Sample records for long-term cell performance

  1. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; R. C. O'Brien

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less

  2. The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics

    NASA Technical Reports Server (NTRS)

    Pearson, C.; Thwaite, C.; Curzon, D.; Rao, G.

    2006-01-01

    Tests approx.8 yrs ago showed Sony HC do not imbalance. AEA developed a theory (ESPC 2002): a) Self-discharge (SD) decreases with state-of-charge (SOC); b) Cells diverge to a state of dynamic equilibrium; c) Equilibrium spread depends on cell SD uniformity. Balancing model verified against test data. Short-term measures of SD difficult in Sony cells and very small values, depends on technique. Long-term evidence supports lower SD at low SD. Battery testing best proof of performance, typically mission specific tests.

  3. Application of micro-porous polycarbonate membranes in dye-sensitized solar cells: Cell performance and long-term stability

    NASA Astrophysics Data System (ADS)

    Lue, Shingjiang Jessie; Lo, Pei Wen; Hung, Ling-Yung; Tung, Yung Liang

    This research investigates the cell performance and long-term stability of dye-sensitized solar cells (DSSCs) containing micro-porous polycarbonate (PC) film as the frame work material to stabilize the electrolyte solution. The track-etched PC film has cylindrical pore geometry, which is beneficial for ion transport in the electrolyte trapped inside the PC film. The photovoltaic efficiency of the DSSC with 0.2-μm PC membrane is 5.75 ± 0.73% under irradiation of 100 mW cm -2, which is slightly lower than that (6.34 ± 0.44%) of cells without PC film. The differences in fill factor and open-circuit voltage between the DSSCs with and without PC film are not statistically significant. The long-term cell performance is carried out at continuous illumination of 100 mW cm -2 (1 sun) and in darkness at 60 °C for up to 1000 h. There is no significant efficiency difference between the cells with and without PC film in light soaking (4.33% vs. 4.52%) for 960 h. In darkness, however, the cells with PC film demonstrate much higher efficiency (at 2.37%) than cells without PC (0.85%) after 1000 h. The improved long-term efficiency data and the higher percentage of working cells confirm the superior lifetime and performance using the micro-porous PC film.

  4. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.

    2015-02-01

    HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.

  5. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  6. Progress towards computer simulation of NiH2 battery performance over life

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.; Quinzio, M. V.

    1995-01-01

    The long-term performance of rechargeable battery cells has traditionally been verified through life-testing, a procedure that generally requires significant commitments of funding and test resources. In the situation of nickel hydrogen battery cells, which have the capability of providing extremely long cycle life, the time and cost required to conduct even accelerated testing has become a serious impediment to transitioning technology improvements into spacecraft applications. The utilization of computer simulations to indicate the changes in performance to be expected in response to design or operating changes in nickel hydrogen cells is therefore a particularly attractive tool in advanced battery development, as well as for verifying performance in different applications. Computer-based simulations of the long-term performance of rechargeable battery cells have typically had very limited success in the past. There are a number of reasons for the lack in progress in this area. First, and probably most important, all battery cells are relatively complex electrochemical systems, in which performance is dictated by a large number of interacting physical and chemical processes. While the complexity alone is a significant part of the problem, in many instances the fundamental chemical and physical processes underlying long-term degradation and its effects on performance have not even been understood. Second, while specific chemical and physical changes within cell components have been associated with degradation, there has been no generalized simulation architecture that enables the chemical and physical structure (and changes therein) to be translated into cell performance. For the nickel hydrogen battery cell, our knowledge of the underlying reactions that control the performance of this cell has progressed to where it clearly is possible to model them. The recent development of a relative generalized cell modelling approach provides the framework for translating the chemical and physical structure of the components inside a cell into its performance characteristics over its entire cycle life. This report describes our approach to this task in terms of defining those processes deemed critical in controlling performance over life, and the model architecture required to translate the fundamental cell processes into performance profiles.

  7. Long term imaging of living brain cancer cells

    NASA Astrophysics Data System (ADS)

    Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas

    2018-02-01

    QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.

  8. From Cell to Module: Fabrication and Long-term Stability of Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Nursam, N. M.; Hidayat, J.; Muliani, L.; Anggraeni, P. N.; Retnaningsih, L.; Idayanti, N.

    2017-07-01

    Dye-sensitized solar cell (DSSC), which has been firstly developed by Graetzel et al back in 1991, has attracted a considerable interest since its discovery. However, two of the main challenges that the DSSC technology will have to overcome towards commercialization involve device scale-up and long-term stability. In our group, the fabrication technology of DSSC has been developed from laboratory to module scale over the past few years, nevertheless, the long-term stability has still became a major concern. In this contribution, the long-term DSSC performance in relation to their scale-up from cell to module is investigated. The photoelectrode of the DSSCs were fabricated using nanocrystalline titanium dioxide materials that were subsequently sensitized using ruthenium-based dye. Additionally, TiCl4 pre- and post-treatment were carried out to enhance the overall device efficiency. When fabricated as cells, the DSSC prototypes showed relatively stable performance during repeated tests over three months. In order to increase the output power of the solar cells, the DSSCs were then connected in a Z-type series connection to obtain sub-module panels. The DSSC sub-modules exhibit poor stability, particularly as indicated by the significant decrease in the short circuit current (ISC ). Herein, the effect of photoelectrode and sealant materials as well as module design are investigated, highlighting their profound influence upon the DSSC efficiency and long-term stability.

  9. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models.

    PubMed

    Kloog, Itai; Ridgway, Bill; Koutrakis, Petros; Coull, Brent A; Schwartz, Joel D

    2013-07-01

    Many studies have reported associations between ambient particulate matter (PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM exposures. For chronic effects, the studied cohorts have rarely been representative of the population. We present a novel exposure model combining satellite aerosol optical depth and land-use data to investigate both the long- and short-term effects of PM2.5 exposures on population mortality in Massachusetts, United States, for the years 2000-2008. All deaths were geocoded. We performed two separate analyses: a time-series analysis (for short-term exposure) where counts in each geographic grid cell were regressed against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In addition, for long-term exposure, we performed a relative incidence analysis using two long-term exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell average based on land use within 50 m of the residence. We tested whether these predicted the proportion of deaths from PM-related causes (cardiovascular and respiratory diseases). For short-term exposure, we found that for every 10-µg/m increase in PM 2.5 exposure there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0-3.5). For the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-µg/m increase in long-term PM2.5 exposure of 1.6 (CI = 1.5-1.8) for particle-related diseases. Local PM2.5 had an OR of 1.4 (CI = 1.3-1.5), which was independent of and additive to the grid cell effect. We have developed a novel PM2.5 exposure model based on remote sensing data to assess both short- and long-term human exposures. Our approach allows us to gain spatial resolution in acute effects and an assessment of long-term effects in the entire population rather than a selective sample from urban locations.

  10. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Technical Reports Server (NTRS)

    Yi, T. Y.

    1986-01-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  11. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Astrophysics Data System (ADS)

    Yi, T. Y.

    1986-09-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  12. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform.

    PubMed

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt; Lhoussaine, Cédric; Hersen, Pascal; Batt, Gregory

    2017-02-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar , a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. © 2017 The Authors.

  13. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform

    PubMed Central

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt

    2017-01-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar, a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. PMID:28179544

  14. Sulfur poisoning of Ni/Gadolinium-doped ceria anodes: A long-term study outlining stable solid oxide fuel cell operation

    NASA Astrophysics Data System (ADS)

    Riegraf, Matthias; Zekri, Atef; Knipper, Martin; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas

    2018-03-01

    This work presents an analysis of the long-term behavior of nickel/gadolinium-doped ceria (CGO) anode-based solid oxide fuel cells (SOFC) under sulfur poisoning conditions. A parameter study of sulfur-induced irreversible long-term degradation of commercial, high-performance single cells was carried out at 900 °C for different H2/N2/H2S fuel gas atmospheres, current densities and Ni/CGO anodes. The poisoning periods of the cells varied from 200 to 1500 h. The possibility of stable long-term Ni/CGO anode operation under sulfur exposure is established and the critical operating regime is outlined. Depending on the operating conditions, two degradation phenomena can be observed. Small degradation of the ohmic resistance was witnessed for sulfur exposure times of approximately 1000 h. Moreover, degradation of the anode charge transfer resistance was observed to be triggered by the combination of a small anodic potential step and high sulfur coverage on Ni. The microstructural evolution of altered Ni/CGO anodes was examined post-mortem by means of SEM and FIB/SEM, and is correlated to the anode performance degradation under critical operating conditions, establishing Ni depletion, porosity increase and a tripe phase boundary density decrease in the anode functional layer. It is shown that short-term sulfur poisoning behavior can be used to assess long-term stability.

  15. Sealed-cell nickel-cadmium battery applications manual

    NASA Technical Reports Server (NTRS)

    Scott, W. R.; Rusta, D. W.

    1979-01-01

    The design, procurement, testing, and application of aerospace quality, hermetically sealed nickel-cadmium cells and batteries are presented. Cell technology, cell and battery development, and spacecraft applications are emphasized. Long term performance is discussed in terms of the effect of initial design, process, and application variables. Design guidelines and practices are given.

  16. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater.

    PubMed

    Luo, Haiping; Xu, Pei; Ren, Zhiyong

    2012-09-01

    Microbial desalination cell represents a new technology for simultaneous wastewater treatment, water desalination, and energy production. This study characterized the long-term performance of MDC during wastewater treatment and identified the key factors that caused performance decline. The 8-month operation shows that MDC performance decreased over time, as indicated by a 47% decline in current density, a 46% drop in Columbic efficiency, and a 27% decrease in desalination efficiency. Advanced electrochemical, microscopy, and spectroscopy analyses all confirmed biofouling on the anion exchange membrane, which increased system resistance and reduced ionic transfer and energy conversion efficiency. Minor chemical scaling was found on the cation exchange membrane surface. Microbial communities became less diverse at the end of operation, and Proteobacteria spp. was dominant on both anode and AEM fouling layer surface. These results provide insights into the viability of long-term MDC operation on reactor performance and direct system development through membrane optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  18. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  19. EdU induces DNA damage response and cell death in mESC in culture.

    PubMed

    Kohlmeier, Fanni; Maya-Mendoza, Apolinar; Jackson, Dean A

    2013-03-01

    Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.

  20. Chromosomal instability and telomere shortening in long-term culture of hematopoietic stem cells: insights from a cell culture model of RPS14 haploinsufficiency.

    PubMed

    Thomay, K; Schienke, A; Vajen, B; Modlich, U; Schambach, A; Hofmann, W; Schlegelberger, B; Göhring, G

    2014-01-01

    The fate of cultivated primary hematopoietic stem cells (HSCs) with respect to genetic instability and telomere attrition has not yet been described in great detail. Thus, knowledge of the genetic constitution of HSCs is important when interpreting results of HSCs in culture. While establishing a cell culture model for myelodysplastic syndrome with a deletion in 5q by performing RPS14 knockdown, we found surprising data that may be of importance for any CD34+ cell culture experiments. We performed cytogenetic analyses and telomere length measurement on transduced CD34+ cells and untransduced control cells to observe the effects of long-term culturing. Initially, CD34+ cells had a normal median telomere length of about 12 kb and showed no signs of chromosomal instability. During follow-up, the median telomere length seemed to decrease and, simultaneously, increased chromosomal instability could be observed - in modified and control cells. One culture showed a clonal monosomy 7 - independent of prior RPS14 knockdown. During further culturing, it seemed that the telomeres re-elongated, and chromosomes stabilized, while TERT expression was not elevated. In summary, irrespective of our results of RPS14 knockdown in the long-term culture of CD34+ cells, it becomes clear that cell culture artefacts inducing telomere shortening and chromosomal instability have to be taken into account and regular cytogenetic analyses should always be performed. © 2013 S. Karger AG, Basel.

  1. Genetically Encoded Calcium Indicators For Studying Long-Term Calcium Dynamics During Apoptosis

    PubMed Central

    Garcia, M. Iveth; Chen, Jessica J.; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. PMID:28073595

  2. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    PubMed

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  3. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  4. Assessment of genetic and epigenetic variation during long-term Taxus cell culture.

    PubMed

    Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang

    2012-07-01

    Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.

  5. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are alsomore » proposed.« less

  6. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis.

    PubMed

    Garcia, M Iveth; Chen, Jessica J; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  8. Separator development and testing of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.; Manzo, M. A.

    1984-01-01

    The components, design, and operating characteristics of Ni-H2 cells batteries were improved. A separator development program was designed to develop a separator that is resistant to penetration by oxygen and loose active material from then nickel electrode, while retraining the required chemical and thermal stability, reservoir capability, and high ionic conductivity. The performance of the separators in terms of cell operating voltage was to at least match that of state-of-the-art separators while eliminating the separator problems. The separators were submitted to initial screening tests and those which successfully completed the tests were built into Ni-H2 cells for short term testing. The separators with the best performance are tested for long term performance and life.

  9. Ni-MH storage test and cycle life test

    NASA Technical Reports Server (NTRS)

    Dell, R. Dan; Klein, Glenn C.; Schmidt, David F.

    1994-01-01

    Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot testing continue to dominate the overall technology development effort at GAB. The cell life test program reflects continuing improvements in baseline cell designs. Performance improvements include lower and more stable charge voltages and pressures. The continuing review of production lot testing assures conformance to the design criteria and expectations. This is especially critical during this period of transferring technology from research and development status to production.

  10. Activity and Stability of (Pr 1-xNd x) 2NiO 4+δ as Cathodes for Oxide Fuel Cells: Part VI. The Role of Cu Dopant on the Structure and Electrochemical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogdibegovic, Emir; Yan, Jingbo; Cai, Qinsheng

    Phase instability in praseodymium nickelates is a major concern for the long-term operations of solid oxide fuel cells since it may lead to the performance degradation. In this work, praseodymium nickelates (ex. Pr 2NiO 4+δ) have been stabilized via substitution on both Pr- and Ni-sites. Systematic studies over a wide range of compositions were conducted via long-term thermal annealing studies (T ≤ 870°C) and electrochemical tests in full cells. Proposed (Pr 0.50Nd 0.50) 2Ni 1-yCu yO 4+δ compositions (y = 0.05, 0.10, 0.20, and 0.30) showed the most promising results and serve as a comprehensive extension to our previous studiesmore » in this series of papers. A stable long-term performance was obtained for temperatures up to 790°C for 500 hours at 0.80 V with a minimal tradeoff between the activity (power density of 0.8–1.0 W cm -2 at 850°C) and performance stability. A preserved parent phase and suppressed performance degradation, when compared to Pr 2NiO 4+δ, make newly developed electrodes attractive candidates for the state-of-the-art solid oxide fuel cell applications.« less

  11. Activity and Stability of (Pr 1-xNd x) 2NiO 4+δ as Cathodes for Oxide Fuel Cells: Part VI. The Role of Cu Dopant on the Structure and Electrochemical Properties

    DOE PAGES

    Dogdibegovic, Emir; Yan, Jingbo; Cai, Qinsheng; ...

    2017-08-12

    Phase instability in praseodymium nickelates is a major concern for the long-term operations of solid oxide fuel cells since it may lead to the performance degradation. In this work, praseodymium nickelates (ex. Pr 2NiO 4+δ) have been stabilized via substitution on both Pr- and Ni-sites. Systematic studies over a wide range of compositions were conducted via long-term thermal annealing studies (T ≤ 870°C) and electrochemical tests in full cells. Proposed (Pr 0.50Nd 0.50) 2Ni 1-yCu yO 4+δ compositions (y = 0.05, 0.10, 0.20, and 0.30) showed the most promising results and serve as a comprehensive extension to our previous studiesmore » in this series of papers. A stable long-term performance was obtained for temperatures up to 790°C for 500 hours at 0.80 V with a minimal tradeoff between the activity (power density of 0.8–1.0 W cm -2 at 850°C) and performance stability. A preserved parent phase and suppressed performance degradation, when compared to Pr 2NiO 4+δ, make newly developed electrodes attractive candidates for the state-of-the-art solid oxide fuel cell applications.« less

  12. Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation

    NASA Astrophysics Data System (ADS)

    Weafer, P. P.; McGarry, J. P.; van Es, M. H.; Kilpatrick, J. I.; Ronan, W.; Nolan, D. R.; Jarvis, S. P.

    2012-09-01

    Atomic force microscopy (AFM) is widely used in the study of both morphology and mechanical properties of living cells under physiologically relevant conditions. However, quantitative experiments on timescales of minutes to hours are generally limited by thermal drift in the instrument, particularly in the vertical (z) direction. In addition, we demonstrate the necessity to remove all air-liquid interfaces within the system for measurements in liquid environments, which may otherwise result in perturbations in the measured deflection. These effects severely limit the use of AFM as a practical tool for the study of long-term cell behavior, where precise knowledge of the tip-sample distance is a crucial requirement. Here we present a readily implementable, cost effective method of minimizing z-drift and liquid instabilities by utilizing active temperature control combined with a customized fluid cell system. Long-term whole cell mechanical measurements were performed using this stabilized AFM by attaching a large sphere to a cantilever in order to approximate a parallel plate system. An extensive examination of the effects of sphere attachment on AFM data is presented. Profiling of cantilever bending during substrate indentation revealed that the optical lever assumption of free ended cantilevering is inappropriate when sphere constraining occurs, which applies an additional torque to the cantilevers "free" end. Here we present the steps required to accurately determine force-indentation measurements for such a scenario. Combining these readily implementable modifications, we demonstrate the ability to investigate long-term whole cell mechanics by performing strain controlled cyclic deformation of single osteoblasts.

  13. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  14. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts.

    PubMed

    Kiely, Patrick D; Rader, Geoffrey; Regan, John M; Logan, Bruce E

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Cell response to long term mechanical interaction with nanopipettes

    NASA Astrophysics Data System (ADS)

    Orynbayeva, Zulfiya; Singhal, Riju; Vitol, Elina; Bouchard, Michael; Azizkhan-Clifford, Jane; Layton, Bradley; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    Traditional microinjection into cells is performed over a relatively short term. Pipettes are typically withdrawn following any kind of injection. On the other hand, there is growing interest in using nanopipettes for cellular and subcellular probing. This interest is partly due to new developments in nanopipette technology which employ carbon nanotubes and provide robustness, flexibility, and biocompatibility. However, as far as we know, no systematic study of physiological, biochemical, and biophysical processes associated with cell response to lengthy mechanical stimulations by nanopipette probing have been performed so far. We present a detailed investigation of a wide range of effects of long term pipette insertion into a cell. Both traditional glass micropipettes and the novel carbon nanotube-tipped probes were involved in this study. The mechanism of Ca2+ response to the mechanical stimuli introduced by the nanopipette, and the role of different organelles in this mechanism were studied. We hypothesize that the calcium response is a function of cytoskeleton integrity and the mode of coupling between the cytoskeleton and the plasma membrane domains.

  16. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  17. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications.

    PubMed

    Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig

    2018-05-28

    Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.

  18. Mechanical characterization and numerical simulation of a subcutaneous implantable 3D printed cell encapsulation system.

    PubMed

    Adamo, Federica; Farina, Marco; Thekkedath, Usha R; Grattoni, Alessandro; Sesana, Raffaella

    2018-06-01

    Cell transplantation in bioengineered scaffolds and encapsulation systems has shown great promise in regenerative medicine. Depending on the site of implantation, type of cells and their expected function, these systems are designed to provide cells with a physiological-like environment while providing mechanical support and promoting long-term viability and function of the graft. A minimally invasive 3D printed system termed neovascularized implantable cell homing and encapsulation (NICHE) was developed in polylactic acid for subcutaneous transplantation of endocrine cells, including pancreatic islets. The suitability of the NICHE for long term in vivo deployment is investigated by assessing mechanical behavior of both fresh devices under simulated subcutaneous conditions and NICHE retrieved from subcutaneous implantation in pigs. Both experimental and numerical studies were performed with a focus on validating the constitutive material model used in the numerical analysis for accuracy and reliability. Notably, homogeneous isotropic constitutive material model calibrated by means of uniaxial testing well suited experimental results. The results highlight the long term durability for in vivo applications and the potential applicability of the model to predict the mechanical behavior of similar devices in various physiological settings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; R. C. O'Brien; X. Zhang

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less

  20. Commercial NiMH Cells in LEO Cycling: Thermal Vacuum Life Test Performed for the Floating Potential Probe (FPP)

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Strangways, Brad

    2003-01-01

    Contents include the following: 1. Introduction: What is the (Floating Potential Probe) FPP? Why was NiMH battery selected? Haw well would crimped seal cell performed in long term vacuum exposure? 2. Verification tests: Battery description. Test methods. Results. Main findings. FPP status.

  1. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  2. Long-term stability of microcrystalline silicon p-i-n solar cells exposed to sun light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanguino, P.; Koynov, S.; Schwarz, R.

    1999-07-01

    The performance of an entirely microcrystalline p-i-n solar cell was monitored during a long-term outdoor test in Lisbon starting in September 1998. A small decrease of the short circuit current was observed after 5 months of operation. The open-circuit voltage remained stable around 400 mV. From the analysis of the I-V characteristic in dark and under illumination they could identify the weak points of the test structure, like large series resistance, high recombination rate, and intensity-dependent collection efficiency.

  3. Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery.

    PubMed

    Wang, Mingzhan; Tang, Miao; Chen, Shulin; Ci, Haina; Wang, Kexin; Shi, Liurong; Lin, Li; Ren, Huaying; Shan, Jingyuan; Gao, Peng; Liu, Zhongfan; Peng, Hailin

    2017-12-01

    Aluminum (Al) foil, as the most accepted cathode current collector for lithium-ion batteries (LIBs), is susceptible to local anodic corrosions during long-term operations. Such corrosions could lead to the deterioration or even premature failure of the batteries and are generally believed to be a bottleneck for next-generation 5 V LIBs. Here, it is demonstrated that Al foil armored by conformal graphene coating exhibits significantly reinforced anodic corrosion resistance in both LiPF 6 and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI) based electrolytes. Moreover, LiMn 2 O 4 cells using graphene-armored Al foil as current collectors (LMO/GA) demonstrate enhanced electrochemical performance in comparison with those using pristine Al foil (LMO/PA). The long-term discharge capacity retention of LMO/GA cell after ≈950 h straight operations at low rate (0.5 C) reaches up to 91%, remarkably superior to LMO/PA cell (75%). The self-discharge propensity of LMO/GA is clearly relieved and the rate/power performance is also improved with graphene mediations. This work not only contributes to the long-term stable operations of LIBs but also might catalyze the deployment of 5 V LIBs in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Accelerated battery-life testing - A concept

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.

    1971-01-01

    Test program, employing empirical, statistical and physical methods, determines service life and failure probabilities of electrochemical cells and batteries, and is applicable to testing mechanical, electrical, and chemical devices. Data obtained aids long-term performance prediction of battery or cell.

  5. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cheng-Chia; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulatemore » ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si-Snail blocked xenograft tumorigenesis of long-term nicotine-treated OSCC cells.« less

  6. LONG-TERM PERFORMANCE OF IN-SITU PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    During this period one sampling trip was performed at the Denver federal site involving EPA and EPA-contractor ManTech) personnel. This occurred in May 1999. During that trip cells 1 and 2 were sampled. Cell 3, although planned to be sampled. was not due to access restrictions. I...

  7. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells

    PubMed Central

    Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane

    2006-01-01

    The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737

  8. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  9. Low-Earth-Orbit (LEO) Life Cycle Evaluation of Nickel-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Coates, D.; Ferreira, E.; Nyce, M.; Charkey, A.

    1997-01-01

    The conclusion of the Low-Earth-Orbit (LEO) life cycle evaluation of nickel-zinc batteries are: that composite nickel electrode provide excellent performance at a reduced weight and lower cost; calcium / zinc electrode minimizes shape change; unioptimized cell designs yield 60 Wh/kg; nickel-zinc delivers 600 cycles at 80% DOD; long cycle life obtainable at low DOD; high rate capability power density; long-term failure mechanism is stack dry; and anomalous overcharge (1120%) greatly affected cell performance but did not induce failure and was recoverable.

  10. Potential of coconut water and soy milk for use as storage media to preserve the viability of periodontal ligament cells: an in vitro study.

    PubMed

    Moura, Camilla Cristhian Gomes; Soares, Priscilla Barbosa Ferreira; de Paula Reis, Manuella Verdinelli; Fernandes Neto, Alfredo Júlio; Zanetta Barbosa, Darceny; Soares, Carlos José

    2014-02-01

    There is no consensus regarding the ability of coconut water and soy milk to maintain long-term cell viability. This study investigated the ability of pH-adjusted coconut water and soy milk to maintain the viability of periodontal ligament cells over a short and a longer period and compared these abilities with those of other solutions. Dog premolar teeth were extracted, dried for 30 min, and stored in the following media for 50 min or 24 h: long shelf-life whole milk (SWM), long shelf-life skim milk (SSM), Hank's Balanced Salt Solution (HBSS), soy milk (SM), and pH-adjusted coconut water (CW). The positive and two negative control groups corresponded to 0-min, 30-min (short-term), and 24-h (long-term) dry times, respectively. Cell viability was analyzed by trypan blue exclusion. Data were statistically analyzed using the Kruskal-Wallis test with post-analysis using the Dunn method. In the short-term experiment, the SSM resulted in significantly lower cell viability than SM and CW. At 24 h, SM and CW resulted in higher viability than HBSS and SSM and in comparable performance with the positive control group. Cell viability decreased over time, except in SM and CW. Soy milk and pH-adjusted coconut water showed promising results as storage solutions for avulsed teeth, preserving the viability for up to 24 h. © 2013 John Wiley & Sons A/S.

  11. Long Term Performance Retention Test Using High Power COTS NiCd and NiMH Cells

    NASA Technical Reports Server (NTRS)

    Hall, Dan; Darcy, Eric; Strangways, Brad; Nelson, Tim

    2003-01-01

    This slide presentation reviews the tests and results for performance retention of high powered commercial off the shelf (COTS) NiCd, and NiMH cells. Electromechanical actuators for space flight requires short duration high power batteries. The concern is that NiCd battery designs demonstrate an unfavorable power degradation after long periods of inactivity. Cycling can recover some of the decay, but this reduces the readiness that these batteries must have. Two 5-cell SubC stick test batteries ere chosen using NiCd and NiMH were tested and then the differences for charge maintenance were compared.

  12. Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long-term fate of mesenchymal stem cells transplanted into heart.

    PubMed

    Ma, Ning; Cheng, Huaibing; Lu, Minjie; Liu, Qiong; Chen, Xiuyu; Yin, Gang; Zhu, Hao; Zhang, Lianfeng; Meng, Xianmin; Tang, Yue; Zhao, Shihua

    2015-03-12

    MRI for in vivo stem cell tracking remains controversial. Here we tested the hypothesis that MRI can track the long-term fate of the superparamagnetic iron oxide (SPIO) nanoparticles labelled mesenchymal stem cells (MSCs) following intramyocardially injection in AMI rats. MSCs (1 × 10(6)) from male rats doubly labeled with SPIO and DAPI were injected 2 weeks after myocardial infarction. The control group received cell-free media injection. In vivo serial MRI was performed at 24 hours before cell delivery (baseline), 3 days, 1, 2, and 4 weeks after cell delivery, respectively. Serial follow-up MRI demonstrated large persistent intramyocardial signal-voids representing SPIO during the follow-up of 4 weeks, and MSCs did not moderate the left ventricular dysfunction. The TUNEL analysis confirmed that MSCs engrafted underwent apoptosis. The histopathological studies revealed that the site of cell injection was infiltrated by inflammatory cells progressively and the iron-positive cells were macrophages identified by CD68 staining, but very few or no DAPI-positive stem cells at 4 weeks after cells transplantation. The presence of engrafted cells was confirmed by real-time PCR, which showed that the amount of Y-chromosome-specific SRY gene was consistent with the results. MRI may not reliably track the long-term fate of SPIO-labeled MSCs engraftment in heart.

  13. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.

    PubMed

    Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi

    2018-01-01

    It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.

  14. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?

    DOE PAGES

    Zhao, Jingjing; Zheng, Xiaopeng; Deng, Yehao; ...

    2016-10-28

    One grand challenge for long-lived perovskite solar cells is that the common electrode materials in solar cells, such as silver and aluminum or even gold, strongly react with hybrid perovskites. Here we report the evaluation of the potential of copper (Cu) as the electrode material in perovskite solar cells for long-term stability. In encapsulated devices which limit exposure to oxygen and moisture, Cu in direct contact with CH 3NH 3PbI 3 showed no reaction at laboratory time scales, and is predicted to be stable for almost 170 years at room temperature and over 22 years at the nominal operating cellmore » temperature of 40 °C. No diffusion of Cu into CH 3NH 3PbI 3 has been observed after thermal annealing for over 100 hours at 80 °C, nor does Cu cause charge trap states in direct contact with CH 3NH 3PbI 3 after long-term thermal annealing or illumination. High performance devices with efficiency above 20% with Cu electrode retains 98% of the initial efficiency after 816 hours storage in ambient environment without encapsulation. Finally, the results indicate Cu is a promising low-cost electrode material for perovskite solar cells for long-term operation.« less

  15. Long-term survival in an adolescent with widely metastatic renal cell carcinoma with rhabdoid features.

    PubMed

    Ettinger, L J; Goodell, L A; Javidian, P; Hsieh, Y; Amenta, P

    2000-01-01

    Renal cell carcinoma is rarely seen in children and adolescents. Patients with widespread disease at diagnosis have a particularly poor survival rate. Currently, all known chemotherapy has been ineffective in improving the median survival in patients with advanced disease. A 13-year-old black boy with stage IV renal cell carcinoma with rhabdoid features is a long-term disease-free survivor after aggressive multiagent chemotherapy. After the initial evaluation and histologic diagnosis of renal cell carcinoma, the patient received three courses of an aggressive chemotherapy regimen consisting of vincristine, doxorubicin, cyclophosphamide with mesna uroprotection, granulocyte colony-stimulating factor and erythropoietin (Epogen). After an almost complete response, a radical nephrectomy was performed and results demonstrated a solitary small nodule with viable tumor. After surgery, he received floxuridine infusion for 14 days by circadian schedule at 28-day intervals for a total of 1 year. The patient is well and free of disease 5 years after initial presentation. The dramatic response to treatment and long-term disease-free survival of this patient suggest this chemotherapeutic approach warrants additional investigation.

  16. NASA Battery Working Group - 2007-2008: Battery Task Summary Report

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2008-01-01

    This presentation provides a summary of the 2007-2008 NASA Battery Working Group efforts completed in support of the NASA Engineering Safety Center (NESC). The effort covered a series of pro-active tasks that address the following: Binding Procurements -- guidelines related to requirements for the battery system that should be considered at the time of contract award Wet Life of Ni-H2 Batteries -- issues/strategies for effective storage and impact of long-term storage on performance and life Generic Guidelines for Lithium-ion Safety, Handling and Qualification -- Standardized approaches developed and risk assessments (1) Lithium-ion Performance Assessment -- survey of manufacturers and capabilities to meet mission needs. Guidelines document generated (2) Conditions Required for using Pouch Cells in Aerospace Missions -- focus on corrosion, thermal excursions and long-term performance issues. Document defining requirements to maintain performance and life (3) High Voltage Risk Assessment -- focus on safety and abuse tolerance of battery module assemblies. Recommendations of features required for safe implementation (4) Procedure for Determination of Safe Charge Rates -- evaluation of various cell chemistries and recommendation of safe operating regimes for specific cell designs

  17. Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots.

    PubMed

    Graña, E; Sotelo, T; Díaz-Tielas, C; Araniti, F; Krasuska, U; Bogatek, R; Reigosa, M J; Sánchez-Moreiras, A M

    2013-02-01

    Citral is a linear monoterpene which is present, as a volatile component, in the essential oil of several different aromatic plants. Previous studies have demonstrated the ability of citral to alter the mitotic microtubules of plant cells, especially at low concentrations. The changes to the microtubules may be due to the compound acting directly on the treated root and coleoptile cells or to indirect action through certain phytohormones. This study, performed in Arabidopsis thaliana, analysed the short-term effects of citral on the auxin content and mitotic cells, and the long-term effects of these alterations on root development and ethylene levels. The results of this study show that citral alters auxin content and cell division and has a strong long-term disorganising effect on cell ultra-structure in A. thaliana seedlings. Its effects on cell division, the thickening of the cell wall, the reduction in intercellular communication, and the absence of root hairs confirm that citral is a strong phytotoxic compound, which has persistent effects on root development.

  18. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.

    Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.

  19. Atmospheric Oxygen Inhibits Growth and Differentiation of Marrow-Derived Mouse Mesenchymal Stem Cells via a p53 Dependent Mechanism: Implications for Long-Term Culture Expansion

    PubMed Central

    Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.

    2013-01-01

    Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737

  20. Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L

    2014-09-01

    Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.

  1. Plasma soluble factor following two decades prolonged suppressive antiretroviral therapy in HIV-1-positive males: A cross-sectional study.

    PubMed

    Sperk, Maike; Zhang, Wang; Nowak, Piotr; Neogi, Ujjwal

    2018-02-01

    Acute human immunodeficiency virus (HIV) infection is associated with a marked induction of several pathways that are linked to inflammation and CD4 T-cell depletion. Many of these processes do not fully resolve on short-term combination antiretroviral therapy (cART) (<5 years), despite complete and durable suppression of viremia. The effects of long-term (>15 years) successful antiretroviral therapy (ART) and the linkage between levels of biomarkers remain unclear. Therefore, the present study aims to assess the host plasma proteome in a well-defined clinical material from HIV-1-positive male patients on successful long-term ART (>15 years) and compared them with age-matched healthy controls and treatment-naïve male patients with viremia in a cross-sectional manner.Plasma samples were obtained from 3 categories of age-matched HIV-1-positive male patients on long-term successfully (ART, n = 10) with a median (Interquartile range, IQR) of 19 (17-20) years, treatment-naïve patients with viremia (VP, n = 14), and HIV-1-negative persons (HC, n = 11). Plasma proteome was analyzed using the proximity extension assay targeting 92 factors. Statistical analyses were performed with GraphPad Prism v7, R-packages, and Qlucore Omics Explorer v3.2. Functional enrichment analysis was performed by Kyoto Encyclopedia of Genes and Genomes (KEGG), and interactions of specific molecules were identified using Path Designer integrated into Ingenuity Pathway Analysis (IPA).Group wise comparison identified 53 soluble factors, which differed between the groups (P < .05). Cluster analysis identified 13 discrete soluble factors (CD8A, CRTAM, CXCL13, EGF, CD5, CD40, CXCL9, Gal-1, IL12RB1, KLRD1, PD-1, CASP-8 and TNFRSF9) between the studied groups (adjusted P < .001). The long-term successfully ART-treated individuals clustered and networked with the HC while VPs clustered separately. All of the proinflammatory cytokines and chemokines were normalized back to levels of healthy controls in long-term successfully ART-treated individuals, but not the levels of KLRD1 and PGDFB.sKLRD1 that is involved in the regulation of natural killer cell (NK) mediated cytotoxicity, failed to be restored to the level of HIV-negative individuals despite successful long-term ART. Additional analysis of NK cells along with T-cell subsets can provide insights into the long-term effects of ART on the immune system.

  2. The Long-Term Performance of SONY Small Batteries without Cell-Balancing

    NASA Technical Reports Server (NTRS)

    Pearson, Chris; Thwaite, Carl; Curzon, David; Rao, Gopalakrishna

    2004-01-01

    This viewgraph presentation describes the investigation of individual cell voltage dispersion under LEO and GEO cycling profiles. The contents cover: 1) Background; 2) Test Outline; 3) Single String Test Battery; 4) Goddard Space Flight Center (GSFC) 5Ah Battery; 5) Impedance; 6) Conclusions.

  3. Non-viable antagonist cells are associated with reduced biocontrol performance by viable cells of the yeast Papiliotrema flavescens against Fusarium head blight of wheat.

    USDA-ARS?s Scientific Manuscript database

    Microbially-based plant disease control products have achieved commercial market success, but the efficacy of such biocontrol products is sometimes deemed inconsistent. Improper processing of harvested microbial biomass or long-term storage can reduce the proportion of viable cells and necessitate t...

  4. Fetal programming in meat production.

    PubMed

    Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun

    2015-11-01

    Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.

    PubMed

    Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C

    2015-04-01

    The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. © 2015 Wiley Periodicals, Inc.

  6. Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term.

    PubMed

    Whoolery, Cody W; Walker, Angela K; Richardson, Devon R; Lucero, Melanie J; Reynolds, Ryan P; Beddow, David H; Clark, K Lyles; Shih, Hung-Ying; LeBlanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Ahn, Francisca; Bulin, Sarah E; DeCarolis, Nathan A; Rivera, Phillip D; Chen, Benjamin P C; Yun, Sanghee; Eisch, Amelia J

    2017-11-01

    Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. 56 Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as 28 Si, influences hippocampal neurogenesis and function. To compare the influence of 28 Si exposure on indices of neurogenesis and hippocampal function with previous studies on 56 Fe exposure, 9-week-old C57BL/6J and Nestin-GFP mice (NGFP; made and maintained for 10 or more generations on a C57BL/6J background) received whole-body 28 Si-particle-radiation exposure (0, 0.2 and 1 Gy, 300 MeV/n, LET 67 KeV/μ, dose rate 1 Gy/min). For neurogenesis assessment, the NGFP mice were injected with the mitotic marker BrdU at 22 h postirradiation and brains were examined for indices of hippocampal proliferation and neurogenesis, including Ki67 + , BrdU + , BrdU + NeuN + and DCX + cell numbers at short- and long-term time points (24 h and 3 months postirradiation, respectively). In the short-term group, stereology revealed fewer Ki67 + , BrdU + and DCX + cells in 1-Gy-irradiated group relative to nonirradiated control mice, fewer Ki67 + and DCX + cells in 0.2 Gy group relative to control group and fewer BrdU + and DCX + cells in 1 Gy group relative to 0.2 Gy group. In contrast to the clearly observed radiation-induced, dose-dependent reductions in the short-term group across all markers, only a few neurogenesis indices were changed in the long-term irradiated groups. Notably, there were fewer surviving BrdU + cells in the 1 Gy group relative to 0- and 0.2-Gy-irradiated mice in the long-term group. When the short- and long-term groups were analyzed by sex, exposure to radiation had a similar effect on neurogenesis indices in male and female mice, although only male mice showed fewer surviving BrdU + cells in the long-term group. Fluorescent immunolabeling and confocal phenotypic analysis revealed that most surviving BrdU + cells in the long-term group expressed the neuronal marker NeuN, definitively confirming that exposure to 1 Gy 28 Si radiation decreased the number of surviving adult-generated neurons in male mice relative to both 0- and 0.2-Gy-irradiated mice. For hippocampal function assessment, 9-week-old male C57BL/6J mice received whole-body 28 Si-particle exposure and were then assessed long-term for performance on contextual and cued fear conditioning. In the context test the animals that received 0.2 Gy froze less relative to control animals, suggesting decreased hippocampal-dependent function. However, in the cued fear conditioning test, animals that received 1 Gy froze more during the pretone portion of the test, relative to controls and 0.2-Gy-irradiated mice, suggesting enhanced anxiety. Compared to previously reported studies, these data suggest that 28 Si-radiation exposure damages neurogenesis, but to a lesser extent than 56 Fe radiation and that low-dose 28 Si exposure induces abnormalities in hippocampal function, disrupting fear memory but also inducing anxiety-like behavior. Furthermore, exposure to 28 Si radiation decreased new neuron survival in long-term male groups but not females suggests that sex may be an important factor when performing brain health risk assessment for astronauts traveling in space.

  7. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle

    PubMed Central

    Xu, Zijian; Wang, Wenjie; Jiang, Kaiju; Yu, Zhou; Huang, Huanwei; Wang, Fengchao; Zhou, Bin; Chen, Ting

    2015-01-01

    Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation. DOI: http://dx.doi.org/10.7554/eLife.10567.001 PMID:26653852

  8. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects

    PubMed Central

    Koutroumpi, Matina; Dimopoulos, Stavros; Psarra, Katherini; Kyprianou, Theodoros; Nanas, Serafim

    2012-01-01

    Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. PMID:23272272

  9. Influence of long-term equine herpesvirus type 1 (EHV-1) infection on primary murine neurons-the possible effects of the multiple passages of EHV-1 on its neurovirulence.

    PubMed

    Cymerys, Joanna; Słońska, A; Tucholska, A; Golke, A; Chmielewska, A; Bańbura, M W

    2018-01-01

    Equine herpesvirus 1 (EHV-1), like other members of the Alphaherpesvirinae subfamily, is a neurotropic virus causing latent infections in the nervous system of the natural host. In the present study, we have investigated EHV-1 replication (wild-type Jan-E strain and Rac-H laboratory strain) during long-term infection and during the passages of the virus in cultured neurons. The studies were performed on primary murine neurons, which are an excellent in vitro model for studying neurotropism and neurovirulence of EHV-1. Using real-time cell growth analysis, we have demonstrated for the first time that primary murine neurons are able to survive long-term EHV-1 infection. Positive results of real-time PCR test indicated a high level of virus DNA in cultured neurons, and during long-term infection, these neurons were still able to transmit the virus to the other cells. We also compared the neurovirulence of Rac-H and Jan-E EHV-1 strains after multiple passages of these strains in neuron cell culture. The results showed that multiple passages of EHV-1 in neurons lead to the inhibition of viral replication as early as in the third passage. Interestingly, the inhibition of the EHV-1 replication occurred exclusively in neurons, because the equine dermal (ED) cells co-cultivated with neuroculture medium from the third passage showed the presence of large amount of viral DNA. In conclusion, our results showed that certain balance between EHV-1 and neurons has been established during in vitro infection allowing neurons to survive long-term infection.

  10. Regulation of tumor progression via the Snail-RKIP signaling pathway by nicotine exposure in head and neck squamous cell carcinoma.

    PubMed

    Nieh, Shin; Jao, Shu-Wen; Yang, Chin-Yuh; Lin, Yaoh-Shiang; Tseng, Yi-Han; Liu, Chia-Lin; Lee, Tsai-Yu; Liu, Tsung-Yun; Chu, Yueng-Hsiang; Chen, Su-Feng

    2015-12-01

    Recent studies suggest that long-term exposure of the carcinogen 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) found in tobacco smoke is involved in the progression of head and neck squamous cell carcinoma (HNSCC). The underlying nicotine-mediated mechanism remains unclear. An analysis of SCC-25 and Fadu cells with or without NNK exposure focusing on the evaluation of migration and invasion abilities, the expression of epithelial-mesenchymal transition, drug-resistance-related genes, properties of cancer stem cells (CSCs), and anti-apoptosis was performed. Long-term NNK exposure enhances migration and invasion with morphological alterations in a dose-dependently manner. Furthermore, NNK exposure also upregulates Snail, promotes sphere-forming ability, and overexpresses aldehyde dehydrogenase 1 (ALDH1), Nanog, OCT4, ABCG2, and MDR1. The current study confirmed that long-term NNK exposure plays a role in HNSCC by increasing anti-apoptosis and therapeutic resistance via the Snail-RKIP signaling pathway. Our data also suggest that α7 nicotinic acetylcholine receptor (α7-nAChR) inhibition or targeting Snail may provide a feasible rationale for preventing the progression of HNSCC. © 2015 Wiley Periodicals, Inc.

  11. A hollow sphere soft lithography approach for long-term hanging drop methods.

    PubMed

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali

    2010-04-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.

  12. A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods

    PubMed Central

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J.; Bae, Hojae

    2010-01-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 μL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10–15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 μL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine. PMID:19505251

  13. α6β1- and αV-integrins are required for long-term self-renewal of murine embryonic stem cells in the absence of LIF.

