Science.gov

Sample records for long-term drought stress

  1. Improving potato drought tolerance through the induction of long-term water stress memory.

    PubMed

    Ramírez, D A; Rolando, J L; Yactayo, W; Monneveux, P; Mares, V; Quiroz, R

    2015-09-01

    Knowledge of drought tolerance in potato is limited and very little is known about stress memory in this crop. In the present study, long-term stress memory was tested on tuber yield and drought tolerance related traits in three potato varieties (Unica, Désirée and Sarnav) with contrasted yields under water restriction. Seed tubers produced by plants grown under non-restricted (non-primed tubers) and restricted (primed tubers) water conditions were sown and exposed to similar watering treatments. Tuber yield and leaf greenness of plants from primed and non-primed seeds as well as tuber carbon isotope discrimination (Δ(13)C) and antioxidant activity (AA) responses to watering treatments were compared. Higher tuber yield, both under non-restricted and restricted water regimes, was produced by primed Sarnav plants. The decrease of tuber yield and Δ(13)C with water restriction was lower in primed Unica plants. Long-term stress memory consequently appears to be highly genotype-dependent in potato. Its expression in plants originated from primed tubers and facing water restriction seems to be positively associated to the degree of inherent capability of the cultivar to yield under water restriction. However, other effects of priming appear to be genotype-independent as priming enhanced the tuber AA in response to water restriction in the three varieties.

  2. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress.

    PubMed

    Karataş, Ilhami; Öztürk, Lokman; Demir, Yavuz; Unlükara, Ali; Kurunç, Ahmet; Düzdemir, Oral

    2014-09-01

    The effects of long-term drought stress on chlorophyll, proline, protein and hydrogen peroxide (H2O2) contents, malondialdehyde (MDA) in terms of lipid peroxidation and on the changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and peroxidase (POX; EC 1.11.1.7) in the leaves of pea (Pisum sativum L.) were studied in field conditions. Chlorophyll and protein contents in leaves decreased significantly with increased drought stress. The proline content increased markedly under water deficit. MDA amounts were elevated as a result of water shortage, whereas H(2)O(2) content changed slightly in pea leaves exposed to drought stress. Drought stress markedly enhanced the activities of SOD, CAT and POX but slightly changed the activity of APX. We conclude that in field conditions, long-term water shortage increased the susceptibility to drought in peas.

  3. Hydrogen peroxide generation and antioxidant enzyme activities in the leaves and roots of wheat cultivars subjected to long-term soil drought stress.

    PubMed

    Huseynova, Irada M; Aliyeva, Durna R; Mammadov, Alamdar Ch; Aliyev, Jalal A

    2015-08-01

    The dynamics of the activity of catalase, ascorbate peroxidase, guaiacol peroxidase, and benzidine peroxidase, as well as the level of hydrogen peroxide in the vegetative organs of durum wheat (Triticum durum Desf.) cultivars was studied under long-term soil drought conditions. It was established that hydrogen peroxide generation occurred at early stages of stress in the tolerant variety Barakatli-95, whereas in the susceptible variety Garagylchyg-2 its significant amounts were accumulated only at later stages. Garagylchyg-2 shows a larger reduction of photochemical activity of PS II in both genotypes at all stages of ontogenesis under drought stress than Barakatli-95. The highest activity of catalase which plays a leading role in the neutralization of hydrogen peroxide was observed in the leaves and roots of the drought-tolerant variety Barakatli-95. Despite the fact that the protection system also includes peroxidases, the activity of these enzymes even after synthesis of their new portions is substantially lower compared with catalase. Native PAGE electrophoresis revealed the presence of one isoform of CAT, seven isoforms of APX, three isoforms of GPO, and three isoforms of BPO in the leaves, and also three isoforms of CAT, four isoforms of APX, two isoforms of GPO, and six isoforms of BPO in the roots of wheat. One isoform of CAT was found in the roots when water supply was normal and three isoforms were observed under drought conditions. Stress associated with long-term soil drought in the roots of wheat has led to an increase in the heterogeneity due to the formation of two new sedentary forms of catalase: CAT2 and CAT3.

  4. The influence of drought-heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern US. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscan...

  5. Flower Development under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in Arabidopsis[C][W

    PubMed Central

    Su, Zhao; Ma, Xuan; Guo, Huihong; Sukiran, Noor Liyana; Guo, Bin; Assmann, Sarah M.; Ma, Hong

    2013-01-01

    Drought dramatically affects plant growth and crop yield, but previous studies primarily examined responses to drought during vegetative development. Here, to study responses to drought during reproductive development, we grew Arabidopsis thaliana plants with limited water, under conditions that allowed the plants to initiate and complete reproduction. Drought treatment from just after the onset of flowering to seed maturation caused an early arrest of floral development and sterility. After acclimation, plants showed reduced fertility that persisted throughout reproductive development. Floral defects included abnormal anther development, lower pollen viability, reduced filament elongation, ovule abortion, and failure of flowers to open. Drought also caused differential expression of 4153 genes, including flowering time genes FLOWERING LOCUS T, SUPPRESSOR OF OVEREXPRESSION OF CO1, and LEAFY, genes regulating anther and pistil development, and stress-related transcription factors. Mutant phenotypes of hypersensitivity to drought and fewer differentially expressed genes suggest that DEHYDRATION RESPONSE ELEMENT B1A may have an important function in drought response in flowers. A more severe filament elongation defect under drought in myb21 plants demonstrated that appropriate stamen development requires MYB DOMAIN PROTEIN 21 under drought conditions. Our study reveals a regulatory cascade in reproductive responses and acclimation under drought. PMID:24179129

  6. The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA.

    PubMed

    Joo, Eva; Hussain, Mir Zaman; Zeri, Marcelo; Masters, Michael D; Miller, Jesse N; Gomez-Casanovas, Nuria; DeLucia, Evan H; Bernacchi, Carl J

    2016-09-01

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/soybean (Glycine max) ecosystems. The main objective of this study was to assess the influence of a naturally occurring drought during 2012 on key components of the carbon cycle and plant development relative to non-extreme years. The perennials reached full maturity 3-5 years after establishment. Miscanthus had the highest gross primary production (GPP) and lowest net ecosystem exchange (NEE) in 2012 followed by similar values for switchgrass and prairie, and the row crops had the lowest GPP and highest NEE. A post-drought effect was observed for miscanthus. Over the duration of the experiment, perennial ecosystems were carbon sinks, as indicated by negative net ecosystem carbon balance (NECB), while maize/soybean was a net carbon source. Our observations suggest that perennial ecosystems, and in particular miscanthus, can provide a high yield and a large potential for CO2 fixation even during drought, although drought may negatively influence carbon uptake in the following year, questioning the long-term consequence of its maintained productivity.

  7. The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA.

    PubMed

    Joo, Eva; Hussain, Mir Zaman; Zeri, Marcelo; Masters, Michael D; Miller, Jesse N; Gomez-Casanovas, Nuria; DeLucia, Evan H; Bernacchi, Carl J

    2016-09-01

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/soybean (Glycine max) ecosystems. The main objective of this study was to assess the influence of a naturally occurring drought during 2012 on key components of the carbon cycle and plant development relative to non-extreme years. The perennials reached full maturity 3-5 years after establishment. Miscanthus had the highest gross primary production (GPP) and lowest net ecosystem exchange (NEE) in 2012 followed by similar values for switchgrass and prairie, and the row crops had the lowest GPP and highest NEE. A post-drought effect was observed for miscanthus. Over the duration of the experiment, perennial ecosystems were carbon sinks, as indicated by negative net ecosystem carbon balance (NECB), while maize/soybean was a net carbon source. Our observations suggest that perennial ecosystems, and in particular miscanthus, can provide a high yield and a large potential for CO2 fixation even during drought, although drought may negatively influence carbon uptake in the following year, questioning the long-term consequence of its maintained productivity. PMID:27043723

  8. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; Williams, P.

    2012-12-01

    Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis

  9. Long-Term Drought Forecasting based on Climate Signals using Multi-Channel

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.; Tang, Q.; Ge, Q.

    2015-12-01

    Drought is an insidious natural hazard, which may cause severe damage both in natural environment and human society. Timely drought forecasting enables civil protection authorities and public to take actions to reduce the risk of droughts. Thus drought forecasting plays an important role in setting out drought mitigation strategy. Analysis of the dominant oscillations of droughts and large-scale climate indices has shown that climate indices, such as the El Niño Southern Oscillation (ENSO), are significant indicators of drought occurrences in southern United States. It suggests that the climate indices may be used in drought forecasting at a long lead time. In this study, the multi-channel entropy spectral analysis (MCESA) was developed to incorporate the ENSO climate signals to entropy approach for long-term drought forecasting. To focus on the lack of surface water, drought was quantified by standardized streamflow index (SSI) in this study. SSI time series turned out to be stationary and highly autocorrelated, which showed significant 12-month periodicity. As a result, SSI was successfully forecasted using MCESA with ENSO as an indicator for lead times of 4-6 years. The drought forecasting was more reliable for the stations in humid areas than arid areas. Comparison from the retrospective drought forecasts with or without ENSO showed that inclusion of ENSO climate signals reduced the forecasting errors. The forecasts under El Nino (La Nina) condition reduced (increased) drought severity, making the forecasts more accurate.

  10. Spatiotemporal variation of long-term drought propensity through reliability-resilience-vulnerability based Drought Management Index

    NASA Astrophysics Data System (ADS)

    Chanda, Kironmala; Maity, Rajib; Sharma, Ashish; Mehrotra, Rajeshwar

    2014-10-01

    This paper characterizes the long-term, spatiotemporal variation of drought propensity through a newly proposed, namely Drought Management Index (DMI), and explores its predictability in order to assess the future drought propensity and adapt drought management policies for a location. The DMI was developed using the reliability-resilience-vulnerability (RRV) rationale commonly used in water resources systems analysis, under the assumption that depletion of soil moisture across a vertical soil column is equivalent to the operation of a water supply reservoir, and that drought should be managed not simply using a measure of system reliability, but should also take into account the readiness of the system to bounce back from drought to a normal state. Considering India as a test bed, 5 year long monthly gridded (0.5° Lat × 0.5° Lon) soil moisture data are used to compute the RRV at each grid location falling within the study domain. The Permanent Wilting Point (PWP) is used as the threshold, indicative of transition into water stress. The association between resilience and vulnerability is then characterized through their joint probability distribution ascertained using Plackett copula models for four broad soil types across India. The joint cumulative distribution functions (CDF) of resilience and vulnerability form the basis for estimating the DMI as a five-yearly time series at each grid location assessed. The status of DMI over the past 50 years indicate that drought propensity is consistently low toward northern and north eastern parts of India but higher in the western part of peninsular India. Based on the observed past behavior of DMI series on a climatological time scale, a DMI prediction model comprising deterministic and stochastic components is developed. The predictability of DMI for a lead time of 5 years is found to vary across India, with a Pearson correlation coefficient between observed and predicted DMI above 0.6 over most of the study area

  11. Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings

    NASA Astrophysics Data System (ADS)

    Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi

    2015-04-01

    Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential

  12. A long-term perspective on a modern drought in the American Southeast

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Bell, A. R.; Knight, T. A.; Leland, C.; Malcomb, N.; Anchukaitis, K. J.; Tackett, K.; Scheff, J.; Brice, A.; Catron, B.; Blozan, W.; Riddle, J.

    2012-03-01

    The depth of the 2006-9 drought in the humid, southeastern US left several metropolitan areas with only a 60-120 day water supply. To put the region’s recent drought variability in a long-term perspective, a dense and diverse tree-ring network—including the first records throughout the Apalachicola-Chattahoochee-Flint river basin—is used to reconstruct drought from 1665 to 2010 CE. The network accounts for up to 58.1% of the annual variance in warm-season drought during the 20th century and captures wet eras during the middle to late 20th century. The reconstruction shows that the recent droughts are not unprecedented over the last 346 years. Indeed, droughts of extended duration occurred more frequently between 1696 and 1820. Our results indicate that the era in which local and state water supply decisions were developed and the period of instrumental data upon which it is based are amongst the wettest since at least 1665. Given continued growth and subsequent industrial, agricultural and metropolitan demand throughout the southeast, insights from paleohydroclimate records suggest that the threat of water-related conflict in the region has potential to grow more intense in the decades to come.

  13. System responses to long-term drought and re-watering of two contrasting alfalfa varieties.

    PubMed

    Kang, Yun; Han, Yuanhong; Torres-Jerez, Ivone; Wang, Mingyi; Tang, Yuhong; Monteros, Maria; Udvardi, Michael

    2011-12-01

    Systems analysis of two alfalfa varieties, Wisfal (Medicago sativa ssp. falcata var. Wisfal) and Chilean (M. sativa ssp. sativa var. Chilean), with contrasting tolerance/sensitivity to drought revealed common and divergent responses to drought stress. At a qualitative level, molecular, biochemical, and physiological responses to drought stress were similar in the two varieties, indicating that they employ the same strategies to cope with drought. However, quantitative differences in responses at all levels were revealed that may contribute to greater drought tolerance in Wisfal. These included lower stomatal density and conductance in Wisfal; delayed leaf senescence compared with Chilean; greater root growth following a drought episode, and greater accumulation of osmolytes, including raffinose and galactinol, and flavonoid antioxidants in roots and/or shoots of Wisfal. Genes encoding transcription factors and other regulatory proteins, and genes involved in the biosynthesis of osmolytes and (iso)flavonoids were differentially regulated between the two varieties and represent potential targets for improving drought tolerance in alfalfa in the future.

  14. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal

    2002-01-01

    The United States Great Plains (USGP) experienced a number of multi-year droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multi-year) variations in the USGP precipitation that are similar to those observed. A correlative analysis suggests that the ensemble mean low frequency (time scales longer than about 6 years) rainfall variations in the USGP are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the 2 polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influence the USGP. As such, the USGP tend to have above normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally-symmetric component in which USGP pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extra-tropics. The potential predictability of rainfall in the USGP associated with SSTs is rather modest, with on average about 1/3 of the total low frequency rainfall variance forced by SST anomalies. Further idealized experiments with climatological SST, suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil

  15. Development and application of a short- /long-term composited drought index in the upper Huaihe River basin, China

    NASA Astrophysics Data System (ADS)

    Yu, M.; Li, Q.; Lu, G.; Wang, H.; Li, P.

    2015-06-01

    Accurate and reliable drought monitoring is of primary importance for drought mitigation and reduction of social-ecological vulnerability. The aim of the paper was to propose a short-term/long-term composited drought index (CDI) which could be widely used for drought monitoring and early warning in China. In the study, the upper Huaihe River basin above the Xixian gauge station, which has been hit by severe droughts frequently in recent decades, was selected as the case study site. The short-term CDI was developed by the Principle Component Analysis of the self-calibrating Palmer Drought Severity Index (sc-PDSI), the 1- and 3-month Standardized Precipitation Evapotranspiration Index (SPEI), Z Index (ZIND), the Soil Moisture Index (SMI) with the long-term CDI being formulated by use of the self-calibrating Palmer Hydrology Drought Index (sc-PHDI), the 6-, 12-, 18- and 24-month SPEI, the Standardized Streamflow Index (SSI), the SMI. The sc-PDSI, the PHDI, the ZIND, the SPEI on a monthly time scale were calculated based on the monthly air temperature and precipitation, and the monthly SMI and SSI were computed based on the simulated soil moisture and runoff by the distributed Xinanjiang model. The thresholds of the short-term/long-term CDI were determined according to frequency statistics of different drought indices. Finally, the feasibility of the two CDIs was investigated against the scPDSI, the SPEI and the historical drought records. The results revealed that the short-term/long-term CDI could capture the onset, severity, persistence of drought events very well with the former being better at identifying the dynamic evolution of drought condition while the latter better at judging the changing trend of drought over a long time period.

  16. Assessment of Long-Term Drought Characteristics in 14 Major Texas Cities Based on CMIP5 Multi-Model Projections

    NASA Astrophysics Data System (ADS)

    Venkataraman, K.; Medina-Tamayo, A.; Perry, J. R.

    2014-12-01

    Texas is a highly water-stressed region due to rapid population growth and frequent droughts. Characterizing long-term drought is thus critical for sustainable water use planning. The Standardised Precipitation Evaporation Index (SPEI) is a widely-used drought index as it considers both the supply and demand elements of the water balance and can be used to compare drought characteristics across locations. In this study, bias-corrected and spatially disaggregated (BCSD) temperature and precipitation projections from an ensemble of Coupled Model Intercomparison Project 5 (CMIP5) earth system models were used to develop the SPEI for 14 major cities spread across different climate divisions of Texas. The SPEI were computed for 12 and 24 month scales for the Representative Concentration Pathway (RCP) 8.5 scenario for three time periods, 1950-1999 (historic), 2000-2049 (early), and 2050-2099 (latter). Both the SPEI-12 and SPEI-24 show a sharply-declining trend beginning in middle of the 21st century across all locations. The most severe droughts, characterized by the number of consecutive and overall months with SPEI ≤ 1.5, generally occur in the last two decades of the 21st century, particularly in semi-arid locations like El Paso and Laredo and appear to be controlled by potential evapotranspiration (PET). In addition, decreasing trends are observed in annual precipitation in major urban areas such as Austin, San Antonio and Houston. The results of the study highlight the need for proper management of water resources to match the trends in climate, economic and demographic changes.

  17. Resilience of a thinned Eucalyptus regnans forest to long-term drought

    NASA Astrophysics Data System (ADS)

    Hawthorne, S. N.; Lane, P. N. J.; Benyon, R. G.

    2014-12-01

    The duration and severity of drought has been predicted to increase with climate change. Understanding vegetation response to protracted drought is important to predict their future response and develop adaptive management strategies. We examined the transpiration of Eucalyptus regnans forest at the end of the Millennium Drought, which affected southeast Australia from the mid-1990s to 2009. The forested catchment, Crotty Creek, has been subjected to a strip-thinning treatment in the early 1980s. Measurements of sap flow were conducted using the compensation heat pulse technique over 13 months from December 2009. Transpiration appeared to be energy-limited rather than water-limited, with daily maximum VPD and solar radiation being good predictors of sap flux density. The perennial streamflow and unlimited transpiration at the end of the drought indicate a large soil-water buffer in the system. The post-thinning evapotranspiration (ET) of the catchment was likely to be lower than ET of an undisturbed catchment with similar stand age (70-year old) due to the lower post-thinning basal area. In contrast to this, the streamflow of a dryer, 34-year old mixed eucalypt forest ceased for several months during the same drought. Thus, the resilience of E. regnans forests during a severe drought may depend on the soil-water buffer and stomatal control, while silvicultural treatment may help reduce water stress in dryer and younger forests.

  18. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.

    2003-01-01

    This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.

  19. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.

    PubMed

    Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep

    2013-10-01

    Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we

  20. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.

    PubMed

    Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep

    2013-10-01

    Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we

  1. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought?

    PubMed

    Evans, Sarah E; Wallenstein, Matthew D; Burke, Ingrid C

    2014-01-01

    Both biogeographical and rainfall manipulation studies show that soil water content can be a strong driver of microbial community composition. However, we do not yet know if these patterns emerge because certain bacterial taxa are better able to survive at dry soil moisture regimes or if they are due to other drought-sensitive ecosystem properties indirectly affecting microbial community composition. In this study, we evaluated (1) whether bacterial community composition changed under an 11-year drought manipulation and (2) whether shifts under drought could be explained by variation in the moisture sensitivity of growth among bacterial taxa (moisture niche partitioning). Using 454 pyrosequencing of 16S rRNA, we observed shifts in bacterial community composition under drought, coincident with changes in other soil properties. We wet-up dry soils from drought plots to five moisture levels, and measured respiration and the composition of actively growing communities using bromodeoxyuridine (BrdU) labeling of DNA. The field drought experiment affected the composition of the active community when incubated at different moisture levels in the laboratory, as well as short-term (36-hour) respiration rates. Independent of history, bacterial communities also displayed strong niche partitioning across the wet-up moisture gradient. Although this indicates that moisture has the potential to drive bacterial community composition under long-term drought, species distributions predicted by response to moisture did not reflect the community composition of plots that were subjected to long-term drought. Bacterial community structure was likely more strongly driven by other environmental factors that changed under long-term drought, or not shaped by response to water level upon wet-up. The approach that we present here for linking niches to community composition could be adapted for other environmental variables to aid in predicting microbial species distributions and community

  2. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought

    PubMed Central

    Rosas, Teresa; Galiano, Lucía; Ogaya, Romà; Peñuelas, Josep; Martínez-Vilalta, Jordi

    2013-01-01

    Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought. PMID:24130568

  3. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought.

    PubMed

    Rosas, Teresa; Galiano, Lucía; Ogaya, Romà; Peñuelas, Josep; Martínez-Vilalta, Jordi

    2013-01-01

    Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought. PMID:24130568

  4. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought.

    PubMed

    Landi, Simone; Nurcato, Roberta; De Lillo, Alessia; Lentini, Marco; Grillo, Stefania; Esposito, Sergio

    2016-08-01

    The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity. PMID:27085599

  5. Long-term academic stress increases the late component of error processing: an ERP study.

    PubMed

    Wu, Jianhui; Yuan, Yiran; Duan, Hongxia; Qin, Shaozheng; Buchanan, Tony W; Zhang, Kan; Zhang, Liang

    2014-05-01

    Exposure to long-term stress has a variety of consequences on the brain and cognition. Few studies have examined the influence of long-term stress on event related potential (ERP) indices of error processing. The current study investigated how long-term academic stress modulates the error related negativity (Ne or ERN) and the error positivity (Pe) components of error processing. Forty-one male participants undergoing preparation for a major academic examination and 20 non-exam participants completed a Go-NoGo task while ERP measures were collected. The exam group reported higher perceived stress levels and showed increased Pe amplitude compared with the non-exam group. Participants' rating of the importance of the exam was positively associated with the amplitude of Pe, but these effects were not found for the Ne/ERN. These results suggest that long-term academic stress leads to greater motivational assessment of and higher emotional response to errors.

  6. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest.

    PubMed

    Barbeta, Adrià; Mejía-Chang, Monica; Ogaya, Romà; Voltas, Jordi; Dawson, Todd E; Peñuelas, Josep

    2015-03-01

    Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.

  7. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest.

    PubMed

    Barbeta, Adrià; Mejía-Chang, Monica; Ogaya, Romà; Voltas, Jordi; Dawson, Todd E; Peñuelas, Josep

    2015-03-01

    Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. PMID

  8. A review of droughts in the African continent: a geospatial and long-term perspective

    NASA Astrophysics Data System (ADS)

    Masih, I.; Maskey, S.; Mussá, F. E. F.; Trambauer, P.

    2014-03-01

    This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013 as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 yr. The extreme droughts of 1972-1973, 1983-1984 and 1991-1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in Northwest Africa, 1970s and 1980s droughts in West Africa (Sahel), 2010-2011 drought in East Africa (Horn of Africa) and 2001-2003 drought in Southern and Southeast Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and Equatorial East Africa regions. Complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), Sea Surface Temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and North Africa regions. However, the available evidence from the past clearly shows that the African continent is likely to face extreme and widespread

  9. A review of droughts on the African continent: a geospatial and long-term perspective

    NASA Astrophysics Data System (ADS)

    Masih, I.; Maskey, S.; Mussá, F. E. F.; Trambauer, P.

    2014-09-01

    This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013, as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 years. The extreme droughts of 1972-1973, 1983-1984 and 1991-1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in northwest Africa, 1970s and 1980s droughts in western Africa (Sahel), 2010-2011 drought in eastern Africa (Horn of Africa) and 2001-2003 drought in southern and southeastern Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and equatorial eastern Africa. The complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), sea surface temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and northern Africa. However, the available evidence from the past clearly shows that the African continent is likely to face extreme and

  10. Tibial stress fractures in an active duty population: long-term outcomes.

    PubMed

    Kilcoyne, Kelly G; Dickens, Jonathan F; Rue, John-Paul

    2013-01-01

    Tibial stress fractures are a common overuse injury among military recruits. The purpose of this study was to determine what, if any, long-term effects that tibial stress fractures have on military personnel with respect to physical activity level, completion of military training, recurrence of symptoms, and active duty service. Twenty-six military recruits included in a previous tibial stress fracture study were contacted 10 years after initial injury and asked a series of questions related to any long-term consequences of their tibial stress fracture. Of the 13 patients available for contact, no patients reported any necessary limited duty while on active duty, and no patient reported being separated or discharged from the military as a result of stress fracture. Tibial stress fractures in military recruits are most often an isolated injury and do not affect ability to complete military training or reflect a long-term need for decreased physical activity.

