videotape has been prepared to demonstrate the foregoing effects.
Thermally tunable grating using thermo-responsive magnetic fluid
NASA Astrophysics Data System (ADS)
Zaibudeen, A. W.; Philip, John
2017-04-01
We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.
Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats
2009-03-15
We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less
Pensini, Erica; Sleep, Brent E; Yip, Christopher M; O'Carroll, Denis
2012-12-18
The interactions between a silica substrate and iron particles were investigated using atomic force microscopy-based force spectroscopy (AFM). The micrometer- and nanosized iron particles employed were either bare or coated with carboxymethyl cellulose (CMC), a polymer utilized to stabilize iron particle suspensions. The effect of water chemistry on the forces of interaction was probed by varying ionic strength (with 100 mM NaCl and 100 mM CaCl₂) or pH (4, 5.5, and 8) or by introducing 10 mg/L of humic acids (HA). When particles were uncoated, the forces upon approach between silica and iron were attractive at pH 4 and 5.5 and in 100 mM CaCl₂ at pH 8, but they were negligible in 100 mM NaCl buffered to pH 8 and repulsive in water buffered to pH 8 and in HA solutions. HA produced electrosteric repulsion between iron particles and silica, likely due to its sorption to iron particles. HA sorption to silica was excluded on the basis of experiments conducted with a quartz-crystal microbalance with dissipation monitoring. Repulsion with CMC-coated iron was attributed to electrosteric forces, which were damped at high ionic strength. An extended DLVO model and a modified version of Ohshima's theory were successfully utilized to model AFM data.
Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.
Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng
2009-11-14
A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.
AC electrokinetic manipulation of selenium nanoparticles for potential nanosensor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoodi, Seyed Reza; Bayati, Marzieh, E-mail: m-bayati@tums.ac.ir; Hosseinirad, Somayeh
2013-03-15
Highlights: ► Se nanoparticles were synthesized using a reverse-microemulsion process. ► AC osmotic fluid flow repulses the particles from electrode edges. ► Dielectrophoretic force attracts the particles to electrode edges. ► Dielectrophoresis electrode showed non-ohmic behavior. ► The device can potentially be used as a nanosensor. - Abstract: We report the AC electrokinetic behavior of selenium (Se) nanoparticles for electrical characterization and possible application as micro/nano devices. selenium Se nanoparticles were successfully synthesized using a reverse-microemulsion process and investigated structurally using X-ray diffraction and transmission electron microscope. Interdigitated castellated ITO and non-castellated platinum electrodes were employed for manipulation of suspendedmore » materials in the fluid. Using ITO electrodes at low frequency limits resulted in deposition of Se particles on electrode surface. When Se particles exposed to platinum electrodes in the 10 Hz–1 kHz range and V {sub p−p}> 8, AC osmotic fluid flow repulses the particles from electrode edges. However, in 10 kHz–10 MHz range and V {sub p−p}> 5, dielectrophoretic force attracts the particles to electrode edges. As the Se particle concentration increased, the trapped Se particles were aligned along the electric field line and bridged the electrode gap. The device was characterized and can potentially be useful in making micro/nano electronic devices.« less
Zappone, Bruno; Patil, Navinkumar J; Madsen, Jan B; Pakkanen, Kirsi I; Lee, Seunghwan
2015-04-21
By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than, yet of the same order of magnitude as the diameter, indicating that the molecule can be modeled as a relatively rigid polymeric chain due to the large persistence length of the central glycosylated domain. Mucin molecules adsorbed abundantly onto mica from saline buffer, generating polymer-like, long-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin-mucin and mucin-substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated by an adsorbed layer with a fixed surface coverage also remained unaltered upon acidification. This observation can be linked to the surface-protective, pH-resistant role of bovine submaxillary mucin in the variable environmental conditions of the oral cavity.
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
Korover, Igor; Muangma, Navaphon; Hen, Or; ...
2014-07-01
We studied simultaneously the 4He(e,e'p), 4He(e,e'pp), and 4He(e,e'pn) reactions at Q 2=2 [GeV/c] 2 and x B >1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate themore » high-momentum tail of the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in 4He.« less
Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions.
Chaudhari, Mangesh I; Rempe, Susan B; Asthagiri, D; Tan, L; Pratt, L R
2016-03-03
The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. We present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar-Ar rdfs considered pointwise, the numerical results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar-Ar rdfs permit evaluation of osmotic second virial coefficients B2. Those B2's also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B2 can change from positive to negative values with increasing temperatures. This is consistent with the puzzling suggestions of decades ago that B2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B2 becomes more attractive with increasing temperature.
Molecular theory and the effects of solute attractive forces on hydrophobic interactions
Chaudhari, Mangesh I.; Rempe, Susan B.; Asthagiri, D.; ...
2015-12-22
The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. In this paper, we present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar–Ar rdfs considered pointwise, the numericalmore » results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar–Ar rdfs permit evaluation of osmotic second virial coefficients B 2. Those B 2’s also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B 2 can change from positive to negative values with increasing temperatures. Furthermore, this is consistent with the puzzling suggestions of decades ago that B 2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B 2 becomes more attractive with increasing temperature.« less
Equilibrium Phase Behavior of the Square-Well Linear Microphase-Forming Model.
Zhuang, Yuan; Charbonneau, Patrick
2016-07-07
We have recently developed a simulation approach to calculate the equilibrium phase diagram of particle-based microphase formers. Here, this approach is used to calculate the phase behavior of the square-well linear model for different strengths and ranges of the linear long-range repulsive component. The results are compared with various theoretical predictions for microphase formation. The analysis further allows us to better understand the mechanism for microphase formation in colloidal suspensions.
Fidelity study of superconductivity in extended Hubbard models
Plonka, N.; Jia, C. J.; Wang, Y.; ...
2015-07-08
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less
Nuclear force from lattice QCD.
Ishii, N; Aoki, S; Hatsuda, T
2007-07-13
The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32(4) [approximately (4.4 fm)(4)] lattice. A NN potential V(NN)(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the (1)S(0) and (3)S(1) channels, we show that the central part of V(NN)(r) has a strong repulsive core of a few hundred MeV at short distances (r approximately < 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force.
Xie, Yong; Guo, Shengming; Ji, Yinglu; Guo, Chuanfei; Liu, Xinfeng; Chen, Ziyu; Wu, Xiaochun; Liu, Qian
2011-09-20
The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications. © 2011 American Chemical Society
Unbinding transition from fluid membranes with associated polymers.
Benhamou, M; Kaidi, H
2013-10-01
We consider two neighboring fluid membranes that are associated with long flexible polymers (proteins or other macromolecules). We are interested in two physical systems consisting of i) two adjacent membranes with end-grafted (or adsorbed) polymers (system I), or ii) two membranes confining a polymer solution (system II). In addition to the pure interactions between membranes, the presence of polymers gives rise to new induced mediated interactions, which are repulsive, for system I, and attractive, for system II. In fact, repulsive induced interactions are caused by the excluded-volume forces between grafted polymers, while attractive ones, by entropy loss, due to free motion of polymers between membranes. The main goal is a quantitative study of the unbinding transition thermodynamics that is drastically affected by the associated polymers. For system I, the repulsive polymer-mediated force delays this transition that can happen at low temperature. To investigate the unbinding phenomenon, we first present an exact mathematical analysis of the total potential that is the sum of the primitive and induced potentials. This mathematical study enables us to classify the total interaction potentials, in terms of all parameters of the problem. Second, use is made of the standard variational method to calculate the first moments of the membrane separation. Special attention is paid to the determination of the unbinding temperature. In particular, we discuss its dependence on the extra parameters related to the associated polymers, which are the surface coverage and the polymer layer thickness on each membrane (for system I) or the polymer density and the gyration radius of coils (for system II). Third, we compute the disjoining pressure upon membrane separation. Finally, we emphasize that the presence of polymers may be a mechanism to delay or to accentuate the appearance of the unbinding transition between fluid membranes.
Self diffusion of interacting membrane proteins.
Abney, J R; Scalettar, B A; Owicki, J C
1989-01-01
A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The variation in experimental diffusion coefficients of integral membrane proteins is greater than that predicted by the theory, and may also reflect protein-induced perturbations in membrane viscosity. PMID:2720077
Shahinpoor, Mohsen
1995-01-01
A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.
Electrostatic effects on hyaluronic acid configuration
NASA Astrophysics Data System (ADS)
Berezney, John; Saleh, Omar
2015-03-01
In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.
Hermann, Stefanie; Wessig, Martin; Kollofrath, Dennis; Gerigk, Melanie; Hagedorn, Kay; Odendal, James A; Hagner, Matthias; Drechsler, Markus; Erler, Philipp; Fonin, Mikhail; Maret, Georg; Polarz, Sebastian
2017-05-08
Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The shape and dynamics of local attraction
NASA Astrophysics Data System (ADS)
Strömbom, D.; Siljestam, M.; Park, J.; Sumpter, D. J. T.
2015-11-01
Moving animal groups, such as flocks of birds or schools of fish, exhibit a varity of self-organized complex dynamical behaviors and shapes. This kind of flocking behavior has been studied using self-propelled particle models, in which the "particles" interact with their nearest neighbors through repulsion, attraction and alignment responses. In particular, it has been shown that models based on attraction alone can generate a range of dynamic groups in 2D, with periodic boundary conditions, and in the absence of repulsion. Here we investigate the effects of changing these conditions on the type of groups observed in the model. We show that replacing the periodic boundary conditions with a weak global attaction term in 2D, and extending the model to 3D does not significantly change the type of groups observed. We also provide a description of how attraction strength and blind angle determine the groups generated in the 3D version of the model. Finally, we show that adding repulsion do change the type of groups oberved, making them appear and behave more like real moving animal groups. Our results suggest that many biological instances of collective motion may be explained without assuming that animals explicitly align with each other. Instead, complex collective motion is explained by the interplay of attraction and repulsion forces. Supplementary material in the form of four mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjst/e2015-50093-5
Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco
2014-08-01
The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.
Switching plastic crystals of colloidal rods with electric fields
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033
Switching plastic crystals of colloidal rods with electric fields
NASA Astrophysics Data System (ADS)
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
NASA Astrophysics Data System (ADS)
Wan, Meng; Liu, Feng; Fang, Zhi; Zhang, Bo; Wan, Hui
2017-09-01
Atmospheric Pressure Plasma Jet arrays can greatly enhance the treatment area to fulfill the need for large-scale surface processing, while the spatial uniformity of the plasma jet array is closely related to the interactions of the adjacent jets. In this paper, a three-tube one-dimensional (1D) He plasma jet array with a cross-field needle-ring electrode structure is used to investigate the influences of the gas flow rate and applied voltage on the interactions of the adjacent jets through electrical, optical, and fluid measurements. The repulsion of the adjacent plume channels is observed using an intensified charge-coupled device (ICCD) and the influence of the gas flow rate and applied voltage on the electrostatic repulsion force, Coulomb force, is discussed. It is found that electrical coupling, mainly electrostatic repulsion force, exists among the jets in the array, which causes both the divergence of the lateral plumes and the nonlinear changes of the discharge power and the transport charge. The deflection angle of the lateral plumes with respect to the central plume in the optical images increases with the increase of applied voltage and decreases with the increase of gas flow rate. The deflection angle of the lateral plumes in the optical images is obviously larger than that of the lateral gas streams in the Schlieren images under the same experimental conditions, and the unconformity of the deflection angles is mainly attributed to the electrostatic repulsion force in adjacent plasma plume channels. The experimental results can help understand the interaction mechanisms of jets in the array and design controllable and scalable plasma jet arrays.
Grain-grain interaction in stationary dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampe, Martin; Joyce, Glenn
We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less
Crystallization of soft matter under confinement at interfaces and in wedges
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Malijevský, Alexandr
2016-06-01
The surface freezing and surface melting transitions that are exhibited by a model two-dimensional soft matter system are studied. The behaviour when confined within a wedge is also considered. The system consists of particles interacting via a soft purely repulsive pair potential. Density functional theory (DFT) is used to calculate density profiles and thermodynamic quantities. The external potential due to the confining walls is modelled via a hard wall with an additional repulsive Yukawa potential. The surface phase behaviour depends on the range and strength of this repulsion: when the repulsion is weak, the wall promotes freezing at the surface of the wall. The thickness of this frozen layer grows logarithmically as the bulk liquid-solid phase coexistence is approached. Our mean-field DFT predicts that this crystalline layer at the wall must be nucleated (i.e. there is a free energy barrier) and its formation is necessarily a first-order transition, referred to as ‘prefreezing’, by analogy with the prewetting transition. However, in contrast to the latter, prefreezing cannot terminate in a critical point, since the phase transition involves a change in symmetry. If the wall-fluid interaction is sufficiently long ranged and the repulsion is strong enough, surface melting can occur instead. Then the interface between the wall and the bulk crystalline solid is wetted by the liquid phase as the chemical potential is decreased towards the value at liquid-solid coexistence. It is observed that the finite thickness fluid film at the wall has a broken translational symmetry due to its proximity to the bulk crystal, and so the nucleation of the wetting film can be either first order or continuous. Our mean-field theory predicts that for certain wall potentials there is a premelting critical point analogous to the surface critical point for the prewetting transition. When the fluid is confined within a linear wedge, this can strongly promote freezing when the opening angle of the wedge is commensurate with the crystal lattice.
Nonuniform flow in soft glasses of colloidal rods
NASA Astrophysics Data System (ADS)
Dhont, J. K. G.; Kang, K.; Kriegs, H.; Danko, O.; Marakis, J.; Vlassopoulos, D.
2017-04-01
Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013), 10.1103/PhysRevLett.110.015901]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-08
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each other or the main chain.
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Ronggen; Li Tong; Li Xueqian
2007-11-15
Motivated by the alpha-magnetic-spectrometer (AMS) project, we assume that after the big bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter, respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes. The matter and antimatter on the two branes attract each other via gravitational force, meanwhile the scalar field causes a Casimir effect to resultmore » in a repulsive force against the gravitation. We find that the Casimir force is much stronger than the gravitational force, as long as the separation of the two branes is small. Thus at early epoch after the big bang, the two branes were closer and then have been separated by the Casimir repulsive force from each other. The trend will continue until the separation is sufficiently large and then the gravitational force observed in our four-space would obviously deviate from the Newton's universal gravitational law. We suppose that there is a potential barrier at the brane boundary, which is similar to the surface tension for a water membrane. The barrier prevents the matter (antimatter) particles from entering the space between two branes and jump from one brane to another. However, by the quantum tunneling, a sizable antimatter flux may come to our brane and be observed by the AMS. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models, and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which comes to our detector in the nonrelativistic approximation and make a rough numerical estimate of possible numbers of antihelium at AMS.« less
Massive antigravity field and incomplete black hole evaporation
NASA Astrophysics Data System (ADS)
Massa, Corrado
2008-04-01
If gravity is a mixture of the ordinary attractive force carried by the massless graviton, and of a repulsive force carried by a particle with nonzero mass, an evaporating black hole might leave a stable remnant.
NASA Astrophysics Data System (ADS)
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
The Role of Repulsion in Colloidal Crystal Engineering with DNA
Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.; ...
2017-10-24
Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less
The Role of Repulsion in Colloidal Crystal Engineering with DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.
Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less
The Role of Repulsion in Colloidal Crystal Engineering with DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.
Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost two decades ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. Here, a com-prehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson-Crick base pairingmore » interactions and depletion interactions—and systematically varied the salt concen-tration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive inter-actions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. This model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less
Graphene Casimir Interactions and Some Possible Applications
NASA Astrophysics Data System (ADS)
Phan, Anh D.
Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.
Microstructure of Mixed Surfactant Solutions by Electron Microscopy
NASA Astrophysics Data System (ADS)
Naranjo, Edward
1995-01-01
Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.
Electrostatic repulsive out-of-plane actuator using conductive substrate.
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-10-07
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.
Electrostatic repulsive out-of-plane actuator using conductive substrate
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-01-01
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542
Kong, Xiang-Peng; Shen, Xiaomei; Jang, Joonkyung; Gao, Xingfa
2018-03-01
The electronic and optical properties of black phosphorus (black-P) are significantly modulated by fabricating the edges of this two-dimensional material. Electron lone pairs (ELPs) are ubiquitous in black-P, but their role in creating the edge effects of black-P is poorly understood. Using first-principle calculations, we report ELPs of black-P experience severe Coulomb repulsion and play a central role in creating the edge effects of black-P. We discover the outermost P atoms of the zigzag edges of black-PQDs are free of the Coulomb repulsion, but the P atoms of the armchair edges do experience the Coulomb repulsion. The Coulomb repulsion serves as a new chemical driving force to make electron donor-acceptor bonds with chemical groups bearing vacant orbitals. Our results provide insights into the mechanism responsible for the peculiar edge effects of black-P and highlight the opportunity to use the ELPs of black-P for their damage-free surface functionalization.
Highly excited bound-state resonances of short-range inverse power-law potentials
NASA Astrophysics Data System (ADS)
Hod, Shahar
2017-11-01
We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.
Potential of mean force of DNA guided assemblies past Debye-Hückel regime
NASA Astrophysics Data System (ADS)
Girard, Martin; Seo, Soyoung; Li, Yaohua; Mirkin, Chad; Olvera de La Cruz, Monica
Many of the bioinspired systems make use of biopolymers such as polypeptides or DNA. The latter is widely used in self-assembled systems, from colloidal crystals to origami construction. In these systems, salt is commonly required to screen the electrostatic repulsion between the strands. In the classical Debye-Hückel picture, salt ions are point particles and the screening distance is a decreasing monotonic function of salt concentration. This picture breaks down at moderate salt concentrations, where the behavior becomes non-monotonic. In this talk, we will show results for potential of mean force of DNA grafted colloids obtained through multiscale molecular dynamics. In this picture, the highly charged DNA causes non-trivial behavior at moderate salt concentrations (c 0 . 3 - 0 . 7 M), namely increase of repulsion for non-complementary DNA strands while repulsion decreases for complementary strands. We will show spatial cluster distribution as function of size and charge as well as implications for experimental systems.
NASA Astrophysics Data System (ADS)
Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman
2017-04-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.
pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.
Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F
2016-02-01
pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Error estimates for (semi-)empirical dispersion terms and large biomacromolecules.