    PubMed

    Cattavarayane, Sandhanakrishnan; Palovuori, Riitta; Tanjore Ramanathan, Jayendrakishore; Manninen, Aki

    2015-02-27

    The growth properties and self-renewal capacity of embryonic stem (ES) cells are regulated by their immediate microenvironment such as the extracellular matrix (ECM). Integrins, a central family of cellular ECM receptors, have been implicated in these processes but their specific role in ES cell self-renewal remains unclear. Here we have studied the effects of different ECM substrates and integrins in mouse ES cells in the absence of Leukemia Inhibitory Factor (LIF) using short-term assays as well as long-term cultures. Removal of LIF from ES cell culture medium induced morphological differentiation of ES cells into polarized epistem cell-like cells. These cells maintained epithelial morphology and expression of key stemness markers for at least 10 passages in the absence of LIF when cultured on laminin, fibronectin or collagen IV substrates. The specific functional roles of α6-, αV- and β1-integrin subunits were dissected using stable lentivirus-mediated RNAi methodology. β1-integrins were required for ES cell survival in long-term cultures and for the maintenance of stem cell marker expression. Inhibition of α6-integrin expression compromised self-renewal on collagen while αV-integrins were required for robust ES cell adhesion on laminin. Analysis of the stemness marker expression revealed subtle differences between α6- and αV-depleted ES cells but the expression of both was required for optimal self-renewal in long-term ES cell cultures. In the absence of LIF, long-term ES cell cultures adapt an epistem cell-like epithelial phenotype and retain the expression of multiple stem cell markers. Long-term maintenance of such self-renewing cultures depends on the expression of β1-, α6- and αV-integrins.

  14. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  15. The effects of Creatine Long-Term Supplementation on Muscle Morphology and Swimming Performance in Rats

    PubMed Central

    Yildiz, Ahmet; Ozdemir, Ercan; Gulturk, Sefa; Erdal, Sena

    2009-01-01

    Creatine (Cr) has been shown to increase the total muscle mass. The purpose of this study was to investigate the effect of Cr supplementation on muscle morphology and swimming performance, using an animal model. Each rat was subjected to exercise 15-minute period daily for the 12 weeks. The rats were randomly divided into four groups: no Cr supplementation (CON), no Cr supplementation and incomplete food intake (lacking lysine and methionine in diet for rats) (INCO), Cr supplementation 1 g·kg-1·day-1 (CREAT-I) and Cr supplementation 2 g·kg-1·day-1 (CREAT-II). Three months later, all groups adult rats exercised in swimming pool chambers. Swimming time was recorded as minute for each rat. Following swimming performance period, the animals were killed by cervical dislocation and the gastrocnemius and diaphragm muscles were dissected. Serial slices of 5-7 μm were allocated paraffin wax and histochemical staining procedure of cross-sections was carried out with heamatoxylin-eosin technics. All groups gained body weight at the end of 12 weeks but there was no statistical difference among them. Swimming time values were statistical difference between CREAT-II and CON group as well as between CREAT-I and CON group (p < 0.05). In the INCO group was determined increased connective tissue cell of the muscle sample. In contrast, in the CREAT-I and CREAT-II group, the basic histological changes were large-scale muscle fibers and hypertrophic muscle cells. These results suggest that long-term creatine supplementation increased the number of muscle fibers and enhanced endurance swimming performance in rats. Key points There is no study about the effects of creatine long-term supplementation on muscle morphology and swimming performance in rats. Long-term creatine supplementation increase muscle hypertrophy (but not body weight) and enhance endurance swimming performance in rats. The quantitative analysis indicated that the number of muscle fibers per defined area increased in creatine supplementation groups. PMID:24149591

  16. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.

  17. Long-Term Dynamics of Autonomous Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  18. Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry

    PubMed Central

    Pessoa de Magalhães, Roberto J.; Vidriales, María-Belén; Paiva, Bruno; Fernandez-Gimenez, Carlos; García-Sanz, Ramón; Mateos, Maria-Victoria; Gutierrez, Norma C.; Lecrevisse, Quentin; Blanco, Juan F; Hernández, Jose; de las Heras, Natalia; Martinez-Lopez, Joaquin; Roig, Monica; Costa, Elaine Sobral; Ocio, Enrique M.; Perez-Andres, Martin; Maiolino, Angelo; Nucci, Marcio; De La Rubia, Javier; Lahuerta, Juan-Jose; San-Miguel, Jesús F.; Orfao, Alberto

    2013-01-01

    Multiple myeloma remains largely incurable. However, a few patients experience more than 10 years of relapse-free survival and can be considered as operationally cured. Interestingly, long-term disease control in multiple myeloma is not restricted to patients with a complete response, since some patients revert to having a profile of monoclonal gammopathy of undetermined significance. We compared the distribution of multiple compartments of lymphocytes and dendritic cells in the bone marrow and peripheral blood of multiple myeloma patients with long-term disease control (n=28), patients with newly diagnosed monoclonal gammopathy of undetermined significance (n=23), patients with symptomatic multiple myeloma (n=23), and age-matched healthy adults (n=10). Similarly to the patients with monoclonal gammopathy of undetermined significance and symptomatic multiple myeloma, patients with long-term disease control showed an expansion of cytotoxic CD8+ T cells and natural killer cells. However, the numbers of bone marrow T-regulatory cells were lower in patients with long-term disease control than in those with symptomatic multiple myeloma. It is noteworthy that B cells were depleted in patients with monoclonal gammopathy of undetermined significance and in those with symptomatic multiple myeloma, but recovered in both the bone marrow and peripheral blood of patients with long-term disease control, due to an increase in normal bone marrow B-cell precursors and plasma cells, as well as pre-germinal center peripheral blood B cells. The number of bone marrow dendritic cells and tissue macrophages differed significantly between patients with long-term disease control and those with symptomatic multiple myeloma, with a trend to cell count recovering in the former group of patients towards levels similar to those found in healthy adults. In summary, our results indicate that multiple myeloma patients with long-term disease control have a constellation of unique immune changes favoring both immune cytotoxicity and recovery of B-cell production and homing, suggesting improved immune surveillance. PMID:22773604

  19. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  20. A probabilistic approach to photovoltaic generator performance prediction

    NASA Astrophysics Data System (ADS)

    Khallat, M. A.; Rahman, S.

    1986-09-01

    A method for predicting the performance of a photovoltaic (PV) generator based on long term climatological data and expected cell performance is described. The equations for cell model formulation are provided. Use of the statistical model for characterizing the insolation level is discussed. The insolation data is fitted to appropriate probability distribution functions (Weibull, beta, normal). The probability distribution functions are utilized to evaluate the capacity factors of PV panels or arrays. An example is presented revealing the applicability of the procedure.

  1. In Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging.

    PubMed

    Zhang, Fang; Duan, Xiaohui; Lu, Liejing; Zhang, Xiang; Chen, Meiwei; Mao, Jiaji; Cao, Minghui; Shen, Jun

    2017-10-01

    Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.

  2. Graphene Oxide Sponge as Nanofillers in Printable Electrolytes in High-Performance Quasi-Solid-State Dye-Sensitized Solar Cells.

    PubMed

    Venkatesan, Shanmuganathan; Surya Darlim, Elmer; Tsai, Ming-Hsiang; Teng, Hsisheng; Lee, Yuh-Lang

    2018-04-04

    A graphene oxide sponge (GOS) is utilized for the first time as a nanofiller (NF) in printable electrolytes (PEs) based on poly(ethylene oxide) and poly(vinylidene fluoride) for quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The effects of the various concentrations of GOS NFs on the ion diffusivity and conductivity of electrolytes and the performance of the QS-DSSCs are studied. The results show that the presence of GOS NFs significantly increases the diffusivity and conductivity of the PEs. The introduction of 1.5 wt % of GOS NFs decreases the charge-transfer resistance at the Pt-counter electrode/electrolyte interface ( R pt ) and increases the recombination resistance at the photoelectrode/electrolyte interface ( R ct ). QS-DSSC utilizing 1.5 wt % GOS NFs can achieve an energy conversion efficiency (8.78%) higher than that found for their liquid counterpart and other reported polymer gel electrolytes/GO NFs based DSSCs. The high energy conversion efficiency is a consequence of the increase in both the open-circuit potential ( V oc ) and fill factor with a slight decrease in current density ( J sc ). The cell efficiency can retain 86% of its initial value after a 500 h stability test at 60 °C under dark conditions. The long-term stability of the QS-DSSC with GOS NFs is higher than that without NFs. This result indicates that the GOS NFs do not cause dye-desorption from the photoanode in a long-term stability test, which infers a superior performance of GOS NFs as compared to TiO 2 NFs in terms of increasing the efficiency and long-term stability of QS-DSSCs.

  3. A long-term stable power supply μDMFC stack for wireless sensor node applications

    NASA Astrophysics Data System (ADS)

    Wu, Z. L.; Wang, X. H.; Teng, F.; Li, X. Z.; Wu, X. M.; Liu, L. T.

    2013-12-01

    A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term & stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes.

  4. Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

    NASA Astrophysics Data System (ADS)

    Call, Ann Virginia

    Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured moRPhologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm 0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 O cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively low pO2. The cells were subjected to life testing at temperatures between 650°C and 800°C for as long as 1500 h. EIS measurements, carried out periodically during the life tests, were done in air at 600°C, a typical expected intermediate-temperature SOFC operating temperature. These were accelerated tests because the aging temperatures > 600ºC should accelerate most degradation processes such as nano-particle coarsening. Long-term RP versus time data was fitted to a combined surface resistance and coarsening kinetics model, and a t0.25 power law coarsening model was found to provide the best fits to the data, suggesting that surface diffusion is the dominant mass transport pathway in SSC-GDC infiltrated cathodes. That is, cathode degradation was due primarily to the coarsening-induced decrease in active SSC surface area. Scanning electron microscopy (SEM) performed after electrochemical life testing confirmed the extent of coarsening of the SSC nanoparticles. The model is used to make predictions regarding long-term stability of infiltrated SSC electrodes, and is also compared with prior results on a similar perovskite MIEC electrode, LSCF. An important new finding is that increasing infiltration loadings yields a marked decrease in the long term degradation rate. Predictions based on accelerated life tests found the lowest possible operating temperature while achieving a degradation rate of 0.5% per kh is 595°C, corresponding to an initial particle size of 40 nm.

  5. Long-term prehypertension treatment with losartan effectively prevents brain damage and stroke in stroke-prone spontaneously hypertensive rats.

    PubMed

    He, De-Hua; Zhang, Liang-Min; Lin, Li-Ming; Ning, Ruo-Bing; Wang, Hua-Jun; Xu, Chang-Sheng; Lin, Jin-Xiu

    2014-02-01

    Prehypertension has been associated with adverse cerebrovascular events and brain damage. The aims of this study were to investigate ⅰ) whether short‑ and long-term treatments with losartan or amlodipine for prehypertension were able to prevent blood pressure (BP)-linked brain damage, and ⅱ) whether there is a difference in the effectiveness of treatment with losartan and amlodipine in protecting BP-linked brain damage. In the present study, prehypertensive treatment with losartan and amlodipine (6 and 16 weeks treatment with each drug) was performed on 4-week‑old stroke-prone spontaneously hypertensive rats (SHRSP). The results showed that long-term (16 weeks) treatment with losartan is the most effective in lowering systolic blood pressure in the long term (up to 40 weeks follow-up). Additionally, compared with the amlodipine treatment groups, the short‑ and long-term losartan treatments protected SHRSP from stroke and improved their brains structurally and functionally more effectively, with the long-term treatment having more benefits. Mechanistically, the short‑ and long-term treatments with losartan reduced the activity of the local renin-angiotensin-aldosterone system (RAAS) in a time-dependent manner and more effectively than their respective counterpart amlodipine treatment group mainly by decreasing AT1R levels and increasing AT2R levels in the cerebral cortex. By contrast, the amlodipine treatment groups inhibited brain cell apoptosis more effectively as compared with the losartan treatment groups mainly through the suppression of local oxidative stress. Taken together, the results suggest that long-term losartan treatment for prehypertension effectively protects SHRSP from stroke-induced brain damage, and this protection is associated with reduced local RAAS activity than with brain cell apoptosis. Thus, the AT1R receptor blocker losartan is a good candidate drug that may be used in the clinic for long-term treatment on prehypertensive populations in order to prevent BP-linked brain damage.

  6. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.

    PubMed

    Wojciechowski, Konrad; Leijtens, Tomas; Siprova, Svetlana; Schlueter, Christoph; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Li, Chang-Zhi; Jen, Alex K-Y; Lee, Tien-Lin; Snaith, Henry J

    2015-06-18

    Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.

  7. Long-term corneal endothelial cell changes in pediatric intraocular lens reposition and exchange cases.

    PubMed

    Wang, Yan; Wu, Mingxing; Zhu, Liyuan; Liu, Yizhi

    2012-04-01

    To evaluate long-term corneal endothelial cell changes of intraocular lens (IOL) reposition and exchange in children. State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China In this retrospective study, all IOL reposition and exchange procedures performed in patients under 14 years old between January 1999 and April 2009 were included. Follow-up outcomes included corneal endothelial cell density, hexagonality, coefficient of variance, average cell size. IOL reposition procedures in 12 eyes (12 cases) (reposition group, RPG), and IOL exchanges in eight eyes (eight cases) (exchange group, EXG) were performed because of IOL pupillary capture or IOL dislocation. Median of follow-up was 44.5 months in RPG and 66.2 months in EXG. The density of corneal endothelial cells in RPG (2,053 ± 493/mm(2)) and EXG (2,100 ± 758/mm(2)) was significantly decreased in comparison to the control eyes (3,116 ± 335/mm(2)). Hexagonality of corneal endothelial cells and coefficient of variance showed no difference among the control group, RPG and EXG (P > 0.05). The density of corneal endothelial cells was conspicuously decreased after IOL reposition or exchange procedures in childhood cases. Longer follow-up must be conducted in these cases.

  8. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.

    PubMed

    Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J

    2016-07-08

    In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.

  9. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells.

    PubMed

    Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui

    2017-08-01

    Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti-oxidant capacity. These findings provide a theoretical basis to further the anti-aging mechanism of EPO in the nervous system, and they provide experimental evidence at the cellular level for the clinical application of EPO to protect the nervous system from aging.

  10. Develop and test fuel cell powered on-site integrated total energy systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1984-01-01

    On-going testing of an 11 cell, 10.7 in. x 14 in. stack (about 1 kW) reached 2600 hours on steady load. Nonmetallic cooling plates and an automated electrolyte replenishment system continued to perform well. A 10 cell, 10.7 in. x 14 in. stack was constructed with a modified electrolyte matrix configuration for the purpose of reducing cell IR loss. The desired effect was achieved, but the general cell performance level was irregular. Evaluation is continuing. Preparations for a long term 25 cell, 13 in. x 23 in. test stack (about 4 kW) approached completion. Start up in early May 1984 is expected.

  11. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    PubMed

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live cell imaging systems are provided.

  12. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory.

    PubMed

    Lana, D; Di Russo, J; Mello, T; Wenk, G L; Giovannini, M G

    2017-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object-place learning and recall. Furthermore, our results are in accordance with previous reports that selective molecular mechanisms underlie either short term memory, long term memory, or both. Furthermore, our discovery that administration of rapamycin increased the activation of mTORC2 in microglial cells supports a reappraisal of the beneficial/adverse effects of rapamycin administration. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory

    PubMed Central

    Lana, D.; Di Russo, J.; Mello, T.; Wenk, G.L.; Giovannini, M.G.

    2016-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30 min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object–place learning and recall. Furthermore, our results are in accordance with previous reports that selective molecular mechanisms underlie either short term memory, long term memory, or both. Furthermore, our discovery that administration of rapamycin increased the activation of mTORC2 in microglial cells supports a reappraisal of the beneficial/adverse effects of rapamycin administration. PMID:27838442

  14. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.

    PubMed

    Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu

    2015-11-07

    Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.

  15. Tolerogenic effect of mesenchymal stromal cells on gliadin-specific T lymphocytes in celiac disease.

    PubMed

    Ciccocioppo, Rachele; Camarca, Alessandra; Cangemi, Giuseppina Cristina; Radano, Giorgia; Vitale, Serena; Betti, Elena; Ferrari, Davide; Visai, Livia; Strada, Elena; Badulli, Carla; Locatelli, Franco; Klersy, Catherine; Gianfrani, Carmen; Corazza, Gino Roberto

    2014-08-01

    Celiac disease is caused by a dysregulated immune response toward dietary gluten, whose only treatment is a lifelong gluten-free diet. We investigated the effects of mesenchymal stromal cells (MSCs) on gliadin-specific T cells, which are known to induce intestinal lesions, in view of a possible use as new therapy. Bone marrow-derived MSCs and gliadin-specific T-cell lines were obtained from allogeneic donors and mucosal specimens of celiac patients, respectively. The immunosuppressant effect of MSCs was evaluated in terms of proliferative response and interferon (IFN)-γ production upon gliadin stimulation of long-term T-cell lines; the immunomodulant effect was assessed in terms of apoptotic rate, immunophenotype and cytokine profile of short-term T-cell lines generated in the presence of MSCs. Different MSC:T-cell ratios were applied, and statistics were performed as appropriate. MSCs inhibited both proliferative response and IFN-γ production of long-term T-cell lines in a dose-dependent manner while limiting the expansion of short-term T-cell lines by increasing the apoptotic rate. Moreover, a reduction of the CD4(+) population and expansion of the regulatory FoxP3+ subset were found in T-cell lines cultured with MSCs, in which a significant decrease of interleukin (IL)-21, IFN-γ and IL-10 paralleled by an upregulation of transforming growth factor-β1, IL-6 and IL-8 were observed. Finally, an increase of the indoleamine 2,3-dioxygenase activity was found, possibly playing a key role in mediating these effects. MSCs exert potent immunomodulant effects on gliadin-specific T cells, which may be exploited for future therapeutic application in celiac disease. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Applications of Traction Force Microscopy in Measuring Adhesion Molecule Dependent Cell Contractility

    ERIC Educational Resources Information Center

    Mann, Cynthia Marie

    2009-01-01

    This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study…

  17. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy

    PubMed Central

    Powell, Daniel J.; Dudley, Mark E.; Robbins, Paul F.; Rosenberg, Steven A.

    2007-01-01

    In humans, the pathways of memory T-cell differentiation remain poorly defined. Recently, adoptive cell transfer (ACT) of tumor-reactive T lymphocytes to metastatic melanoma patients after nonmyeloablative chemotherapy has resulted in persistence of functional, tumor-reactive lymphocytes, regression of disease, and induction of melanocyte-directed autoimmunity in some responding patients. In the current study, longitudinal phenotypic analysis was performed on melanoma antigen–specific CD8+ T cells during their transition from in vitro cultured effector cells to long-term persistent memory cells following ACT to 6 responding patients. Tumor-reactive T cells used for therapy were generally late-stage effector cells with a CD27Lo CD28Lo CD45RA− CD62 ligand− (CD62L−) CC chemokine receptor 7− (CCR7−) interleukin-7 receptor αLo (IL-7RαLo) phenotype. After transfer, rapid up-regulation and continued expression of IL-7Rα in vivo suggested an important role for IL-7R in immediate and long-term T-cell survival. Although the tumor antigen–specific T-cell population contracted between 1 and 4 weeks after transfer, stable numbers of CD27+ CD28+ tumor-reactive T cells were maintained, demonstrating their contribution to the development of long-term, melanoma-reactive memory CD8+ T cells in vivo. At 2 months after transfer, melanoma-reactive T cells persisted at high levels and displayed an effector memory phenotype, including a CD27+ CD28+ CD62L− CCR7− profile, which may explain in part their ability to mediate tumor destruction. PMID:15345595

  18. KIR and HLA-C Interactions Promote Differential Dendritic Cell Maturation and Is a Major Determinant of Graft Failure following Kidney Transplantation

    PubMed Central

    Hanvesakul, Raj; Kubal, Chandrashekhar; Moore, Jason; Neil, Desley; Cook, Mark; Ball, Simon; Briggs, David; Moss, Paul; Cockwell, Paul

    2011-01-01

    Background HLA-C is an important ligand for killer immunoglobulin like receptors (KIR) that regulate natural killer (NK) cell function. Based on KIR specificity HLA-C molecules are allocated into two groups, HLA-C1 or HLA-C2; HLA-C2 is more inhibiting to NK cell function than HLA-C1. We studied the clinical importance of HLA-C genotypes on the long-term graft survival of 760 kidney transplants performed at our centre utilising a population based genetic study and cell culture model to define putative mechanisms. Methods and Findings Genotyping was performed using conventional DNA PCR techniques and correlations made to clinical outcomes. We found that transplant recipients with HLA-C2 had significantly better long-term graft survival than transplant recipients with HLA-C1 (66% versus 44% at 10 years, log-rank p = 0.002, HR = 1.51, 95%CI = 1.16–1.97). In in-vitro NK and dendritic cell (DC) co-culture model we made several key observations that correlated with the population based genetic study. We observed that donor derived NK cells, on activation with IL-15, promoted differential HLA-C genotype dependent DC maturation. In NK-DC co-culture, the possession of HLA-C2 by DC was associated with anti-inflammatory cytokine production (IL-1RA/IL-6), diminished DC maturation (CD86, HLA-DR), and absent CCR7 expression. Conversely, possession of HLA-C1 by DC was associated with pro-inflammatory cytokine synthesis (TNF-α, IL-12p40/p70), enhanced DC maturation and up-regulation of CCR7 expression. By immunohistochemistry the presence of donor NK cells was confirmed in pre-transplant kidneys. Conclusions We propose that after kidney transplantation IL-15 activated donor derived NK cells interact with recipient DC with less activation of indirect allo-reactivity in HLA-C2 positive recipients than HLA-C1 positive recipients; this has implications for long-term graft survival. Early events following kidney transplantation involving NK-DC interaction via KIR and HLA-C immune synapse may have a central role in long-term kidney transplant outcomes. PMID:21912600

  19. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com; Zebrowski, Jacek; Oklejewicz, Bernadetta

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic andmore » physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.« less

  20. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    DOE PAGES

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...

    2017-11-28

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  1. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    NASA Astrophysics Data System (ADS)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.

    2018-01-01

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.

  2. Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination.

    PubMed

    Takeda, Kazuyoshi; Kitaura, Kazutaka; Suzuki, Ryuji; Owada, Yuki; Muto, Satoshi; Okabe, Naoyuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Tsunoda, Takuya; Okumura, Ko; Suzuki, Hiroyuki

    2018-06-01

    Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca 2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.

  3. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development.

    PubMed

    Bruining, Hilgo; Matsui, Asuka; Oguro-Ando, Asami; Kahn, René S; Van't Spijker, Heleen M; Akkermans, Guus; Stiedl, Oliver; van Engeland, Herman; Koopmans, Bastijn; van Lith, Hein A; Oppelaar, Hugo; Tieland, Liselotte; Nonkes, Lourens J; Yagi, Takeshi; Kaneko, Ryosuke; Burbach, J Peter H; Yamamoto, Nobuhiko; Kas, Martien J

    2015-10-01

    Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Association between thymic function and allogeneic hematopoietic stem cell transplantation outcome: results of a pediatric study.

    PubMed

    Saglio, Francesco; Cena, Silvia; Berger, Massimo; Quarello, Paola; Boccasavia, Viola; Ferrando, Federica; Pittana, Laura; Bruno, Benedetto; Fagioli, Franca

    2015-06-01

    Robust T cell function recovery has been shown to be crucial in determining allogeneic hematopoietic stem cell transplantation (HSCT) outcome, and there is growing evidence that the thymus plays a central role in regulating this process. We performed a long-term analysis of the role of thymic activity recovery in a population of pediatric patients undergoing allogeneic HSCT by signal joint T cell receptor excision circle (sjTREC) quantification. In this study, characterized by a long-term follow-up (median, 72 months), we found patients with higher levels of sjTRECs before transplantation had a statistically significant reduced risk of death compared with patients with lower values (relative risk, .31; 95% confidence interval, .30 to .32; P = .02), showing this different outcome was mainly related to a reduction of relapse incidence (14% versus 43%, P = .02). Unlike previous reports, we observed no correlation between sjTREC levels and lymphocyte recovery. Moreover, we confirmed that only graft-versus-host disease influenced thymic activity after transplantation. In conclusion, our results suggest an association between pretransplantation thymic activity and the long-term outcome of pediatric patients undergoing HSCT, mainly through a reduction of relapse opportunities. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    PubMed

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Micro patterned surfaces allow long-term digital holographic microscopy live cell imaging

    NASA Astrophysics Data System (ADS)

    Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen

    2017-07-01

    During long-term imaging, cells move out of the field of view. We have generated functionalized substrates containing rectangular areas, which were capable in keeping cells over the whole observation period.

  7. Ageing and long-term CD4 cell count trends in HIV-positive patients with 5 years or more combination antiretroviral therapy experience.

    PubMed

    Wright, S T; Petoumenos, K; Boyd, M; Carr, A; Downing, S; O'Connor, C C; Grotowski, M; Law, M G

    2013-04-01

    The aim of this study was to describe the long-term changes in CD4 cell counts beyond 5 years of combination antiretroviral therapy (cART). If natural ageing leads to a long-term decline in the immune system via low-grade chronic immune activation/inflammation, then one might expect to see a greater or earlier decline in CD4 counts in older HIV-positive patients with increasing duration of cART. Retrospective and prospective data were examined from long-term virologically stable HIV-positive adults from the Australian HIV Observational Database. We estimated mean CD4 cell count changes following the completion of 5 years of cART using linear mixed models. A total of 37 916 CD4 measurements were observed for 892 patients over a combined total of 9753 patient-years. Older patients (> 50 years old) at cART initiation had estimated mean (95% confidence interval) changes in CD4 counts by year-5 CD4 count strata (< 500, 500-750 and > 750 cells/μL) of 14 (7 to 21), 3 (-5 to 11) and -6 (-17 to 4) cells/μL/year. Of the CD4 cell count rates of change estimated, none were indicative of long-term declines in CD4 cell counts. Our results suggest that duration of cART and increasing age do not result in decreasing mean changes in CD4 cell counts for long-term virologically suppressed patients, indicating that the level of immune recovery achieved during the first 5 years of treatment is sustained through long-term cART. © 2012 British HIV Association.

  8. Ageing & long-term CD4 cell count trends in HIV-positive patients with 5 years or more combination antiretroviral therapy experience

    PubMed Central

    WRIGHT, ST; PETOUMENOS, K; BOYD, M; CARR, A; DOWNING, S; O’CONNOR, CC; GROTOWSKI, M; LAW, MG

    2012-01-01

    Background The aim of this analysis is to describe the long-term changes in CD4 cell counts beyond 5 years of combination antiretroviral therapy (cART). If natural ageing leads to a long-term decline in the immune system via low-grade chronic immune activation/inflammation, then one might expect to see a greater or earlier decline in CD4 counts in older HIV-positive patients with increasing duration of cART. Methods Retrospective and prospective data were examined from long-term virologically stable HIV-positive adults from the Australian HIV Observational Database. We estimated mean CD4 cell counts changes following the completion of 5 years of cART using linear mixed models. Results A total of 37,916 CD4 measurements were observed for 892 patients over a combined total of 9,753 patient years. Older patients (>50 years) at cART initiation had estimated mean(95% confidence interval) change in CD4 counts by Year-5 CD4 count strata (<500, 501–750 and >750 cells/μL) of 14(7 to 21), 3(−5 to 11) and −6(−17 to 4) cells/μL/year. Of the CD4 cell count rates of change estimated, none were indicative of long-term declines in CD4 cell counts. Conclusions Our results suggest that duration of cART and increasing age does not result in decreasing mean changes in CD4 cell counts for long-term virologically suppressed patients. Indicating that level of immune recovery achieved during the first 5 years of treatment are sustained through long-term cART. PMID:23036045

  9. Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential.

    PubMed

    McNiece, Ian K; Almeida-Porada, Graça; Shpall, Elizabeth J; Zanjani, Esmail

    2002-06-01

    Cord blood (CB) products are becoming routinely used in unrelated allogeneic transplantation for smaller pediatric patients. Because of the low numbers of cells in CB compared to bone marrow or peripheral blood progenitor cells, their use is more limited in larger adults. Therefore, we developed ex vivo expansion conditions for CB and currently are transplanting ex vivo expanded CB products to patients receiving high-dose chemotherapy. As there is concern that ex vivo expansion may exhaust long-term engrafting cells, the current clinical protocols consist of both an expanded fraction and an unexpanded fraction. To determine the effect of expansion culture on long-term engrafting cells, we evaluated the short- and long-term engrafting potential of ex vivo expanded CB using a fetal sheep xenogeneic transplant model. CD 34(+) cells were selected from CB products and cultured in a two-step procedure in the presence of stem cell factor, megakaryocyte growth and differentiation factor, and granulocyte colony-stimulating factor for 14 days. Starting cells (CD34(+) cells), and cultured cells (day 7 and day 14 cells) were transplanted in 60-day-old fetal sheep and evaluated at various time points post transplant for the presence of human cells. Long-term engrafting cells were assessed by serial passage into secondary and tertiary recipients. Day 14 expanded CB cells provided more rapid engraftment than either the day 7 expanded cells or the day 0 cells; however, this engraftment was transient, and no human cells were detectable at 16 months post transplant in the animals that received the day 14 expanded cells. Day 0 cells had engrafted animals at 2 months post transplant and both the day 0 and day 7 cells persisted to 16 months or longer. In the secondary animals, the day 0 and day 7 cells engrafted equivalently at 3 months post transplant; however, no secondary engraftment resulted from the day 14 cells. The levels of engraftment in secondary animals receiving day 7 cells decreased with time to barely detectable levels at 12 months post transplant. Ex vivo expansion of CB CD34(+) cells under the conditions described results in the generation of increased mature cells and progenitors that are capable of more rapid engraftment in fetal sheep compared to unexpanded CB CD34(+) cells. The expanded cells engrafted primary sheep but lacked secondary and tertiary engrafting potential. These studies demonstrate that although ex vivo expanded cells may be able to provide rapid short-term engraftment, the long-term potential of expanded grafts may be compromised. Therefore, clinical protocols may require transplantation of two fractions of cells, an expanded CB graft to provide rapid short-term engraftment and an unmanipulated fraction of CB graft to provide stem cells for long-term engraftment.

  10. Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo

    PubMed Central

    Lei, Runhong; Zhao, Tuo; Li, Qiang; Wang, Xiao; Ma, Hong; Deng, Yulin

    2015-01-01

    Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3+CD4−CD8+ T-cells in the thymus and the proportion of CD3+CD4+CD8− T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation. PMID:26633364

  11. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham

    Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less

  12. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

    DOE PAGES

    Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham; ...

    2018-06-16

    Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less

  13. A New View of Radiation-Induced Cancer: Integrating Short-and Long-Term Processes. Part I: Approach

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Hahnfeldt, Philip; Hlatky, Lynn; Sachs, Rainer K.; Brenner, David J.

    2009-01-01

    Mathematical models of radiation carcinogenesis are important for understanding mechanisms and for interpreting or extrapolating risk. There are two classes of such models: (1) long-term formalisms that track premalignant cell numbers throughout an entire lifetime but treat initial radiation dose-response simplistically and (2) short-term formalisms that provide a detailed initial dose-response even for complicated radiation protocols, but address its modulation during the subsequent cancer latency period only indirectly. We argue that integrating short- and long-term models is needed. As an example of this novel approach, we integrate a stochastic short-term initiation/ inactivation/repopulation model with a deterministic two-stage long-term model. Within this new formalism, the following assumptions are implemented: radiation initiates, promotes, or kills pre-malignant cells; a pre-malignant cell generates a clone, which, if it survives, quickly reaches a size limitation; the clone subsequently grows more slowly and can eventually generate a malignant cell; the carcinogenic potential of pre-malignant cells decreases with age.

  14. Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater

    NASA Astrophysics Data System (ADS)

    Lu, Mengqian; Chen, Shing; Babanova, Sofia; Phadke, Sujal; Salvacion, Michael; Mirhosseini, Auvid; Chan, Shirley; Carpenter, Kayla; Cortese, Rachel; Bretschger, Orianna

    2017-07-01

    Microbial fuel cells (MFCs) have been shown as a promising technology for wastewater treatment. Integration of MFCs into current wastewater treatment plant have potential to reduce the operational cost and improve the treatment performance, and scaling up MFCs will be essential. However, only a few studies have reported successful scale up attempts. Fabrication cost, treatment performance and operational lifetime are critical factors to optimize before commercialization of MFCs. To test these factors, we constructed a 20 L MFC system containing two 10 L MFC reactors and operated the system with brewery wastewater for nearly one year. Several operational conditions were tested, including different flowrates, applied external resistors, and poised anodic potentials. The condition resulting in the highest chemical oxygen demand (COD) removal efficiency (94.6 ± 1.0%) was a flow rate of 1 mL min-1 (HRT = 313 h) and an applied resistor of 10 Ω across each MFC circuit. Results from each of the eight stages of operation (325 days total) indicate that MFCs can sustain treatment rates over a long-term period and are robust enough to sustain performance even after system perturbations. possible ways to improve MFC performance were discussed for future studies.

  15. Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage.

    PubMed

    Martin-Hidalgo, David; Hurtado de Llera, Ana; Yeste, Marc; Cruz Gil, M; Bragado, M Julia; Garcia-Marin, Luis J

    2013-09-01

    Boar semen preservation for later use in artificial insemination is performed by diluting semen in an appropriate medium and then lowering the temperature to decrease spermatozoa metabolism. The adenosine monophosphate-activated kinase, AMPK, is a key cell energy sensor that controls cell metabolism and recently has been identified in boar spermatozoa. Our aim was to investigate the role of AMPK in spermatozoa functional parameters including motility, mitochondrial membrane potential, plasma membrane integrity, acrosome integrity, and cell viability during long-term boar semen storage at 17 °C in Beltsville thawing solution. Boar seminal doses were diluted in Beltsville thawing solution in the presence or absence of different concentrations of AMPK inhibitor, compound C (1, 10, and 30 μM) and evaluations were performed at 1, 2, 4, 7, or 10 days. Data demonstrate that AMPK becomes phosphorylated at threonine(172) (active) during storage of boar semen reaching maximum levels at Day 7. Moreover, AMPK inhibition during boar semen storage causes: (1) a potent inhibition of spermatozoa motility; (2) a reduction in the percentage of spermatozoa showing high mitochondria membrane potential; (3) a rise in the percentage of spermatozoa displaying high plasma membrane scrambling; and (4) a loss of acrosomal membrane integrity. Our study suggests that AMPK activity plays an important role in the maintenance of the spermatozoa quality during long-term storage of boar semen. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  17. Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging

    PubMed Central

    Saalfrank, Dirk; Konduri, Anil Krishna; Latifi, Shahrzad; Habibey, Rouhollah; Golabchi, Asiyeh; Martiniuc, Aurel Vasile; Knoll, Alois; Ingebrandt, Sven; Blau, Axel

    2015-01-01

    Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes. PMID:26543581

  18. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  19. Development of a microfluidic perfusion 3D cell culture system

    NASA Astrophysics Data System (ADS)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  20. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    PubMed

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. © 2011 Zhang et al.

  1. Promoting Long-Term Survival of Insulin-Producing Cell Grafts That Differentiate from Adipose Tissue-Derived Stem Cells to Cure Type 1 Diabetes

    PubMed Central

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Background Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Methodology/Principal Findings Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Conclusions/Significance Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. PMID:22216347

  2. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    DOE PAGES

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; ...

    2016-05-30

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less

  3. Computer model to simulate ionizing radiation effects correlates with experimental data

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Exposure to radiation from high energy protons and particles with ionizing properties is a major challenge for long-term space missions. The specific effect of such radiation on hematopoietic cells is still not fully understood. A number of experiments have been conducted on ground and in space. Those experiments on one hand, measure the extent of damage on blood markers. On the other hand, they intend to quantify the correlation between dose and energy from the radiation particles, with their ability to impair the hematopoietic stem and progenitor function. We present a computer model based on a neural network that intends to assess the relationship between dose, energy and number of hits on a particular cell, to the damage incurred to the human marrow cells. Calibration of the network is performed with the existing experimental data available in bibliography. Different sources of ionizing radiation at different doses (0-90 cGy) and along different patterns of a long-term exposure scenarios are simulated. Results are shown for a continuous variation of doses and are compared with specific data available in the literature. Some predictions are inferred for long-term scenarios of spaceflight, and the risk of jeopardizing a mission due to a major disfunction of the bone marrow is calculated. The method has proved successful in reproducing specific experimental data. We also discuss the significance and validity of the predicted ionizing radiation effects in situations such as long-term missions for a continuous range of dose.

  4. Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats.

    PubMed

    Gao, Hai-Tao; Xu, Run; Cao, Wei-Xin; Qian, Liang-Liang; Wang, Min; Lu, Lingeng; Xu, Qian; Yu, Shu-Qin

    2017-03-01

    Human beings are inevitably exposed to ubiquitous phthalate esters (PEs) surroundings. The purposes of this study were to investigate the effects of long-term low-dose exposure to the mixture of six priority controlled phthalate esters (MIXPs): dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethyhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), on male rat reproductive system and further to explore the underlying mechanisms of the reproductive toxicity. The male rats were orally exposed to either sodium carboxymethyl cellulose as controls or MIXPs at three different low-doses by gavage for 15 weeks. Testosterone and luteinizing hormone (LH) in serum were analyzed, and pathological examinations were performed for toxicity evaluation. Steroidogenic proteins (StAR, P450scc, CYP17A1 and 17β-HSD), cell cycle and apoptosis-related proteins (p53, Chk1, Cdc2, CDK6, Bcl-2 and Bax) were measured for mechanisms exploration. MIXPs with long-term low-dose exposure could cause male reproductive toxicity to the rats, including the decrease of both serum and testicular testosterone, and the constructional damage of testis. These effects were related to down-regulated steroidogenic proteins, arresting cell cycle progression and promoting apoptosis in rat testicular cells. The results indicate that MIXPs with long-term low-dose exposure may pose male reproductive toxicity in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments.

    PubMed

    Abaci, Hasan E; Devendra, Raghavendra; Smith, Quinton; Gerecht, Sharon; Drazer, German

    2012-02-01

    The ability to control the oxygen level to which cells are exposed in tissue culture experiments is crucial for many applications. Here, we design, develop and test a microbioreactor (MBR) for long-term cell culture studies with the capability to accurately control and continuously monitor the dissolved oxygen (DO) level in the cell microenvironment. In addition, the DO level can be controlled independently from other cues, such as the viscous shear-stress acting on the cells. We first analyze the transport of oxygen in the proposed device and determine the materials and dimensions that are compatible with uniform oxygen tension and low shear-stress at the cell level. The device is also designed to culture a statistically significant number of cells. We use fully transparent materials and the overall design of the device is compatible with live-cell imaging. The proposed system includes real-time read-out of actual DO levels, is simple to fabricate at low cost, and can be easily expanded to control the concentration of other microenvironmental solutes. We performed control experiments in the absence of cells to demonstrate that the MBR can be used to accurately modulate DO levels ranging from atmospheric level to 1%, both under no flow and perfusion conditions. We also demonstrate cancer cell attachment and viability within the MBR. The proposed MBR offers the unprecedented capability to perform on-line measurement and analysis of DO levels in the microenvironment of adherent cultures and to correlate them with various cellular responses.

  6. Long-life high performance fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1985-01-01

    A multihundred kilowatt Regenerative Fuel Cell for use in a space station is envisioned. Three 0.508 sq ft (471.9 cm) active area multicell stacks were assembled and endurance tested. The long term performance stability of the platinum on carbon catalyst configuration suitability of the lightweight graphite electrolyte reservoir plate, the stability of the free standing butyl bonded potassium titanate matrix structure, and the long life potential of a hybrid polysulfone cell edge frame construction were demonstrated. A 18,000 hour demonstration test of multicell stack to a continuous cyclical load profile was conducted. A total of 12,000 cycles was completed, confirming the ability of the alkaline fuel cell to operate to a load profile simulating Regenerative Fuel Cell operation. An orbiter production hydrogen recirculation pump employed in support of the cyclical load profile test completed 13,000 hours of maintenance free operation. Laboratory endurance tests demonstrated the suitability of the butyl bonded potassium matrix, perforated nickel foil electrode substrates, and carbon ribbed substrate anode for use in the alkaline fuel cell. Corrosion testing of materials at 250 F (121.1 C) in 42% wgt. potassium identified ceria, zirconia, strontium titanate, strontium zirconate and lithium cobaltate as candidate matrix materials.

  7. Long term storage in liquid nitrogen leads to only minor phenotypic and gene expression changes in the mammary carcinoma model cell line BT474.

    PubMed

    Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef

    2017-05-23

    Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.

  8. Administration of recombinant human granulocyte-colony-stimulating factor does not induce long-lasting detectable epigenetic alterations in healthy donors.

    PubMed

    Leitner, Gerda C; Faschingbauer, Martin; Wenda, Sabine; Weigel, Günter; Fischer, Gottfried

    2014-12-01

    The short-term safety profile of recombinant human granulocyte-colony-stimulating factor (rHuG-CSF) in the allogeneic stem cell setting seems acceptable; only few data on long-term safety are available. To further study possible epigenetic alterations, we investigated prospectively the influence of rHuG-CSF on DNA methyltransferase (DNMT) activity and on changes in DNA methylation of candidate genes in peripheral blood cells of healthy unrelated stem cell donors within an observation period of 1 year. In this study, 20 stem cell donors (14 male/six female; median age, 40 years; range, 22-54 years) and 20 sex- and age-matched blood component donors (controls) were included. Sampling was performed before rHuG-CSF administration; at the time of donation; and on Days (+1), 7, 30, 100, 180, and 360 in both groups. Analysis of DNMT activity in nuclear extracts was performed using a modified radionuclide assay. We performed methylation-specific polymerase chain reaction to detect the methylation status of promoter CpG islands of the genes of the retinoic acid receptor beta (RAR-B) and the Ras association domain family 1A (RASSF1A). DNMT activity increased significantly on the day of donation and 1 day after (p < 0.05). By Day +7 baseline values were reached. No further significant alterations of DNMT activity in the treated group compared to the controls were observed. We could not detect any differences in the gene methylation of RAR-B and RASSF1A between both groups. In our prospective study no evidence of long-lasting increased DNMT activity or enhanced DNA methylation in a limited panel of target genes after recombinant human G-CSF administration was observed in healthy stem cell donors. © 2014 AABB.

  9. Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions.

    PubMed

    Kim, Seongtak; Bae, Soohyun; Lee, Sang-Won; Cho, Kyungjin; Lee, Kyung Dong; Kim, Hyunho; Park, Sungeun; Kwon, Guhan; Ahn, Seh-Won; Lee, Heon-Min; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2017-04-26

    Organic-inorganic hybrid perovskite solar cells (PSCs) have been extensively studied because of their outstanding performance: a power conversion efficiency exceeding 22% has been achieved. The most commonly used PSCs consist of CH 3 NH 3 PbI 3 (MAPbI 3 ) with a hole-selective contact, such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spiro-bifluorene (spiro-OMeTAD), for collecting holes. From the perspective of long-term operation of solar cells, the cell performance and constituent layers (MAPbI 3 , spiro-OMeTAD, etc.) may be influenced by external conditions like temperature, light, etc. Herein, we report the effects of temperature on spiro-OMeTAD and the interface between MAPbI 3 and spiro-OMeTAD in a solar cell. It was confirmed that, at high temperatures (85 °C), I - and CH 3 NH 3 + (MA + ) diffused into the spiro-OMeTAD layer in the form of CH 3 NH 3 I (MAI). The diffused I - ions prevented oxidation of spiro-OMeTAD, thereby degrading the electrical properties of spiro-OMeTAD. Since ion diffusion can occur during outdoor operation, the structural design of PSCs must be considered to achieve long-term stability.

  10. Thrombopoietin treatment of one graft in a double cord blood transplant provides early platelet recovery while contributing to long-term engraftment in NSG mice.