  11. Short- and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps.

    PubMed

    Elkin, Ché; Giuggiola, Arnaud; Rigling, Andreas; Bugmann, Harald

    2015-06-01

    In many regions of the world, drought is projected to increase under climate change, with potential negative consequences for forests and their ecosystem services (ES). Forest thinning has been proposed as a method for at least temporarily mitigating drought impacts, but its general applicability and longer-term impacts are unclear. We use a process-based forest model to upscale experimental data for evaluating the impacts of forest thinning in a drought-susceptible valley in the interior of the European Alps, with the specific aim of assessing (1) when and where thinning may be most effective and (2) the longer-term implications for forest dynamics. Simulations indicate that forests will be impacted by climate-induced increases in drought across a broad elevation range. At lower elevations, where drought is currently prevalent, thinning is projected to temporarily reduce tree mortality, but to have minor impacts on forest dynamics in the longer term. Thinning may be particularly useful at intermediate and higher elevations as a means of temporarily reducing mortality in drought-sensitive species such as Norway spruce and larch, which currently dominate these elevations. However, in the longer term, even intense thinning will likely not be sufficient to prevent a climate change induced dieback of these species, which is projected to occur under even moderate climate change. Thinning is also projected to have the largest impact on long-term forest dynamics at intermediate elevations, with the magnitude of the impact depending on the timing and intensity of thinning. More intense thinning that is done later is projected to more strongly promote a transition to more drought-tolerant species. We conclude that thinning is a viable option for temporarily reducing the negative drought impacts on forests, but that efficient implementation of thinning should be contingent on a site-specific evaluation of the near term risk of significant drought, and how thinning will

  12. Roles of patch characteristics, drought frequency, and restoration in long-term trends of a widespread amphibian

    USGS Publications Warehouse

    Hossack, Blake R.; Adams, Michael J.; Pearl, Christopher A.; Pilliod, David S.; Corn, P. Stephen; , KRISTINE W. WILSON; , EVELYN L. BULL; , KRISTIN LOHR; , DEBRA PATLA; , JASON JONES

    2013-01-01

    Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long-term rates of change for a single species across a large geographic area. We analyzed growth in annual egg-mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state-space and linear-regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long-term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change.

  13. Roles of patch characteristics, drought frequency, and restoration in long-term trends of a widespread amphibian.

    PubMed

    Hossack, Blake R; Adams, Michael J; Pearl, Christopher A; Wilson, Kristine W; Bull, Evelyn L; Lohr, Kristin; Patla, Debra; Pilliod, David S; Jones, Jason M; Wheeler, Kevin K; McKay, Samuel P; Corn, Paul Stephen

    2013-12-01

    Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long-term rates of change for a single species across a large geographic area. We analyzed growth in annual egg-mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state-space and linear-regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long-term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change. Papeles de las Características del Fragmento, Frecuencia de Sequía y Restauración en las Tendencias a Largo Plazo de un Anfibio Ampliamente Distribuido.

  14. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    NASA Astrophysics Data System (ADS)

    Orlowsky, B.; Seneviratne, S. I.

    2012-12-01

    Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI) of these events lies within the range of internal climate variability, which we estimate from simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). In terms of drought magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observations and CMIP5 simulations, although Soil Moisture Anomalies (SMAs) in CMIP5 simulations hint at increased drought in a few regions (e.g. the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa). Also for the future, projections of meteorological (SPI) and agricultural (SMA) drought in CMIP5 display large uncertainties over all time frames, generally impeding trend detection. Analogue analyses of the frequencies rather than magnitudes of future drought display, however, more robust signal-to-noise ratios with detectable trends towards more frequent drought until the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or to display unsignificant changes in drought occurrence. A separation of different sources of uncertainty in drought projections reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs) generally becomes the dominant source of uncertainty by the end of the 21st century, especially for agricultural (soil moisture) drought. In comparison, the uncertainty in Green-House Gas (GHG) concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave indicator, for which GHG concentrations scenarios constitute the main source of uncertainty. Our results

  15. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    NASA Astrophysics Data System (ADS)

    Orlowsky, B.; Seneviratne, S. I.

    2013-05-01

    Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI) of these events lies within the general range of observation-based SPI time series and simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). In terms of magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observation-based datasets and CMIP5 simulations, but Soil Moisture Anomalies (SMAs) in CMIP5 simulations hint at increased drought in a few regions (e.g., the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa). Also for the future, projections of changes in the magnitude of meteorological (SPI) and soil moisture (SMA) drought in CMIP5 display large spreads over all time frames, generally impeding trend detection. However, projections of changes in the frequencies of future drought events display more robust signal-to-noise ratios, with detectable trends towards more frequent drought before the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or display non-significant changes in drought occurrence. A separation of different sources of uncertainty in projections of meteorological and soil moisture drought reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs) generally becomes the dominant source of spread by the end of the 21st century, especially for soil moisture drought. In comparison, the uncertainty from Green-House Gas (GHG) concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave index, for which GHG concentrations scenarios constitute the main source of

  16. Stress, Social Support, and Burnout Among Long-Term Care Nursing Staff.

    PubMed

    Woodhead, Erin L; Northrop, Lynn; Edelstein, Barry

    2016-01-01

    Long-term care nursing staff are subject to considerable occupational stress and report high levels of burnout, yet little is known about how stress and social support are associated with burnout in this population. The present study utilized the job demands-resources model of burnout to examine relations between job demands (occupational and personal stress), job resources (sources and functions of social support), and burnout in a sample of nursing staff at a long-term care facility (N = 250). Hierarchical linear regression analyses revealed that job demands (greater occupational stress) were associated with more emotional exhaustion, more depersonalization, and less personal accomplishment. Job resources (support from supervisors and friends or family members, reassurance of worth, opportunity for nurturing) were associated with less emotional exhaustion and higher levels of personal accomplishment. Interventions to reduce burnout that include a focus on stress and social support outside of work may be particularly beneficial for long-term care staff.

  17. A Case Report of Long-Term Bisphosphonate Therapy and Atypical Stress Fracture of Bilateral Femur

    PubMed Central

    Jo, Yil Ryun; Kim, Hye Won; Moon, Seock Ho

    2013-01-01

    Bisphosphonates are potent inhibitors of bone resorption and considered as a gold standard and are generally recommended as first-line therapy in patients with osteoporosis. Though bisphosphonates are shown to significantly reduce the risk of vertebral, non-vertebral and hip fractures, recent reports suggest a possible correlation between long-term bisphosphonate therapy and the occurrence of insufficiency fractures owing to prolonged bone turnover suppression. We report a patient with non-traumatic stress fractures of bilateral femoral shafts related to long-term bisphosphonate therapy indicating the need for a critical evaluation of patients with long-term bisphosphonate therapy. PMID:23869343

  18. Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress.

    PubMed

    Maccari, S; Piazza, P V; Kabbaj, M; Barbazanges, A; Simon, H; Le Moal, M

    1995-01-01

    The development of the organism is subjected to critical and complex influences during the perinatal period. Prenatal and postnatal stresses can have different long-term behavioral effects, and appropriate postnatal manipulations can counteract the behavioral effects of prenatal stress. In the present study, we investigated the involvement of changes in the activity of the hypothalamo-pituitary-adrenal (HPA) axis in the long-term effects of prenatal and postnatal events and of interactions between them. We investigated stress-induced corticosterone secretion and hippocampal corticosteroid receptors in male adult rats submitted to prenatal and/or postnatal manipulations. Repeated restraint during the last week of pregnancy was used as prenatal stressor, and adoption at birth was used to change the postnatal environment. We found that (1) prenatal stress prolongs stress-induced corticosterone secretion in adult rats, which was attributed to the observed decrease in central corticosteroid receptors; (2) adoption, irrespective of the stress experience of the foster mother, reverses the effects of prenatal stress; and (3) adoption per se increases maternal behavior and decreases the stress-induced corticosterone secretion peak in the adult offspring. In conclusion, certain prenatal and postnatal manipulations appear to have opposite long-term effects on the activity of the HPA axis, and adoption, probably by modifying maternal behavior, can protect against the effects of prenatal stress. Thus, changes in the activity of the HPA axis may be one of the biological substrates of the long-term effects of certain perinatal events. PMID:7823121

  19. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems.

    PubMed

    Rousk, Johannes; Smith, Andrew R; Jones, Davey L

    2013-12-01

    We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long-term (>10 years) field experiments across Europe (EU-FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre-incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short-term ecosystem studies thereby providing a clear evidence base to allow long-term, broad-scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying-rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil.

  20. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  1. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    PubMed

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.

  2. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    PubMed

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought. PMID:27017604

  3. Soil wettability, moisture status and CO2 flux in a long term drought and warming simulation experiment

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Bösken, Janina; Titema, Albert; Nunez Pastrana, David; Emmett, Bridget

    2014-05-01

    Current climatic predictions include altered rainfall patterns and increased temperatures which in consequence can enhance the development of soil water repellency (SWR; i.e. hydrophobicity). Soils may become more severely water-repellent or SWR may spread into the environments where it has not been observed before. As the soil moisture dynamics, including restricted infiltration and uneven distribution of water is severely altered in water-repellent soils, so might be the decomposition of organic matter and overall exchange of gases like CO2 between the soil and the atmosphere. Long-term climatic simulation study has been conducted for over a decade at upland heathland sites in Oldebroek (Netherlands) and in Clocaenog (UK) [1]. At each site nine 20 m2-large plots were selected and each three were subjected to: a drought effect created by a rainfall exclusion using an automatic self retracting waterproof curtains; a warming effect using a self retracting curtains reflecting infrared radiation overnight, and control plots. The soil at the sites was a peaty podzol and sandy podzol both highly prone to soil water repellency development. The sites were constantly monitored since the start of the experiment and the range of meteorological and environmental measurements included for example: soil moisture, temperature, vegetation and root zone changes, soil CO2 flux. The observations of soil moisture content have shown that the soil moisture did not recover to the original values in the drought system even after the rainfall exclusion has been stopped for winter time, suggesting the development of soil water repellency [2]. The severe changes in moisture dynamics have also significantly affected the soil CO2 flux. The aim of the study was to investigate whether the long-term drought and warming treatments have any effect on the severity and persistence of SWR and how far the moisture changes and the SWR altered the CO2 flux from these soils. The measurements of the SWR

  4. Formation of internal stress fields in rails during long-term operation

    NASA Astrophysics Data System (ADS)

    Peregudov, O. A.; Morozov, K. V.; Gromov, V. E.; Glezer, A. M.; Ivanov, Yu. F.

    2016-04-01

    The structure and the internal stress fields in R65 rails withdrawn from operation because of side wear after long-term operation are studied and estimated. A high scalar dislocation density (higher by a factor of 1.5-2), the fragmentation of cementite lamellae, and the precipitation of carbide particles are detected in the layers adjacent to the roll surface. The stresses at the boundaries of the particles with the ferrite matrix can exceed the ultimate strength of the steel.

  5. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  6. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension.

    PubMed

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E; Tapia, Edilia; Osorio, Horacio; Arellano-Buendía, Abraham S; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Correa, Francisco; Zazueta, Cecilia; Johnson, Richard J; Lozada, Laura-Gabriela Sánchez

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  7. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was

  8. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice

    PubMed Central

    Zhou, Ying; Hu, Zhiqiang; Lou, Jingyu; Song, Wei; Li, Jing; Liang, Xiao; Chen, Chen; Wang, Shuai; Yang, Beimeng; Chen, Lei; Zhang, Xu; Song, Jinjing; Dong, Yujie; Chen, Shiqing; He, Lin; Xie, Qingguo; Chen, Xiaoping; Li, Weidong

    2016-01-01

    There is an increasing risk of mental disorders, such as acute stress disorder (ASD), post-traumatic stress disorder (PTSD) and depression among survivors who were trapped in rubble during earthquake. Such long-term impaction of a single acute restraint stress has not been extensively explored. In this study, we subjected mice to 24-hour-restraint to simulate the trapping episode, and investigated the acute (2 days after the restraint) and long-term (35 days after the restraint) impacts. Surprisingly, we found that the mice displayed depression-like behaviors, decreased glucose uptake in brain and reduced adult hippocampal neurogenesis 35 days after the restraint. Differential expression profiling based on microarrays suggested that genes and pathways related to depression and other mental disorders were differentially expressed in both PFC and hippocampus. Furthermore, the depression-like phenotypes induced by 24-hour-restraint could be reversed by fluoxetine, a type of antidepressant drug. These findings demonstrated that a single severe stressful event could produce long-term depressive-like phenotypes. Moreover, the 24-hour-restraint stress mice could also be used for further studies on mood disorders. PMID:27609090

  9. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice

    NASA Astrophysics Data System (ADS)

    Chu, Xixia; Zhou, Ying; Hu, Zhiqiang; Lou, Jingyu; Song, Wei; Li, Jing; Liang, Xiao; Chen, Chen; Wang, Shuai; Yang, Beimeng; Chen, Lei; Zhang, Xu; Song, Jinjing; Dong, Yujie; Chen, Shiqing; He, Lin; Xie, Qingguo; Chen, Xiaoping; Li, Weidong

    2016-09-01

    There is an increasing risk of mental disorders, such as acute stress disorder (ASD), post-traumatic stress disorder (PTSD) and depression among survivors who were trapped in rubble during earthquake. Such long-term impaction of a single acute restraint stress has not been extensively explored. In this study, we subjected mice to 24-hour-restraint to simulate the trapping episode, and investigated the acute (2 days after the restraint) and long-term (35 days after the restraint) impacts. Surprisingly, we found that the mice displayed depression-like behaviors, decreased glucose uptake in brain and reduced adult hippocampal neurogenesis 35 days after the restraint. Differential expression profiling based on microarrays suggested that genes and pathways related to depression and other mental disorders were differentially expressed in both PFC and hippocampus. Furthermore, the depression-like phenotypes induced by 24-hour-restraint could be reversed by fluoxetine, a type of antidepressant drug. These findings demonstrated that a single severe stressful event could produce long-term depressive-like phenotypes. Moreover, the 24-hour-restraint stress mice could also be used for further studies on mood disorders.

  10. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice.

    PubMed

    Chu, Xixia; Zhou, Ying; Hu, Zhiqiang; Lou, Jingyu; Song, Wei; Li, Jing; Liang, Xiao; Chen, Chen; Wang, Shuai; Yang, Beimeng; Chen, Lei; Zhang, Xu; Song, Jinjing; Dong, Yujie; Chen, Shiqing; He, Lin; Xie, Qingguo; Chen, Xiaoping; Li, Weidong

    2016-01-01

    There is an increasing risk of mental disorders, such as acute stress disorder (ASD), post-traumatic stress disorder (PTSD) and depression among survivors who were trapped in rubble during earthquake. Such long-term impaction of a single acute restraint stress has not been extensively explored. In this study, we subjected mice to 24-hour-restraint to simulate the trapping episode, and investigated the acute (2 days after the restraint) and long-term (35 days after the restraint) impacts. Surprisingly, we found that the mice displayed depression-like behaviors, decreased glucose uptake in brain and reduced adult hippocampal neurogenesis 35 days after the restraint. Differential expression profiling based on microarrays suggested that genes and pathways related to depression and other mental disorders were differentially expressed in both PFC and hippocampus. Furthermore, the depression-like phenotypes induced by 24-hour-restraint could be reversed by fluoxetine, a type of antidepressant drug. These findings demonstrated that a single severe stressful event could produce long-term depressive-like phenotypes. Moreover, the 24-hour-restraint stress mice could also be used for further studies on mood disorders. PMID:27609090

  11. Plant Stress Indicates Drought

    NASA Video Gallery

    Farmers across America rely on early drought warning systems to manage their crops. Americans everywhere rely on those farmers to provide food. A new drought tracking system called ESI helps by mon...

  12. Plant adaptation to drought stress

    PubMed Central

    Basu, Supratim; Ramegowda, Venkategowda; Kumar, Anuj; Pereira, Andy

    2016-01-01

    Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress. PMID:27441087

  13. Plant adaptation to drought stress.

    PubMed

    Basu, Supratim; Ramegowda, Venkategowda; Kumar, Anuj; Pereira, Andy

    2016-01-01

    Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress. PMID:27441087

  14. Social stress in male mice impairs long-term antiviral immunity selectively in wounded subjects.

    PubMed

    de Groot, Johanna; Boersma, Wim J A; Scholten, Jan Willem; Koolhaas, Jaap M

    2002-03-01

    An important property of the antiviral immune response is its time-dependent character. Beginning with a few antigen-specific cells upon infection, it evolves to a stage where there is an abundance of antigen-specific cells and antibodies that are needed to clear the pathogen, and ends with circulating antibodies and a population of virus-specific memory cells to protect the animal from reinfection. Short-term effects of stress on the immune system have been investigated extensively, showing that stress acutely changes many aspects of immunity. However, relatively little is known about the consequences of stress for the quality and quantity of long-term immunological memory. In the present study, we have investigated the effect of social stress, applied in mice at Days 1, 2 and 3 after inoculation with a herpes virus, on long-term antibody and memory cytokine responses to the virus. Male mice were subjected to three 5-min confrontations with an aggressive conspecific. Approximately half of the mice was wounded by bites of the aggressor during this stress procedure, and these mice were analyzed separately from nonwounded mice. It appeared that wounded mice showed suppressed protective antibody responses and impaired memory for virus-specific IL-4 and IL-10 production, whereas mice that were not wounded showed intact long-term immune responses and memory. It is concluded that the combination of wounds and the social stress of repeated confrontations is associated with impaired protective immunity as a consequence of suppressed antibody levels and impairment of some aspects of antiviral immunological memory. PMID:11897253

  15. Heat stress increases long-term human migration in rural Pakistan

    NASA Astrophysics Data System (ADS)

    Mueller, V.; Gray, C.; Kosec, K.

    2014-03-01

    Human migration attributable to climate events has recently received significant attention from the academic and policy communities . Quantitative evidence on the relationship between individual, permanent migration and natural disasters is limited . A 21-year longitudinal survey conducted in rural Pakistan (1991-2012) provides a unique opportunity to understand the relationship between weather and long-term migration. We link individual-level information from this survey to satellite-derived measures of climate variability and control for potential confounders using a multivariate approach. We find that flooding--a climate shock associated with large relief efforts--has modest to insignificant impacts on migration. Heat stress, however--which has attracted relatively little relief--consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income. Addressing weather-related displacement will require policies that both enhance resilience to climate shocks and lower barriers to welfare-enhancing population movements.

  16. Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L.

    PubMed

    Sperlich, D; Barbeta, A; Ogaya, R; Sabaté, S; Peñuelas, J

    2016-02-01

    Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (Rd) but not night respiration (Rn) was generally higher in the drought treatment leading to an increased Rd/Rn ratio. The limitation of mesophyll conductance (gm) on photosynthesis was generally stronger than stomatal limitation (gs) in the drought treatment, reflected in a lower gm/gs ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower Rd/Rn and higher gm/gs ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by gm; and (ii) decreased carbon losses mediated by Rd. Interestingly, photosynthetic potentials (Vc,max, Jmax, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently.

  17. Long-term effects of maternal separation on chronic stress response suppressed by amitriptyline treatment.

    PubMed

    Cotella, E M; Mestres Lascano, I; Franchioni, L; Levin, G M; Suárez, M M

    2013-07-01

    Abstract The early-life environment has many long-term effects on mammals. Maternal interaction and early stressful events may affect regulation of the HPA axis during adulthood, leading to differential glucocorticoid secretion in response to stressful situations. These adverse experiences during postnatal development may even sensitize specific neurocircuits to subsequent stressors. Later in life, the overreaction of the HPA axis to stress can constitute a risk factor for metabolic and mental diseases. As tricyclic antidepressants are known to correct glucocorticoid hypersecretion during depression, we treated maternally separated animals with amitriptyline, at a lower dose than habitually used in depression models, to prevent the response to chronic stress during adulthood. Male Wistar rats were separated from the mother for 4.5 h every day for the first 3 weeks of life. From postnatal day 50, animals were subjected to chronic variable stress during 24 d (five types of stressors at different times of day). During the stress, protocol rats were orally administered amitriptyline (5 mg/kg) daily. We observed that maternal separation caused a reduction in plasma ACTH levels (p < 0.05), but evoked hypersecretion of corticosterone (p < 0.05) when it was combined with stress in adulthood. This rise was completely prevented by antidepressant treatment with amitriptyline.

  18. Differences in root functions during long-term drought adaptation: comparison of active gene sets of two wheat genotypes.

    PubMed

    Sečenji, M; Lendvai, Á; Miskolczi, P; Kocsy, G; Gallé, Á; Szucs, A; Hoffmann, B; Sárvári, É; Schweizer, P; Stein, N; Dudits, D; Györgyey, J

    2010-11-01

    In an attempt to shed light on the role of root systems in differential responses of wheat genotypes to long-term water limitation, transcriptional differences between two wheat genotypes (Triticum aestivum L., cv. Plainsman V and landrace Kobomugi) were identified during adaptation to moderate water stress at the tillering stage. Differences in organ sizes, water-use efficiency and seed production were detected in plants grown in soil, and root functions were characterised by expression profiling. The molecular genetic background of the behaviour of the two genotypes during this stress was revealed using a cDNA macroarray for transcript profiling of the roots. During a 4-week period of moderate water deficit, a set of up-regulated genes displaying transiently increased expression was identified in young plantlets, mostly in the second week in the roots of Kobomugi, while transcript levels remained constantly high in roots of Plainsman V. These genes encode proteins with various functions, such as transport, protein metabolism, osmoprotectant biosynthesis, cell wall biogenesis and detoxification, and also regulatory proteins. Oxidoreductases, peroxidases and cell wall-related genes were induced significantly only in Plainsman V, while induction of stress- and defence-related genes was more pronounced in Kobomugi. Real-time qPCR analysis of selected members of the glutathione S-transferase gene family revealed differences in regulation of family members in the two genotypes and confirmed the macroarray results. The TaGSTZ gene was stress-activated only in the roots of Kobomugi.

  19. The impact of long-term confinement and exercise on central and peripheral stress markers.

    PubMed

    Jacubowski, A; Abeln, V; Vogt, T; Yi, B; Choukèr, A; Fomina, E; Strüder, H K; Schneider, S

    2015-12-01

    Long-term isolation has been reported to have impact on psycho-physiological performance in humans. As part of the 520 days isolation study (MARS500, n=6) from June 3rd 2010 to November 4th 2011, this study aimed to show that stress caused by isolation and confinement is mirrored in cortical activity and cortisol levels and that exercise is a valid countermeasure. Cortical activity was measured by electroencephalography (EEG) pre- and post-moderate exercise every two weeks, salivary cortisol was taken every 60 days. Data show a decrease of global cortical activity, in both alpha- and beta-activity (p<.05-p<.001), and an increase of salivary cortisol (p<.05-p<.001), during the isolation, indicating that isolation acts as a chronic stressor with impact on cortical activity and cortisol levels. Moderate exercise leads to an increase (p<.01) in cortical activity. Therefore, during long-term space missions the factor isolation must be kept in mind as the reduction of cortical activity and the heightened stress level could impair performance. However moderate exercise might be able to counteract this impairment. PMID:26387624

  20. The impact of long-term confinement and exercise on central and peripheral stress markers.

    PubMed

    Jacubowski, A; Abeln, V; Vogt, T; Yi, B; Choukèr, A; Fomina, E; Strüder, H K; Schneider, S

    2015-12-01

    Long-term isolation has been reported to have impact on psycho-physiological performance in humans. As part of the 520 days isolation study (MARS500, n=6) from June 3rd 2010 to November 4th 2011, this study aimed to show that stress caused by isolation and confinement is mirrored in cortical activity and cortisol levels and that exercise is a valid countermeasure. Cortical activity was measured by electroencephalography (EEG) pre- and post-moderate exercise every two weeks, salivary cortisol was taken every 60 days. Data show a decrease of global cortical activity, in both alpha- and beta-activity (p<.05-p<.001), and an increase of salivary cortisol (p<.05-p<.001), during the isolation, indicating that isolation acts as a chronic stressor with impact on cortical activity and cortisol levels. Moderate exercise leads to an increase (p<.01) in cortical activity. Therefore, during long-term space missions the factor isolation must be kept in mind as the reduction of cortical activity and the heightened stress level could impair performance. However moderate exercise might be able to counteract this impairment.

  1. Stress and reward: long term cortisol exposure predicts the strength of sexual preference.

    PubMed

    Chumbley, J R; Hulme, O; Köchli, H; Russell, E; Van Uum, S; A Pizzagalli, D; Fehr, E

    2014-05-28

    Healthy individuals tend to consume available rewards like food and sex. This tendency is attenuated or amplified in most stress-related psychiatric conditions, so we asked if it depends on endogenous levels of the 'canonical stress hormone' cortisol. We unobtrusively quantified how hard healthy heterosexual men would work to consume erotic images of women versus men and also measured their exposure to endogenous cortisol in the prior two months. We used linear models to predict the strength of sexual preference from cortisol level, after accounting for other potential explanations. Heterosexual preference declines with self-reported anhedonia but increases with long term exposure to endogenous cortisol. These results suggest that cortisol may affect reward-related behavior in healthy adults.

  2. Bryozoan paleoecology indicates mid-Phanerozoic extinctions were the product of long-term environmental stress

    NASA Astrophysics Data System (ADS)

    Powers, Catherine M.; Bottjer, David J.

    2007-11-01

    We compiled the global onshore-offshore distribution of marine bryozoans within 396 Permian-Early Jurassic bryozoan assemblages and show that bryozoan assemblage generic richness declined significantly in advance of the end-Permian and end-Triassic mass extinctions, starting as early as the Capitanian prior to the end-Permian and the Norian prior to the end-Triassic. We also show that offshore settings were affected first, prior to both extinctions, suggesting that environmental stress resulted from the gradual encroachment of some deep-water phenomenon onto the shelves. These patterns support long-term oceanographic, rather than extraterrestrial, extinction mechanisms, such as widespread euxinia triggered by massive volcanism and global warming. Tracking the onshore-offshore environmental distribution of these marine invertebrates provides a unique approach to assessing prolonged environmentally induced stress through this ˜120 m.y. time interval.