Korth, Martin
2013-10-14
The first-principles modeling of biomaterials has made tremendous advances over the last few years with the ongoing growth of computing power and impressive developments in the application of density functional theory (DFT) codes to large systems. One important step forward was the development of dispersion corrections for DFT methods, which account for the otherwise neglected dispersive van der Waals (vdW) interactions. Approaches at different levels of theory exist, with the most often used (semi-)empirical ones based on pair-wise interatomic C6R(-6) terms. Similar terms are now also used in connection with semiempirical QM (SQM) methods and density functional tight binding methods (SCC-DFTB). Their basic structure equals the attractive term in Lennard-Jones potentials, common to most force field approaches, but they usually use some type of cutoff function to make the mixing of the (long-range) dispersion term with the already existing (short-range) dispersion and exchange-repulsion effects from the electronic structure theory methods possible. All these dispersion approximations were found to perform accurately for smaller systems, but error estimates for larger systems are very rare and completely missing for really large biomolecules. We derive such estimates for the dispersion terms of DFT, SQM and MM methods using error statistics for smaller systems and dispersion contribution estimates for the PDBbind database of protein-ligand interactions. We find that dispersion terms will usually not be a limiting factor for reaching chemical accuracy, though some force fields and large ligand sizes are problematic.
A discrete particle model reproducing collective dynamics of a bee swarm.
Bernardi, Sara; Colombi, Annachiara; Scianna, Marco
2018-02-01
In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spectral fingerprint of electrostatic forces between biological cells
NASA Astrophysics Data System (ADS)
Murovec, T.; Brosseau, C.
2015-10-01
The prediction of electrostatic forces (EFs) between biological cells still poses challenges of great scientific importance, e.g., cell recognition, electroporation (EP), and mechanosensing. Frequency-domain finite element simulations explore a variety of cell configurations in the range of parameters typical for eukaryotic cells. Here, by applying an electric field to a pair of layered concentric shells, a prototypical model of a biological cell, we provide numerical evidence that the instantaneous EF changes from repulsion to attraction as the drive frequency of the electric field is varied. We identify crossover frequencies and discuss their dependence as a function of field frequency, conductivity of the extracellular medium, and symmetry of the configuration of cells. We present findings which suggest that the spectrum of EFs depends sensitively on the configuration of cells. We discuss the signatures of the collective behavior of systems with many cells in the spectrum of the EF and highlight a few of the observational consequences that this behavior implies. By looking at different cell configurations, we are able to show that the repulsion-to-attraction transition phenomenon is largely associated with an asymmetric electrostatic screening at very small separation between cells. These findings pave the way for the experimental observation of the electromagnetic properties of efficient and simple models of biological tissues.
Spectral fingerprint of electrostatic forces between biological cells.
Murovec, T; Brosseau, C
2015-10-01
The prediction of electrostatic forces (EFs) between biological cells still poses challenges of great scientific importance, e.g., cell recognition, electroporation (EP), and mechanosensing. Frequency-domain finite element simulations explore a variety of cell configurations in the range of parameters typical for eukaryotic cells. Here, by applying an electric field to a pair of layered concentric shells, a prototypical model of a biological cell, we provide numerical evidence that the instantaneous EF changes from repulsion to attraction as the drive frequency of the electric field is varied. We identify crossover frequencies and discuss their dependence as a function of field frequency, conductivity of the extracellular medium, and symmetry of the configuration of cells. We present findings which suggest that the spectrum of EFs depends sensitively on the configuration of cells. We discuss the signatures of the collective behavior of systems with many cells in the spectrum of the EF and highlight a few of the observational consequences that this behavior implies. By looking at different cell configurations, we are able to show that the repulsion-to-attraction transition phenomenon is largely associated with an asymmetric electrostatic screening at very small separation between cells. These findings pave the way for the experimental observation of the electromagnetic properties of efficient and simple models of biological tissues.
Shahinpoor, M.
1995-07-25
A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhari, Mangesh I.; Rempe, Susan B.; Asthagiri, D.
The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. In this paper, we present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar–Ar rdfs considered pointwise, the numericalmore » results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar–Ar rdfs permit evaluation of osmotic second virial coefficients B 2. Those B 2’s also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B 2 can change from positive to negative values with increasing temperatures. Furthermore, this is consistent with the puzzling suggestions of decades ago that B 2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B 2 becomes more attractive with increasing temperature.« less
A review of dynamic stability of repulsive-force maglev suspension systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Rote, D.M.
1998-07-01
Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDSmore » suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.« less
NASA Astrophysics Data System (ADS)
Noah, Joyce E.
Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.
Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs
NASA Astrophysics Data System (ADS)
Mae, Yoshiharu
2018-04-01
A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.
Thin film eddy current impulse deicer
NASA Technical Reports Server (NTRS)
Smith, Samuel O.; Zieve, Peter B.
1990-01-01
Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.
Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B
2016-11-14
Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.
Equilibrium Phase Behavior of a Continuous-Space Microphase Former.
Zhuang, Yuan; Zhang, Kai; Charbonneau, Patrick
2016-03-04
Periodic microphases universally emerge in systems for which short-range interparticle attraction is frustrated by long-range repulsion. The morphological richness of these phases makes them desirable material targets, but our relatively coarse understanding of even simple models hinders controlling their assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the nontrivial interplay between cluster, gel, and microphase formation.
Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian
Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...
2013-05-15
The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less
Tuning of peptide assembly through force balance adjustment.
Cao, Meiwen; Cao, Changhai; Zhang, Lijuan; Xia, Daohong; Xu, Hai
2013-10-01
Controlled self-assembly of amphiphilic tripeptides into distinct nanostructures is achieved via a controlled design of the molecular architecture. The tripeptide Ac-Phe-Phe-Lys-CONH2 (FFK), hardly soluble in water, forms long amyloid-like tubular structures with the aid of β-sheet hydrogen bonding and aromatic π-π stacking. Substitution of phenylalanine (F) with tyrosine (Y), that is, only a subtle structural variation in adding a hydroxyl group to the phenyl ring, results in great change in molecular self-assembly behavior. When one F is substituted with Y, the resulting molecules of FYK and YFK self-assemble into long thinner fibrils with high propensity for lateral association. When both Fs are substituted with Y, the resulting YYK molecule forms spherical aggregates. Introduction of hydroxyl groups into the molecule modifies aromatic interactions and introduces hydrogen bonding. Moreover, since the driving forces for peptide self-assembly including hydrogen bonding, electrostatic repulsion, and π-π stacking have high interdependence with each other, changes in aromatic interaction induce a Domino effect and cause a shift of force balance to a new state. This leads to significant variations in self-assembly behavior. Copyright © 2013 Elsevier Inc. All rights reserved.
Periodic synchronization and chimera in conformist and contrarian oscillators
NASA Astrophysics Data System (ADS)
Hong, Hyunsuk
2014-06-01
We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.
Shear thickening in suspensions: the lubricated-to-frictional contact scenario
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2017-11-01
Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the predictions of the lubricated-to-frictional rheology is generally good, but discrepancies demand some perspective on the strong simplifying assumptions in the model. Since contact is difficult to both establish and to characterize for surfaces between particles of micron scale or smaller, what is happening in the very close ``contacts'' is not clear, and how changes at this scale give rise to the large-scale force organization is yet to be established. The insight to the elements needed for the abrupt flow induced transition seen in DST thus suggests a need for consideration of both the microscopic physics of contact and the statistical physics governing the macroscopic properties. This work was supported in part by the NSF CBET program, Grant # 1605283.
Recycle polymer characterization and adhesion modeling
NASA Astrophysics Data System (ADS)
Holbery, James David
Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25--35% fiber, 12--15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2--4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Huckel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220 pN while for paraffin it is 9.1 nN and polyethylene 12.2 nN, a factor of 41 and 55 greater for paraffin and polyethylene, respectively. Decay lengths for repulsion is fit to be 2.3 nm for hotmelt indicating, approximately one-third that of paraffin and polyethylene. Johnson-Kendall-Roberts contact mechanic theory for viscoelastic materials has been applied with reasonable accuracy, particularly in experiments performed in solutions, to model the approach snap-in magnitude and detachment forces between sphere and substrate. Two representative commercial agglomeration formulations have been analyzed to determine the impact on adhesion and detachment forces although at room temperature, no measurable effect was identified.
Pryamitsyn, Victor; Ganesan, Venkat
2015-10-28
We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.
Thermodynamic curvature for attractive and repulsive intermolecular forces
NASA Astrophysics Data System (ADS)
May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George
2013-09-01
The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.
The Discovery of Gravitational Repulsion by Johannes Droste
NASA Astrophysics Data System (ADS)
McGruder, Charles Hosewell; VanDerMeer, B. Wieb
2018-01-01
In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v << c). In 1915 Einstein completed his theory of general relativity (also referred to as Einstein’s Theory of Gravitation), which is valid not just for slowly moving bodies but also for those with relativistic velocities. In 1916 Johannes Droste submitted a PhD thesis on general relativity to his advisor, H.A. Lorentz. In it he calculated the motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.
NASA Astrophysics Data System (ADS)
Meyer, Sam; Everaers, Ralf
2015-02-01
The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.
Forces between Two Glass Surfaces with Adsorbed Hexadecyltrimethylammonium Salicylate.
Imae, T; Kato, M; Rutland, M
2000-02-22
Forces have been measured for hexadecyltrimethylammonium salicylate (C(16)TASal) layers on glass beads. During the inward process, hydrophobic attraction occurred at lower adsorption of C(16)TASal and electrostatic repulsion interactions happened at higher adsorption. While the jump-in phenomenon was observed for solutions of concentrations below the critical micelle concentration (cmc = 0.15 mM), the step-in phenomenon was characteristic for solutions at the cmc and above the cmc, suggesting the push-out of adsorbed C(16)TASal layers and/or inserted micelles. The remarkable pull-off phenomenon on the outward process occurred for all solutions, indicating a strong interaction between C(16)TASal molecules. For aqueous 0.15 mM C(16)TASal solutions of various NaSal concentrations, on the inward process, the electrostatic repulsive interaction decreased with adding NaSal. This is due to the electrostatic shielding by salt excess. The height of the force wall on the inward process reached a maximum at 0.01 M NaSal, but the interlocking between molecules on two surfaces during the outward process was minimized at 0.1 M NaSal. These tendencies, which are different from that of the electrostatic repulsion interaction, imply the strong cohesion between adsorbed C(16)TASal layers.
NASA Astrophysics Data System (ADS)
Samokhvalov, A. V.; Mel'nikov, A. S.; Buzdin, A. I.
2012-05-01
We study the intervortex interaction in thin films of layered superconductors for the magnetic field tilted with respect to the c axis. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices appears. The interaction between pancake vortices, forming the AVs, with Josephson ones, produces the zigzag deformation of the AV line. This deformation induces a long-range attraction between Abrikosov vortices and, in thin films, it competes with another long-range interaction, i.e., with Pearl's repulsion. This interplay results in the formation of clusters of Abrikosov vortices, which can be considered as vortex molecules. The number of vortices in such clusters depends on field tilting angle and film thickness.
FORCES DICTATING COLLOIDAL INTERACTIONS BETWEEN VIRUSES AND SOIL
The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostat...
Dahirel, Vincent; Jardat, Marie; Dufrêche, Jean-François; Turq, Pierre
2007-09-07
Monte Carlo simulations are used to calculate the exact potential of mean force between charged globular proteins in aqueous solution. The aim of the present paper is to study the influence of the ions of the added salt on the effective interaction between these nanoparticles. The charges of the model proteins, either identical or opposite, are either central or distributed on a discrete pattern. Contrarily to Poisson-Boltzmann predictions, attractive, and repulsive direct forces between proteins are not screened similarly. Moreover, it has been shown that the relative orientations of the charge patterns strongly influence salt-mediated interactions. More precisely, for short distances between the proteins, ions enhance the difference of the effective forces between (i) like-charged and oppositely charged proteins, (ii) attractive and repulsive relative orientations of the proteins, which may affect the selectivity of protein/protein recognition. Finally, such results observed with the simplest models are applied to a more elaborate one to demonstrate their generality.
Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.
Barré, Julien; Yamaguchi, Yoshiyuki Y
2009-03-01
Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.
Ab Initio Study of KCl and AgCl Clusters.
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Cathey, Tommy; Valdez, Alexandra
This paper presents a theoretical study of molecular clusters that examines the chemical and physical properties of small KnCln and AgnCln clusters (n = 2 - 24). Due to combinations of attractive and repulsive long-range forces, such clusters exhibit structural and dynamical behavior different from that of homogeneous clusters. The potentially important role of these molecular species in biochemical and medicinal processes is widely known. This work applies the hybrid ab initio methods to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored. We will also investigate model and material dependence of the results. AMP program of the National Science Foundation.
Aggregation in charged nanoparticles solutions induced by different interactions
NASA Astrophysics Data System (ADS)
Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.
2016-05-01
Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.
Aggregation in charged nanoparticles solutions induced by different interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in
2016-05-23
Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction betweenmore » nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.« less
NASA Astrophysics Data System (ADS)
Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.
2014-08-01
We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.
The Pressure induced by salt crystallization in confinement.
Desarnaud, J; Bonn, D; Shahidzadeh, N
2016-08-05
Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials.
Potential of mean force between like-charged nanoparticles: Many-body effect
NASA Astrophysics Data System (ADS)
Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie
2016-03-01
Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Alex J.; Sakai, Yuki; Kim, Minjung
2016-05-09
Experimental atomic force microscopy (AFM) studies have reported distinct features in regions with little electron density for various organic systems. These unexpected features have been proposed to be a direct visualization of intermolecular hydrogen bonding. Here, we apply a computational method using ab initio real-space pseudopotentials along with a scheme to account for tip tilting to simulate AFM images of the 8-hydroxyquinoline dimer and related systems to develop an understanding of the imaging mechanism for hydrogen bonds. We find that contrast for the observed “hydrogen bond” feature comes not from the electrostatic character of the bonds themselves but rather frommore » repulsive tip tilting induced by neighboring electron-rich atoms.« less
One-loop quantum gravity repulsion in the early Universe.
Broda, Bogusław
2011-03-11
Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.
Modeling and strain gauging of eddy current repulsion deicing systems
NASA Technical Reports Server (NTRS)
Smith, Samuel O.
1993-01-01
Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.
Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques
2015-01-26
The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).
Origins of the Non-DLVO Force between Glass Surfaces in Aqueous Solution.
Adler, Joshua J.; Rabinovich, Yakov I.; Moudgil, Brij M.
2001-05-15
Direct measurement of surface forces has revealed that silica surfaces seem to have a short-range repulsion that is not accounted for in classical DLVO theory. The two leading hypotheses for the origin of the non-DLVO force are (i) structuring of water at the silica interface or (ii) water penetration into the surface resulting in a gel layer. In this article, the interaction of silica surfaces will be reviewed from the perspective of the non-DLVO force origin. In an attempt to more accurately describe the behavior of silica and glass surfaces, alternative models of how surfaces with gel layers should interact are proposed. It is suggested that a lessened van der Waals attraction originating from a thin gel layer may explain both the additional stability and the coagulation behavior of silica. It is important to understand the mechanisms underlying the existence of the non-DLVO force which is likely to have a major influence on the adsorption of polymers and surfactants used to modify the silica surface for practical applications in the ceramic, mineral, and microelectronic industries. Copyright 2001 Academic Press.
del Alamo, Marta; Mateu, Mauricio G
2005-01-28
In previous studies, thermodynamic dissection of the dimerization interface in CA-C, the C-terminal domain of the capsid protein of human immunodeficiency virus type 1, revealed that individual mutation to alanine of Ser178, Glu180, Glu187 or Gln192 led to significant increases in dimerization affinity. Four related aspects derived from this observation have been now addressed, and the results can be summarized as follows: (i) thermodynamic analyses indicate the presence of an intersubunit electrostatic repulsion between both Glu180 residues. (ii) The mutation Glu180 to Ala was detected in nearly all type 2 human immunodeficiency virus variants, and in several simian immunodeficiency viruses analyzed. However, this mutation was strictly co-variant with mutations Ser178Asp in a neighboring residue, and Glu187Gln. Thermodynamic analysis of multiple mutants showed that Ser178Asp compensated, alone or together with Glu187Gln, the increase in affinity caused by the mutation Glu180Ala, and restored a lower dimerization affinity. (iii) The increase in the affinity constant caused by the multiple mutation to Ala of Ser178, Glu180, Glu187 and Gln192 was more than one order of magnitude lower than predicted if additivity were present, despite the fact that the 178/180 pair and the two other residues were located more than 10A apart. (iv) Mutations in CA-C that caused non-additive increases in dimerization affinity also caused a non-additive increase in the capacity of the isolated CA-C domain to inhibit the assembly of capsid-like HIV-1 particles in kinetic assays. In summary, the study of a protein-protein interface involved in the building of a viral capsid has revealed unusual features, including intersubunit electrostatic repulsions, co-variant, compensatory mutations that may evolutionarily preserve a low association constant, and long-range, large magnitude non-additive effects on association.
Disordered hyperuniformity in two-component nonadditive hard-disk plasmas
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore
2017-12-01
We study the behavior of a classical two-component ionic plasma made up of nonadditive hard disks with additional logarithmic Coulomb interactions between them. Due to the Coulomb repulsion, long-wavelength total density fluctuations are suppressed and the system is globally hyperuniform. Short-range volume effects lead to phase separation or to heterocoordination for positive or negative nonadditivities, respectively. These effects compete with the hidden long-range order imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with long-wavelength concentration fluctuations partially damped when the system is charged. It is also shown that the decrease of configurational entropy due to hyperuniformity originates from contributions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our system the spatial configuration associated with each component separately is not hyperuniform, i.e., the system is not "multihyperuniform."
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
2015-01-01
In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.
Cheerios Effect Controlled by Electrowetting.
Yuan, Junqi; Feng, Jian; Cho, Sung Kwon
2015-08-04
The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the wettability of the wall and floating object and the density of the object. In this paper, electrowetting on dielectric (EWOD) is implemented to the wall or floating object in order to actively control the wettability and thus capillary interaction. As such, the capillary force on buoyant and dense floating objects can be easily switched between repulsion and attraction by simply applying an electrical input. In addition, the theoretical prediction for the capillary force is verified experimentally by measuring the motion of floating particle and the critical contact angle on the wall at which the capillary force changes from attraction to repulsion. This successive verification is enabled by the merit of EWOD that allows for continuous change in the contact angle. Finally, the control method is extended to continuously move a floating object along a linear path and to continuously rotate a dumbbell-like floating object in centimeter scales using arrays of EWOD electrodes. A continuous linear motion is also accomplished in a smaller scale where the channel width (3 mm) is comparable to the capillary length.
The Snakelike Chain Character of Unstructured RNA
Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.
2013-01-01
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087
Evanescent-wave bonding between optical waveguides.