    PubMed

    van der Garde, Mark; van Hensbergen, Yvette; Brand, Anneke; Slot, Manon C; de Graaf-Dijkstra, Alice; Mulder, Arend; Watt, Suzanne M; Zwaginga, Jaap Jan

    2015-01-01

    Human cord blood (CB) hematopoietic stem cell (HSC) transplants demonstrate delayed early neutrophil and platelet recovery and delayed longer term immune reconstitution compared to bone marrow and mobilized peripheral blood transplants. Despite advances in enhancing early neutrophil engraftment, platelet recovery after CB transplantation is not significantly altered when compared to contemporaneous controls. Recent studies have identified a platelet-biased murine HSC subset, maintained by thrombopoietin (TPO), which has enhanced capacity for short- and long-term platelet reconstitution, can self-renew, and can give rise to myeloid- and lymphoid-biased HSCs. In previous studies, we have shown that transplantation of human CB CD34(+) cells precultured in TPO as a single graft accelerates early platelet recovery as well as yielding long-term repopulation in immune-deficient mice. In this study, using a double CB murine transplant model, we investigated whether TPO cultured human CB CD34(+) cells have a competitive advantage or disadvantage over untreated human CB CD34(+) cells in terms of (1) short-term and longer term platelet recovery and (2) longer term hematological recovery. Our studies demonstrate that the TPO treated graft shows accelerated early platelet recovery without impairing the platelet engraftment of untreated CD34(+) cells. Notably, this was followed by a dominant contribution to platelet production through the untreated CD34(+) cell graft over the intermediate to longer term. Furthermore, although the contribution of the TPO treated graft to long-term hematological engraftment was reduced, the TPO treated and untreated grafts both contributed significantly to long-term chimerism in vivo.

  11. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW -1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  12. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  13. Humoral and cellular immunity in cosmonauts after the ISS missions

    NASA Astrophysics Data System (ADS)

    Rykova, M. P.; Antropova, E. N.; Larina, I. M.; Morukov, B. V.

    Spaceflight effects on the immune system were studied in 30 cosmonauts flown onto the International Space Station (ISS) for long- (125-195 d, n=15) and short-term (8-10 d, n=15) missions. Immunological investigations before launch and after landing were performed by using methods for quantitative and functional evaluation of the immunologically competent cells. Specific assays include: peripheral leukocyte distribution, natural killer (NK) cell cytotoxic activity, phagocytic activity of monocytes and granulocytes, proliferation of T-cells in response to a mitogen, levels of immunoglobulins IgA, IgM, IgG, virus-specific antibody and cytokine in serum. It was noticed that after long-term spaceflights the percentage of NK (CD3-/CD16+/CD56+) cells was significantly reduced compared with pre-flight data (p<0.05) and NK activity was suppressed by 20-85% as compared with pre-flight data in 12 out of 15 cosmonauts. T-lymphocyte activity was decreased by 25-39% as compared with pre-flight data in 5 out of 13 cosmonauts. However, the relative number of CD3+, CD4+ and CD8+ T-cells did not change. The functional activity of NK and T-cells decreased in some of the cosmonauts after short-term missions. On the other hand, a moderate trend upward of NK cytotoxic activity and proliferative activity of T-cells was observed in some individuals. Concentrations immunoglobulins (IgA, IgM, IgG) and levels of M and G antibodies to herpes simplex virus (HSV), cytomegalovirus (CMV), Epstein-Barr virus (EBV) and herpes virus type 6 (HV6) in serum did not reveal significant changes after long- and short-term flights. Concentrations of cytokines (IL- 1β, IL-2, IL-4 and TNF- α) in serum changed in an apparently random manner as compared with values before long- and short-term missions. Despite the fact that many improvements have been made to the living conditions of aboard the ISS our investigations demonstrate the remarkable depression of the immunological function after the ISS missions. These results suggest that the clinical health risk (related to immune dysfunction) will occur during exploration class missions.

  14. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment.

    PubMed

    Horwitz, Mitchell E; Chao, Nelson J; Rizzieri, David A; Long, Gwynn D; Sullivan, Keith M; Gasparetto, Cristina; Chute, John P; Morris, Ashley; McDonald, Carolyn; Waters-Pick, Barbara; Stiff, Patrick; Wease, Steven; Peled, Amnon; Snyder, David; Cohen, Einat Galamidi; Shoham, Hadas; Landau, Efrat; Friend, Etty; Peleg, Iddo; Aschengrau, Dorit; Yackoubov, Dima; Kurtzberg, Joanne; Peled, Tony

    2014-07-01

    Delayed hematopoietic recovery is a major drawback of umbilical cord blood (UCB) transplantation. Transplantation of ex vivo-expanded UCB shortens time to hematopoietic recovery, but long-term, robust engraftment by the expanded unit has yet to be demonstrated. We tested the hypothesis that a UCB-derived cell product consisting of stem cells expanded for 21 days in the presence of nicotinamide and a noncultured T cell fraction (NiCord) can accelerate hematopoietic recovery and provide long-term engraftment. In a phase I trial, 11 adults with hematologic malignancies received myeloablative bone marrow conditioning followed by transplantation with NiCord and a second unmanipulated UCB unit. Safety, hematopoietic recovery, and donor engraftment were assessed and compared with historical controls. No adverse events were attributable to the infusion of NiCord. Complete or partial neutrophil and T cell engraftment derived from NiCord was observed in 8 patients, and NiCord engraftment remained stable in all patients, with a median follow-up of 21 months. Two patients achieved long-term engraftment with the unmanipulated unit. Patients transplanted with NiCord achieved earlier median neutrophil recovery (13 vs. 25 days, P < 0.001) compared with that seen in historical controls. The 1-year overall and progression-free survival rates were 82% and 73%, respectively. UCB-derived hematopoietic stem and progenitor cells expanded in the presence of nicotinamide and transplanted with a T cell-containing fraction contain both short-term and long-term repopulating cells. The results justify further study of NiCord transplantation as a single UCB graft. If long-term safety is confirmed, NiCord has the potential to broaden accessibility and reduce the toxicity of UCB transplantation. Clinicaltrials.gov NCT01221857. Gamida Cell Ltd.

  15. A novel intranuclear RNA vector system for long-term stem cell modification

    PubMed Central

    Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo

    2015-01-01

    Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671

  16. Perovskite solar cells: from materials to devices.

    PubMed

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effluent CA 125 concentration in chronic peritoneal dialysis patients: influence of PD duration, peritoneal transport and PD regimen.

    PubMed

    Fusshöller, Andreas; Grabensee, Bernd; Plum, Jörg

    2003-01-01

    In terms of the integrity of the peritoneal membrane in peritoneal dialysis (PD), the peritoneal mesothelial cells play a pivotal role since its monolayer constitutes the first line of the peritoneal membrane. Cancer antigen 125 (CA 125) is released by peritoneal mesothelial cells and correlates with the mesothelial cell mass in PD. Since its effluent concentration is easy to determine in chronic PD patients, CA 125 serves as an in vivo marker of biocompatibility. We performed a cross-sectional study to investigate the relation between PD duration, peritoneal transport and the PD regimen (CAPD/CCPD) on effluent CA 125 concentration in 22 chronic PD patients. We compared long-term (>6 months) with short-term PD treatment, patients with high small solute transport properties (MTAC >11 ml/min, d/p ratio of creatinine >0.72) to patients with low small solute transport and CAPD with APD patients. A peritoneal equilibration test was performed with 1.36% glucose. Dialysate/plasma (D/P) ratio and mass transfer area coefficient (MTAC) of creatinine were calculated and the 4-hour effluent concentration of CA 125 was determined. CA 125 tended to be lower in the long-term PD patients and also in APD patients, but statistical significance was missing. Effluent CA 125 was significantly increased in patients with an MTAC of creatinine >11 ml/min (40.2 +/- 11.2 vs. 20.7 +/- 1.2 U/ml) and in patients with a d/p ratio of creatinine >0.72 (48.2 +/- 11.0 vs. 21.6 +/- 1.6 U/ml). CA 125 and the d/p ratio of creatinine were positively correlated (r = 0.68). The positive correlation of CA 125 with peritoneal small solute transport especially in the early phase of PD treatment indicates an initial correlation of the mesothelial cell mass with the peritoneal surface area. A direct relation between the CA 125 concentration and peritoneal transport is unlikely. In our study the CA 125 effluent concentration tended to be lower in long-term PD patients and also in APD patients, possibly indicating a cell depletory influence of the conventional PD fluid. Copyright 2003 S. Karger AG, Basel

  18. Short-term and long-term clinostat and vibration-induced biochemical changes in dwarf Marigold stems

    NASA Astrophysics Data System (ADS)

    Siegel, S. M.; Siegel, B. Z.

    Stems of 21-day dwarf Marigold plants cultivated on the clinostat were compared with plants cultivated on vertical axis rotators (``vibrational controls'') and stationary controls for long-term changes in cell wall composition. Stems of 21-day plants grown under stationary conditions and subsequently exposed to the clinostat for 24 hours were also analyzed. Among the long-term markers, calcium, lignin, and protein-bound hemicellulose (possibly cell wall glycoprotein) clearly differentiated the effects of vibration from those of the clinostat. Short-term differential responses included rate of ethylene production, nastic movement and peroxidase activity of the cell wall, but not of the protoplast.

  19. Short-term and long-term clinostat and vibration-induced biochemical changes in dwarf marigold stems

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1983-01-01

    Stems of 21-day dwarf marigold plants cultivated on the clinostat were compared with plants cultivated on vertical axis rotators ('vibrational controls') and stationary controls for long-term changes in cell wall composition. Stems of 21-day plants grown under stationary conditions and subsequently exposed to the clinostat for 24 hours were also analyzed. Among the long-term markers, calcium, lignin, and protein-bound hemicellulose (possibly cell wall glycoprotein) clearly differentiated the effects of vibration from those of the clinostat. Short-term differential responses included rate of ethylene production, nastic movement and peroxidase activity of the cell wall, but not of the protoplast.

  20. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer.

    PubMed

    Jin, Chuan; Fotaki, Grammatiki; Ramachandran, Mohanraj; Nilsson, Berith; Essand, Magnus; Yu, Di

    2016-07-01

    Chimeric antigen receptor (CAR) T-cell therapy is a new successful treatment for refractory B-cell leukemia. Successful therapeutic outcome depends on long-term expression of CAR transgene in T cells, which is achieved by delivering transgene using integrating gamma retrovirus (RV) or lentivirus (LV). However, uncontrolled RV/LV integration in host cell genomes has the potential risk of causing insertional mutagenesis. Herein, we describe a novel episomal long-term cell engineering method using non-integrating lentiviral (NILV) vector containing a scaffold/matrix attachment region (S/MAR) element, for either expression of transgenes or silencing of target genes. The insertional events of this vector into the genome of host cells are below detection level. CD19 CAR T cells engineered with a NILV-S/MAR vector have similar levels of CAR expression as T cells engineered with an integrating LV vector, even after numerous rounds of cell division. NILV-S/MAR-engineered CD19 CAR T cells exhibited similar cytotoxic capacity upon CD19(+) target cell recognition as LV-engineered T cells and are as effective in controlling tumor growth in vivo We propose that NILV-S/MAR vectors are superior to current options as they enable long-term transgene expression without the risk of insertional mutagenesis and genotoxicity. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Flight experience of solar mesosphere explorer's power system over high temperatures ranges

    NASA Technical Reports Server (NTRS)

    Faber, Jack; Hurley, Daniel

    1987-01-01

    The performance of the power system on the Solar Mesosphere Explorer (SME) satellite for the life of the mission and the techniques used to ensure power system health are summarized. Early in the mission high cell imbalances in one of the batteries resulted in a loading scheme which attempted to minimize the cell imbalances without causing an undervoltage condition. A short term model of the power system allowed planners to predict depth of discharge using the latest available data. Due to expected orbital shifts the solar arrays experience extended periods of no eclipse. This has required special conditioning schemes to keep the batteries healthy when the eclipses return. Analysis of the SME data indicates long term health of the SME power system as long as the conditioning scheme is continued.

  2. A novel environmental chamber for neuronal network multisite recordings.

    PubMed

    Biffi, E; Regalia, G; Ghezzi, D; De Ceglia, R; Menegon, A; Ferrigno, G; Fiore, G B; Pedrocchi, A

    2012-10-01

    Environmental stability is a critical issue for neuronal networks in vitro. Hence, the ability to control the physical and chemical environment of cell cultures during electrophysiological measurements is an important requirement in the experimental design. In this work, we describe the development and the experimental verification of a closed chamber for multisite electrophysiology and optical monitoring. The chamber provides stable temperature, pH and humidity and guarantees cell viability comparable to standard incubators. Besides, it integrates the electronics for long-term neuronal activity recording. The system is portable and adaptable for multiple network housings, which allows performing parallel experiments in the same environment. Our results show that this device can be a solution for long-term electrophysiology, for dual network experiments and for coupled optical and electrical measurements. Copyright © 2012 Wiley Periodicals, Inc.

  3. PEM fuel cell stack heat and mass management

    NASA Technical Reports Server (NTRS)

    Vanderborgh, Nicholas E.; Kimble, Michael C.; Huff, James R.; Hedstrom, James C.

    1992-01-01

    PEM stacks are under evaluation as candidates for future space power technology. Results of long-term operation on a set of contemporary stacks fitted with different proton exchange membrane materials are given. Data on water balances show effects of membrane materials on stack performance.

  4. Long-term culture-induced phenotypic difference and efficient cryopreservation of small intestinal organoids by treatment timing of Rho kinase inhibitor.

    PubMed

    Han, Sung-Hoon; Shim, Sehwan; Kim, Min-Jung; Shin, Hye-Yun; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Lee, Seung Bum; Park, Sunhoo

    2017-02-14

    To investigate a suitable long-term culture system and optimal cryopreservation of intestinal organoid to improve organoid-based therapy by acquiring large numbers of cells. Crypts were isolated from jejunum of C57BL/6 mouse. Two hundred crypts were cultured in organoid medium with either epidermal growth factor/Noggin/R-spondin1 (ENR) or ENR/CHIR99021/VPA (ENR-CV). For subculture, organoids cultured on day 7 were passaged using enzyme-free cell dissociation buffer (STEMCELL Technologies). The passage was performed once per week until indicated passage. For cryopreservation, undissociated and dissociated organoids were resuspended in freezing medium with or without Rho kinase inhibitor subjected to different treatment times. The characteristics of intestinal organoids upon extended passage and freeze-thaw were analyzed using EdU staining, methyl thiazolyl tetrazolium assay, qPCR and time-lapse live cell imaging. We established a three-dimensional culture system for murine small intestinal organoids using ENR and ENR-CV media. Both conditions yielded organoids with a crypt-villus architecture exhibiting Lgr5 + cells and differentiated intestinal epithelial cells as shown by morphological and biochemical analysis. However, during extended passage (more than 3 mo), a comparative analysis revealed that continuous passaging under ENR-CV conditions, but not ENR conditions induced phenotypic changes as observed by morphological transition, reduced numbers of Lgr5 + cells and inconsistent expression of markers for differentiated intestinal epithelial cell types. We also found that recovery of long-term cryopreserved organoids was significantly affected by the organoid state, i.e ., whether dissociation was applied, and the timing of treatment with the Rho-kinase inhibitor Y-27632. Furthermore, the retention of typical morphological characteristics of intestinal organoids such as the crypt-villus structure from freeze-thawed cells was observed by live cell imaging. The maintenance of the characteristics of intestinal organoids upon extended passage is mediated by ENR condition, but not ENR-CV condition. Identified long-term cryopreservation may contribute to the establishment of standardized cryopreservation protocols for intestinal organoids for use in clinical applications.

  5. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders.

    PubMed

    Lange-Consiglio, A; Meucci, A; Cremonesi, F

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r(2)>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage.

  6. Long-term survival of sorafenib-treated FLT3-ITD-positive acute myeloid leukaemia patients relapsing after allogeneic stem cell transplantation.

    PubMed

    Metzelder, S K; Schroeder, T; Lübbert, M; Ditschkowski, M; Götze, K; Scholl, S; Meyer, R G; Dreger, P; Basara, N; Fey, M F; Salih, H R; Finck, A; Pabst, T; Giagounidis, A; Kobbe, G; Wollmer, E; Finke, J; Neubauer, A; Burchert, A

    2017-11-01

    Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-positive acute myeloid leukaemia (AML) relapsing after allogeneic stem cell transplantation (allo-SCT) has a dismal prognosis with limited therapeutic options. FLT3-ITD kinase inhibition is a reasonable but palliative experimental treatment alternative in this situation. Information on long-term outcome is not available. We performed a long-term follow-up analysis of a previously reported cohort of 29 FLT3-ITD-positive AML patients, which were treated in relapse after allo-SCT with sorafenib monotherapy. With a median follow-up of 7.5 years, 6 of 29 patients (21%) are still alive. Excluding one patient who received a second allo-SCT, five patients (17%) achieved sustained complete remissions with sorafenib. Four of these patients are in treatment-free remission for a median of 4.4 years. Sorafenib may enable cure of a proportion of very poor risk FLT3-ITD-positive AML relapsing after allo-SCT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Early remodeling of the neocortex upon episodic memory encoding

    PubMed Central

    Bero, Adam W.; Meng, Jia; Cho, Sukhee; Shen, Abra H.; Canter, Rebecca G.; Ericsson, Maria; Tsai, Li-Huei

    2014-01-01

    Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal–hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states. PMID:25071187

  8. Develop and test fuel cell powered on-site integrated total energy systems. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1986-01-01

    The testing of two 25-cell stacks of the 13 inch x 23 inch cell size (about 4kW) was carried out for 7000 and 8400 hours, respectively. A 25kW stack containing 175 cells of the same size and based on the same technology was constructed and is on test. A third 4kW stack, which will contain 24 cells, will comprise several new technology features; these will be assesed for performance and durability in long-term testing.

  9. [Ex vivo expansion and clonal variation of CD34(+)CD59(+) cells from bone marrow in children with paroxysmal nocturnal hemoglobinuria].

    PubMed

    Xiao, Juan; Wu, Yong-Ji; Han, Bing; Dong, Hong-Yan; Chen, Shi-Ping

    2013-08-01

    To investigate the isolation, purification and ex vivo expansion of CD34(+)CD59(+) cells from the bone marrow of children with paroxysmal nocturnal hemoglobinuria (PNH), to evaluate the capability of long-term hematopoietic reconstruction of the expanded CD34(+)CD59(+) cells, and to provide a laboratory basis for novel treatment of PNH. CD34(+)CD59(+) cells were isolated from the bone marrow mononuclear cells of children with PNH using immunomagnetic beads and flow cytometer in sequence. The isolated cells were subjected to ex vivo expansion in the presence of different combinations of hematopoietic growth factors for two weeks. The colony-forming cells and long-term culture-initiating cells (LTC-ICs) were cultured and counted. The optimal combination of hematopoietic growth factors for ex vivo expansion was stem cell factor+interleukin (IL)-3+IL-6+FLT3 ligand+thrombopoietin+ery-thropoietin, and maximum expansion (30.4 ± 6.7 folds) was seen on day 7 of days 4 to 14 of ex vivo expansion. After ex vivo expansion, CD34(+)CD59(+) cells remained CD59-positive, retained strong capability of forming colony-forming units, and could still form LTC-ICs. There was no significant difference in capability of forming LTC-ICs between CD34(+)CD59(+) cells before and after expansion. The expansion capability of CD34(+)CD59(+) cells from children with PNH was significantly lower than that of CD34(+) cells from normal controls (P<0.01). The CD34(+)CD59(+) cells from children with PNH can be expanded in vitro. Post-expansion CD34(+)CD59(+) cells retain capability of long-term hematopoietic reconstruction. CD34(+)CD59(+) cells showed no trend towards PNH clone during culture. Ex vivo expansion of CD34(+)CD59(+) cells from children with PNH might be practical in performing autologous transplantation clinically for these children.

  10. Multiple division cycles and long-term survival of hepatocytes are distinctly regulated by extracellular signal-regulated kinases ERK1 and ERK2.

    PubMed

    Frémin, Christophe; Bessard, Anne; Ezan, Frédéric; Gailhouste, Luc; Régeard, Morgane; Le Seyec, Jacques; Gilot, David; Pagès, Gilles; Pouysségur, Jacques; Langouët, Sophie; Baffet, Georges

    2009-03-01

    We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2. Our results emphasize that transient MAPK inhibition allows multiple cell cycles in primary cultures of hepatocytes and that ERK2 has a key role in the regulation of S phase entry. Moreover, we revealed a major and distinct role of ERK1 in the regulation of hepatocyte survival. Taken together, our results represent an important advance in understanding long-term survival and cell cycle regulation of hepatocytes.

  11. Short- and long-term effects of clinical pathway on the quality of surgical non-small cell lung cancer care in China: an interrupted time series study.

    PubMed

    Wang, Xinyu; Su, Shaofei; Jiang, Hao; Wang, Jiaying; Li, Xi; Liu, Meina

    2018-05-01

    To examine the short- and long-term effect of clinical pathway for non-small cell lung cancer surgery on the length of stay, the compliance of quality indicators and risk-adjusted post-operative complication rate. A retrospective quasi-experimental study from June 2011 to October 2015. A tertiary cancer hospital in China. Patients diagnosed as non-small cell lung cancer who underwent curative resection. Clinical pathway was implemented at January 2013. Hence, the study period was divided into three periods: pre-pathway, from June 2011 to December 2012; short-term period, from January 2013 to December 2013; long-term period, from January 2014 to October 2015. Three length of hospital stay indicators, four process performance indicators and one outcome indicator. ITS showed there was a significant decline of 2 days (P = 0.0421) for total length of stay and 2.23 days (P = 0.0199) for post-operative length of stay right after the implementation of clinical pathway. Short-term level changes were found in the compliance rate of required number of lymph node sampling (-8.08%, P = 0.0392), and risk-adjusted complication rate (9.02%, P = 0.0001). There were no statistically significant changes in other quality of care indicators. The clinical pathway had a positive impact on the length of stay but showed a transient negative effect on complication rate and the quality of lymph node sampling.

  12. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  13. High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis.

    PubMed

    Rola, Radoslaw; Sarkissian, Vahe; Obenaus, Andre; Nelson, Gregory A; Otsuka, Shinji; Limoli, Charles L; Fike, John R

    2005-10-01

    Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. It may result in the loss of critical cellular components in complex systems like the central nervous system (CNS), which could lead to performance decrements that ultimately could compromise mission goals and long-term quality of life. Specific hippocampal-dependent cognitive impairment occurs after whole-body 56Fe-particle irradiation, and while the pathogenesis of this effect is not yet clear, it may involve damage to neural precursor cells in the hippocampal dentate gyrus. We irradiated mice with 1-3 Gy of 12C or 56Fe ions and 9 months later quantified proliferating cells and immature neurons in the dentate subgranular zone (SGZ). Our results showed that reductions in these cells were dependent on the dose and LET. When compared with data for mice that were studied 3 months after 56Fe-particle irradiation, our current data suggest that these changes are not only persistent but may worsen with time. Loss of precursor cells was also associated with altered neurogenesis and a robust inflammatory response. These results indicate that high-LET radiation has a significant and long-lasting effect on the neurogenic population in the hippocampus that involves cell loss and changes in the microenvironment.

  14. Phase from defocus

    NASA Astrophysics Data System (ADS)

    Mandula, Ondrej; Allier, Cédric; Hervé, Lionel; Denarier, Eric; Fourest-Lieuvin, Anne; Gory-Fauré, Sylvie; Vinit, Angélique; Morales, Sophie

    2018-02-01

    We present a simple and compact phase imaging microscope for long-term observation of non-absorbing biological samples such as unstained cells in nutritive media. The phase image is obtained from a single defocused image taken with a standard wide-field microscope. Using a semi-coherent light source allows us to computationally re-focus image post-acquisition and recover both phase and transmission of the complex specimen. The simplicity of the system reduces both the cost and its physical size and allows a long-term observation of samples directly in a standard biological incubator. The low cost of the system can contribute to the democratization of science by allowing to perform complex long-term biological experiments to the laboratories with constrained budget. In this proceeding we present several results taken with our prototype and discuss the possibilities and limitations of our system.

  15. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b(+) Ly6C(hi) cells to tumor tissue reduces tumor growth.

    PubMed

    Deronic, Adnan; Tahvili, Sahar; Leanderson, Tomas; Ivars, Fredrik

    2016-07-11

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C(hi) and Ly6G(hi) cells, but instead reduced the influx of Ly6C(hi) cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C(hi) cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor inoculation and that this effect is at least partially caused by reduced recruitment of Ly6C(hi) cells to tumor tissue. Long-term treatment also reduces the number of splenic myeloid cells and myeloerythroid progenitors, but these effects did not influence established rapidly growing tumors.

  16. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells.

    PubMed

    Marsà, Alicia; Cortés, Constanza; Hernández, Alba; Marcos, Ricard

    2018-05-15

    Disinfection by-products (DBPs) are compounds produced in the raw water disinfection processes. Although increased cancer incidence has been associated with exposure to this complex mixture, the carcinogenic potential of individual DBPs remains not well known; thus, further studies are required. Haloacetic acids (HAAs) constitute an important group among DBPs. In this study, we have assessed the in vitro carcinogenic potential of three HAAs namely chloro-, bromo-, and iodoacetic acids. Using a long-term (8 weeks) and sub-toxic doses exposure scenario, different in vitro transformation markers were evaluated using a human urothelial cell line (T24). Our results indicate that long-term exposure to low doses of HAAs did not reproduce the genotoxic effects observed in acute treatments, where oxidative DNA damage was induced. No changes in the transformation endpoints analyzed were observed, as implied by the absence of significant morphological, cell growth rate and anchorage-independent cell growth pattern modifications. Interestingly, HAA-long-term exposed cells developed resistance to oxidative stress damage, what would explain the observed differences between acute and long-term exposure conditions. Accordingly, data obtained under long-term exposure to sub-toxic doses of HAAs could be more accurate, in terms of risk assessment, than under acute exposure scenarios. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination.

    PubMed

    Romero-Lopez, Julia; Lopez-Rodas, Victoria; Costas, Eduardo

    2012-11-15

    There is increasing scientific interest in how phytoplankton reacts to petroleum contamination, since crude oil and its derivatives are generating extensive contamination of aquatic environments. However, toxic effects of short-term petroleum exposure are more widely known than the adaptation of phytoplankton to long-term petroleum exposure. An analysis of short-term and long-term effects of petroleum exposure was done using experimental populations of freshwater (Scenedesmus intermedius and Microcystis aeruginosa) and marine (Dunaliella tertiolecta) microalgae isolated from pristine sites without crude oil product contamination. These strains were exposed to increased levels of petroleum and diesel oil. Short-term exposure to petroleum or diesel oil revealed a rapid inhibition of photosynthetic performance and cell proliferation in freshwater and marine phytoplankton species. A broad degree of inter-specific variation in lethal contamination level was observed. When different strains were exposed to petroleum or diesel oil over the long-term, the cultures showed massive destruction of the sensitive cells. Nonetheless, after further incubation, some cultures were able to grow again due to cells that were resistant to the toxins. By means of a fluctuation analysis, discrimination between cells that had become resistant due to physiological acclimatization and resistant cells arising from rare spontaneous mutations was accomplished. In addition, an analysis was done as to the maximum capacity of adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on mutations that confer resistance and subsequent selection of these mutants. Finally, it is certain that further mutations and selection will ultimately determine adaptation of microalgae to the environmental forcing. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization.

    PubMed

    Xia, Xue; Sun, Yanmei; Liang, Peng; Huang, Xia

    2012-09-01

    The long-term effect of set potential on oxygen reducing biocathodes was investigated in terms of electrochemical and biological characteristics. Three biocathodes were poised at 200, 60 and -100 mV vs. saturated calomel electrode (SCE) for 110 days, including the first 17 days for startup. Electrochemical analyses showed that 60 mV was the optimum potential during long-term operation. The performance of all the biocathodes kept increasing after startup, suggesting a period longer than startup time needed to make potential regulation more effective. The inherent characteristics without oxygen transfer limitation were studied. Different from short-term regulation, the amounts of biomass were similar while the specific electrochemical activity was significantly influenced by potential. Moreover, potential showed a strong selection for cathode bacteria. Clones 98% similar with an uncultured Bacteroidetes bacterium clone CG84 accounted for 75% to 80% of the sequences on the biocathodes that showed higher electrochemical activity (60 and -100 mV). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications.

    PubMed

    Leite, Sofia B; Teixeira, Ana P; Miranda, Joana P; Tostões, Rui M; Clemente, João J; Sousa, Marcos F; Carrondo, Manuel J T; Alves, Paula M

    2011-06-01

    During the last years an increasing number of in vitro models have been developed for drug screening and toxicity testing. Primary cultures of hepatocytes are, by far, the model of choice for those high-throughput studies but their spontaneous dedifferentiation after some time in culture hinders long-term studies. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long term in vitro studies are required. It has been shown that hepatocytes functionality can be improved and extended in time when cultured as 3D-cell aggregates in environmental controlled stirred bioreactors. In this work, aiming at further improving hepatocytes functionality in such 3D cellular structures, co-cultures with fibroblasts were performed. An inoculum concentration of 1.2×10(5) cell/mL and a 1:2 hepatocyte:mouse embryonic fibroblast ratio allowed to improve significantly the albumin secretion rate and both ECOD (phase I) and UGT (phase II) enzymatic activities in 3D co-cultures, as compared to the routinely used 2D hepatocyte monocultures. Significant improvements were also observed in relation to 3D monocultures of hepatocytes. Furthermore, hepatocytes were able to respond to the addition of beta-Naphtoflavone by increasing ECOD activity showing CYP1A inducibility. The dependence of CYP activity on oxygen concentration was also observed. In summary, the improved hepatocyte specific functions during long term incubation of 3D co-cultures of hepatocytes with fibroblasts indicate that this system is a promising in vitro model for long term toxicological studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering.

    PubMed

    El-Amin, Saadiq F; Botchwey, Edward; Tuli, Richard; Kofron, Michelle D; Mesfin, Addisu; Sethuraman, Swaminathan; Tuan, Rocky S; Laurencin, Cato T

    2006-03-01

    We performed a detailed examination of the isolation, characterization, and growth of human osteoblast cells derived from trabecular bone. We further examined the morphology, phenotypic gene expression, mineralization,and growth of these human osteoblasts on polyester polymers used for musculoskeletal tissue engineering. Polylactic-co-glycolic acid [PLAGA (85:15, 50:50, 75:25)], and poly-lactic acid (L-PLA, D,L-PLA) were examined. The osteoblastic expression of key phenotypic markers osteocalcin, alkaline phosphatase, collagen, and bone sialoprotein at 4 and 8 weeks was examined. Reverse transcription-polymerase chain reaction studies revealed that trabecular-derived osteoblasts were positive for all markers evaluated with higher levels expressed over long-term culture. These cells also revealed mineralization and maturation as evidenced by energy dispersive X-ray analysis and scanning electron microscopy. Growth studies on PLAGA at 50:50,75:25, and 85:15 ratios and PLA in the L and DL isoforms revealed that human osteoblasts actively grew, with significantly higher cell numbers attached to scaffolds composed of PLAGA 50:50 in the short term and PLAGA 85:15 in the long term compared with PLA (p < 0.05). We believe human cell adhesion among these polymeric materials may be dependent on differences in cellular integrin expression and extracellular matrix protein elaboration. (c) 2005 Wiley Periodicals, Inc.

  2. Development of inexpensive metal macrocyclic complexes for use in fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.

    Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

  3. Effector and memory T cell subsets in the response to bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays of peripheral blood mononuclear cells (PBMC) are used to access T cell central memory (Tcm) responses in both cattle and humans. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT response correlates with protection; how...

  4. Health-related quality of life in long-term survivors of unresectable locally advanced non-small cell lung cancer.

    PubMed

    Ran, Juntao; Wang, Jingbo; Bi, Nan; Jiang, Wei; Zhou, Zongmei; Hui, Zhouguang; Liang, Jun; Feng, Qinfu; Wang, Luhua

    2017-12-02

    Heath-related quality of life (HRQoL) among survivors with unresectable locally-advanced non-small cell lung cancer (LA-NSCLC) treated with radiotherapy and chemotherapy still is not clear. The current study were performed to determine HRQoL for long-term survivors with unresectable LA-NSCLC and to identify risk factors for poor HRQoL. Among patients with LA-NSCLC receiving radiotherapy and chemotherapy between January 2006 and December 2010, 82 long-term survivors beyond 5 years were identified in this cross-sectional study. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 and the lung cancer-specific questionnaire QLQ-LC13 were employed to gather information on HRQoL. HRQoL scores were compared between different subgroups to analyze factors related to HRQoL. Fifty-five out of 82 (67%) long-term survivors completed the HRQoL survey. They reported a mild reduction in global health status and physical and emotional functioning. Fatigue, dyspnea, coughing, and financial difficulties ranked the highest scores in the symptom scales. Analysis of risk factors for HRQoL showed age, exercise, smoking status, and treatment regimen were associated with global health status and functional scores, while age, gender, radiation pneumonitis, weight loss, and exercise were associated with symptom scores. This study provides the first description of the HRQoL of long-term LA-NSCLC survivors receiving radiotherapy and chemotherapy who may experience a relatively high HRQoL. Factors related to poorer HRQoL are potential targets for intervention.

  5. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis cohort.

    PubMed

    Dall'Era, Maria; Cisternas, Miriam G; Smilek, Dawn E; Straub, Laura; Houssiau, Frédéric A; Cervera, Ricard; Rovin, Brad H; Mackay, Meggan

    2015-05-01

    There is a need to determine which response measures in lupus nephritis trials are most predictive of good long-term renal function. We used data from the Euro-Lupus Nephritis Trial to evaluate the performance of proteinuria, serum creatinine (Cr), and urinary red blood cells (RBCs) as predictors of good long-term renal outcome. Patients from the Euro-Lupus Nephritis Trial with proteinuria, serum Cr, and urinary RBC measurements at 3, 6, or 12 months and with a minimum of 7 years of followup were included (n = 76). We assessed the ability of these clinical biomarkers at 3, 6, and 12 months after randomization to predict good long-term renal outcome (defined as a serum Cr value ≤1.0 mg/dl) at 7 years. Receiver operating characteristic curves were generated to assess parameter performance at these time points and to select the best cutoff for individual parameters. Sensitivity and specificity were calculated for the parameters alone and in combination. A proteinuria value of <0.8 gm/day at 12 months after randomization was the single best predictor of good long-term renal function (sensitivity 81% and specificity 78%). The addition of serum Cr to proteinuria as a composite predictor did not improve the performance of the outcome measure; addition of urinary RBCs as a predictor significantly decreased the sensitivity to 47%. This study demonstrates that the level of proteinuria at 12 months is the individual best predictor of long-term renal outcome in patients with lupus nephritis. Inclusion of urinary RBCs as part of a composite outcome measure actually undermined the predictive value of the trial data. We therefore suggest that urinary RBCs should not be included as a component of clinical trial response criteria in lupus nephritis. © 2015, American College of Rheumatology.

  6. Wound signaling: The missing link in plant regeneration.

    PubMed

    Chen, Lyuqin; Sun, Beibei; Xu, Lin; Liu, Wu

    2016-10-02

    Wounding is the first event that occurs in plant regeneration. However, wound signaling in plant regeneration is barely understood. Using a simple system of de novo root organogenesis from Arabidopsis thaliana leaf explants, we analyzed the genes downstream of wound signaling. Leaf explants may produce at least two kinds of wound signals to trigger short-term and long-term wound signaling. Short-term wound signaling is primarily involved in controlling auxin behavior and the fate transition of regeneration-competent cells, while long-term wound signaling mainly modulates the cellular environment at the wound site and maintains the auxin level in regeneration-competent cells. YUCCA (YUC) genes, which are involved in auxin biogenesis, are targets of short-term wound signaling in mesophyll cells and of long-term wound signaling in regeneration-competent cells. The expression patterns of YUCs provide important information about the molecular basis of wound signaling in plant regeneration.

  7. Engine diagnostics program: CF6-50 engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Wulf, R. H.

    1980-01-01

    Cockpit cruise recordings and test cell data in conjunction with hardware inspection results from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-50 high bypass turbofan engine. The magnitude of short term deterioration was isolated from the long term, and the individual damage mechanisms that were the cause for the majority of the performance deterioration was identified. It was determined that the long term engine performance deterioration characteristics were different for the 3 aircraft types currently powered by the CF6-50 engine, but these differences were due to operational considerations (flight length and takeoff derate) and not to differences associated with the aircraft type. Unrestored losses, that is, performance deterioration which remains after engine refurbishment, represents over 70 percent of the total performance deterioration at engine shop visit. Superficial damage, such as, increased surface roughness, leading edge shape changes on airfoils, and increases in the average clearances between rotating and stationary components is the major contributor to these losses. Seventy one percent of the unrestored losses are cost effective to restore, and if implemented could reduce fuel consumed by CF6-50 engines by 26 million gallons in 1980.

  8. Zscan4 restores the developmental potency of embryonic stem cells

    PubMed Central

    Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.

    2013-01-01

    The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662

  9. Implications of long-term culture for mesenchymal stem cells: genetic defects or epigenetic regulation?

    PubMed Central

    2012-01-01

    Mesenchymal stem cells change dramatically during culture expansion. Long-term culture has been suspected to evoke oncogenic transformation: overall, the genome appears to be relatively stable throughout culture but transient clonal aneuploidies have been observed. Oncogenic transformation does not necessarily entail growth advantage in vitro and, therefore, the available methods - such as karyotypic analysis or genomic profiling - cannot exclude this risk. On the other hand, long-term culture is associated with specific senescence-associated DNA methylation (SA-DNAm) changes, particularly in developmental genes. SA-DNAm changes are highly reproducible and can be used to monitor the state of senescence for quality control. Notably, neither telomere attrition nor SA-DNAm changes occur in pluripotent stem cells, which can evade the 'Hayflick limit'. Long-term culture of mesenchymal stem cells seems to involve a tightly regulated epigenetic program. These epigenetic modifications may counteract dominant clones, which are more prone to transformation. PMID:23257053

  10. Implications of long-term culture for mesenchymal stem cells: genetic defects or epigenetic regulation?

    PubMed

    Wagner, Wolfgang

    2012-12-20

    Mesenchymal stem cells change dramatically during culture expansion. Long-term culture has been suspected to evoke oncogenic transformation: overall, the genome appears to be relatively stable throughout culture but transient clonal aneuploidies have been observed. Oncogenic transformation does not necessarily entail growth advantage in vitro and, therefore, the available methods - such as karyotypic analysis or genomic profiling - cannot exclude this risk. On the other hand, long-term culture is associated with specific senescence-associated DNA methylation (SA-DNAm) changes, particularly in developmental genes. SA-DNAm changes are highly reproducible and can be used to monitor the state of senescence for quality control. Notably, neither telomere attrition nor SA-DNAm changes occur in pluripotent stem cells, which can evade the 'Hayflick limit'. Long-term culture of mesenchymal stem cells seems to involve a tightly regulated epigenetic program. These epigenetic modifications may counteract dominant clones, which are more prone to transformation.

  11. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers.

    PubMed

    Shi, Fengqin; Chen, Xinyi; Fu, Alan; Hansen, Johnni; Stevens, Richard; Tjonneland, Anne; Vogel, Ulla B; Zheng, Tongzhang; Zhu, Yong

    2013-07-01

    The idea that shiftwork may be carcinogenic in humans has gained widespread attention since the pioneering work linking shiftwork to breast cancer over two decades ago. However, the biomolecular consequences of long-term shiftwork exposure have not been fully explored. In this study, we performed a genome-wide CpG island methylation assay of microRNA (miRNA) promoters in long-term night shiftworkers and day workers. This analysis indicated that 50 CpG loci corresponding to 31 miRNAs were differentially methylated in night shiftworkers compared to day workers, including the circadian-relevant miR-219, the expression of which has been implicated in several cancers. A genome-wide expression microarray assay was carried out in a miR-219-overexpressed MCF-7 breast cancer cell line, which identified 319 differentially expressed transcripts. The identified transcriptional targets were analyzed for network and functional interrelatedness using the Ingenuity Pathway Analysis (IPA) software. Overexpression of miR-219 in MCF-7 breast cancer cells resulted in accentuated expression of apoptosis- and proliferation-related anti-viral immunodulators of the Jak-STAT and NF-κβ pathways. These findings suggest that long-term night shiftwork exposure may lead to the methylation-dependent downregulation of miR-219, which may in turn lead to the downregulation of immunomediated antitumor activity and increased breast cancer risk. © 2013 Wiley Periodicals, Inc.

  12. Direct Reprogramming—The Future of Cardiac Regeneration?

    PubMed Central

    Doppler, Stefanie A.; Deutsch, Marcus-André; Lange, Rüdiger; Krane, Markus

    2015-01-01

    Today, the only available curative therapy for end stage congestive heart failure (CHF) is heart transplantation. This therapeutic option is strongly limited by declining numbers of available donor hearts and by restricted long-term performance of the transplanted graft. The disastrous prognosis for CHF with its restricted therapeutic options has led scientists to develop different concepts of alternative regenerative treatment strategies including stem cell transplantation or stimulating cell proliferation of different cardiac cell types in situ. However, first clinical trials with overall inconsistent results were not encouraging, particularly in terms of functional outcome. Among other approaches, very promising ongoing pre-clinical research focuses on direct lineage conversion of scar fibroblasts into functional myocardium, termed “direct reprogramming” or “transdifferentiation.” This review seeks to summarize strategies for direct cardiac reprogramming including the application of different sets of transcription factors, microRNAs, and small molecules for an efficient generation of cardiomyogenic cells for regenerative purposes. PMID:26230692

  13. Long-term associative learning predicts verbal short-term memory performance.

    PubMed

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  14. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  15. Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model.

    PubMed

    Kucerova, L; Skolekova, S; Demkova, L; Bohovic, R; Matuskova, M

    2014-10-01

    Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts.

  16. Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system.

    PubMed

    Cantero Peral, Susana; Burkhart, Harold M; Oommen, Saji; Yamada, Satsuki; Nyberg, Scott L; Li, Xing; O'Leary, Patrick W; Terzic, Andre; Cannon, Bryan C; Nelson, Timothy J

    2015-02-01

    Congenital heart diseases (CHDs) requiring surgical palliation mandate new treatment strategies to optimize long-term outcomes. Despite the mounting evidence of cardiac regeneration, there are no long-term safety studies of autologous cell-based transplantation in the pediatric setting. We aimed to establish a porcine pipeline to evaluate the feasibility and long-term safety of autologous umbilical cord blood mononuclear cells (UCB-MNCs) transplanted into the right ventricle (RV) of juvenile porcine hearts. Piglets were born by caesarean section to enable UCB collection. Upon meeting release criteria, 12 animals were randomized in a double-blinded fashion prior to surgical delivery of test article (n=6) or placebo (n=6). The UCB-MNC (3×10(6) cells per kilogram) or control (dimethyl sulfoxide, 10%) products were injected intramyocardially into the RV under direct visualization. The cohorts were monitored for 3 months after product delivery with assessments of cardiac performance, rhythm, and serial cardiac biochemical markers, followed by terminal necropsy. No mortalities were associated with intramyocardial delivery of UCB-MNCs or placebo. Two animals from the placebo group developed local skin infection after surgery that responded to antibiotic treatment. Electrophysiological assessments revealed no arrhythmias in either group throughout the 3-month study. Two animals in the cell-therapy group had transient, subclinical dysrhythmia in the perioperative period, likely because of an exaggerated response to anesthesia. Overall, this study demonstrated that autologous UCB-MNCs can be safely collected and surgically delivered in a pediatric setting. The safety profile establishes the foundation for cell-based therapy directed at the RV of juvenile hearts and aims to accelerate cell-based therapies toward clinical trials for CHD. ©AlphaMed Press.

  17. Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2014-01-01

    Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term plasticity, which are considered to underlie learning and memory by the brain. According to Hebb’s postulate, synaptic plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear how the various forms of long-term and short-term synaptic plasticity cooperatively create and reorganize such cell assemblies. Here, we investigate the mechanism in which the three forms of synaptic plasticity known in cortical circuits, i.e., spike-timing-dependent plasticity (STDP), short-term depression (STD) and homeostatic plasticity, cooperatively generate, retain and reorganize cell assemblies in a recurrent neuronal network model. We show that multiple cell assemblies generated by external stimuli can survive noisy spontaneous network activity for an adequate range of the strength of STD. Furthermore, our model predicts that a symmetric temporal window of STDP, such as observed in dopaminergic modulations on hippocampal neurons, is crucial for the retention and integration of multiple cell assemblies. These results may have implications for the understanding of cortical memory processes. PMID:25007209

  18. Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival.