  3. Flexible C, N and P allocation in maize plants and soil microbial biomass under recurrent and long-term drought

    NASA Astrophysics Data System (ADS)

    Larionova, Alla; Semenov, Vyacheslav; Yevdokimov, Ilya; Blagodatskaya, Evgenia

    2016-04-01

    One of the negative effects of the global warming is increasing aridity worldwide. Alterations in plant and microbial C, N and P in response to drought events can differ considerably in magnitude and direction. Therefore, synchronization between C, N and P in plants, dissolved forms and microbial biomass in soil is of great interest. Our objective was to evaluate C:N:P stoichiometry relations in plants and soil as affected by moderate water shortage and severe drought with subsequent rewetting. We tested the sensitivity of stoichiometry ratios in plants, dissolved compounds and soil microbial biomass in greenhouse experiment with maize. Three treatments were used: i) control with constant soil moisture (CTL); ii) soil with constantly low wetness of 25% WHC (DRY) and iii) soil exposed to drying-rewetting events (DRW). N dynamics was the most sensitive to water stress in maize plants and soil, while P dynamics was almost unaffected by drought and rewetting. As a result, C:N and N:P ratios were also sensitive to water treatment indicating that C, N and P cycles were decoupled by the water stresses. High C:N ratios in CTL and low C:N ratios in DRY and DRW treatments indicate stoichiometric flexibility in plants and soil microbes. N allocation was found to respond to N shortage in CTL and increased salt concentrations in soil solution in DRY and DRW treatments. C:N:P stoichiometry in soil microbes was found flexible during active plant growth, while that at the end of growth season turned to almost homeostatic ratio. The research was supported by Russian Science Foundation (project 14-14-00625)

  4. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels.

    PubMed

    Kim, Mi Kyung; Cho, Sang Woon; Park, Yoo Kyoung

    2012-04-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores.

  5. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels

    PubMed Central

    Kim, Mi Kyung; Cho, Sang Woon

    2012-01-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores. PMID:22586505

  6. Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats.

    PubMed

    Llorente, R; Miguel-Blanco, C; Aisa, B; Lachize, S; Borcel, E; Meijer, O C; Ramirez, M J; De Kloet, E R; Viveros, M P

    2011-04-01

    We have analysed the long-term psychoneuroendocrine effects of maternal deprivation (MD) [24 h at postnatal day (PND) 9] and/or exposure to chronic unpredictable stress (CUS) during the periadolescent period (PND 28 to PND 43) in male and female Wistar rats. Animals were tested in the elevated plus maze (EPM, anxiety) at PND 44 and in two memory tests, spontaneous alternation and novel object recognition (NOT) in adulthood. The expression of hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as of synaptophysin, neural cell adhesion molecule and brain-derived neurotrophic factor, was analysed by in situ hybridisation in selected hippocampal regions. Endocrine determinations of leptin, testosterone and oestradiol plasma levels were carried out by radioimmunoassay. Young CUS animals showed decreased anxiety behaviour in the EPM (increased percentage of time and entries in the open arms) irrespective of neonatal treatment. Memory impairments were induced by the two stressful treatments as was revealed by the NOT, with males being most clearly affected. Although each stressful procedure, when considered separately, induced different (always decrements) effects on the three synaptic molecules analysed and affected males and females differently, the combination of MD and CUS induced an unique disruptive effect on the three synaptic plasticity players. MD induced a long-term significant decrease in hippocampal GR only in males, whereas CUS tended to increase MR in males and decrease MR in females. Both neonatal MD and periadolescent CUS induced marked reductions in testosterone and oestradiol in males, whereas MD male animals also showed significantly decreased leptin levels. By contrast, in females, none of the hormones analysed was altered by any of the stressful procedures. Taking our data together in support of the 'two-hit' hypothesis, MD during neonatal life and/or exposure to CUS during the periadolescent period induced a permanent

  7. Heat Stress Increases Long-term Human Migration in Rural Pakistan

    PubMed Central

    Mueller, V.; Gray, C.; Kosec, K.

    2014-01-01

    Human migration attributable to climate events has recently received significant attention from the academic and policy communities (1-2). Quantitative evidence on the relationship between individual, permanent migration and natural disasters is limited (3-9). A 21-year longitudinal survey conducted in rural Pakistan (1991-2012) provides a unique opportunity to understand the relationship between weather and long-term migration. We link individual-level information from this survey to satellite-derived measures of climate variability and control for potential confounders using a multivariate approach. We find that flooding—a climate shock associated with large relief efforts—has modest to insignificant impacts on migration. Heat stress, however—which has attracted relatively little relief—consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income. Addressing weather-related displacement will require policies that both enhance resilience to climate shocks and lower barriers to welfare-enhancing population movements. PMID:25132865

  8. [Depressive, anxiety and posttraumatic stress disorders as long-term sequelae of intensive care treatment].

    PubMed

    Kapfhammer, H-P

    2016-03-01

    Modern intensive care medicine has led to increased survival rates even after severe life-threatening medical conditions. In self-critical and multidimensional outcome research, however, it must be considered that beyond survival rates treatment on intensive care units (ICU) can also be associated with high long-term rates of depressive, anxiety and posttraumatic stress disorders. Significant correlations with increased somatic morbidity and mortality, persisting cognitive impairments and significant deficits in health-related quality of life must also be taken into consideration. Empirical analysis of the risk factors reveals that a history of premorbid depression, sociodemographic and socioeconomic variables, age, female sex, personality traits, the underlying pathophysiological condition requiring ICU treatment, mode of sedation and analgesia, life support measures, such as mechanical ventilation, manifold traumatic experiences and memories during the stay in the ICU are all of particular pathogenetic importance. In order to reduce principally modifiable risk factors several strategies are illustrated, including well-reflected intensive care sedation and analgesia, special prophylactic medication regarding the major risk of traumatic memories and posttraumatic stress disorder (PTSD), psychological and psychotherapeutic interventions in states of increased acute stress symptoms and aids for personal memories and reorientation. PMID:26908007

  9. Oxidative stress in earthworms short- and long-term exposed to highly Hg-contaminated soils.

    PubMed

    Colacevich, Andrea; Sierra, María J; Borghini, Francesca; Millán, Rocio; Sanchez-Hernandez, Juan C

    2011-10-30

    Exposure to mercury is often assessed by the measurement of molecular and biochemical antioxidant defences against an excessive production of reactive oxygen species. Here we examined some selected biomarkers of oxidative stress in the earthworm Lumbricus terrestris short- (2d) and long-term (44 d) exposed to Hg-contaminated soils (up to 1287 mg/kg dry wt). This level of Hg exposure did not cause earthworm mortality, however it yielded organisms to a situation of oxidative stress which was evidenced by the time-dependent responses of biomarkers. The reduced to oxidized glutathione ratio was a sensitive and early biomarker of Hg exposure, although the glutathione reductase activity back returned their normal physiological concentrations. Metallothioneins and total glutathione seemed to have a significant role in reducing Hg-induced oxidative stress when exposure to Hg prolonged up to 44 d. We combined biomarker responses into an integrate biomarker index which positively correlated with the Hg concentrations measured in the postmitochondrial fraction of the earthworm muscle, and with the available Hg fraction in soil. Current results suggest that glutathione redox cycle can be a complementary tool in the exposure and effect assessment of Hg-polluted soils. PMID:21871720

  10. Assessing the influence of drought on long-term growth and fructification in Quercus ilex through process-based modeling

    NASA Astrophysics Data System (ADS)

    Martin, N. K.; Delpierre, N.; Dufrene, E.; Rambal, S.

    2010-12-01

    Water availability is the main factor limiting ecosystem productivity in Mediterranean ecosystems, and is expected to increase as a result of climate change in the Mediterranean region. Hence, understanding and anticipating the effect of water limitation on those ecosystems is of most importance for future generations. The Puechabon experimental site, located in southern France, is representative of typical Mediterranean forests, dominated by Quercus ilex. This site has been monitored at levels from leaf to ecosystem since 1984, including eddy correlation measurements since 1998 and a partial throughfall interception experiment since 2003. With this contribution, we focused on developing, calibrating and validating a process-based model (CASTANEA, Dufrêne et al., 2005) on the Puechabon site, for simulating the effect of the throughfall interception on stand gross (GPP) and net (NPP) primary productivity. Model developments at the seasonal scale included detailed representations of leaf demography and wood growth seasonal dynamics, based on detailed monitoring of leaf litter (26-year time series) and cambium dynamics (7-year time series), respectively. New biomass compartments (flowers and fruits) were developed and implemented to the original vegetative carbon module, and helped insuring a realistic representation of woody vegetative pools dynamics (as fructification can require on a given year up to 15% NPP) along the 26-year growth time series. Once improved, the model allowed us to assess the influence of water stress on leaf demography (positive covariation of leaf lifespan and drought duration) and on carbon allocation at tree level (negative covariation of leaf area with drought), based on a comparison between the control site (where the model was developed and validated) and the 6-year partial throughfall exclusion. Keywords: Quercus ilex, process-based modeling, net primary production, carbon allocation, fructification, throughfall exclusion

  11. Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L

    PubMed Central

    Sperlich, D.; Barbeta, A.; Ogaya, R.; Sabaté, S.; Peñuelas, J.

    2016-01-01

    Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (R d) but not night respiration (R n) was generally higher in the drought treatment leading to an increased R d/R n ratio. The limitation of mesophyll conductance (g m) on photosynthesis was generally stronger than stomatal limitation (g s) in the drought treatment, reflected in a lower g m/g s ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower R d/R n and higher g m/g s ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by g m; and (ii) decreased carbon losses mediated by R d. Interestingly, photosynthetic potentials (V c,max, J max, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently. PMID:26552882

  12. Effects of long-term space flight on erythrocytes and oxidative stress of rodents.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Montorfano, Gigliola; Milani, Simona; Zava, Stefania; Tavella, Sara; Cancedda, Ranieri; Berra, Bruno

    2012-01-01

    Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects

  13. Stressing Memory: Long-Term Relations among Children's Stress, Recall and Psychological Outcome following Hurricane Andrew

    ERIC Educational Resources Information Center

    Sales, Jessica McDermott; Fivush, Robyn; Parker, Janat; Bahrick, Lorraine

    2005-01-01

    We examined relations among stress, children's recall, and psychological functioning following Hurricane Andrew. Thirty-five children from mixed socioeconomic backgrounds were divided into low-, moderate-, and high-stress groups and were interviewed about the hurricane immediately after the storm and 6 years later. Our primary interest, stemming…

  14. Long-term changes in coral communities under stress from sediment

    NASA Astrophysics Data System (ADS)

    Yeemin, Thamasak; Pengsakun, Sittiporn; Yucharoen, Mathinee; Klinthong, Wanlaya; Sangmanee, Kanwara; Sutthacheep, Makamas

    2013-11-01

    Chronic disturbances of coral reefs are usually caused by a complex combination of several stresses that are increasingly driving coral reef degradation on both a regional and global scale. This study is aimed at assessing the long-term changes of coral communities (2004-2010) by integrated investigation on sedimentation rates, coral community structures and coral recruitment patterns at the study sites in the Western Gulf of Thailand. Sedimentation rates at the study sites during the study periods had means ranging from 29.49 to 59.53 mg cm-2 d-1. The coral community structures of the study sites did not change much during the study periods, with means of live coral cover 20.47-27.87%. The dominant corals were Porites lutea, Favites abdita, Pavona decussata and Goniopora columna. However, the composition and density of juvenile corals at both study sites were much changed during the study periods. The dominant juvenile corals were P. lutea, Favia spp., Favites spp. and Pocillopora damicornis. The densities of juvenile corals were relatively low and they suffered high mortality rates because of high sediment deposition and macroalgal overgrowth. Coral recovery is a difficult task that will require an ecosystem approach involving several management strategies and measures which include appropriate coastal development, the enhancement of coastal wetlands and effective fishery management.

  15. Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images: a case study of Mt. Kenya region.

    PubMed

    Song, Youngkeun; Njoroge, John B; Morimoto, Yukihiro

    2013-05-01

    Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E ~ 1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.

  16. Effect of seasonal and long-term changes in stress on sources of water to wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Pollock, David W.

    1995-01-01

    The source of water to wells is ultimately the location where the water flowing to a well enters the boundary surface of the ground-water system . In ground-water systems that receive most of their water from areal recharge, the location of the water entering the system is at the water table . The area contributing recharge to a discharging well is the surface area that defines the location of the water entering the groundwater system. Water entering the system at the water table flows to the well and is eventually discharged from the well. Many State agencies are currently (1994) developing wellhead-protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. In the analyses of ground-water flow systems, steady-state average conditions are frequently used to simplify the problem and make a solution tractable. Recharge is usually cyclic in nature, however, having seasonal cycles and longer term climatic cycles. A hypothetical system is quantitatively analyzed to show that, in many cases, these cyclic changes in the recharge rates apparently do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to indicate whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. Noncyclic long-term transient changes in water use, however, and cyclic stresses on systems with ratios less than 1 can and do affect the

  17. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-01

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. PMID:26851364

  18. Posttraumatic Stress Disorder Increases Sensitivity to Long Term Losses among Patients with Major Depressive Disorder

    PubMed Central

    Vaughan, Christopher; Paulus, Martin P.; Dunlop, Boadie W.

    2013-01-01

    decision-making about long-term potential losses compared to MDD patients without PTSD. PMID:24116235

  19. Long-Term Outcomes of Cognitive-Behavioral Treatments for Posttraumatic Stress Disorder among Female Rape Survivors

    ERIC Educational Resources Information Center

    Resick, Patricia A.; Williams, Lauren F.; Suvak, Michael K.; Monson, Candice M.; Gradus, Jaimie L.

    2012-01-01

    Objective: We conducted a long-term follow-up (LTFU) assessment of participants from a randomized controlled trial comparing cognitive processing therapy (CPT) with prolonged exposure (PE) for posttraumatic stress disorder (PTSD). Competing hypotheses for positive outcomes (i.e., additional therapy, medication) were examined. Method:…

  20. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services

    PubMed Central

    Vaughn, Caryn C; Atkinson, Carla L; Julian, Jason P

    2015-01-01

    Extreme hydro-meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south central USA, where rapidly growing urban areas are running out of water and human-engineered water storage and management are leading to broad-scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma, USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long-lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought-induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20-year period that included two severe droughts. We then used laboratory-derived physiological rates and river-wide estimates of species-specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought-induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and

  1. Stress rotations and the long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment

    NASA Astrophysics Data System (ADS)

    Famin, Vincent; Raimbourg, Hugues; Garcia, Sebastian; Bellahsen, Nicolas; Hamada, Yohei; Boullier, Anne-Marie; Fabbri, Olivier; Michon, Laurent; Uchide, Takahiko; Ricci, Tullio; Hirono, Tetsuro; Kawabata, Kuniyo

    2014-10-01

    We used a field analysis of rock deformation microstructures and mesostructures to reconstruct the long-term orientation of stresses around two major active fault systems in Japan, the Median Tectonic Line and the Rokko-Awaji Segment. Our study reveals that the dextral slip of the two fault systems, active since the Plio-Quaternary, was preceded by fault normal extension in the Miocene and sinistral wrenching in the Paleogene. The two fault systems deviated the regional stress field at the kilometer scale in their vicinity during each of the three tectonic regimes. The largest deviation, found in the Plio-Quaternary, is a more fault normal rotation of the maximum horizontal stress to an angle of 79° with the fault strands, suggesting an extremely low shear stress on the Median Tectonic Line and the Rokko-Awaji Segment. Possible causes of this long-term stress perturbation include a nearly total release of shear stress during earthquakes, a low static friction coefficient, or low elastic properties of the fault zones compared with the country rock. Independently of the preferred interpretation, the nearly fault normal orientation of the direction of maximum compression suggests that the mechanical properties of the fault zones are inadequate for the buildup of a pore fluid pressure sufficiently elevated to activate slip. The long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment may reside in low-friction/low-elasticity materials or dynamic weakening rather than in preearthquake fluid overpressures.

  2. Investigation of Long-Term Drought in Mesoamerica Using Lacustrine Proxy Records, Instrumental Data, and Model Output

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Byrne, R.; Chiang, J. C. H.

    2014-12-01

    Paleoclimate research in Mesoamerica suggests that multidecadal droughts in the late Holocene were a factor in the demise of many pre-Columbian sites. However, our understanding of the spatial patterns of these droughts, and the causal mechanisms underlying them, remains poor. Our research is motivated by two main questions: First, we ask whether there is evidence that late Holocene droughts in Mesoamerica were spatially coherent across broad spatial scales. Second, we ask what mechanisms may be responsible for the patterns of paleoclimate change observed in proxy records. To address our first question, we present a record of late Holocene paleoclimatic change from the maar lake Aljojuca, in the eastern Trans-Mexican Volcanic Belt. A chronology established via radiocarbon dating shows that the core spans 6,200 cal. years B.P. We use geochemical proxies, in particular oxygen isotopes from authigenic carbonates, to reconstruct changes in lake level. We also draw on previously published lacustrine paleoclimatic records from across Mesoamerica. Using resampling techniques, we evaluate the impact of age uncertainty on estimates of the timing of late Holocene droughts over the past 2000 years. Our initial results suggest evidence of coherent drought in proxy records from the Yucatan Peninsula to highland Mexico between 1300 and 1000 cal yr. B.P., although there are subsequent intervals when proxy records show diverging trends. To address our second question, we use multivariate statistical techniques to explore coupled patterns of variability between Mesoamerican rainfall and remote sea surface temperatures in instrumental data and climate model control simulations (i.e. CCSM4.0's pre-industrial control simulation). Initial results suggest that low-frequency changes in rainfall may be forced by changes in SSTs in the Pacific or Atlantic basins that alter patterns of moisture transport.

  3. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.

    PubMed

    Pellizzari, Elena; Camarero, J Julio; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Carrer, Marco

    2016-06-01

    Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback.

  4. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.

    PubMed

    Pellizzari, Elena; Camarero, J Julio; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Carrer, Marco

    2016-06-01

    Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback. PMID:26790660

  5. The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP

    PubMed Central

    Yuan, Yiran; Leung, Ada W. S.; Duan, Hongxia; Zhang, Liang; Zhang, Kan; Wu, Jianhui; Qin, Shaozheng

    2016-01-01

    This study examined the neural dynamics of working memory (WM) processing under long-term stress. Forty participants who had been exposed to a long period of major exam preparation (six months) and twenty-one control participants performed a numerical n-back task (n = 1, 2) while electroencephalograms were recorded. Psychological and endocrinal measurements confirmed significantly higher levels of long-term stress for participants in the exam group. The exam group showed significantly increased P2 amplitude in the frontal-central sites in the 1-back and 2-back conditions, whereas other ERP components, including the P1, N1 and P3 and behavioral performance, were unchanged. Notably, the P2 effect was most pronounced in participants in the exam group who reported perceiving high levels of stress. The perceived stress scores positively correlated with the P2 amplitude in the 1-back and 2-back conditions. These results suggest that long-term stress has an impact on attention and the initiation of the updating process in WM. PMID:27000528

  6. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    PubMed

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  7. Assessing the long-term effects of the Sahel drought on ponds and semi-arid hydrology.

    NASA Astrophysics Data System (ADS)

    Gal, L.; Grippa, M.; Kergoat, L.; Hiernaux, P.; Peugeot, C.; Mougin, E.

    2015-12-01

    The Sahel underwent a severe rainfall deficit in the late 20th century, with extreme droughts in the early 70s and early 80s. This drought is the strongest multidecadal drought of the 20th century, globally. It has strongly impacted ecosystems, water availability, and populations. However, an increase of surface water has been observed during the same period: higher discharge of Sahelian rivers, and a general increase in pond's surface. This phenomenon, "less rain but more surface runoff", is referred to as the "Sahelian paradox". The causes of this paradox are still debated. The role of the significant increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Degradation of vegetation as a result of the drought, soils erosion, may also play an important role. Most Sahelian watersheds are still poorly gauged or ungauged, which makes it difficult to quantify surface runoff and its determinants. A method is developed to estimate runoff over ungauged ponds watersheds. It is tested for the Agoufou pond in the Gourma region in Mali, where in situ data are available for 2007-2014. A 3D model is first developed to relate water volume to height surface. This model is combined with daily evaporation and precipitation, to estimate the water supply to the pond which is a proxy for runoff over the watershed. This model highlights a spectacular increase of the runoff coefficient over the last 60 years. The method is then applied to two ungauged Sahelian watersheds in Mauritania and Niger, where pond surfaces by remote sensing are the only information. The runoff coefficients also increased in the last 60 years over these watersheds. The runoff derived for the Agoufou pond is used to evaluate simulations with the KINEROS2 model. We discuss to what extent the changes in rain intensity, soil hydrological properties and land-use land cover are able to cause the observed change in runoff over the last 60 years.

  8. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    NASA Astrophysics Data System (ADS)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2015-09-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  9. Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought

    NASA Astrophysics Data System (ADS)

    Andresen, L. C.; Bode, S.; Tietema, A.; Boeckx, P.; Rütting, T.

    2014-11-01

    Monomeric organic nitrogen (N) such as free amino acids (fAA) is an important resource for both plants and soil microorganisms and is, furthermore, a source of ammonium (NH4+) via microbial fAA mineralization. We compared gross fAA dynamics with gross N mineralization in a Dutch heathland soil using 15N labelling. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to: (1) compare fAA mineralization (NH4+ production from fAAs) with gross N mineralization, (2) assess gross fAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of warming and drought on these rates. The turnover of fAA in the soil was ca. 3 h, which is almost two orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that fAAs is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g-1 day-1) was eight-times smaller than the summed gross fAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g-1 day-1). Gross fAA mineralization (3.4 ± 0.2 μg N g-1 day-1) contributed by 34% to the gross N mineralization rate and is, thus, an important component of N mineralization. In the drought treatment, gross fAA production was reduced by 65% and gross fAA mineralization by 41%, compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. Warming did not significantly affect N transformations, even though that gross fAA production was more than halved. Overall our results suggest that heathland soil exposed to droughts has a shift in the composition of the SON being mineralized. Furthermore, compared to agricultural soils, fAA mineralization was relatively less important in the investigated

  10. Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought

    NASA Astrophysics Data System (ADS)

    Andresen, L. C.; Bode, S.; Tietema, A.; Boeckx, P.; Rütting, T.

    2015-04-01

    Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a 15N tracing technique. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to (1) compare FAA mineralization (NH4+ production from FAAs) with gross N mineralization, (2) assess gross FAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of a 14 years of warming and drought treatment on these rates. The turnover of FAA in the soil was ca. 3 h, which is almost 2 orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that FAA is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g-1 day-1) was 8 times smaller than the total gross FAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g-1 day-1). Gross FAA mineralization (3.4 ± 0.2 μg N g-1 day-1) contributed 34% to the gross N mineralization rate and is therefore an important component of N mineralization. In the drought treatment, a 6-29% reduction in annual precipitation caused a decrease of gross FAA production by 65% and of gross FAA mineralization by 41% compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. A 0.5-1.5 °C warming did not significantly affect N transformations, even though gross FAA production declined. Overall our results suggest that in heathland soil exposed to droughts a different type of SON pool is mineralized. Furthermore, compared to agricultural soils, FAA mineralization

  11. Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation.

    PubMed

    Blaze, Jennifer; Roth, Tania L

    2015-07-01

    While it is well-known that stress during development and adulthood can confer long-term neurobiological and behavioral consequences, investigators have only recently begun to assess underlying epigenetic modifications. In this review, we highlight clinical research and work from animal models that provide evidence of the impact of stressful experiences either during the perinatal period or adulthood on DNA methylation and behavior. Additionally, we explore the more controversial concept of transgenerational inheritance, including that associated with preconception stress experienced by the mother or father. Finally, we discuss challenges associated with the idea of transgenerational epigenetics and for the field of epigenetics in general.

  12. Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation

    PubMed Central

    Blaze, Jennifer; Roth, Tania L.

    2015-01-01

    While it is well-known that stress during development and adulthood can confer long-term neurobiological and behavioral consequences, investigators have only recently begun to assess epigenetic modifications associated with these consequences. In this review, we highlight clinical research and work with animal models that provide evidence of the impact of stressful experiences either during the perinatal period or adulthood on DNA methylation and behavior. Additionally, we explore the more controversial concept of transgenerational inheritance, including that associated with preconception stress experienced by the mother or father. Finally, we discuss challenges associated with the idea of transgenerational epigenetics and for the field of epigenetics in general. PMID:25917771

  13. Long-Term and Transgenerational Effects of Stress Experienced during Different Life Phases in Chickens (Gallus gallus)

    PubMed Central

    Bélteky, Johan; Sundman, Ann-Sofie; Shionoya, Kiseko; Jensen, Per

    2016-01-01

    Stress in animals causes not only immediate reactions, but may affect their biology for long periods, even across generations. Particular interest has been paid to perinatal stress, but also adolescence has been shown to be a sensitive period in mammals. So far, no systematic study has been performed of the relative importance of stress encountered during different life phases. In this study, groups of chickens were exposed to a six-day period of repeated stress during three different life phases: early (two weeks), early puberty (eight weeks) and late puberty (17 weeks), and the effects were compared to an unstressed control group. The short-term effects were assessed by behaviour, and the long-term and transgenerational effects were determined by effects on behavior and corticosterone secretion, as well as on hypothalamic gene expression. Short-term effects were strongest in the two week group and the eight week group, whereas long-term and transgenerational effects were detected in all three stress groups. However, stress at different ages affected different aspects of the biology of the chickens, and it was not possible to determine a particularly sensitive life phase. The results show that stress during puberty appears to be at least equally critical as the previously studied early life phase. These findings may have important implications for animal welfare in egg production, since laying hens are often exposed to stress during the three periods pinpointed here. PMID:27105229

  14. Post-learning stress enhances long-term memory and differentially influences memory in females depending on menstrual stage.