Povinelli, Michelle L; Loncar, Marko; Ibanescu, Mihai; Smythe, Elizabeth J; Johnson, Steven G; Capasso, Federico; Joannopoulos, John D
2005-11-15
Forces arising from overlap between the guided waves of parallel, microphotonic waveguides are calculated. Both attractive and repulsive forces, determined by the choice of relative input phase, are found. Using realistic parameters for a silicon-on-insulator material system, we estimate that the forces are large enough to cause observable displacements. Our results illustrate the potential for a broader class of optically tunable microphotonic devices and microstructured artificial materials.
Attractive and Repulsive Forces on Particles in Oscillatory Flow
NASA Astrophysics Data System (ADS)
Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Thameem, Raqeeb; Hilgenfeldt, Sascha
2016-11-01
A large class of oscillating flows gives rise to rectified streaming motion of the fluid. It has recently been shown that particle transport in such flows, excited by bubbles oscillating at ultrasound frequencies, leads to differential displacement and efficient sorting of microparticles by size. We derive a general expression for the instantaneous radial force experienced by a small spherical particle in the vicinity of an oscillating interface, and generalize the radial projection of the Maxey-Riley equation to include this effect. Varying relevant system parameters, we show that the net effect on the particle can be either an attraction to or a repulsion from the bubble surface, depending in particular on the particle size and the particle/fluid density contrast. We demonstrate that these predictions are in agreement with a variety of experiments.
A single of MR sponge tactile sensor design for medical applications
NASA Astrophysics Data System (ADS)
Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Choi, Seung-Bok
2017-04-01
Recently, it is very popular in medical field to adopt robot surgery such as robot-assisted minimally invasive surgery (RMIS). However, there are some problems in the robot surgery. It is very hard to get the touch feeling of the organs during the surgical operation because the surgeons cannot touch and feel repulsive force from the organs directly. So, this work proposes a squeeze mode of single magneto-rheological (MR) sponge to realize viscoelastic property of human organs or skins and undertake a theoretical analysis of MR sponge. In addition, its effectiveness is verified through experimental tests. The similarity between MR sponge and real organs is identified and desired repulsive force of each organs can be achieved by proper selection of MR sponge cell associated with controlled input current.
NASA Astrophysics Data System (ADS)
Sugawara, Yoko; Hirano, Yuji; Yamamura, Shigefumi; Endo, Shigeru; Ootaki, Masanori; Matsumoto, Naoki; Takahashi, Takuya
2017-06-01
We developed an electrostatic energy of transfer (EET) analysis applicable to periodic boundary condition, including a nonrectangular unit cell. It was applied to monoclinic ribonuclease A crystallized with ethanol as a precipitant. Macrobond analysis was also carried out. Owing to the low ionic strength of the solvent region, atomic EET values were non-negligible even at long-distance points. Most of the molecular EET values-defined as the individual contribution of each surrounding molecule-were positive. The inclusion of the molecular EET values of hydration water molecules reduced the repulsive force, and the evaluation of hydration effects in protein crystals was found to be imperative.
An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murad, Paul
2010-01-28
The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectorymore » of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.« less
Solitons in a one-dimensional Wigner crystal
Pustilnik, M.; Matveev, K. A.
2015-04-16
In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. Here, we demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit. Furthermore, we compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay rate at low energies. Finally, we discuss implications of our results for the behavior of the dynamic structure factor.
Stresses in curved nematic membranes.
Santiago, J A
2018-05-01
Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.
NASA Astrophysics Data System (ADS)
Sokoloff, J. B.
2014-09-01
One role of a lubricant is to prevent wear of two surfaces in contact, which is likely to be the result of adhesive forces that cause a pair of asperities belonging to two surfaces in contact to stick together. Such adhesive sticking of asperities can occur both for sliding surfaces and for surfaces which are pressed together and then pulled apart. The latter situation, for example, is important for contact lenses, as prevention of sticking reduces possible damage to the cornea as the lenses are inserted and removed from the eye. Contact lenses are made from both neutral and polyelectrolyte hydrogels. It is demonstrated here that sticking of neutral hydrogels can be prevented by repulsive forces between asperities in contact, resulting from polymers attached to the gel surface but not linked with each other. For polyelectrolyte hydrogels, it is shown that osmotic pressure due to counterions, held at the interface between asperities in contact by the electrostatic attraction between the ions and the fixed charges in the gel, can provide a sufficiently strong repulsive force to prevent adhesive sticking of small-length-scale asperities.
Stresses in curved nematic membranes
NASA Astrophysics Data System (ADS)
Santiago, J. A.
2018-05-01
Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.
Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E
2017-06-21
While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.
d -wave superconductivity in the presence of nearest-neighbor Coulomb repulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, M.; Hahner, U. R.; Schulthess, T. C.
Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of d-wave pairing when a nearest-neighbor Coulomb repulsion V is present in addition to the on-site Coulomb repulsion U. We find that d-wave pairing and the superconducting transition temperature Tc are only weakly suppressed as long as V does not exceed U/2. This stability is traced to the strongly retarded nature of pairing that allows the d-wave pairs to minimize the repulsive effect of V. When V approaches U/2, large momentum charge fluctuations are found to become important andmore » to give rise to a more rapid suppression of d-wave pairing and T c than for smaller V.« less
Lima, Filipe S; Cuccovia, Iolanda M; Buchner, Richard; Antunes, Filipe E; Lindman, Björn; Miguel, Maria G; Horinek, Dominik; Chaimovich, Hernan
2015-03-10
Dodecyltrimethylammonium triflate (DTATf) micelles possess lower degree of counterion dissociation (α), lower hydration, and higher packing of monomers than other micelles of similar structure. Addition of sodium triflate ([NaTf] > 0.05 M) to DTATf solutions promotes phase separation. This phenomenon is commonly observed in oppositely charged surfactant mixtures, but it is rare for ionic surfactants and relatively simple counterions. While the properties of DTATf have already been reported, the driving forces for the observed phase separation with added salt remain unclear. Thus, we propose an interpretation for the observed phase separation in cationic surfactant solutions. Addition of up to 0.03 M NaTf to micellar DTATf solutions led to a limited increase of the aggregation number, to interface dehydration, and to a progressive decrease in α. The viscosity of DTATf solutions of higher concentration ([DTATf] ≥ 0.06 M) reached a maximum with increasing [NaTf], though the aggregation number slightly increased, and no shape change occurred. We hypothesize that this maximum results from a decrease in interaggregate repulsion, as a consequence of increased ion binding. This reduction in micellar repulsion without simultaneous infinite micellar growth is, probably, the major driving force for phase separation at higher [NaTf].
Demonstrating Forces between Parallel Wires.
ERIC Educational Resources Information Center
Baker, Blane
2000-01-01
Describes a physics demonstration that dramatically illustrates the mutual repulsion (attraction) between parallel conductors using insulated copper wire, wooden dowels, a high direct current power supply, electrical tape, and an overhead projector. (WRM)
Dark Energy and Dark Matter from Emergent Gravity Picture
NASA Astrophysics Data System (ADS)
Seok Yang, Hyun
2018-01-01
We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourchet, Sylvie, E-mail: sylvie.pourchet@u-bourgogne.fr; Pochard, Isabelle; Brunel, Fabrice
2013-10-15
Calcite suspensions are used to mimic the behavior of more complex cementitious systems. Therefore the characterization of calcite–water interface in strong alkaline conditions, through ionic adsorption, electrokinetic measurements, static rheology and atomic force microscopy is a prerequisite. Calcium, a potential determining ion for calcite, adsorbs specifically onto the weakly positively charged calcite surface in water. This leads to an increase of the repulsive electric double layer force and thus weakens the particle cohesion. Sulfate adsorption, made at constant calcium concentration and ionic strength, significantly increases the attractive interactions between the calcite particles despite its very low adsorption. This is attributedmore » to a lowering of the electrostatic repulsion in connection with the evolution of the zeta potential. The linear relationship found between the yield stress and ζ{sup 2} proves that the classical DLVO theory applies for these systems, contrary to what was previously observed with C–S–H particles under the same conditions.« less
Do trehalose and dimethyl sulfoxide affect intermembrane forces?
Pincet, F; Perez, E; Wolfe, J
1994-12-01
The sugar trehalose is produced in some organisms that survive dehydration and desiccation, and it preserves the integrity of membranes in model systems exposed to dehydration and freezing. Dimethyl sulfoxide, a solute which permeates membranes, is added to cell suspensions in many protocols for cryopreservation. Using a surface forces apparatus, we measured the very large, short-range repulsion between phosphatidylcholine bilayers in water and in solutions of trehalose, sorbitol, and dimethyl-sulfoxide. To the resolution of the technique, the force-distance curves between bilayers are unchanged by the addition of trehalose or sorbitol in concentrations exceeding 1 kmol.m-3. A relatively small increase in adhesion in the presence of trehalose and sorbitol solutions may be explained by their osmotic effects. The partitioning of trehalose between aqueous solutions and lamellar phases of dioleylphosphatidylcholine was measured gravimetrically. The amount of trehalose that preferentially adsorbs near membrane surfaces is at most small. The presence of dimethyl sulfoxide in water (1:2 by volume) makes very little difference to the short-range interaction between deposited bilayers, but it sometimes perturbs them in ways that vary among experiments: free bilayers and/or fusion of the deposited bilayers were each observed in about one-third of the experiments.
Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.
Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter
2015-04-28
In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.
Electric levitation using ϵ-near-zero metamaterials.
Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader
2014-01-24
The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.
NASA Astrophysics Data System (ADS)
Yaduvanshi, Namrata; Kapoor, Shilpa; Singh, Sadhna
2018-05-01
We have investigated the structural and mechanical properties of Cerium and Praseodymium Bismuthides under pressure by means of a three body interaction potential model which includes long range columbic interaction, three body interactions and short range overlap repulsive interaction operative up to second nearest neighbor. These compounds shows transition from NaCl structure to body-centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm). The elastic constants and their properties are also reported. Our calculated results of phase transitions and volume collapses of these compounds show a good agreement with available theoretical and experimental results.
Metal-atom Interactions and Clustering in Organic Semiconductor Systems
NASA Astrophysics Data System (ADS)
Tomita, Yoko; Park, Tea-uk; Nakayama, Takashi
2017-07-01
The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.
Hierarchical Shared Control of Cane-Type Walking-Aid Robot
Tao, Chunjing
2017-01-01
A hierarchical shared-control method of the walking-aid robot for both human motion intention recognition and the obstacle emergency-avoidance method based on artificial potential field (APF) is proposed in this paper. The human motion intention is obtained from the interaction force measurements of the sensory system composed of 4 force-sensing registers (FSR) and a torque sensor. Meanwhile, a laser-range finder (LRF) forward is applied to detect the obstacles and try to guide the operator based on the repulsion force calculated by artificial potential field. An obstacle emergency-avoidance method which comprises different control strategies is also assumed according to the different states of obstacles or emergency cases. To ensure the user's safety, the hierarchical shared-control method combines the intention recognition method with the obstacle emergency-avoidance method based on the distance between the walking-aid robot and the obstacles. At last, experiments validate the effectiveness of the proposed hierarchical shared-control method. PMID:29093805
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.
1988-01-01
Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.
Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2015-03-01
Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in concentrated suspensions.
DHS Internship Summary-Crystal Assembly at Different Length Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, L
2009-08-06
I was part of a project in which in situ atomic force microscopy (AFM) was used to monitor growth and dissolution of atomic and colloidal crystals. At both length scales, the chemical environment of the system greatly altered crystal growth and dissolution. Calcium phosphate was used as a model system for atomic crystals. A dissolution-reprecipitation reaction was observed in this first system, involving the conversion of brushite (DCPD) to octacalcium phosphate (OCP). In the second system, polymeric colloidal crystals were dissolved in an ionic solvent, revealing the underlying structure of the crystal. The dissolved crystal was then regrown through anmore » evaporative step method. Recently, we have also found that colloids can be reversibly deposited in situ onto an ITO (indium tin oxide) substrate via an electrochemistry setup. The overall goal of this project was to develop an understanding of the mechanisms that control crystallization and order, so that these might be controlled during material synthesis. Controlled assembly of materials over a range of length scales from molecules to nanoparticles to colloids is critical for designing new materials. In particular, developing materials for sensor applications with tailorable properties and long range order is important. In this work, we examine two of these length scales: small molecule crystallization of calcium phosphate (whose crystal phases include DCPD, OCP, and HAP) and colloidal crystallization of Poly(methyl methacrylate) beads. Atomic Force Microscopy is ideal for this line of work because it allows for the possibility of observing non-conducting samples in fluid during growth with high resolution ({approx} 10 nm). In fact, during atomic crystal growth one can observe changes in atomic steps, and with colloidal crystals, one can monitor the individual building blocks of the crystal. Colloids and atoms crystallize under the influence of different forces acting at different length scales as seen in Table 1. In particular, molecular crystals, which are typically dominated by ionic and covalent bonding, are an order of magnitude more strongly bonded than colloidal crystals. In molecular crystals, ordering is driven by the interaction potentials between molecules. By contrast, colloidal assembly is a competition between the repulsive electrostatic forces that prevent aggregation in solution (due to surface charge), and short-range van der Waals and entropic forces that leads to ordering. Understanding atomic crystallization is fundamentally important for fabrication of tailorable crystalline materials, for example for biological or chemical sensors. The transformation of brushite to OCP not only serves as a model system for atomic crystal growth (applicable to many other crystal growth processes), but is also important in bone cements. Colloidal crystals have unique optical properties which respond to chemical and mechanical stimuli, making them very important for sensing applications. The mechanism of colloidal crystal assembly is thus fundamentally important. Our in situ dissolution and regrowth experiments are one good method of analyzing how these crystals pack under different conditions and how defect sites are formed and filled. In these experiments, a silica additive was used to strengthen the colloidal crystal during initial assembly (ex situ) and to increase domain size and long range order. Reversible electrodeposition of colloids onto a conductive substrate (ITO in our case) is another system which can further our knowledge of colloidal assembly. This experiment holds promise of allowing in situ observation of colloidal crystal growth and the influence of certain additives on crystal order. The ultimate goal would be to achieve long range order in these crystals by changing the surface charge or the growth environment.« less
Dynamic Simulation of Random Packing of Polydispersive Fine Particles
NASA Astrophysics Data System (ADS)
Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário
2018-02-01
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.
Distinct collective states due to trade-off between attractive and repulsive couplings
NASA Astrophysics Data System (ADS)
Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.
2018-03-01
We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.
Optomechanical and photothermal interactions in suspended photonic crystal membranes.
Woolf, David; Hui, Pui-Chuen; Iwase, Eiji; Khan, Mughees; Rodriguez, Alejandro W; Deotare, Parag; Bulu, Irfan; Johnson, Steven G; Capasso, Federico; Loncar, Marko
2013-03-25
We present here an optomechanical system fabricated with novel stress management techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal membrane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to below 200 nm. Our devices are able to generate strong attractive and repulsive optical forces over a large surface area with simple in- and out- coupling and feature the strongest repulsive optomechanical coupling in any geometry to date (gOM/2π ≈65 GHz/nm). The interplay between the optomechanical and photo-thermal-mechanical dynamics is explored, and the latter is used to achieve cooling and amplification of the mechanical mode, demonstrating that our platform is well-suited for potential applications in low-power mass, force, and refractive-index sensing as well as optomechanical accelerometry.
Gravastars with higher dimensional spacetimes
NASA Astrophysics Data System (ADS)
Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2018-07-01
We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.
Casimir force in the Gödel space-time and its possible induced cosmological inhomogeneity
NASA Astrophysics Data System (ADS)
Khodabakhshi, Sh.; Shojai, A.
2017-07-01
The Casimir force between two parallel plates in the Gödel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Gödel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied.
Van Guyse, Joachim F R; de la Rosa, Victor R; Hoogenboom, Richard
2018-02-21
Buckminster fullerene (C 60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C 60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C 60 that inhibit the aggregation found in native γCD-C 60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C 60 . These modifications have led to new sub-100 nm nanostructures that show long-term stability in solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tada, Shigeru; Shen, Yan; Qiu, Zhiyong
2017-06-01
When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A repulsive magnetic force driven translation micromirror
NASA Astrophysics Data System (ADS)
Xue, Yuan; Zuo, Hui; He, Siyuan
2017-10-01
This paper presents a repulsive magnetic force driven micromirror with large displacement and high surface quality which well solves the limitation of the previous design, i.e. large variation in translation starting position and low repeatability, caused by the touching points between the moving film and substrate before and in operation. The new design utilizes a driving mechanism, i.e. permanent magnet ring above and electromagnet underneath the moving film, to lift the moving film from touching the substrate and generate a repulsive magnetic force (instead of attractive force in the previous design) to push the moving film up and away from the substrate for translation. Due to the touching, the previous design has to pre-oscillate for 20-30 min at 1 Hz before usage (after resting for a few hours) to reduce the starting position variation from ~15 µm to 3-4 µm. Even after the pre-oscillation, the repeatability is still low, which is 14.2% because of the touching in operation. In the design presented in this paper, the touching between the moving film and the substrate is completely eliminated before and in operation. As a result, the starting position of the translating mirror is constant each time and the repeatability is <1%. In addition, this design does not need the residual stress gradient to curve up the moving film. The maximum displacement of 144 µm can be achieved when 140 mA current is applied on the electromagnet. As an application, the micromirror is used as the movable mirror in a Michelson interferometer to measure the wavelength of a laser beam. The result shows a measurement accuracy of 2.19% for a 532 nm laser beam.
Ion-mediated interactions in suspensions of oppositely charged nanoparticles
NASA Astrophysics Data System (ADS)
Dahirel, Vincent; Hansen, Jean Pierre
2009-08-01
The structure of oppositely charged spherical nanoparticles (polyions), dispersed in ionic solutions with continuous solvent (primitive model), is investigated by Monte Carlo (MC) simulations, within explicit and implicit microion representations, over a range of polyion valences and densities, and microion concentrations. Systems with explicit microions are explored by semigrand canonical MC simulations, and allow density-dependent effective polyion pair potentials vαβeff(r ) to be extracted from measured partial pair distribution functions. Implicit microion MC simulations are based on pair potentials of mean force vαβ(2)(r ) computed by explicit microion simulations of two charged polyions, in the low density limit. In the vicinity of the liquid-gas separation expected for oppositely charged polyions, the implicit microion representation leads to an instability against density fluctuations for polyion valences |Z| significantly below those at which the instability sets in within the exact explicit microion representation. Far from this instability region, the vαβ(2)(r ) are found to be fairly close to but consistently more repulsive than the effective pair potentials vαβeff(r ). This is corroborated by additional calculations of three-body forces between polyion triplets, which are repulsive when one polyion is of opposite charge to the other two. The explicit microion MC data were exploited to determine the ratio of salt concentrations c and co within the dispersion and the reservoir (Donnan effect). c /co is found to first increase before finally decreasing as a function of the polyion packing fraction.
Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters
NASA Astrophysics Data System (ADS)
Demirörs, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons
2015-04-01
Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating) by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4 <ɛ <10 ) provide a viable approach for the formation of binary colloidal clusters. Tuning the size ratio and interactions of the particles enables control of the type and shape of the resulting regular colloidal clusters. Finally, we present an example of clusters made up of negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length κ-1 and the ratio of charges on the particles, showing good agreement with experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp
An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.
DNA bending-induced phase transition of encapsidated genome in phage λ
Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex
2013-01-01
The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219
The snakelike chain character of unstructured RNA.
Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A
2013-12-03
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Korayem, Moharam Habibnejad; Nahavandi, Amir
2017-04-01
This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural frequencies have been compared.
NASA Astrophysics Data System (ADS)
Gómez-Guzmán, Oscar; Ruiz-García, Jaime
2001-03-01
In the last few years there has been evidence of long-range attractive interactions between colloidal particles trapped between glass plates, where the plates separation is a few particle’s diameter.[1,2,3] In these experiments it is believe that the glass walls play an important role for the observed attractions. Colloidal particles trapped at the air water interface show the formation of different 2-D colloidal patterns such as foams, clusters and chains,[4,5,6,7] whose formation can be taken as an evidence of long range attractive interaction. Here, we present measurements of the pair interaction potential between 0.5 µm colloidal particles at the air/water interface. The potential shows an attractive secondary minimum at about 1.9s, where s is the particle’s diameter, and a secondary repulsive maximum at longer distances. Surprisingly, the position of the secondary well is at a position similar to those found on the colloidal systems trapped between glass plates. It is possible that in our colloidal system the interface plays the role of a glass plate. However, we do not have a clear explanation on the origin of the attractive component of the interaction potential. 1. G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994) 2. M. D. Carbajal-Tinoco, F. Castro-Roman and J. L. Arauz-Lara, Phys. Rev. E 53, 3745 (1996) 3. J. C. Croker and D. G. Grier, Phys. Rev. Lett. 77, 1897 (1996) 4. J. Ruiz-Garcia, R. Gámez-Corrales and B. I. Ivlev, Physica A 236, 97 (1997) 5. J. Ruiz-Garcia, R. Gámez-Corrales and B. I. Ivlev, Phys. Rev. E 58, 660 (1998) 6. J. Ruiz-Garcia and B. I. Ivlev, Molec. Phys. 95, 371 (1998) 7. S. J. Mejia-Rosales, R. Gamez-Corrales, B. I. Ivlev and J. Ruiz-Garcia, Physica A 276, 30 (2000)
Effect of the Magnus force on skyrmion relaxation dynamics
NASA Astrophysics Data System (ADS)
Brown, Barton L.; Täuber, Uwe C.; Pleimling, Michel
2018-01-01
We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin films. The interplay between the Magnus force, the repulsive skyrmion-skyrmion interaction, and the thermal noise yields different regimes during nonequilibrium relaxation. In the noise-dominated regime, the Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic regime with slow decaying correlations. These two regimes are characterized by different values of the aging exponent. In general, the Magnus force accelerates the approach to the steady state.
Akin, Orkun; Zipursky, S Lawrence
2016-01-01
Axon guidance is proposed to act through a combination of long- and short-range attractive and repulsive cues. The ligand-receptor pair, Netrin (Net) and Frazzled (Fra) (DCC, Deleted in Colorectal Cancer, in vertebrates), is recognized as the prototypical effector of chemoattraction, with roles in both long- and short-range guidance. In the Drosophila visual system, R8 photoreceptor growth cones were shown to require Net-Fra to reach their target, the peak of a Net gradient. Using live imaging, we show, however, that R8 growth cones reach and recognize their target without Net, Fra, or Trim9, a conserved binding partner of Fra, but do not remain attached to it. Thus, despite the graded ligand distribution along the guidance path, Net-Fra is not used for chemoattraction. Based on findings in other systems, we propose that adhesion to substrate-bound Net underlies both long- and short-range Net-Fra-dependent guidance in vivo, thereby eroding the distinction between them. DOI: http://dx.doi.org/10.7554/eLife.20762.001 PMID:27743477
Predictive protocol of flocks with small-world connection pattern.
Zhang, Hai-Tao; Chen, Michael Z Q; Zhou, Tao
2009-01-01
By introducing a predictive mechanism with small-world connections, we propose a new motion protocol for self-driven flocks. The small-world connections are implemented by randomly adding long-range interactions from the leader to a few distant agents, namely, pseudoleaders. The leader can directly affect the pseudoleaders, thereby influencing all the other agents through them efficiently. Moreover, these pseudoleaders are able to predict the leader's motion several steps ahead and use this information in decision making towards coherent flocking with more stable formation. It is shown that drastic improvement can be achieved in terms of both the consensus performance and the communication cost. From the engineering point of view, the current protocol allows for a significant improvement in the cohesion and rigidity of the formation at a fairly low cost of adding a few long-range links embedded with predictive capabilities. Significantly, this work uncovers an important feature of flocks that predictive capability and long-range links can compensate for the insufficiency of each other. These conclusions are valid for both the attractive and repulsive swarm model and the Vicsek model.
Mesoscale Particle-Based Model of Electrophoretic Deposition
Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...
2016-12-20
In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less
Large-stroke convex micromirror actuated by electromagnetic force for optical power control.
Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho
2015-11-02
This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.
Elasticity-induced force reversal between active spinning particles in dense passive media
Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.
2016-01-01
The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium. PMID:27112961
NASA Astrophysics Data System (ADS)
Chen, Xiang
2012-11-01
We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-11-28
Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.
Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression
McDermott, Danielle; Olson Reichhardt, Cynthia J.; Reichhardt, Charles
2016-11-11
In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements ofmore » particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.« less
Nuclear Potential Clustering As a New Tool to Detect Patterns in High Dimensional Datasets
NASA Astrophysics Data System (ADS)
Tonkova, V.; Paulus, D.; Neeb, H.
2013-02-01
We present a new approach for the clustering of high dimensional data without prior assumptions about the structure of the underlying distribution. The proposed algorithm is based on a concept adapted from nuclear physics. To partition the data, we model the dynamic behaviour of nucleons interacting in an N-dimensional space. An adaptive nuclear potential, comprised of a short-range attractive (strong interaction) and a long-range repulsive term (Coulomb force) is assigned to each data point. By modelling the dynamics, nucleons that are densely distributed in space fuse to build nuclei (clusters) whereas single point clusters repel each other. The formation of clusters is completed when the system reaches the state of minimal potential energy. The data are then grouped according to the particles' final effective potential energy level. The performance of the algorithm is tested with several synthetic datasets showing that the proposed method can robustly identify clusters even when complex configurations are present. Furthermore, quantitative MRI data from 43 multiple sclerosis patients were analyzed, showing a reasonable splitting into subgroups according to the individual patients' disease grade. The good performance of the algorithm on such highly correlated non-spherical datasets, which are typical for MRI derived image features, shows that Nuclear Potential Clustering is a valuable tool for automated data analysis, not only in the MRI domain.
Lift on side by side intruders of various geometries within a granular flow
NASA Astrophysics Data System (ADS)
Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.
2017-06-01
Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.
Rydberg dressing of atoms in optical lattices
NASA Astrophysics Data System (ADS)
Macrı, T.; Pohl, T.
2014-01-01
We study atoms in optical lattices whose electronic ground state is off-resonantly coupled to a highly excited state with strong binary interactions. We present a time-dependent treatment of the resulting quantum dynamics, which—contrary to recent predictions [36 Li, Ates, and Lesanovsky, Phys. Rev. Lett. 110, 213005 (2013), 10.1103/PhysRevLett.110.213005]—proves that the strong repulsion between the weakly admixed Rydberg states does not lead to atomic trap loss. This finding provides an important basis for creating and manipulating coherent long-range interactions in optical lattice experiments.
Quasiparticle-continuum level repulsion in a quantum magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plumb, K. W.; Hwang, Kyusung; Qiu, Y.
2015-11-30
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu 2PO 6.« less
Analysis and Design of a Double-Divert Spiral Groove Seal
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Berard, Gerald
2007-01-01
This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.
Improving Limits on Exotic Spin Dependent Long Range Forces using Double Boson Exchange
NASA Astrophysics Data System (ADS)
Aldaihan, Sheakha; Snow, William Michael; Krause, Dennis; Long, Joshua
2016-03-01
The existence of very light weakly interacting particles that mediate new long range forces has been suggested in many extensions of the Standard Model. Such particles span a length scale between a μm and a few meters and include axions, familons, Majorons,and arions. Parameterizations of forces in this range show that they are composite-dependent, have a Yukawa shape, and have both spin-dependent as well as spin independent components. Very stringent limits on spin-independent couplings exist. For long range spin dependent forces, limits are weaker by 20 orders of magnitude compared to their spin independent analogs. The disparity in the limits raises the question of whether interesting limits on spin dependent couplings can be inferred from spin independent searches for long range forces. We show that this is possible using higher order contributions corresponding to double boson exchange and report the limits placed on spin dependent couplings using this method. We gratefully acknowledge the support of Indiana University and the National Science Foundation. The first author also acknowdges King Abdullah scholarship program.
Role of Anisotropic Interactions for Proteins and Patchy Nanoparticles
2015-01-01
Protein–protein interactions are inherently anisotropic to some degree, with orientation-dependent interactions between repulsive and attractive or complementary regions or “patches” on adjacent proteins. In some cases it has been suggested that such patch–patch interactions dominate the thermodynamics of dilute protein solutions, as captured by the osmotic second virial coefficient (B22), but delineating when this will or will not be the case remains an open question. A series of simplified but exactly solvable models are first used to illustrate that a delicate balance exists between the strength of attractive patch–patch interactions and the patch size, and that repulsive patch–patch interactions contribute significantly to B22 for only those conditions where the repulsions are long-ranged. Finally, B22 is reformulated, without approximations, in terms of the density of states for a given interaction energy and particle–particle distance. Doing so illustrates the inherent balance of entropic and energetic contributions to B22. It highlights that simply having strong patch–patch interactions will only cause anisotropic interactions to dominate B22 solution properties if the unavoidable entropic penalties are overcome, which cannot occur if patches are too small. The results also indicate that the temperature dependence of B22 may be a simple experimental means to assess whether a small number of strongly attractive configurations dominate the dilute solution behavior. PMID:25302767
Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip
NASA Astrophysics Data System (ADS)
Alam, Manjurul; Golozar, Matin; Darabi, Jeff
2018-04-01
A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.
Proton Distribution in Heavy Nuclei
DOE R&D Accomplishments Database
Johnson, M. H; Teller, E.
1953-11-13
It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)
Meissner motor using high-Tc ceramic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, A.; Ishikawa, A.; Suzuki, M.
1989-03-01
The authors developed a brand new superconducting motor using high-Tc ceramic superconductors for the first time. This motor utilizes the repulsive force caused by the Meissner effect, which appears below Tc and disappears above that, and is therefore referred to as the Meissner Motor. The motor rotated at a maximum speed of 40 rpm. Though the repulsive force to drive the motor increased with the decrease of temperature or the increase of the gradient magnetic field, it was only about 1.1 gf/g at 77 K in 3500 G/cm. The motor has a maximum torque of 5.0 gf-cm theoretically, but actuallymore » had a torque below 0.66 gf-cm, because it took some time to be cooled below Tc. The rotating speed of the motor was limited by heating ability and its torque was limited by cooling ability.« less
Visualizing the orientational dependence of an intermolecular potential
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip
2016-02-01
Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.
Competing Hydrophobic and Screened-Coulomb Interactions in Hepatitis B Virus Capsid Assembly
Kegel, Willem K.; Schoot, Paul van der
2004-01-01
Recent experiments show that, in the range from ∼15 to 45°C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid. PMID:15189887
Velasco, V.; Aguilà, D.; Barrios, L. A.; ...
2014-09-29
The aerobic reaction of the multidentate ligand 2,6-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-pyridine, H 4L, with Co (II) salts in strong basic conditions produces the clusters [Co 4(L) 2(OH)(py) 7]NO 3 (1) and [Co 8Na 4(L) 4(OH) 2(CO 3) 2(py) 10](BF 4) 2 (2). Analysis of their structure unveils unusual coordination features including a very rare bridging pyridine ligand or two trapped carbonate anions within one coordination cage, forced to stay at an extremely close distance (d O···O = 1.946 Å). This unprecedented non-bonding proximity represents a meeting point between long covalent interactions and “intermolecular” contacts. These original motifs have been analysed here through DFTmore » calculations, which have yielded interaction energies and the reduced repulsion energy experimented by both CO 3 2- anions when located in close proximity inside the coordination cage.« less
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-01-01
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening. PMID:28561032
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-05-31
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.
Flux quench in a system of interacting spinless fermions in one dimension
NASA Astrophysics Data System (ADS)
Nakagawa, Yuya O.; Misguich, Grégoire; Oshikawa, Masaki
2016-05-01
We study a quantum quench in a one-dimensional spinless fermion model (equivalent to the XXZ spin chain), where a magnetic flux is suddenly switched off. This quench is equivalent to imposing a pulse of electric field and therefore generates an initial particle current. This current is not a conserved quantity in the presence of a lattice and interactions, and we investigate numerically its time evolution after the quench, using the infinite time-evolving block decimation method. For repulsive interactions or large initial flux, we find oscillations that are governed by excitations deep inside the Fermi sea. At long times we observe that the current remains nonvanishing in the gapless cases, whereas it decays to zero in the gapped cases. Although the linear response theory (valid for a weak flux) predicts the same long-time limit of the current for repulsive and attractive interactions (relation with the zero-temperature Drude weight), larger nonlinearities are observed in the case of repulsive interactions compared with that of the attractive case.
Molecular dynamics simulation of ZnO wurtzite phase under high and low pressures and temperatures
NASA Astrophysics Data System (ADS)
Chergui, Y.; Aouaroun, T.; Hadley, M. J.; Belkada, R.; Chemam, R.; Mekki, D. E.
2017-11-01
Isothermal and isobaric ensembles behaviours of ZnO wurtzite phase have been investigated, by parallel molecular dynamics method and using Buckingham potential, which contains long-range Coulomb, repulsive exponential, and attractive dispersion terms. To conduct our calculations, we have used dl_poly 4 software, under which the method is implemented. We have examined the influence of the temperature and pressure on molar volume in the ranges of 300-3000 K and 0-200 GPa. Isothermal-isobaric relationships, fluctuations, standard error, equilibrium time, molar volume and its variation versus time are predicted and analyzed. Our results are close to available experimental data and theoretical results.
Ivanov, Ivan E; Kintz, Erica N; Porter, Laura A; Goldberg, Joanna B; Burnham, Nancy A; Camesano, Terri A
2011-03-01
Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.
MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.
2010-01-01
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672
Crossover from attractive to repulsive Casimir forces and vice versa.
Schmidt, Felix M; Diehl, H W
2008-09-05
Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.
Uraoka, Masaru; Maegawa, Keisuke; Ishizaka, Shoji
2017-12-05
A laser trapping technique is a powerful means to investigate the physical and chemical properties of single aerosol particles in a noncontact manner. However, optical trapping of strongly light-absorbing particles such as black carbon or soot is quite difficult because the repulsive force caused by heat is orders of magnitude larger than the attractive force of radiation pressure. In this study, a laser trapping and Raman microspectroscopy system using an annular laser beam was constructed to achieve noncontact levitation of single light-absorbing particles in air. Single acetylene carbon black or candle soot particles were arbitrarily selected with a glass capillary connected to a three-axis oil hydraulic micromanipulator and introduced into a minute space surrounded by a repulsive force at the focal point of an objective lens. Using the developed system, we achieved optical levitation of micrometer-sized carbonaceous particles and observation of their Raman spectra in air. Furthermore, we demonstrated in situ observations of changes in the morphology and chemical composition of optically trapped carbonaceous particles in air, which were induced by heterogeneous oxidation reactions with ozone and hydroxyl radicals.
A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces
NASA Astrophysics Data System (ADS)
Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.
2001-04-01
Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.
Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta
2018-03-13
Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.
On the origin of the halo stabilization.
Trulsson, Martin; Jönsson, Bo; Labbez, Christophe
2013-01-14
Monte Carlo simulations show that charge-regulation alone can cause highly charged zirconium nanoparticles to adsorb to a similarly charged or neutral silica particle and thereby stabilizing the latter. This mechanism, referred to as halo stabilization, is quite general and applicable in a range of systems provided that pH, van der Waals forces, and dissociation constants of the charge-regulating particles are properly chosen. In our modeling we see an overall attraction at low volume fractions of nanoparticles, while at higher a repulsive barrier is created, stabilizing the microparticles and protecting them from aggregation. The charge-regulation mechanism also turns the silica surface from positively charged, without nanoparticles, to negatively charged in the presence of nanoparticles.
Single-Molecule Studies of Hyaluronic Acid Conformation
NASA Astrophysics Data System (ADS)
Innes-Gold, Sarah; Berezney, John; Saleh, Omar
Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.
A Taoist Paradigm of EAP Consultation.
ERIC Educational Resources Information Center
Gerstein, Lawrence H.; Sturmer, Paul
1993-01-01
Describes new Taoist model as alternative approach to conceptualizing consultation process and to formulating successful, isomorphic interventions constructed to facilitate four change processes. Presents model stressing importance of interrelationships between individuals and groups; integrating repulsion and assimilation forces; balancing human…
[Evaluation of three dimensional orthodontic force produced by magnet of fix appliance].
Dai, Xin; Hou, Zhi-ming; Yao, Ge; Wen, Jing-long
2008-12-01
To analyze the feature and magnitude of three dimensional orthodontic force produced by the magnet of fix appliance. Forces detected by universal fatigue test system included the attractive and repulsive,the inclined and rotated orthodontic forces of two magnets in different air gaps, and the integrated inclined and rotated orthodontic forces of two magnets and NiTi wire. The attractive and repulsive forces of two magnets were 4.68 to 0.45 N and 3.00 to 0.40 N respectively in the air gaps of 0 to 5 mm. The inclined orthodontic forces were 1.54 to 1.67 N, 0.63 to 0.69 N, 0.47 to 0.54 N when the magnets were vertically inclined 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The rotated orthodontic forces were 0.97 to 1.32 N, 0.53 to 0.59 N, 0.39 to 0.48 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The integrated orthodontic force of two magnets and 0.014-inch NiTi wire was 0.32 to 0.5 N when the magnets was vertically inclined 10 degrees to 40 degrees in the air gap of 4 mm. The integrated orthodontic force of two magnets and 0.012-inch NiTi wire was 0.32 to 0.39 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gap of 3 mm. Magnets made into orthodontic brackets to some extent could replace the mechanical orthodontic force produced by orthodontic wires and elastics.