    PubMed

    Zanin, M P; Hellström, M; Shepherd, R K; Harvey, A R; Gillespie, L N

    2014-09-26

    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. An International Intercomparison of Argon Triple Point Calibration Facilities, Accommodating Long-stem Thermometers

    NASA Astrophysics Data System (ADS)

    Bloembergen, P.; Bonnier, G.; Ronsin, H.

    1990-01-01

    Argon triple point calibration facilities have been compared among eight laboratories with one transfer system, employing local long-stem standard platinum resistance thermometers. The apparatus intercompared, included a sealed cell and its associated cryostat. As is evidenced by the results of long-term investigations, previously performed at the INM, cells of the type employed may show a triple-point temperature, which is stable within the reproducibility of the measurements (simeq0,1 mK) over a period of about 10 years. At each laboratory the mean difference between the Argon triple-point temperature of the transfer cell (t) and the local cell (i) has been determined, using a standard resistance thermometer previously calibrated at the fixed points, according to the IPTS-68; associated repeatabilities are typically of the order of 0,1 mK. The reproducibility attained by measuring the mean difference in different laboratories, using cells of the same type and origin (INM), amounts to 0,4 mK.

  20. Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI

    PubMed Central

    Waddell, Jaylyn; Hanscom, Marie; Edwards, N. Shalon; McKenna, Mary C.; McCarthy, Margaret M.

    2015-01-01

    Hypoxia ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning. PMID:26376217

  1. Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI.

    PubMed

    Waddell, Jaylyn; Hanscom, Marie; Shalon Edwards, N; McKenna, Mary C; McCarthy, Margaret M

    2016-01-01

    Hypoxia-ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning. Published by Elsevier Inc.

  2. Bovine central memory T cells are highly proliferative in response to bovine tuberculosis infection

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14 days) cultured IFN-gamma responses of peripheral blood mononuclear cells are used as a correlate of T cell central memory (Tcm) responses in both humans and cattle. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT assays are a correlate of protection. Recent...

  3. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders

    PubMed Central

    Lange-Consiglio, A.; Meucci, A.; Cremonesi, F.

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5’,6,6’-tetrachloro-1,1’,3,3’ tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r2>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage. PMID:26623308

  4. Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems

    NASA Technical Reports Server (NTRS)

    Dougher, Tracy A. O.; Bugbee, Bruce

    2004-01-01

    Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.

  5. Micro patterned surfaces: an effective tool for long term digital holographic microscopy cell imaging

    NASA Astrophysics Data System (ADS)

    Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen

    2017-02-01

    The major problem of Digital Holographic Microscopy (DHM) long term live cell imaging is that over time most of the tracked cells move out of the image area and other ones move in. Therefore, most of the cells are lost for the evaluation of individual cellular processes. Here, we present an effective solution for this crucial problem of long-term microscopic live cell analysis. We have generated functionalized slides containing areas of 250 μm per 200 μm. These micropatterned biointerfaces consist of passivating polyaclrylamide brushes (PAAm). Inner areas are backfilled with octadecanthiol (ODT), which allows cell attachment. The fouling properties of these surfaces are highly controllable and therefore the defined areas designed for the size our microscopic image areas were effective in keeping all cells inside the rectangles over the selected imaging period.

  6. [In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure].

    PubMed

    Dunda, S E; Ranker, M; Pallua, N; Machens, H-G; Ravichandran, A; Schantz, J-T

    2015-12-01

    Biological and physical characteristics of matrices are one essential factor in creating bioartificial tissue. In this study, a new 3-dimensional cellulose matrix (Xellulin(®)) was tested in terms of biocompatibility and applicability for tissue engineering in vitro and in vivo. The tested matrix Xellulin(®) is a natural hydrological gel-matrix containing bacterial cellulose and water. To evaluate the cell biocompatibilty, cell adherence and proliferation characteristics in vitro, the matrix was cultured with human fibroblasts. Further in vivo studies were carried out by transplanting preadipocytes of 4- to 6-week-old Wistar rats with 3 different conditions: a) Xellulin(®) including 500 000 preadipocytes subcutaneous, b) Xellulin(®) including 500 000 preadipocytes within an in vivo bioreactor chamber, c) Xellulin(®) without cells subcutaneous as control. After explantation on day 14 histomorphological and immunohistochemical evaluations were performed. In vitro study revealed an excellent biocompatibility with good cell adherence of the fibroblasts on the matrix and evidence of cell proliferation and creation of a 3-dimensional cell network. In vivo neocapillarisation could be shown in all groups with evidence of erythrocytes (H/E staining) and endothelial vascular cells (RECA-1-staining). A significantly higher vascular density was shown in vascularised bioreactor group (18.4 vessels/100 000 µm(2) (group b) vs. 8.1 (group a), p<0.05). Cell density was the highest in the vascularised group, but without significant values. No immunogenic reaction to the matrix was noticed. The promising in vitro results concerning cell adherence and proliferation on the tested matrix could be confirmed in vivo with an evidence of 3-dimensional neocapillarisation. Cell survival was higher in the vascularised group, but without significance. Long-term tests (28-42 days) need to be carried out to evaluate long-term cell survival and the matrix stability. Furthermore, studies concerning the implementation of the matrix within anatomic structures as well as long-term biocompatibility are needed. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Design and performance of honeycomb structure for nanobubbles generating apparatus having different cell dimensions

    NASA Astrophysics Data System (ADS)

    Ueda, T.; Zhai, H. F.; Ren, F.; Noda, N.-A.; Sano, Y.; Takase, Yasushi; Yonezawa, Y.; Tanaka, H.

    2018-06-01

    In recent years, nanobubble technology has drawn great attention due to their wide applications in various fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. This study focuses on the application to seafood long term storage. The nitrogen nanobubble water circulation may reduce the oxygen in water and slow the progressions of oxidation and spoilage. Our previous study showed the pressure reduction and shear stress are involved in nanobubble generation apparatus with honeycomb cells. In this work, the nanobubble generating performance is studied experimentally for honeycomb structures by varying the cell size and the flow velocity. Computational Fluid Dynamics analysis is also performed to simulate the experiment and find out the efficient nanobubble generation.

  8. Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Grattieri, Matteo; Suvira, Milomir; Hasan, Kamrul; Minteer, Shelley D.

    2017-07-01

    The treatment of hypersaline wastewater (approximately 5% of the wastewater worldwide) cannot be performed by classical biological techniques. Herein the halotolerant extremophile bacteria obtained from the Great Salt Lake (Utah) were explored in single chamber microbial fuel cells with Pt-free cathodes for more than 18 days. The bacteria samples collected in two different locations of the lake (Stansbury Bay and Antelope Island) showed different electrochemical performances. The maximum achieved power output of 36 mW m-2 was from the microbial fuel cell based on the sample originated from Stansbury Bay, at a current density of 820 mA m-2. The performances throughout the long-term operation are discussed and a bioelectrochemical mechanism is proposed.

  9. Cell phones and brain tumors: a review including the long-term epidemiologic data.

    PubMed

    Khurana, Vini G; Teo, Charles; Kundi, Michael; Hardell, Lennart; Carlberg, Michael

    2009-09-01

    The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. In the present review, the authors attempt to address the following question: is there epidemiologic evidence for an association between long-term cell phone usage and the risk of developing a brain tumor? Included with this meta-analysis of the long-term epidemiologic data are a brief overview of cell phone technology and discussion of laboratory data, biological mechanisms, and brain tumor incidence. In order to be included in the present meta-analysis, studies were required to have met all of the following criteria: (i) publication in a peer-reviewed journal; (ii) inclusion of participants using cell phones for > or = 10 years (ie, minimum 10-year "latency"); and (iii) incorporation of a "laterality" analysis of long-term users (ie, analysis of the side of the brain tumor relative to the side of the head preferred for cell phone usage). This is a meta-analysis incorporating all 11 long-term epidemiologic studies in this field. The results indicate that using a cell phone for > or = 10 years approximately doubles the risk of being diagnosed with a brain tumor on the same ("ipsilateral") side of the head as that preferred for cell phone use. The data achieve statistical significance for glioma and acoustic neuroma but not for meningioma. The authors conclude that there is adequate epidemiologic evidence to suggest a link between prolonged cell phone usage and the development of an ipsilateral brain tumor.

  10. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less

  11. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro.

    PubMed

    Dyszkiewicz-Konwińska, M; Bryja, A; Jopek, K; Budna, J; Khozmi, R; Jeseta, M; Bukowska, D; Antosik, P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2017-01-01

    Recently, using experimental animal model, we demonstrated that porcine buccal pouch mucosal cells reflect increased proliferation capability during primary cultivation in vitro. Although the histological structure and morphogenesis in oral cavity is well recognized, the molecular mechanisms which regulate this process still need further investigation. This study was aimed to analyze the molecular marker expression profile involved in morphogenesis and differentiation capacity of porcine buccal pouch mucosal cells during their long-term primary cultivation in vitro. The experiment was performed on buccal pouch mucosal cells isolated from 80 pubertal crossbred Landrace gilts. After collection, the cells were treated enzymatically and transferred into a primary in vitro culture (IVC) system and cultured for 30 days. The cells were collected for RNA isolation after 7, 15 and 30 days of IVC and were checked for their real-time proliferative status using the RTCA system. We found an increased expression of FN1 and SOX9 genes when calculated against ACTB after 7, and 30 days of IVC, (P less than 0.01, P less than 0.001, respectively). The CXCL12 mRNA was down-regulated after 7, 15 and 30 days of IVC, but not statistically significant. Similar expression profile was observed when calculated against HPRT, however, DAB2 was found to be higher expressed at day 15 of IVC, (P less than 0.05). The cell index measured during real-time cell proliferation was substantially increased between 96 h and 147h of IVC and reached the log phase. Since FN1 and SOX9 revealed significant increase of expression after long-term culture in vitro, it is suggested that expression of these differentiation and stemness genes is accompanied by cell proliferation. Moreover, FN1 and SOX9 might be recognized as new markers of buccal pouch mucosal cell proliferation and differentiation in pigs in in vitro primary culture model.

  12. Long-term Metabolic Outcomes of Functioning Pancreas Transplants in Type 2 Diabetic Recipients.

    PubMed

    Shin, Sung; Jung, Chang Hee; Choi, Ji Yoon; Kwon, Hyun Wook; Jung, Joo Hee; Kim, Young Hoon; Han, Duck Jong

    2017-06-01

    Limited data are available regarding the long-term metabolic outcomes of functioning pancreas transplants in patients with type 2 diabetes mellitus (T2DM). To compare the long-term effects of pancreas transplantation in terms of insulin resistance and β cell function, comparison of metabolic variables was performed between type 1 diabetes mellitus (T1DM) and T2DM patients from 1-month posttransplant to 5 years using generalized, linear-mixed models for repeated measures. Among 217 consecutive patients who underwent pancreas transplantation at our center between August 2004 and January 2015, 193 patients (151 T1DM and 42 T2DM) were included in this study. Throughout the follow-up period, postoperative hemoglobin A1c did not differ significantly between T1DM and T2DM patients, and the levels were constantly below 6% (42 mmol/mol) until 5 years posttransplant, whereas C-peptide was significantly higher in T2DM (P = 0.014). There was no difference in fasting insulin, homeostasis model assessment (HOMA) of insulin resistance, HOMA β cell, or the insulinogenic index between the groups. Furthermore, fasting insulin and HOMA-insulin resistance steadily decreased in both groups during the follow-up period. There was no significant difference in the insulin resistance or β-cell function after pancreas transplantation between T1DM and T2DM patients. We demonstrated that pancreas transplantation is capable of sustaining favorable endocrine functions for more than 5 years in T2DM recipients.

  13. Establishment of highly metastatic KRAS mutant lung cancer cell sublines in long-term three-dimensional low attachment cultures

    PubMed Central

    Nakano, Tomoyuki; Kanai, Yoshihiko; Amano, Yusuke; Yoshimoto, Taichiro; Matsubara, Daisuke; Shibano, Tomoki; Tamura, Tomoko; Oguni, Sachiko; Katashiba, Shizuka; Ito, Takeshi; Murakami, Yoshinori; Fukayama, Masashi; Murakami, Takashi; Endo, Shunsuke; Niki, Toshiro

    2017-01-01

    Decreased cell-substratum adhesion is crucially involved in metastasis. Previous studies demonstrated that lung cancer with floating cell clusters in histology is more likely to develop metastasis. In the present study, we investigated whether cancer cells in long-term, three-dimensional low attachment cultures acquire high metastatic potential; these cells were then used to examine the mechanisms underlying metastasis. Two KRAS-mutated adenocarcinoma cell lines (A549 and H441) were cultured and selected on ultra-low attachment culture dishes, and the resulting cells were defined as FL (for floating) sublines. Cancer cells were inoculated into NOD/SCID mice via an intracardiac injection, and metastasis was evaluated using luciferase-based imaging and histopathology. In vitro cell growth (in attachment or suspension cultures), migration, and invasion were assayed. A whole genomic analysis was performed to identify key molecular alterations in FL sublines. Upon detachment on low-binding dishes, parental cells initially formed rounded spheroids with limited growth activity. However, over time in cultures, cells gradually formed smaller spheroids that grew slowly, and, after 3–4 months, we obtained FL sublines that regained prominent growth potential in suspension cultures. On ordinary dishes, FL cells reattached and exhibited a more spindle-shaped morphology than parental cells. No marked differences were observed in cell growth with attachment, migration, or invasion between FL sublines and parental cell lines; however, FL cells exhibited markedly increased growth potential under suspended conditions in vitro and stronger metastatic abilities in vivo. A genomic analysis identified epithelial-mesenchymal transition (EMT) and c-Myc amplification in A549-FL and H441-FL cells, respectively, as candidate mechanisms for metastasis. The growth potential of FL cells was markedly inhibited by lentiviral ZEB1 knockdown in A549-FL cells and by the inhibition of c-Myc through lentiviral knockdown or the pharmacological inhibitor JQ1 in H441-FL cells. Long-term three-dimensional low attachment cultures may become a useful method for investigating the mechanisms underlying metastasis mediated by decreased cell-substratum adhesion. PMID:28786996

  14. Long-Term Bridge Performance (LTBP) Program Protocols, Version 1

    DOT National Transportation Integrated Search

    2016-01-01

    The Long-Term Bridge Performance (LTBP) Program is a long-term research effort to collect scientific performance data from a representative sample of bridges in the United States. Data will be collected for in-service bridges using a variety of techn...

  15. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  16. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Astrophysics Data System (ADS)

    Stella, Paul M.; Kurland, Richard M.

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  17. Enhanced differentiation of neural stem cells to neurons and promotion of neurite outgrowth by oxygen-glucose deprivation.

    PubMed

    Wang, Qin; Yang, Lin; Wang, Yaping

    2015-06-01

    Stroke has become the leading cause of mortality worldwide. Hypoxic or ischemic insults are crucial factors mediating the neural damage in the brain tissue of stroke patients. Neural stem cells (NSCs) have been recognized as a promising tool for the treatment of ischemic stroke and other neurodegenerative diseases due to their inducible pluripotency. In this study, we aim to mimick the cerebral hypoxic-ischemic injury in vitro using oxygen-glucose deprivation (OGD) strategy, and evaluate the effects of OGD on the NSC's neural differentiation, as well as the differentiated neurite outgrowth. Our data showed that NSCs under the short-term 2h OGD treatment are able to maintain cell viability and the capability to form neurospheres. Importantly, this moderate OGD treatment promotes NSC differentiation to neurons and enhances the performance of the mature neuronal networks, accompanying increased neurite outgrowth of differentiated neurons. However, long-term 6h and 8h OGD exposures in NSCs lead to decreased cell survival, reduced differentiation and diminished NSC-derived neurite outgrowth. The expressions of neuron-specific microtubule-associated protein 2 (MAP-2) and growth associated protein 43 (GAP-43) are increased by short-term OGD treatments but suppressed by long-term OGD. Overall, our results demonstrate that short-term OGD exposure in vitro induces differentiation of NSCs while maintaining their proliferation and survival, providing valuable insights of adopting NSC-based therapy for ischemic stroke and other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Long-term efficacy of denture cleansers in preventing Candida spp. biofilm recolonization on liner surface.

    PubMed

    Vieira, Ana Paula Coelho; Senna, Plínio Mendes; Silva, Wander José da; Del Bel Cury, Altair Antoninha

    2010-01-01

    This study evaluated the long-term efficacy of denture cleansers against Candida spp. biofilm recolonization on liner surface. Specimens were fabricated of a poly(methyl methacrylate)-based denture liner and had their surface roughness evaluated at baseline and after cleansing treatments. C. albicans or C. glabrata biofilms were formed on liner surface for 48 h, and then the specimens were randomly assigned to one of cleaning treatments: two alkaline peroxides (soaking for 3 or 15 min), 0.5% sodium hypochlorite (10 min) or distilled water (control; 15 min). After the treatments, the specimens were sonicated to disrupt the biofilm, and residual cells were counted (cell/mL). Long-term effectiveness of the cleaning processes was determined by submitting a set of cleaned specimens to biofilm growth conditions for 48 h followed by estimation of cell counts. The topography of specimens after cleaning treatments was analyzed by SEM. Data were analyzed by ANOVA and Tukey's test (α; = 0.05). Results of cell count estimation showed significant differences in cleanliness among the treatments (p < 0.001), and it could be observed by SEM. However, no significant difference (p > 0.05) was observed among the Candida species regarding the recolonization condition. Alkaline denture cleansers showed similar cleaning performance and both differed from the control (p < 0.001). Sodium hypochlorite was the only treatment that removed biofilm efficiently, since no viable cells were found after its use. In conclusion, alkaline peroxide denture cleansers were not effective in removing Candida spp. biofilm from denture liner surfaces and preventing biofilm recolonization.

  19. Clonal analysis of lineage fate in native haematopoiesis.

    PubMed

    Rodriguez-Fraticelli, Alejo E; Wolock, Samuel L; Weinreb, Caleb S; Panero, Riccardo; Patel, Sachin H; Jankovic, Maja; Sun, Jianlong; Calogero, Raffaele A; Klein, Allon M; Camargo, Fernando D

    2018-01-11

    Haematopoiesis, the process of mature blood and immune cell production, is functionally organized as a hierarchy, with self-renewing haematopoietic stem cells and multipotent progenitor cells sitting at the very top. Multiple models have been proposed as to what the earliest lineage choices are in these primitive haematopoietic compartments, the cellular intermediates, and the resulting lineage trees that emerge from them. Given that the bulk of studies addressing lineage outcomes have been performed in the context of haematopoietic transplantation, current models of lineage branching are more likely to represent roadmaps of lineage potential than native fate. Here we use transposon tagging to clonally trace the fates of progenitors and stem cells in unperturbed haematopoiesis. Our results describe a distinct clonal roadmap in which the megakaryocyte lineage arises largely independently of other haematopoietic fates. Our data, combined with single-cell RNA sequencing, identify a functional hierarchy of unilineage- and oligolineage-producing clones within the multipotent progenitor population. Finally, our results demonstrate that traditionally defined long-term haematopoietic stem cells are a significant source of megakaryocyte-restricted progenitors, suggesting that the megakaryocyte lineage is the predominant native fate of long-term haematopoietic stem cells. Our study provides evidence for a substantially revised roadmap for unperturbed haematopoiesis, and highlights unique properties of multipotent progenitors and haematopoietic stem cells in situ.

  20. Effects of exogenous hormones on spermatogenesis in the male prairie dog (Cynomys ludovicianus).

    PubMed

    Foreman, D

    1998-01-01

    Male prairie dogs (Cynomys ludovicianus) breed anually and have complete testicular regression. Changes in the seminiferous tubules during the annual cycle have been described recently (Foreman, 1997). This is the first description of spermatogenesis in such a species. The definition of tubular stages during the cycle allows for evaluation of the effects of exogenous hormones, hemicastration, and hemicryptorchidism on spermatogenesis during the annual cycle. Hemicastration was performed during stages of the annual cycle to determine effects of exogenous hormones on remaining testes. Hemicryptorchidism was also done during stages of the annual cycle. FSH, LH, and testosterone were given in high and low doses for short- or long-term treatment periods during stages of the annual cycle. Testicular weights and counts of cell types in tubules of control and treated testes were made on testis tissues. Hemicastration during the out-of-season period does not cause compensatory hypertrophy of the remaining testis, but during recrudescence, hypertrophy of the remaining testis occurs. Hemicastration does not prevent loss of weight by the remaining testis during regression. The seminiferous epithelium of hemicryptorchid prairie dog testes shows damage during spermatogenic activity but not during testicular inactivity. Similarly, hemicryptorchid 15-day-old rat testes do not show damage from hemicryptorchidism. Long-term treatment with FSH preparations during testicular inactivity increased testis weights, spermatogonial proliferation, and spermatocyte differentiation in conjunction with Sertoli cell differentiation. Short-term treatments with low doses increased spermatogonial proliferation and abnormal meiotic activity. Both long- and short-term treatments with LH caused increased sloughing of germ cells and stimulated Leydig and Sertoli cells. Testosterone propionate injections stimulated Sertoli secretions but not Leydig cell activity. Hemicastration during inactivity does not stimulate gonadotropin secretion. Hemicryptorchidism does not affect tubular morphology during inactivity in either rats or prairie dogs. Prompt responses to FSH depend on scrotal location of the testis. FSH has its major effects on germ cell proliferation and differentiation, both directly and through activation of Sertoli cells, whereas LH affects Sertoli and Leydig cell activation but has no effect on germ cell activity. Testosterone activates Sertoli cells.

  1. Summary report for CF6 jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.; Stricklin, R.

    1982-01-01

    Cockpit cruise recordings and test cell data in conjunction with hardware inspection results from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6 high bypass turbofan engines. The magnitude of Short Term deterioration from the Long Term was isolated and the individual damage mechanisms that were the cause for the majority of the performance deterioration were identified. A potential for reduction in compressor clearance and a potential for improvement in turbine roundness, which corresponds to cruise SFC reductions of 0.38 and 0.36 percent, respectively, were identified.

  2. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    PubMed

    Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.

  3. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    PubMed Central

    Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable “steady state” after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions. PMID:28419128

  4. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology.

    PubMed

    De Rosa, Alfredo; De Francesco, Francesco; Tirino, Virginia; Ferraro, Giuseppe A; Desiderio, Vincenzo; Paino, Francesca; Pirozzi, Giuseppe; D'Andrea, Francesco; Papaccio, Gianpaolo

    2009-12-01

    Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.

  5. [Development of an incubation system for an inverted microscopy for long-term observation of cell cultures using chamber slides].

    PubMed

    Feicht, W; Buchner, A; Riesenberg, R

    2001-05-01

    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.

  6. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: preferential localization of chimerism in donor bone.

    PubMed

    Rahhal, Dina N; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T

    2009-09-27

    Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTAs). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Wistar Furth (RT1A(u)) rats were conditioned with 600 to 300 cGy total body irradiation (TBI, day-1), and 100 x 10(6) T-cell-depleted ACI (RT1A(abl)) bone marrow cells were transplanted on day 0, followed by a 11-day course of tacrolimus and one dose of antilymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4 to 6 weeks after bone marrow transplantation. Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-alphabeta-T-cell receptor (TCR) monoclonal antibody (mAb) (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-alphabeta-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving more than or equal to 300 cGy TBI plus anti-alphabeta-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap acceptors lost peripheral blood chimerism within 6 months. However, donor chimerism persisted in the transplanted bone at significantly higher levels compared with other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of peripheral blood chimerism. Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA, which is associated with persistent chimerism preferentially in the transplanted donor bone.

  7. Low-level light emitting diode therapy promotes long-term functional recovery after experimental stroke in mice.

    PubMed

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-12-01

    We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU + ) in the ischemic brain, and significant increases in BrdU + /GFAP + , BrdU + /DCX + , BrdU + /NeuN + , and CD31 + cells in the subacute LED-T group. However, the BrdU + /Iba-1 + cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients

    PubMed Central

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-01-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (Tregs) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4+ T cell count (> or < 500/mm3). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4+ lymphocytes, including Treg subsets, and CD8+ T cells was performed. Percentages of activated CD4+ T cells, Tregs, effector Tregs and terminal effector Tregs were found to be significantly elevated in iIR. Neither the percentage of activated CD8+ T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4+ T cell count and percentage of Tregs were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4+ and CD8+ T cells, Treg percentages and very low-level viraemia. Causative interactions between Tregs and CD4+ T cells should now be explored prospectively in a large patients cohort. PMID:24460818

  9. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    PubMed

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of Lipopolysaccharide on Progesterone Production during Luteinization of Granulosa and Theca cells In Vitro.

    PubMed

    Shimizu, Takashi; Echizenya, Riku; Miyamoto, Akio

    2016-04-01

    The aim of this study is to examine the effect of lipopolysaccharide (LPS) on progesterone production during luteinization of granulosa and theca cells isolated from bovine large follicles. Granulosa and theca cells isolated from large follicles of bovine ovaries were exposed to LPS under appropriate hormone conditions in vitro. Progesterone (P4) production in theca cells, but not granulosa cells, was decreased by long-term exposure of LPS. Long-term exposure of LPS suppressed the gene expression of luteinizing hormone receptor in theca cells. Although long-term exposure of LPS did not affect the expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxy-steroid dehydrogenase (3β-HSD) genes, it did inhibit the protein expression of StAR and 3β-HSD in theca cells. These findings suggest that theca cells, rather than granulosa cells, are susceptible to LPS during luteinization and that LPS inhibits P4 production by decreasing protein levels of StAR during luteinization of theca cells. © 2016 Wiley Periodicals, Inc.

  11. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  12. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  13. Running throughout middle-age improves memory function, hippocampal neurogenesis and BDNF levels in female C57Bl/6J mice

    PubMed Central

    Marlatt, Michael W.; Potter, Michelle C.; Lucassen, Paul J.; van Praag, Henriette

    2012-01-01

    Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis and learning. In the present study, 9-month-old female C57Bl/6J mice were housed with or without a running wheel and injected with bromodeoxyuridine (BrdU) to label newborn cells. Morris water maze learning, open field activity and rotarod behavior were tested 1 and 6 months after exercise onset. Here we show that long-term running improved retention of spatial memory and modestly enhanced rotarod performance at 15 months of age. Both hippocampal neurogenesis and mature BDNF peptide levels were elevated after long-term running. Thus, regular exercise from the onset and during middle-age may maintain brain function. PMID:22252978

  14. Memory strategy training in children with cerebral infarcts related to sickle cell disease.

    PubMed

    Yerys, Benjamin E; White, Desirée A; Salorio, Cynthia F; McKinstry, Robert; Moinuddin, Asif; DeBaun, Michael

    2003-06-01

    Cerebral infarcts occur in approximately 30% of children with sickle cell disease (SCD), but little information exists regarding remediation of associated cognitive deficits. The authors examined the benefits of training children with infarcts to use memory strategies. Six children with SCD-related infarcts received academic tutoring; three of these children received additional training in memory strategies (silent rehearsal to facilitate short-term memory and semantic organization to facilitate long-term memory). The performance of children receiving strategy training appeared to improve more than that of children receiving only tutoring. Memory in children with SCD-related infarcts may be enhanced through strategy training.

  15. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    PubMed

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  16. Current Results and Future Research Priorities in Late Effects after Hematopoietic Stem Cell Transplantation for Children with Sickle Cell Disease and Thalassemia: A Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Shenoy, Shalini; Angelucci, Emanuele; Arnold, Staci D; Baker, K Scott; Bhatia, Monica; Bresters, Dorine; Dietz, Andrew C; De La Fuente, Josu; Duncan, Christine; Gaziev, Javid; King, Allison A; Pulsipher, Michael A; Smith, Angela R; Walters, Mark C

    2017-04-01

    Sustained donor engraftment after allogeneic hematopoietic cell transplantation (HCT) converts to healthy donor hemoglobin synthesis and halts disease symptoms in patients with sickle cell disease and thalassemia major. A disease-free survival probability that exceeds 90% has been reported when HCT using an HLA-matched sibling donor is performed in young patients with low-risk disease or treatment-related risk factors. Alternate donor HCT and HCT in adults is performed infrequently because of a higher risk profile. Transplant-specific risks include conditioning regimen-related toxicity, graft-versus-host disease, graft rejection with marrow aplasia or disease recurrence, and infections associated with immunosuppression and delayed immune reconstitution. The magnitude of risk depends on patient age, clinical status of the underlying disease (eg, organ injury from vasculopathy and iron overload), donor source, and intensity of the conditioning regimen. These risks are commonly monitored and reported in the short term. Documenting very late outcomes is important, but these data are rarely reported because of challenges imposed by patient drop-out and insufficient resources. This report summarizes long-term follow-up results after HCT for hemoglobin disorders, identifies gaps in knowledge, and discusses opportunities for future investigations. This consensus summary will be followed by a second article detailing comprehensive long-term follow-up recommendations to aid in maintaining health in these individuals and identifying late complication risks that could facilitate interventions to improve outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Biochemical Changes in Erythrocytes as a Molecular Marker of Cell Damage during Long-Term Simvastatin Treatment.

    PubMed

    Mikashinovich, Z I; Belousova, E S

    2016-08-01

    Long-term administration of simvastatin to rats, irrespective of the baseline cholesterol levels, induced biochemical changes in erythrocytes attesting to hypoxic damage (accumulation of lactate and 2,3-diphosphoglycerate), disturbances in ATP-dependent mechanisms of ion homeostasis regulation (decrease in total ATPase and Ca(2+)-ATPase activities), and antioxidant enzymes system imbalance. These changes can be considered as a sensitive indicator and molecular basis of cell damage during long-term administration of statins.

  18. Density-Dependent Recycling Promotes the Long-Term Survival of Bacterial Populations during Periods of Starvation.

    PubMed

    Takano, Sotaro; Pawlowska, Bogna J; Gudelj, Ivana; Yomo, Tetsuya; Tsuru, Saburo

    2017-02-07

    The amount of natural resources in the Earth's environment is in flux, which can trigger catastrophic collapses of ecosystems. How populations survive under nutrient-poor conditions is a central question in ecology. Curiously, some bacteria persist for a long time in nutrient-poor environments. Although this survival may be accomplished through cell death and the recycling of dead cells, the importance of these processes and the mechanisms underlying the survival of the populations have not been quantitated. Here, we use microbial laboratory experiments and mathematical models to demonstrate that death and recycling are essential activities for the maintenance of cell survival. We also show that the behavior of the survivors is governed by population density feedback, wherein growth is limited not only by the available resources but also by the population density. The numerical simulations suggest that population density-dependent recycling could be an advantageous behavior under starvation conditions. How organisms survive after exhaustion of resources is a central question in ecology. Starving Escherichia coli constitute a model system to understand survival mechanisms during long-term starvation. Although death and the recycling of dead cells might play a key role in the maintenance of long-term survival, their mechanisms and importance have not been quantitated. Here, we verified the significance of social recycling of dead cells for long-term survival. We also show that the survivors restrained their recycling and did not use all available nutrients released from dead cells, which may be advantageous under starvation conditions. These results indicate that not only the utilization of dead cells but also restrained recycling coordinate the effective utilization of limited resources for long-term survival under starvation. Copyright © 2017 Takano et al.

  19. Tolerance in liver transplantation: Biomarkers and clinical relevance

    PubMed Central

    Baroja-Mazo, Alberto; Revilla-Nuin, Beatriz; Parrilla, Pascual; Martínez-Alarcón, Laura; Ramírez, Pablo; Pons, José Antonio

    2016-01-01

    Transplantation is the optimal treatment for end-stage organ failure, and modern immunosuppression has allowed important progress in short-term outcomes. However, immunosuppression poorly influences chronic rejection and elicits chronic toxicity in current clinical practice. Thus, a major goal in transplantation is to understand and induce tolerance. It is well established that human regulatory T cells expressing the transcription factor FoxP3 play important roles in the maintenance of immunological self-tolerance and immune homeostasis. The major regulatory T cell subsets and mechanisms of expansion that are critical for induction and long-term maintenance of graft tolerance and survival are being actively investigated. Likewise, other immune cells, such as dendritic cells, monocyte/macrophages or natural killer cells, have been described as part of the process known as “operational tolerance”. However, translation of these results towards clinical practice needs solid tools to identify accurately and reliably patients who are going to be tolerant. In this way, a plethora of genetic and cellular biomarkers is raising and being validated worldwide in large multi-center clinical trials. Few of the studies performed so far have provided a detailed analysis of the impact of immunosuppression withdrawal on pre-existing complications derived from the long-term administration of immunosuppressive drugs and the side effects associated with them. The future of liver transplantation is aimed to develop new therapies which increase the actual low tolerant vs non-tolerant recipients ratio. PMID:27678350

  20. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  1. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  2. Decrease in calcitonin and parathyroid hormone mRNA levels and hormone secretion under long-term hypervitaminosis D3 in rats.

    PubMed

    Fernández-Santos, J M; Utrilla, J C; Conde, E; Hevia, A; Loda, M; Martín-Lacave, I

    2001-04-01

    In calcium homeostasis, vitamin D3 is a potent serum calcium-raising agent which in vivo regulates both calcitonin (CT) and parathyroid hormone (PTH) gene expression. Serum calcium is the major secretagogue for CT, a hormone product whose biosynthesis is the main biological activity of thyroid C-cells. Taking advantage of this regulatory mechanism, long-term vitamin D3-induced hypercalcemia has been extensively used as a model to produce hyperactivation, hyperplasia and even proliferative lesions of C-cells, supposedly to reduce the sustained high calcium serum concentrations. We have recently demonstrated that CT serum levels did not rise after long-term hypervitaminosis D3. Moreover, C-cells did not have a proliferative response, rather a decrease in CT-producing C-cell number was observed. In order to confirm the inhibitory effect of vitamin D3 on C-cells, Wistar rats were administered vitamin D3 chronically (25,000 IU/d) with or without calcium chloride (CaCl2). Under these long-term vitamin D3-hypercalcemic conditions, calcium, active metabolites of vitamin D3, CT and PTH serum concentrations were determined by RIA; CT and PTH mRNA levels were analysed by Northern blot and in situ hybridization; and, finally, the ultrastructure of calciotrophic hormone-producing cells was analysed by electron microscopy. Our results show, that, in rats, long term administration of vitamin D3 results in a decrease in hormone biosynthetic activities of both PTH and CT-producing cells, albeit at different magnitudes. Based upon these results, we conclude that hypervitaminosis D3-based methods do not stimulate C-cell activity and can not be used to induce proliferative lesions of calcitonin-producing cells.

  3. Characterization of the 20-Ah nickel-cadmium cell used for energy storage on the Orbiting Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Ford, F. E.

    1972-01-01

    Tests were conducted on 20-Ah sealed nickel cadmium cells to evaluate initial and long-term performance at various charge rates, temperatures and voltage-control levels. An average ampere-hour recharge of 103 percent per orbit at 13 C was able to maintain cell capacity; required watt-hour recharge on an orbital basis was 8 to 10 percent greater than required ampere-hour recharge. Cells exhibited an early life burn-in characteristic. A discharge after periods of repetitive cycling yielded two voltage plateaus which were temporarily eliminated by the discharge.

  4. Properties and degradation of the gasket component of a proton exchange membrane fuel cell--a review.

    PubMed

    Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon

    2012-10-01

    Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.

  5. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X, Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less

  6. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  7. Long-Term Memory Performance in Adult ADHD.

    PubMed

    Skodzik, Timo; Holling, Heinz; Pedersen, Anya

    2017-02-01

    Memory problems are a frequently reported symptom in adult ADHD, and it is well-documented that adults with ADHD perform poorly on long-term memory tests. However, the cause of this effect is still controversial. The present meta-analysis examined underlying mechanisms that may lead to long-term memory impairments in adult ADHD. We performed separate meta-analyses of measures of memory acquisition and long-term memory using both verbal and visual memory tests. In addition, the influence of potential moderator variables was examined. Adults with ADHD performed significantly worse than controls on verbal but not on visual long-term memory and memory acquisition subtests. The long-term memory deficit was strongly statistically related to the memory acquisition deficit. In contrast, no retrieval problems were observable. Our results suggest that memory deficits in adult ADHD reflect a learning deficit induced at the stage of encoding. Implications for clinical and research settings are presented.

  8. Establishing a cGMP pancreatic islet processing facility: the first experience in Iran.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Amoli, Mahsa M; Ao, Ziliang; Jafarian, Ali; Mahdavi-Mazdah, Mitra; Ghanaati, Hossein; Baradar-Jalili, Reza; Sharghi, Sasan; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.

  9. Nicotine Uses Neuron-Glia Communication to Enhance Hippocampal Synaptic Transmission and Long-term Memory

    PubMed Central

    López-Hidalgo, Mónica; Salgado-Puga, Karla; Alvarado-Martínez, Reynaldo; Medina, Andrea Cristina; Prado-Alcalá, Roberto A.; García-Colunga, Jesús

    2012-01-01

    Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions. PMID:23185511

  10. Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity.

    PubMed

    Krajňáková, Jana; Sutela, Suvi; Aronen, Tuija; Gömöry, Dušan; Vianello, Angelo; Häggman, Hely

    2011-08-01

    In coniferous species, including Greek fir (Abies cephalonica Loud), the involvement of somatic embryo plants in breeding and reforestation programs is dependent on the success of long-term cryostorage of embryogenic cultures during clonal field testing. In the present study on Greek fir, we assayed the recovery, morphological characteristics and genetic fidelity of embryogenic cell lines 6 and 8 during proliferation and maturation after long-term cryostorage. Our results indicate successful recovery of both cell lines after 6 years in cryostorage. In the maturation phase, both cell lines were capable of producing somatic embryos although some differences were detected among experiments. However, these changes were more dependent on the differences in the components of the maturation media or in the experimental set-up than on the long-term cryostorage. During both proliferation and maturation phases, the morphological fidelity of the embryogenic cultures as well as of the somatic embryos were alike before and after cryopreservation. The genetic fidelity of the cryopreserved cell line 6 that was assayed by random amplified polymorphic DNA (i.e. RAPD) markers demonstrated some changes in the RAPD profiles. The results indicate possible genetic aberrations caused by long-term cryopreservation or somaclonal variation during the proliferation stage. However, in spite of these changes the embryogenic cultures did not lose their proliferation or maturation abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Investigation of polymer electrolyte membrane fuel cell internal behaviour during long term operation and its use in prognostics

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Jackson, Lisa; Jackson, Tom

    2017-09-01

    This paper investigates the polymer electrolyte membrane (PEM) fuel cell internal behaviour variation at different operating condition, with characterization test data taken at predefined inspection times, and uses the determined internal behaviour evolution to predict the future PEM fuel cell performance. For this purpose, a PEM fuel cell behaviour model is used, which can be related to various fuel cell losses. By matching the model to the collected polarization curves from the PEM fuel cell system, the variation of fuel cell internal behaviour can be obtained through the determined model parameters. From the results, the source of PEM fuel cell degradation during its lifetime at different conditions can be better understood. Moreover, with determined fuel cell internal behaviour, the future fuel cell performance can be obtained by predicting the future model parameters. By comparing with prognostic results using adaptive neuro fuzzy inference system (ANFIS), the proposed prognostic analysis can provide better predictions for PEM fuel cell performance at dynamic condition, and with the understanding of variation in PEM fuel cell internal behaviour, mitigation strategies can be designed to extend the fuel cell performance.

  12. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  13. Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness.

    PubMed

    Hoggatt, Jonathan; Mohammad, Khalid S; Singh, Pratibha; Pelus, Louis M

    2013-10-24

    Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential.

  14. Development of advanced fuel cell system, phase 3

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  15. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34.

    PubMed

    Červený, Jan; Sinetova, Maria A; Zavřel, Tomáš; Los, Dmitry A

    2015-03-02

    Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34) is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance.

  16. Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance.

    PubMed

    Reuveni, Iris; Lin, Longnian; Barkai, Edi

    2018-06-15

    Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    PubMed

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  18. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy

    PubMed Central

    Rocheteau, P.; Chatre, L.; Briand, D.; Mebarki, M.; Jouvion, G.; Bardon, J.; Crochemore, C.; Serrani, P.; Lecci, P. P.; Latil, M.; Matot, B.; Carlier, P. G.; Latronico, N.; Huchet, C.; Lafoux, A.; Sharshar, T.; Ricchetti, M.; Chrétien, F.

    2015-01-01

    Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity. PMID:26666572

  19. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy.

    PubMed

    Rocheteau, P; Chatre, L; Briand, D; Mebarki, M; Jouvion, G; Bardon, J; Crochemore, C; Serrani, P; Lecci, P P; Latil, M; Matot, B; Carlier, P G; Latronico, N; Huchet, C; Lafoux, A; Sharshar, T; Ricchetti, M; Chrétien, F

    2015-12-15

    Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity.

  20. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Hedrick, J.; Chakrabarti, A.

    1998-01-01

    Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.

  1. Immunomodulatory effect of ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice.

    PubMed

    Shi, Yali; Cai, Dehua; Wang, Xiaojie; Liu, Xinshen

    2012-12-01

    Long-term heavy-load exercise can lead to a decrease in the organism's immune response. In this study, we used 100 Kunming (KM) mice to investigate the immune-regulatory effects of Ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice. Peripheral white blood cells (WBC), the absolute value of neutrophils (NEUT), the phagocytic function of macrophages, serum agglutination valence, and the number of plaque-forming cells (PFC) were evaluated 4 weeks after gavaging long-term heavy-load exercising mice with GLP. After exercise, the WBC count in peripheral blood, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells were significantly reduced in the mice not fed GLP. Both medium and high doses of GLP drastically increased peripheral WBC, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells in long-term heavy-load exercising mice. High doses of GLP increased peritoneal macrophage phagocytic rate considerably. With this study, we demonstrate that 4 weeks of heavy-load exercise can lead to exercise-induced immunosuppression in mice. A supplement of GLP fed to these mice improves both non-specific and specific immune responses among these mice. The effect for the high-dose GLP treatment is especially significant.

  2. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katano, Takahito; Ootani, Akifumi; Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system withinmore » the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.« less

  3. T-Cell-Mediated Immune Responses in Patients with Cutaneous or Mucosal Leishmaniasis: Long-Term Evaluation after Therapy

    PubMed Central

    Da-Cruz, Alda Maria; Bittar, Rita; Mattos, Marise; Oliveira-Neto, Manuel P.; Nogueira, Ricardo; Pinho-Ribeiro, Vanessa; Azeredo-Coutinho, Rilza Beatriz; Coutinho, Sergio G.

    2002-01-01

    T-cell immune responses in patients with cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML) were studied during the active disease, at the end of therapy, and 1 to 17 years posttherapy (long-term follow-up). Lymphocyte proliferative responses, phenotypic characterization of CD4+ and CD8+ Leishmania-reactive T cells, and cytokine production were assayed. Patients with active ML and CL showed higher proportions of CD4+ than CD8+ T cells. In CL, the healing process was associated with a decrease of CD4+ and an increase of CD8+, leading to similar CD4+ and CD8+ proportions. This pattern was only seen in ML after long-term therapy. Long-term follow-up of patients with CL showed a positive CD4+/CD8+ ratio as observed during the active disease, although the percentages of these T cell subsets were significantly lower. Patients with CL did not show significant differences between gamma interferon (IFN-γ) and interleukin-5 (IL-5) production during the period of study. Patients with active ML presented higher IFN-γ and IL-5 levels compared to patients with active CL. IL-4 was only detected during active disease. Patients long term after cure from ML showed increasing production of IFN-γ, significant decrease of IL-5, and no IL-4 production. Two apparently beneficial immunological parameters were detected in tegumentary leishmaniasis: (i) decreasing proportions of CD4+ Leishmania-reactive T cells in the absence of IL-4 production associated with cure of CL and ML and (ii) decreasing levels of IL-5 long after cure, better detected in patients with ML. The observed T-cell responses maintained for a long period in healed patients could be relevant for immunoprotection against reinfection and used as a parameter for determining the prognosis of patients and selecting future vaccine preparations. PMID:11874860

  4. Characterization and differentiation of human embryonic stem cells.

    PubMed

    Carpenter, M K; Rosler, E; Rao, M S

    2003-01-01

    Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.