    PubMed

    Zoladz, Phillip R; Peters, David M; Cadle, Chelsea E; Kalchik, Andrea E; Aufdenkampe, Rachael L; Dailey, Alison M; Brown, Callie M; Scharf, Amanda R; Earley, McKenna B; Knippen, Courtney L; Rorabaugh, Boyd R

    2015-09-01

    Most work has shown that post-learning stress enhances long-term memory; however, there have been recent inconsistencies in this literature. The purpose of the present study was to examine further the effects of post-learning stress on long-term memory and to explore any sex differences that may exist. Male and female participants learned a list of 42 words that varied in emotional valence and arousal level. Following encoding, participants completed a free recall assessment and then submerged their hand into a bath of ice cold (stress) or lukewarm (no stress) water for 3 min. The next day, participants were given free recall and recognition tests. Stressed participants recalled more words than non-stressed participants 24h after learning. Stress also enhanced female participants' recall of arousing words when they were in the follicular, but not luteal, phase. These findings replicate previous work examining post-learning stress effects on memory and implicate the involvement of sex-related hormones in such effects. PMID:26233730

  15. Post-learning stress enhances long-term memory and differentially influences memory in females depending on menstrual stage.

    PubMed

    Zoladz, Phillip R; Peters, David M; Cadle, Chelsea E; Kalchik, Andrea E; Aufdenkampe, Rachael L; Dailey, Alison M; Brown, Callie M; Scharf, Amanda R; Earley, McKenna B; Knippen, Courtney L; Rorabaugh, Boyd R

    2015-09-01

    Most work has shown that post-learning stress enhances long-term memory; however, there have been recent inconsistencies in this literature. The purpose of the present study was to examine further the effects of post-learning stress on long-term memory and to explore any sex differences that may exist. Male and female participants learned a list of 42 words that varied in emotional valence and arousal level. Following encoding, participants completed a free recall assessment and then submerged their hand into a bath of ice cold (stress) or lukewarm (no stress) water for 3 min. The next day, participants were given free recall and recognition tests. Stressed participants recalled more words than non-stressed participants 24h after learning. Stress also enhanced female participants' recall of arousing words when they were in the follicular, but not luteal, phase. These findings replicate previous work examining post-learning stress effects on memory and implicate the involvement of sex-related hormones in such effects.

  16. Long-term impact of role stress and cognitive rumination upon morning and evening saliva cortisol secretion.

    PubMed

    Rydstedt, Leif W; Cropley, Mark; Devereux, Jason

    2011-05-01

    The long-term impact of role stress (conflict and ambiguity), cognitive rumination and their interaction were analysed upon morning and evening saliva cortisol secretion. The sample consisted of 52 male and 24 female British white-collars who had participated in a survey study on psychosocial working conditions 3.5 years earlier. Saliva cortisol secretion was measured over seven consecutive days with two measures: in the morning on awakening and at 22.00 hours. Stepwise linear multiple regression analyses was used for the statistical analyses. Role ambiguity at baseline and the interaction between role ambiguity and trait rumination contributed to explaining elevations in morning saliva cortisol secretion 3.5 years later (R(2) = 0.045; F = 4.57; p < 0.05), while role conflict at baseline significantly predicted increases in long-term evening saliva cortisol (R(2) = 0.057; F = 8.99; p < 0.01). The findings support a long-term relationship between chronic stress exposure and saliva cortisol secretion and some support for the assumption of cognitive rumination moderating the stressor-strain relationship. STATEMENT OF RElevance: The study is of interest for ergonomics practice because it demonstrates that work role ambiguity and role conflict, typically associated with organisational downsizing and restructuring, may contribute to long-term psycho-physiological reactivity. This could expose workers to increased health risks. Therefore, stress management programmes should include the concept of role stress, especially at a time where many work organisations are undergoing significant change. Management should also be made aware of the importance of communicating clear goals, objectives and lines of authority as well as providing sufficient training for those in new job roles. PMID:21547788

  17. Long-term impact of role stress and cognitive rumination upon morning and evening saliva cortisol secretion.

    PubMed

    Rydstedt, Leif W; Cropley, Mark; Devereux, Jason

    2011-05-01

    The long-term impact of role stress (conflict and ambiguity), cognitive rumination and their interaction were analysed upon morning and evening saliva cortisol secretion. The sample consisted of 52 male and 24 female British white-collars who had participated in a survey study on psychosocial working conditions 3.5 years earlier. Saliva cortisol secretion was measured over seven consecutive days with two measures: in the morning on awakening and at 22.00 hours. Stepwise linear multiple regression analyses was used for the statistical analyses. Role ambiguity at baseline and the interaction between role ambiguity and trait rumination contributed to explaining elevations in morning saliva cortisol secretion 3.5 years later (R(2) = 0.045; F = 4.57; p < 0.05), while role conflict at baseline significantly predicted increases in long-term evening saliva cortisol (R(2) = 0.057; F = 8.99; p < 0.01). The findings support a long-term relationship between chronic stress exposure and saliva cortisol secretion and some support for the assumption of cognitive rumination moderating the stressor-strain relationship. STATEMENT OF RElevance: The study is of interest for ergonomics practice because it demonstrates that work role ambiguity and role conflict, typically associated with organisational downsizing and restructuring, may contribute to long-term psycho-physiological reactivity. This could expose workers to increased health risks. Therefore, stress management programmes should include the concept of role stress, especially at a time where many work organisations are undergoing significant change. Management should also be made aware of the importance of communicating clear goals, objectives and lines of authority as well as providing sufficient training for those in new job roles.

  18. California's Drought - Stress test for the future

    NASA Astrophysics Data System (ADS)

    Lund, J. R.

    2014-12-01

    The current California drought is in its third dry years, with this year being the third driest years in a 106-year record. This drought occurs at a time when urban, agricultural, and environmental water demands have never been greater. This drought has revealed the importance of more quantitative evaluation and methods for water assessment and management. All areas of water and environmental management are likely to become increasingly stressed, and have essentially drought-like conditions, in the future, as California's urban, agricultural, and environmental demands continue to expand and as the climate changes. In the historical past, droughts have pre-viewed stresses developing in the future and helped focus policy-makers, the public, and stakeholders on preparing for these developing future conditions. Multi-decade water management strategies are often galvinized by drought. Irrigation was galvanized by California droughts in the 1800s, reservoir systems by the 1928-32 drought, urban water conservation by the 1976-77 drought, and water markets by the 1988-92 drought. With each drought, demands for tighter accounting, rights, and management have increased. This talk reviews the prospects and challenges for increased development and use of water data and systems analysis in the service of human and environmental water demands in California's highly decentralized water management system, and the prospects if these challenges are not more successfully addressed.

  19. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    PubMed Central

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  20. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    PubMed

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels.

  1. Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress.

    PubMed

    Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo

    2016-01-01

    Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283

  2. Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress

    PubMed Central

    Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo

    2016-01-01

    Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283

  3. Uncemented Total Hip Replacement Stem Loosening after Long Term Compressive Stress Application: A Simulated FEA Study of Cortical Bone Remodeling

    NASA Astrophysics Data System (ADS)

    Jung, Duk-Young; Tsutsumi, Sadami; Nakai, Ryusuke; Ikeuchi, Ken; Sekel, Ron

    The purpose of this study is to predict with the use of FEA, the differing predisposition to cortical bone resorption and subsequent distal migration of an un-cemented femoral hip replacement stem subjected to long term biomechanical high compressive stresses, while varying the load angles, the material properties of the stem, and the stem length. A two-dimensional hip model was constructed to estimate the minimum principle stresses (P3) and migration magnitudes. Bone remodeling at the interface between the bone and the prosthesis was performed by comparison of the local compressive stress to physiological stress values governing bone resorption. With respect to load angles, migrations of the hip prosthesis did not occur with load angles between 63° and 74° load angle in relation to the longitudinal axis of the bony femur, as the compressive stress generated on the cortical bone was under the criteria threshold for bone resorption (-50MPa). In addition, the magnitude of migration (17%decrease) was relatively more sensitive to changes in stem length than those (92%decrease) of changes of material properties. In conclusion, using an FEA model for bone remodeling, based on the high compressive stresses exerted on distal cortical bone, it is possible to estimate migration magnitudes of cementless hip prostheses in the long term. The load angles have been shown to be an important parameter affecting the migration magnitudes and furthermore, it can be demonstrated that the stiffer materials and reduction of stem length can decrease the migration of cementless hip prosthesis in the long term.

  4. Allocation of recent photoassimilates in mature European beech and Norway spruce - seasonal variability and responses to experimentally increased tropospheric O3 concentration and long-term drought

    NASA Astrophysics Data System (ADS)

    Grams, Thorsten

    2016-04-01

    This contribution summarizes a series of C allocation studies in maturing European beech and Norway spruce trees at Kranzberg Forest, located in southern Germany. Study objects are 60 to 70 year old trees, readily accessible via scaffoldings and canopy crane. Allocation of recently fixed photoassimilates is assessed either by conventional branch-bag labelling with 99 atom% 13CO2 or whole-tree labeling using 13C-depleted CO2 (isoFACE system). While labeling in branch bags, employed for few hours only, focused on phloem functionality in particular under long-term drought, C labeling of whole tree canopies was employed for up to 20 days, studying allocation of recent photoassimilates from the canopy along branches and stems to roots and soils below ground. In all experiments, dynamics of C allocation were mostly pursued assessing carbon isotopic composition of CO2 efflux from woody tissues which typically reflected isotopic composition of phloem sugars. Effects of severe and long-term summer drought are assessed in an ongoing experiment with roughly 100 trees assigned to a total of 12 plots (kroof.wzw.tum.de). Precipitation throughfall was completely excluded since early spring, resulting in pre-dawn leaf water potentials of both beech and spruce up to -2.2 MPa. The hypothesis was tested that long-term drought affects allocation of recently fixed C to branches and phloem functionality. In the annual course under unstressed conditions, phloem transport speed from the canopy to the stem (breast height) was double in beech compared to spruce, with highest transport velocities in early summer (about 0.51 and 0.26 m/h) and lowest in spring (0.26 and 0.12 m/h for beech and spruce, respectively). After leaf flush in spring, growth respiration of beech trunks was largely supplied by C stores. Recent photoassimilates supplied beech stem growth in early summer and refilled C stores in late summer, whereas seasonality was less pronounced in spruce. The hypothesis that growth

  5. Spatial Analysis of Factors Influencing Long-Term Stress in the Grizzly Bear (Ursus arctos) Population of Alberta, Canada

    PubMed Central

    Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  6. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  7. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  8. Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio).

    PubMed

    Qiu, Wenhui; Chen, Jingsi; Li, Yijie; Chen, Zhong; Jiang, Lihui; Yang, Ming; Wu, Minghong

    2016-08-01

    Bisphenol A (BPA) is a well-known endocrine disrupting chemical (EDC), ubiquitous in the aquatic environment, which poses an ecotoxicological risk to the health of aquatic organisms. However, the immunotoxic effects of its long-term exposure on fish have received limited attention. We examined a number of typical immune-related parameters and oxidative stress indices in the liver and blood serum of the red common carp (Cyprinus carpio), following a 30-day exposure to five different concentrations of BPA (0.1, 1, 10, 100, and 1000μg/L). A significant increase in the hepato somatic index was observed in fish upon exposure to 1000µg/L BPA, which correlated strongly with the accumulated BPA concentrations in fish bile. Induced oxidative stress was also apparent in the exposed fish liver, based on the enhanced levels of lipid peroxidation and inhibited activities of catalase, superoxide dismutase, and glutathione peroxidase. Serum lysozyme and C-reaction protein levels increased at low concentrations of exposure; however, they were significantly suppressed upon exposure to high concentrations. A significant increase was observed in the levels of immunoglobulin M, complement component 3, and alkaline phosphatase, in both fish liver and serum at low doses of 0.1 and 1μg/L. This suggests that long-term exposure to environmentally relevant concentrations of BPA (even as low as 0.1μg/L) could significantly disturb the immune response of fish. Moreover, RXRα expression in the liver was significantly altered upon BPA exposure and the trend underlying this change correlated closely with those of the most immune-related parameters, implying the involvement of the PPARγ/RXRα signaling pathway in regulating the immune response of fish upon long-term BPA exposure. In short, our results demonstrate the susceptibility of fish immune system to long-term BPA exposure. Therefore, the immunotoxicity of EDCs in aquatic organisms should not have been underestimated. PMID:27088622

  9. Local wave climate and long-term bed shear stress characteristics in Monterey Bay, CA

    USGS Publications Warehouse

    Xu, J. P.

    1999-01-01

    Five and a half years of wave measurements at two stations in Monterey Bay, CA show that the local wave climate at the South (Marina station) is markedly different from that at the North (Santa Cruz Harbor station). Measured significant wave heights at the Marina station are profoundly greater than at the Santa Cruz Harbor station, especially during winter. During summer, southerly or southwesterly Pacific Ocean swells can be dominant, and therefore, the peak wave periods at the Marina station, protected from these swells by the Monterey Peninsula headland, are much shorter than at the Santa Cruz station. This disparity of wave characteristics at the two stations are the direct causes of the difference in the long-term probability of sediment suspension and transport. Sheet-flow conditions, under which significant sand transport events presumably take place, occur about 20 to 40 times more often at the Marina station than at the Santa Cruz Harbor station.

  10. Stress Administered Prior to Encoding Impairs Neutral but Enhances Emotional Long-Term Episodic Memories

    ERIC Educational Resources Information Center

    Payne, Jessica D.; Jackson, Eric D.; Hoscheidt, Siobhan; Ryan, Lee; Jacobs, W. Jake; Nadel, Lynn

    2007-01-01

    Stressful events frequently comprise both neutral and emotionally arousing information, yet the impact of stress on emotional and neutral events is still not fully understood. The hippocampus and frontal cortex have dense concentrations of receptors for stress hormones, such as cortisol, which at high levels can impair performance on hippocampally…

  11. Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Progesterone Production

    PubMed Central

    Lai, Zhiwen; Tian, Yong; Fang, Li; Wu, Meng; Xiong, Jiaqiang; Qin, Xian; Luo, Aiyue; Wang, Shixuan

    2016-01-01

    Ovarian aging is a long-term and complex process associated with a decrease in follicular quantity and quality. The damaging effects of reactive oxygen species (ROS) in ovarian aging and ovarian aging-associated disorders have received relatively little attention. Thus, we assessed if the oxidative stress induced by long-term (defined by the Environmental Protection Agency as at least 30 days in duration) moderate ozone inhalation reduced ovarian reserves, decreased ovarian function and induced ovarian aging-associated disorders. The expression of oxidative stress markers and antioxidant enzymes was used to determine the degree of oxidative stress. Ultrastructural changes in ovarian cells were examined via electron microscopy. The ovarian reserve was assessed by measuring multiple parameters, such as the size of the primordial follicle pool and anti-Müllerian hormone (AMH) expression. The estrous cycle, hormone levels and fertility status were investigated to assess ovarian function. To investigate ovarian aging-associated disorders, we utilized bone density and cardiovascular ultrasonography in mice. The levels of oxidized metabolites, such as 8-hydroxy-2´-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE) and nitrotyrosine (NTY), significantly increased in ovarian cells in response to increased oxidative stress. The ultrastructural analysis indicated that lipid droplet formation and the proportion of mitochondria with damaged membranes in granulosa cells were markedly increased in ozone-exposed mice when compared with the control group. Ozone exposure did not change the size of the primordial follicle pool or anti-Müllerian hormone (AMH) expression. The estrogen concentration remained normal; however, progesterone and testosterone levels decreased. The mice exposed to ozone inhalation exhibited a substantial decrease in fertility and fecundity. No differences were revealed by the bone density or cardiovascular ultrasounds. These findings suggest that the

  12. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators

    PubMed Central

    Lajud, Naima; Torner, Luz

    2015-01-01

    Adverse early life experience decreases adult hippocampal neurogenesis and results in increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal stress on neurogenesis have been widely studied in adult individuals, few efforts have been done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not clear whether postnatal stress causes a differential impact in hippocampus development in male and female neonates that could be related to emotional deficits in adulthood. It has been proposed that the long term effects of early stress exposure rise from a persistent HPA axis activation during sensitive time windows; nevertheless the exact mechanisms and mediators remain unknown. Here, we summarize the immediate and late effects of early life stress on hippocampal neurogenesis in male and female rat pups, compare its later consequences in emotionality, and highlight some relevant mediator peptides that could be potentially involved in programming. PMID:25741234

  13. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators.

    PubMed

    Lajud, Naima; Torner, Luz

    2015-01-01

    Adverse early life experience decreases adult hippocampal neurogenesis and results in increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal stress on neurogenesis have been widely studied in adult individuals, few efforts have been done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not clear whether postnatal stress causes a differential impact in hippocampus development in male and female neonates that could be related to emotional deficits in adulthood. It has been proposed that the long term effects of early stress exposure rise from a persistent HPA axis activation during sensitive time windows; nevertheless the exact mechanisms and mediators remain unknown. Here, we summarize the immediate and late effects of early life stress on hippocampal neurogenesis in male and female rat pups, compare its later consequences in emotionality, and highlight some relevant mediator peptides that could be potentially involved in programming.

  14. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    PubMed

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration

  15. The effect of acute stress and long-term corticosteroid administration on plasma metabolites in an urban and desert songbird.

    PubMed

    Davies, Scott; Rodriguez, Natalie S; Sweazea, Karen L; Deviche, Pierre

    2013-01-01

    In response to stressful stimuli, animals activate the hypothalamic-pituitary-adrenal axis, which can result in transition to the "emergency life history stage." A key adaptive characteristic of this life history stage is the mobilization of energy stores. However, few data are available on the metabolic response to acute stress in wild-caught, free-ranging birds. We quantified the effect of acute capture and restraint stress on plasma glucose, free fatty acid, and uric acid in free-ranging Abert's towhees Melozone aberti. Furthermore, birds were caught from urban and desert localities of Phoenix, Arizona, to investigate potential effects of urban versus desert habitats on the corticosterone (CORT) and metabolic response to acute stress. Complementing work on free-ranging birds, captive towhees received CORT-filled Silastic capsules to investigate the response of urban and desert conspecifics to long-term CORT administration. We quantified the effect of CORT administration on baseline plasma glucose and uric acid, liver and pectoralis muscle glycogen stores, kidney phosphoenolpyruvate carboxykinase (PEPCK-C, a key gluconeogenic enzyme), and body mass. Acute stress increased plasma CORT and glucose and decreased plasma uric acid but had no effect on plasma free fatty acid. There was no difference between urban and desert localities in body mass, fat scores, and the response to acute stress. CORT administration decreased body mass but had no effect on glucose and uric acid, pectoral muscle glycogen, or kidney PEPCK-C. However, liver glycogen of CORT-treated urban birds increased compared with corresponding controls, whereas glycogen decreased in CORT-treated desert birds. This study suggests that Abert's towhees principally mobilize glucose during acute stress but urban and desert towhees do not differ in their CORT and metabolic response to acute stress or long-term CORT administration.

  16. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats

    PubMed Central

    Lalanza, Jaume F.; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M.

    2015-01-01

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders. PMID:26538081

  17. Man's physiologic response to long-term work during thermal and pollutant stress.

    PubMed

    Gliner, J A; Raven, P B; Horvath, S M; Drinkwater, B L; Sutton, J C

    1975-10-01

    Metabolic, temperature, and cardiorespiratory responses of 19 healthy males, age range 18-30 yr for one group and 40-55 yr for another, were studied during 210 minutes submaximal work at 35% Vo2 max. The subjects were exposed to four different pollutant gas mixtures at two different temperatures, 25 degrees C and 35 degrees C (relative humidity 30%). The four gas mixtures were filtered air (FA), 50 ppm carbon monoxide in filtered air (CO), 0.24 ppm peroxyacetyl nitrate in filtered air (PAN), and a combination of all three mixtures (PANCO). In the CO exposure, the heart rate was significantly greater than that observed during FA conditions (P less than 0.05). Metabolic and thermoregulatory responses to long-term work were not different in the various pollutant environments. Significant decreases in stroke volume and increases in heart rate were observed during the course of the 25 degrees C exposures with no alteration in cardiac output. Heart rates were higher during 35 degrees C exposures while cardiac output remained at the same level with a consequent further reduction in stroke output.

  18. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats.

    PubMed

    Lalanza, Jaume F; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M

    2015-11-05

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders.

  19. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species.

    PubMed

    Cano, F Javier; López, Rosana; Warren, Charles R

    2014-11-01

    Water stress (WS) slows growth and photosynthesis (A(n)), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (g(sw)) decreased to two pre-defined values for 24 d, WS was maintained at the target g(sw) for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (g(m)) of accounting for the resistance to refixation of CO(2). The diffusive limitations to CO(2), dominated by the stomata, were the most important constraints to A(n). Full recovery of A(n) was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of g(sw). The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

  20. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice.

    PubMed

    García-Pardo, M P; Blanco-Gandía, M C; Valiente-Lluch, M; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2015-12-01

    Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder.

  1. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes

    PubMed Central

    Blix, Eva; Perski, Aleksander; Berglund, Hans; Savic, Ivanka

    2013-01-01

    There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment. PMID:23776438

  2. Long-term effects of early life stress exposure: Role of epigenetic mechanisms.

    PubMed

    Silberman, Dafne M; Acosta, Gabriela B; Zorrilla Zubilete, María A

    2016-07-01

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.

  3. Long-term effects of early life stress exposure: Role of epigenetic mechanisms.

    PubMed

    Silberman, Dafne M; Acosta, Gabriela B; Zorrilla Zubilete, María A

    2016-07-01

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders. PMID:26774789

  4. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  5. Long-term impact of maternal substance use during pregnancy and extrauterine environmental adversity: stress hormone levels of preadolescent children.

    PubMed

    Bauer, Charles R; Lambert, Brittany L; Bann, Carla M; Lester, Barry M; Shankaran, Seetha; Bada, Henrietta S; Whitaker, Toni M; Lagasse, Linda L; Hammond, Jane; Higgins, Rosemary D

    2011-08-01

    Prenatal cocaine exposure (PCE) is associated with blunted stress responsivity within the extrauterine environment. This study investigated the association between PCE and diurnal salivary cortisol levels in preadolescent children characterized by high biological and/or social risk (n = 725). Saliva samples were collected at their home. Analyses revealed no group differences in basal evening or morning cortisol levels; however, children with higher degrees of PCE exhibited blunted overnight increases in cortisol, controlling for additional risk factors. Race and caregiver depression were also associated with diurnal cortisol patterns. Although repeated PCE may contribute to alterations in the normal or expected stress response later in life, sociodemographic and environmental factors are likewise important in understanding hormone physiology, especially as more time elapses from the PCE. Anticipating the potential long-term medical, developmental, or behavioral effects of an altered ability to mount a normal protective cortisol stress response is essential in optimizing the outcomes of children with PCE.

  6. The effects of a long-term psychosocial stress on reproductive indicators in the baboon.

    PubMed

    O'Connor, Kathleen A; Brindle, Eleanor; Shofer, Jane; Trumble, Benjamin C; Aranda, Jennifer D; Rice, Karen; Tatar, Marc

    2011-08-01

    Psychosocial stress is thought to negatively impact fecundity, but human studies are confounded by variation in nutrition and lifestyle. Baboons offer a useful model to test the effect of prolonged mild stress on reproductive indicators in a controlled setting. Following relocation from social groups to solitary housing, a previously documented stressful event for nonhuman primates, daily urine samples, tumescence, and menstrual bleeding were monitored in twenty baboons (Papio sp.) for 120-150 days. Specimens were assayed for estrone conjugates (E1C), pregnanediol-3-glucuronide (PDG), follicle-stimulating hormone (FSH), and cortisol. Linear mixed effects models examined (1) the effects of stress on frequency of anovulation, hormone levels, tumescence and cycle length, and (2) the relationship of cortisol with reproductive indicators. Despite cortisol levels indicative of stress, anovulation was negligible (1% in 102 cycles). PDG, FSH, cycle length, and tumescence declined during the first four cycles, but began recovery by the fifth. Cortisol was negatively associated with FSH but not associated with PDG, E1C or tumescence. Ovulation, E1C, and luteal phase length were not affected. Tumescence tracked changes in FSH and PDG, and thus may be a useful indicator of stress on the reproductive axis. Elevated cortisol was associated with reduced FSH, supporting a model of cortisol action at the hypothalamus rather than the gonad. After four to five menstrual cycles the reproductive indicators began recovery, suggesting adjustment to new housing conditions. In conclusion, individual housing is stressful for captive baboons, as reflected by cortisol and reproductive indicators, although ovulation, a relatively direct proxy for fecundity, is unaffected.

  7. The long-term costs of traumatic stress: intertwined physical and psychological consequences

    PubMed Central

    McFARLANE, ALEXANDER C.