Purohit, S B; Laloraya, M; Kumar, G P
1998-06-01
Spin labeling studies of the lipophilic domains of human spermatozoa during capacitation and during acrosome reaction (AR) under the influence of selected AR-inducers were performed. Significantly enhanced rotational function of molecules was obvious during capacitation, with no significant changes in membrane packaging or the lateral diffusion of molecules. The AR inducers appeared to restrict the rotational freedom of molecules, dramatically enhancing the lateral diffusion and ordering coefficients. A significant decrease in superoxide anion generation was observed in the acrosome reacted groups when compared to the non-acrosome reacted groups. A high level of superoxide anion radical (O2.-) level maintained in capacitated spermatozoa would add to the Van der Waal's repulsive forces at the polar head of phospholipids, holding the membrane in strain where the molecular enjoy little freedom for lateral motion. A sudden drop in the levels of O2.- in spermatozoa upon addition of AR inducers could abruptly release the local hydrophobic repulsive strain within the membrane. This loss of hydration barrier explains the observed enhancement in lateral diffusion profiles of lipids and the packaging of molecules. It is reasonable to assume that these phenomena could be amplified further by interplay of Ca2+ by modifying the local charge aggregation. Thus, we would conclude that AR inducers release the oxyradical load in capacitated spermatozoa, which would modify the repulsive strain and hydration barrier forces in the lipophilic domains permitting vesiculation of the membranes. It appears that various acrosome reaction inducers act as effectors of grossly similar physical alterations in sperm membranes and that the resulting signal cascades proceed through intercalating biochemical sequences.
Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin
2017-02-01
We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.
Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B
2002-09-01
We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.
NASA Astrophysics Data System (ADS)
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.
NASA Astrophysics Data System (ADS)
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.
Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J
2013-06-01
Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang
2011-06-28
The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.
Sponer, Jiří; Sponer, Judit E; Mládek, Arnošt; Jurečka, Petr; Banáš, Pavel; Otyepka, Michal
2013-12-01
Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. Copyright © 2013 Wiley Periodicals, Inc.
Critical Casimir effect for colloids close to chemically patterned substrates.
Tröndle, M; Kondrat, S; Gambassi, A; Harnau, L; Dietrich, S
2010-08-21
Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.
NASA Astrophysics Data System (ADS)
Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas
2018-03-01
We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less
What do a foam film and a real gas have in common?
Stubenrauch, Cosima
2005-01-01
The stability of well-drained quasistatic foam films (thickness <100 nm) is usually discussed in terms of surface forces, which create an excess pressure normal to the film interfaces, called the disjoining pressure pi The disjoining pressure is the sum of repulsive electrostatic (pi(elec)), attractive van der Waals (pi(vdW)), and repulsive steric (pi(sr)) forces on the assumption that structural forces can be neglected. On the basis of these forces two different types of thin foam films are distinguished, namely common black films (CBF), which are mainly stabilized by pi(elec), and Newton black films (NBF), the stability of which is determined by pi(sr),With a thin-film pressure balance (TFPB) the thickness h of a foam film can be measured as a function of the applied pressure from which the disjoining pressure pi can be calculated. A thorough analysis of the results published so far reveals that the pi-h curves of nonionic surfactants measured at different surfactant concentrations resemble p-V(m) isotherms of a real gas measured at different temperatures. On the basis of these observations the van der Waals description of a real gas can be applied to foam films and a phase diagram for a foam film was constructed using the Maxwell construction.
Molecular Self-Assembly Driven by London Dispersion Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung
2011-01-01
The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, canmore » the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.« less
Quench dynamics of the interacting Bose gas in one dimension.
Iyer, Deepak; Andrei, Natan
2012-09-14
We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."
Three-body effects in Casimir-Polder repulsion
NASA Astrophysics Data System (ADS)
Milton, Kimball A.; Abalo, E. K.; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å.; Buhmann, Stefan Yoshi; Scheel, Stefan
2015-04-01
In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small and are dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem. However, it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel conducting cylinders and show that the three-body effects are very small and do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic nanoparticles.
Solares, Santiago D.
2015-11-26
This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less
Solares, Santiago D
2015-01-01
This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.
Social dynamics in emergency evacuations: Disentangling crowd's attraction and repulsion effects
NASA Astrophysics Data System (ADS)
Haghani, Milad; Sarvi, Majid
2017-06-01
The social dynamics of crowds in emergency escape scenarios have been conventionally modelled as the net effect of virtual forces exerted by the crowd on each individual (as self-driven particles), with the magnitude of the influence formulated as decreasing functions of inter-individual distances and the direction of effect assumed to be transitioning from repulsion to attraction by distance. Here, we revisit this conventional assumption using laboratory experimental data. We show based on robust econometric hypothesis-testing methods that individuals' perception of other escapees differs based on whether those individuals are jamming around exit destinations or are on the move towards the destinations. Also, for moving crowds, it differs based on whether the escape destination chosen by the moving flow is visible or invisible to the individual. The presence of crowd jams around a destination, also the movement of crowd flows towards visible destinations are both perceived on average as repulsion (or disutility) effects (with the former showing significantly larger magnitude than the latter). The movement of crowd flows towards an invisible destination, however, is on average perceived as attraction (or utility) effect. Yet, further hypothesis testing showed that neither of those effects in isolation determines adequately whether an individual would merge with or diverge from the crowd. Rather, the social interaction factors act (at significant levels) in conjunction with the physical factors of the environments (including spatial distances to exit destinations and destinations' visibility). In brief, our finding disentangles the conditions under which individuals are more likely to show mass behaviour from the situations where they are more likely to break from the herd. It identifies two factors that moderate the perception of social interactions, ;crowds' jam/movement status; and ;environmental setup;. Our results particularly challenge the taxonomy of attraction-repulsion social interaction forces defined purely based on the distance of the individual to the surrounding crowd, by showing that crowds could be in far distance and yet be perceived as repulsion effect, or they could be in close distance and yet act as attraction effect.
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate
NASA Technical Reports Server (NTRS)
Chandra, P.
1989-01-01
Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
Enhancing Optical Forces in InP-Based Waveguides.
Aryaee Panah, Mohammad Esmail; Semenova, Elizaveta S; Lavrinenko, Andrei V
2017-06-08
Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.
Phantom force induced by tunneling current: a characterization on Si(111).
Weymouth, A J; Wutscher, T; Welker, J; Hofmann, T; Giessibl, F J
2011-06-03
Simultaneous measurements of tunneling current and atomic forces provide complementary atomic-scale data of the electronic and structural properties of surfaces and adsorbates. With these data, we characterize a strong impact of the tunneling current on the measured force on samples with limited conductivity. The effect is a lowering of the effective gap voltage through sample resistance which in turn lowers the electrostatic attraction, resulting in an apparently repulsive force. This effect is expected to occur on other low-conductance samples, such as adsorbed molecules, and to strongly affect Kelvin probe measurements when tunneling occurs.
Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.
Ma, Jing; Povinelli, Michelle L
2011-05-23
We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.
Nonequilibrium forces following quenches in active and thermal matter.
Rohwer, Christian M; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Nonequilibrium forces following quenches in active and thermal matter
NASA Astrophysics Data System (ADS)
Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception
Li, Lux; Chan, Arielle; Iqbal, Shah M.; Goldreich, Daniel
2017-01-01
Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference) and varied on the other arm (the comparison). In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding. PMID:28701936
Hidden magnetism in periodically modulated one dimensional dipolar fermions
NASA Astrophysics Data System (ADS)
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
Lu, Deyu
2016-08-05
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong
2018-05-01
In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.
Colloidal attraction induced by a temperature gradient.
Di Leonardo, R; Ianni, F; Ruocco, G
2009-04-21
Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.
Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions
Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.
2016-01-01
Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions. PMID:27334145
Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions
NASA Astrophysics Data System (ADS)
Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.
2016-06-01
Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.
Chen, Qian; Cho, Hoduk; Manthiram, Karthish; ...
2015-03-23
We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power ofmore » this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less
Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer
NASA Astrophysics Data System (ADS)
Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.
2017-09-01
Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.
Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk
2018-06-25
Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.
The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces
Arbely, Eyal; Neuweiler, Hannes; Sharpe, Timothy D; Johnson, Christopher M; Fersht, Alan R
2010-01-01
Peripheral subunit binding domains (PSBDs) are integral parts of large multienzyme complexes involved in carbohydrate metabolism. PSBDs facilitate shuttling of prosthetic groups between different catalytic subunits. Their protein surface is characterized by a high density of positive charges required for binding to subunits within the complex. Here, we investigated folding thermodynamics and kinetics of the human PSBD (HSBD) using circular dichroism and tryptophan fluorescence experiments. HSBD was only marginally stable under physiological solvent conditions but folded within microseconds via a barrier-limited apparent two-state transition, analogous to its bacterial homologues. The high positive surface-charge density of HSBD leads to repulsive Coulomb forces that modulate protein stability and folding kinetics, and appear to even induce native-state movement. The electrostatic strain was alleviated at high solution-ionic-strength by Debye-Hückel screening. Differences in ionic-strength dependent characteristics among PSBD homologues could be explained by differences in their surface charge distributions. The findings highlight the trade-off between protein function and stability during protein evolution. PMID:20662005
Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo
2016-01-01
Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032
NASA Technical Reports Server (NTRS)
Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.
1979-01-01
The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.
Energy component analysis of π interactions.
Sherrill, C David
2013-04-16
Fundamental features of biomolecules, such as their structure, solvation, and crystal packing and even the docking of drugs, rely on noncovalent interactions. Theory can help elucidate the nature of these interactions, and energy component analysis reveals the contributions from the various intermolecular forces: electrostatics, London dispersion terms, induction (polarization), and short-range exchange-repulsion. Symmetry-adapted perturbation theory (SAPT) provides one method for this type of analysis. In this Account, we show several examples of how SAPT provides insight into the nature of noncovalent π-interactions. In cation-π interactions, the cation strongly polarizes electrons in π-orbitals, leading to substantially attractive induction terms. This polarization is so important that a cation and a benzene attract each other when placed in the same plane, even though a consideration of the electrostatic interactions alone would suggest otherwise. SAPT analysis can also support an understanding of substituent effects in π-π interactions. Trends in face-to-face sandwich benzene dimers cannot be understood solely in terms of electrostatic effects, especially for multiply substituted dimers, but SAPT analysis demonstrates the importance of London dispersion forces. Moreover, detailed SAPT studies also reveal the critical importance of charge penetration effects in π-stacking interactions. These effects arise in cases with substantial orbital overlap, such as in π-stacking in DNA or in crystal structures of π-conjugated materials. These charge penetration effects lead to attractive electrostatic terms where a simpler analysis based on atom-centered charges, electrostatic potential plots, or even distributed multipole analysis would incorrectly predict repulsive electrostatics. SAPT analysis of sandwich benzene, benzene-pyridine, and pyridine dimers indicates that dipole/induced-dipole terms present in benzene-pyridine but not in benzene dimer are relatively unimportant. In general, a nitrogen heteroatom contracts the electron density, reducing the magnitude of both the London dispersion and the exchange-repulsion terms, but with an overall net increase in attraction. Finally, using recent advances in SAPT algorithms, researchers can now perform SAPT computations on systems with 200 atoms or more. We discuss a recent study of the intercalation complex of proflavine with a trinucleotide duplex of DNA. Here, London dispersion forces are the strongest contributors to binding, as is typical for π-π interactions. However, the electrostatic terms are larger than usual on a fractional basis, which likely results from the positive charge on the intercalator and its location between two electron-rich base pairs. These cation-π interactions also increase the induction term beyond those of typical noncovalent π-interactions.
Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.
2016-01-01
Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044
NASA Technical Reports Server (NTRS)
Banin, A.; Lawless, J. G.; Mazzurco, J.; Church, F. M.; Margulies, L.; Orenberg, J. B.
1985-01-01
The interaction of 5-prime-AMP with montmorillonite saturated with various ratios of two metals found ubiquitously on the surface of earth, that is, iron and calcium, is investigated. Adsorption and desorption of the nucleotide were studied in the pH range of 2-12 at three levels of addition: 0.080, 0.268 and 0.803 mmole 5-prime-AMP per gram of clay. Two desorption stages were employed - H2O wash and NaOH extraction (pH = 12.0). 5-prime-AMP was preferentially adsorbed on the Fe-containing clays relative to the Ca clay. The nucleotide was fully recovered by the two desorption stages, mostly by the NaOH extraction. The evidence at hand indicates that 5-prime-AMP reaction with clay is affected by electrostatic interactions involving both attraction and repulsion forces. Some specific adsorption, possibly the result of covalent bonding and complex formation with the adsorbed ion, cannot be ruled out for iron but does not appear to operate for calcium. Changes in pH cause varying degrees of attaction and repulsion of 5-prime-AMP and may have been operating on the primitive earth, leading to sequences of adsorption and release of this biomolecule.
Tribology of steel/steel interaction in oil-in-water emulsion; a rationale for lubricity.
Kumar, Deepak; Daniel, Jency; Biswas, S K
2010-05-15
Oil droplets are dispersed in water by an anionic surfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than the bigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least. Copyright © 2010 Elsevier Inc. All rights reserved.
Impact of lysozyme on stability mechanism of nanozirconia aqueous suspension
NASA Astrophysics Data System (ADS)
Szewczuk-Karpisz, Katarzyna; Wiśniewska, Małgorzata
2016-08-01
The effect of lysozyme (LSZ) presence on the zirconium(IV) oxide (ZrO2) aqueous suspension stability was examined. The applied zirconia contains mesopores (with a diameter about 30 nm) and its mean particle size is about 100 nm. To determine the stability mechanism of ZrO2 suspension in the biopolymer presence, the adsorption and electrokinetic (surface charge density and zeta potential) measurements were performed in the pH range 3-10. The lysozyme adsorption on the nanozirconia surface proceeds mainly through electrostatic forces. Under solid-polymer repulsion conditions, there is no adsorption of lysozyme (pH < 6, CNaCl 0.01 mol/dm3). The increase of solution ionic strength to 0.2 mol/dm3 causes screening of unfavourable forces and biopolymer adsorption becomes possible. The LSZ addition to the ZrO2 suspension influences its stability. At pH 3, 4.6 and 7.6, slight improvement of the system stability was obtained. In turn, at pH 9 considerable destabilization of nanozirconia particles covered by polymeric layers occurs.
Effects of gas interparticle interaction on dissipative wake-mediated forces.
Kliushnychenko, O V; Lukyanets, S P
2017-01-01
We examine how the short-range repulsive interaction in a gas of Brownian particles affects behavior of the nonequilibrium depletion forces between obstacles embedded into the gas flow. It is shown that for an ensemble of small and widely separated obstacles the dissipative wake-mediated interaction belongs to the type of induced dipole-dipole interaction governed by an anisotropic screened Coulomb-like potential. For closely located obstacles, formation of a common density perturbation "coat" around them leads to enhancement of dissipative interaction, manifested by characteristic peaks in its dependence on both the bath fraction and the external driving field. Moreover, additional screening of the gas flow due to nonlinear blockade effect gives rise to generation of a pronounced step-like profile of gas density distribution around the obstacles. This can lead to additional enhancement of dissipative interaction between obstacles. The possibility of the dissipative pairing effect and dissipative interaction switching provoked by wake inversion is briefly discussed. All the results are obtained within the classical lattice-gas model.
Self-Organization of Polymer Brush Layers in a Poor Solvent
NASA Astrophysics Data System (ADS)
Karim, A.; Tsukruk, V. V.; Douglas, J. F.; Satija, S. K.; Fetters, L. J.; Reneker, D. H.; Foster, M. D.
1995-10-01
Synthesis of densely grafted polymer brushes from good solvent polymer solutions is difficult when the surface interaction is only weakly attractive because of the strong steric repulsion between the polymer chains. To circumvent this difficulty we graft polymer layers in a poor solvent to exploit attractive polymer-polymer interactions which largely nullify the repulsive steric interactions. This simple strategy gives rise to densely grafted and homogeneous polymer brush layers. Model end-grafted polystyrene chains (M_w = 105,000) are prepared in the poor solvent cyclohexane (9.5 °C) where the chains are chemically attached to the surface utilizing a trichlorosilane end-group. Polished silicon wafers were then exposed to the reactive polymer solutions for a series of “induction times” tau_I and the evolving layer was characterized by X-ray reflectivity and atomic force microscopy. Distinct morphologies were found depending on tau_I. For short tau_I, corresponding to a grafting density less than 5 mg/m^2, the grafted layer forms an inhomogeneous island-like structure. At intermediate tau_I, where the coverage becomes percolating, a surface pattern develops which appears similar to spinodal decomposition in bulk solution. Finally, after sufficiently long tau_I, a dense and nearly homogeneous layer with a sharp interface is formed which does not exhibit surface pattern formation. The stages of brush growth are discussed qualitatively in terms of a random deposition model.
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
Exploiting Repulsive and Attractive Optical Forces in Advanced Nanophotonic Systems
2015-10-26
in the same device. Such all-optical interaction is achieved without involving any optoelectronic interaction or nonlinear optical effect and thus...other cavity and tilt the see-saw, causing detuning of both cavities but in opposite directions. Furthermore, the see- saw oscillation can “shuttle
ERIC Educational Resources Information Center
Leyden, Michael B.
1994-01-01
Discusses the properties of neodymium magnets and magnets in general and how magnets can be used to teach students important scientific principles, such as attraction, repulsion, and polarity; the role of magnetic forces in electronic communications and computers; the magnetic properties of the earth and compasses; and the relationship between…
Probing the Pathways and Interactions Controlling Crystallization by Particle Attachment
NASA Astrophysics Data System (ADS)
De Yoreo, J. J.; Li, D.; Chun, J.; Schenter, G.; Mundy, C.; Rosso, K. M.
2016-12-01
Crystallization by particle attachment appears to be a widespread mechanism of mineralization. Yet many long-standing questions surrounding nucleation and assembly of precursor particles remain unanswered, due in part to a lack of tools to probe mineralization dynamics with adequate spatial and temporal resolution. Here we report results of liquid phase TEM studies of nucleation and particle assembly in a number of mineral systems. We interpret the results within a framework that considers the impact of both the complexity of free energy landscapes and kinetic factors associated with high supersaturation or slow dynamics. In the calcium carbonate system, the need for high supersturations to overcome the high barrier to nucleation of calcite leads to simultaneous occurrence of multiple pathways, including direct formation of all the common ploymorphs, as well as two-step pathways through which initial precursors, particularly ACC, undergo a direct transformation to a more stable phase. Introduction of highly charged polymers that bind calcium inhibits nucleation, but directs the pathway to a metastable amorphous phase that no longer transforms to more stable polymorphs. Experiments in the iron oxide and oxyhydroxide systems show that, when high supersaturations lead to nucleation of many nanoprticles, further growth occurs through a combination of particle aggregation events and Ostwald ripening. In some cases, aggregation occurs only through oriented attachment on lattice matched faces, leading to single crystals with complex topologies and internal twin boundaries, while in others aggregation results initially in poor co-alignment, but over time the particles undergo atomic rearrangements to achieve a single crystal structure. AFM-based measurements of forces between phyllosilicate surfaces reveal the importance of long-range dispersion interactions in driving alignment, as well as the impact of electrolyte concentration and temperature on the competition of those attractive forces with repulsive electrostatic interactions. Taken together, the results help to define an emerging framework for understanding crystallization by particle attachment.