  5. Long-term surveillance plan for the Green River, Utah, disposal site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and detailsmore » how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).« less

  6. Temporal variations in the potential hydrological performance of extensive green roof systems

    NASA Astrophysics Data System (ADS)

    De-Ville, Simon; Menon, Manoj; Stovin, Virginia

    2018-03-01

    Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.

  7. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  8. Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock.

    PubMed

    Mathias, Brittany; Delmas, Amber L; Ozrazgat-Baslanti, Tezcan; Vanzant, Erin L; Szpila, Benjamin E; Mohr, Alicia M; Moore, Frederick A; Brakenridge, Scott C; Brumback, Babette A; Moldawer, Lyle L; Efron, Philip A

    2017-04-01

    We hypothesized that after sepsis in humans, MDSCs will be persistently increased, functionally immunosuppressive, and associated with adverse clinical outcomes. Cancer and sepsis have surprisingly similar immunologic responses and equally dismal long term consequences. In cancer, increased myeloid-derived suppressor cells (MDSCs) induce detrimental immunosuppression, but little is known about the role of MDSCs after sepsis. Blood was obtained from 74 patients within 12 hours of severe sepsis/septic shock (SS/SS), and at set intervals out to 28 days, and also in 18 healthy controls. MDSCs were phenotyped for cell surface receptor expression and enriched by cell sorting. Functional and genome-wide expression analyses were performed. Multiple logistic regression analysis was conducted to determine if increased MDSC appearance was associated with in-hospital and long-term outcomes. After SS/SS, CD33CD11bHLA-DR MDSCs were dramatically increased out to 28 days (P < 0.05). When co-cultured with MDSCs from SS/SS patients, antigen-driven T-cell proliferation and TH1/TH2 cytokine production were suppressed (P < 0.05). Additionally, septic MDSCs had suppressed HLA gene expression and up-regulated ARG1 expression (P < 0.05). Finally, SS/SS patients with persistent increased percentages of blood MDSCs had increased nosocomial infections, prolonged intensive care unit stays, and poor functional status at discharge (P < 0.05). After SS/SS in humans, circulating MDSCs are persistently increased, functionally immunosuppressive, and associated with adverse outcomes. This novel observation warrants further studies. As observed in cancer immunotherapy, MDSCs could be a novel component in multimodality immunotherapy targeting detrimental inflammation and immunosuppression after SS/SS to improve currently observed dismal long-term outcomes.

  9. [Establishment of immortal lymphoblastoid cell bank of keloids pedigree].

    PubMed

    Song, Mei; Gao, Jian-hua; Yan, Xin; Liu, Xiao-jun; Chen, Yang

    2006-11-01

    To provide perpetual research materials for long term studies by establishing immortal lymphoblastoid cell bank of keloids pedigree. The immortal lymphoblastoid cell lines of keloids pedigree were established by Epstein-Barr virus transformation of peripheral blood B lymphocytes. 27 immortal lymphoblastoid cell lines of keloids pedigree were obtained successfully, all of the immortal lymphoblastoid cell lines were successfully revivificated after been frozen in liquid nitrogen. It is important to establish immortal lymphoblastoid cell bank of keloids pedigree and provide long-term DNA materials for deep study of keloids in the future.

  10. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma

    PubMed Central

    Seles, Maximilian; Hutterer, Georg C.; Kiesslich, Tobias; Pummer, Karl; Berindan-Neagoe, Ioana; Perakis, Samantha; Schwarzenbacher, Daniela; Stotz, Michael; Gerger, Armin; Pichler, Martin

    2016-01-01

    Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future. PMID:27092491

  11. Study of Histopathological and Molecular Changes of Rat Kidney under Simulated Weightlessness and Resistance Training Protective Effect

    PubMed Central

    Li, Zhili; Tian, Jijing; Abdelalim, Saed; Du, Fang; She, Ruiping; Wang, Desheng; Tan, Cheng; Wang, Huijuan; Chen, Wenjuan; Lv, Dongqiang; Chang, Lingling

    2011-01-01

    To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration. PMID:21625440

  12. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes.

    PubMed

    Andriani, Yosephine; Chua, Jason Min-Wen; Chua, Benjamin Yan-Jiang; Phang, In Yee; Shyh-Chang, Ng; Tan, Wui Siew

    2017-07-15

    Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    PubMed

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  14. Long-term bridge performance high priority bridge performance issues.

    DOT National Transportation Integrated Search

    2014-10-01

    Bridge performance is a multifaceted issue involving performance of materials and protective systems, : performance of individual components of the bridge, and performance of the structural system as a whole. The : Long-Term Bridge Performance (LTBP)...

  15. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment.

    PubMed

    Giannotti, Stefano; Trombi, Luisa; Bottai, Vanna; Ghilardi, Marco; D'Alessandro, Delfo; Danti, Serena; Dell'Osso, Giacomo; Guido, Giulio; Petrini, Mario

    2013-01-01

    Tissue engineering appears to be an attractive alternative to the traditional approach in the treatment of fracture non-unions. Mesenchymal stromal cells (MSCs) are considered an appealing cell source for clinical intervention. However, ex vivo cell expansion and differentiation towards the osteogenic lineage, together with the design of a suitable scaffold have yet to be optimized. Major concerns exist about the safety of MSC-based therapies, including possible abnormal overgrowth and potential cancer evolution. We examined the long-term efficacy and safety of ex vivo expanded bone marrow MSCs, embedded in autologous fibrin clots, for the healing of atrophic pseudarthrosis of the upper limb. Our research work relied on three main issues: use of an entirely autologous context (cells, serum for ex vivo cell culture, scaffold components), reduced ex vivo cell expansion, and short-term MSC osteoinduction before implantation. Bone marrow MSCs isolated from 8 patients were expanded ex vivo until passage 1 and short-term osteo-differentiated in autologous-based culture conditions. Tissue-engineered constructs designed to embed MSCs in autologous fibrin clots were locally implanted with bone grafts, calibrating their number on the extension of bone damage. Radiographic healing was evaluated with short- and long-term follow-ups (range averages: 6.7 and 76.0 months, respectively). All patients recovered limb function, with no evidence of tissue overgrowth or tumor formation. Our study indicates that highly autologous treatment can be effective and safe in the long-term healing of bone non-unions. This tissue engineering approach resulted in successful clinical and functional outcomes for all patients.

  16. Durability evaluation of reversible solid oxide cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  17. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection.

    PubMed

    Titanji, Kehmia; De Milito, Angelo; Cagigi, Alberto; Thorstensson, Rigmor; Grützmeier, Sven; Atlas, Ann; Hejdeman, Bo; Kroon, Frank P; Lopalco, Lucia; Nilsson, Anna; Chiodi, Francesca

    2006-09-01

    Circulating memory B cells are severely reduced in the peripheral blood of HIV-1-infected patients. We investigated whether dysfunctional serologic memory to non-HIV antigens is related to disease progression by evaluating the frequency of memory B cells, plasma IgG, plasma levels of antibodies to measles, and Streptococcus pneumoniae, and enumerating measles-specific antibody-secreting cells in patients with primary, chronic, and long-term nonprogressive HIV-1 infection. We also evaluated the in vitro production of IgM and IgG antibodies against measles and S pneumoniae antigens following polyclonal activation of peripheral blood mononuclear cells (PBMCs) from patients. The percentage of memory B cells correlated with CD4+ T-cell counts in patients, thus representing a marker of disease progression. While patients with primary and chronic infection had severe defects in serologic memory, long-term nonprogressors had memory B-cell frequency and levels of antigen-specific antibodies comparable with controls. We also evaluated the effect of antiretroviral therapy on these serologic memory defects and found that antiretroviral therapy did not restore serologic memory in primary or in chronic infection. We suggest that HIV infection impairs maintenance of long-term serologic immunity to HIV-1-unrelated antigens and this defect is initiated early in infection. This may have important consequences for the response of HIV-infected patients to immunizations.

  18. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review.

    PubMed

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  19. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  20. Long-term survival in bronchogenic carcinoma with a solitary metastasis.

    PubMed

    Shachor, J; Luria, H; Cordova, M; Bernheim, J; Griffel, B; Bruderman, I

    1986-03-01

    Partial resection of a huge anaplastic large cell carcinoma of the upper lobe of the right lung was performed in a 47-year-old patient in order to relieve symptoms of pulmonary hypertrophic osteoarthropathy. Several months later a solitary metastasis was noted in the muscles of the right forearm. The metastasis was resected and the forearm irradiated. The patient was further treated with injections of autologous tumour cell vaccine and BCG. Today, 7 years later, the patient is alive, without any signs of neoplastic disease.

  1. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  2. Intratumor Heterogeneity of the Estrogen Receptor and the Long-term Risk of Fatal Breast Cancer.

    PubMed

    Lindström, Linda S; Yau, Christina; Czene, Kamila; Thompson, Carlie K; Hoadley, Katherine A; Van't Veer, Laura J; Balassanian, Ron; Bishop, John W; Carpenter, Philip M; Chen, Yunn-Yi; Datnow, Brian; Hasteh, Farnaz; Krings, Gregor; Lin, Fritz; Zhang, Yanhong; Nordenskjöld, Bo; Stål, Olle; Benz, Christopher C; Fornander, Tommy; Borowsky, Alexander D; Esserman, Laura J

    2018-01-19

    Breast cancer patients with estrogen receptor (ER)-positive disease have a continuous long-term risk for fatal breast cancer, but the biological factors influencing this risk are unknown. We aimed to determine whether high intratumor heterogeneity of ER predicts an increased long-term risk (25 years) of fatal breast cancer. The STO-3 trial enrolled 1780 postmenopausal lymph node-negative breast cancer patients randomly assigned to receive adjuvant tamoxifen vs not. The fraction of cancer cells for each ER intensity level was scored by breast cancer pathologists, and intratumor heterogeneity of ER was calculated using Rao's quadratic entropy and categorized into high and low heterogeneity using a predefined cutoff at the second tertile (67%). Long-term breast cancer-specific survival analyses by intra-tumor heterogeneity of ER were performed using Kaplan-Meier and multivariable Cox proportional hazard modeling adjusting for patient and tumor characteristics. A statistically significant difference in long-term survival by high vs low intratumor heterogeneity of ER was seen for all ER-positive patients (P < .001) and for patients with luminal A subtype tumors (P = .01). In multivariable analyses, patients with high intratumor heterogeneity of ER had a twofold increased long-term risk as compared with patients with low intratumor heterogeneity (ER-positive: hazard ratio [HR] = 1.98, 95% confidence interval [CI] = 1.31 to 3.00; luminal A subtype tumors: HR = 2.43, 95% CI = 1.18 to 4.99). Patients with high intratumor heterogeneity of ER had an increased long-term risk of fatal breast cancer. Interestingly, a similar long-term risk increase was seen in patients with luminal A subtype tumors. Our findings suggest that intratumor heterogeneity of ER is an independent long-term prognosticator with potential to change clinical management, especially for patients with luminal A tumors. © The Author(s) 2018. Published by Oxford University Press.

  3. A comparison of two endoscopic closures: over-the-scope clip (OTSC) versus KING closure (endoloop + clips) in a randomized long-term experimental study.

    PubMed

    Dolezel, R; Ryska, O; Kollar, M; Juhasova, J; Kalvach, J; Ryska, M; Martinek, J

    2016-11-01

    Both over-the-scope clip (OTSC) and KING (endoloop + clips) closures provide reliable and safe full-thickness endoscopic closure. Nevertheless, OTSC clip demonstrated significantly inferior histological healing in the short-term follow-up. To compare OTSC versus KING closure of a perforation with regard to long-term effectiveness and macroscopic and histological quality of healing. We performed a randomized experimental study with 16 mini-pigs (mean weight 43.2 ± 11.2 kg). A standardized perforation was performed on the anterior sigmoid wall. KING closure (n = 8) was attained by approximation of an endoloop fixed to the margins of a perforation with endoclips. OTSC closure (n = 8) was performed by deploying OTSC (OVESCO) over the defect. Pigs underwent a control sigmoidoscopy 8 months after the closure to assess the macroscopic quality of healing. Then, autopsy was performed and the rectosigmoid was sent for histopathological assessment. All closures were completed successfully without air leaks. The duration of closure was similar in both techniques (OTSC 17.8 ± 7.6 min vs. KING 19.6 ± 8.8 min). At autopsy, all KING closures (100 %) were healed with a flat scar without signs of leakage. Microscopically, no inflammatory changes were observed after KING closure. In the OTSC group, microscopic ulcers were present in two pigs (25 %), cryptal abscesses in three pigs (38 %) and significant neutrophil accumulation in all eight pigs (P < 0.01). Giant cell granulomas, dysplasia or abundant scarification was not observed in either group. Both OTSC and KING closures offer a long-term reliable seal of a gastrointestinal perforation without stenosis or fistulas. KING closure provides long-term histologically superior healing.

  4. Nanoparticle Delivery of miR-34a Eradicates Long-term-cultured Breast Cancer Stem Cells via Targeting C22ORF28 Directly

    PubMed Central

    Lin, Xiaoti; Chen, Weiyu; Wei, Fengqin; Zhou, Binhua P.; Hung, Mien-Chie; Xie, Xiaoming

    2017-01-01

    Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning protocol. Tissue microarray analysis has been used to study 217 cases of clinical breast cancer specimens. Results: Here, we have successfully established four long-term maintenance BCSC that retain their tumor-initiating biological properties. Our analyses of microarray and qRT-PCR explored that miR-34a is the most pronounced microRNA for investigation of BCSC. We establish hTERT promoter-driven VISA delivery of miR-34a (TV-miR-34a) plasmid that can induce high throughput of miR-34a expression in BCSC. TV-miR-34a significantly inhibited the tumor-initiating properties of long-term-cultured BCSC in vitro and reduced the proliferation of BCSC in vivo by an efficient and safe way. TV-miR-34a synergizes with docetaxel, a standard therapy for invasive breast cancer, to act as a BCSC inhibitor. Further mechanistic investigation indicates that TV-miR-34a directly prevents C22ORF28 accumulation, which abrogates clonogenicity and tumor growth and correlates with low miR-34 and high C22ORF28 levels in breast cancer patients. Conclusion: Taken together, we generated four long-term maintenance BCSC derived from either clinical specimens or cell lines, which would be greatly beneficial to the research progress in breast cancer patients. We further developed the non-viral TV-miR-34a plasmid, which has a great potential to be applied as a clinical application for breast cancer therapy. PMID:29187905

  5. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture.

    PubMed

    Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang

    2017-04-30

    Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less

  7. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less

  8. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    PubMed

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription factor STAT3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step toward developing therapeutic strategies that improve nerve regeneration and functional recovery. Copyright © 2017 Benito, Davis et al.

  9. Bovine central memory T cells are highly proliferative in response to bovine tuberculosis infection

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays measure central memory T cell (Tcm) responses in both humans and cattle. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT responses correlate with protection. In other species, Tcm’s pose low activation threshold and a...

  10. Acute and long-term in vitro effects of zinc oxide nanoparticles.

    PubMed

    Annangi, Balasubramanyam; Rubio, Laura; Alaraby, Mohamed; Bach, Jordi; Marcos, Ricard; Hernández, Alba

    2016-09-01

    Since most of the toxic studies of zinc oxide nanoparticles (ZnO NPs) focused on acute and high-dose exposure conditions, the aim of the present study was to fill the existing knowledge gap of long-term effects of ZnO NPs at sub-toxic doses. To overcome this point, we have evaluated the toxic, genotoxic, and carcinogenic effects of ZnO NPs under long-term treatments (12 weeks), using a sub-toxic dose (1 µg/mL) according to acute 48-h exposure. Preliminarily, oxidative stress and genotoxic/oxidative DNA damage were determined under acute exposure and high-dose conditions. To determine the role of oxidative DNA damage, a wild-type mouse embryonic fibroblast (MEF Ogg1 (+/+)) and its isogenic 8-oxo-guanine DNA glycosylase 1 (Ogg1) knockout partner (MEF Ogg1 (-/-)) cell lines were used. Although short-term exposure (24-h) experiments demonstrated that ZnO NPs were able to induce ROS, genotoxicity, and oxidative DNA damage in both cell lines, no effects were obtained under long-term exposure scenario. Thus, 1 µg/mL exposure over 12 weeks was unable to induce genotoxicity as well as cellular transformation in both cell types, as indicated by the lack of observed morphological cell changes, variations in the secretion of matrix metalloproteinases, and anchorage-independent cell growth ability, regarded as cancer-like phenotypic hallmarks. Our results indicate that short-term effects of ZnO NP exposure are not replicated under long-term and sub-toxic dose conditions. All together, the lack of genotoxic/carcinogenic effects after chronic treatments seem to indicate a reduced risk associated with ZnO NP exposure.

  11. A computational simulation of long-term synaptic potentiation inducing protocol processes with model of CA3 hippocampal microcircuit.

    PubMed

    Świetlik, D; Białowąs, J; Kusiak, A; Cichońska, D

    2018-01-01

    An experimental study of computational model of the CA3 region presents cog-nitive and behavioural functions the hippocampus. The main property of the CA3 region is plastic recurrent connectivity, where the connections allow it to behave as an auto-associative memory. The computer simulations showed that CA3 model performs efficient long-term synaptic potentiation (LTP) induction and high rate of sub-millisecond coincidence detection. Average frequency of the CA3 pyramidal cells model was substantially higher in simulations with LTP induction protocol than without the LTP. The entropy of pyramidal cells with LTP seemed to be significantly higher than without LTP induction protocol (p = 0.0001). There was depression of entropy, which was caused by an increase of forgetting coefficient in pyramidal cells simulations without LTP (R = -0.88, p = 0.0008), whereas such correlation did not appear in LTP simulation (p = 0.4458). Our model of CA3 hippocampal formation microcircuit biologically inspired lets you understand neurophysiologic data. (Folia Morphol 2018; 77, 2: 210-220).

  12. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics.

    PubMed

    Baert, Yoni; Braye, Aude; Struijk, Robin B; van Pelt, Ans M M; Goossens, Ellen

    2015-11-01

    To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. Experimental basic science study. Reproductive biology laboratory. Testicular tissue with normal spermatogenesis was obtained from six donors. None. Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture. Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA(+)/UCHL1(+)) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA(-)/UCHL1(+) cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period. Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes

    PubMed Central

    Zhang, Mingfeng; Lin, Qing; Qi, Tong; Wang, Tiankun; Chen, Ching-Cheng; Riggs, Arthur D.; Zeng, Defu

    2016-01-01

    We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9+ (Sox9+) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9+ ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9+ ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300–450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9+ ductal cell differentiation into β cells in adult mice. PMID:26733677

  14. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.

    PubMed

    Szabó, Dóra Júlia; Noer, Agate; Nagymihály, Richárd; Josifovska, Natasha; Andjelic, Sofija; Veréb, Zoltán; Facskó, Andrea; Moe, Morten C; Petrovski, Goran

    2015-01-01

    Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation. The outgrowing cells were examined by immunofluorescent staining for putative markers of stemness (ABCG2, CK15, CK19 and Vimentin), proliferation (p63α, Ki-67), limbal basal epithelial cells (CK8/18) and differentiated cornea epithelial cells (CK3 and CK12). Morphological and immunostaining analyses revealed that long-term culturing can form stratified 3D tissue layers with a clear extracellular matrix deposition and organization (collagen I, IV and V). The LESCs showed robust expression of p63α, ABCG2, and their surface marker fingerprint (CD117/c-kit, CXCR4, CD146/MCAM, CD166/ALCAM) changed over time compared to short-term LESC cultures. Overall, we provide a model for generating stem cell-rich, long-standing 3D cultures from LESCs which can be used for further research purposes and clinical transplantation.

  15. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    NASA Astrophysics Data System (ADS)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  16. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  17. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies: A Systematic Review

    PubMed Central

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like “dental pulp stem cells”, “regeneration”, “medical applications”, “tissue engineering”. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective. PMID:24665194

  18. Results of Long Term Life Tests of Large Scale Lithium-Ion Cells

    NASA Astrophysics Data System (ADS)

    Inoue, Takefumi; Imamura, Nobutaka; Miyanaga, Naozumi; Yoshida, Hiroaki; Komada, Kanemi

    2008-09-01

    High energy density Li-ion cells have been introduced to latest satellites and another space usage. We have started development of large scale Li-ion cells for space applications in 1997. The chemical design was fixed in 1999.It is very important to confirm life performance to apply satellite applications because it requires long mission life such as 15 years for GEO and 5 to 7 years for LEO. Therefore we started life test at various conditions. And the tests have reached 8 to 9 years in actual calendar time. Semi - accelerated GEO tests which gives both calendar and cycle loss have been reached 42 season that corresponds 21 years in orbit. The specific energy range is 120 - 130 Wh/kg at EOL. According to the test results, we have confirmed that our Li-ion cell meets general requirements for space application such as GEO and LEO with quite high specific energy.

  19. Splenectomy Fails to Provide Long-Term Protection Against Ischemic Stroke.

    PubMed

    Ran, Yuanyuan; Liu, Zongjian; Huang, Shuo; Shen, Jiamei; Li, Fengwu; Zhang, Wenxiu; Chen, Chen; Geng, Xiaokun; Ji, Zhili; Du, Huishan; Hu, Xiaoming

    2018-06-01

    Splenectomy before or immediately after stroke provides early brain protection. This study aims to explore the effect of splenectomy on long-term neurological recovery after stroke, which is currently lacking in the field. Adult male rats were randomized into splenectomy or sham groups and then subjected to 90 min of middle cerebral artery occlusion (MCAO). Spleen was removed right upon reperfusion or 3d after MCAO. Infarct volume, neurological functions, and peripheral immune cell populations were assessed up to 28d after stroke. The results show that delayed removal of spleen did not reduce brain tissue loss and showed no effect on sensorimotor function (Rotarod, beam balance, forelimb placing, grid walk, and adhesive removal tests) or cognitive function (Morris water maze). Spleen removal immediately upon reperfusion, although significantly reduced the infarct size and immune cell infiltration 3d after MCAO, also failed to promote long-term recovery. Flow cytometry analysis demonstrated that immediate splenectomy after MCAO resulted in a prolonged decrease in the percentage of CD3 + CD4 + and CD3 + CD8 + T cells in total lymphocytes as compared to non-splenectomy MCAO rats. In contrast, the percentage of CD3 - CD45RA + B cells was significantly elevated after splenectomy. As a result, the ratio of T/B cells was significantly reduced in stroke rats with splenectomy. In conclusion, delayed splenectomy failed to provide long-term protection to the ischemic brain or improve functional recovery. The acute neuroprotective effect achieved by early splenectomy after stroke cannot last for long term. This loss of neuroprotection might be related to the prolonged disturbance in the T cell to B cell ratio.

  20. Microgravity

    NASA Image and Video Library

    1998-10-10

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue; A: Duct element recovered from breast tissue digest. B: Outgrowth of cells from duct element in upper right corner cultured in a standard dish; most cells spontaneousely die during early cell divisions, but a few will establish long-term growth. C: Isolate of long-term frowth HMEC from outgrowth of duct element; cells shown soon after isolation and in early full-cell contact growth in culture in a dish. D: same long-term growth HMEC, but after 3 weeks in late full-cell contact growth in a continuous culture in a dish. Note attempts to reform duct elements but this in two demensions in a dish rather than in three dimensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Richmond, NASA/Marshall Space Flight Center (MSFC).

  1. [Isolation,culture and identification of adipose-derived stem cells from SD rat adipose tissues subjected to long-term cryopreservation].

    PubMed

    Liu, Qin; Wang, Liping; Chen, Fang; Zhang, Yi

    2017-02-01

    To study the feasibility of isolation and culture of adipose-derived stem cells( ADSCs) from SD rat adipose tissues subjected to long-term cryopreservation. We took inguinal fat pads from healthy SD rats. Adipose tissues were stored with 100 m L / L dimethyl sulfoxide( DMSO) combined with 900 m L / L fetal bovine serum( FBS) in liquid nitrogen. Three months later,the adipose tissues were resuscitated for the isolation and culture of ADSCs. The growth status and morphology were observed. The growth curve and cell surface markers CD29,CD45,CD90 of the 3rd passage cells were analyzed respectively by CCK-8 assay and immunocytochemistry. The 3rd passage cells were induced towards adipogenic lineages and osteogenic lineages by different inducers,and the resulting cells were examined separately by oil red O staining and alizarin red staining. The ADSCs obtained from SD rat adipose tissues subjected to long-term cryopreservation showed a spindle-shape appearance and had a good proliferation ability. The cell growth curve was typical "S " curve.Immunocytochemistry showed that the 3rd passage cells were positive for CD29 and CD90,while negative for CD45. The cells were positive for oil red O staining after adipogenic induction,and also positive for alizarin red staining after osteogenic induction. The ADSCs can be isolated from SD rat adipose tissues subjected to long-term cryopreservation.

  2. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  3. Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    PubMed Central

    Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang

    2016-01-01

    DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266

  4. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  5. Lithium-manganese dioxide cells for implantable defibrillator devices-Discharge voltage models

    NASA Astrophysics Data System (ADS)

    Root, Michael J.

    The discharge potential behavior of lithium-manganese dioxide cells designed for implantable cardiac defibrillators was characterized as a function of extent of cell depletion for tests designed to discharge the cells for times between 1 and 7 years. The discharge potential curves may be separated into two segments from 0 ≤ x ≤ ∼0.51 and ∼0.51 ≤ x ≤ 1.00, where x is the dimensionless extent of discharge referenced to the rated cell capacity. The discharge potentials conform to Tafel kinetics in each segment. This behavior allows the discharge potential curves to be predicted for an arbitrary discharge load and long term discharge performance may be predicted from short term test results. The discharge potentials may subsequently be modeled by fitting the discharge curves to empirical functions like polynomials and Padé approximants. A function based on the Nernst equation that includes a term accounting for nonideal interactions between lithium ions and the cathode host material, such as the Redlich-Kister relationship, also may be used to predict discharge behavior.

  6. Effect of simple shear flow on photosynthesis rate and morphology of micro algae

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, S.; Fujimoto, M.; Muramatsu, H.; Tanishita, K.

    The convective motion of micro algal suspension gives an advantageous effect on the photosynthetic rate in the bioreactor, however, the nature of convective effect on the photosynthesis has not been fully understood. The propose of this study concerns the nature of photosynthetic rate in a well-defined hydrodynamic shear flow of Spirulina platensis suspension, generated in a double rotating coaxial cylinders. The double rotating coaxial cylinders was installed in the incubator chamber with the controlled illumination intensity and temperature. Two kind of experiments, short and long term experiments, were performed to evaluate the direct effect of shear flow on the photosynthetic rate. The short term experiment indicates that the simple shear flow enables to augment the photosynthesis of Spirulina suspension and simultaneously causes the cell destruction due to the excessive shear stress. The long term experiment for 100 hours reveals that the growth rate and the morphology of Spirulina is sensitive to the external fluid mechanical stimulus. The long term application of mechanical stress on the algae may result in the adaptation of the photosynthetic function and morphology.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève; Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yieldedmore » 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic –activated cell sorting step.« less

  8. Long-term human immune system reconstitution in non-obese diabetic (NOD)-Rag (-)-γ chain (-) (NRG) mice is similar but not identical to the original stem cell donor.

    PubMed

    Harris, D T; Badowski, M; Balamurugan, A; Yang, O O

    2013-12-01

    The murine immune system is not necessarily identical to it human counterpart, which has led to the construction of humanized mice. The current study analysed whether or not a human immune system contained within the non-obese diabetic (NOD)-Rag1(null) -γ chain(null) (NRG) mouse model was an accurate representation of the original stem cell donor and if multiple mice constructed from the same donor were similar to one another. To that end, lightly irradiated NRG mice were injected intrahepatically on day 1 of life with purified cord blood-derived CD34(+) stem and progenitor cells. Multiple mice were constructed from each cord blood donor. Mice were analysed quarterly for changes in the immune system, and followed for periods up to 12 months post-transplant. Mice from the same donor were compared directly with each other as well as with the original donor. Analyses were performed for immune reconstitution, including flow cytometry, T cell receptor (TCR) and B cell receptor (BCR) spectratyping. It was observed that NRG mice could be 'humanized' long-term using cord blood stem cells, and that animals constructed from the same cord blood donor were nearly identical to one another, but quite different from the original stem cell donor immune system. © 2013 British Society for Immunology.

  9. Eosinophils: important players in humoral immunity.

    PubMed

    Berek, C

    2016-01-01

    Eosinophils perform numerous tasks. They are involved in inflammatory reactions associated with innate immune defence against parasitic infections and are also involved in pathological processes in response to allergens. Recently, however, it has become clear that eosinophils also play crucial non-inflammatory roles in the generation and maintenance of adaptive immune responses. Eosinophils, being a major source of the plasma cell survival factor APRIL (activation and proliferation-induced ligand), are essential not only for the long-term survival of plasma cells in the bone marrow, but also for the maintenance of these cells in the lamina propria which underlies the gut epithelium. At steady state under non-inflammatory conditions eosinophils are resident cells of the gastrointestinal tract, although only few are present in the major organized lymphoid tissue of the gut - the Peyer's patches (PP). Surprisingly, however, lack of eosinophils abolishes efficient class-switching of B cells to immunoglobulin (Ig)A in the germinal centres of PP. Thus, eosinophils are required to generate and to maintain mucosal IgA plasma cells, and as a consequence their absence leads to a marked reduction of IgA both in serum and in the gut-associated lymphoid tissues (GALT). Eosinophils thus have an essential part in long-term humoral immune protection, as they are crucial for the longevity of antibody-producing plasma cells in the bone marrow and, in addition, for gut immune homeostasis. © 2015 British Society for Immunology.

  10. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; ...

    2016-02-25

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  11. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  12. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation.

    PubMed

    Ramírez, M Á; Pericuesta, E; Yáñez-Mó, M; Palasz, A; Gutiérrez-Adán, A

    2011-02-01

    Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. After 3 days culture or after long-term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT-mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long-term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long-term culture of mES cells in vitro. © 2010 Blackwell Publishing Ltd.

  13. Long-term topical corticosteroid use and risk of skin cancer: a systematic review.

    PubMed

    Ratib, Sonia; Burden-Teh, Esther; Leonardi-Bee, Jo; Harwood, Catherine; Bath-Hextall, Fiona

    2018-06-01

    The objective of this systematic review was to synthesize available research evidence to determine the risk of skin cancer in patients with long-term use of topical corticosteroids (TCS). Topical corticosteroids are one of the most commonly prescribed medicines in dermatology and the mainstay of the treatment of atopic dermatitis and other skin conditions such as psoriasis. They are often required for months or years to control the disease and ultimately restore patients' quality of life. In some patients, TCS may have a local immunosuppressive effect and theoretically increase the risk of skin cancer, whilst on the other hand TCS may decrease the risk of skin cancer in patients where TCS are used to treat inflammatory skin disease. To date, no systematic review has been performed to collate evidence on the effect of long-term TCS use on the risk of skin cancer. This review considered studies that included people of all ages, genders and ethnicities, including HIV and transplant participants or participants with genetic diseases (for example, Gorlin-Goltz syndrome) This review considered studies that evaluated long-term use of topical corticosteroids. "Long-term" was defined as using TCS more than once a week for a month or longer. The review included cohort, cross-sectional and case-control observational studies exploring the association between the stated intervention and outcomes. The primary outcome measures of interest were: non-melanoma skin cancer (keratinocyte carcinoma), cutaneous squamous cell carcinoma (cSSC), basal cell carcinoma (BCC) or melanoma skin cancer. Genital and oral skin cancers are considered to be slightly different so we did not include them in this review. We performed a comprehensive search of MEDLINE, Embase and LILACS on November 9, 2017 to identify observational epidemiological studies assessing the association between long-term TCS use and skin cancer. We also searched EThOS at the British Library and three drug safety databases to identify unpublished work. The titles, abstracts and full text identified from the search were assessed independently by two authors against pre-specified inclusion/exclusion criteria. Methodological quality was not assessed as no articles were found which met the inclusion criteria. Data extraction was not possible as no articles were found which met the inclusion criteria. It was not possible to complete data synthesis as no articles were found which met the inclusion criteria. A total of 1703 potentially relevant studies were identified following a comprehensive electronic search. After abstract and title screening, 51 full texts were assessed for eligibility criteria. Of these, no study met the inclusion criteria. No additional records were identified from searching unpublished literature. We did not find any studies that could help us establish if long-term TCS use is associated with skin cancer. Future research using primary care databases might give a better understanding regarding long-term use of TCS and skin cancer.

  14. Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance

    PubMed Central

    Eck, Michael; Krueger, Michael

    2016-01-01

    In this publication we show that the procedure to synthesize nanocrystals and the post-synthetic nanocrystal ligand sphere treatment have a great influence not only on the immediate performance of hybrid bulk heterojunction solar cells, but also on their thermal, long-term, and air stability. We herein demonstrate this for the particular case of spherical CdSe nanocrystals, post-synthetically treated with a hexanoic acid based treatment. We observe an influence from the duration of this post-synthetic treatment on the nanocrystal ligand sphere size, and also on the solar cell performance. By tuning the post-synthetic treatment to a certain degree, optimal device performance can be achieved. Moreover, we show how to effectively adapt the post-synthetic nanocrystal treatment protocol to different nanocrystal synthesis batches, hence increasing the reproducibility of hybrid nanocrystal:polymer bulk-heterojunction solar cells, which usually suffers due to the fluctuations in nanocrystal quality of different synthesis batches and synthesis procedures. PMID:28335243

  15. Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells.

    PubMed

    Ke, Weijun; Priyanka, Pragya; Vegiraju, Sureshraju; Stoumpos, Constantinos C; Spanopoulos, Ioannis; Soe, Chan Myae Myae; Marks, Tobin J; Chen, Ming-Chou; Kanatzidis, Mercouri G

    2018-01-10

    Developing dopant-free hole transporting layers (HTLs) is critical in achieving high-performance and robust state-of-the-art perovskite photovoltaics, especially for the air-sensitive tin-based perovskite systems. The commonly used HTLs require hygroscopic dopants and additives for optimal performance, which adds extra cost to manufacturing and limits long-term device stability. Here we demonstrate the use of a novel tetrakis-triphenylamine (TPE) small molecule prepared by a facile synthetic route as a superior dopant-free HTL for lead-free tin-based perovskite solar cells. The best-performing tin iodide perovskite cells employing the novel mixed-cation ethylenediammonium/formamidinium with the dopant-free TPE HTL achieve a power conversion efficiency as high as 7.23%, ascribed to the HTL's suitable band alignment and excellent hole extraction/collection properties. This efficiency is one of the highest reported so far for tin halide perovskite systems, highlighting potential application of TPE HTL material in low-cost high-performance tin-based perovskite solar cells.

  16. Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells.

    PubMed

    Trepiana, Jenifer; Meijide, Susana; Navarro, Rosaura; Hernández, M Luisa; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2017-08-01

    Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial pressure (21% O 2 ). However, the oxygen concentrations in the liver and cancer cells are far from this value. In the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metalloproteinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and Hep3B (deleted), were cultured (6-30 days) under atmospheric (21%) and more physiological (8%) pO 2 . Results showed that after long-term culturing at 8% versus 21% O 2 , the cellular proliferation rate and the steady-state levels of mitochondrial O 2 - were unaffected. However, the intracellular basal ROS levels were higher independently of the characteristics of the cell line. Moreover, the lower pO 2 was associated with lower glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2. This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion. HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-term culturing of human hepatoma cells at a low, more physiological pO 2 induces antioxidant adaptations that could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient O 2 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Phenotype and specificity of T cells in primary human cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is associated with protection from vertical transmission.

    PubMed

    Mele, Federico; Fornara, Chiara; Jarrossay, David; Furione, Milena; Arossa, Alessia; Spinillo, Arsenio; Lanzavecchia, Antonio; Gerna, Giuseppe; Sallusto, Federica; Lilleri, Daniele

    2017-01-01

    Congenital human cytomegalovirus (HCMV) infection is the major cause of birth defects and a precise definition of the HCMV-specific T-cell response in primary infection may help define reliable correlates of immune protection during pregnancy. In this study, a high throughput method was used to define the frequency of CD4+ and CD8+ T cells specific for four HCMV proteins in the naïve compartment of seronegative subjects and the effector/memory compartments of subjects with primary/remote HCMV infection. The naïve repertoire displayed comparable frequencies of T cells that were reactive with HCMV structural (pp65, gB and the pentamer gHgLpUL128L) and non-structural (IE-1) proteins. Whereas, following natural infection, the majority of effector/memory CD4+ and CD8+ T cells recognized either gB or IE-1, respectively, and pp65. The pattern of T cell reactivity was comparable at early and late stages of infection and in pregnant women with primary HCMV infection transmitting or not transmitting the virus to the fetus. At an early stage of primary infection, about 50% of HCMV-reactive CD4+ T cells were long-term IL-7Rpos memory cells, while 6-12 months later, the frequency of these cells increased to 70%, approaching 100% in remote infections. In contrast, only 10-20% of HCMV-specific CD8+ T cells were long-term memory cells up to 12 months after infection onset, thereafter increasing to 70% in remote infections. Interestingly, a significantly higher frequency of HCMV-specific CD4+ T cells with a long-term IL-7Rpos memory phenotype was observed in non-transmitting compared to transmitting women. These findings indicate that immunodominance in HCMV infection is not predetermined in the naïve compartment, but is the result of virus-host interactions and suggest that prompt control of HCMV infection in pregnancy is associated with the rapid development of long-term IL-7Rpos memory HCMV-specific CD4+ T cells and a low risk of virus transmission to the fetus.

  18. Hippocampal CA1 Kindling but Not Long-Term Potentiation Disrupts Spatial Memory Performance

    ERIC Educational Resources Information Center

    Leung, L. Stan; Shen, Bixia

    2006-01-01

    Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied…

  19. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    DOT National Transportation Integrated Search

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  20. Long-Term Orientation and Educational Performance. Working Paper 174

    ERIC Educational Resources Information Center

    Figlio, David; Giuliano, Paola; Özek, Umut; Sapienza, Paola

    2017-01-01

    We use remarkable population-level administrative education and birth records from Florida to study the role of Long-Term Orientation on the educational attainment of immigrant students living in the US. Controlling for the quality of schools and individual characteristics, students from countries with long-term oriented attitudes perform better…

  1. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xu; Wang, Dapeng; Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuousmore » low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite exposure enhances Nrf2-mediated antioxidant levels. • Knockdown of Nrf2 reduces malignant degree of arsenite-transformed cells.« less

  2. Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach.

    PubMed

    Lee, Hyung-Chul; Ryu, Ho-Geol; Chung, Eun-Jin; Jung, Chul-Woo

    2018-03-01

    The discrepancy between predicted effect-site concentration and measured bispectral index is problematic during intravenous anesthesia with target-controlled infusion of propofol and remifentanil. We hypothesized that bispectral index during total intravenous anesthesia would be more accurately predicted by a deep learning approach. Long short-term memory and the feed-forward neural network were sequenced to simulate the pharmacokinetic and pharmacodynamic parts of an empirical model, respectively, to predict intraoperative bispectral index during combined use of propofol and remifentanil. Inputs of long short-term memory were infusion histories of propofol and remifentanil, which were retrieved from target-controlled infusion pumps for 1,800 s at 10-s intervals. Inputs of the feed-forward network were the outputs of long short-term memory and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the bispectral index. The performance of bispectral index prediction was compared between the deep learning model and previously reported response surface model. The model hyperparameters comprised 8 memory cells in the long short-term memory layer and 16 nodes in the hidden layer of the feed-forward network. The model training and testing were performed with separate data sets of 131 and 100 cases. The concordance correlation coefficient (95% CI) were 0.561 (0.560 to 0.562) in the deep learning model, which was significantly larger than that in the response surface model (0.265 [0.263 to 0.266], P < 0.001). The deep learning model-predicted bispectral index during target-controlled infusion of propofol and remifentanil more accurately compared to the traditional model. The deep learning approach in anesthetic pharmacology seems promising because of its excellent performance and extensibility.

  3. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  4. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-09-01

    Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.

  5. Durability of symmetric-structured metal-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.

    2017-11-01

    Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.

  6. Focal cutaneous squamous cell carcinoma following radium-223 extravasation.

    PubMed

    Benjegerdes, Katie E; Brown, Shannon C; Housewright, Chad D

    2017-01-01

    Long-term sequelae due to extravasation of intravenous radioisotopes resulting in radiation injuries are rarely reported. As the use of radioactive isotopes for the treatment of osteoblastic metastases increases, information regarding the prevention, treatment, and long-term monitoring of suspected extravasation injury will become increasingly important. We present a patient with no previous history of skin cancer who developed an aggressive cutaneous squamous cell carcinoma at the site of prior radium-223 extravasation. We recommend that patients who experience extravasation of therapeutic radioisotopes be monitored by dermatologists for long-term sequelae. Cutaneous squamous cell carcinoma should be recognized as a rare but potential adverse event following cutaneous extravasation of radium-223 and is likely a side effect that is severely underreported.

  7. Pre-Primary Education and Long-Term Education Performance: Evidence from Programme for International Student Assessment (PISA) Thailand

    ERIC Educational Resources Information Center

    Pholphirul, Piriya

    2017-01-01

    Several research papers have assessed the long-term benefits of pre-primary education in terms of academic performance and labor market outcomes. This study analyzes data obtained from the Programme for International Student Assessment (PISA) to estimate the effects of preschool enrollment of Thai students on producing long-term benefits in their…

  8. IL-7 promotes long-term in vitro survival of unique long-lived memory subset generated from mucosal effector memory CD4+ T cells in chronic colitis mice.

    PubMed

    Takahara, Masahiro; Nemoto, Yasuhiro; Oshima, Shigeru; Matsuzawa, Yu; Kanai, Takanori; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Yamamoto, Kazuhide; Watanabe, Mamoru

    2013-01-01

    Colitogenic memory CD4(+) T cells are important in the pathogenesis of inflammatory bowel disease (IBD). Although memory stem cells with high survival and self-renewal capacity were recently identified in both mice and humans, it is unclear whether a similar subset is present in chronic colitis mice. We sought to identify and purify a long-lived subset of colitogenic memory CD4(+) T cells, which may be targets for treatment of IBD. A long-lived subset of colitogenic memory CD4(+) T cells was purified using a long-term culture system. The characteristics of these cells were assessed. Interleukin (IL)-7 promoted the in vitro survival for >8 weeks of lamina propria (LP) CD4(+) T cells from colitic SCID mice previously injected with CD4(+)CD45RB(high) T cells. These cells were in a quiescent state and divided a maximum of 5 times in 4 weeks. LP CD4(+) T cells expressed higher levels of Bcl-2, integrin-α4β7, CXCR3 and CD25 after than before culture, as well as secreting high concentrations of IL-2 and low concentrations of IFN-γ and IL-17 in response to intestinal bacterial antigens. LP CD4(+) T cells from colitic mice cultured with IL-7 for 8 weeks induced more severe colitis than LP CD4(+) T cells cultured for 4 weeks. We developed a novel culture system to purify a long-lived, highly pathogenic memory subset from activated LP CD4(+) T cells. IL-7 promoted long-term in vitro survival of this subset in a quiescent state. This subset will be a novel, effective target for the treatment of IBD. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Safety and Efficacy of Rivastigmine in Adolescents with Down Syndrome: Long-Term Follow-Up

    PubMed Central

    Spiridigliozzi, Gail A.; Crissman, Blythe G.; McKillop, Jane Anne; Yamamoto, Haru; Kishnani, Priya S.