    2010-01-01

    The gradual emergence of symptoms following exposure to traumatic events has presented a major conceptual challenge to psychiatry. The mechanism that causes the progressive escalation of symptoms with the passage of time leading to delayed onset post-traumatic stress disorder (PTSD) involves the process of sensitization and kindling. The development of traumatic memories at the time of stress exposure represents a major vulnerability through repeated environmental triggering of the increasing dysregulation of an individual’s neurobiology. An increasing body of evidence demonstrates how the increased allostatic load associated with PTSD is associated with a significant body of physical morbidity in the form of chronic musculoskeletal pain, hypertension, hyperlipidaemia, obesity and cardiovascular disease. This increasing body of literature suggests that the effects of traumatic stress need to be considered as a major environmental challenge that places individual’s physical and psychological health equally at risk. This broader perspective has important implications for developing treatments that address the underlying dysregulation of cortical arousal and neurohormonal abnormalities following exposure to traumatic stress. PMID:20148146

  8. Antenatal Maternal Stress and Long-Term Effects on Child Neurodevelopment: How and Why?

    ERIC Educational Resources Information Center

    Talge, Nicole M.; Neal, Charles; Glover, Vivette

    2007-01-01

    We review a significant body of evidence from independent prospective studies that if a mother is stressed while pregnant, her child is substantially more likely to have emotional or cognitive problems, including an increased risk of attentional deficit/hyperactivity, anxiety, and language delay. These findings are independent of effects due to…

  9. Parenting and Family Stress as Mediators of the Long-Term Effects of Child Abuse.

    ERIC Educational Resources Information Center

    Wind, Tiffany Weissmann; Silvern, Louise

    1994-01-01

    Data on child physical/sexual abuse, family stress histories, perceived parental warmth, and current psychological functioning were gathered from 259 working women. Multiple regression analyses showed that parental warmth strongly influenced or mediated the relationship of intrafamilial child abuse to depression and self-esteem levels. However,…

  10. Design prediction for long term stress rupture service of composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Robinson, Ernest Y.

    1992-01-01

    Extensive stress rupture studies on glass composites and Kevlar composites were conducted by the Lawrence Radiation Laboratory beginning in the late 1960's and extending to about 8 years in some cases. Some of the data from these studies published over the years were incomplete or were tainted by spurious failures, such as grip slippage. Updated data sets were defined for both fiberglass and Kevlar composite stand test specimens. These updated data are analyzed in this report by a convenient form of the bivariate Weibull distribution, to establish a consistent set of design prediction charts that may be used as a conservative basis for predicting the stress rupture life of composite pressure vessels. The updated glass composite data exhibit an invariant Weibull modulus with lifetime. The data are analyzed in terms of homologous service load (referenced to the observed median strength). The equations relating life, homologous load, and probability are given, and corresponding design prediction charts are presented. A similar approach is taken for Kevlar composites, where the updated stand data do show a turndown tendency at long life accompanied by a corresponding change (increase) of the Weibull modulus. The turndown characteristic is not present in stress rupture test data of Kevlar pressure vessels. A modification of the stress rupture equations is presented to incorporate a latent, but limited, strength drop, and design prediction charts are presented that incorporate such behavior. The methods presented utilize Cartesian plots of the probability distributions (which are a more natural display for the design engineer), based on median normalized data that are independent of statistical parameters and are readily defined for any set of test data.

  11. Long-term electrostimulation of the pelvic floor: primary therapy in female stress incontinence?

    PubMed

    Eriksen, B C; Eik-Nes, S H

    1989-01-01

    A prospective evaluation of the therapeutic effect of neuromuscular electrical pelvic floor stimulation was performed in 55 women with urinary stress incontinence awaiting surgical repair. Chronic stimulation was applied anally or vaginally by an integrated plug electrode for a median of 5.4 months. After therapy, 68% of the patients were continent or had improved so such that the planned operation was cancelled. At 2-year follow-up, the persisting success rate after electrostimulation was reduced to 56%, 31% had undergone surgical repair or were awaiting colposuspension, 9% were still incontinent, but refused surgery, and 4% were deceased. However, in the high-compliance group of 45 patients who had used the device regularly for at least 3 months, the success rate of pelvic floor stimulation was 72% at 2-year follow-up. The therapeutic effect could be verified objectively by positive changes in clinical stress test and dynamic urethral pressure profile. Approximately 2,300 pounds were saved for each patient avoiding surgery. A 40% reduction of the total cost of stress incontinence therapy was attained by the presented model.

  12. Long-term evolution of intraplate seismicity in stress shadows after a megathrust

    NASA Astrophysics Data System (ADS)

    Hong, Tae-Kyung; Lee, Junhyung; Houng, Soung Eil

    2015-08-01

    Megathrusts produce large permanent lithospheric displacements as well as strong transient ground shaking up to regional distances. The influence of the 2011 M9.0 Tohoku-Oki earthquake on the seismicity in stable intraplate regions around the Korean Peninsula is investigated. The differential lateral displacements by the megathrust build transient radial tension field over the backarc lithosphere, constructing stress shadows for all types of faults in optimal orientation over the wide backarc region including the southern Korean Peninsula. A characteristic seismic-velocity decrease after the megathrust supports the medium relaxation. The number of earthquakes with magnitudes greater than or equal to 2.5 was increased by 61% after the megathrust. The earthquakes occurred episodically. A series of unusual earthquake swarms and a temporal cluster of moderate-size earthquakes were observed in the Yellow Sea region. The significant seismicity increase since the megathrust may be due to the fluid diffusion during the transient tension field and the pore-fluid pressure increase during the ambient compressional-stress field recovery by tectonic loading. The induced seismicity may continue until the ambient stress field is fully recovered.

  13. Induced damage in Carrara Marble as a result of long-term low-magnitude environmental stresses

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael; Walter, Jens M.

    2015-04-01

    Damage of intact rock is commonly driven by the interaction of long-term low-magnitude external environmental stresses in combination with surface chemistry, rather than short-term loading in excess of intact rock strength. In order to determine the contribution of environmental stresses to the propagation of micro- and macroscopic fractures under natural environmental conditions we undertook long-term three-point bending tests on large size Carrara Marble specimens. The interaction of mechanical stresses induced by external loading and corrosive conditions (e.g. the presence of water) at the tip of a pre-existing crack is termed stress corrosion. We investigate stress corrosion below saw cut notches in wet and dry samples of Carrara Marble (M1-5, each 10cm x 10cm x 110cm). These were pre-loaded to about 66% of their assumed ultimate strength (determined by the fracture toughness (Kic) calculated for the crack tip). Two marble beams (M1, M3) were initially loaded to 22% and three (M2, M4, M5) to 55% of Kic. CaC03 saturated water was continuously dripped in the notch of samples --M1-4 to create corrosive conditions, while M5 was kept dry. After a three-week bedding period, loading on sample M1 was increased to 55%, M2 and M5 to 77% and M3 and M4 to 85% of Kic respectively. The tests were interrupted prior to failure of the specimens in order to allow the assessment of the crack-tip structure. During the testing period we used classical strain gages and acoustic emission sensors to measure strain and elastic stress changes through coda wave interferometry. Temperature and humidity were monitored and the outflowing fluid was collected for future analysis, throughout. The effect of induced damage on residual intrinsic stresses was evaluated using neutron diffraction on the SALSA instrument at the Institute Laue-Langevin (ILL, Grenoble, France), while texture measurements were undertaken using the X-ray goniometer at the Geoscience Center, University Göttingen, and

  14. Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio.

    PubMed

    Saucedo-Vence, Karinne; Dublán-García, Octavio; López-Martínez, Leticia Xochitl; Morachis-Valdes, Gabriela; Galar-Martínez, Marcela; Islas-Flores, Hariz; Gómez-Oliván, Leobardo Manuel

    2015-04-01

    Diclofenac (DCF) has been detected in significant amounts in municipal treated wastewater effluent. Diverse studies report that trace concentrations of DCF may induce toxic effects on different aquatic organisms as well as developmental, reproductive and renal damage. This study aimed to determine whether short and long-term exposure to DCF alter the oxidative stress (OS) status in blood, muscle, gills, brain and liver of common carp Cyprinus carpio. The median lethal concentration of DCF at 96 h (96-h LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed (short and long-term) to the latter value for different exposure times (4 and 24 days) and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxides content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF was determined by LC-MS/MS. Significant increases in HPC, LPX and PCC were observed respect to control (P < 0.05) particularly in blood, muscle, gill, brain and liver. SOD, CAT and GPx activity also increased in these organs, with respect to controls (P < 0.05). DCF concentrations decreased and increased in water system and carp, respectively. Cyprinus carpio exposed to DCF was affected in OS status during the initial days of the study (at 4 days), exhibiting an increased response at 24 days in blood and liver. In contrast, a decrease was observed in muscle, gills and brain at 24 days with respect to 4 days. In conclusion, DCF induces OS on blood, muscle, gills, brain and liver in the carp C. carpio in short and long-term exposure. The biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species. PMID:25512029

  15. Oxidative stress predicts long-term resight probability and reproductive success in Scopoli's shearwater (Calonectris diomedea)

    PubMed Central

    Costantini, David; Dell'Omo, Giacomo

    2015-01-01

    A major challenge in conservation physiology is to find out biomarkers that reliably reflect individual variation in wear and tear. Recent work has suggested that biomarkers of oxidative stress may provide an additional tool to assess the health state of individuals and to predict fitness perspectives. In this study, we assessed whether three biomarkers of plasma oxidative status predicted the following factors: (i) the resight probability as breeder in the next seasons; and (ii) the cumulative reproductive output over multiple years in Scopoli’s shearwaters (Calonectris diomedea) using a 7 year individual-based data set. Our results show that shearwaters having higher levels of a marker of oxidative damage (reactive oxygen metabolites) in 2008 had a lower resight probability in the next years and a lower number of chicks raised from 2008 to 2014. In contrast, two biomarkers of antioxidant defences (non-enzymatic antioxidant capacity of plasma and thiols) did not have any predictive value. Increased concentrations of plasma reactive oxygen metabolites, together with the significant individual repeatability over time in this metric of oxidative stress found in numerous studies, suggest that this metric might serve as a blood-derived biomarker for health and fitness perspectives in birds and, possibly, also in other taxa. PMID:27293709

  16. Long-term prediction of creep strains of mineral wool slabs under constant compressive stress

    NASA Astrophysics Data System (ADS)

    Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas

    2012-02-01

    The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.

  17. Effects of Long Term Space Flight on Erythrocytes and Oxidative Stress of Mice

    NASA Astrophysics Data System (ADS)

    Rizzo, Angela Maria; Negroni, M.; Montorfano, G.; Corsetto, P.; Alriero, T.; Liu*, Y.; Tavella, S.; Cancedda, R.; Berra, B.

    The Mice Drawer System (MDS) is an Italian Space Agency (ASI) facility developed by Thales-Alenia Space, which is able to support 6 mice onboard the International Space Station during long-duration missions (from 100 to 150-days).. MDS was launched with STS 128 on Agoust 2009 and returned to ground with STS 130 on the end of November 2009. Two kind of mice were used the Wild Type (WT) and a transgenic type (OSF-1). The principal experiment investigated the genetic mechanisms underlying bone mass loss in microgravity, but this re-search will also contribute to the research on microgravity effects on body systems through an international tissue sharing program. Our laboratory is interested in erythrocyte (RBC) and hemoglobin loss that have been observed during space missions; these observations have been summarized as "space anemia". Erythrocytes exposed to microgravity have a modified rhe-ology and undergo greater hemolysis. We can suppose that microgravity together with space radiation causes variations of cellular shape, plasma membrane composition, and peroxidative stress, that can be responsible of space anemia. Moreover the enzymatic antioxidant pathway, measured in erythrocyte, can reflect oxidative stress of animals, probably due to exposure to space radiations. For these reasons we participated to the tissue shearing program of MDS and we run analysis on samples from mice housed in MDS for 20 and 100 days during ground tests performed in Genova. We analyzed RBC antioxidant potential and lipid composition. During the 20 day simulation the content of glutathione was decreased in OSF while a signifi-cant increase of GSH reductase and peroxidase was measured in WT mice; this might indicate that WT animals are more resistant to the stress during MDS housing. On the contrary after 100 days of housing the two type of mice were very similar in their antioxidant enzymes. In particular a relevant increase of Glutathione peroxidase was induced by the MDS simulation

  18. Long-term aging of elastomers: Chemical stress relaxation of fluorosilicone rubber and other studies

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Mazzeo, A. A.; Silver, R. H.

    1971-01-01

    Aerospace applications of elastomers are considered, including: propellant binders, bladder materials for liquid propellant expulsion systems, and fuel tank sealants for high-speed aircraft. A comprehensive molecular theory for mechanical properties of these materials has been developed but has only been tested experimentally in cases where chemical degradation processes are excluded. Hence, a study is being conducted to ascertain the nature, extent, and rate of chemical changes that take place in some elastomers of interest. Chemical changes that may take place in the fluorosilicone elastomer, LS 420, which is regarded as a fuel and high-temperature-resistant rubber are investigated. The kinetic analysis of the chemical stress relaxation and gel permeation chromatography studies comprise the major portion of the report.

  19. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  20. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    PubMed

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.

  1. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  2. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet

    PubMed Central

    Garbow, Joel R.; Doherty, Jason M.; Schugar, Rebecca C.; Travers, Sarah; Weber, Mary L.; Wentz, Anna E.; Ezenwajiaku, Nkiruka; Cotter, David G.; Brunt, Elizabeth M.

    2011-01-01

    Low-carbohydrate diets are used to manage obesity, seizure disorders, and malignancies of the central nervous system. These diets create a distinctive, but incompletely defined, cellular, molecular, and integrated metabolic state. Here, we determine the systemic and hepatic effects of long-term administration of a very low-carbohydrate, low-protein, and high-fat ketogenic diet, serially comparing these effects to a high-simple-carbohydrate, high-fat Western diet and a low-fat, polysaccharide-rich control chow diet in C57BL/6J mice. Longitudinal measurement of body composition, serum metabolites, and intrahepatic fat content, using in vivo magnetic resonance spectroscopy, reveals that mice fed the ketogenic diet over 12 wk remain lean, euglycemic, and hypoinsulinemic but accumulate hepatic lipid in a temporal pattern very distinct from animals fed the Western diet. Ketogenic diet-fed mice ultimately develop systemic glucose intolerance, hepatic endoplasmic reticulum stress, steatosis, cellular injury, and macrophage accumulation, but surprisingly insulin-induced hepatic Akt phosphorylation and whole-body insulin responsiveness are not impaired. Moreover, whereas hepatic Pparg mRNA abundance is augmented by both high-fat diets, each diet confers splice variant specificity. The distinctive nutrient milieu created by long-term administration of this low-carbohydrate, low-protein ketogenic diet in mice evokes unique signatures of nonalcoholic fatty liver disease and whole-body glucose homeostasis. PMID:21454445

  3. Short- and long-term consequences of developmental saline stress: impacts on anuran respiration and behaviour

    PubMed Central

    Kearney, Brian D.; Byrne, Phillip G.; Reina, Richard D.

    2016-01-01

    Secondary salinization has been identified as a major stressor to amphibians. Exposure to elevated salinity necessitates physiological adjustments and biochemical changes that may be energetically demanding. As such, exposure to non-lethal levels of salinity during development could potentially alter anuran metabolic rates and individual performance in both pre- and post-metamorphic life stages. We investigated the effects of non-lethal levels of salinity on metamorphic traits (time to reach metamorphosis and metamorphic mass), tadpole oxygen consumption, escape response behaviour (pre- and post-metamorphosis) and foraging ability post-metamorphosis in two native Australian frog species, the southern brown tree frog (Litoria ewingii) and the striped marsh frog (Limnodynastes peronii). We found that both Lit. ewingii and Lim. peronii exhibited differences in metamorphic traits in response to elevated salinity. Neither species showed significant change in oxygen consumption during development in response to salinity, relative to freshwater controls. Both species displayed impaired escape response behaviours in response to salinity during larval development, but flow-on effects to adult escape response behaviours and foraging performance were species-specific. Our results show that the influence of stressors during development can have consequences for anuran physiology and behaviour at multiple life stages, and emphasize the need for studies that examine the energetics of anuran responses in order to better understand the responses of biota to stressful environments. PMID:26998337

  4. Pathological consequences of long-term mitochondrial oxidative stress in the mouse retinal pigment epithelium.

    PubMed

    Seo, Soo-jung; Krebs, Mark P; Mao, Haoyu; Jones, Kyle; Conners, Mandy; Lewin, Alfred S

    2012-08-01

    Oxidative stress in the retinal pigment epithelium (RPE) is hypothesized to be a major contributor to the development of age-related macular degeneration (AMD). Mitochondrial manganese superoxide dismutase (MnSOD) is a critical antioxidant protein that scavenges the highly reactive superoxide radical. We speculated that specific reduction of MnSOD in the RPE will increase the level of reactive oxygen species in the retina/RPE/choroid complex leading to pathogenesis similar to geographic atrophy. To test this hypothesis, an Sod2-specific hammerhead ribozyme (Rz), delivered by AAV2/1 and driven by the human VMD2 promoter was injected subretinally into C57BL/6J mice. Dark-adapted full field electroretinogram (ERG) detected a decrease in the response to light. We investigated the age-dependent phenotypic and morphological changes of the outer retina using digital fundus imaging and SD-OCT measurement of ONL thickness. Fundus microscopy revealed pigmentary abnormalities in the retina and these corresponded to sub-retinal and sub-RPE deposits seen in SD-OCT B-scans. Light and electron microscopy documented the localization of apical deposits and thickening of the RPE. In RPE flat-mounts we observed abnormally displaced nuclei and regions of apparent fibrosis in the central retina of the oldest mice. This region was surrounded by enlarged and irregular RPE cells that have been observed in eyes donated by AMD patients and in other mouse models of AMD.

  5. Active Traction Force Response to Long-Term Cyclic Stretch Is Dependent on Cell Pre-stress.

    PubMed

    Cirka, Heather; Monterosso, Melissa; Diamantides, Nicole; Favreau, John; Wen, Qi; Billiar, Kristen

    2016-04-26

    Mechanical stimulation is recognized as a potent modulator of cellular behaviors such as proliferation, differentiation, and extracellular matrix assembly. However, the study of how cell-generated traction force changes in response to stretch is generally limited to short-term stimulation. The goal of this work is to determine how cells actively alter their traction force in response to long-term physiological cyclic stretch as a function of cell pre-stress. We have developed, to our knowledge, a novel method to assess traction force after long-term (24 h) uniaxial or biaxial cyclic stretch under conditions of high cell pre-stress with culture on stiff (7.5 kPa) polyacrylamide gels (with or without transforming growth factor β1 (TGF-β1)) and low pre-stress by treating with blebbistatin or culture on soft gels (0.6 kPa). In response to equibiaxial stretch, valvular interstitial cells on stiff substrates decreased their traction force (from 300 nN to 100 nN) and spread area (from 3000 to 2100 μm(2)). With uniaxial stretch, the cells had similar decreases in traction force and area and reoriented perpendicular to the stretch. TGF-β1-treated valvular interstitial cells had higher pre-stress (1100 nN) and exhibited a larger drop in traction force with uniaxial stretch, but the percentage changes in force and area with stretch were similar to the non-TGF-β1-treated group. Cells with inhibited myosin II motors increased traction force (from 41 nN to 63 nN) and slightly reoriented toward the stretch direction. In contrast, cells cultured on soft gels increased their traction force significantly, from 15 nN to 45 nN, doubled their spread area, elongated from an initially rounded morphology, and reoriented perpendicular to the uniaxial stretch. Contractile-moment measurements provided results consistent with total traction force measurements. The combined results indicate that the change in traction force in response to external cyclic stretch is dependent upon the

  6. Neuroinflammatory and oxidative stress phenomena in MPS IIIA mouse model: the positive effect of long-term aspirin treatment.

    PubMed

    Arfi, Audrey; Richard, Magali; Gandolphe, Christelle; Bonnefont-Rousselot, Dominique; Thérond, Patrice; Scherman, Daniel

    2011-05-01

    Sanfilippo disease (MPS IIIA) is an autosomal recessive lysosomal storage disorder resulting from sulfamidase deficiency, which is characterized by severe neurological impairment. Various tissues of MPS IIIA mice accumulate undegraded glycosaminoglycans and mimic the human neurodegenerative disorder, and are an excellent tool to both delineate disease pathogenesis and test potential therapies. The relationship between abnormal glycosaminoglycan storage and neurodysfunction remains ill defined. Pathways such as inflammation or oxidative stress have been highlighted in many neurodegenerative disorders, including lysosomal storage diseases, as major components of the neuropathology. By using quantitative polymerase chain reaction, we have compared the expression of selected genes in normal and MPS IIIA mouse cerebral tissues, focusing on inflammation, apoptosis and oxidative stress-related genes. We have identified several genes strongly over-expressed in the central nervous system of a MPS IIIA mouse, reflecting a neurological deterioration state. We have used these genes as markers to follow-up a long-term aspirin treatment. Aspirin treatment led to the normalization of inflammation- and oxidative stress-related mRNA levels in treated MPS IIIA mouse brains. A biochemical correction of an oxidative stress phenomenon both in the brain and peripheral organs of treated MPS IIIA mice was also obtained. These results suggest that anti-inflammatory intervention may be of potential benefit in MPS IIIA disease.

  7. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2012-01-01

    One of the major failure modes of bioprosthetic heart valves is non-calcific structural deterioration due to fatigue of the tissue leaflets. Experimental methods to characterize tissue fatigue properties are complex and time-consuming. A constitutive fatigue model that could be calibrated by isolated material tests would be ideal for investigating the effects of more complex loading conditions. However, there is a lack of tissue fatigue damage models in the literature. To address these limitations, in this study, a phenomenological constitutive model was developed to describe the stress softening and permanent set effects of tissue subjected to long-term cyclic loading. The model was used to capture characteristic uniaxial fatigue data for glutaraldehyde-treated bovine pericardium and was then implemented into finite element software. The simulated fatigue response agreed well with the experimental data and thus demonstrates feasibility of this approach. PMID:22945802

  8. Long-Term Serial Follow-Up of Pulmonary Artery Size and Wall Shear Stress in Fontan Patients.

    PubMed

    Bossers, Sjoerd S M; Cibis, Merih; Kapusta, Livia; Potters, Wouter V; Snoeren, Miranda M; Wentzel, Jolanda J; Moelker, Adriaan; Helbing, Willem A

    2016-04-01

    Pulmonary arterial (PA) flow is abnormal after the Fontan operation and is marked by a lack of pulsatility. We assessed the effects of this abnormal flow on the size and function of the PA's in Fontan patients in long-term serial follow-up. Twenty-three Fontan patients with serial follow-up were included. Median age was 11.1 (9.5-16.0) years at baseline and 15.5 (12.5-22.7) years at follow-up. Median follow-up duration was 4.4 (4.0-5.8) years. Flow and size of the left pulmonary artery were determined using phase-contrast MRI. From this wall shear stress (WSS), distensibility and pulsatility were determined. A group of healthy peers was included for reference. Flow and pulsatility were significantly lower in patients than in controls (p < 0.001). Mean area was comparable in patients and controls, but distensibility was significantly higher in controls (p < 0.001). Mean and peak WSS were significantly lower in Fontan patients (p < 0.001). Between baseline and follow-up, there was a significant increase in normalized flow (15.1 (14.3-19.1) to 18.7 (14.0-22.6) ml/s/m(2), p = 0.023). Area, pulsatility, distensibility and WSS did not change, but there was a trend toward a lower mean WSS (p = 0.068). Multivariable regression analysis showed that flow, area and age were important predictors for WSS. WSS in Fontan patients is decreased compared to healthy controls and tends to decrease further with age. Pulsatility and distensibility are significantly lower compared to healthy controls. Pulmonary artery size, however, is not significantly different from healthy controls and long-term growth after Fontan operation is proportionate to body size.

  9. The prevalence of long-term post-traumatic stress symptoms among adolescents after the tsunami in Aceh.

    PubMed

    Agustini, E N; Asniar, I; Matsuo, H

    2011-08-01

    The aim of this study was to identify long-term post-traumatic stress disorder (PTSD) symptoms in Aceh 4.5 years after the tsunami and to examine whether certain factors affected the severity of PTSD symptoms among adolescents. The PTSD symptoms of 482 adolescents aged 11 to 19 years were assessed according to the Child Post-Traumatic Stress Reaction Index (CPTSD-RI). The severity of the disaster was identified by the Traumatic Exposure Severity Scale (TESS). Of the adolescents who completed the questionnaire, 54 (11.2%), 124 (25.7%), 196 (40.7%), 103 (21.4%) and 5 (1%), respectively, reported none, mild, moderate, severe and very severe symptoms on CPTSD-RI. Gender, loss of parents, somatic response and support level were significantly associated with the total score on CPTSD-RI (P < 0.05). The TESS-Occurrence Scale and CPTSD-RI were significantly correlated (r= 0.33, P < 0.05). The TESS-Distress Scale was significantly correlated with CPTSD-RI (r= 0.48, P < 0.05). The study indicated that the symptoms of PTSD, ranging from very severe to moderate, could persist for a long time after the tsunami and be affected by gender, loss of parents, somatic response, support level and severity of the disaster.

  10. Adolescent vulnerability to cardiovascular consequences of chronic social stress: Immediate and long-term effects of social isolation during adolescence.

    PubMed

    Cruz, Fábio C; Duarte, Josiane O; Leão, Rodrigo M; Hummel, Luiz F V; Planeta, Cleopatra S; Crestani, Carlos C

    2016-01-01

    It has been demonstrated that disruption of social bonds and perceived isolation (loneliness) are associated with an increased risk of cardiovascular morbidity and mortality. Adolescence is proposed as a period of vulnerability to stress. Nevertheless, the impact of chronic social stress during this ontogenic period in cardiovascular function is poorly understood. Therefore, the purpose of this study was to compare the impact in cardiovascular function of social isolation for 3 weeks in adolescent and adult male rats. Also, the long-term effects of social isolation during adolescence were investigated longitudinally. Social isolation reduced body weight in adolescent, but not in adult animals. Disruption of social bonds during adolescence increased arterial pressure without affecting heart rate and pulse pressure (PP). Nevertheless, social isolation in adulthood reduced systolic arterial pressure and increased diastolic arterial pressure, which in turn decreased PP without affecting mean arterial pressure. Cardiovascular changes in adolescents, but not adults, were followed by facilitation of both baroreflex sensitivity and vascular reactivity to the vasodilator agent acetylcholine. Vascular responsiveness to either the vasodilator agent sodium nitroprusside or the vasoconstrictor agent phenylephrine was not affected by social isolation. Except for the changes in body weight and baroreflex sensitivity, all alterations evoked by social isolation during adolescence were reversed in adulthood after moving animals from isolated to collective housing. These findings suggest a vulnerability of adolescents to the effects of chronic social isolation in cardiovascular function. However, results indicate minimal cardiovascular consequences in adulthood of disruption of social bonds during adolescence.