Lattice QCD studies of s-wave meson-baryon interactions
NASA Astrophysics Data System (ADS)
Ikeda, Yoichi
2011-10-01
We study the s-wave KN interactions in the isospin I = 0, 1 channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter amplitudes. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential. The I = 0 potential is found to have attractive well at mid range. The KN scattering phase shifts are calculated and compared with the experimental data.
Phenomenological Model of Hydrophobic and Hydrophilic Interactions
NASA Astrophysics Data System (ADS)
Menshikov, L. I.; Menshikov, P. L.; Fedichev, P. O.
2017-12-01
Hydration forces acting between macroscopic bodies at distances L ≤ 3 nm in pure water are calculated based on the phenomenological model of polar liquids. It is shown that depending on the properties of the bodies, the interacting surfaces polarize the liquid differently, and wetting properties of the surfaces are completely characterized by two parameters. If the surfaces are hydrophilic, liquid molecules are polarized at right angles to the surfaces, and the interaction is the short-range repulsion (the forces of interaction decrease exponentially over the characteristic length λ ≈ 0.2 nm). The interaction between the hydrophobic surfaces is more diversified and has been studied less. For L ≤ 3 nm, the interaction exhibits universal properties, while for L ≤ 3 nm, it considerably depends on the properties of the surfaces and on the distances between them, as well as on the composition of the polar liquid. In full agreement with the available experimental results we find that if the interfaces are mostly hydrophobic, then the interaction is attractive and long-range (the interaction forces diminish exponentially with decay length 1.2 nm). In this case, the resultant polarization of water molecules is parallel to the surface. It is shown that hydration forces are determined by nonlinear effects of polarization of the liquid in the bulk or by analogous nonlinearity of the interaction of water with a submerged body. This means that the forces of interaction cannot be calculated correctly in the linear response approximation. The forces acting between hydrophobic or hydrophilic surfaces are of the entropy type or electrostatic, respectively. It is shown that hydrophobic and hydrophilic surfaces for L ≤ 3 nm repel each other. The calculated intensity of their interaction is in agreement with experimental data. We predict the existence of an intermediate regime in which a body cannot order liquid molecules, which results in a much weaker attraction that decreases in inverse proportion to the squared distance between the surfaces of bodies. The difference between the microscopic structures of liquids confined in nanovolumes from liquids in large volumes is considered. The proposed model is applicable for a quantitative description of the properties of water at temperatures T satisfying the condition 0 < ( T-T c )/ T c ≪ 1, where T c ≈ 230 K is the temperature of the ferroelectric phase transition observed in supercooled water. Under standard conditions, the model can be used for obtaining qualitative estimates.
Ren, Meijie; Horn, Harald; Frimmel, Fritz H
2017-10-15
The influence of ionic strengthen and dissolved organic matter (DOM) on the aggregation of TiO 2 nanoparticles (NPs) in municipal effluent was investigated. The results demonstrated that DOM promoted the mobility of NPs in aquatic system by synergism between static repulsion and steric effect, while electrolytes were opposite by charge-neutralization. The physical-chemical characteristics of DOM played the major role on the mobility of NPs. Bovine serum albumin (BSA) showed the strongest enhancement on the mobility of TiO 2 NPs. High adsorption of BSA introduced vast negative charges on the TiO 2 NPs' surface, leading to static repulsion and neutralizing positive charges of electrolytes in surrounding as well. By contrast, another protein α-amylase retarded the aggregation rate of TiO 2 NPs through steric repulsion of the long-chain construction. Humic substances (Fulvic acid and alginate) also reflected the combination of static repulsion and steric effect. However, in the high electrolytes concentration (especially Ca 2+ ), the long-chain aliphatic compounds were prone to form calcium bridge which increased the hydrodynamic diameter of TiO 2 aggregates consequently. Sodium dodecylbenzene sulfonate (SDBS) showed low adsorption capacity, while the unabsorbed SDBS retarded the aggregates caused by the changes of pH and electrolytes. These data indicated that decreasing of DOC concentration in aqueous system was important to reduce the mobility and potential risk of NPs in aqueous system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.
Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene
2017-03-06
The distribution of potassium (K + ) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K + ions prefer to minimize the number of nearest neighbour K + ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K + distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.
Forces dictating colloidal interactions between viruses and soil
Chattopadhyay, Sandip; Puls, Robert W.
2000-01-01
The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostatic forces and the attractive van der Waals forces. Bacteriophages have been used as model sorbates, while different clays have been used as model sorbents. The equations used for the determination of the change in free energy for the process (ΔG) takes into consideration the roughness of the sorbent surfaces. Results indicate that attractive van der Waals forces predominate the process of sorption of the selected bacteriophages on clays.
Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian
In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less
Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules
Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian; ...
2017-12-12
In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less
A disorder-enhanced quasi-one-dimensional superconductor
Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-07-22
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.
Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.
Dell, Zachary E; Schweizer, Kenneth S
2015-11-13
We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.
Evaluation of synthetic linear motor-molecule actuation energetics
Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming
2006-01-01
By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of experimental force spectroscopy and theoretical computational modeling has revealed that the repulsive electrostatic interaction, which is responsible for the molecular actuation, is as high as 65 kcal·mol−1, a result that is supported by ab initio calculations. PMID:16735470
Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.
Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinctmore » outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.« less
[Relations between plasma-erythrocyte viscosity factors and ESR].
Cortinovis, A; Crippa, A; Crippa, M; Bosoni, T; Moratti, R
1992-09-01
The ESR is usually put in relationship: to the real density of the RBCs (erythrocytes) (difference between the RBC specific gravity and the plasma one), and to the resistance that the RBCs meet moving in a medium, which is due to the plasma viscosity and to the total external RBC surface. When the RBCs take shape of aggregates, their external surface is decreased and ESR increases. The most important plasma factor causing changes in ESR is the fibrinogen level followed by the plasma globulins and by the products arising from the tissue damage. The resistance that the RBCs meet moving in the plasma is well expressed by the measurement of the plasma-RBC viscosity considering that is inclusive of both factors that are the plasma viscosity and the external RBC surface. The plasma-RBC viscosity is the resultant of several factors: Fa = Fb - Fe - Fs - Fm, were: Fa is the resultant, Fb the attracting forces due to the proteic macromolecules, Fe the repulsing forces due the negative charges. Fs the repulsing forces due to the shear-stress, Fm the force which opposes itself against the surface tension of the aggregation; it depends on the RBC morphology and on the RBC rigidity. The ESR has been recently used like an index of the RBC aggregation. The Authors study the relationship between several hemorheological parameters and the ESR in infective and inflammatory processes.(ABSTRACT TRUNCATED AT 250 WORDS)
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Terasaki Spiral Ramps in the Rough Endoplasmic Reticulum
NASA Astrophysics Data System (ADS)
Guven, Jemal; Huber, Greg; Valencia, Dulce María
2014-10-01
We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.
Clustering and assembly dynamics of a one-dimensional microphase former.
Hu, Yi; Charbonneau, Patrick
2018-05-23
Both ordered and disordered microphases ubiquitously form in suspensions of particles that interact through competing short-range attraction and long-range repulsion (SALR). While ordered microphases are more appealing materials targets, understanding the rich structural and dynamical properties of their disordered counterparts is essential to controlling their mesoscale assembly. Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize the signature of the clustering process on macroscopic observables, and then assess the equilibration dynamics of various simulation algorithms. We notably find that cluster moves markedly accelerate the mixing time, but that event chains are of limited help in the clustering regime. These insights will inspire further study of three-dimensional microphase formers.
Structural stability and mechanical properties of technetium mononitride (TcN)
NASA Astrophysics Data System (ADS)
Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Among the nitrides, 3d and 4d transition metal nitrides have been investigated both experimentally and theoretically due to their predominant performances and enormous applications. In the present paper, we have attempted to predict the structural stability and mechanical properties of technetium mononitride (TcN) using an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. Our theoretical approach reveals the structural phase transition of the TcN B3 to B1 structure, wherein, the Gibbs' free energies of both the structures were minimized. The variations of elastic constants with pressure follow a systematic trend identical to that observed in other compounds of ZnS type structure family.
Electrostatic attraction between overall neutral surfaces.
Adar, Ram M; Andelman, David; Diamant, Haim
2016-08-01
Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.
NASA Astrophysics Data System (ADS)
Jain, Aayushi; Dixit, R. C.
2018-05-01
Pressure induced structural phase transition of NaCl-type (B1) to CsCl-type (B2) structure in Sodium Chloride NaCl are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is reported here. The reckon value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are compatible as compared with reported data. The variations of elastic constants and their combinations with pressure follow ordered behavior. The present approach has also succeeded in predicting the Born and relative stability criteria.
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji
2014-08-14
In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, anmore » approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.« less
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
NASA Astrophysics Data System (ADS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-11-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.
Entanglement and fluctuations in the XXZ model with power-law interactions
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso
2017-06-01
We investigate the ground-state properties of the spin-1 /2 XXZ model with power-law-decaying (1 /rα ) interactions, which describe spins interacting with long-range transverse (XX) ferromagnetic interactions and longitudinal (Z) antiferromagnetic interactions, or hard-core bosons with long-range repulsion and hopping. The long-range nature of the couplings allows us to quantitatively study the spectral, correlation, and entanglement properties of the system by making use of linear spin-wave theory, supplemented with density-matrix renormalization group in one-dimensional systems. Our most important prediction is the existence of three distinct coupling regimes, depending on the decay exponent α and number of dimensions d : (1) a short-range regime for α >d +σc (where σc=1 in the gapped Néel antiferromagnetic phase exhibited by the XXZ model, and σc=2 in the gapless XY ferromagnetic phase), sharing the same properties as those of finite-range interactions (α =∞ ); (2) a long-range regime α
Casimir effect and graphene: Tunability, scalability, Casimir rotor
NASA Astrophysics Data System (ADS)
Martinez, J. C.; Chen, X.; Jalil, M. B. A.
2018-01-01
We study the combined effects of separated parallel disks, birefringence and surface currents on the Casimir force and torque. All three contribute to the Casimir force and surface currents from graphene permit tuning and switching from attraction to repulsion thus allowing for an oscillating Casimir force which can be relevant to parametric amplification applications. Only the latter two contribute to the Casimir torque and their combined effect can enhance the torque by at least tenfold (possibly more) compared to that due to birefringence alone, a hint at a scalable Casimir torque. We also consider a feasible non-contact rotor.
NASA Astrophysics Data System (ADS)
Varotsos, Costas A.; Efstathiou, Maria N.
2017-05-01
A substantial weakness of several climate studies on long-range dependence is the conclusion of long-term memory of the climate conditions, without considering it necessary to establish the power-law scaling and to reject a simple exponential decay of the autocorrelation function. We herewith show one paradigmatic case, where a strong long-range dependence could be wrongly inferred from incomplete data analysis. We firstly apply the DFA method on the solar and volcanic forcing time series over the tropical Pacific, during the past 1000 years and the results obtained show that a statistically significant straight line fit to the fluctuation function in a log-log representation is revealed with slope higher than 0.5, which wrongly may be assumed as an indication of persistent long-range correlations in the time series. We argue that the long-range dependence cannot be concluded just from this straight line fit, but it requires the fulfilment of the two additional prerequisites i.e. reject the exponential decay of the autocorrelation function and establish the power-law scaling. In fact, the investigation of the validity of these prerequisites showed that the DFA exponent higher than 0.5 does not justify the existence of persistent long-range correlations in the temporal evolution of the solar and volcanic forcing during last millennium. In other words, we show that empirical analyses, based on these two prerequisites must not be considered as panacea for a direct proof of scaling, but only as evidence that the scaling hypothesis is plausible. We also discuss the scaling behaviour of solar and volcanic forcing data based on the Haar tool, which recently proved its ability to reliably detect the existence of the scaling effect in climate series.
Lepton flavorful fifth force and depth-dependent neutrino matter interactions
NASA Astrophysics Data System (ADS)
Wise, Mark B.; Zhang, Yue
2018-06-01
We consider a fifth force to be an interaction that couples to matter with a strength that grows with the number of atoms. In addition to competing with the strength of gravity a fifth force can give rise to violations of the equivalence principle. Current long range constraints on the strength and range of fifth forces are very impressive. Amongst possible fifth forces are those that couple to lepton flavorful charges L e - L μ or L e - L τ . They have the property that their range and strength are also constrained by neutrino interactions with matter. In this brief note we review the existing constraints on the allowed parameter space in gauged U{(1)}_{L_e-{L}_{μ },{L}_{τ }} . We find two regions where neutrino oscillation experiments are at the frontier of probing such a new force. In particular, there is an allowed range of parameter space where neutrino matter interactions relevant for long baseline oscillation experiments depend on the depth of the neutrino beam below the surface of the earth.
Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-01-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274
Smart swarms of bacteria-inspired agents with performance adaptable interactions.
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-09-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
A new measure of molecular attractions between nanoparticles near kT adhesion energy
NASA Astrophysics Data System (ADS)
Kendall, Kevin; Dhir, Aman; Du, Shangfeng
2009-07-01
The weak molecular attractions of nanoparticles are important because they drive self-assembly mechanisms, allow processing in dispersions e.g. of pigments, catalysts or device structures, influence disease through the attraction of viruses to cells and also cause potential toxic effects through nanoparticle interference with biomolecules and organs. The problem is to understand these small forces which pull nanoparticles into intimate contact; forces which are comparable with 3kT/2z the thermal impact force experienced by an average Brownian particle hitting a linear repulsive potential of range z. Here we describe a new method for measuring the atomic attractions of nanoparticles based on the observation of aggregates produced by these small forces. The method is based on the tracking of individual monosize nanoparticles whose diameter can be calculated from the Stokes-Einstein analysis of the tracks in aqueous suspensions. Then the doublet aggregates are distinguished because they move slower and are also very much brighter than the dispersed nanoparticles. By finding the ratio of doublets to singlets, the adhesive energy between the particles can be calculated from known statistical thermodynamic theory using assumptions about the shape of the interaction potential. In this way, very small adhesion energies of 2kT have been measured, smaller than those seen previously by atomic force microscopy (AFM) and scanning tunneling microscopy (STM).
NASA Astrophysics Data System (ADS)
Giannopoulou, A.; Aletras, A. J.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.
2007-11-01
We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37°C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of α-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at ˜75mgml-1, where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.
Symmetry breaking and singularity structure in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.
2012-08-01
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.
Matrix theory for baryons: an overview of holographic QCD for nuclear physics.
Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro
2013-10-01
We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.
Suppression of friction by mechanical vibrations.
Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano
2009-08-21
Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.
Long-range doublon transfer in a dimer chain induced by topology and ac fields
NASA Astrophysics Data System (ADS)
Bello, M.; Creffield, C. E.; Platero, G.
2016-03-01
The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.
Singular patterns for an aggregation model with a confining potential
NASA Astrophysics Data System (ADS)
Kolokolnikov, Theodore; Huang, Yanghong; Pavlovski, Mark
2013-10-01
We consider the aggregation equation with an attractive-repulsive force law. Recent studies (Kolokolnikov et al. (2011) [22]; von Brecht et al. (2012) [23]; Balague et al. (2013) [15]) have demonstrated that this system exhibits a very rich solution structure, including steady states consisting of rings, spots, annuli, N-fold symmetries, soccer-ball patterns etc. We show that many of these patterns can be understood as singular perturbations off lower-dimensional equilibrium states. For example, an annulus is a bifurcation from a ring; soccer-ball patterns bifurcate off solutions that consist of delta-point concentrations. We apply asymptotic methods to classify the form and stability of many of these patterns. To characterize spot solutions, a class of “semi-linear” aggregation problems is derived, where the repulsion is described by a nonlinear term and the attraction is linear but non-symmetric. For a special class of perturbations that consists of a Newtonian repulsion, the spot shape is shown to be an ellipse whose precise dimensions are determined via a complex variable method. For annular shapes, their width and radial density profile are described using perturbation techniques.
Effects of a hyperonic many-body force on BΛ values of hypernuclei
NASA Astrophysics Data System (ADS)
Isaka, M.; Yamamoto, Y.; Rijken, Th. A.
2017-04-01
The stiff equation of state (EoS) giving the neutron-star mass of 2 M⊙ suggests the existence of strongly repulsive many-body effects (MBE) not only in nucleon channels but also in hyperonic ones. As a specific model for MBE, the repulsive multi-Pomeron exchange potential (MPP) is added to the two-body interaction together with the phenomenological three-body attraction. For various versions of the Nijmegen interaction models, the MBE parts are determined so as to reproduce the observed data of BΛ. The mass dependence of BΛ values is shown to be reproduced well by adding MBE to the strong MPP repulsion, assuring the stiff EoS of hyperon-mixed neutron-star matter, in which P -state components of the adopted interaction model lead to almost vanishing contributions. The nuclear matter Λ N G -matrix interactions are derived and used in Λ hypernuclei on the basis of the averaged-density approximation (ADA). The BΛ values of hypernuclei with 9 ≤A ≤59 are analyzed in the framework of antisymmetrized molecular dynamics with use of the two types of Λ N G -matrix interactions including strong and weak MPP repulsions. The calculated values of BΛ reproduce the experimental data well within a few hundred keV. The values of BΛ in p states also can be reproduced well, when the ADA is modified to be suitable also for weakly bound Λ states.
Synthetic Superconductivity in Single-Layer Crystals
NASA Astrophysics Data System (ADS)
Levitov, Leonid; Borgnia, Dan; Lee, Patrick
2015-03-01
Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ɛ (ω) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.