    2010-01-01

    Abstract Following the completion of a 20-week, open-label study of the safety and efficacy of liquid rivastigmine for adolescents with Down syndrome, 5 of the 10 adolescents in the clinical trial continued long-term rivastigmine therapy and 5 did not. After an average period of 38 months, all 10 subjects returned for a follow-up assessment to determine the safety and efficacy of long-term rivastigmine use. Rivastigmine was well tolerated and overall health appeared to be unaffected by long-term rivastigmine use. Performance change on cognitive and language measures administered at the termination of the open-label clinical trial was compared between the two groups. No between-group difference in median performance change across the long-term period was found, suggesting that the long-term use of rivastigmine does not improve cognitive and language performance. However, two subjects demonstrated remarkable improvement in adaptive function over the long-term period. Both subjects had received long-term rivastigmine therapy. The discussion addresses the challenge of assessing cognitive change in clinical trials using adolescents with Down syndrome as subjects and the use of group versus individual data to evaluate the relevance of medication effects. PMID:21186971

  10. Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation

    PubMed Central

    Van Allen, Eliezer M.; Golay, Hadrien G.; Liu, Yan; Koyama, Shohei; Wong, Karrie; Taylor-Weiner, Amaro; Giannakis, Marios; Harden, Maegan; Rojas-Rudilla, Vanesa; Chevalier, Aaron; Thai, Tran; Lydon, Christine; Mach, Stacy; Wong, Joshua A.; Rabin, Alexandra R.; Helmkamp, Joshua; Sholl, Lynette; Carter, Scott L.; Oxnard, Geoffrey; Janne, Pasi; Getz, Gad; Lindeman, Neal; Hammerman, Peter S.; Garraway, Levi A.; Hodi, F. Stephen; Rodig, Scott; Dranoff, Glenn; Wong, Kwok-Kin; Barbie, David A.

    2015-01-01

    PD-1 immune checkpoint blockade occasionally results in durable clinical responses in advanced metastatic cancers. However, mechanism-based predictors of response to this immunotherapy remain incompletely characterized. We performed comprehensive genomic profiling on a tumor and germline sample from a patient with refractory lung adenocarcinoma who achieved marked long-term clinical benefit from anti-PD-L1 therapy. We discovered activating somatic and germline amino acid variants in JAK3 that promoted PD-L1 induction in lung cancer cells and in the tumor immune microenvironment. These findings suggest that genomic alterations that deregulate cytokine receptor signal transduction could contribute to PD-L1 activation and engagement of the PD-1 immune checkpoint in lung cancer. PMID:26014096

  11. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2014-02-15

    Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al.,more » 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.« less

  12. A proposed performance index for galactic cosmic ray shielding materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.

    1993-01-01

    In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.

  13. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression.

    PubMed

    Kratochvilova, Monika; Raudenska, Martina; Heger, Zbynek; Richtera, Lukas; Cernei, Natalia; Adam, Vojtech; Babula, Petr; Novakova, Marie; Masarik, Michal; Gumulec, Jaromir

    2017-05-01

    Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  15. Induction of three-dimensional assembly of human liver cells by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Yoffe, B.

    1999-01-01

    The establishment of long-term cultures of functional primary human liver cells (PHLC) is formidable. Developed at NASA, the Rotary Cell Culture System (RCCS) allows the creation of the unique microgravity environment of low shear force, high-mass transfer, and 3-dimensional cell culture of dissimilar cell types. The aim of our study was to establish long-term hepatocyte cultures in simulated microgravity. PHLC were harvested from human livers by collagenase perfusion and were cultured in RCCS. PHLC aggregates were readily formed and increased up to 1 cm long. The expansion of PHLC in bioreactors was further evaluated with microcarriers and biodegradable scaffolds. While microcarriers were not conducive to formation of spheroids, PHLC cultured with biodegradable scaffolds formed aggregates up to 3 cm long. Analyses of PHLC spheroids revealed tissue-like structures composed of hepatocytes, biliary epithelial cells, and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes surrounded by complex stromal structures and reticulin fibers, bile canaliculi with multiple microvilli, and tight cellular junctions. Albumin mRNA was expressed throughout the 60-d culture. A simulated microgravity environment is conducive to maintaining long-term cultures of functional hepatocytes. This model system will assist in developing improved protocols for autologous hepatocyte transplantation, gene therapy, and liver assist devices, and facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo.

  16. Climate effects on phytoplankton floral composition in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse flora.

  17. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects

    PubMed Central

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K.

    2016-01-01

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications. PMID:27271057

  18. A unique role of the cholera toxin A1-DD adjuvant for long-term plasma and memory B cell development.

    PubMed

    Bemark, Mats; Bergqvist, Peter; Stensson, Anneli; Holmberg, Anna; Mattsson, Johan; Lycke, Nils Y

    2011-02-01

    Adjuvants have traditionally been appreciated for their immunoenhancing effects, whereas their impact on immunological memory has largely been neglected. In this paper, we have compared three mechanistically distinct adjuvants: aluminum salts (Alum), Ribi (monophosphoryl lipid A), and the cholera toxin A1 fusion protein CTA1-DD. Their influence on long-term memory development was dramatically different. Whereas a single immunization i.p. with 4-hydroxy-3-nitrophenyl acetyl (NP)-chicken γ-globulin and adjuvant stimulated serum anti-NP IgG titers that were comparable at 5 wk, CTA1-DD-adjuvanted responses were maintained for >16 mo with a half-life of anti-NP IgG ∼36 wk, but <15 wk after Ribi or Alum. A CTA1-DD dose-dependent increase in germinal center (GC) size and numbers was found, with >60% of splenic B cell follicles hosting GC at an optimal CTA1-DD dose. Roughly 7% of these GC were NP specific. This GC-promoting effect correlated well with the persistence of long-term plasma cells in the bone marrow and memory B cells in the spleen. CTA1-DD also facilitated increased somatic hypermutation and affinity maturation of NP-specific IgG Abs in a dose-dependent fashion, hence arguing that large GC not only promotes higher Ab titers but also high-quality Ab production. Adoptive transfer of splenic CD80(+), but not CD80(-), B cells, at 1 y after immunization demonstrated functional long-term anti-NP IgG and IgM memory cells. To our knowledge, this is the first report to specifically compare and document that adjuvants can differ considerably in their support of long-term immune responses. Differential effects on the GC reaction appear to be the basis for these differences.

  19. Energy-conserving programming of VVI pacemakers: a telemetry-supported, long-term, follow-up study.

    PubMed

    Klein, H H; Knake, W

    1990-06-01

    Thirty patients with VVI pacemakers (Quantum 253-09, 253-19, Intermedics Inc., Freeport, TX) were observed for a mean of 65 months. Within 12 months after implantation, optimized output programming was performed in 29 patients. This included a decrease in pulse amplitude (22 patients), pulse width (4 patients), and/or pacing rate (11 patients). After 65 months postimplantation, telemetered battery voltage and battery impedance were compared with the predicted values expected when the pulse generator constantly stimulates at nominal program conditions (heart rate 72.3 beats/min, pulse amplitude 5.4 V, pulse width 0.61 ms). Instead of an expected cell voltage of 2.6 V and a cell impedance of 10 k omega mean telemetered values amounted to 2.78 V and 1.4 k omega, respectively. These data correspond to a battery age of 12-15 months at nominal program conditions. This long-term follow-up study suggests that adequate programming will extend battery longevity and thus pulse generator survival in many patients.

  20. Long-term drug modification to the surface of mesenchymal stem cells by the avidin-biotin complex method.

    PubMed

    Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2017-12-05

    Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.

  1. Beyond the short term : transportation asset management for long-term sustainability, accountability and performance

    DOT National Transportation Integrated Search

    2010-01-01

    Transportation Asset Management (TAM) has long been recognized as a sound, long-term approach to managing infrastructure. It provides decision makers with a rational, long-term systematic process for making difficult and complex decisions about how t...

  2. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  3. Formation of resting cells by non-spore-forming microorganisms as a strategy of long-term survival in the environment

    NASA Astrophysics Data System (ADS)

    Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.

    2003-01-01

    Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.

  4. CD8+ T Cells Primed in the Periphery Provide Time-Bound Immune-Surveillance to the Central Nervous System

    PubMed Central

    Young, Kevin G.; MacLean, Susanne; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2016-01-01

    After vaccination, memory CD8+ T cells migrate to different organs to mediate immune surveillance. In most nonlymphoid organs, following an infection, CD8+ T cells differentiate to become long-lived effector-memory cells, thereby providing long-term protection against a secondary infection. In this study, we demonstrated that Ag-specific CD8+ T cells that migrate to the mouse brain following a systemic Listeria infection do not display markers reminiscent of long-term memory cells. In contrast to spleen and other nonlymphoid organs, none of the CD8+ T cells in the brain reverted to a memory phenotype, and all of the cells were gradually eliminated. These nonmemory phenotype CD8+ T cells were found primarily within the choroid plexus, as well as in the cerebrospinal fluid-filled spaces. Entry of these CD8+ T cells into the brain was governed primarily by CD49d/VCAM-1, with the majority of entry occurring in the first week postinfection. When CD8+ T cells were injected directly into the brain parenchyma, cells that remained in the brain retained a highly activated (CD69hi) phenotype and were gradually lost, whereas those that migrated out to the spleen were CD69low and persisted long-term. These results revealed a mechanism of time-bound immune surveillance to the brain by CD8+ T cells that do not reside in the parenchyma. PMID:21715683

  5. Long-term stabilization of place cell remapping produced by a fearful experience

    PubMed Central

    Wang, Melissa E.; Wann, Ellen G.; Yuan, Robin K.; Ramos Álvarez, Manuel M.; Stead, Squire M.; Muzzio, Isabel A.

    2012-01-01

    Fear is an emotional response to danger that is highly conserved throughout evolution because it is critical for survival. Accordingly, episodic memory for fearful locations is widely studied using contextual fear conditioning, a hippocampus-dependent task (Kim and Fanselow, 1992; Phillips and LeDoux, 1992). The hippocampus has been implicated in episodic emotional memory and is thought to integrate emotional stimuli within a spatial framework. Physiological evidence supporting the role of the hippocampus in contextual fear indicates that pyramidal cells in this region, which fire in specific locations as an animal moves through an environment, shift their preferred firing locations shortly after the presentation of an aversive stimulus (Moita et al., 2004). However, the long-term physiological mechanisms through which emotional memories are encoded by the hippocampus are unknown. Here we show that during and directly after a fearful experience, new hippocampal representations are established and persist in the long term. We recorded from the same place cells in mouse hippocampal area CA1 over several days during predator odor contextual fear conditioning and found that a subset of cells changed their preferred firing locations in response to the fearful stimulus. Furthermore, the newly formed representations of the fearful context stabilized in the long term. Our results demonstrate that place cells respond to the presence of an aversive stimulus, modify their firing patterns during emotional learning, and stabilize a long-term spatial representation in response to a fearful encounter. The persistent nature of these representations may contribute to the enduring quality of emotional memories. PMID:23136419

  6. Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of Physarum polycephalum.

    PubMed

    Zhu, Liping; Aono, Masashi; Kim, Song-Ju; Hara, Masahiko

    2013-04-01

    A single-celled, multi-nucleated amoeboid organism, a plasmodium of the true slime mold Physarum polycephalum, can perform sophisticated computing by exhibiting complex spatiotemporal oscillatory dynamics while deforming its amorphous body. We previously devised an "amoeba-based computer (ABC)" to quantitatively evaluate the optimization capability of the amoeboid organism in searching for a solution to the traveling salesman problem (TSP) under optical feedback control. In ABC, the organism changes its shape to find a high quality solution (a relatively shorter TSP route) by alternately expanding and contracting its pseudopod-like branches that exhibit local photoavoidance behavior. The quality of the solution serves as a measure of the optimality of which the organism maximizes its global body area (nutrient absorption) while minimizing the risk of being illuminated (exposure to aversive stimuli). ABC found a high quality solution for the 8-city TSP with a high probability. However, it remains unclear whether intracellular communication among the branches of the organism is essential for computing. In this study, we conducted a series of control experiments using two individual cells (two single-celled organisms) to perform parallel searches in the absence of intercellular communication. We found that ABC drastically lost its ability to find a solution when it used two independent individuals. However, interestingly, when two individuals were prepared by dividing one individual, they found a solution for a few tens of minutes. That is, the two divided individuals remained correlated even though they were spatially separated. These results suggest the presence of a long-term memory in the intrinsic dynamics of this organism and its significance in performing sophisticated computing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.

  8. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression.

    PubMed

    Templin, Christian; Zweigerdt, Robert; Schwanke, Kristin; Olmer, Ruth; Ghadri, Jelena-Rima; Emmert, Maximilian Y; Müller, Ennio; Küest, Silke M; Cohrs, Susan; Schibli, Roger; Kronen, Peter; Hilbe, Monika; Reinisch, Andreas; Strunk, Dirk; Haverich, Axel; Hoerstrup, Simon; Lüscher, Thomas F; Kaufmann, Philipp A; Landmesser, Ulf; Martin, Ulrich

    2012-07-24

    Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NIS(pos)-hiPSCs) were established. Iodide uptake, efflux, and viability of NIS(pos)-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NIS(pos)-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of (123)I to follow donor cell survival and distribution and with the use of (99m)TC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NIS(pos)-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NIS(pos)-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NIS(pos)-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.

  9. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats

    NASA Technical Reports Server (NTRS)

    Tash, Joseph S.; Johnson, Donald C.; Enders, George C.

    2002-01-01

    The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to microG on the reproductive capability of scrotal mammals, including humans.

  10. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    PubMed

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  11. Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: Performance, microbial community and sludge characteristics.

    PubMed

    Zhang, Zheng-Zhe; Cheng, Ya-Fei; Bai, Yu-Hui; Xu, Lian-Zeng-Ji; Xu, Jia-Jia; Shi, Zhi-Jian; Zhang, Qian-Qian; Jin, Ren-Cun

    2018-02-01

    Magnetic nanoparticles (NPs) have been widely applied in environmental remediation, biomass immobilization and wastewater treatment, but their potential impact on anaerobic ammonium oxidation (anammox) biomass remains unknown. In this study, the short-term and long-term impacts of maghemite NPs (MHNPs) on the flocculent sludge wasted from a high-rate anammox reactor were investigated. Batch assays showed that the presence of MHNPs up to 200 mg L -1 did not affect anammox activity, reactive oxygen species production, or cell membrane integrity. Moreover, long-term addition of 1-200 mg L -1 MHNPs had no adverse effects on reactor performance. Notably, the specific anammox activity, the abundance of hydrazine synthase structural genes and the content of extracellular polymeric substance were increased with elevated MHNP concentrations. Meanwhile, the community structure was shifted to higher abundance of Candidatus Kuenenia indicated by high-throughput sequencing. Therefore, MHNPs could be applied to enhance anammox flocculent sludge due to their favorable biocompatibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    PubMed

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or < 500/mm(3)). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4(+) lymphocytes, including T(reg) subsets, and CD8(+) T cells was performed. Percentages of activated CD4(+) T cells, T(regs), effector T(regs) and terminal effector T(regs) were found to be significantly elevated in iIR. Neither the percentage of activated CD8(+) T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4(+) T cell count and percentage of T(regs) were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  13. An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro.

    PubMed

    Zhang, Li; Wu, Yenan; Li, Xiang; Wei, Shao; Xing, Yiming; Lian, Zhengxing; Han, Hongbing

    2018-01-01

    Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro . Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro .

  14. Simulated predator stimuli reduce brain cell proliferation in two electric fish species, Brachyhypopomus gauderio and Apteronotus leptorhynchus.

    PubMed

    Dunlap, Kent D; Keane, Geoffrey; Ragazzi, Michael; Lasky, Elise; Salazar, Vielka L

    2017-07-01

    The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish ( Brachyhypopomus occidentalis ) naturally exposed to high predator ( Rhamdia quelen ) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus , cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio , tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus , tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear. © 2017. Published by The Company of Biologists Ltd.

  15. Data Homogenization of the NOAA Long-Term Ozonesonde Records

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Cullis, P.; Sterling, C. W.; Jordan, A. F.; Hall, E. G.; Petropavlovskikh, I. V.; Oltmans, S. J.; Mcconville, G.

    2015-12-01

    The NOAA long term balloon-borne ozonesonde sites at Boulder, Colorado; Hilo, Hawaii; and South Pole Station, Antarctica have measured weekly ozone profiles for more than 3 decades. The ozonesonde consists of an electrochemical concentration cell (ECC) sensor interfaced with a weather radiosonde which transmits high resolution ozone and meteorological data during ascent from the surface to 30-35 km altitude. During this 30 year time period there have been several model changes in the commercially available ECC ozonesondes and radiosondes as well as three adjustments in the ozone sensor solution composition at NOAA. These changes were aimed at optimizing the ozonesonde performance. Organized intercomparison campaigns conducted at the environmental simulation facility at the Research Centre Juelich, Germany and international field site testing have been the primary process for assessing new designs, instruments, or sensor solution changes and developing standard operating procedures. NOAA has also performed in-house laboratory tests and launched 28 dual ozonesondes at various sites since 1994 to provide further comparison data to determine the optimum homogenized data set. The final homogenization effort involved reviewing and editing several thousand individual ozonesonde profiles followed by applying the optimum correction algorithms for changes in type of sensor solution composition. The results of improved data sets will be shown with long term trends and uncertainties at various altitude levels.

  16. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue; A: Duct element recovered from breast tissue digest. B: Outgrowth of cells from duct element in upper right corner cultured in a standard dish; most cells spontaneousely die during early cell divisions, but a few will establish long-term growth. C: Isolate of long-term frowth HMEC from outgrowth of duct element; cells shown soon after isolation and in early full-cell contact growth in culture in a dish. D: same long-term growth HMEC, but after 3 weeks in late full-cell contact growth in a continuous culture in a dish. Note attempts to reform duct elements but this in two demensions in a dish rather than in three dimensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Richmond, NASA/Marshall Space Flight Center (MSFC).

  17. Postmitotic human dermal fibroblasts preserve intact feeder properties for epithelial cell growth after long-term cryopreservation.

    PubMed

    Limat, A; Hunziker, T; Boillat, C; Noser, F; Wiesmann, U

    1990-07-01

    In vitro, human dermal fibroblasts (HDF) differentiate through morphologically and biochemically identified compartments. In the course of this spontaneous differentiation through mitotic and postmitotic states, a tremendous increase in cellular and nuclear size occurs. Induction of postmitotic states can be accelerated by chemical (e.g., mitomycin C) or physical (e.g., x-ray) treatments. Such experimentally induced postmitotic HDF cells support very efficiently the growth of cutaneous epithelial cells, i.e. interfollicular keratinocytes and follicular outer root sheath cells, especially in primary cultures starting from very low cell seeding densities. The HDF feeder system provides more fundamental and also practical advantages, i.e. use of initially diploid human fibroblasts from known anatomic locations, easy handling and excellent reproducibility, and the possibility of long-term storage by incubation at 37 degrees C. Conditions for the cryogenic storage of postmitotic HDF cells in liquid nitrogen are presented and related to the feeder capacity for epithelial cell growth. Because postmitotic HDF cells preserve intact feeder properties after long-term storage, the immediate availability of feeder cells and the possibility to repeat experiments with identical materials further substantiate the usefulness of this feeder system.

  18. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  19. Long-term consequences of a short-term hypergravity load in a snail model

    NASA Astrophysics Data System (ADS)

    Martynova, Marina G.; Shabelnikov, Sergej V.; Bystrova, Olga A.

    2015-07-01

    Here we focused on the dynamic processes in the snail at different time after short-term hypergravity load (STHL) by monitoring the state of neuroendocrine and immune systems, the nucleic acid synthesis levels in the atrial cells, and the behaviour of the atrial granular cells (GCs). We observed that immediately after centrifugation (14 g for 15 min) in the snail haemolymph concentration of dopamine and noradrenaline (measured by high-performance liquid chromatography) and the number of circulating haemocytes and their proliferative activity (estimated by the direct cell counting and [3H]thymidine incorporation, respectively) increased significantly, whereas the concentration of adrenaline decreased. Twenty-four hours after STHL, the levels of catecholamines and haemocytes returned to their control values. In the atrial epicardial and endothelial cells, a notable drop of transcription activity (evaluated by [3H]uridine autoradiography) from the baseline in the immediate post-STHL period was followed by its gradual increase reaching a maximum at the day 5 and subsequent decrease to control value by the day 10. In endothelial cells, DNA-synthesizing activity (evaluated by [3H]thymidine autoradiography) equal to zero before and just after STHL, increased significantly at the day 5, and decreased by the day 10. The atrial GCs underwent total degranulation. Formed as a result small ungranulated cells exhibited DNA synthesis. Afterwards, most probably, the GCs divided and regranulated. One month after STHL the GC population had been restored. Overall, STHL has triggered an immediate reaction of the neuroendocrine and immune systems and initiated long-lasting processes at a cellular level, which included alterations in activity of nucleic acid syntheses in the epicardial and endothelial cells and remodelling of the GC population in the atrium.

  20. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia.

    PubMed

    Liu, Jun; Zhang, Xi; Zhong, Jiang F; Zhang, Cheng

    2017-10-01

    Relapsed/refractory acute lymphoblastic leukemia (ALL) has a low remission rate after chemotherapy, a high relapse rate and poor long-term survival even when allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed. Chimeric antigen receptors redirected T cells (CAR-T cells) can enhance disease remission with a favorable outcome for relapsed/refractory ALL, though some cases quickly relapsed after CAR-T cell treatment. Thus, treatment with CAR-T cells followed by allo-HSCT may be the best way to treat relapsed/refractory ALL. In this review, we first discuss the different types of CAR-T cells. We then discuss the treatment of relapsed/refractory ALL using only CAR-T cells. Finally, we discuss the use of CAR-T cells, followed by allo-HSCT, for the treatment of relapsed/refractory ALL.

  1. Age and CD4 count at initiation of antiretroviral therapy in HIV-infected children: effects on long-term T-cell reconstitution.

    PubMed

    Lewis, Joanna; Walker, A Sarah; Castro, Hannah; De Rossi, Anita; Gibb, Diana M; Giaquinto, Carlo; Klein, Nigel; Callard, Robin

    2012-02-15

    Effective therapies and reduced AIDS-related morbidity and mortality have shifted the focus in pediatric human immunodeficiency virus (HIV) from minimizing short-term disease progression to maintaining optimal long-term health. We describe the effects of children's age and pre-antiretroviral therapy (ART) CD4 count on long-term CD4 T-cell reconstitution. CD4 counts in perinatally HIV-infected, therapy-naive children in the Paediatric European Network for the Treatment of AIDS 5 trial were monitored following initiation of ART for a median 5.7 years. In a substudy, naive and memory CD4 counts were recorded. Age-standardized measurements were analyzed using monophasic, asymptotic nonlinear mixed-effects models. One hundred twenty-seven children were studied. Older children had lower age-adjusted CD4 counts in the long term and at treatment initiation (P < .001). At all ages, lower counts before treatment were associated with impaired recovery (P < .001). Age-adjusted naive CD4 counts increased on a timescale comparable to overall CD4 T-cell reconstitution, whereas age-adjusted memory CD4 counts increased less, albeit on a faster timescale. It appears the immature immune system can recover well from HIV infection via the naive pool. However, this potential is progressively damaged with age and/or duration of infection. Current guidelines may therefore not optimize long-term immunological health.

  2. Effect of Bone Marrow-Derived Mononuclear Cell Treatment, Early or Late After Acute Myocardial Infarction: Twelve Months CMR and Long-Term Clinical Results.

    PubMed

    Sürder, Daniel; Manka, Robert; Moccetti, Tiziano; Lo Cicero, Viviana; Emmert, Maximilian Y; Klersy, Catherine; Soncin, Sabrina; Turchetto, Lucia; Radrizzani, Marina; Zuber, Michel; Windecker, Stephan; Moschovitis, Aris; Bühler, Ines; Kozerke, Sebastian; Erne, Paul; Lüscher, Thomas F; Corti, Roberto

    2016-07-22

    Intracoronary delivery of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction (AMI). To demonstrate long-term efficacy of BM-MNC treatment after AMI. In a multicenter study, we randomized 200 patients with large AMI in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were either administered 5 to 7 days (early) or 3 to 4 weeks (late) after AMI. Cardiac magnetic resonance imaging was performed at baseline and after 12 months. The current analysis investigates the change from baseline to 12 months in global LV ejection fraction, LV volumes, scar size, and N-terminal pro-brain natriuretic peptide values comparing the 2 treatment groups with control in a linear regression model. Besides the complete case analysis, multiple imputation analysis was performed to address for missing data. Furthermore, the long-term clinical event rate was computed. The absolute change in LV ejection fraction from baseline to 12 months was -1.9±9.8% for control (mean±SD), -0.9±10.5% for the early treatment group, and -0.7±10.1% for the late treatment group. The difference between the groups was not significant, both for complete case analysis and multiple imputation analysis. A combined clinical end point occurred equally in all the groups. Overall, 1-year mortality was low (2.25%). Among patients with AMI and LV dysfunction, treatment with BM-MNC either 5 to 7 days or 3 to 4 weeks after AMI did not improve LV function at 12 months, compared with control. The results are limited by an important drop out rate. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00355186. © 2016 American Heart Association, Inc.

  3. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.

  4. Hair loss and regeneration performed on animal models

    PubMed Central

    ORASAN, MEDA SANDRA; ROMAN, IULIA IOANA; CONEAC, ANDREI; MURESAN, ADRIANA; ORASAN, REMUS IOAN

    2016-01-01

    Research in the field of reversal hair loss remains a challenging subject. As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles. In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety. PMID:27547051

  5. Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells.

    PubMed

    Laiosa, Michael D; Tate, Everett R; Ahrenhoerster, Lori S; Chen, Yuhong; Wang, Demin

    2016-07-01

    Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Pregnant C57BL/6 or AHR+/- mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin on long-term self-renewal of murine hematopoietic stem cells. Environ Health Perspect 124:957-965; http://dx.doi.org/10.1289/ehp.1509820.

  6. Relationship of long-term highly active antiretroviral therapy on salivary flow rate and CD4 Count among HIV-infected patients.

    PubMed

    Kumar, J Vijay; Baghirath, P Venkat; Naishadham, P Parameswar; Suneetha, Sujai; Suneetha, Lavanya; Sreedevi, P

    2015-01-01

    To determine if long-term highly active antiretroviral therapy (HAART) therapy alters salivary flow rate and also to compare its relation of CD4 count with unstimulated and stimulated whole saliva. A cross-sectional study was performed on 150 individuals divided into three groups. Group I (50 human immunodeficiency virus (HIV) seropositive patients, but not on HAART therapy), Group II (50 HIV-infected subjects and on HAART for less than 3 years called short-term HAART), Group III (50 HIV-infected subjects and on HAART for more than or equal to 3 years called long-term HAART). Spitting method proposed by Navazesh and Kumar was used for the measurement of unstimulated and stimulated salivary flow rate. Chi-square test and analysis of variance (ANOVA) were used for statistical analysis. The mean CD4 count was 424.78 ± 187.03, 497.82 ± 206.11 and 537.6 ± 264.00 in the respective groups. Majority of the patients in all the groups had a CD4 count between 401 and 600. Both unstimulated and stimulated whole salivary (UWS and SWS) flow rates in Group I was found to be significantly higher than in Group II (P < 0.05). Unstimulated salivary flow rate between Group II and III subjects were also found to be statistically significant (P < 0.05). ANOVA performed between CD4 count and unstimulated and stimulated whole saliva in each group demonstrated a statistically significant relationship in Group II (P < 0.05). There were no significant results found between CD4 count and stimulated whole saliva in each groups. The reduction in CD4 cell counts were significantly associated with salivary flow rates of HIV-infected individuals who are on long-term HAART.

  7. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y.

    PubMed

    Constantinescu, R; Constantinescu, A T; Reichmann, H; Janetzky, B

    2007-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in industrialized countries. Present cell culture models for PD rely on either primary cells or immortal cell lines, neither of which allow for long-term experiments on a constant population, a crucial requisite for a realistic model of slowly progressing neurodegenerative diseases. We differentiated SH-SY5Y human dopaminergic neuroblastoma cells to a neuronal-like state in a perfusion culture system using a combination of retinoic acid and mitotic inhibitors. The cells could be cultivated for two months without the need for passage. We show, by various means, that the differentiated cells exhibit, at the molecular level, many neuronal properties not characteristic to the starting line. This approach opens the possibility to develop chronic models, in which the effect of perturbations and putative counteracting strategies can be monitored over long periods of time in a quasi-stable cell population.

  8. Nickel hydrogen low Earth orbit life testing

    NASA Technical Reports Server (NTRS)

    Badcock, C. C.; Haag, R. L.

    1986-01-01

    A program to demonstrate the long term reliability of NiH2 cells in low Earth orbits (LEO) and support use in mid-altitude orbits (MAO) was initiated. Both 3.5 and 4.5 inch diameter nickel hydrogen cells are included in the test plan. Cells from all U.S. vendors are to be tested. The tests will be performed at -5 and 10 C at 40 and 60% DOD for LEO orbit and 10 C and 80% DOD for MAO orbit simulations. The goals of the testing are 20,000 cycles at 60% DOD and 30,000 cycles at 40% DOD. Cells are presently undergoing acceptance and characterization testing at Naval Weapons Systems Center, Crane.

  9. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape.

    PubMed

    Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen

    2017-06-01

    Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is predisposed to off-center encapsulated cells. High-speed microscopy reveals that cells are positioned at the microgel precursor droplets' oil/water interface within milliseconds after droplet formation. In conventional microencapsulation strategies, the droplets are typically gelled immediately after emulsification, which traps cells in this off-center position. By delaying crosslinking, driving cells toward the centers of microgels is succeeded. The centering of cells in enzymatically crosslinked microgels prevents their escape during at least 28 d. It thereby uniquely enables the long-term culture of individual cells within <5-µm-thick 3D uniform hydrogel coatings. Single cell analysis of mesenchymal stem cells in enzymatically crosslinked microgels reveals unprecedented high cell viability (>90%), maintained metabolic activity (>70%), and multilineage differentiation capacity (>60%) over a period of 28 d. The facile nature of this microfluidic cell-centering method enables its straightforward integration into many microencapsulation strategies and significantly enhances control, reproducibility, and reliability of 3D single cell cultures. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of long-term cryopreservation on peripheral blood progenitor cells.

    PubMed

    Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R

    2012-11-01

    The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.

  11. Immediate and long-term somatic effects, and health-related quality of life of BM donation during early childhood. A single-center report in 210 pediatric donors.

    PubMed

    van Walraven, S M; Straathof, L M; Switzer, G E; Lankester, A; Korthof, E T; Brand, A; Ball, L M

    2013-01-01

    Since 1968, when Leiden undertook the first successful European pediatric BM transplantation with a 7-year-old sibling donor, more than 300 young children have donated BM in our unit. We first retrospectively studied a cohort of 210 donors, younger than 13 years at donation, to survey procedures of donor eligibility and study immediate effects of BM donation. We then performed a long-term follow-up (FU) and health-related quality of life (HRQoL) study. Despite documentation of previous medical conditions, no child was declared unfit to donate. We found that iron deficiency anemia or low-iron stores in BM did not result in treatment or extended FU. Harvest volumes exceeded 15 mL/kg in 65% of donors, with more than half requiring allogeneic blood transfusions. Donors had no structured FU after their first post-donation control. In this study, 25% of donors reported at least one somatic complaint at long-term FU. Finally long-term HRQoL revealed high scores in most subdomains (representing a higher QoL), compared to norm groups. These results indicate the need for development of (inter)national guidelines for pediatric stem cell donor care management.

  12. Modulation of working memory updating: Does long-term memory lexical association matter?

    PubMed

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  13. Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection

    PubMed Central

    Vergani, Andrea; Fotino, Carmen; D’Addio, Francesca; Tezza, Sara; Podetta, Michele; Gatti, Francesca; Chin, Melissa; Bassi, Roberto; Molano, Ruth D.; Corradi, Domenico; Gatti, Rita; Ferrero, Maria E.; Secchi, Antonio; Grassi, Fabio; Ricordi, Camillo; Sayegh, Mohamed H.; Maffi, Paola; Pileggi, Antonello; Fiorina, Paolo

    2013-01-01

    The lymphocytic ionotropic purinergic P2X receptors (P2X1R-P2X7R, or P2XRs) sense ATP released during cell damage-activation, thus regulating T-cell activation. We aim to define the role of P2XRs during islet allograft rejection and to establish a novel anti-P2XRs strategy to achieve long-term islet allograft function. Our data demonstrate that P2X1R and P2X7R are induced in islet allograft-infiltrating cells, that only P2X7R is increasingly expressed during alloimmune response, and that P2X1R is augmented in both allogeneic and syngeneic transplantation. In vivo short-term P2X7R targeting (using periodate-oxidized ATP [oATP]) delays islet allograft rejection, reduces the frequency of Th1/Th17 cells, and induces hyporesponsiveness toward donor antigens. oATP-treated mice displayed preserved islet grafts with reduced Th1 transcripts. P2X7R targeting and rapamycin synergized in inducing long-term islet function in 80% of transplanted mice and resulted in reshaping of the recipient immune system. In vitro P2X7R targeting using oATP reduced T-cell activation and diminished Th1/Th17 cytokine production. Peripheral blood mononuclear cells obtained from long-term islet-transplanted patients showed an increased percentage of P2X7R+CD4+ T cells compared with controls. The beneficial effects of oATP treatment revealed a role for the purinergic system in islet allograft rejection, and the targeting of P2X7R is a novel strategy to induce long-term islet allograft function. PMID:23315496

  14. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial.

    PubMed

    Dreger, Peter; Döhner, Hartmut; Ritgen, Matthias; Böttcher, Sebastian; Busch, Raymonde; Dietrich, Sascha; Bunjes, Donald; Cohen, Sandra; Schubert, Jörg; Hegenbart, Ute; Beelen, Dietrich; Zeis, Matthias; Stadler, Michael; Hasenkamp, Justin; Uharek, Lutz; Scheid, Christof; Humpe, Andreas; Zenz, Thorsten; Winkler, Dirk; Hallek, Michael; Kneba, Michael; Schmitz, Norbert; Stilgenbauer, Stephan

    2010-10-07

    The purpose of this prospective multicenter phase 2 trial was to investigate the long-term outcome of reduced-intensity conditioning allogeneic stem cell transplantation (alloSCT) in patients with poor-risk chronic lymphocytic leukemia. Conditioning was fludarabine/ cyclophosphamide-based. Longitudinal quantitative monitoring of minimal residual disease (MRD) was performed centrally by MRD-flow or real-time quantitative polymerase chain reaction. One hundred eligible patients were enrolled, and 90 patients proceeded to alloSCT. With a median follow-up of 46 months (7-102 months), 4-year nonrelapse mortality, event-free survival (EFS) and overall survival (OS) were 23%, 42%, and 65%, respectively. Of 52 patients with MRD monitoring available, 27 (52%) were alive and MRD negative at 12 months after transplant. Four-year EFS of this subset was 89% with all event-free patients except for 2 being MRD negative at the most recent assessment. EFS was similar for all genetic subsets, including 17p deletion (17p-). In multivariate analyses, uncontrolled disease at alloSCT and in vivo T-cell depletion with alemtuzumab, but not 17p-, previous purine analogue refractoriness, or donor source (human leukocyte antigen-identical siblings or unrelated donors) had an adverse impact on EFS and OS. In conclusion, alloSCT for poor-risk chronic lymphocytic leukemia can result in long-term MRD-negative survival in up to one-half of the patients independent of the underlying genomic risk profile. This trial is registered at http://clinicaltrials.gov as NCT00281983.

  15. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...

    EPA Pesticide Factsheets

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.

  16. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; ...

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  17. Aliphatic long chain quaternary ammonium compounds analysis by ion-pair chromatography coupled with suppressed conductivity and UV detection in lysing reagents for blood cell analysers.

    PubMed

    Giovannelli, D; Abballe, F

    2005-08-26

    A method has been developed which allows simultaneous determination of three linear alkyl trimethylammonium salts. Dodecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium chloride are widely used as main active ingredients of lysing reagents for blood cell analyzers which perform white blood cells differential determination into two or more sub-populations by impedance analysis. The ion-pair on styrene-divinyl benzene chromatographic phase looks like a suitable, reliable and long term stable tool for separation of such quaternary compounds. The detection based on suppressed conductivity was chosen because of the lack of significance chromophores. A micromembrane suppressor device compatible with high solvent concentration (up to 80%) was used in order to minimize the conductivity background before the detection. In the present work we show how the chemical post column derivatization makes the alkyl chain detectable also by UV direct detection at 210 nm.

  18. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES

    Maiti, A.; Small, W.; Lewicki, J.; ...

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  19. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Small, W.; Lewicki, J.

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  20. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  1. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    PubMed Central

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858

  2. The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells.

    PubMed

    Kondaveeti, Sanath; Kakarla, Ramesh; Kim, Hong Suck; Kim, Byung-Goon; Min, Booki

    2018-02-01

    This study evaluates long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells with domestic wastewater. Low-cost separators tested in this study were nonwoven fabrics (NWF) of polypropylene (PP80, PP100), textile fabrics of polyphenylene sulfide (PPS), sulfonated polyphenylene sulfide (SPPS), and cellulose esters. NWF PP80 separator generated the highest power density of 280 mW/m 2 , which was higher than with ion-exchange membranes (cation exchange membrane; CEM = 271 mW/m 2 , cation exchange membrane; CMI = 196 mW/m 2 , Nafion = 260 mW/m 2 ). MFC operations with other size-selective separators such as SPPS, PPS, and cellulose esters exhibited power densities of 261, 231, and 250 mW/m 2 , respectively. During a 280-day operation, initial power density of PP80 (278 mW/m 2 ) was decreased to 257 mW/m 2 , but this decrease was smaller than with others (Nafion: 265-230 mW/m 2 ; PP100: 220-126 mW/m 2 ). The anode potential of around -430 mV did not change much with all separators in the long-term operation, but the initial cathode potential gradually decreased. Fouling analysis suggested that the presence of carbonaceous substance on Nafion and PP80 after 280 days of operation and Nafion was subject to be more biofouling.

  3. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    PubMed

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  4. Multichannel lens-free CMOS sensors for real-time monitoring of cell growth.

    PubMed

    Chang, Ko-Tung; Chang, Yu-Jen; Chen, Chia-Ling; Wang, Yao-Nan

    2015-02-01

    A low-cost platform is proposed for the growth and real-time monitoring of biological cells. The main components of the platform include a PMMA cell culture microchip and a multichannel lens-free CMOS (complementary metal-oxide-semiconductor) / LED imaging system. The PMMA microchip comprises a three-layer structure and is fabricated using a low-cost CO2 laser ablation technique. The CMOS / LED monitoring system is controlled using a self-written LabVIEW program. The platform has overall dimensions of just 130 × 104 × 115 mm(3) and can therefore be placed within a commercial incubator. The feasibility of the proposed system is demonstrated using HepG2 cancer cell samples with concentrations of 5000, 10 000, 20 000, and 40 000 cells/mL. In addition, cell cytotoxicity tests are performed using 8, 16, and 32 mM cyclophosphamide. For all of the experiments, the cell growth is observed over a period of 48 h. The cell growth rate is found to vary in the range of 44∼52% under normal conditions and from 17.4∼34.5% under cyclophosphamide-treated conditions. In general, the results confirm the long-term cell growth and real-time monitoring ability of the proposed system. Moreover, the magnification provided by the lens-free CMOS / LED observation system is around 40× that provided by a traditional microscope. Consequently, the proposed system has significant potential for long-term cell proliferation and cytotoxicity evaluation investigations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems.

    PubMed

    McQuilling, John Patrick; Opara, Emmanuel C

    2017-01-01

    A major obstacle to long-term performance of tissue construct implants in regenerative medicine is the inherent hypoxia to which cells in the engineered construct are exposed prior to vascularization of the implant. Various approaches are currently being designed to address this problem. An emerging area of interest on this issue is the use of peroxide-based materials to generate oxygen during the critical period of extended hypoxia that occurs from the time cells are in culture waiting to be used in tissue engineering devices through the immediate post-implant period. In this chapter we provide protocols that we have developed for using these chemical oxygen generators in cell culture and tissue constructs as illustrated by pancreatic islet cell microencapsulation.

  6. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation.

    PubMed

    Kulterer, Birgit; Friedl, Gerald; Jandrositz, Anita; Sanchez-Cabo, Fatima; Prokesch, Andreas; Paar, Christine; Scheideler, Marcel; Windhager, Reinhard; Preisegger, Karl-Heinz; Trajanoski, Zlatko

    2007-03-12

    Human mesenchymal stem cells (MSC) with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-beta2 and BMPs. With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  7. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  8. Repeated-batch operation of immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis.

    PubMed

    Yeon, Ji-Hyeon; Jung, Kyung-Hwan

    2011-09-01

    In this study, we investigated the performance of an immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-β-D-galactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the beta-galactosidase inclusion bodies were sustained in the alginate beads during the repeated-batch operations. Consequently, we experimentally verified that β-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.

  9. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: preferential localization of chimerism in donor bone

    PubMed Central

    Rahhal, Dina N.; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T.

    2009-01-01

    Background Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTA). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Methods WF (RT1Au) rats were conditioned with 600-300 cGy total body irradiation (TBI, day-1), 100 × 106 T cell-depleted ACI (RT1Aabl) bone marrow cells were transplanted day 0, followed by a 11-day course of tacrolimus and one dose of anti-lymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4-6 weeks after bone marrow transplantation. Results Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-αβ-TCR mAb (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-αβ-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving ≥ 300 cGy TBI plus anti-αβ-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap-acceptors lost peripheral blood (PB) chimerism within 6 months. However, donor chimerism persisted in transplanted bone at significantly higher levels compared to other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of PB chimerism. Conclusions Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA which is associated with persistent chimerism preferentially in transplanted donor bone. PMID:19920776

  10. The 2001 Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Kaplan, David I.; Baird, R. Scott; Ratliff, James E.; Baraona, Cosmo R.; Jenkins, Phillip P.; Landis, Geoffrey A.; Scheiman, David A.; Brinza, David E.; Johnson, Kenneth R.; Karlmann, Paul B.; hide

    2000-01-01

    The successful performance of the five individual demonstrations of MARS IN-SITU-PROPELLANT-PRODUCTION PRECURSOR (MIP) will provide both knowledge of and confidence in the reliability of this technology. At the completion of this flight demonstration, the MIP Team will be able to: a) recommend preferred hardware configurations for the intake and adsorption of carbon dioxide from the Martian atmosphere; b) understand the performance characteristics of zirconia cells to generate propellant-grade oxygen; c) understand long-term performance characteristics of advanced solar cells/arrays operated in the actual Mars environment; d) evaluate the functionality of methods to mitigate the deposition of airborne dust onto solar arrays; and e) recommend preferred hardware designs for innovative thermal management including the radiation of heat to the outside environment.

  11. A Microfluidic Localized, Multiple Cell Culture Array using Vacuum Actuated Cell Seeding: Integrated Anticancer Drug Testing

    PubMed Central

    Gao, Yan; Li, Peng

    2013-01-01

    In this study, we introduced a novel and convenient approach to culture multiple cells in localized arrays of microfluidic chambers using one-step vacuum actuation. In one device, we integrated 8 individually addressable regions of culture chambers, each only requiring one simple vacuum operation to seed cells lines. Four cell lines were seeded in designated regions in one device via sequential injection with high purity (99.9%-100%) and cultured for long-term. The on-chip simultaneous culture of HuT 78, Ramos, PC-3 and C166-GFP cells for 48 h was demonstrated with viabilities of 92%+/−2%, 94%+/−4%, 96%+/−2% and 97%+/−2%, respectively. The longest culture period for C166-GFP cells in this study was 168 h with a viability of 96%+/−10%. Cell proliferation in each individual side channel can be tracked. Mass transport between the main channel and side channels was achieved through diffusion and studied using fluorescein solution. The main advantage of this device is the capability to perform multiple cell-based assays on the same device for better comparative studies. After treating cells with staurosporine or anti-human CD95 for 16 h, the apoptotic cell percentage of HuT 78, CCRF-CEM, PC-3 and Ramos cells were 36%+/−3%, 24%+/−4%, 12%+/−2%, 18%+/−4% for staurosporine, and 63%+/−2%, 45%+/−1%, 3%+/−3%, 27%+/−12% for anti-human CD95, respectively. With the advantages of enhanced integration, ease of use and fabrication, and flexibility, this device will be suitable for long-term multiple cell monitoring and cell based assays. PMID:23813077

  12. Nerve growth factor (NGF) immunoreactive neurons in the juvenile rat hippocampus: response to acute and long-term high-light open-field (HL-OF) or forced swim (FS) stress stimulation.