  11. Long-term effects of stress reduction on mortality in persons > or = 55 years of age with systemic hypertension.

    PubMed

    Schneider, Robert H; Alexander, Charles N; Staggers, Frank; Rainforth, Maxwell; Salerno, John W; Hartz, Arthur; Arndt, Stephen; Barnes, Vernon A; Nidich, Sanford I

    2005-05-01

    Psychosocial stress contributes to high blood pressure and subsequent cardiovascular morbidity and mortality. Previous controlled studies have associated decreasing stress with the Transcendental Meditation (TM) program with lower blood pressure. The objective of the present study was to evaluate, over the long term, all-cause and cause-specific mortality in older subjects who had high blood pressure and who participated in randomized controlled trials that included the TM program and other behavioral stress-decreasing interventions. Patient data were pooled from 2 published randomized controlled trials that compared TM, other behavioral interventions, and usual therapy for high blood pressure. There were 202 subjects, including 77 whites (mean age 81 years) and 125 African-American (mean age 66 years) men and women. In these studies, average baseline blood pressure was in the prehypertensive or stage I hypertension range. Follow-up of vital status and cause of death over a maximum of 18.8 years was determined from the National Death Index. Survival analysis was used to compare intervention groups on mortality rates after adjusting for study location. Mean follow-up was 7.6 +/- 3.5 years. Compared with combined controls, the TM group showed a 23% decrease in the primary outcome of all-cause mortality after maximum follow-up (relative risk 0.77, p = 0.039). Secondary analyses showed a 30% decrease in the rate of cardiovascular mortality (relative risk 0.70, p = 0.045) and a 49% decrease in the rate of mortality due to cancer (relative risk 0.49, p = 0.16) in the TM group compared with combined controls. These results suggest that a specific stress-decreasing approach used in the prevention and control of high blood pressure, such as the TM program, may contribute to decreased mortality from all causes and cardiovascular disease in older subjects who have systemic hypertension.

  12. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    PubMed

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.

  13. Long-term under-masculinization in male rabbits due to maternal stress is reversed by prenatal administration of testosterone.

    PubMed

    Bánszegi, Oxána; Szenczi, Péter; Dúcs, Anita; Hudson, Robyn; Altbäcker, Vilmos

    2015-06-01

    It is well established that in mammals prenatal exposure to exogenous testosterone has a masculinizing effect on female morphology and behavior. Fewer studies, however, have been conducted in males on this subject, and the results are controversial. In the present study, we investigated the long-term effect of administering extra prenatal testosterone (testosterone proprionate; TP) on adult male domestic rabbits' morphology and behavior using two different control groups, non-treated and vehicle injected mothers. Unexpectedly, administering the vehicle alone had a clear under-masculinizing effect on all morphological and behavioral measures; lower body mass, smaller anogenital distance and smaller chin glands, lower chin-marking activity and greater timidity. Administration of TP counteracted this effect in a dose-dependent manner such that animals exposed to the highest dose prenatally showed values on the morphological and behavioral measures equivalent to but not greater than the non-treated control group. We conclude (1) that additional testosterone beyond what male fetuses produce in utero does not result in increased masculinization, and thus, that male fetuses are less susceptible prenatally to hormonal effects than females, and (2) that presumably stress-related effects of administering the vehicle alone resulted in under-masculinization, which could be recovered by the prenatal administration of TP. These results may partly account for the contradictory findings of previous studies, and indicate the importance of including both non-treated and sham- (vehicle) treated controls in future experiments.

  14. An Investigation Into the Relationship Between Long-term Posttraumatic Stress Disorder Symptoms and Coping in Australian Volunteer Firefighters.

    PubMed

    Doley, Rebekah M; Bell, Ryan; Watt, Bruce D

    2016-07-01

    This study examined the relationship between coping style and long-term posttraumatic stress symptoms in an Australian sample of volunteer firefighters 84 months following a bushfire disaster. A total of 277 firefighters completed 4 questionnaires to assess patterns of psychiatric morbidity. A 2-way repeated-measures analysis of variance was conducted to investigate the effect of time and disorder on coping. Firefighters evidencing distress were more likely to use both problem- and emotion-focused methods of coping. Based on previous research, it was hypothesized that problem-focused coping strategies would be used after 84 months. The use of both problem- and emotion-focused coping may be due to the length of time following this disaster or unique characteristics of firefighters. These data suggest that present coping theories are not sufficient to account for the onset and pattern of psychiatric morbidity within a firefighter sample. The authors declare no conflicts of interest including financial, consultant, institutional, and other relationships that might lead to bias. PMID:27367600

  15. Evaluating a theory of stress and adjustment when predicting long-term psychosocial outcome after brain injury.

    PubMed

    Rutterford, Neil A; Wood, Rodger L

    2006-05-01

    Kendall and Terry (1996) include many psychosocial predictors in their theoretical model that explains individual differences in psychosocial adjustment (Lazarus & Folkman, 1984). The model depicts appraisal and coping variables as mediating relationships between situation factors, environmental and personal resources, and multidimensional outcome. The aim of this study was to explore these theoretical relationships at very late stages of recovery from traumatic brain injury. A total of 131 participants who were more than 10 years post-injury (mean = 15.31 years) completed several psychosocial measures relating to outcome dimensions comprising employment, community integration, life satisfaction, quality of life (QoL), and emotion. There was no evidence that appraisal and coping variables mediated relationships between psychosocial and any of the outcome variables. However, when appraisal and coping variables were combined with psychosocial variables as direct predictors of outcome, every outcome except employment status was reliably predicted, accounting for between 31 and 46% of the variance. Personality significantly influenced all predicted outcomes. Self-efficacy contributed to the prediction of all outcomes except QoL. Data did not support for the theory of stress and adjustment as a framework for explaining the nature of predictive relationships between psychosocial variables and very long-term, multidimensional outcome after brain injury.

  16. The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China.

    PubMed

    Feng, Xiaoming; Cheng, Wei; Fu, Bojie; Lü, Yihe

    2016-11-15

    Human intervention has strongly altered patterns of river runoff. Yet, few studies have addressed the complexity and nonlinearity of the anthropogenic stresses on runoff or their interaction with climate. We study the Loess Plateau in China, whose river runoff contributes 65% of the discharge to the middle reach of the Yellow River; this landscape has been shaped by human activity and is intensively managed. Our purpose is to characterize the interactive roles of climate and human activities in defining river runoff from the Loess Plateau. Applying a transient analysis to discover the time-varying runoff trend and impact factors, we found that the average runoff in the Loess Plateau decreased continuously during the period 1961-2009 (average rate of -0.9mmyear(-1), P<0.001). This long-term decrease in runoff mainly occurred in three stages, with transitions in 1970, 1981 and 1996. Reduced precipitation was the main reason for the decrease in runoff over the entire study period. However, human intervention played a dominant role in creating the transition points. Water yield (i.e., the ratio of runoff to precipitation) decreased following each anthropogenic transition, causing a 56% reduction in available freshwater resources during the period 1961-2009. These findings highlight the need for studies that address the dynamic and nonlinear processes controlling the availability of freshwater resources in the light of anthropogenic influences applied under a changing climate. Such studies are essential if we are to meet the human water demand in the Loess Plateau region.

  17. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.

    PubMed

    Li, Lin-Mei; Wang, Wei; Zhang, Shu-Hui; Chen, Shi-Jing; Guo, Shi-Shang; Français, Olivier; Cheng, Jie-Ke; Huang, Wei-Hua

    2011-12-15

    Electrochemical techniques based on ultramicroelectrodes (UMEs) play a significant role in real-time monitoring of chemical messengers' release from single cells. Conversely, precise monitoring of cells in vitro strongly depends on the adequate construction of cellular physiological microenvironment. In this paper, we developed a multilayer microdevice which integrated high aspect ratio poly(dimethylsiloxane) (PDMS) microfluidic device for long-term automated perfusion culture of cells without shear stress and an independently addressable microelectrodes array (IAMEA) for electrochemical monitoring of the cultured cells in real time. Novel design using high aspect ratio between circular "moat" and ring-shaped micropillar array surrounding cell culture chamber combined with automated "circular-centre" and "bottom-up" perfusion model successfully provided continuous fresh medium and a stable and uniform microenvironment for cells. Two weeks automated culture of human umbilical endothelial cell line (ECV304) and neuronal differentiation of rat pheochromocytoma (PC12) cells have been realized using this device. Furthermore, the quantal release of dopamine from individual PC12 cells during their culture or propagation process was amperometrically monitored in real time. The multifunctional microdevice developed in this paper integrated cellular microenvironment construction and real-time monitoring of cells during their physiological process, and would possibly provide a versatile platform for cell-based biomedical analysis.

  18. Long-Term (>10 Years) Prognostic Value of Dobutamine Stress Echocardiography in a High-Risk Cohort.

    PubMed

    van der Sijde, Johannes N; Boiten, Henk J; van Domburg, Ron T; Schinkel, Arend F L

    2016-04-01

    The prognostic value of dobutamine stress echocardiography (DSE) at >10-year follow-up is unknown. The aim of this study was to assess the very long-term prognostic value of DSE in a high-risk cohort of patients with known or suspected coronary artery disease. This prospective, single-center study included 3,381 patients who underwent DSE from January 1990 to January 2003. Two-dimensional echocardiographic images were acquired at rest, during dobutamine stress, and during recovery. Follow-up events were collected and included overall mortality, cardiac death, nonfatal myocardial infarction, and revascularization. The incremental value of DSE in the prediction of selected end points was evaluated using multivariate Cox proportional hazard analysis. During a mean follow-up of 13 ± 3.2 years (range 7.3 to 20.5 years), there were 1,725 deaths (51%), of which 1,128 (33%) were attributed to cardiac causes. Patients with an abnormal DSE had a higher mortality rate (44% vs 35% at 15-year follow-up, p <0.001) than those with a normal DSE. When comparing echocardiographic variables at rest to variables at maximum dose dobutamine, the chi-square of the test improved from 842 to 870 (p <0.0001) and from 684 to 740 (p <0.0001) for all-cause mortality and cardiac death, respectively. DSE provided incremental value in predicting all-cause mortality, cardiac death, and hard cardiac events. There seems, however, to be a "warranty period" of approximately 7 years, when the survival curves of a normal and abnormal DSE no longer diverge.

  19. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood

    PubMed Central

    Li, Na; Wang, Yumei; Zhao, Xiaochuan; Gao, Yuanyuan; Song, Mei; Yu, Lulu; Wang, Lan; Li, Ning; Chen, Qianqian; Li, Yunpeng; Cai, Jiajia; Wang, Xueyi

    2015-01-01

    Objective The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. Methods A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3–12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. Results The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. Conclusion Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood. PMID:26648728

  20. Acute Stress, But not Corticosterone, Disrupts Short- and Long-Term Synaptic Plasticity in Rat Dorsal Subiculum Via Glucocorticoid Receptor Activation

    PubMed Central

    MacDougall, Matthew J.; Howland, John G.

    2015-01-01

    The subiculum (SUB) serves as the major output structure of the hippocampus; therefore, exploring synaptic plasticity within this region is of great importance for understanding the dynamics of hippocampal circuitry and hippocampal–cortical interactions. Previous research has shown exposure to acute stress dramatically alters synaptic plasticity within the hippocampus proper. Using in vivo electrophysiological recordings in urethane-anesthetized adult male Sprague–Dawley rats, we tested the effects of either acute restraint stress (30 min) or corticosterone (CORT) injections (3 mg/kg; s.c.) on short- and long-term forms of synaptic plasticity in the Cornu Ammonis 1–SUB pathway. Paired-pulse facilitation and two forms of long-term plasticity (long-term potentiation and late-developing potentiation) were significantly reduced after exposure to acute stress but not CORT treatment. Measurements of plasma CORT confirmed similar levels of circulating hormone in animals exposed to either acute stress or CORT treatment. The disruptive effects of acute stress on both short- and long-term forms of synaptic plasticity are mediated by glucocorticoid receptor (GR) activation as these disruptions were blocked by pre-treatment with the selective GR antagonist RU38486 (10 mg/kg; s.c.). The present results highlight the susceptibility of subicular plasticity to acute stress and provide evidence that GR activation is necessary but not sufficient for mediating these alterations. PMID:22918985

  1. Long-Term Maternal Stress and Post-traumatic Stress Symptoms Related to Developmental Outcome of Extremely Premature Infants.

    PubMed

    Zerach, Gadi; Elsayag, Adi; Shefer, Shahar; Gabis, Lidia

    2015-08-01

    In this study, we examined the relations between the severity of developmental outcomes of extremely low birth weight (ELBW) children and their mothers' stress and post-traumatic stress disorder (PTSD) symptoms, 4-16 years after birth. Israeli mothers (N = 78) of a cohort of extremely premature infants (24-27 weeks) born 4-16 years earlier were asked to report about the medical and developmental condition of their child and their current perceived stress and PTSD symptoms. Results show that mothers of ELBW children with normal development reported the lowest perceived stress compared with mothers of ELBW children with developmental difficulties. We also found that 25.6% of the mothers had the potential to suffer from PTSD following the birth of an ELBW child. Furthermore, the severity of prematurity developmental outcomes made a significant contribution to mothers' perceived stress. To sum, mothers of ELBW infants' perceived stress is related to their children's severity of prematurity developmental outcomes, 4-16 years after birth. Clinical implications of these findings are discussed.

  2. Long-Term Care

    MedlinePlus

    ... this page please turn Javascript on. Long-Term Care What Is Long-Term Care? Long-term care involves a variety of services ... the Escape (Esc) button on your keyboard.) Most Care Provided at Home Long-term care is provided ...

  3. Acute and long-term behavioral correlates of underwater trauma--potential relevance to stress and post-stress syndromes.

    PubMed

    Richter-Levin, G

    1998-06-01

    As a consequence of a brief but significantly extreme stressor, an individual will experience a stress response, which may sometimes develop into Acute Stress Disorder (ASD) or Post-Traumatic Stress Disorder (PTSD). Though a rat model for ASD and PTSD is not expected to encompass the richness and complexity of the disorders in humans, it will enable the study of the common underlying mechanisms that generate the disorders, the study of pre-trauma etiological aspects of the disorders and the screening of drugs with potential relevance to the treatment of the disorders. One well-documented aspect of PTSD is the enhancing influence of contextual elements on the appearance of symptoms of the post-stress trauma. To exploit this effect, we have chosen to assess the effects of an underwater trauma in the Morris water maze since the effects of such trauma on memory and attention can be later evaluated in the context of the trauma. At both 1 h and 3 weeks after the trauma, significant behavioral deficits were observed in the water maze. The effects of the underwater trauma on the performance of rats in the water maze were context specific. Underwater trauma in a different (out-of-context) water container had no effects on the ability of rats to perform a spatial memory task in the water maze. An elevated level of anxiety was found in the plus maze test, independently of whether the trauma was performed in the water maze or in a different (out-of-context) water container. The results indicate that a within-context underwater trauma has both acute and lasting behavioral consequences which can be assessed using a spatial memory test in the context of the trauma. The results are discussed in relation to their relevance to stress and PTSD.

  4. The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China.

    PubMed

    Feng, Xiaoming; Cheng, Wei; Fu, Bojie; Lü, Yihe

    2016-11-15

    Human intervention has strongly altered patterns of river runoff. Yet, few studies have addressed the complexity and nonlinearity of the anthropogenic stresses on runoff or their interaction with climate. We study the Loess Plateau in China, whose river runoff contributes 65% of the discharge to the middle reach of the Yellow River; this landscape has been shaped by human activity and is intensively managed. Our purpose is to characterize the interactive roles of climate and human activities in defining river runoff from the Loess Plateau. Applying a transient analysis to discover the time-varying runoff trend and impact factors, we found that the average runoff in the Loess Plateau decreased continuously during the period 1961-2009 (average rate of -0.9mmyear(-1), P<0.001). This long-term decrease in runoff mainly occurred in three stages, with transitions in 1970, 1981 and 1996. Reduced precipitation was the main reason for the decrease in runoff over the entire study period. However, human intervention played a dominant role in creating the transition points. Water yield (i.e., the ratio of runoff to precipitation) decreased following each anthropogenic transition, causing a 56% reduction in available freshwater resources during the period 1961-2009. These findings highlight the need for studies that address the dynamic and nonlinear processes controlling the availability of freshwater resources in the light of anthropogenic influences applied under a changing climate. Such studies are essential if we are to meet the human water demand in the Loess Plateau region. PMID:27422727

  5. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation.

    PubMed

    Ameziane-El-Hassani, Rabii; Talbot, Monique; de Souza Dos Santos, Maria Carolina; Al Ghuzlan, Abir; Hartl, Dana; Bidart, Jean-Michel; De Deken, Xavier; Miot, Françoise; Diallo, Ibrahima; de Vathaire, Florent; Schlumberger, Martin; Dupuy, Corinne

    2015-04-21

    Ionizing radiation (IR) causes not only acute tissue damage, but also late effects in several cell generations after the initial exposure. The thyroid gland is one of the most sensitive organs to the carcinogenic effects of IR, and we have recently highlighted that an oxidative stress is responsible for the chromosomal rearrangements found in radio-induced papillary thyroid carcinoma. Using both a human thyroid cell line and primary thyrocytes, we investigated the mechanism by which IR induces the generation of reactive oxygen species (ROS) several days after irradiation. We focused on NADPH oxidases, which are specialized ROS-generating enzymes known as NOX/DUOX. Our results show that IR induces delayed NADPH oxidase DUOX1-dependent H2O2 production in a dose-dependent manner, which is sustained for several days. We report that p38 MAPK, activated after IR, increased DUOX1 via IL-13 expression, leading to persistent DNA damage and growth arrest. Pretreatment of cells with catalase, a scavenger of H2O2, or DUOX1 down-regulation by siRNA abrogated IR-induced DNA damage. Analysis of human thyroid tissues showed that DUOX1 is elevated not only in human radio-induced thyroid tumors, but also in sporadic thyroid tumors. Taken together, our data reveal a key role of DUOX1-dependent H2O2 production in long-term persistent radio-induced DNA damage. Our data also show that DUOX1-dependent H2O2 production, which induces DNA double-strand breaks, can cause genomic instability and promote the generation of neoplastic cells through its mutagenic effect. PMID:25848056

  6. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation

    PubMed Central

    Ameziane-El-Hassani, Rabii; Talbot, Monique; de Souza Dos Santos, Maria Carolina; Al Ghuzlan, Abir; Hartl, Dana; Bidart, Jean-Michel; De Deken, Xavier; Miot, Françoise; Diallo, Ibrahima; de Vathaire, Florent; Schlumberger, Martin; Dupuy, Corinne

    2015-01-01

    Ionizing radiation (IR) causes not only acute tissue damage, but also late effects in several cell generations after the initial exposure. The thyroid gland is one of the most sensitive organs to the carcinogenic effects of IR, and we have recently highlighted that an oxidative stress is responsible for the chromosomal rearrangements found in radio-induced papillary thyroid carcinoma. Using both a human thyroid cell line and primary thyrocytes, we investigated the mechanism by which IR induces the generation of reactive oxygen species (ROS) several days after irradiation. We focused on NADPH oxidases, which are specialized ROS-generating enzymes known as NOX/DUOX. Our results show that IR induces delayed NADPH oxidase DUOX1-dependent H2O2 production in a dose-dependent manner, which is sustained for several days. We report that p38 MAPK, activated after IR, increased DUOX1 via IL-13 expression, leading to persistent DNA damage and growth arrest. Pretreatment of cells with catalase, a scavenger of H2O2, or DUOX1 down-regulation by siRNA abrogated IR-induced DNA damage. Analysis of human thyroid tissues showed that DUOX1 is elevated not only in human radio-induced thyroid tumors, but also in sporadic thyroid tumors. Taken together, our data reveal a key role of DUOX1-dependent H2O2 production in long-term persistent radio-induced DNA damage. Our data also show that DUOX1-dependent H2O2 production, which induces DNA double-strand breaks, can cause genomic instability and promote the generation of neoplastic cells through its mutagenic effect. PMID:25848056

  7. Gender differences in the long-term effects of chronic prenatal stress on the HPA axis and hypothalamic structure in rats.

    PubMed

    García-Cáceres, Cristina; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Diz-Chaves, Yolanda; García-Segura, Luis M; Baquedano, Eva; Frago, Laura M; Argente, Jesús; Chowen, Julie A

    2010-11-01

    Stress during pregnancy can impair biological and behavioral responses in the adult offspring and some of these effects are associated with structural changes in specific brain regions. Furthermore, these outcomes can vary according to strain, gender, and type and duration of the maternal stress. Indeed, early stress can induce sexually dimorphic long-term effects on diverse endocrine axes, including subsequent responses to stress. However, whether hypothalamic structural modifications are associated with these endocrine disruptions has not been reported. Thus, we examined the gender differences in the long-term effects of prenatal and adult immobilization stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and the associated changes in hypothalamic structural proteins. Pregnant Wistar rats were subjected to immobilization stress three times daily (45 min each) during the last week of gestation. One half of the offspring were subjected to the same regimen of stress on 10 consecutive days starting at postnatal day (PND) 90. At sacrifice (PND 180), serum corticosterone levels were significantly higher in females compared to males and increased significantly in females subjected to both stresses with no change in males. Prenatal stress increased pituitary ACTH content in males, with no effect in females. Hypothalamic CRH mRNA levels were significantly increased by prenatal stress in females, but decreased in male rats. In females neither stress affected hypothalamic cell death, as determined by cytoplasmic histone-associated DNA fragment levels or proliferation, determined by proliferating cell nuclear antigen levels (PCNA); however, in males there was a significant decrease in cell death in response to prenatal stress and a decrease in PCNA levels with both prenatal and adult stress. In all groups BrdU immunoreactivity colocalized in glial fibrillary acidic protein (GFAP) positive cells, with few BrdU/NeuN labelled cells found. Furthermore, in males the

  8. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine

    PubMed Central

    Tombesi, Sergio; Nardini, Andrea; Frioni, Tommaso; Soccolini, Marta; Zadra, Claudia; Farinelli, Daniela; Poni, Stefano; Palliotti, Alberto

    2015-01-01

    Water saving under drought stress is assured by stomatal closure driven by active (ABA-mediated) and/or passive (hydraulic-mediated) mechanisms. There is currently no comprehensive model nor any general consensus about the actual contribution and relative importance of each of the above factors in modulating stomatal closure in planta. In the present study, we assessed the contribution of passive (hydraulic) vs active (ABA mediated) mechanisms of stomatal closure in V. vinifera plants facing drought stress. Leaf gas exchange decreased progressively to zero during drought, and embolism-induced loss of hydraulic conductance in petioles peaked to ~50% in correspondence with strong daily limitation of stomatal conductance. Foliar ABA significantly increased only after complete stomatal closure had already occurred. Rewatering plants after complete stomatal closure and after foliar ABA reached maximum values did not induced stomatal re-opening, despite embolism recovery and water potential rise. Our data suggest that in grapevine stomatal conductance is primarily regulated by passive hydraulic mechanisms. Foliar ABA apparently limits leaf gas exchange over long-term, also preventing recovery of stomatal aperture upon rewatering, suggesting the occurrence of a mechanism of long-term down-regulation of transpiration to favor embolism repair and preserve water under conditions of fluctuating water availability and repeated drought events. PMID:26207993

  9. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats.

    PubMed

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-07-28

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals.

  10. Adaptive strategies against drought stress of six plant species with different growth forms from karst habitats of southwestern China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Guo, K.; Liu, Y.

    2012-04-01

    Frequent temporary drought in the rain season, as well as long-term drought in the dry season, is one of the most important factors limiting the survival and growth of plants in the harsh karst habitats of southwestern China. The morphological and physiological responses to drought stress of six native woody plant species were investigated under both temporary and prolonged drought stress. The six plant species included Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes and Pteroceltis tatarinowii. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity and larger percent biomass increase than the most of the trees, owing to their lower specific leaf area, higher intrinsic water use efficiency and thermal dissipation, and higher capacities of osmotic adjustment and antioxidant protection. The evergreen tree, C. bodinieri, exhibited small decrease of water potential and maintained higher leaf mass ratio (LMR) and LAR than the deciduous species under moderate drought stress, due to the high proline accumulation and high activities of antioxidant enzymes. However, it showed high levels of cellular damages, very low photosynthetic capacity, and sharp decreases of water potential and biomass under severe drought stress. After rewatering, C. bodinieri showed a lower ability to recover from severe drought with the successive repeats of severe drought event. The three deciduous trees developed high root mass ratio for maximizing water uptake, and showed higher LAR and biomass than the two shrubs under well-watered condition. However, drought stress resulted in sharp decreases of biomass in the three deciduous trees, which were attributed to the large drought-induced decreases of LMR, LAR and gas exchange. Under drought conditions, the deciduous trees

  11. The Effect of Long-Term Thermal Exposure on the Microstructure and Stress Rupture Property of a Directionally Solidified Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Jiang, X. W.; Wang, D.; Xie, G.; Li, H.; Lou, L. H.; Zhang, J.