Renormalization of effective interactions in a negative charge transfer insulator
NASA Astrophysics Data System (ADS)
Seth, Priyanka; Peil, Oleg E.; Pourovskii, Leonid; Betzinger, Markus; Friedrich, Christoph; Parcollet, Olivier; Biermann, Silke; Aryasetiawan, Ferdi; Georges, Antoine
2017-11-01
We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO3 involving the partially occupied eg states only. The calculation uses the constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly reduced by screening effects involving the oxygen-p and nickel-t2 g states. The long-range component of the effective low-energy interaction is also found to be sizable. As a result, the effective on-site interaction between parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories of these materials that were proposed earlier. Electronic structure methods combined with dynamical mean-field theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a function of the on-site repulsion and Hund's coupling. For the calculated values of these effective interactions, we find that in agreement with experiments, LuNiO3 is a metal without disproportionation of the eg occupancy when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator.
NASA Astrophysics Data System (ADS)
Zaccarelli, E.; Sciortino, F.; Tartaglia, P.; Foffi, G.; McCullagh, G. D.; Lawlor, A.; Dawson, K. A.
2002-11-01
We discuss the phase behaviour of spherical hard-core particles, with an attractive potential, as described by a hard-core Yukawa model. The ratio of the range of the attraction to the diameter of the particles is an important control parameter of the problem. Upon decreasing the range of the attraction, the phase diagram changes quite significantly, with the liquid-gas transition becoming metastable, and the crystal being in equilibrium with the fluid, with no intervening liquid. We also study the glass transition lines and, crucially, find that the situation, being very simple for pure repulsive potentials, becomes much richer in competition between glass and crystal phases for short-range attractions. Also a transition between attractive and repulsive glass appears somewhat in analogy with the isostructural equilibrium transition between two crystals.
NASA Astrophysics Data System (ADS)
Glazebrook, R. T.
2016-10-01
1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Ann E.; Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias, C-XVI Universidad Autonoma de Madrid Cantoblanco, Madrid 28049; Walsh, Jonathan
2008-05-01
We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 {mu}m, there remains an experimental window for a long-rangemore » chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.« less
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.
Simulation of shear thickening in attractive colloidal suspensions.
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F
2017-03-01
The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.
Chandrasekhar Limit: An Elementary Approach Based on Classical Physics and Quantum Theory
ERIC Educational Resources Information Center
Pinochet, Jorge; Van Sint Jan, Michael
2016-01-01
In a brief article published in 1931, Subrahmanyan Chandrasekhar made public an important astronomical discovery. In his article, the then young Indian astrophysicist introduced what is now known as the "Chandrasekhar limit." This limit establishes the maximum mass of a stellar remnant beyond which the repulsion force between electrons…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong Qian; Department of Physics, Shanghai University, Shanghai 200444; Wang, Q.
2010-07-15
We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Controlled ionic condensation at the surface of a native extremophile membrane
NASA Astrophysics Data System (ADS)
Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.
2010-02-01
At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces. Electronic supplementary information (ESI) available: Figs. S1 and S2: amplitude- and phase-extension curves used to derive the data presented in Figs. 2 and 4. See DOI: 10.1039/b9nr00248k
Controlling direct contact force for wet adhesion with different wedged film stabilities
NASA Astrophysics Data System (ADS)
Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei
2018-04-01
In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.
Bonnet, Nelly; O'Hagan, David; Hähner, Georg
2010-05-07
Oligo(ethylene glycol) (OEG) containing self-assembled monolayers (SAMs) on gold are known for their protein resistant properties. The underlying molecular mechanisms and the contributions of the interactions involved, however, are still not completely understood. It is known that electrostatic, van der Waals, hydrophobic, and hydration forces all play a role in the interaction between proteins and surfaces, but it is difficult to study their influence separately and to quantify their contributions. In the present study we investigate five different OEG containing SAMs and the influence of the ionic strength and the electrostatic component on the amount of a negatively charged protein (fibrinogen) that adsorbs onto them. Atomic force microscopy (AFM) was employed to record force-distance curves with hydrophobic probes depending on the ion concentration, and the amount of the protein that adsorbs relative to a hydrophobic surface was quantified using ellipsometry. The findings suggest that electrostatic forces can create a very low energy barrier thus only slightly decreasing the number of negatively charged proteins in solution with sufficient energy to approach the surface closely, and have a rather small influence on the amount that adsorbs. The films we investigated were not protein resistant. This supports other studies, reporting that a strong short-range repulsion as for example caused by hydration forces is required to make these films resistant to the non-specific adsorption of proteins.
Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi
2012-01-01
We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030
Calculation of long range forces and their applications in determining gaseous properties
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
A discussion of various theoretical and experimental techniques for the calculation of long range interaction between two atomic systems at moderate separation is presented. Some applications of these techniques for obtaining gaseous properties are described. The forces between neutral molecules and metallic surfaces are also discussed and numerical values of heats of adsorption for a number of systems are calculated.
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim
2016-02-16
The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.
Interactions and aggregation of apoferritin molecules in solution: effects of added electrolytes.
Petsev, D N; Thomas, B R; Yau, S; Vekilov, P G
2000-01-01
We have studied the structure of the protein species and the protein-protein interactions in solutions containing two apoferritin molecular forms, monomers and dimers, in the presence of Na(+) and Cd(2+) ions. We used chromatographic, and static and dynamic light scattering techniques, and atomic force microscopy (AFM). Size-exclusion chromatography was used to isolate these two protein fractions. The sizes and shapes of the monomers and dimers were determined by dynamic light scattering and AFM. Although the monomer is an apparent sphere with a diameter corresponding to previous x-ray crystallography determinations, the dimer shape corresponds to two, bound monomer spheres. Static light scattering was applied to characterize the interactions between solute molecules of monomers and dimers in terms of the second osmotic virial coefficients. The results for the monomers indicate that Na(+) ions cause strong intermolecular repulsion even at concentrations higher than 0.15 M, contrary to the predictions of the commonly applied Derjaguin-Landau-Verwey-Overbeek theory. We argue that the reason for such behavior is hydration force due to the formation of a water shell around the protein molecules with the help of the sodium ions. The addition of even small amounts of Cd(2+) changes the repulsive interactions to attractive but does not lead to oligomer formation, at least at the protein concentrations used. Thus, the two ions provide examples of strong specificity of their interactions with the protein molecules. In solutions of the apoferritin dimer, the molecules attract even in the presence of Na(+) only, indicating a change in the surface of the apoferritin molecule. In view of the strong repulsion between the monomers, this indicates that the dimers and higher oligomers form only after partial denaturation of some of the apoferritin monomers. These observations suggest that aggregation and self-assembly of protein molecules or molecular subunits may be driven by forces other than those responsible for crystallization and other phase transitions in the protein solution. PMID:10733984
Stringy Gravity: Solving the Dark Problems at `short' distance
NASA Astrophysics Data System (ADS)
Park, Jeong-Hyuck
2018-01-01
Dictated by Symmetry Principle, string theory predicts not General Relativity but its own gravity which assumes the entire closed string massless sector to be geometric and thus gravitational. In terms of R/(MG), i.e. the dimensionless radial variable normalized by mass, Stringy Gravity agrees with General Relativity toward infinity, but modifies it at short distance. At far short distance, gravitational force can be even repulsive. These may solve the dark matter and energy problems, as they arise essentially from small R/(MG) observations: long distance divided by much heavier mass. We address the pertinent differential geometry for Stringy Gravity, stringy Equivalence Principle, stringy geodesics and the minimal coupling to the Standard Model. We highlight the notion of `doubled-yet-gauged' coordinate system, in which a gauge orbit corresponds to a single physical point and proper distance is defined between two gauge orbits by a path integral.
Magnetically driven metal-insulator transition in NaOsO3
NASA Astrophysics Data System (ADS)
Calder, Stuart
2013-03-01
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials, enjoying interest both for its fundamental nature and technological application. Various mechanisms producing MITs have been extensively considered over the years, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic one-dimensional lattice). One additional route to a MIT proposed by Slater in 1951, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention, particularly from an experimental viewpoint. Using neutron and x-ray scattering we have shown that the MIT in NaOsO3 is coincident with the onset of long-range commensurate magnetic order at 410 K. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in light of recent work on other 5d systems that contrastingly have been predicted to host a Mott spin-orbit insulating state. Work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE).
Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M
2017-01-01
Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.
Spectra of helium clusters with up to six atoms using soft-core potentials
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2011-11-01
In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.
The role of atomic level steric effects and attractive forces in protein folding.
Lammert, Heiko; Wolynes, Peter G; Onuchic, José N
2012-02-01
Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.
Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.
Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke
2010-02-01
We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.
Electrokinetic mechanism of wettability alternation at oil-water-rock interface
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Wang, Moran
2017-12-01
Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.
The correlation between fragility, density, and atomic interaction in glass-forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn; Wang, W. H.
2016-07-21
The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III}more » with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.« less
Zhang, Feng; Sun, Yang; Ye, Zhuo; ...
2015-05-06
In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al 90Sm 10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the systemmore » originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.« less
NASA Astrophysics Data System (ADS)
Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm
2018-03-01
We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.
Static Holes in Geometrically Frustrated Bow Tie Ladder
NASA Astrophysics Data System (ADS)
Martins, George; Brenig, Wolfram
2007-03-01
Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).
Thermodynamics of ideal quantum gas with fractional statistics in D dimensions.
Potter, Geoffrey G; Müller, Gerhard; Karbach, Michael
2007-06-01
We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential.
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
NASA Astrophysics Data System (ADS)
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
NASA Astrophysics Data System (ADS)
Midha, Tripti; Gupta, Arvind Kumar
2017-11-01
Cytoskeletal motors known as motor proteins are molecules that drive cellular transport along several parallel cytoskeletal filaments and support many biological processes. Experimental evidences suggest that they interact with the nearest molecules of their filament while performing any mechanical work. These interactions modify the microscopic level properties of motor proteins. In this work, a new version of two-channel totally asymmetric simple exclusion process, that incorporates the intra-channel interactions in a thermodynamically consistent way, is proposed. As the existing approaches for multi-channel systems deviate from analyzing the combined effect of inter and intra-channel interactions, a new approach known as modified vertical cluster mean field is developed. The approach along with Monte Carlo simulations successfully encounters some correlations and computes the complex dynamic properties of the system. Role of symmetry of interactions and inter-channel coupling is observed on the phase diagrams, maximal particle current and its corresponding optimal interaction strength. Surprisingly, for all values of coupling rate and most of the interaction splittings, the optimal interaction strength corresponding to maximal current belongs to the case of weak repulsive interactions. Moreover, for weak interaction splittings and with an increase in the coupling rate, the optimal interaction strength tends towards the known experimental results. The effect of coupling as well as interaction energy is also measured for correlations. They are found to be short-range and weaker for repulsive and weak attractive interactions while they are long-range and stronger for large attractions.
Lepton Flavorful Fifth Force and Depth-Dependent Neutrino Matter Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Mark B.; Zhang, Yue
We consider a fifth force to be an interaction that couples to matter with a strength that grows with the number of atoms. In addition to competing with the strength of gravity a fifth force can give rise to violations of the equivalence principle. Current long range constraints on the strength and range of fifth forces are very impressive. Amongst possible fifth forces are those that couple to lepton flavorful chargesmore » $$L_e-L_{\\mu}$$ or $$L_e-L_{\\tau}$$. They have the property that their range and strength are also constrained by neutrino interactions with matter. In this brief note we review the existing constraints on the allowed parameter space in gauged $$U(1)_{L_e-L_{\\mu}, L_{\\tau}}$$. We find two regions where neutrino oscillation experiments are at the frontier of probing such a new force. In particular, there is an allowed range of parameter space where neutrino matter interactions relevant for long baseline oscillation experiments depend on the depth of the neutrino beam below the surface of the earth.« less
The influence of Lifshitz forces and gas on premelting of ice within porous materials
NASA Astrophysics Data System (ADS)
Boström, M.; Malyi, O. I.; Thiyam, P.; Berland, K.; Brevik, I.; Persson, C.; Parsons, D. F.
2016-07-01
Premelting of ice within pores in earth materials is shown to depend on the presence of vapor layers. For thick vapor layers between ice and pore surfaces, a nanosized water sheet can be formed due to repulsive Lifshitz forces. In the absence of vapor layers, ice is inhibited from melting near pore surfaces. In between these limits, we find an enhancement of the water film thickness in silica and alumina pores. In the presence of metallic surface patches in the pore, the Lifshitz forces can dramatically widen the water film thickness, with potential complete melting of the ice surface.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.
NASA Astrophysics Data System (ADS)
Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik
2018-02-01
We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.
Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers
Zarzycki, Piotr; Gilbert, Benjamin
2016-04-27
Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short-and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without externalmore » water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species.« less
Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers
Zarzycki, Piotr; Gilbert, Benjamin
2016-01-01
Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short- and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without external water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species. PMID:27118164
Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels.
Hansing, Johann; Netz, Roland R
2018-06-05
Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring.
Pandey, M B; Porenta, T; Brewer, J; Burkart, A; Copar, S; Zumer, S; Smalyukh, Ivan I
2014-06-01
We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.
Domain wall structure and interactions in 50 nm wide Cobalt nanowires
NASA Astrophysics Data System (ADS)
Tu, Kun-Hua; Ojha, Shuchi; Ross, Caroline A.
2018-05-01
Arrays of cobalt nanowires with widths of 50 nm, thickness of 5 and 20 nm and periodicity of 70 nm were fabricated by pattern transfer from a self-assembled block copolymer film. Transverse domain walls (DWs) were imaged by magnetic force microscopy, indicating repulsive interactions between DWs of the same sign in the 20 nm thick wires. Micromagnetic simulations were used to identify the interactions in the six distinct cases of a pair of transverse DWs in adjacent wires, considering all the possible combinations of head-to-head and tail-to-tail DWs and the orientation of the core magnetization. The boundary between repulsive and attractive DW interactions is mapped out for wires as a function of thickness, width and interwire spacing.
The Strategic Bomber and Low-Intensity Conflict
1990-05-01
of combat forces can be limited by current capabilities and other constraints. Aplication for Strategic Bombers Although the total United States...labeled the long-range combat aircraft. (31:1) The bomber’s characteristic of long-range provides mobility and mission flexibility which is not available...Summer 1989, pp. 46-55. 47. Ropelewski, Robert R. "Target Mobility , Arms Control Challenge SAC Modernization," Armed Forces Journo-1 £Dt~raflii~1
Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet
NASA Astrophysics Data System (ADS)
Du, Haifeng; Zhao, Xuebing; Rybakov, Filipp N.; Borisov, Aleksandr B.; Wang, Shasha; Tang, Jin; Jin, Chiming; Wang, Chao; Wei, Wensheng; Kiselev, Nikolai S.; Zhang, Yuheng; Che, Renchao; Blügel, Stefan; Tian, Mingliang
2018-05-01
We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B 20 -type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.
Tunable bistable devices for harvesting energy from spinning wheels
NASA Astrophysics Data System (ADS)
Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser
2015-04-01
Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.
Unsteady sedimentation of flocculating non-Brownian suspensions
NASA Astrophysics Data System (ADS)
Zinchenko, Alexander
2017-11-01
Microstructural evolution and temporal dynamics of the sedimentation rate U(t) are studied for a monodisperse suspension of non-Brownian spherical particles subject to van der Waals attraction and electrostatic repulsion in the realistic range of colloidal parameters (Hamaker constant, surface potential, double layer thickness etc.). A novel economical high-order multipole algorithm is used to fully resolve hydrodynamical interactions in the dynamical simulations with up to 500 spheres in a periodic box and O(106) time steps, combined with geometry perturbation to incorporate lubrication and extend the solution to arbitrarily small particle separations. The total colloidal force near the secondary minimum often greatly exceeds the effective gravity/buoyancy force, resulting in the formation of strong but flexible bonds and large clusters as the suspension evolves from an initial well-mixed state of non-aggregated spheres. Ensemble averaging over many initial configurations is used to predict U(t) for particle volume fractions between 0.1 and 0.25. The results are fully convergent, system-size independent and cover a 2-2.5 fold growth of U(t) after a latency time.
Over-injection and self-oscillations in an electron vacuum diode
NASA Astrophysics Data System (ADS)
Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.
2017-07-01
We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.
Roles of additives and surface control in slurry atomization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, S.C.
1990-03-01
This quarterly report describes a quantitative correlation between the flow behavior index of a micronized coal slurry and the interparticular van der Waals attraction force as measured by the Hamaker constant. Preliminary results on the effects of interparticular electrostatic repulsion and the liquid viscosity on both the flow behavior and the relative viscosity are also presented.
Superconducting Polarons and Bipolarons
NASA Astrophysics Data System (ADS)
Alexandrov, A. S.
The seminal work by Bardeen, Cooper and Schrieffer (BCS) extended further by Eliashberg to the intermediate coupling regime solved one of the major scientific problems of Condensed Matter Physics in the last century. The BCS theory provides qualitative and in many cases quantitative descriptions of low-temperature superconducting metals and their alloys, and some novel high-temperature superconductors like magnesium diboride. The theory has been extended by us to the strong-coupling regime where carriers are small lattice polarons and bipolarons. Here I review the multi-polaron strong-coupling theory of superconductivity. Attractive electron correlations, prerequisite to any superconductivity, are caused by an almost unretarded electron-phonon (e-ph) interaction sufficient to overcome the direct Coulomb repulsion in this regime. Low energy physics is that of small polarons and bipolarons, which are real-space electron (hole) pairs dressed by phonons. They are itinerant quasiparticles existing in the Bloch states attemperatures below the characteristic phonon frequency. Since there is almost no retardation (i.e. no Tolmachev-Morel-Anderson logarithm) reducing the Coulomb repulsion, e-ph interactions should be relatively strong to overcome the direct Coulomb repulsion, so carriers mustbe polaronic to form pairs in novel superconductors. I identify the long-range Fröhlich electron-phonon interaction as the most essential for pairing in superconducting cuprates. A number of key observations have been predicted or explained with polarons and bipolarons including unusual isotope effects and upper critical fields, normal state (pseudo)gaps and kinetic properties, normal state diamagnetism, and giant proximity effects. These and many other observations provide strong evidence for a novel state of electronic matter in layered cuprates, which is a charged Bose-liquid of small mobile bipolarons.
Stability of a thin elastic film close to a rigid plate
NASA Astrophysics Data System (ADS)
Chen, Yi-chao; Fried, Eliot; Tortorelli, Daniel A.
2012-05-01
We introduce and study a variational model for the formation of patterns induced by bringing the surface of a rigid plate into contact proximity with the surface of a polymeric film strongly bonded to a substrate. We treat the film as a homogeneous, isotropic, hyperelastic solid and account for both attractive and repulsive van der Waals interactions between the film surface and the proximate contractor. Aside from confirming the intuitive expectation that the presence of a repulsive contribution to the van der Waals potential should stabilize patterns that form on the film surface, we elucidate the role of repulsive interactions at the onset of instability. For a recently proposed van der Waals potential involving two parameters, the Hamaker constant A and the equilibrium spacing de, our results include estimates for the critical gap dc at which undulations appear on the film surface, the corresponding wavenumber kc of the undulations, and a lower bound fm for the attractive force needed to induce the undulations. To leading order, dc˜(Ah/μ), kc˜1/h, and fm˜(μ3A/h3), where h and μ denote the thickness and infinitesimal shear modulus of the film. Correction terms due to repulsive interactions indicate that, while kc may be influenced by μ and A, dc may also be influenced by de. Granted knowledge of μ and A, our results also suggest a simple experimental protocol for determining de.