    PubMed

    Badowska-Szalewska, E; Spodnik, E; Ludkiewicz, B; Klejbor, I; Moryś, J

    2011-12-29

    This study aimed at examining and comparing the influence of two different stress stimuli on the density (number of cells/mm²) of nerve growth factor (NGF) containing neurons in the hippocampal CA1 and CA3 pyramidal cell layers and the dentate gyrus (DG) granule cell layer in juvenile rats (P28; P-postnatal day). The high-light open-field (HL-OF) test and forced swim (FS) test were employed to investigate the effects of a single, 15-min acute exposure and repeated (15 min daily for 21 days) long-term exposure to stress. In order to detect NGF-ir neurons, immunohistochemical (-ir) techniques were used. In comparison with nonstressed animals, acute and long-term HL-OF or FS stimulation resulted in a marked increase (P<0.001) in the density of NGF-ir containing cells in all the hippocampal structures. The frequency of stress application (acute vs. long-term), however, did not have a substantial impact on the studied parameter, with the exception of the CA3 sector, where a decreased density (P<0.001) of NGF-ir neurons was observed after long-term exposure to FS. It may be concluded that a rise in the density of NGF-ir neurons in the juvenile rat hippocampus after exposure to HL-OF or FS stressors could have affected the activity of the hypothalamic-pituitary-adrenocortical (HPA) stress axis. Prolonged HL-OF or FS stress was probably aggravating enough not to trigger the habituation process. The type of stressor applied (HL-OF vs. FS) was not essentially a factor determining the density of NGF-ir cells in the hippocampus. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, TN; Park, AHA; Bantat, S

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilitiesmore » (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.« less

  15. Performance oriented guidance for Mississippi chip seals - volume II.

    DOT National Transportation Integrated Search

    2013-12-01

    A laboratory and field study was conducted related to long term chip seal performance. This reports primary : objective was to initiate development of a long term performance (LTP) test protocol for chip seals focused on : aggregate retention. Key...

  16. Distress identification manual for the long-term pavement performance program (Fifth revised edition)

    DOT National Transportation Integrated Search

    2014-05-01

    Accurate, consistent, and repeatable distress evaluation surveys can be performed by using the Distress Identification Manual for the Long-Term Pavement Performance Program. Color photographs and drawings illustrate the distresses found in three basi...

  17. Viability of long-term gene therapy in the cochlea.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Richardson, Rachael T

    2014-04-22

    Gene therapy has been investigated as a way to introduce a variety of genes to treat neurological disorders. An important clinical consideration is its long-term effectiveness. This research aims to study the long-term expression and effectiveness of gene therapy in promoting spiral ganglion neuron survival after deafness. Adenoviral vectors modified to express brain derived neurotrophic factor or neurotrophin-3 were unilaterally injected into the guinea pig cochlea one week post ototoxic deafening. After six months, persistence of gene expression and significantly greater neuronal survival in neurotrophin-treated cochleae compared to the contralateral cochleae were observed. The long-term gene expression observed indicates that gene therapy is potentially viable; however the degeneration of the transduced cells as a result of the original ototoxic insult may limit clinical effectiveness. With further research aimed at transducing stable cochlear cells, gene therapy may be an efficacious way to introduce neurotrophins to promote neuronal survival after hearing loss.

  18. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells.

    PubMed

    Pogozhykh, Denys; Pogozhykh, Olena; Prokopyuk, Volodymyr; Kuleshova, Larisa; Goltsev, Anatoliy; Blasczyk, Rainer; Mueller, Thomas

    2017-03-11

    Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.

  19. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2015-12-01

    cells (HSCs) are multipotent cells that differentiate into myeloid, lymphoid and erythroid lineages, and have short-term or long-term regenerative...All rights reserved Nature Reviews | Rheumatology a b MPP CMP CLP Lymphoid cells NK cellB cell T cell Megakaryocyte and erythrocytes Macrophage and...into other cell types. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MPP, multipotent progenitor; NK cell , natural killer cell . R E

  20. Long-term survival of donor bone marrow multipotent mesenchymal stromal cells implanted into the periosteum of patients with allogeneic graft failure.

    PubMed

    Kuzmina, L A; Petinati, N A; Sats, N V; Drize, N J; Risinskaya, N V; Sudarikov, A B; Vasilieva, V A; Drokov, M Y; Michalzova, E D; Parovichnikova, E N; Savchenko, V G

    2016-09-01

    The present study involved three patients with graft failure following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We obtained multipotent mesenchymal stromal cells (MSCs) from the original hematopoietic cell donors and implanted these cells in the periosteum to treat long-term bone marrow aplasia. The results showed that in all patients endogenous blood formation was recovered 2 weeks after MSC administration. Donor MSCs were found in recipient bone marrow three and 5 months following MSC implantation. Thus, our findings indicate that functional donor MSCs can persist in patient bone marrow.

  1. Long-term temperature effects on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Hong, K. H.

    1979-01-01

    The thermal degradation of AlGaAs solar cells resulting from a long-term operation in a space environment is investigated. The solar cell degradation effects caused by zinc and aluminum diffusion as well as deterioration by arsenic evaporation are presented. Also, the results are presented of experimental testing and measurements of various GaAs solar cell properties while the solar cell was operating in the temperature range of 27 C to 350 C. In particular, the properties of light current voltage curves, dark current voltage curves, and spectral response characteristics are given. Finally, some theoretical models for the annealing of radiation damage over various times and temperatures are included.

  2. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    PubMed

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  3. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    PubMed Central

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842

  4. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  5. Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

    PubMed

    Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe

    2017-03-22

    Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 2. Knockdown Response and Long-Term Response

    PubMed Central

    Maurya, Mano Ram; Subramaniam, Shankar

    2007-01-01

    This article addresses how quantitative models such as the one proposed in the companion article can be used to study cellular network perturbations such as knockdowns and pharmacological perturbations in a predictive manner. Using the kinetic model for cytosolic calcium dynamics in RAW 264.7 cells developed in the companion article, the calcium response to complement 5a (C5a) for the knockdown of seven proteins (C5a receptor; G-β-2; G-α,i-2,3; regulator of G-protein signaling-10; G-protein coupled receptor kinase-2; phospholipase C β-3; arrestin) is predicted and validated against the data from the Alliance for Cellular Signaling. The knockdown responses provide insights into how altered expressions of important proteins in disease states result in intermediate measurable phenotypes. Long-term response and long-term dose response have also been predicted, providing insights into how the receptor desensitization, internalization, and recycle result in tolerance. Sensitivity analysis of long-term response shows that the mechanisms and parameters in the receptor recycle path are important for long-term calcium dynamics. PMID:17483189

  7. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    PubMed

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  8. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease

    PubMed Central

    Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu

    2016-01-01

    Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728

  9. Dual effects of fluoxetine on mouse early embryonic development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation. ► Long-term exposure of 2-cells to fluoxetine decreases mouse blastocyst formation. ► The inhibitory effect of fluoxetine is mediated through TREK channel gating.« less

  10. Effect of the cellular structure on thermal conductivity of rigid closed-cell foam polymers during long-term aging

    NASA Astrophysics Data System (ADS)

    Dementyev, A. G.; Dementyev, M. A.; Zinger, P. A.; Metlyakova, I. R.

    1999-03-01

    The thermal conductivity of rigid closed-cell polyurethane foams during long-term aging has been studied. The similarity between the kinetics of changes in the physical and mechanical characteristics of PU foams on progressive aging is established, which is attributed to the effect of matrix destruction. It is found that rigid foams have cell walls of various strength, whose impact on the kinetics of changes in the physical characteristics of the foams during long-term aging is ascertained. The results of predicting the thermal conductivity of PU foams by the method of temperature-time analogy and establishing the limits of its application are discussed. The research presented is of interest both in determining the foam durability and in replacing freons by alternative, ecologically less harmful blowing agents.

  11. Systematic Prevention of Bubble Formation and Accumulation for Long-Term Culture of Pancreatic Islet Cells in Microfluidic Device

    PubMed Central

    Wang, Yong; Lee, Dongyoung; Zhang, Lisa; Jeon, Hyojin; Mendoza-Elias, Joshua E.; Harvat, Tricia A.; Hassan, Sarah Z.; Zhou, Amanda; Eddington, David T.; Oberholzer, José

    2012-01-01

    Reliable long-term cell culture in microfluidic system is limited by air bubble formation and accumulation. In this study, we developed a bubble removal system capable of both trapping and discharging air bubbles in a consistent and reliable manner. Combined with PDMS (Polydimethylsiloxane) hydrophilic surface treatment and vacuum filling, a microfluidic perifusion system equipped with the bubble trap was successfully applied for long-term culture of mouse pancreatic islets with no bubble formation and no flow interruption. In addition to demonstrating normal cell viability and islet morphology, post-cultured islets exhibited normal insulin secretion kinetics, intracellular calcium signaling, and changes in mitochondrial potentials in response to glucose challenge. This design could be easily adapted by other microfluidic systems due to its simple design, ease of fabrication, and portability. PMID:22252566

  12. HIV-associated cognitive performance and psychomotor impairment in a Thai cohort on long-term cART.

    PubMed

    Do, Tanya C; Kerr, Stephen J; Avihingsanon, Anchalee; Suksawek, Saowaluk; Klungkang, Supalak; Channgam, Taweesak; Odermatt, Christoph C; Maek-A-Nantawat, Wirach; Ruxtungtham, Kiat; Ananworanich, Jintanat; Valcour, Victor; Reiss, Peter; Wit, Ferdinand W

    2018-01-01

    To assess cognitive performance and psychomotor impairment in an HIV-positive cohort, well-suppressed on combination antiretroviral therapy (cART), in an Asian resource-limited setting. Cross-sectional sociodemographic and cognitive data were collected in 329 HIV-positive and 510 HIV-negative participants. Cognitive performance was assessed using the International HIV Dementia Scale (IHDS), Montreal Cognitive Assessment (MoCA), WAIS-III Digit Symbol, Trail Making A, and Grooved Pegboard (both hands). Psychomotor test scores in the HIV-positive participants were converted to Z-scores using scores of the HIV-negative participants as normative data. Psychomotor impairment was defined as performance on two tests more than 1 standard deviation (SD) from controls or more than 2 SD on one test. Multivariate linear and logistic regression analyses were used to investigate associations between HIV and non-HIV-related covariates and poorer cognitive performance and psychomotor impairment. HIV-positive participants, mean age 45 (SD 7.69) years received cART for a median of 12.1 years (interquartile range [IQR] 9.1-14.4). Median CD4 cell count was 563 cells/mm 3 (IQR 435-725), and 92.77% had plasma HIV RNA <40 copies/mL. The adjusted mean differences between HIV-positive versus HIV-negative cohorts indicated significantly inferior cognitive performance (tests all P <0.001) with increasing age and lower income, independently associated. Psychomotor impairment was found ( P <0.02) in all tests except the Grooved Pegboard non-dominant hand ( P =0.48). Psychomotor impairment prevalence was 43% in the HIV-positive cohort, associated with male gender and lower income. In this study, in individuals with viral suppression rates >90% on long-term cART, we found that inferior cognitive performance and psychomotor impairment were primarily associated with non-HIV-related factors.

  13. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    NASA Technical Reports Server (NTRS)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate without losing radiation sensitivity. We employed Next-Generation Sequencing technology to better understand this phenotypic variation. Current effort is focusing on the analysis of high-throughput sequencing data to look for genomic changes in these reisolated clones compared to their original isolate.

  14. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  15. Radiation-Induced Hemopoietic and Immune Dysfunction

    DTIC Science & Technology

    1991-06-01

    the dog. Culture conditions were studied and optimized, and marrow cells were transplanted into otherwise lethally irradiated dogs to investigate stem ... cell survival in long- term cultures. Engraftment was observed only with short-term marrow cultures.

  16. A life prediction methodology for encapsulated solar cells

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1978-01-01

    This paper presents an approach to the development of a life prediction methodology for encapsulated solar cells which are intended to operate for twenty years or more in a terrestrial environment. Such a methodology, or solar cell life prediction model, requires the development of quantitative intermediate relationships between local environmental stress parameters and the basic chemical mechanisms of encapsulant aging leading to solar cell failures. The use of accelerated/abbreviated testing to develop these intermediate relationships and in revealing failure modes is discussed. Current field and demonstration tests of solar cell arrays and the present laboratory tests to qualify solar module designs provide very little data applicable to predicting the long-term performance of encapsulated solar cells. An approach to enhancing the value of such field tests to provide data for life prediction is described.

  17. The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study.

    PubMed

    Manunta, Andrea Fabio; Zedde, Pietro; Pilicchi, Susanna; Rocca, Stefano; Pool, Roy R; Dattena, Maria; Masala, Gerolamo; Mara, Laura; Casu, Sara; Sanna, Daniela; Manunta, Maria Lucia; Passino, Eraldo Sanna

    2016-01-01

    the aim of this study was to determine whether local delivery of embryonic stem-like (ESL) cells into osteochondral defects in the femoral condyles of sheep would enhance regeneration of hyaline articular cartilage. male ESL cells embedded in fibrin glue were engrafted into osteochondral defects in the medial condyles (ESL-M) of the left femur in 22 ewes. An identical defect was created in the medial condyle of the contralateral stifle joint and left untreated as a control (empty defect, ED). The ewes were divided into 5 groups. Four sheep each were euthanized at 1, 2, 6, and 12 months from surgery, and 6 ewes were euthanized 24 months post-implantation. To study the effect of varying loads on the long-term regeneration process, an identical defect was also created and ESL cell engraftment performed in the lateral condyle (ESL-L) of the left stifle joint of the animals in the 12- and 24-month groups. The evaluation of regenerated tissue was performed by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and fluorescent in situ hybridization (FISH) assays. no significant differences were found between treated and control sites in the biomechanical assays at any time point. ESL cell grafts showed significantly greater macroscopic evidence of regeneration as compared to controls at 24 months after surgery; significantly better histological evidence of repair in ESL-M samples versus controls was found throughout the considered period. At 24 months from surgery there was significantly improved integration of graft edges with the host tissue in the ESL-M as compared to the ESL-L samples, demonstrating that load bearing positively affects the long-term regeneration process. ESL cells enhanced the regeneration of hyaline cartilage. FISH confirmed that the regenerative tissue originated from ESL cells. ESL cells are able to self-renew for prolonged periods without differentiation and, most importantly, to differentiate into a large variety of tissues.

  18. The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study

    PubMed Central

    MANUNTA, ANDREA FABIO; ZEDDE, PIETRO; PILICCHI, SUSANNA; ROCCA, STEFANO; POOL, ROY R.; DATTENA, MARIA; MASALA, GEROLAMO; MARA, LAURA; CASU, SARA; SANNA, DANIELA; MANUNTA, MARIA LUCIA; PASSINO, ERALDO SANNA

    2016-01-01

    Purpose the aim of this study was to determine whether local delivery of embryonic stem-like (ESL) cells into osteochondral defects in the femoral condyles of sheep would enhance regeneration of hyaline articular cartilage. Methods male ESL cells embedded in fibrin glue were engrafted into osteochondral defects in the medial condyles (ESL-M) of the left femur in 22 ewes. An identical defect was created in the medial condyle of the contralateral stifle joint and left untreated as a control (empty defect, ED). The ewes were divided into 5 groups. Four sheep each were euthanized at 1, 2, 6, and 12 months from surgery, and 6 ewes were euthanized 24 months post-implantation. To study the effect of varying loads on the long-term regeneration process, an identical defect was also created and ESL cell engraftment performed in the lateral condyle (ESL-L) of the left stifle joint of the animals in the 12- and 24-month groups. The evaluation of regenerated tissue was performed by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and fluorescent in situ hybridization (FISH) assays. Results no significant differences were found between treated and control sites in the biomechanical assays at any time point. ESL cell grafts showed significantly greater macroscopic evidence of regeneration as compared to controls at 24 months after surgery; significantly better histological evidence of repair in ESL-M samples versus controls was found throughout the considered period. At 24 months from surgery there was significantly improved integration of graft edges with the host tissue in the ESL-M as compared to the ESL-L samples, demonstrating that load bearing positively affects the long-term regeneration process. Conclusions ESL cells enhanced the regeneration of hyaline cartilage. FISH confirmed that the regenerative tissue originated from ESL cells. Clinical Relevance ESL cells are able to self-renew for prolonged periods without differentiation and, most importantly, to differentiate into a large variety of tissues. PMID:27602346

  19. Working memory, long-term memory, and medial temporal lobe function

    PubMed Central

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  20. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  1. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    PubMed

    White, André O; Wood, Marcelo A

    2014-07-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    PubMed Central

    White, André O.; Wood, Marcelo A.

    2013-01-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. PMID:24149059

  3. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication.

    PubMed

    Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.

  4. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    PubMed

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  5. Enhancement of Immune Memory Responses to Respiratory Infection

    DTIC Science & Technology

    2017-08-01

    Unlimited Distribution 13. SUPPLEMENTARY NOTES 14. ABSTRACT Maintenance of long - term immunological memory against pathogens is crucial for the rapid...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long - term memory B cells needed to protect against influenza...AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD

  6. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    PubMed Central

    Yip, Hon Ming; Li, John C. S.; Cui, Xin; Gao, Qiannan; Leung, Chi Chiu

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248

  7. Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology

    PubMed Central

    Leach, Jennie B.; Achyuta, Anil Kumar H.; Murthy, Shashi K.

    2009-01-01

    Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device–nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance. PMID:20161810

  8. Admission white blood cell count predicts short-term clinical outcomes in patients with uncomplicated Stanford type B acute aortic dissection.

    PubMed

    Chen, Zhao-Ran; Huang, Bi; Lu, Hai-Song; Zhao, Zhen-Hua; Hui, Ru-Tai; Yang, Yan-Min; Fan, Xiao-Han

    2017-01-01

    Inflammation has been shown to be related with acute aortic dissection (AAD). The present study aimed to evaluate the association of white blood cell counts (WBCc) on admission with both in-hospital and long-term all-cause mortality in patients with uncomplicated Stanford type B AAD. From 2008 to 2010, a total of 377 consecutive patients with uncomplicated type B AAD were enrolled and then followed up. Clinical data and WBCc on admission were collected. The primary end points were in-hospital death and long-term all-cause death. The in-hospital death rate was 4.2%, and the long-term all-cause mortality rate was 6.9% during a median follow-up of 18.9 months. WBCc on admission was identified as a risk factor for in-hospital death by univariate Cox regression analysis as both a continuous variable and a categorical variable using a cut off of 11.0 × 10 9 cell/L (all P < 0.05). After adjusting for age, sex and other risk factors, elevated admission WBCc was still a significant predictor for in-hospital death as both a continuous variable [hazard ratio (HR): 1.052, 95% CI: 1.024-1.336, P = 0.002] and a categorical variable using a cut off of 11.0 × 10 9 cell/L (HR: 2.056, 95% CI: 1.673-5.253, P = 0.034). No relationship was observed between WBCc on admission and long-term all-cause death. Our results indicate that elevated WBCc upon admission might be used as a predictor for increased risk of in-hospital death in uncomplicated type B AAD. There might be no predictive value of WBCc for the long-term survival of type B AAD.

  9. Analysis of hematopoietic recovery after autologous transplantation as method of quality control for long-term progenitor cell cryopreservation.

    PubMed

    Pavlů, J; Auner, H W; Szydlo, R M; Sevillano, B; Palani, R; O'Boyle, F; Chaidos, A; Jakob, C; Kanfer, E; MacDonald, D; Milojkovic, D; Rahemtulla, A; Bradshaw, A; Olavarria, E; Apperley, J F; Pello, O M

    2017-12-01

    Hematopoietic precursor cells (HPC) are able to restore hematopoiesis after high-dose chemotherapy and their cryopreservation is routinely employed prior to the autologous hematopoietic cell transplantation (AHCT). Although previous studies showed feasibility of long-term HPC storage, concerns remain about possible negative effects on their potency. To study the effects of long-term cryopreservation, we compared time to neutrophil and platelet recovery in 50 patients receiving two AHCT for multiple myeloma at least 2 years apart between 2006 and 2016, using HPC obtained from one mobilization and collection attempt before the first transplant. This product was divided into equivalent fractions allowing a minimum of 2 × 10 6 CD34+ cells/kg recipient's weight. One fraction was used for the first transplant after median storage of 60 days (range, 17-165) and another fraction was used after median storage of 1448 days (range, 849-3510) at the second AHCT. Neutrophil recovery occurred at 14 days (median; range, 11-21) after the first and 13 days (10-20) after the second AHCT. Platelets recovered at a median of 16 days after both procedures. Considering other factors, such as disease status, conditioning and HPC dose, this single institution data demonstrated no reduction in the potency of HPC after long-term storage.

  10. Long-term in vivo single-cell tracking reveals the switch of migration patterns in adult-born juxtaglomerular cells of the mouse olfactory bulb

    PubMed Central

    Liang, Yajie; Li, Kaizhen; Riecken, Kristoffer; Maslyukov, Anatoliy; Gomez-Nicola, Diego; Kovalchuk, Yury; Fehse, Boris; Garaschuk, Olga

    2016-01-01

    The behavior of adult-born cells can be easily monitored in cell culture or in lower model organisms, but longitudinal observation of individual mammalian adult-born cells in their native microenvironment still proves to be a challenge. Here we have established an approach named optical cell positioning system for long-term in vivo single-cell tracking, which integrates red-green-blue cell labeling with repeated angiography. By combining this approach with in vivo two-photon imaging technique, we characterized the in vivo migration patterns of adult-born neurons in the olfactory bulb. In contrast to the traditional view of mere radial migration of adult-born cells within the bulb, we found that juxtaglomerular cells switch from radial migration to long distance lateral migration upon arrival in their destination layer. This unique long-distance lateral migration has characteristic temporal (stop-and-go) and spatial (migratory, unidirectional or multidirectional) patterns, with a clear cell age-dependent decrease in the migration speed. The active migration of adult-born cells coincides with the time period of initial fate determination and is likely to impact on the integration sites of adult-born cells, their odor responsiveness, as well as their survival rate. PMID:27174051

  11. Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery.

    PubMed

    Markov, Dmitry A; Lu, Jenny Q; Samson, Philip C; Wikswo, John P; McCawley, Lisa J

    2012-11-07

    We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow "mammospheres" if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our "drug" delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells.

  12. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency

    PubMed Central

    Chuah, Yon Jin; Koh, Yi Ting; Lim, Kaiyang; Menon, Nishanth V.; Wu, Yingnan; Kang, Yuejun

    2015-01-01

    Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies. PMID:26647719

  13. Long-term monitoring of Sacramento Shade program trees: tree survival, growth and energy-saving performance

    Treesearch

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...

  14. Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity

    ERIC Educational Resources Information Center

    Graff, Johannes; Koshibu, Kyoko; Jouvenceau, Anne; Dutar, Patrick; Mansuy, Isabelle M.

    2010-01-01

    Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and…

  15. Electrochemical and partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Singh, Rahul

    2008-10-01

    Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by in situ infrared spectroscopy combined with mass spectrometry and (ii) evaluating the performance of coal gas for power generation based on the composition on a Cu-SOFC. The voltage-current performance curve for coal gas suggests that hydrogen and methane rich coal gas performed better than CO2 or D2O concentrated coal gas. A slow rate of reforming reaction of D2O than CO2 with coal and coal gas was observed during pyrolysis reaction. The coal and coke (by-product of pyrolysis) were characterized by Raman spectrometer to reveal the effect of pyrolysis on the structural properties of coal.

  16. In vivo investigations of the effect of short- and long-term recombinant growth hormone treatment on DNA-methylation in humans.

    PubMed

    Kolarova, Julia; Ammerpohl, Ole; Gutwein, Jana; Welzel, Maik; Baus, Inka; Riepe, Felix G; Eggermann, Thomas; Caliebe, Almuth; Holterhus, Paul-Martin; Siebert, Reiner; Bens, Susanne

    2015-01-01

    Treatment with recombinant human growth hormone (rhGH) has been consistently reported to induce transcriptional changes in various human tissues including peripheral blood. For other hormones it has been shown that the induction of such transcriptional effects is conferred or at least accompanied by DNA-methylation changes. To analyse effects of short term rhGH treatment on the DNA-methylome we investigated a total of 24 patients at baseline and after 4-day rhGH stimulation. We performed array-based DNA-methylation profiling of paired peripheral blood mononuclear cell samples followed by targeted validation using bisulfite pyrosequencing. Unsupervised analysis of DNA-methylation in this short-term treated cohort revealed clustering according to individuals rather than treatment. Supervised analysis identified 239 CpGs as significantly differentially methylated between baseline and rhGH-stimulated samples (p<0.0001, unadjusted paired t-test), which nevertheless did not retain significance after adjustment for multiple testing. An individualized evaluation strategy led to the identification of 2350 CpG and 3 CpH sites showing methylation differences of at least 10% in more than 2 of the 24 analyzed sample pairs. To investigate the long term effects of rhGH treatment on the DNA-methylome, we analyzed peripheral blood cells from an independent cohort of 36 rhGH treated children born small for gestational age (SGA) as compared to 18 untreated controls. Median treatment interval was 33 months. In line with the groupwise comparison in the short-term treated cohort no differentially methylated targets reached the level of significance in the long-term treated cohort. We identified marked intra-individual responses of DNA-methylation to short-term rhGH treatment. These responses seem to be predominately associated with immunologic functions and show considerable inter-individual heterogeneity. The latter is likely the cause for the lack of a rhGH induced homogeneous DNA-methylation signature after short- and long-term treatment, which nevertheless is well in line with generally assumed safety of rhGH treatment.

  17. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication

    PubMed Central

    Zhou, Jing; Bethune, Michael T.; Malkova, Natalia; Sutherland, Alexander M.; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell—T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma. PMID:29360859

  18. Long-Term Pavement Performance Program: Pavement Performance Measures and Forecasting and the Effects of Maintenance and Rehabilitation Strategy on Treatment Effectiveness [Tech Brief

    DOT National Transportation Integrated Search

    2016-08-01

    This document is a technical summary of the Federal Highway Administration Long-Term Pavement Performance Program report, Pavement Performance Measures and Forecasting and the Effects of Maintenance and Rehabilitation Strategy on Treatment Effectiven...

  19. Red blood cell storage duration and long-term mortality in patients undergoing cardiac intervention: a Danish register study.

    PubMed

    Dencker, D; Pedersen, F; Engstrøm, T; Schroeder, T V; Lönn, L; Johansson, P I; De Backer, O

    2017-08-01

    To study the effect of red blood cell (RBC) storage duration on long-term mortality in patients undergoing cardiac intervention. RBCs undergo numerous structural and functional changes during storage. Observational studies have assessed the association between RBC storage duration and patient outcomes with conflicting results. Between January 2006 and December 2014, 82 408 patients underwent coronary angiography. Of these, 1856 patients received one to four RBC units within 30 days after this procedure. Patients were allocated according to length of RBC storage duration: short-term (≤11 days), intermediate (IM)-term (12-23 days) and long-term (≥24 days). The study endpoints were 30-day and long-term all-cause mortality. A total of 4168 RBC units were given to 1856 patients. The mean RBC storage duration was 8.5 ± 2.1, 17.7 ± 3.4 and 29.9 ± 3.4 days in the short-term, IM-term and long-term storage groups, respectively. There was no difference in baseline characteristics between the groups. The long-term storage group received significantly more units (2.4 ± 1.0 units) as compared to the short-term (2.0 ± 1.0 units; P < 0.001) and IM-term storage group (2.2 ± 1.0 units; P < 0.01). In the survival analysis, there was no significant difference in all-cause mortality between the groups (log-rank: 0.509 for 30-days mortality; 0.493 for 5-year mortality). Additional stratified analysis demonstrated no association between RBC storage duration and long-term mortality. This study did not find an association between RBC storage duration and 30-days or long-term mortality in patients undergoing cardiac intervention. © 2017 British Blood Transfusion Society.

  20. Improved Transparent Conducting Oxides for Photovoltaics: Final Research Report, 1 May 1999--31 December 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, T. O.; Chang, R. P. H.; Marks, T. J.

    2003-10-01

    This subcontract focused on next-generation transparent conducting oxides (TCOs) for improved PV performance. More specifically, there were two research foci: (1) improved Sn-based, n-type TCOs aimed at enhanced CdTe PV cell performance, and (2) novel Cu-based, p-type TCOs applicable to a variety of PV designs. The objective of the research under this subcontract was to identify, explore, evaluate, and develop future generations of photovoltaic technologies that can meet the long-term goal of producing low-cost electricity from sunlight.

  1. Effect of supraphysiological dose of Nandrolone Decanoate on the testis and testosterone concentration in mature and immature male rats: A time course study.

    PubMed

    Jannatifar, Rahil; Shokri, Saeed; Farrokhi, Ahmad; Nejatbakhsh, Reza

    2015-12-01

    Most studies on anabolic-androgenic steroids abuse have been done in adult rats, but few data are available to immature. This study was conducted to assay the effect of Nandrolone Decanoate (ND) on the testis and testosterone concentration in male immature rats compare with mature ones in short and long time. 40 mature rats were divided into 4 groups: group A (short term) and group B (long-term) received 10 mg/kg/day ND interaperitoneally for 35 and 70 days, respectively. Group C (control) without any treatment, and group D (vehicle) received dimethyl sulfoxide (DMSO) solution in two periods 35 and 70 days. 40 immature rats were divided into 4 groups same as mature ones. After surgery body weight, testis size, histomorphometry of testis, and serum testosterone level were evaluated. Our results showed that ND decreased the number of Leydig cells in group B (39.9 ±. 919), group A (43.4 ±. 120), and long term (40.6 ±. 299) immature rats, which could result in a reduction of testosterone concentration significantly in all experimental groups except short term mature group. Number of sertoli cells, testis size, and diameter of seminiferous tubules decreased in the long-term immature group. Eventually, the number of sperm was decreased in mature and immature groups, but a severe depletion of sperm was occurred in both mature and immature in long time in comparison to the control group (p< 0.05). This time course study showed that supraphysiological dose of ND may negatively affect the number of Leydig cells, sperm cell, and testosterone concentration of immature rats in the same matter of mature rats. However, the number of sertoli cell, testis size, and seminferous diameter were decreased only in the long immature rats.

  2. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    PubMed

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    PubMed Central

    Tan, Lei; Sui, Xin; Deng, Hongkui; Ding, Mingxiao

    2011-01-01

    Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs. PMID:21826251

  4. Enhanced electrochemical performance and carbon anti-coking ability of solid oxide fuel cells with silver modified nickel-yttrium stabilized zirconia anode by electroless plating

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Tian, Yu; Zhang, Jun; Zuo, Wei; Kong, Xiaowei; Wang, Jinghui; Sun, Kening; Zhou, Xiaoliang

    2016-01-01

    In this paper, silver (Ag) particles are introduced into the conventional Ni/YSZ anode by utilizing electroless plating method to improve its carbon anti-coking ability in hydrocarbons. The experimental results show that electrochemical performances of the decorated cells in H2, CH4 and C2H6 are all increased as compared to the cell with unmodified Ni/YSZ anode, which are verified by impedance spectrums as well. The durability experiment is carried out for as long as 24 h at the current density of 0.33 A/cm2 where the modified anode is subjected to dry C2H6 indicating the anti-coking ability of the anode is greatly improved. Scanning electron microscope shows that the slight decreasing in the cell terminal voltage can be attributed to the minimized carbon deposition which maybe resulted from the aggregation of silver particles at high temperature. Energy-dispersive X-ray spectroscopy line scanning results after long-term stability operation of the anode suggest that the carbon deposition can be depressed effectively both inside the anode and on the surface of the anode. Therefore, the results show that silver is a promising candidate material for modifying the Ni/YSZ anode with regard to improving electrochemical performance and suppressing the carbon deposition when taking the hydrocarbons as fuels.

  5. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Scott; Poeppelmeier, Ken; Mason, Tom

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less

  6. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium.

    PubMed

    Blocki, Anna; Beyer, Sebastian; Dewavrin, Jean-Yves; Goralczyk, Anna; Wang, Yingting; Peh, Priscilla; Ng, Michael; Moonshi, Shehzahdi S; Vuddagiri, Susmitha; Raghunath, Michael; Martinez, Eliana C; Bhakoo, Kishore K

    2015-06-01

    The limited efficacy of cardiac cell-based therapy is thought to be due to poor cell retention within the myocardium. Hence, there is an urgent need for biomaterials that aid in long-term cell retention. This study describes the development of injectable microcapsules for the delivery of mesenchymal stem cells (MSCs) into the infarcted cardiac wall. These microcapsules comprise of low concentrations of agarose supplemented with extracellular matrix (ECM) proteins collagen and fibrin. Dextran sulfate, a negatively charged polycarbohydrate, was added to mimic glycosaminoglycans in the ECM. Cell viability assays showed that a combination of all components is necessary to support long-term survival and proliferation of MSCs within microcapsules. Following intramyocardial transplantation, microcapsules degraded slowly in vivo and did not induce a fibrotic foreign body response. Pre-labeling of encapsulated MSCs with iron oxide nanoparticles allowed continued cell-tracking by MRI over several weeks following transplantation into infarcted myocardium. In contrast, MSCs injected as cell suspension were only detectable for two days post transplantation by MRI. Histological analysis confirmed integration of transplanted cells at the infarct site. Therefore, microcapsules proved to be suitable for stem cell delivery into the infarcted myocardium and can overcome current limitations of poor cell retention in cardiac cell-based therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  8. Long-Term Pavement Performance Bind Online [Product Brief

    DOT National Transportation Integrated Search

    2017-02-23

    This Product Brief introduces the reader to the Long-Term Pavement Performance Bind (LTPPBind) Online Web-based tool for selecting asphalt binder performance grades (PGs).(1) It explains what the tool is, who can benefit from its use, what its main f...

  9. 980nm laser for difficult-to-treat basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Derjabo, A. D.; Cema, I.; Lihacova, I.; Derjabo, L.

    2013-06-01

    Begin basal cell carcinoma (BCC) is most common skin cancer over the world. There are around 20 modalities for BCC treatment. Laser surgery is uncommon option. We demonstrate our long term follow up results. Aim: To evaluate long term efficacy of a 980nm diode laser for the difficult-to-treat basal cell carcinoma. Materials and Methods: 167 patients with 173 basal cell carcinoma on the nose were treated with a 980 nm diode laser from May 1999 till May 2005 at Latvian Oncology center. All tumors were morphologically confirmed. 156 patients were followed for more than 5 years. Results: The lowest recurrence rate was observed in cases of superficial BCC, diameter<6mm bet the highest recurrence rate was in cases of infiltrative BCC and nodular recurrent BCC. Conclusions: 980 nm diode laser is useful tool in dermatology with high long term efficacy, good acceptance by the patients and good cosmetics results.

  10. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture.

    PubMed

    Bakhshi, Tiki; Zabriskie, Ryan C; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A; Gregory, Stephanie A; Fung, Henry C; Christopherson, Kent W

    2008-12-01

    Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow-derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton's jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. Umbilical cord-derived MSCs (UC-MSCs) were cultured from the Wharton's jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. These data suggest the potential therapeutic application of Wharton's jelly-derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation.

  11. Cytotoxicity evaluation of Curcuma zedoaria (Christm.) Roscoe fluid extract used in oral hygiene products.

    PubMed

    Fernandes, Joao Paulo Dos Santos; Mello-Moura, Anna Carolina Volpi; Marques, Marcia Martins; Nicoletti, Maria Aparecida

    2012-12-01

    This in vitro study evaluated the cytotoxic effects of the Curcuma zedoaria (Christm.) Roscoe (popular name: zedoary) fluid extract, as used in preparations for oral hygiene, mostly for anti-septic purposes. The cell viability and cell growth were assessed by Trypan blue dye exclusion assay using the LMF cell line derived from oral mucosa. Cell viability (short-term assay) was measured 0, 6, 12 and 24 h after contact with the fluid extract. Cell growth (long-term assay) was analyzed in 1, 3, 5 and 7 days. The experimental groups were those testing the fluid extract obtained from the zedoary rhizome and the extractor liquid (ethanol 70° GL) in the concentrations of 0.01-0.0001% v/v. Fresh DMEM were used in the control cultures. Short-term assay-all studied cultures maintained stable cell viability; Long-term assay-there was progressive cell growth in all studied cultures. According to the results, the zedoary fluid extract presents low cytotoxicity and probably can be used in the oral hygiene products.

  12. Solution-proceed Air-stable Copper Bismuth Iodide CuBiI₄ for Photovoltaics.

    PubMed

    Hu, Zhaosheng; Wang, Zhen; Kapil, Gaurav; Ma, Tingli; Iikubo, Satoshi; Minemoto, Takashi; Yoshino, Kenji; Toyoda, Taro; Shen, Qing; Hayase, Shuzi

    2018-06-19

    Bismuth based solar cells have been under intensive interest as an efficient non-toxic absorber in photovoltaics. Within this new family of semiconductors, we herein, report a new, long-term stable material copper bismuth iodide (CuBiI₄). A solution-processed method is provided under air atmosphere. The adopted HI assisted Dimethylacetamide (DMA) co-solvent can completely dissolve CuI and BiI₃ powders with high concentration compared to other organic solvent. Moreover, high vapor pressure of Tributyl phosphate, we select for the solvent vapor annealing (SVA), enables the whole low-temperature (≤70⁰C) film preparation. It results in a stable, uniform dense CuBiI₄ film. The average grains size increasing with precursor concentration, greatly enlarge the PL life time and hall mobility. And carrier lifetime of 3.03 ns as well as an appreciable hall mobility of 110 cm²/Vs were obtained. X-ray diffraction illustrates that the crystal structure is cubic (space group Fd3m) and favored in [1, 1, 1] direction. Moreover, the photovoltaic performance of CuBiI₄ was also investigated. A wide-bandgap (2.67 eV) solar cell with 0.82 % performance is presented, which shows an excellent long-term stability at least over 1008 hours under ambient conditions. This air-stable material may give an application in future tandem solar cells as a stable short-wavelength light absorber. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A randomized controlled trial of an activity specific exercise program for individuals with Alzheimer disease in long-term care settings.

    PubMed

    Roach, Kathryn E; Tappen, Ruth M; Kirk-Sanchez, Neva; Williams, Christine L; Loewenstein, David

    2011-01-01

    To determine whether an activity specific exercise program could improve ability to perform basic mobility activities in long-term care residents with Alzheimer disease (AD). Randomized, controlled, single-blinded clinical trial. Residents of 7 long-term care facilities. Eighty-two long-term care residents with mild to severe AD. An activity specific exercise program was compared to a walking program and to an attention control. Ability to perform bed mobility and transfers was assessed using the subscales of the Acute Care Index of Function; functional mobility was measured using the 6-Minute Walk test. Subjects receiving the activity specific exercise program improved in ability to perform transfers, whereas subjects in the other 2 groups declined.

  14. Rahnella sp. strain EK12: Cell surface properties and diesel oil biodegradation after long-term contact with natural surfactants and diesel oil.

    PubMed

    Smułek, Wojciech; Zdarta, Agata; Guzik, Urszula; Dudzińska-Bajorek, Beata; Kaczorek, Ewa

    2015-07-01

    The changes in cell surface properties of Rahnella sp. strain EK12 and modifications in genetic material after long-term contact with saponins and rhamnolipids, were investigated. Rhamnolipids caused a decrease of hydrophobicity in liquid cultures compared with saponins. On the other hand, in cultures with rhamnolipids, the addition of diesel oil results in a rapid rise of cell surface hydrophobicity. The similar effect was not so significant in the presence of saponins. For the bacteria grown in the presence of saponins or rhamnolipids, but without diesel oil, the ratio of unsaturated to saturated fatty acids decreased, in comparison to the control culture. The differences observed in hydrophobicity, zeta potential and fatty acids profiles, indicated various mechanisms of an interaction between a surfactant and a bacterial cells. The results have also shown an impact of the long-term contact on changes in genetic material of Rahnella sp. strain EK12 cells. Moreover, the presence of saponins led to significant increase of diesel oil biodegradation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili

    2016-07-01

    Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.

  16. Lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment: A case report.

    PubMed

    Naruse, Tomofumi; Tokuhisa, Mitsuko; Yanamoto, Souichi; Sakamoto, Yuki; Okuyama, Kohei; Tsuchihashi, Hiroki; Umeda, Masahiro

    2018-05-01

    Long-term cetuximab treatment can lead to acquired resistance, and tumor progression and/or new lesions often occur. The present report describes a case of lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment in a 60-year-old man, including findings of an immunohistochemical study. The resected primary tumors, biopsy of the lung metastasis before administration of cetuximab, and brain metastasis specimens mediated by cetuximab were immunohistochemically examined. Histologically, the metastatic brain lesion showed hyperkeratinizing tumor cells with deeply stained irregular nuclei with necrotizing tumor cells, and a decrease in cell density was exhibited in part of the tumor nest. Moreover, the brain lesion was less malignant compared with the primary tumor and metastatic lung lesions. Immunohistochemically, the metastatic brain lesions showed low expression of epidermal growth factor receptor (EGFR) and high expression of N-cadherin compared with the primary tumor and metastatic lung lesions. These results suggest that acquired resistance to cetuximab may be associated with low EGFR expression and increased epithelial-to-mesenchymal transition potential.

  17. Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys.

    PubMed

    Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Fanales-Belasio, Emanuele; Moretti, Sonia; Sernicola, Leonardo; Cara, Andrea; Negri, Donatella R M; Buttò, Stefano; Fiorelli, Valeria; Tripiciano, Antonella; Scoglio, Arianna; Caputo, Antonella; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Ciccozzi, Massimo; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara

    2004-09-03

    Vaccination with a biologically active Tat protein or tat DNA contained infection with the highly pathogenic SHIV89.6P virus, preventing CD4 T-cell decline and disease onset. Here we show that protection was prolonged, since neither CD4 T-cell decline nor active virus replication was observed in all vaccinated animals that controlled virus replication up to week 104 after the challenge. In contrast, virus persisted and replicated in peripheral blood mononuclear cells and lymph nodes of infected animals, two of which died. Tat-specific antibody, CD4 and CD8 T-cell responses were high and stable only in the animals controlling the infection. In contrast, Gag-specific antibody production and CD4 and CD8 T-cell responses were consistently and persistently positive only in the monkeys that did not control primary virus replication. These results indicate that vaccination with Tat protein or DNA induced long-term memory Tat-specific immune responses and controlled primary infection at its early stages allowing a long-term containment of virus replication and spread in blood and tissues.

  18. Test results of six-month test of two water electrolysis systems

    NASA Technical Reports Server (NTRS)

    Mills, E. S.; Wells, G. W.

    1972-01-01

    The two water electrolysis systems used in the NASA space station simulation 90-day manned test of a regenerative life support system were refurbished as required and subjected to 26-weeks of testing. The two electrolysis units are both promising systems for oxygen and hydrogen generation and both needed extensive long-term testing to evaluate the performance of the respective cell design and provide guidance for further development. Testing was conducted to evaluate performance in terms of current, pressure, variable oxygen demands, and orbital simulation. An automatic monitoring system was used to record, monitor and printout performance data at one minute, ten minute or one-hour intervals. Performance data is presented for each day of system operation for each module used during the day. Failures are analyzed, remedial action taken to eliminate problems is discussed and recommendations for redesign for future space applications are stated.

  19. Molybdenum dioxide-based anode for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kwon, Byeong Wan; Ellefson, Caleb; Breit, Joe; Kim, Jinsoo; Grant Norton, M.; Ha, Su

    2013-12-01

    The present paper describes the fabrication and performance of a molybdenum dioxide (MoO2)-based anode for liquid hydrocarbon/oxygenated hydrocarbon-fueled solid oxide fuel cells (SOFCs). These fuel cells first internally reform the complex liquid fuel into carbon fragments and hydrogen, which are then electrochemically oxidized to produce electrical energy without external fuel processors. The MoO2-based anode was fabricated on to an yttria-stabilized zirconia (YSZ) electrolyte via combined electrostatic spray deposition (ESD) and direct painting methods. The cell performance was measured by directly feeding liquid fuels such as n-dodecane (i.e., a model diesel/kerosene fuel) or biodiesel (i.e., a future biomass-based liquid fuel) to the MoO2-based anode at 850 °C. The maximum initial power densities obtained from our MoO2-based SOFC were 34 mW cm-2 and 45 mW cm-2 using n-dodecane and biodiesel, respectively. The initial power density of the MoO2-based SOFC was improved up to 2500 mW cm-2 by optimizing the porosity of the MoO2-based anode. To test the long-term stability of the MoO2-based anode SOFC against coking, n-dodecane was continuously fed into the cell for 24 h at the open circuit voltage (OCV). During long-term testing, voltage-current density (V-I) plots were periodically obtained and they showed no significant changes over the operation time. Microstructural examination of the tested cells indicated that the MoO2-based anode displayed negligible coke formation, which explains its stability. On the other hand, SOFCs with conventional nickel (Ni)-based anodes under the same operating conditions showed a significant amount of coke formation on the metal surface, which led to a rapid drop in cell performance. Hence, the present work demonstrates that MoO2-based anodes exhibit outstanding tolerance to coke formation. This result opens up the opportunity for more efficiently generating electrical energy from both existing transportation and next generation biomass-derived liquid fuels using liquid hydrocarbon/oxygenated hydrocarbon-fueled SOFCs.