    2014-12-01

    Microstructural degradation and microstructure-property relationship during long-term thermal exposure in a directionally solidified Ni-based superalloy are systematically studied. The coarsening kinetics of γ' precipitation conforms well to the LSW model during the long-term thermal exposure. The detailed time dependence of MC decomposition during the long-term thermal exposure is revealed. Grain boundary coarsening was mainly facilitated by γ' and M23C6 precipitates coarsening in GBs region, and the GB coarsening kinetics conforms well to the JMAK theory. During different stages of the thermal exposure, dominant factors for the decrease of stress-rupture lifetime vary due to the evolution of multiple microstructures ( γ' coarsening, MC decomposition, and grain boundary coarsening).

  12. Long-term multi-proxy records of aridity in the northern plains, USA, with special emphasis on fire response to drought cycles

    NASA Astrophysics Data System (ADS)

    Brown, K.; Clark, J.; Grimm, E.; Donovan, J.; Mueller, P.

    2003-04-01

    Extensive drought has periodically gripped large regions of the United States in the past. The ``Dust Bowl" of the 1930's in the central plains is perhaps one of the most vivid examples of prolonged drought, climatic extremes, dust storms, crop failure and general human hardship. The impact of future drought conditions potentiated by greenhouse gas emissions may indeed exceed the devastation wrought during historical droughts and thus mandates examination of past drought variability. Of particular interest is the response of landscapes and aquatic systems to extended periods of aridity during previous warm intervals. Preliminary results by Clark et al. (2002, Ecology) show that in contrast to the decade-long drought of the 1930's, 100- to 130-year drought cycles persisted during the arid middle-Holocene in the northern plains. Changes in vegetation composition and surficial landscape processes record the drought-cycles. A decline in grasses and fire and an increase in forb vegetation and erosion occurred during the dry phases. To further the study of past drought variability, two long cores from Kettle and Brush lakes were collected from the northern plains and continuously subsampled for multiply proxies (pollen, charcoal, x-ray diffraction, carbon isotopes) at high resolution to be used for paleoenvironmental reconstruction. One cm^3 subsamples were removed from the cores and sieved at 180 mm resolution for charcoal analyses. Charcoal area measurements were made using optical microscopy and image analysis. Charcoal concentrations ranged from 0--11.52 mm^2/cm^3 in the uppermost core section from Kettle Lake. Intervals of both low and high charcoal concentration are noted in the upper core, suggesting a variable fire history, likely in response to changes in moisture and/or landuse. Down core data currently being collected and charcoal flux values will also be presented.

  13. Immediate recall influences the effects of pre-encoding stress on emotional episodic long-term memory consolidation in healthy young men.

    PubMed

    Wolf, Oliver T

    2012-05-01

    The stress-associated activation of the hypothalamus-pituitary-adrenal axis influences memory. Several studies have supported the notion that post-learning stress enhances memory consolidation, while pre-retrieval stress impairs retrieval. Findings regarding the effects of pre-encoding stress, in contrast, have been rather inconsistent. In the current two studies, the impact of an immediate retrieval task on these effects was explored. In the first study, 24 healthy young male participants were exposed to a psychosocial laboratory stressor (Trier Social Stress Test) or a control condition before viewing positive, negative, and neutral photographs, which were accompanied by a brief narrative. Immediate as well as delayed (24 h later) free recall was assessed. Stress was expected to enhance emotional long-term memory without affecting immediate recall performance. Stress caused a significant increase in salivary cortisol concentrations but had no significant effects on immediate or delayed retrieval performance, even though a trend toward poorer memory of the stress group was apparent. Based on these findings, the second experiment tested the hypothesis that the beneficial effects of stress on emotional long-term memory performance might be abolished by an immediate recall test. In the second study (n = 32), the same design was used, except for the omission of the immediate retrieval test. This time stressed participants recalled significantly more negative photographs compared to the control group. The present study indicates that an immediate retrieval attempt of material studied after stress exposure can prevent or even reverse the beneficial effects of pre-encoding stress on emotional long-term memory consolidation.

  14. Differences in the Responses of Photosystems I and II in Cymbidium sinense and C. tracyanum to Long-Term Chilling Stress

    PubMed Central

    Li, Jia-Wei; Zhang, Shi-Bao

    2016-01-01

    The susceptibility of photosystem I (PSI) and photosystem II (PSII) to chilling stress depends on plant species, and cyclic electron flow (CEF) plays an important role in photoprotection for some species under short stress periods. However, little is known about the responses of PSI and PSII to long-term chilling stress. We studied two orchid species—Cymbidium sinense and C. tracyanum— that differ in their capacity to adapt to low temperature, and exposed plants for 19 d to stress conditions that included 4°C and a light intensity of 250 to 350 μmol photons m-2 s-1. Meanwhile, we investigated their dynamic variations in Chl fluorescence and P700 parameters. After exposure to 4°C and 250 μmol photons m-2 s-1 for 6 h, PSI activity was maintained stable in both species, but stronger PSII photoinhibition was observed in C. sinense. During the long-term treatment, the maximum quantum yield of PSII was significantly reduced, with that decrease being greater in C. sinense. After 19 d of chilling treatment, the maximum photo-oxidizable P700 declined only slightly in C. tracyanum but dropped significantly in C. sinense. Linear electron flow was largely depressed during the long-term chilling treatment, especially in C. sinense. Meanwhile, C. tracyanum showed higher CEF activity than C. sinense. These results indicate that PSII is more sensitive to chilling-light stress than PSI in both species. The rate of PSII photodamage at chilling-light stress is higher in C. sinense than C. tracyanum, and CEF contributes to photoprotection for PSI and PSII under long-term chilling stress in C. tracyanum. PMID:26779201

  15. Daily cognitive appraisals, daily affect, and long-term depressive symptoms: the role of self-esteem and self-concept clarity in the stress process.

    PubMed

    Lee-Flynn, Sharon C; Pomaki, Georgia; Delongis, Anita; Biesanz, Jeremy C; Puterman, Eli

    2011-02-01

    The current study investigated how self-esteem and self-concept clarity are implicated in the stress process both in the short and long term. Initial and 2-year follow-up interviews were completed by 178 participants from stepfamily unions. In twice-daily structured diaries over 7 days, participants reported their main family stressor, cognitive appraisals (perceived stressor threat and stressor controllability), and negative affect. Results of multilevel modeling indicated that high self-esteem ameliorated the effect of daily negative cognitive appraisals on daily negative affect. Self-concept clarity also buffered the effect of low self-self-esteem on depressive symptoms 2 years later. Our findings point to the vulnerability of those having low self-esteem or low self-concept clarity in terms of both short- and long-term adaptation to stress. They indicate the need for the consideration of such individual differences in designing stress management interventions.

  16. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.

    2015-01-01

    Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188

  17. Chronic, long-term social stress can cause decreased microtubule protein network activity and dynamics in cerebral cortex of male Wistar rats.

    PubMed

    Eskandari Sedighi, Ghazaleh; Riazi, Gholam Hossein; Vaez Mahdavi, Mohammad Reza; Cheraghi, Tayebe; Atarod, Deyhim; Rafiei, Shahrbanoo

    2015-03-01

    Social stress is viewed as a factor in the etiology of a variety of psychopathologies such as depression and anxiety. Animal models of social stress are well developed and widely used in studying clinical and physiological effects of stress. Stress is known to significantly affect learning and memory, and this effect strongly depends on the type of stress, its intensity, and duration. It has been demonstrated that chronic and acute stress conditions can change neuronal plasticity, characterized by retraction of apical dendrites, reduction in axonogenesis, and decreased neurogenesis. Various behavioral studies have also confirmed a decrease in learning and memory upon exposure of animals to long-term chronic stress. On the other hand, the close relationship between microtubule (MT) protein network and neuroplasticity controlling system suggests the possibility of MT protein alterations in high stressful conditions. In this work, we have studied the kinetics, activity, and dynamicity changes of MT proteins in the cerebral cortex of male Wistar rats that were subjected to social instability for 35 and 100 days. Our results indicate that MT protein network dynamicity and polymerization ability is decreased under long-term (100 days) social stress conditions.

  18. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID

  19. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory.

  20. Effects of Relocation and Individual and Environmental Factors on the Long-Term Stress Levels in Captive Chimpanzees (Pan troglodytes): Monitoring Hair Cortisol and Behaviors.

    PubMed

    Yamanashi, Yumi; Teramoto, Migaku; Morimura, Naruki; Hirata, Satoshi; Inoue-Murayama, Miho; Idani, Gen'ichi

    2016-01-01

    Understanding the factors associated with the long-term stress levels of captive animals is important from the view of animal welfare. In this study, we investigated the effects of relocation in addition to individual and environmental factors related to social management on long-term stress level in group-living captive chimpanzees by examining behaviors and hair cortisol (HC). Specifically, we conducted two studies. The first compared changes in HC levels before and after the relocation of 8 chimpanzees (Study 1) and the second examined the relationship between individual and environmental factors and individual HC levels in 58 chimpanzees living in Kumamoto Sanctuary (KS), Kyoto University (Study 2). We hypothesized that relocation, social situation, sex, and early rearing conditions, would affect the HC levels of captive chimpanzees. We cut arm hair from chimpanzees and extracted and assayed cortisol with an enzyme immunoassay. Aggressive behaviors were recorded ad libitum by keepers using a daily behavior monitoring sheet developed for this study. The results of Study 1 indicate that HC levels increased during the first year after relocation to the new environment and then decreased during the second year. We observed individual differences in reactions to relocation and hypothesized that social factors may mediate these changes. In Study 2, we found that the standardized rate of receiving aggression, rearing history, sex, and group formation had a significant influence on mean HC levels. Relocation status was not a significant factor, but mean HC level was positively correlated with the rate of receiving aggression. Mean HC levels were higher in males than in females, and the association between aggressive interactions and HC levels differed by sex. These results suggest that, although relocation can affect long-term stress level, individuals' experiences of aggression and sex may be more important contributors to long-term stress than relocation alone. PMID

  1. Effects of Relocation and Individual and Environmental Factors on the Long-Term Stress Levels in Captive Chimpanzees (Pan troglodytes): Monitoring Hair Cortisol and Behaviors

    PubMed Central

    Yamanashi, Yumi; Teramoto, Migaku; Morimura, Naruki; Hirata, Satoshi; Inoue-Murayama, Miho; Idani, Gen'ichi

    2016-01-01

    Understanding the factors associated with the long-term stress levels of captive animals is important from the view of animal welfare. In this study, we investigated the effects of relocation in addition to individual and environmental factors related to social management on long-term stress level in group-living captive chimpanzees by examining behaviors and hair cortisol (HC). Specifically, we conducted two studies. The first compared changes in HC levels before and after the relocation of 8 chimpanzees (Study 1) and the second examined the relationship between individual and environmental factors and individual HC levels in 58 chimpanzees living in Kumamoto Sanctuary (KS), Kyoto University (Study 2). We hypothesized that relocation, social situation, sex, and early rearing conditions, would affect the HC levels of captive chimpanzees. We cut arm hair from chimpanzees and extracted and assayed cortisol with an enzyme immunoassay. Aggressive behaviors were recorded ad libitum by keepers using a daily behavior monitoring sheet developed for this study. The results of Study 1 indicate that HC levels increased during the first year after relocation to the new environment and then decreased during the second year. We observed individual differences in reactions to relocation and hypothesized that social factors may mediate these changes. In Study 2, we found that the standardized rate of receiving aggression, rearing history, sex, and group formation had a significant influence on mean HC levels. Relocation status was not a significant factor, but mean HC level was positively correlated with the rate of receiving aggression. Mean HC levels were higher in males than in females, and the association between aggressive interactions and HC levels differed by sex. These results suggest that, although relocation can affect long-term stress level, individuals’ experiences of aggression and sex may be more important contributors to long-term stress than relocation alone

  2. Chronic unpredictable stress and long-term ovariectomy affect arginine-vasopressin expression in the paraventricular nucleus of adult female mice.

    PubMed

    Grassi, D; Lagunas, N; Calmarza-Font, I; Diz-Chaves, Y; Garcia-Segura, L M; Panzica, G C

    2014-11-01

    Arginine-Vasopressin (AVP) may regulate the hypothalamic-pituitary-adrenal axis (HPA) and its effects on depressive responses. In a recent study, we demonstrated that Chronic Unpredictable Stress (CUS) depressive effects are enhanced by long-term ovariectomy (a model of post-menopause). In the present study, we investigated the effects of long-term ovariectomy and CUS on AVP expression in different subdivision of the paraventricular nucleus (PVN) of female mice. Both long-term ovariectomy and CUS affect AVP immunoreactivity in some of the PVN subnuclei of adult female mice. In particular, significant changes on AVP immunoreactivity were observed in magnocellular subdivisions, the paraventricular lateral magnocellular (PaLM) and the paraventricular medial magnocellular (PaMM), the 2 subnuclei projecting to the neurohypophysis for the hormonal regulation of body homeostasis. AVP immunoreactivity was decreased in the PaLM by both the long-term deprivation of ovarian hormones and the CUS. In contrast, AVP immunoreactivity was increased in the PaMM by CUS, whereas it was decreased by ovariectomy. Therefore, present results suggest morphological and functional differences among the PVN's subnuclei and complex interactions among CUS, gonadal hormones and AVP immunoreactivity.

  3. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus.

    PubMed

    Whitehead, Garry; Jo, Jihoon; Hogg, Ellen L; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L; Kim, Kyungjin; Whitcomb, Daniel J; Collingridge, Graham L; Lightman, Stafford L; Cho, Kwangwook

    2013-12-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+ -permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.

  4. Ocimum sanctum leaf extract induces drought stress tolerance in rice.

    PubMed

    Pandey, Veena; Ansari, M W; Tula, Suresh; Sahoo, R K; Bains, Gurdeep; Kumar, J; Tuteja, Narendra; Shukla, Alok

    2016-05-01

    Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner. PMID:26890603

  5. Microstructural Changes in Inconel® 740 After Long-Term Aging in the Presence and Absence of Stress

    DOE PAGES

    Unocic, Kinga A.; Shingledecker, John Paul; Tortorelli, Peter F.

    2014-11-18

    The Ni-based alloy, Inconel® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this study, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented. Themore » primary focus was on the development of the eta η (Ni3Ti) phase and coarsening of coherent γ'-Ni3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. Finally, however, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.« less

  6. Long-term effects of coping with extreme stress: longitudinal study of Vietnam-era repatriated prisoners of war.

    PubMed

    Kaiser, Anica Pless; Park, Crystal L; King, Lynda A; King, Daniel W; Schuster, Jennifer; Spiro, Avron; Moore, Jeffrey L; Kaloupek, Danny G; Keane, Terence M

    2011-12-01

    Captivity stressors and coping strategies were assessed shortly after the repatriation of Vietnam-era prisoners of war, and physical and mental health were assessed almost three decades later. Given research on coping goodness-of-fit, specifically the extent to which coping effects depend on situational controllability, we proposed that endorsement of the usefulness of avoidance-based strategies in captivity would be predictive of better later-life health. Findings indicated that approach-based and avoidance-based coping both moderated the link between physical torture and later physical health functional status, whereas approach-based coping moderated the link between injuries at capture and later mental health. Specifically, greater endorsement of avoidance-based coping was associated with better long-term physical health for prisoners who experienced the most physical torture. Lower endorsement of approach-based coping was associated with better long-term mental health for prisoners who reported the most injuries at the time of capture.

  7. Microstructural Changes in Inconel 740 After Long-Term Aging in the Presence and Absence of Stress

    NASA Astrophysics Data System (ADS)

    Unocic, K. A.; Shingledecker, J. P.; Tortorelli, P. F.

    2014-12-01

    The Ni-based alloy, Inconel® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this paper, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented. The primary focus was on the development of the eta η (Ni3Ti) phase and coarsening of coherent γ'-Ni3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. However, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.

  8. In-situ investigation of the influence of the long-term shear strength of faults on the regional stress field in a granite rock mass

    NASA Astrophysics Data System (ADS)

    Figueiredo, Bruno; Cornet, Francois; Lamas, Luís; Muralha, José

    2016-04-01

    A case study is presented to show how stress field measurements may be used to assess the long-term rheological behaviour of an equivalent geo-material. The example concerns a granitic rock mass at the km3 scale, where an underground hydropower scheme including a new 10 km long power conduit and a powerhouse complex will be constructed. For design of the underground cavern and hydraulic pressure tunnel, several in situ stress measurements were carried out, using hydraulic borehole testing, overcoring and flat jack techniques. A first continuum mechanics model, with a homogenous material, was developed to integrate the several in situ test results and to assess the regional stress field. This model is based on elasticity and relaxation of the elastic properties measured through laboratory tests conducted on cores. Results of integration show that the long-term behavior of this granite rock mass differs markedly from the short-term behaviour as defined by laboratory tests. This suggests that the in-situ stress field depends mostly on the softer material that fills up the faults and hence results from the shear stress relaxation over a large number of pre-existing fractures and faults. A second continuum mechanics model, with consideration of two fault planes located nearby the hydraulic tests, was studied. This model is based on elasticity for the overall rock mass, with the elastic properties extracted from laboratory measurements, and visco-elasticity with small long-term shear strength for the two fault planes. Results show that the overall granite rock mass may be viewed as a combination of stiff elastic blocks separated by soft low strength material, leading to a fairly large scale homogeneous axisymmetrical stress field with vertical axis. Advantages and limitations of the two modelling approaches are discussed.

  9. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest.

    PubMed

    Peñuelas, J; Rico, L; Ogaya, R; Jump, A S; Terradas, J

    2012-07-01

    We explored the changes in richness, diversity and evenness of epiphytic (on the leaf surface) and endophytic (within leaf tissues) bacteria and fungi in the foliar phyllosphere of Quercus ilex, the dominant tree species of Mediterranean forests. Bacteria and fungi were assessed during ontogenic development of the leaves, from the wet spring to the dry summer season in control plots and in plots subjected to drought conditions mimicking those projected for future decades. Our aim was to monitor succession in microbiota during the colonisation of plant leaves and its response to climate change. Ontogeny and seasonality exerted a strong influence on richness and diversity of the microbial phyllosphere community, which decreased in summer in the whole leaf and increased in summer in the epiphytic phyllosphere. Drought precluded the decrease in whole leaf phyllosphere diversity and increased the rise in the epiphytic phyllosphere. Both whole leaf bacterial and fungal richness decreased with the decrease in physiological activity and productivity of the summer season in control trees. As expected, the richness of epiphytic bacteria and fungi increased in summer after increasing time of colonisation. Under summer dry conditions, there was a positive relationship between TRF (terminal restriction fragments) richness and drought, both for whole leaf and epiphytic phyllosphere, and especially for fungal communities. These results demonstrate that changes in climate are likely to significantly alter microbial abundance and composition of the phyllosphere. Given the diverse functions and large number of phyllospheric microbes, the potential functional implications of such community shifts warrant exploration. PMID:22289059

  10. Pre-learning stress differentially affects long-term memory for emotional words, depending on temporal proximity to the learning experience.

    PubMed

    Zoladz, Phillip R; Clark, Brianne; Warnecke, Ashlee; Smith, Lindsay; Tabar, Jennifer; Talbot, Jeffery N

    2011-07-01

    Stress exerts a profound, yet complex, influence on learning and memory and can enhance, impair or have no effect on these processes. Here, we have examined how the administration of stress at different times before learning affects long-term (24-hr) memory for neutral and emotional information. Participants submerged their dominant hand into a bath of ice cold water (Stress) or into a bath of warm water (No stress) for 3 min. Either immediately (Exp. 1) or 30 min (Exp. 2) after the water bath manipulation, participants were presented with a list of 30 words varying in emotional valence. The next day, participants' memory for the word list was assessed via free recall and recognition tests. In both experiments, stressed participants exhibited greater blood pressure, salivary cortisol levels, and subjective pain and stress ratings than non-stressed participants in response to the water bath manipulation. Stress applied immediately prior to learning (Exp. 1) enhanced the recognition of positive words, while stress applied 30 min prior to learning (Exp. 2) impaired free recall of negative words. Participants' recognition of positive words in Experiment 1 was positively associated with their heart rate responses to the water bath manipulation, while participants' free recall of negative words in Experiment 2 was negatively associated with their blood pressure and cortisol responses to the water bath manipulation. These findings indicate that the differential effects of pre-learning stress on long-term memory may depend on the temporal proximity of the stressor to the learning experience and the emotional nature of the to-be-learned information.

  11. Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress.

    PubMed

    Nieves, Manuel; Nieves-Cordones, Manuel; Poorter, Hendrik; Simón, Maria Dolores

    2011-01-01

    Plant growth response to salinity on a scale of years has not been studied in terms of growth analysis. To gain insights into this topic, 2-year-old Mediterranean Fan Palm (Chamaerops humilis L.) and Mexican Fan Palm (Washingtonia robusta H. Wendl) seedlings, each with its own distinct plant morphology, were grown for 2 years in a peat soil and irrigated with water of 2 dS m(-1) (control) or 8 dS m(-1) (saline). Plants were harvested on seven occasions and the time trends in relative growth rate (RGR, the rate of increase of biomass per unit of biomass already existing) and its components were analysed. In the long term, salinity produced a slight reduction in the mean RGR, values in both species. In the short term, salinity caused a reduction in RGR. However, during the second year, plants irrigated with 8 dS m(-1) grew somewhat more quickly than the control plants, probably as a result of delay in the growth kinetics due to salinity. Regarding RGR components, leaf nitrogen productivity (the rate of biomass gain per unit leaf N and time) was the major factor causing the differences in RGR resulting from salinity. Washingtonia robusta showed a relatively high plasticity in plant morphology by increasing root and decreasing stem biomass allocation in the presence of salinity. However, the long-term response of W. robusta to salinity, based to a great extent, on this morphological plasticity, was less effective than that of C. humilis, which is based mainly on the contribution of leaf N to RGR values.

  12. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female african elephants.

    PubMed

    Gobush, K S; Mutayoba, B M; Wasser, S K

    2008-12-01

    Widespread poaching prior to the 1989 ivory ban greatly altered the demographic structure of matrilineal African elephant (Loxodonta africana) family groups in many populations by decreasing the number of old, adult females. We assessed the long-term impacts of poaching by investigating genetic, physiological, and reproductive correlates of a disturbed social structure resulting from heavy poaching of an African elephant population in Mikumi National Park, Tanzania, prior to 1989. We examined fecal glucocorticoid levels and reproductive output among 218 adult female elephants from 109 groups differing in size, age structure, and average genetic relatedness over 25 months from 2003 to 2005. The distribution in group size has changed little since 1989, but the number of families with tusked old matriarchs has increased by 14.2%. Females from groups that lacked an old matriarch, first-order adult relatives, and strong social bonds had significantly higher fecal glucocorticoid values than those from groups with these features (all females R(2)= 0.31; females in multiadult groups R(2)= 0.46). Females that frequented isolated areas with historically high poaching risk had higher fecal glucocorticoid values than those in low poaching risk areas. Females with weak bonds and low group relatedness had significantly lower reproductive output (R(2)[U]=0.21). Females from disrupted groups, defined as having observed average group relatedness 1 SD below the expected mean for a simulated unpoached family, had significantly lower reproductive output than females from intact groups, despite many being in their reproductive prime. These results suggest that long-term negative impacts from poaching of old, related matriarchs have persisted among adult female elephants 1.5 decades after the 1989 ivory ban was implemented.

  13. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female african elephants.

    PubMed

    Gobush, K S; Mutayoba, B M; Wasser, S K

    2008-12-01

    Widespread poaching prior to the 1989 ivory ban greatly altered the demographic structure of matrilineal African elephant (Loxodonta africana) family groups in many populations by decreasing the number of old, adult females. We assessed the long-term impacts of poaching by investigating genetic, physiological, and reproductive correlates of a disturbed social structure resulting from heavy poaching of an African elephant population in Mikumi National Park, Tanzania, prior to 1989. We examined fecal glucocorticoid levels and reproductive output among 218 adult female elephants from 109 groups differing in size, age structure, and average genetic relatedness over 25 months from 2003 to 2005. The distribution in group size has changed little since 1989, but the number of families with tusked old matriarchs has increased by 14.2%. Females from groups that lacked an old matriarch, first-order adult relatives, and strong social bonds had significantly higher fecal glucocorticoid values than those from groups with these features (all females R(2)= 0.31; females in multiadult groups R(2)= 0.46). Females that frequented isolated areas with historically high poaching risk had higher fecal glucocorticoid values than those in low poaching risk areas. Females with weak bonds and low group relatedness had significantly lower reproductive output (R(2)[U]=0.21). Females from disrupted groups, defined as having observed average group relatedness 1 SD below the expected mean for a simulated unpoached family, had significantly lower reproductive output than females from intact groups, despite many being in their reproductive prime. These results suggest that long-term negative impacts from poaching of old, related matriarchs have persisted among adult female elephants 1.5 decades after the 1989 ivory ban was implemented. PMID:18759771

  14. An Improvement of Oxidative Stress in Diabetic Rats by Ubiquinone-10 and Ubiquinol-10 and Bioavailability after Short- and Long-Term Coenzyme Q10 Supplementation.