Water: two liquids divided by a common hydrogen bond.
Soper, Alan K
2011-12-08
The structure of water is the subject of a long and ongoing controversy. Unlike simpler liquids, where atomic interactions are dominated by strong repulsive forces at short distances and weaker attractive (van der Waals) forces at longer distances, giving rise to local atomic coordination numbers of order 12, water has pronounced and directional hydrogen bonds which cause the dense liquid close-packed structure to open out into a disordered and dynamic network, with coordination number 4-5. Here I show that water structure can be accurately represented as a mixture of two identical, interpenetrating, molecular species separated by common hydrogen bonds. Molecules of one type can form hydrogen bonds with molecules of the other type but cannot form hydrogen bonds with molecules of the same type. These hydrogen bonds are strong along the bond but weak with respect to changes in the angle between neighboring bonds. The observed pressure and temperature dependence of water structure and thermodynamic properties follow naturally from this choice of water model, and it also gives a simple explanation of the enduring claims based on spectroscopic evidence that water is a mixture of two components. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
Thermophoretic separation of aerosol particles from a sampled gas stream
Postma, Arlin K.
1986-01-01
A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Deyu
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
Chu, Guang; Wang, Xuesi; Chen, Tianrui; Gao, Jianxiong; Gai, Fangyuan; Wang, Yu; Xu, Yan
2015-06-10
Plasmonic materials with large chiroptical activity at visible wavelength have attracted considerable attention due to their potential applications in metamaterials. Here we demonstrate a novel guest-host chiral nematic liquid crystal film composed of bulk self-co-assembly of the dispersed plasmonic silver nanowires (AgNWs) and cellulose nanocrystals (CNCs). The AgNWs-CNCs composite films show strong plasmonic optical activities, that are dependent on the chiral photonic properties of the CNCs host medium and orientation of the guest AgNWs. Tunable chiral distribution of the aligned anisotropic AgNWs with long-range order is obtained through the CNCs liquid crystal mediated realignment. The chiral plasmonic optical activity of the AgNWs-CNCs composite films can be tuned by changing the interparticle electrostatic repulsion between the CNCs nanorods and AgNWs. We also observe an electromagnetic energy transfer phenomena among the plasmonic bands of AgNWs, due to the modulation of the photonic band gap of the CNCs host matrix. This facile approach for fabricating chiral macrostructured plasmonic materials with optically tunable property is of interest for a variety of advanced optics applications.
Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo
2017-03-07
The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer depressants and fundamental understanding of bubble-solid interactions in mineral flotation. The methodologies used in this work can be readily extended to studying similar interfacial interactions in many other engineering applications such as froth flotation deinking and bitumen extraction in oil sands industry.
Self-energy and self-force in the space-time of a thick cosmic string
NASA Astrophysics Data System (ADS)
Khusnutdinov, N. R.; Bezerra, V. B.
2001-10-01
We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed in terms of the S matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.
NASA Astrophysics Data System (ADS)
Kirby, David J.
This dissertation explores the fundamental interparticle and particle-substrate forces that contribute to nanowire assembly. Nanowires have a large aspect ratio which has made them favorable materials for applications in energy and sensing technologies. However, this anisotropy means that nanowires must be positioned and oriented during an assembly process. Within this work, the roles of gravity, van der Waals (VDW) attractions, and electrostatic repulsions are explored when different nanowire assemblies are created. Particles were synthesized by the template electrodeposition process so that stripes of different materials and therefore different VDW interactions could be patterned along the particle length. Electrostatic repulsions were provided by a small molecule coating or a porous silica shell to prevent aggregation during the assembly process. Chapters 2, 3, 5, 6, and 8 all used particles whose asymmetry was further adjusted by removal of a sacrificial segment to leave a partially etched nanowire (PEN), a rigid silica shell partially filled with a metal core. For these particles, the role of gravity was amplified due to the drastic density differences between the two segments. Topographic and high VDW surface interactions were patterned onto assembly substrates using photolithographic processing. These forces served as a passive template to direct nanowire assembly. The segment anisotropy of PENs allowed gravity to drive their sedimentation with the long axis perpendicular to the surface. The density difference between the two ends allowed them to convert between the horizontal and vertical orientation as they diffused on the substrate. Vertical arrays formed as particle concentrations increased while VDW attractions from neighboring PENs or the physical barrier of a microwell wall supported this structure. While vertical arrays were typically PENs, microwell walls were also able to enforce a vertical orientation on solid Au nanowires. These particles typically formed horizontal arrays on planar surfaces, but careful design of the microwell and nanowire dimensions enabled these particles to take on the vertical orientation. Solid nanowires and PENs with greater segment symmetry aligned parallel to the surface as gravity did not allow a conversion to the vertical orientation. When concentrated, these particles formed smectic row arrangements which were previously shown to originate from a balance of VDW attractions and electrostatic repulsions. Within rows of segmented particles, a preference was observed for like orientation of nearest neighbor particles (Chapter 6). With the aid of Monte Carlo simulations, it was determined that this observation was the result of small differences in VDW attractions between the two nanowire ends. Differences in VDW attraction were also applied to patterned surfaces (Chapter 7). Stripes of high VDW material (Au) were placed on a silica surface (a low VDW material). When relatively low surface concentrations were used, the high VDW regions collected Au nanowires and organized them into rows that were reminiscent of those observed on un-patterned surfaces at high particle concentrations. VDW and the gravitational force were explored as they combined to influence array orientation in binary PEN mixtures. Depending on the geometries of the particles combined, the contributions of gravity and interparticle interactions exhibited different balance in creating the final array. VDW and gravitational forces could also act as a force for reconfigurable nanowire assembly. In chapter 8, fluid flow was used to concentrate PENs and force them into horizontal arrangements. When fluid flow was stopped, van der Waals forces and gravity were responsible for a reorientation of the assembled particles into a standing array. These studies represent early steps into the future of nanowire assembly methods. I conclude this dissertation by discussing the implications of my work and providing perspective on their importance to the scientific community. I also offer suggestions for future work in nanowire assembly. These areas focus on the development of assembled nanowire devices, mixed nanowire assembly techniques, and potential stimuli responsive reconfigurable assemblies.
Xu, Miao; Jin, Boya; He, Rui; Ren, Hongwen
2016-04-18
We report a new approach to preparing a lenticular microlens array (LMA) using polyvinyl chloride (PVC)/dibutyl phthalate (DBP) gels. The PVD/DBP gels coated on a glass substrate form a membrane. With the aid of electrostatic repulsive force, the surface of the membrane can be reconfigured with sinusoidal waves by a DC voltage. The membrane with wavy surface functions as a LMA. By switching over the anode and cathode, the convex shape of each lenticular microlens in the array can be converted to the concave shape. Therefore, the LMA can present a large dynamic range. The response time is relatively fast and the driving voltage is low. With the advantages of compact structure, optical isotropy, and good mechanical stability, our LMA has potential applications in imaging, information processing, biometrics, and displays.
Heek, T; Kühne, C; Depner, H; Achazi, K; Dernedde, J; Haag, R
2016-03-16
A set of four water-soluble perylene bisimides (PBI) based on sulfated polyglycerol (PGS) dendrons were developed, their photophysical properties determined via UV/vis and fluorescence spectroscopy, and their performance as possible anti-inflammatory agents evaluated via biological in vitro studies. It could be shown that in contrast to charge neutral PG-PBIs the introduction of the additional electrostatic repulsion forces leads to a decrease in the dendron generation necessary for aggregation suppression, allowing the preparation of PBIs with fluorescence quantum yields of >95% with a considerable decreased synthetic effort. Furthermore, the values determined for L-selectin binding down to the nanomolar range, their limited impact on blood coagulation, and their minor activation of the complement system renders these systems ideal for anti-inflammatory purposes.
Mesoscopic model for binary fluids
NASA Astrophysics Data System (ADS)
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw
2014-08-21
The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.
Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun
2018-06-21
Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.
Path planning for robotic truss assembly
NASA Technical Reports Server (NTRS)
Sanderson, Arthur C.
1993-01-01
A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2015-12-01
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.
Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.
Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T
2018-04-11
Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.
Short-range correlation in high-momentum antisymmetrized molecular dynamics
NASA Astrophysics Data System (ADS)
Myo, Takayuki
2018-03-01
We propose a new variational method for treating short-range repulsion of bare nuclear force for nuclei in antisymmetrized molecular dynamics (AMD). In AMD, the short-range correlation is described in terms of large imaginary centroids of Gaussian wave packets of nucleon pairs in opposite signs, causing high-momentum components in the nucleon pairs. We superpose these AMD basis states and call this method "high-momentum AMD" (HM-AMD), which is capable of describing the strong tensor correlation [T. Myo et al., Prog. Theor. Exp. Phys., 2017, 111D01 (2017)]. In this letter, we extend HM-AMD by including up to two kinds of nucleon pairs in each AMD basis state utilizing the cluster expansion, which produces many-body correlations involving high-momentum components. We investigate how well HM-AMD describes the short-range correlation by showing the results for ^3H using the Argonne V4^' central potential. It is found that HM-AMD reproduces the results of few-body calculations and also the tensor-optimized AMD. This means that HM-AMD is a powerful approach to describe the short-range correlation in nuclei. In HM-AMD, the momentum directions of nucleon pairs isotropically contribute to the short-range correlation, which is different from the tensor correlation.
Freezing of simple systems using density functional theory
NASA Astrophysics Data System (ADS)
de Kuijper, A.; Vos, W. L.; Barrat, J.-L.; Hansen, J.-P.; Schouten, J. A.
1990-10-01
Density functional theory (DFT) has been applied to the study of the fluid-solid transition in systems with realistic potentials (soft cores and attractive forces): the purely repulsive WCA Lennard-Jones reference potential (LJT), the full Lennard-Jones potential (LJ) and the exponential-6 potential appropriate for helium and hydrogen. Three different DFT formalisms were used: the formulation of Haymet and Oxtoby (HO) and the new theories of Denton and Ashcroft (MWDA) and of Baus (MELA). The results for the melting pressure are compared with recent simulation and experimental data. The results of the HO version are always too high, the deviation increasing when going from the repulsive Lennard-Jones to the exponential-6 potential of H2. The MWDA gives too low results for the repulsive Lennard-Jones potential. At low temperatures, it fails for the full LJ potential while at high temperatures it is in good agreement. Including the attraction as a mean-field correction gives good results also for low temperatures. The MWDA results are too high for the exponential-6 potentials. The MELA fails completely for the LJT potential and the hydrogen exponential-6 potential, since it does not give a stable solid phase.
Le Châtelier's conjecture: Measurement of colloidal eigenstresses in chemically reactive materials
NASA Astrophysics Data System (ADS)
Abuhaikal, Muhannad; Ioannidou, Katerina; Petersen, Thomas; Pellenq, Roland J.-M.; Ulm, Franz-Josef
2018-03-01
Volume changes in chemically reactive materials, such as hydrating cement, play a critical role in many engineering applications that require precise estimates of stress and pressure developments. But a means to determine bulk volume changes in the absence of other deformation mechanisms related to thermal, pressure and load variations, is still missing. Herein, we present such a measuring devise, and a hybrid experimental-theoretical technique that permits the determination of colloidal eigenstresses. Applied to cementitious materials, it is found that bulk volume changes in saturated cement pastes at constant pressure and temperature conditions result from a competition of repulsive and attractive phenomena that originate from the relative distance of the solid particles - much as Henry Louis Le Châtelier, the father of modern cement science, had conjectured in the late 19th century. Precipitation of hydration products in confined spaces entails a repulsion, whereas the concurrent reduction in interparticle distance entails activation of attractive forces in charged colloidal particles. This cross-over from repulsion to attraction can be viewed as a phase transition between a liquid state (below the solid percolation) and the limit packing of hard spheres, separated by an energy barrier that defines the temperature-dependent eigenstress magnitude.
Three-dimensional simulations of nanopowder compaction processes by granular dynamics method.
Boltachev, G Sh; Lukyashin, K E; Shitov, V A; Volkov, N B
2013-07-01
In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of "friction" (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.
Wavelength-Dependent Plasmon-Mediated Coalescence of Two Gold Nanorods
NASA Astrophysics Data System (ADS)
Liaw, Jiunn-Woei; Lin, Wu-Chun; Kuo, Mao-Kuen
2017-04-01
Plasmon-mediated coalescence of two nearby gold nanorods (NRs) suspended in water induced by the illumination of a linearly polarized (LP) light was studied theoretically. We analyzed the coupled optical forces and torques in terms of Maxwell’s stress tensor upon two identical NRs irradiated by a LP plane wave using the multiple multipole method to estimate the optomechanical outcome. Numerical results show that the light-matter interaction can perform attraction or repulsion, depending on their initial configurations. For the attraction, the end-to-end or side-by-side coalescence of the two gold NRs could be caused by the LP light, depending on the wavelength. For example, the side-by-side coalescence of two adjacent NRs of r = 15 nm and L = 120 nm is most likely induced by 800-nm LP laser beam, whereas the end-to-end coalescence by 1064-nm or 1700-nm LP laser. These distinct phenomena are attributed to the perpendicular or parallel alignment of NR to the polarization of LP light in different wavelength ranges. The magnitude of optical force, proportional to the light’s fluence, could be stronger than van der Waals force. The estimation based on quasi-static model without considering the fluid dynamics may provide an insight to optical manipulation on the self-assembly of gold colloid.
Three-dimensional simulations of nanopowder compaction processes by granular dynamics method
NASA Astrophysics Data System (ADS)
Boltachev, G. Sh.; Lukyashin, K. E.; Shitov, V. A.; Volkov, N. B.
2013-07-01
In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.
Ferrick, Adam; Wang, Mei; Woehl, Taylor J
2018-05-29
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
NASA Astrophysics Data System (ADS)
Kundu, Sarathi; Pandit, Subhankar; Abbas, Sohrab; Aswal, V. K.; Kohlbrecher, J.
2018-02-01
Small angle neutron scattering study reveals that at pD ≈ 7.0, above the isoelectric point of the globular protein Bovine Serum Albumin (BSA), in the presence of different divalent ions (Mg2+, Ca2+, Sr2+ and Ba2+), the short-range attractive interaction remains nearly constant and the intermediate-range repulsive interaction decreases with increasing salt concentration up to a certain concentration value but after that remains unchanged. However, for the monovalent ion (Na+), repulsive interaction decreases gradually up to 1 M salt concentration. Dynamic light scattering study shows that for all ions, diffusion coefficient of BSA decreases with increasing salt concentration and then nearly saturates.
Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion
NASA Astrophysics Data System (ADS)
Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori
2018-05-01
We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.
Effects of hydrodynamic interactions in bacterial swimming.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Suddhashil; Lun Wu, Xiao
2008-03-01
The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.
Origins of the Tactical Nuclear Weapons Modernization Program: 1969-1979
NASA Astrophysics Data System (ADS)
Yaffe, Michael David
On December 12, 1979, the North Atlantic Treaty Organization decided to deploy new long-range theater nuclear forces, Pershing II and Ground-Launched Cruise Missiles. This marked the first major change in NATO's nuclear stockpile since the adoption of the flexible response strategy in 1967. The decision was controversial inasmuch as the Allies disagreed on the fundamental role of nuclear weapons in this strategy and, thereby, the types and number of weapons required for an effective deterrent posture. Europeans generally preferred long-range weapons capable of striking the Soviet Union and small conventional forces while Americans preferred shorter-range nuclear weapons and a stalwart conventional defense. Thus, the December decision is often described as purely politically motivated, in which the Americans reluctantly acquiesced to a European initiative for long-range weapons, prominently expressed by West German Chancellor Helmut Schmidt in 1977. Recently declassified US government documents reveal, however, that long-range missiles were part of a long-term comprehensive nuclear modernization program conceived in the Pentagon under Defense Secretary James Schlesinger during the period of 1973 through 1975, and presented to skeptical European elites who favored arms control negotiations over costly new deployments. This program was motivated as much by changes in the American national security culture as by an increase in the Soviet military threat to Europe. It was grounded on a clear military rationale: "that a feasible and affordable conventional defense is only possible if NATO has modern nuclear forces" that can effectively hold at risk Warsaw Pact ground and air forces throughout the depth of their employment from the inner-German border to the western military districts of the Soviet Union. When the new US administration in 1977 disagreed with the modernization plan and its rationale, opting instead for more conventional forces, the Allies in a reversal of roles lobbied the US President to deploy the long-range weapons being developed by the Defense Department. In the course of deliberations, political preferences suppressed military considerations of deterrence and only a small portion of the original modernization program was implemented.
Xu, Chen-Yang; Li, Jiu-Yu; Xu, Ren-Kou; Hong, Zhi-Neng
2017-03-01
Sorption of organic phosphates-myo-inositol hexakisphosphate (IHP) and glycerol phosphate (GP) and its effects on the early stage of hematite aggregation kinetics were investigated at different pH and electrolyte composition. KH 2 PO 4 (KP) was taken as an inorganic P source for comparison. Results indicated that for all types of P, the sorption amounts decreased with increasing solution pH. Sorption amount of IHP was almost two times that of KP, while those of GP and KP were close. Both organic P and inorganic P interacted with hematite via ligand exchange through their phosphate groups, which conveyed negative charges to mineral surface and significantly decreased the zeta potential of hematite. In Na + solution, critical coagulation concentrations (CCCs) of hematite suspensions increased with increasing P concentration and followed the order of KP < GP < IHP at pH 5.5. Compared with KP, the organic P could more effectively stabilize the hematite suspension not only through increasing the negative charges and electrostatic repulsive force, but also through steric repulsion between P-sorbed hematite nanoparticles. When the pH was increased from 5.5 to 10.0, the CCCs of the hematite suspensions with GP and IHP decreased mainly because of the great reductions in organic P sorption amounts and consequent decreases in electrostatic and steric repulsive forces. However, enhanced aggregation was observed in the presence of IHP at pH 4.5 and above in low Ca 2+ solutions. The precipitation of calcium phytate formed net-like structure, which served as bridges to bind hematite nanoparticles and resulted in enhanced aggregation. These results have important implications for assessing the fate and transport of organic P and hematite nanoparticles in soil and aquatic environments.