  20. Intervention Program for Long-Term English Learners: A Study of Long-Term English Learners' Literacy Performance in a Reading Intervention Program at Falcon School District

    ERIC Educational Resources Information Center

    Ayala, Erika

    2016-01-01

    The purpose of this sequential explanatory embedded mixed methods study was to: (a) investigate and describe the academic performance of eighth grade students in the Falcon School District (FSD) who were designated as Long Term English Learners (LTELs) and participants in FSD's reading intervention program during their fourth through eighth grade…

  1. Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures.

    PubMed

    Roy, A; Krzykwa, E; Lemieux, R; Néron, S

    2001-12-01

    Several normal human cells, such as hematopoietic stem cells, dendritic cells, and B cells, can be cultured in vitro in defined optimal conditions. Several ex vivo culture systems require the use of feeder cells to support the growth of target cells. In such systems, proliferation of feeder cells has to be stopped, so that they can be used as nonreplicating viable support cells. Because feeder cells need to provide one or few active signals, it is important to maintain them in an metabolically active state, allowing continued expression of specific ligands or cytokines. Mitomycin C and gamma-irradiation treatments are commonly used to prepare nonproliferating feeder cells and are usually considered to be equivalent. Normal human B lymphocytes can be expanded in vitro in the presence of feeder cells expressing the CD40 ligand CD154. Here we compared the ability of gamma-irradiation- and mitomycin C-treated feeder cells to support the expansion of normal human B lymphocytes. The results indicate that expansion of B cells during a long-term culture was 100 times more potent using gamma-irradiated feeder cells compared to mitomycin C-treated cells. This difference could be related to a significant reduction in both cellular metabolism and level of CD154 expression observed in mitomycin C-treated feeder cells, but not in gamma-irradiated cells nor in control untreated cells. These results indicate that mitomycin C-treated feeder cells are metabolically altered, and consequently less efficient at maintaining cell expansion in the long-term cell culture system used.

  2. Quantification of smoothness index differences related to long-term pavement performance equipment type

    DOT National Transportation Integrated Search

    2005-09-01

    The Long-Term Pavement Performance (LTPP) program was designed as a 20-year study of pavement performance. A major data collection effort at LTPP test sections is the collection of longitudinal profile data using inertial profilers. Three types of in...

  3. Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T-cells

    PubMed Central

    Scholler, John; Brady, Troy L.; Binder-Scholl, Gwendolyn; Hwang, Wei-Ting; Plesa, Gabriela; Hege, Kristen M.; Vogel, Ashley N.; Kalos, Michael; Riley, James L.; Deeks, Steven G.; Mitsuyasu, Ronald T.; Bernstein, Wendy B.; Aronson, Naomi E.; Levine, Bruce L.; Bushman, Frederic D.; June, Carl H.

    2015-01-01

    The success of adoptive T cell gene transfer for treatment of cancer and HIV is predicated on generating a response that is both durable and safe. Here we report long term results from three clinical trials to evaluate gammaretroviral vector engineered T-cells for HIV. The vector encoded a chimeric antigen receptor (CAR) comprised of CD4 linked to the CD3-ζ signaling chain (CD4ζ). CAR T-cells were detected in 98% of samples tested for at least 11 years post-infusion at frequencies that exceed average T cell levels after most vaccine approaches. The CD4ζ transgene retained expression and function. There was no evidence of vector-induced immortalization of cells as integration site distributions showed no evidence of persistent clonal expansion or enrichment for integration sites near genes implicated in growth control or transformation. The CD4ζ T cells have stable levels of engraftment, with decay half-lives that exceed 16 years, in marked contrast to previous trials testing engineered T cells. These findings indicate that host immunosuppression prior to T cell transfer is not required in order to achieve long term persistence of gene-modified T cells. Further, our results emphasize the safety of T cells modified by retroviral gene transfer in clinical application, as measured in >500 patient years of follow up. Thus, previous safety issues with integrating viral vectors are hematopoietic stem cell or transgene intrinsic, and not a general feature of retroviral vectors. Engineered T cells are a promising form of synthetic biology for long term delivery of protein based therapeutics. These results provide a framework to guide the therapy of a wide spectrum of human diseases. PMID:22553251

  4. Cell-Cell Interactions during pollen tube guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daphne Preuss

    The long-term goal of this research is to identify the signaling molecules that mediate plant cell-cell interactions during pollination. The immediate goals of this project are to perform genetic and molecular analysis of pollen tube guidance. Specifically, we proposed to: 1. Characterize the pistil components that direct pollen tube navigation using the Arabidopsis thaliana in vitro pollen tube guidance system 2. Identify pistil signals that direct pollen tube guidance by a) using microarrays to profile gene expression in developing pistils, and b) employing proteomics and metabolomics to isolate pollen tube guidance signals. 3. Explore the genetic basis of natural variationmore » in guidance signals, comparing the in vitro interactions between pollen and pistils from A. thaliana and its close relatives.« less

  5. Isosteviol Has Beneficial Effects on Palmitate-Induced α-Cell Dysfunction and Gene Expression

    PubMed Central

    Chen, Xiaoping; Hermansen, Kjeld; Xiao, Jianzhong; Bystrup, Sara Kjaergaard; O'Driscoll, Lorraine; Jeppesen, Per Bendix

    2012-01-01

    Background Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV), is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. Methodology/Principal Findings Long-term incubation studies with clonal α-TC1–6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG) content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01) increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01) and cell proliferation decreased by 19% (p<0.05). At 18 mM glucose, ISV (10−8 and 10−6 M) reduced palmitate-stimulated glucagon release by 27% (p<0.05) and 27% (p<0.05), respectively. ISV (10−6 M) also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10−6 M) reduced α-TC1–6 cell proliferation rate by 25% (p<0.05), but ISV (10−8 and 10−6 M) had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM) increased Pcsk2 (p<0.001), Irs2 (p<0.001), Fasn (p<0.001), Srebf2 (p<0.001), Acaca (p<0.01), Pax6 (p<0.05) and Gcg mRNA expression (p<0.05). ISV significantly (p<0.05) up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. Conclusions/Significance ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a new anti-diabetic drug for the treatment of type 2 diabetes. PMID:22479612

  6. Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.

    PubMed

    Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin

    2015-05-01

    Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.

  7. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  8. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  9. [Long-term Efficacy of Radiofrequency Ablation Combined with Chemotherapy 
in the Treatment of Patients with Advanced Non-small Cell Lung Cancer
--A Retrospective Study].

    PubMed

    Du, Shuhui; Qin, Da; Pang, Ruiqi; Zhang, Yeqing; Zhao, Siqi; Hu, Mu; Zhi, Xiuyi

    2017-10-20

    Radiofrequency ablation (RFA) combined with chemotherapy has a certain short-term therapeutic effect for the treatment of advanced non-small cell lung cancer (NSCLC), but whether it can improve the long-term survival rate of patients is still controversy. This study retrospectively analyzed the difference of long-term efficacy between RFA combined with chemotherapy and chemotherapy alone in the treatment of patients with advanced NSCLC. A total of 77 patients with stage IIIb and stage IV NSCLC who underwent radiofrequency ablation and chemotherapy in the Department of Thoracic Surgery, Xuanwu Hospital, Capital University of Medical Sciences from September 2009 to December 2015 were enrolled as the treatment group. Chemotherapy with no radiofrequency ablation was performed in 56 patients with stage IIIb and stage IV NSCLC as the control group. Two groups of patients were followed up by telephone about their living conditions. "Survival" package of R software version 3.4.1 was used for statistical analysis. Two sets of data baseline levels were tested by chi-square test. The bias was processed by Cox regression model and the survival curve was plotted using covariate mean substitution method. The first-year survival rate of the treatment group was 70.74%, the two-year survival rate was 39.31% and the median survival time was 22.1 months. The one-year survival rate was 54.54% in the control group, the two-year survival rate was 19.49%, the median survival for 18.1 months. The long-term survival rate of the treatment group was better than that of the control group (P<0.05, OR=0.571). Radiofrequency ablation of lung cancer combined with chemotherapy can significantly improve the 2-year survival rate of patients with stage IIIb and stage IV NSCLC.

  10. Numerical study on xenon positive column discharges of mercury-free lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jiting; He, Feng; Miao, Jinsong

    2007-02-15

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less

  11. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  12. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells

    PubMed Central

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-01-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability. PMID:27877804

  13. Induction of transplantation tolerance to fully mismatched cardiac allografts by T cell mediated delivery of alloantigen

    PubMed Central

    Tian, Chaorui; Yuan, Xueli; Jindra, Peter T.; Bagley, Jessamyn; Sayegh, Mohamed H.; Iacomini, John

    2010-01-01

    Induction of transplantation tolerance has the potential to allow for allograft acceptance without the need for life-long immunosuppression. Here we describe a novel approach that uses delivery of alloantigen by mature T cells to induce tolerance to fully allogeneic cardiac grafts. Adoptive transfer of mature alloantigen-expressing T cells into myeloablatively conditioned mice results in long-term acceptance of fully allogeneic heart transplants without evidence of chronic rejection. Since myeloablative conditioning is clinically undesirable we further demonstrated that adoptive transfer of mature alloantigen-expressing T cells alone into mice receiving non-myeloablative conditioning resulted in long-term acceptance of fully allogeneic heart allografts with minimal evidence of chronic rejection. Mechanistically, tolerance induction involved both deletion of donor-reactive host T cells and the development of regulatory T cells. Thus, delivery of alloantigen by mature T cells induces tolerance to fully allogeneic organ allografts in non-myeloablatively conditioned recipients, representing a novel approach for tolerance induction in transplantation. PMID:20452826

  14. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia.

    PubMed

    Rallón, Norma; Sempere-Ortells, José M; Soriano, Vincent; Benito, José M

    2013-11-01

    It is unclear to what extent T cell reconstitution may be possible in HIV-1-infected individuals on continuous successful highly active antiretroviral therapy (HAART). Herein, we analysed distinct phenotypic markers of immune recovery in patients with undetectable viraemia for 8 years, taking as reference untreated patients and healthy controls. Seventy-two subjects were examined: 28 HIV-1+ patients on successful long-term HAART, 24 HIV-1+ untreated viraemic patients and 20 age-matched healthy controls. Analysis of naive and memory CD4 and CD8 T cells was combined with measurements of activation status (expression of CD38) and with thymic function (expression of CD31). Statistical significance was determined by non-parametric tests. After long-term HAART, the majority of parameters were normalized compared with age-matched control values, including T cell activation and thymic function. However, absolute counts of naive and central memory CD4 T cells remained below normal levels. The only parameters significantly associated with CD4 counts at the end of follow-up were the pre-HAART CD4 count ( β ± SD = 0.54 ± 0.16, P = 0.003) and the level of CD4 central memory cells at the end of follow-up (β ± SD = 1.18 ± 0.23, P < 0.0001). Only patients starting HAART with CD4 counts >350 cells/mm(3) reached a complete normalization of CD4 counts. Even after long-term successful HAART, complete CD4 restoration may be attainable only in patients starting therapy with moderately high CD4 counts, prompting early initiation of antiretroviral therapy. Incomplete CD4 restoration may be associated with a defective restoration of central memory CD4 T cells, a cell subset with a pivotal role in T cell homeostasis.

  15. Advanced moisture modeling of polymer composites.

    DOT National Transportation Integrated Search

    2014-04-01

    Long term moisture exposure has been shown to affect the mechanical performance of polymeric composite structures. This reduction : in mechanical performance must be considered during product design in order to ensure long term structure survival. In...

  16. Long-term pavement performance ancillary information management system (AIMS) reference guide.

    DOT National Transportation Integrated Search

    2012-11-01

    This document provides information on the Long-Term Pavement Performance (LTPP) program ancillary information. : Ancillary information includes data, images, reference materials, resource documents, and other information that : support and extend the...

  17. Long-Term Pavement Performance Automated Faulting Measurement

    DOT National Transportation Integrated Search

    2015-02-01

    This study focused on identifying transverse joint locations on jointed plain concrete pavements using an automated joint detection algorithm and computing faulting at these locations using Long-Term Pavement Performance (LTPP) Program profile data c...

  18. Maintaining the pluripotency of mouse embryonic stem cells on gold nanoparticle layers with nanoscale but not microscale surface roughness

    NASA Astrophysics Data System (ADS)

    Lyu, Zhonglin; Wang, Hongwei; Wang, Yanyun; Ding, Kaiguo; Liu, Huan; Yuan, Lin; Shi, Xiujuan; Wang, Mengmeng; Wang, Yanwei; Chen, Hong

    2014-05-01

    Efficient control of the self-renewal and pluripotency maintenance of embryonic stem cell (ESC) is a prerequisite for translating stem cell technologies to clinical applications. Surface topography is one of the most important factors that regulates cell behaviors. In the present study, micro/nano topographical structures composed of a gold nanoparticle layer (GNPL) with nano-, sub-micro-, and microscale surface roughnesses were used to study the roles of these structures in regulating the behaviors of mouse ESCs (mESCs) under feeder-free conditions. The distinctive results from Oct-4 immunofluorescence staining and quantitative real-time polymerase chain reaction (qPCR) demonstrate that nanoscale and low sub-microscale surface roughnesses (Rq less than 392 nm) are conducive to the long-term maintenance of mESC pluripotency, while high sub-microscale and microscale surface roughnesses (Rq greater than 573 nm) result in a significant loss of mESC pluripotency and a faster undirectional differentiation, particularly in long-term culture. Moreover, the likely signalling cascades engaged in the topological sensing of mESCs were investigated and their role in affecting the maintenance of the long-term cell pluripotency was discussed by analyzing the expression of proteins related to E-cadherin mediated cell-cell adhesions and integrin-mediated focal adhesions (FAs). Additionally, the conclusions from MTT, cell morphology staining and alkaline phosphatase (ALP) activity assays show that the surface roughness can provide a potent regulatory signal for various mESC behaviors, including cell attachment, proliferation and osteoinduction.Efficient control of the self-renewal and pluripotency maintenance of embryonic stem cell (ESC) is a prerequisite for translating stem cell technologies to clinical applications. Surface topography is one of the most important factors that regulates cell behaviors. In the present study, micro/nano topographical structures composed of a gold nanoparticle layer (GNPL) with nano-, sub-micro-, and microscale surface roughnesses were used to study the roles of these structures in regulating the behaviors of mouse ESCs (mESCs) under feeder-free conditions. The distinctive results from Oct-4 immunofluorescence staining and quantitative real-time polymerase chain reaction (qPCR) demonstrate that nanoscale and low sub-microscale surface roughnesses (Rq less than 392 nm) are conducive to the long-term maintenance of mESC pluripotency, while high sub-microscale and microscale surface roughnesses (Rq greater than 573 nm) result in a significant loss of mESC pluripotency and a faster undirectional differentiation, particularly in long-term culture. Moreover, the likely signalling cascades engaged in the topological sensing of mESCs were investigated and their role in affecting the maintenance of the long-term cell pluripotency was discussed by analyzing the expression of proteins related to E-cadherin mediated cell-cell adhesions and integrin-mediated focal adhesions (FAs). Additionally, the conclusions from MTT, cell morphology staining and alkaline phosphatase (ALP) activity assays show that the surface roughness can provide a potent regulatory signal for various mESC behaviors, including cell attachment, proliferation and osteoinduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01540a

  19. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    PubMed

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  20. Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells.

    PubMed

    Li, Han; Liang, Chao; Liu, Yingliang; Zhang, Yiqiang; Tong, Jincheng; Zuo, Weiwei; Xu, Shengang; Shao, Guosheng; Cao, Shaokui

    2017-02-22

    Grain boundaries act as rapid pathways for nonradiative carrier recombination, anion migration, and water corrosion, leading to low efficiency and poor stability of organometal halide perovskite solar cells (PSCs). In this work, the strategy suppressing the crystal grain boundaries is applied to improve the photovoltaic performance, especially moisture-resistant stability, with polyvinylammonium carbochain backbone covalently connecting the perovskite crystal grains. This cationic polyelectrolyte additive serves as nucleation sites and template for crystal growth of MAPbI 3 and afterward the immobilized adjacent crystal grains grow into the continuous compact, pinhole-free perovskite layer. As a result, the unsealed PSC devices, which are fabricated under low-temperature fabrication protocol with a proper content of polymer additive PVAm·HI, currently exhibit the maximum efficiency of 16.3%. Remarkably, these unsealed devices follow an "outside-in" corrosion mechanism and respectively retain 92% and 80% of the initial PCE value after being exposed under ambient environment for 50 days and 100 days, indicating the superiority of carbochain polymer additives in solving the long-term stability problem of PSCs.

  1. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1.

    PubMed

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-12-23

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

  2. Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Chen, Guoyi; Xin, Xianshuang; Luo, Ting; Liu, Leimin; Zhou, Yuchun; Yuan, Chun; Lin, Chucheng; Zhan, Zhongliang; Wang, Shaorong

    2015-03-01

    In an attempt to reduce the oxidation and Cr evaporation rates of solid oxide fuel cells (SOFCs), Mn1.4Co1.4Cu0.2O4 spinel coating is developed on the Crofer22 APU ferritic stainless steel substrate by a powder reduction technique. Doping of Cu into Mn-Co spinels improves electrical conductivity as well as thermal expansion match with the Crofer22 APU interconnect. Good adhesion between the coating and the alloy substrate is achieved by the reactive sintering process using the reduced powders. Long-term isothermal oxidation experiment and area specific resistance (ASR) measurement are investigated. The ASR is less than 4 mΩ cm2 even though the coated alloy undergoes oxidation at 800 °C for 530 h and four thermal cycles from 800 °C to room temperature. The Mn1.4Co1.4Cu0.2O4 spinel coatings demonstrate excellent anti-oxidation performance and long-term stability. It exhibits a promising prospect for the practical application of SOFC alloy interconnect.

  3. Bone marrow mononuclear cell implantation in myocardial laser channels in the ischemic heart disease surgery. Long-term results

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, Alexander; Fomichev, Alexey; Minin, Stanislav; Nikitin, Nikita

    2017-10-01

    Background: The problem of incomplete myocardial revascularization for diffuse and distal lesions of the myocardium is still relevant. We assessed the clinical and instrumental long-term results of autologous bone marrow cell (BMC) implantation in laser channels in ischemic heart disease with diffuse and distal coronary disease. 35 coronary heart disease (CHD) patients with diffuse and distal coronary disease during coronary artery bypass grafting (CABG) underwent BMC implantation in laser channels. The control group consisted of 29 patients. All patients in this group underwent only CABG. Clinical and instrumental assessment of the method's effect was carried out at two weeks, six months, and six years after surgery. Indirect revascularization showed more significant decreasing of the functional class (FC) New York Heart Association (NYHA), myocardial perfusion and contractility improvement. Autologous BMC implantation in laser channels is an effective method of CHD surgical treatment if it is impossible to perform direct myocardial revascularization. The indirect revascularization effect is formed in the first six months after surgery and remains at the same level for six years.

  4. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings.

    PubMed

    Liu, Xingwang; Tian, Ang; You, Junhua; Zhang, Hangzhou; Wu, Lin; Bai, Xizhuang; Lei, Zeming; Shi, Xiaoguo; Xue, Xiangxin; Wang, Hanning

    To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti-Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus ( S. aureus ), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. All of the TiAg-NT samples, particularly the nanotube-coated Ti-Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection.

  5. Antibacterial abilities and biocompatibilities of Ti–Ag alloys with nanotubular coatings

    PubMed Central

    Liu, Xingwang; Tian, Ang; You, Junhua; Zhang, Hangzhou; Wu, Lin; Bai, Xizhuang; Lei, Zeming; Shi, Xiaoguo; Xue, Xiangxin; Wang, Hanning

    2016-01-01

    Purpose To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti–Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). Methods Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus (S. aureus), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. Results All of the TiAg-NT samples, particularly the nanotube-coated Ti–Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. Conclusion This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection. PMID:27843315

  6. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    NASA Astrophysics Data System (ADS)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  7. Si-Sb-Te materials for phase change memory applications.

    PubMed

    Rao, Feng; Song, Zhitang; Ren, Kun; Zhou, Xilin; Cheng, Yan; Wu, Liangcai; Liu, Bo

    2011-04-08

    Si-Sb-Te materials including Te-rich Si₂Sb₂Te₆ and Si(x)Sb₂Te₃ with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si(x)Sb₂Te₃ shows better thermal stability than Ge₂Sb₂Te₅ or Si₂Sb₂Te₆ in that Si(x)Sb₂Te₃ does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si(x)Sb₂Te₃ improves. The 10 years retention temperature for Si₃Sb₂Te₃ film is ~393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si(x)Sb₂Te₃ films also show improvement on thickness change upon annealing and adhesion on SiO₂ substrate compared to those of Ge₂Sb₂Te₅ or Si₂Sb₂Te₆ films. However, the electrical performance of PCRAM cells based on Si(x)Sb₂Te₃ films with x > 3.5 becomes worse in terms of stable and long-term operations. Si(x)Sb₂Te₃ materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.

  8. Long-Term Post-CABG Survival: Performance of Clinical Risk Models Versus Actuarial Predictions.

    PubMed

    Carr, Brendan M; Romeiser, Jamie; Ruan, Joyce; Gupta, Sandeep; Seifert, Frank C; Zhu, Wei; Shroyer, A Laurie

    2016-01-01

    Clinical risk models are commonly used to predict short-term coronary artery bypass grafting (CABG) mortality but are less commonly used to predict long-term mortality. The added value of long-term mortality clinical risk models over traditional actuarial models has not been evaluated. To address this, the predictive performance of a long-term clinical risk model was compared with that of an actuarial model to identify the clinical variable(s) most responsible for any differences observed. Long-term mortality for 1028 CABG patients was estimated using the Hannan New York State clinical risk model and an actuarial model (based on age, gender, and race/ethnicity). Vital status was assessed using the Social Security Death Index. Observed/expected (O/E) ratios were calculated, and the models' predictive performances were compared using a nested c-index approach. Linear regression analyses identified the subgroup of risk factors driving the differences observed. Mortality rates were 3%, 9%, and 17% at one-, three-, and five years, respectively (median follow-up: five years). The clinical risk model provided more accurate predictions. Greater divergence between model estimates occurred with increasing long-term mortality risk, with baseline renal dysfunction identified as a particularly important driver of these differences. Long-term mortality clinical risk models provide enhanced predictive power compared to actuarial models. Using the Hannan risk model, a patient's long-term mortality risk can be accurately assessed and subgroups of higher-risk patients can be identified for enhanced follow-up care. More research appears warranted to refine long-term CABG clinical risk models. © 2015 The Authors. Journal of Cardiac Surgery Published by Wiley Periodicals, Inc.

  9. Hyperbaric Oxygen Therapy in Treating Long-Term Gastrointestinal Adverse Effects Caused by Radiation Therapy in Patients With Pelvic Cancer

    ClinicalTrials.gov

    2011-07-14

    Bladder Cancer; Cervical Cancer; Colorectal Cancer; Endometrial Cancer; Gastrointestinal Complications; Long-term Effects Secondary to Cancer Therapy in Adults; Ovarian Cancer; Prostate Cancer; Radiation Toxicity; Sarcoma; Testicular Germ Cell Tumor; Vaginal Cancer

  10. Rich Medium Composition Affects Escherichia coli Survival, Glycation, and Mutation Frequency during Long-Term Batch Culture.

    PubMed

    Kram, Karin E; Finkel, Steven E

    2015-07-01

    Bacteria such as Escherichia coli are frequently grown to high density to produce biomolecules for study in the laboratory. To achieve this, cells can be incubated in extremely rich media that increase overall cell yield. In these various media, bacteria may have different metabolic profiles, leading to changes in the amounts of toxic metabolites produced. We have previously shown that stresses experienced during short-term growth can affect the survival of cells during the long-term stationary phase (LTSP). Here, we incubated cells in LB, 2× yeast extract-tryptone (YT), Terrific Broth, or Super Broth medium and monitored survival during the LTSP, as well as other reporters of genetic and physiological change. We observe differential cell yield and survival in all media studied. We propose that differences in long-term survival are the result of changes in the metabolism of components of the media that may lead to increased levels of protein and/or DNA damage. We also show that culture pH and levels of protein glycation, a covalent modification that causes protein damage, affect long-term survival. Further, we measured mutation frequency after overnight incubation and observed a correlation between high mutation frequencies at the end of the log phase and loss of viability after 4 days of LTSP incubation, indicating that mutation frequency is potentially predictive of long-term survival. Since glycation and mutation can be caused by oxidative stress, we measured expression of the oxyR oxidative stress regulator during log-phase growth and found that higher levels of oxyR expression during the log phase are consistent with high mutation frequency and lower cell density during the LTSP. Since these complex rich media are often used when producing large quantities of biomolecules in the laboratory, the observed increase in damage resulting in glycation or mutation may lead to production of a heterogeneous population of plasmids or proteins, which could affect the quality of the end products yielded in some laboratory experiments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Different induction of LPA receptors by chemical liver carcinogens regulates cellular functions of liver epithelial WB-F344 cells.

    PubMed

    Hirane, Miku; Ishii, Shuhei; Tomimatsu, Ayaka; Fukushima, Kaori; Takahashi, Kaede; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2016-11-01

    Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA 1 to LPA 6 ) mediates a variety of cellular functions, including cell motility. In the present study, we investigated the effects of LPA receptors on cell motile activity during multi-stage hepatocarcinogenesis in rat liver epithelial WB-F344 cells treated with chemical liver carcinogens. Cells were treated with a initiator (N-nitrosodiethylamine (DEN)) and three promoters (phenobarbital (PB), okadaic acid (OA) and clofibrate) every 24 h for 2 days. Cell motile activity was elevated by DEN, correlating with Lpar3 expression. PB, OA, and clofibrate elevated Lpar1 expression and inhibited cell motile activity. To evaluate the effects of long-term treatment on cell motility, cells were treated with DEN and/or PB for at least 6 months. Lpar3 expression and cell motile activity were significantly elevated by the long-term DEN treatment with or without further PB treatment. In contrast, long-term PB treatment with or without further DEN elevated Lpar1 expression and inhibited cell motility. When the synthesis of extracellular LPA was blocked by a potent ATX inhibitor S32826 before cell motility assay, the cell motility induced by DEN and PB was markedly suppressed. These results suggest that activation of the different LPA receptors may regulate the biological functions of cells treated with chemical carcinogens. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  13. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...

  14. Non-invasive detection and monitoring of experimental hydrocephalus with distortion product otoacoustic emissions.

    PubMed

    Ezerarslan, Hande; Beriat, Güçlü Kaan; Nurhat, Raziye Handan; Kazancı, Burak; Çelikkan, Ferda Topal; Sabuncuoğlu, Bizden; Sabuncuoğlu, Hakan

    2016-08-01

    We aimed to find out the effects of short term and long term hydrocephalus and intracranial ventricular volume changes on cochlear functions by using distortion product otoacoustic emission (DPOAE) in experimental hydrocephalus rat models for the first time in literature. This study was performed with 48 healthy, adult (8 weeks old), Sprague-Dawley rats which weighed between 200 and 240g. Six groups were formed in this study: short term control, short term sham, short term hydrocephalus, long term control, long term sham and long term hydrocephalus groups. Each group contained eight rats. Short term period was 4 weeks and long term period was 8 weeks after the study started. At the end of these periods, DPOAE measurements were performed and then rats were sacrificed to determine ventricular volumes. DPOAE values at all frequencies were significantly decreased in the short term hydrocephalus group when compared to the short term control and short term sham groups. DPOAE values at all frequencies were significantly decreased in the long term hydrocephalus group when compared to the long term control and long term sham groups. Besides, long term sham group which had higher ventricular volumes than long term control group also had lower DPOAE measurements. Significant associations were present between DPOAE measurements and ventricular volumes in hydrocephalus models. The functional disturbances in cochlear functions due to hydrocephalus have been demonstrated with DPOAE measurements in this study. DPOAE measurements may be thought as an easily applicable non-invasive method in detection and follow-up of patients with hydrocephalus. Our findings should be supported with clinical studies in humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    PubMed

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    PubMed Central

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  17. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27more » (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.« less

  18. Fundamental Principles of Stem Cell Banking.

    PubMed

    Sun, Changbin; Yue, Jianhui; He, Na; Liu, Yaqiong; Zhang, Xi; Zhang, Yong

    2016-01-01

    Stem cells are highly promising resources for application in cell therapy, regenerative medicine, drug discovery, toxicology and developmental biology research. Stem cell banks have been increasingly established all over the world in order to preserve their cellular characteristics, prevent contamination and deterioration, and facilitate their effective use in basic and translational research, as well as current and future clinical application. Standardization and quality control during banking procedures are essential to allow researchers from different labs to compare their results and to develop safe and effective new therapies. Furthermore, many stem cells come from once-in-a-life time tissues. Cord blood for example, thrown away in the past, can be used to treat many diseases such as blood cancers nowadays. Meanwhile, these cells stored and often banked for long periods can be immediately available for treatment when needed and early treatment can minimize disease progression. This paper provides an overview of the fundamental principles of stem cell banking, including: (i) a general introduction of the construction and architecture commonly used for stem cell banks; (ii) a detailed section on current quality management practices; (iii) a summary of questions we should consider for long-term storage, such as how long stem cells can be stored stably, how to prevent contamination during long term storage, etc.; (iv) the prospects for stem cell banking.

  19. Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang

    2017-07-01

    Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.

  20. Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates.

    PubMed

    Gori, Jennifer L; Butler, Jason M; Kunar, Balvir; Poulos, Michael G; Ginsberg, Michael; Nolan, Daniel J; Norgaard, Zachary K; Adair, Jennifer E; Rafii, Shahin; Kiem, Hans-Peter

    2017-03-01

    Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self-renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self-renewal. To test this hypothesis, BM autologous CD34 + cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34 + C38 - HSPCs cocultured with ECs expanded up to 17-fold, with a significant increase in hematopoietic colony-forming activity compared with cells cultured with cytokines alone (colony-forming unit-granulocyte-erythroid-macrophage-monocyte; p < .005). BM CD34 + cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34 + cells without impeding the long-term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864-876. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair.

    PubMed

    Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R

    2015-09-11

    Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. Tanshinol suppresses cardiac allograft rejection in a murine model.

    PubMed

    Lu, Chuanjian; Zeng, Yu-Qun; Liu, Huazhen; Xie, Qingfeng; Xu, Shengmei; Tu, Kangsheng; Dou, Changwei; Dai, Zhenhua

    2017-02-01

    Achieving long-term cardiac allograft survival without continuous immunosuppression is highly desired in organ transplantation. Studies have shown that Salvia miltiorrhiza, an herb also known as danshen, improves microcirculation and is highly effective in treating coronary heart disease. Our objective is to determine whether tanshinol, an ingredient of danshen, improves cardiac allograft survival. Fully vascularized heterotopic heart transplantation was performed using BALB/c mice as donors and C57BL/6 mice as recipients, which were then treated with tanshinol and rapamycin. CD4 + FoxP3 + regulatory T cells (Tregs) were quantified by flow analyses, whereas CCL22 was measured by real-time polymerase chain reaction and Western blotting. We found that tanshinol significantly delayed cardiac allograft rejection. It promoted long-term allograft survival induced by rapamycin, a mammalian target-of-rapamycin (mTOR) inhibitor. Tanshinol increased CD4 + FoxP3 + Treg numbers in cardiac allografts, but not spleens and lymph nodes, of recipient mice by enhancing chemokine CCL22 expression in cardiac allografts, especially cardiac dendritic cells. In contrast, rapamycin increased Treg numbers in both lymphoid organs and allografts, suggesting that it generally expands Tregs. Moreover, Tregs induced by rapamycin plus tanshinol were more potent in suppressing T-cell proliferation in vitro than those from untreated recipients. Neutralizing CCL22 hindered CD4 + FoxP3 + Treg migration to cardiac allografts and reversed long-term allograft survival induced by tanshinol plus rapamycin. Tanshinol suppresses cardiac allograft rejection by recruiting CD4 + FoxP3 + Tregs to the graft, whereas rapamycin does so via expanding the Tregs. Thus, tanshinol cooperates with rapamycin to further extend cardiac allograft survival. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Long-term (postnatal day 70) outcome and safety of intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells in neonatal hyperoxic lung injury.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Kim, Soo Yoon; Sung, Dong Kyung; Kim, Eun Sun; Rime, So Yub; Yu, Wook Joon; Choi, Soo Jin; Oh, Won Il; Park, Won Soon

    2013-03-01

    This study was performed to evaluate the long-term effects and safety of intratracheal (IT) transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in neonatal hyperoxic lung injury at postnatal day (P)70 in a rat model. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (90% oxygen) within 10 hours after birth and allowed to recover at room air until sacrificed at P70. In the transplantation groups, hUCB-MSCs (5×10⁵) were administered intratracheally at P5. At P70, various organs including the heart, lung, liver, and spleen were histologically examined, and the harvested lungs were assessed for morphometric analyses of alveolarization. ED-1, von Willebrand factor, and human-specific nuclear mitotic apparatus protein (NuMA) staining in the lungs and the hematologic profile of blood were evaluated. Impaired alveolar and vascular growth, which evidenced by an increased mean linear intercept and decreased amount of von Willebrand factor, respectively, and the hyperoxia-induced inflammatory responses, as evidenced by inflammatory foci and ED-1 positive alveolar macrophages, were attenuated in the P70 rat lungs by IT transplantation of hUCB-MSCs. Although rare, donor cells with human specific NuMA staining were persistently present in the P70 rat lungs. There were no gross or microscopic abnormal findings in the heart, liver, or spleen, related to the MSCs transplantation. The protective and beneficial effects of IT transplantation of hUCB-MSCs in neonatal hyperoxic lung injuries were sustained for a prolonged recovery period without any long-term adverse effects up to P70.

  4. Long-term stability of dental adhesive incorporated by boron nitride nanotubes.

    PubMed

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-03-01

    The aim of this study was to evaluate physicochemical properties, long-term microtensile bond strength and cytotoxicity of methacrylate-based adhesive containing boron nitride nanotubes (BNNTs) as fillers. A dental adhesive was formulated using BisGMA/HEMA, 66/33wt% (control). Inorganic BNNT fillers were incorporated into the adhesive at different concentrations (0.05, 0.075, 0.1 and 0.15wt%). Analyses of degree of conversion (DC), polymerization rate [Rp.(s -1 )], contact angle (CA) on dentin, after 24h and 6 months microtensile bond strength (μTBS-24h and 6 months) were assessed. Cytotoxicity was performed through viability of fibroblast cells (%) by sulforhodamine B (SRB) colorimetry. DC and max. polymerization rate increased (p<0.05) after incorporating 0.075 and 0.1wt% BNNT. The contact angle on dentin increased (p<0.05) after incorporating 0.15wt% BNNT. The μTBS-24h showed no changes (p>0.05) after incorporating up to 0.15wt% BNNT comparing to control. After 6 months, μTBS decreased (p<0.05) for control and 0.15wt% BNNT and BNNT groups up to 0.15wt% showed higher μTBS than control (p<0.05). No difference of fibroblast growth was found among adhesives (p>0.05) and up to 19% of cell viability was found comparing 0.05wt% BNNT to positive control group (100%). Incorporating boron nitride nanotubes up to 0.1wt% into dental adhesive increased the long-term stability to dentin without decreasing viability of fibroblast cell growth. Thus, the use of BNNTs as filler may decrease failure rate of current dentinal adhesives. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Characterization of IKBKE as a Breast Cancer Oncogene

    DTIC Science & Technology

    2011-10-01

    HMLE -MEKDD cells stably expressing either pWZL or MF-IKKε. Immunoblot analysis by IKKε antibody. (D) IP with an IKK antibody from MCF-7 breast cancer ...summary is presented of research performed during three years of a project to further characterize the breast cancer oncogene IKKε. Two specific aims...constitutive IKKε transgenic mouse model to study the role of IKKε in breast cancer initiation and maintenance. The long term goals of this research

  6. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, William; Baur, Gary

    2015-11-03

    The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732 and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites.

  7. Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2018-03-01

    Long-term culture, passage and proliferation of human mesenchymal stem cells (hMSCs) cause loss of their stemness properties including self-renewal and multipotency. By optimizing the MSCs environment in vitro, maintaining the stemness state and better controlling the cell fate might be possible. We have recently reported the significant effects of bioactive Tat protein-derived peptide named R-peptide on hMSC adhesion, morphology and proliferation, which has demonstrated R-peptide enhanced MSC early adhesion and proliferation in comparison to other bioactive molecules including RGD peptide, fibronectin and collagen. In this study, R-peptide was used to evaluate stemness properties of MSCs after long-term passaging. R-peptide conjugated poly caprolactone (PCL) nanofibrous scaffold and unmodified nanofibrous scaffold were used to study the impact of R-peptide modified PCL nanofibers and PCL nanofibers on cell behavior. The results showed early formation of focal adhesion (FA) complex on R-peptide modified scaffolds at 30min after cell seeding. The rate of cell proliferation was significantly increased due to presence of R-peptide, and the MSCs marker analyses using flow cytometry and immunocytochemistry staining proved the ability of R-peptide to maintain mesenchymal stem cell properties (high proliferation, expression of multipotent markers and differentiation capacity) even after long-term passage culturing. Accordingly, our (The) results concluded that bioactive R-peptide in combination with nanofibrous scaffold can mimic the native ECM comprising micro/nano architecture and biochemical molecules in a best way. The designed scaffold can link extracellular matrix (ECM) to nucleus via formation of FA and organization of cytoskeleton, causing fast and strong attachment of MSCs and allowing integrin-mediated signaling to start. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Long-term pavement performance project laboratory materials testing and handling guide

    DOT National Transportation Integrated Search

    2007-09-01

    The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...

  9. Long term pavement performance program protocol for calibrating traffic data collection equipment

    DOT National Transportation Integrated Search

    1998-05-10

    This document describes the procedures that the Long Term Pavement Performance (LTPP) program recommends for ensuring that traffic data collection equipment used for LTPP traffic monitoring efforts operates correctly and collects valid data.

  10. GATEWAY Demonstrations: Long-Term Evaluation of SSL Field Performance in Select Interior Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Tess E.; Davis, Robert G.; Wilkerson, Andrea M.

    The GATEWAY program evaluated the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  11. Long-term pavement performance program manual for profile measurements and processing

    DOT National Transportation Integrated Search

    2008-11-01

    This manual describes operational procedures for measuring longitudinal pavement profiles for the Long-Term Pavement Performance (LTPP) Program using the International Cybernetics Corporation (ICC) road profiler, Face Company Dipstick, and the rod an...

  12. Long-Term Pavement Performance Program falling weight deflectometer maintenance manual

    DOT National Transportation Integrated Search

    2006-12-01

    The Federal Highway Administrations (FHWA) Long-Term Pavement Performance (LTPP) program operates eight Dynatest Model 8000 FWDs to collect deflection data on in-service pavement test sections across North America. LTPP has collected pavement defl...

  13. Marijuana effects on long-term memory assessment and retrieval.

    PubMed

    Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S

    1977-05-09

    The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.

  14. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.

    PubMed

    Zhang, Fang; Pant, Deepak; Logan, Bruce E

    2011-12-15

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123 mW/m(2) (cathode projected surface area; 35±4 W/m(3) based on liquid volume), but it decreased by 40% after 1 year to 734±18 mW/m(2). The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2 mW/m(2) to 789±68 mW/m(2)). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750 mW/m(2) after 1 year. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Resveratrol Exerts Dosage and Duration Dependent Effect on Human Mesenchymal Stem Cell Development

    PubMed Central

    Peltz, Lindsay; Gomez, Jessica; Marquez, Maribel; Alencastro, Frances; Atashpanjeh, Negar; Quang, Tara; Bach, Thuy; Zhao, Yuanxiang

    2012-01-01

    Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However, these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking, which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study, we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs), a type of adult stem cells that reside in a number of tissues, at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM, resveratrol promotes cell self-renewal by inhibiting cellular senescence, whereas at 5 µM or above, resveratrol inhibits cell self-renewal by increasing senescence rate, cell doubling time and S-phase cell cycle arrest. At 1 µM, its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect, accompanied with increased senescence rate. At all concentrations, resveratrol promotes osteogenic differentiation in a dosage dependent manner, which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary, resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs. PMID:22615926

  16. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  17. Clinical-scale validation of a new efficient procedure for cryopreservation of ex vivo expanded cord blood hematopoietic stem and progenitor cells.

    PubMed

    Duchez, Pascale; Rodriguez, Laura; Chevaleyre, Jean; De La Grange, Philippe Brunet; Ivanovic, Zoran

    2016-12-01

    Survival of ex vivo expanded hematopoietic stem cells (HSC) and progenitor cells is low with the standard cryopreservation procedure. We recently showed that the efficiency of cryopreservation of these cells may be greatly enhanced by adding a serum-free xeno-free culture medium (HP01 Macopharma), which improves the antioxidant and biochemical properties of the cryopreservation solution. Here we present the clinical-scale validation of this cryopreservation procedure. The hematopoietic cells expanded in clinical-scale cultures were cryopreserved applying the new HP01-based procedure. The viability, apoptosis rate and number of functional committed progenitors (methyl-cellulose colony forming cell test), short-term repopulating HSCs (primary recipient NSG mice) and long-term HSCs (secondary recipient NSG mice) were tested before and after thawing. The efficiency of clinical-scale procedure reproduced the efficiency of cryopreservation obtained earlier in miniature sample experiments. Furthermore, the full preservation of short- and long-term HSCs was obtained in clinical scale conditions. Because the results obtained in clinical-scale volume are comparable to our earlier results in miniature-scale cultures, the clinical-scale procedure should be considered validated. It allows cryopreservation of the whole ex vivo expanded culture content, conserving full short- and long-term HSC activity. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Development of porous carbon foam polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Cunningham, Nicolas

    In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.

  19. Effects of long-term hypergravity treatment on the development of inflorescence stems of arabidopsis

    NASA Astrophysics Data System (ADS)

    Karahara, Ichirou; Tamaoki, Daisuke; Kamisaka, Seiichiro; Yamaguchi, Takashi; Shinohara, Hironori; Kume, Atsushi; Inoue, Hiroshi

    Hypergravity experiments with plants have been mostly performed using a commercial centrifuge in the dark. In order to see longer-term effect of hypergravity on the development of plant shoots, however, it is necessary to carry out the experiments in the light. In the present study, we have set up a centrifuge equipped with lighting system, which supports long-term plant growth under hypergravity condition, in order to see long-term effects of hypergravity on the development of vascular tissues of inflorescence stems. Arabidopsis plants (Arabidopsis thaliana (L.) Heynh., Col-0), which were grown under 1 G conditions for 20-23 days and having the first visible flower bud, i.e., at Arabidopsis growth stage number 5 (according to Boys et al., 2001), were selected as the plant material. These plants were exposed to hypergravity stimulus at 10 G in a direction from the shoot to root for 10 days in the continuous light. Effects of hypergravity on growth of inflorescence stems, lignin content, and morphometrical parameters of the stem tissues were examined. As a result, the length of the inflorescence stem was decreased. Cross sectional area as well as cell number, and lignin content in the stem were increased under hypergravity. The length of basal internodes of the stem was decreased under hypergravity. In conclusion, the inflorescence stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under long-term hypergravity conditions.

  20. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAsmore » substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.« less

Top