    PubMed

    Prangthip, Pattaneeya; Kettawan, Aikkarach; Posuwan, Juthathip; Okuno, Masaaki; Okamoto, Tadashi

    2016-11-01

    This study explored effects of ubiquinol-10 and ubiquinone-10, two different forms of coenzyme Q10, in diabetic rats. Oxidative stress is characterized by the depletion of antioxidant defenses and overproduction of free radicals that might contribute to, and even accelerate, the development of diabetes mellitus (DM) complications. Coenzyme Q10 was administered orally to diabetic rats and oxidative stress markers were then assessed. Bioavailability in normal rats was additionally assessed in various tissues and subcellular fractions after short-term and long-term coenzyme Q10 supplementation. Elevated nonfasting blood glucose and blood pressure in diabetic rats were decreased by ubiquinone-10. Both ubiquinol-10 and ubiquinone-10 ameliorated oxidative stress, based on assays for reactive oxygen metabolites and malondialdehyde. Coenzyme Q10 levels increased with both treatments and liver nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme Q reductase with ubiquinone-10. Ubiquinol-10 was better absorbed in the liver and pancreas than ubiquinone-10, though both were similarly effective. In bioavailability study, a longer period of coenzyme Q10 supplementation did not lead to its accumulation in tissues or organelles. Both forms of coenzyme Q10 reduced oxidative stress in diabetic rats. Long-term supplementation of coenzyme Q10 appeared to be safe.

  15. Did a Stress Change due to a Long-Term Slow Slip Event in the Tokai Region Cause Distant Seismic Quiescence in the Tamba Region, Japan?

    NASA Astrophysics Data System (ADS)

    Sugaya, K.; Hiramatsu, Y.; Furumoto, M.; Katao, H.

    2008-12-01

    Seismic quiescence is useful information for the earthquake prediction. Relationships between seismicity rate change and stressing rate change have been reported by theoretical and observational studies (Dieterich, 1994; Toda et al., 2002). Recently, Ogata (2007) showed that a silent slip event might occur within the source region of an intraplate earthquake preceding the rupture from seismicity rate changes and GPS anomalies. The Tamba region in southwest Japan is located to the northeast of the rupture zone of the 1995 Hyogo-ken Nanbu Earthquake (Mjma 7.3). In the region, the seismicity was activated by a coseismic static stress change (+20kPa; Hiramatsu et al., 2000) due to the event. A distinct decrease in seismicity rate of microearthquakes was recognized in 2003 (Katao, 2005). Such a seismic quiescence had continued for two and a half years before the event (DPRI, 1999). It has, therefore, been controversial whether a major earthquake follows the quiescence or not (e.g., Umeda et al., 2005). We showed that the Tamba region was located in a region where Δ CFS decreased (-0.5kPa/yr) due to the long-term slow slip event (SSE) in the Tokai region and indicated that the beginning of the quiescence seemed to be associated with that of the event (Sugaya et al., 2007IUGG). Our purpose in this study is to investigate whether the quiescence in the Tamba region is caused by the stress change due to the long-term SSE or not based on the rate- and state- friction law (Dieterich, 1994). We use the hypocentral catalog of the DPRI from 1987 to 2001 and that relocated in this study from 2002 to 2006. We use declustered earthquakes (Reasenberg, 1985) greater than or equal to M 2.5 for following analyses. We find that the seismicity in the Tamba region after the 1995 Hyogo-ken Nanbu earthquake is explained by the Omori"fs law (p=1) than the ETAS model (Ogata, 1986). The seismicity is, thus, interpreted as the aftershock-type activity of the earthquake. We estimate Aσ (A is

  16. Sports Activity after Low-contact-stress Total Knee Arthroplasty - A long term follow-up study.

    PubMed

    Vielgut, Ines; Leitner, Lukas; Kastner, Norbert; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick

    2016-04-19

    The purpose of this study was to provide comprehensive long-term data about sports activity levels in patients following total knee arthroplasty (TKA) and to determine the impact of pre-operative function, pain and specific performed sports on the results. 236 patients who have undergone TKA for severe osteoarthritis of the knee were asked to provide specific information regarding exercised types of sports before surgery and after at least 10 years following TKA. Pre- and postoperative function and pain were evaluated by the use of Tegner-, WOMAC- and VAS Score. After a mean of 14.9 years, a significant improvement regarding pain and function was observed. Pre-operative Tegner- and WOMAC scores revealed significant positive correlations with the post-operative Tegner-Score. Accordingly, a high percentage of patients (70.9%) stayed actively involved in sports. Nevertheless, the number of performing patients has decreased according to the sports impact. 71.3% continued practising low-impact-, 43.7% intermediate-impact sports whereas only 16.4% kept performing high impact sports. We conclude that TKA is highly effective in long-time pain reduction as well as improvement of function. Additionally, we found considerable sports activities preserved in the investigated series. However, sports activities in particular, seem to decrease according to the impact of sports.

  17. Sports Activity after Low-contact-stress Total Knee Arthroplasty – A long term follow-up study

    PubMed Central

    Vielgut, Ines; Leitner, Lukas; Kastner, Norbert; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick

    2016-01-01

    The purpose of this study was to provide comprehensive long-term data about sports activity levels in patients following total knee arthroplasty (TKA) and to determine the impact of pre-operative function, pain and specific performed sports on the results. 236 patients who have undergone TKA for severe osteoarthritis of the knee were asked to provide specific information regarding exercised types of sports before surgery and after at least 10 years following TKA. Pre- and postoperative function and pain were evaluated by the use of Tegner-, WOMAC- and VAS Score. After a mean of 14.9 years, a significant improvement regarding pain and function was observed. Pre-operative Tegner- and WOMAC scores revealed significant positive correlations with the post-operative Tegner-Score. Accordingly, a high percentage of patients (70.9%) stayed actively involved in sports. Nevertheless, the number of performing patients has decreased according to the sports impact. 71.3% continued practising low-impact-, 43.7% intermediate-impact sports whereas only 16.4% kept performing high impact sports. We conclude that TKA is highly effective in long-time pain reduction as well as improvement of function. Additionally, we found considerable sports activities preserved in the investigated series. However, sports activities in particular, seem to decrease according to the impact of sports. PMID:27090945

  18. Long-term ω-3 fatty acid supplementation induces anti-stress effects and improves learning in rats.

    PubMed

    Pérez, Miguel Á; Terreros, Gonzalo; Dagnino-Subiabre, Alexies

    2013-06-14

    Chronic stress leads to secretion of the adrenal steroid hormone corticosterone, inducing hippocampal atrophy and dendritic hypertrophy in the rat amygdala. Both alterations have been correlated with memory impairment and increased anxiety. Supplementation with ω-3 fatty acids improves memory and learning in rats. The aim of this study was to evaluate the effects of ω-3 supplementation on learning and major biological and behavioral stress markers. Male Sprague-Dawley rats were randomly assigned to three experimental groups: 1) Control, 2) Vehicle, animals supplemented with water, and 3) ω-3, rats supplemented with ω-3 (100 mg of DHA+25 mg of EPA). Each experimental group was divided into two subgroups: one of which was not subjected to stress while the other was subjected to a restraint stress paradigm. Afterwards, learning was analyzed by avoidance conditioning. As well, plasma corticosterone levels and anxiety were evaluated as stress markers, respectively by ELISA and the plus-maze test. Restraint stress impaired learning and increased both corticosterone levels and the number of entries into the open-arm (elevated plus-maze). These alterations were prevented by ω-3 supplementation. Thus, our results demonstrate that ω-3 supplementation had two beneficial effects on the stressed rats, a strong anti-stress effect and improved learning.

  19. The 25 years long drought in Sahel and its impacts on ecosystems: Long term vegetation monitoring from the sky and on the ground

    NASA Astrophysics Data System (ADS)

    Dardel, Cecile; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Grippa, Manuela; Tucker, Compton Jim

    2013-04-01

    The Sahel region is known to be very sensitive to climatic fluctuations. Precipitation interannual variability has immediate and strong consequences on water resources, vegetation production, all affecting human populations. All along its history, Sahel had to face extreme climatic events. In the recent past, a 25 years period of persistent drought jeopardized the ecosystems equilibrium. Indeed, from the 1970's to the mid 1990's, precipitations were strongly and repeatedly below average. A debate has grown for years in the scientific community about the evolving trend of ecosystem in Sahel: is there desertification, or rehabilitation indicated by a "re-greening" taking place since the 1980's, as observed on satellite data by many scientists? To answer these questions, NDVI (Normalized Difference Vegetation Index) time series derived from NOAA/AVHRR are analyzed and compared to field measurements of the herbaceous aboveground mass, tree inventory and crop phytomass collected in Mali and Niger, from 1984 to 2011 and 1994 to 2011 respectively. The GIMMS-3g NDVI trends analysis from 1981 to 2011 show positive and significant slope values over almost every part of the Sahel, except for western Niger and central Sudan, thus reinforcing the "re-greening" hypothesis. Field observations are in good agreement with satellite data. A positive trend is observed over the Gourma in Mali, particularly for periods beginning in the 1980's, showing the ecosystem resilience to drought. A similar recovery is observed in western Niger, but only up to the mid 1990's, then the trend turns negative without being explained by rainfall. While the Gourma is mainly a pastoral land, western Niger is an agro-pastoral region in which cropped surfaces expanded widely over the last decades. For both regions, the re-greening trends are mainly observed on sandy soils, while erosion processes have been observed on shallow soil surfaces, inducing increased run-off and decrease in vegetation cover to

  20. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    PubMed Central

    Gupta, Aarti; Dixit, Sandeep K.; Senthil-Kumar, Muthappa

    2016-01-01

    Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by

  1. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.

    PubMed

    Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A

    2014-09-01

    Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

  2. Long-term posttraumatic stress symptoms among 3,271 civilian survivors of the September 11, 2001, terrorist attacks on the World Trade Center.

    PubMed

    DiGrande, Laura; Neria, Yuval; Brackbill, Robert M; Pulliam, Paul; Galea, Sandro

    2011-02-01

    Although the September 11, 2001, terrorist attacks were the largest human-made disaster in US history, there is little extant research documenting the attacks' consequences among those most directly affected, that is, persons who were in the World Trade Center towers. Data from a cross-sectional survey conducted 2-3 years after the attacks ascertained the prevalence of long-term, disaster-related posttraumatic stress symptoms and probable posttraumatic stress disorder (PTSD) in 3,271 civilians who evacuated World Trade Center towers 1 and 2. Overall, 95.6% of survivors reported at least 1 current posttraumatic stress symptom. The authors estimated the probable rate of PTSD at 15.0% by using the PTSD Checklist. Women and minorities were at an increased risk of PTSD. A strong inverse relation with annual income was observed. Five characteristics of direct exposure to the terrorist attacks independently predicted PTSD: being on a high floor in the towers, initiating evacuation late, being caught in the dust cloud that resulted from the tower collapses, personally witnessing horror, and sustaining an injury. Working for an employer that sustained fatalities also increased risk. Each addition of an experience of direct exposure resulted in a 2-fold increase in the risk of PTSD (odds ratio = 2.09, 95% confidence interval: 1.84, 2.36). Identification of these risk factors may be useful when screening survivors of large-scale terrorist events for long-term psychological sequelae.

  3. Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia

    SciTech Connect

    Yan Mingxian; Li Yanqing . E-mail: mx8902@163.com; Meng Min; Ren Hongbo; Kou Yi

    2006-08-18

    Relations between hyperlipidemia and chronic pancreatitis remain unclear. Microcirculatory disturbances and oxidative stress are involved in pathogeneses of a high numbers of diseases. The objective of this study was to induce hyperlipidemia in rats by long-term high-fat diet intake, then investigate the biochemical, microcirculatory, and histological alterations in blood and pancreatic tissues of these animals, and discuss their potential significances. Pancreatic blood flow was detected by intravital microscope; malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured in pancreatic tissues for assessment of oxidative stress and {alpha}-smooth muscle actin ({alpha}-SMA) expression was determined by immunohistochemical staining and RT-PCR. The results showed that the velocity of pancreatic microvascular blood flow of rats with hyperlipidemia decreased significantly as compared to control value (p = 0.008). Pancreatic MDA content increased whereas SOD activity decreased in these rats (p = 0.022; p = 0.039, respectively). Histologically, microvesicles in acinar and islet cells, dilated rough endoplasmic reticulum, swollen mitochondrion and modified vascular endothelial cells were observed under light microscope and transmission electron microscope. In addition, {alpha}-SMA expression was up-regulated significantly (p < 0.05). These results suggest that long-term high-fat diet can induce chronic pancreatic injuries which could be considered as 'nonalcoholic fatty pancreatic disease', and pancreatic microcirculatory disturbances and oxidative stress may play an important part in the underlying pathogenesis.

  4. Long-term posttraumatic stress symptoms among 3,271 civilian survivors of the September 11, 2001, terrorist attacks on the World Trade Center.

    PubMed

    DiGrande, Laura; Neria, Yuval; Brackbill, Robert M; Pulliam, Paul; Galea, Sandro

    2011-02-01

    Although the September 11, 2001, terrorist attacks were the largest human-made disaster in US history, there is little extant research documenting the attacks' consequences among those most directly affected, that is, persons who were in the World Trade Center towers. Data from a cross-sectional survey conducted 2-3 years after the attacks ascertained the prevalence of long-term, disaster-related posttraumatic stress symptoms and probable posttraumatic stress disorder (PTSD) in 3,271 civilians who evacuated World Trade Center towers 1 and 2. Overall, 95.6% of survivors reported at least 1 current posttraumatic stress symptom. The authors estimated the probable rate of PTSD at 15.0% by using the PTSD Checklist. Women and minorities were at an increased risk of PTSD. A strong inverse relation with annual income was observed. Five characteristics of direct exposure to the terrorist attacks independently predicted PTSD: being on a high floor in the towers, initiating evacuation late, being caught in the dust cloud that resulted from the tower collapses, personally witnessing horror, and sustaining an injury. Working for an employer that sustained fatalities also increased risk. Each addition of an experience of direct exposure resulted in a 2-fold increase in the risk of PTSD (odds ratio = 2.09, 95% confidence interval: 1.84, 2.36). Identification of these risk factors may be useful when screening survivors of large-scale terrorist events for long-term psychological sequelae. PMID:21190987

  5. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking.

    PubMed

    Chandy, Thomas; Van Hee, Justin; Nettekoven, William; Johnson, Jay

    2009-05-01

    Micro catheter tubes were prepared from poly (carbonate urethane) (PCU, Bionate) and poly (ether urethane) (PEU, Pellethane) and their stability was investigated in vitro under applied strain. The tubes were stretched to an elongation of 200% or 300% and exposed to hydrogen peroxide/cobalt chloride (H(2)O(2)/CoCl(2)) solution for specific periods of time (up to 10 months). The samples were observed for surface degradation via scanning electron microscopy, the bulk erosion via the weight difference, and the changes in molecular weight using gel permeation chromatography. The 200% and 300% strained Pellethane tubes kept in H(2)O(2)/CoCl(2) solution for 1 month showed substantial cracking of the surface layer with pitting and have degraded completely within 45 to 60 days (from scanning electron microscopy). Bionate tubes treated in similar conditions for a 10-month period exhibited minute surface erosion in the depth of 0.25-1 microm and showed no evidence of major cracking or pitting. The gel permeation chromatography analysis of 300% strained catheters indicated that the degradation of Bionate tubes was negligible. The 10-month samples had shown approximately 18% reduction in their number average molecular weight (M(n)) and about 8% reduction in weight average molecular weight (M(w)). The Pellethane studied in similar conditions had indicated approximately 72% reduction in M(n) and about approximately 50% reduction in M(w) for 1 month. Overall, the Bionate underwent less degradation and the degradated surface layer was much thinner than Pellethane. These in vitro results are valuable in designing the in vivo studies for using Bionate tube as a long-term implant. PMID:18837455

  6. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking.

    PubMed

    Chandy, Thomas; Van Hee, Justin; Nettekoven, William; Johnson, Jay

    2009-05-01

    Micro catheter tubes were prepared from poly (carbonate urethane) (PCU, Bionate) and poly (ether urethane) (PEU, Pellethane) and their stability was investigated in vitro under applied strain. The tubes were stretched to an elongation of 200% or 300% and exposed to hydrogen peroxide/cobalt chloride (H(2)O(2)/CoCl(2)) solution for specific periods of time (up to 10 months). The samples were observed for surface degradation via scanning electron microscopy, the bulk erosion via the weight difference, and the changes in molecular weight using gel permeation chromatography. The 200% and 300% strained Pellethane tubes kept in H(2)O(2)/CoCl(2) solution for 1 month showed substantial cracking of the surface layer with pitting and have degraded completely within 45 to 60 days (from scanning electron microscopy). Bionate tubes treated in similar conditions for a 10-month period exhibited minute surface erosion in the depth of 0.25-1 microm and showed no evidence of major cracking or pitting. The gel permeation chromatography analysis of 300% strained catheters indicated that the degradation of Bionate tubes was negligible. The 10-month samples had shown approximately 18% reduction in their number average molecular weight (M(n)) and about 8% reduction in weight average molecular weight (M(w)). The Pellethane studied in similar conditions had indicated approximately 72% reduction in M(n) and about approximately 50% reduction in M(w) for 1 month. Overall, the Bionate underwent less degradation and the degradated surface layer was much thinner than Pellethane. These in vitro results are valuable in designing the in vivo studies for using Bionate tube as a long-term implant.

  7. Long-term effects of prenatal atrazine exposure on physiology, body composition, and stress reactivity in rats

    EPA Science Inventory

    Low birth weight in humans is associated with increased risk of coronary heart disease, hypertension, and diabetes in adulthood. Experimental studies have also reported that undernutrition, stress or exposure to glucocorticoids during pregnancy is associated with hypertension, gl...

  8. Orangutan behavior in Kutai National Park after drought and fire damage: Adjustments to short- and long-term natural forest regeneration.

    PubMed

    Russon, Anne E; Kuncoro, Purwo; Ferisa, Agnes

    2015-12-01

    This study aimed to develop a long-term picture of orangutan (Pongo pygmaeus morio) behavioral adjustments to damaged masting forest around Mentoko, Kutai National Park, Indonesia. Mentoko is regenerating from two severe burnings and is one of few areas where orangutans were well-studied before and early after damage. We studied orangutans' feeding ecology, diet, and activity budgets 12-15 years after the second burning then compared our findings with earlier pre- and post-damage ones to assess the changes and factors involved. By our study, we predicted (1) improved feeding ecology compared to early in regeneration, (2) behavior diverging from the normal foraging strategy and (3) behavior shifting toward pre-damage patterns with improving feeding ecology. Data were behavioral observations on 42 orangutans (422 full day follows, 3,522 hr) and tree plot measures of feeding ecology. Findings were consistent with the first and third predictions but not the second: (1) feeding ecology had improved (plant food abundance was near per-damage levels, but species composition had changed); (2) foraging strategies showed no divergence from normal (fallback-preferred food switches in diet and activity budget adjustments were both normal, notably travel did not reduce), (3) diet and activity budgets had reverted to near pre-damage values by our study. Differently than post-damage studies on other orangutans but consistent with those on other primates, our comparisons showed behavioral adjustments were flexible, multiple vs. single, and influenced by multiple factors. Factors likely involved at Mentoko include type and spatial configuration of damage, duration of regeneration, and P. p. morio's recognized resilience. Findings have value for orangutan and nature conservation in showing that recovery to near-normal levels from severe habitat damage is possible within ca 15 years and in adding to understanding of the factors and processes that contribute to recovery. PMID

  9. Orangutan behavior in Kutai National Park after drought and fire damage: Adjustments to short- and long-term natural forest regeneration.

    PubMed

    Russon, Anne E; Kuncoro, Purwo; Ferisa, Agnes

    2015-12-01

    This study aimed to develop a long-term picture of orangutan (Pongo pygmaeus morio) behavioral adjustments to damaged masting forest around Mentoko, Kutai National Park, Indonesia. Mentoko is regenerating from two severe burnings and is one of few areas where orangutans were well-studied before and early after damage. We studied orangutans' feeding ecology, diet, and activity budgets 12-15 years after the second burning then compared our findings with earlier pre- and post-damage ones to assess the changes and factors involved. By our study, we predicted (1) improved feeding ecology compared to early in regeneration, (2) behavior diverging from the normal foraging strategy and (3) behavior shifting toward pre-damage patterns with improving feeding ecology. Data were behavioral observations on 42 orangutans (422 full day follows, 3,522 hr) and tree plot measures of feeding ecology. Findings were consistent with the first and third predictions but not the second: (1) feeding ecology had improved (plant food abundance was near per-damage levels, but species composition had changed); (2) foraging strategies showed no divergence from normal (fallback-preferred food switches in diet and activity budget adjustments were both normal, notably travel did not reduce), (3) diet and activity budgets had reverted to near pre-damage values by our study. Differently than post-damage studies on other orangutans but consistent with those on other primates, our comparisons showed behavioral adjustments were flexible, multiple vs. single, and influenced by multiple factors. Factors likely involved at Mentoko include type and spatial configuration of damage, duration of regeneration, and P. p. morio's recognized resilience. Findings have value for orangutan and nature conservation in showing that recovery to near-normal levels from severe habitat damage is possible within ca 15 years and in adding to understanding of the factors and processes that contribute to recovery.

  10. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning.

    PubMed

    Blank, Thomas; Nijholt, Ingrid; Eckart, Klaus; Spiess, Joachim

    2002-05-01

    In the present experiments, we characterized the action of human/rat corticotropin-releasing factor (h/rCRF) and acute stress (1 hr of immobilization) on hippocampus-dependent learning and on synaptic plasticity in the mouse hippocampus. We first showed that h/rCRF application and acute stress facilitated (primed) long-term potentiation of population spikes (PS-LTP) in the mouse hippocampus and enhanced context-dependent fear conditioning. Both the priming of PS-LTP and the improvement of context-dependent fear conditioning were prevented by the CRF receptor antagonist [Glu(11,16)]astressin. PS-LTP priming and improved learning were also reduced by the protein kinase C inhibitor bisindolylmaleimide I. Acute stress induced the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) 2 hr after the end of the stress session. The CaMKII inhibitor KN-62 antagonized the stress-mediated learning enhancement, however, with no effect on PS-LTP persistence. Thus, long-lasting increased neuronal excitability as reflected in PS-LTP priming appeared to be essential for the enhancement of learning in view of the observation that inhibition of PS-LTP priming was associated with impaired learning. Conversely, it was demonstrated that inhibition of CaMKII activity reduced contextual fear conditioning without affecting PS-LTP priming. This observation suggests that priming of PS-LTP and activation of CaMKII represent two essential mechanisms that may contribute independently to long-term memory.

  11. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii.

    PubMed

    Hemme, Dorothea; Veyel, Daniel; Mühlhaus, Timo; Sommer, Frederik; Jüppner, Jessica; Unger, Ann-Katrin; Sandmann, Michael; Fehrle, Ines; Schönfelder, Stephanie; Steup, Martin; Geimer, Stefan; Kopka, Joachim; Giavalisco, Patrick; Schroda, Michael

    2014-11-01

    We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions.

  12. Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii[W][OPEN

    PubMed Central

    Hemme, Dorothea; Veyel, Daniel; Mühlhaus, Timo; Sommer, Frederik; Jüppner, Jessica; Unger, Ann-Katrin; Sandmann, Michael; Fehrle, Ines; Schönfelder, Stephanie; Steup, Martin; Geimer, Stefan; Kopka, Joachim; Giavalisco, Patrick; Schroda, Michael

    2014-01-01

    We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions. PMID:25415976

  13. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens.

    PubMed

    Küpper, Hendrik; Parameswaran, Aravind; Leitenmaier, Barbara; Trtílek, Martin; Setlík, Ivan

    2007-01-01

    Acclimation of hyperaccumulators to heavy metal-induced stress is crucial for phytoremediation and was investigated using the hyperaccumulator Thlaspi caerulescens and the nonaccumulators T. fendleri and T. ochroleucum. Spatially and spectrally resolved kinetics of in vivo absorbance and fluorescence were measured with a novel fluorescence kinetic microscope. At the beginning of growth on cadmium (Cd), all species suffered from toxicity, but T. caerulescens subsequently recovered completely. During stress, a few mesophyll cells in T. caerulescens became more inhibited and accumulated more Cd than the majority; this heterogeneity disappeared during acclimation. Chlorophyll fluorescence parameters related to photochemistry were more strongly affected by Cd stress than nonphotochemical parameters, and only photochemistry showed acclimation. Cd acclimation in T. caerulescens shows that part of its Cd tolerance is inducible and involves transient physiological heterogeneity as an emergency defence mechanism. Differential effects of Cd stress on photochemical vs nonphotochemical parameters indicate that Cd inhibits the photosynthetic light reactions more than the Calvin-Benson cycle. Differential spectral distribution of Cd effects on photochemical vs nonphotochemical quenching shows that Cd inhibits at least two different targets in/around photosystem II (PSII). Spectrally homogeneous maximal PSII efficiency (F(v)/F(m)) suggests that in healthy T. caerulescens all chlorophylls fluorescing at room temperature are PSII-associated. PMID:17688582

  14. The Impact of Parental Posttraumatic Stress Disorder Symptom Trajectories on the Long-Term Outcomes of Youth Following Hurricane Katrina

    PubMed Central

    Self-Brown, Shannon; Lai, Betty; Harbin, Shannon; Kelley, Mary Lou

    2014-01-01

    Objectives This study examined trajectories of posttraumatic stress disorder symptoms in impoverished mothers impacted by Hurricane Katrina, as well as how predictive the maternal trajectories were for youth posttraumatic stress symptoms 2 years post-Katrina. Method 360 mother participants displaced by Hurricane Katrina completed self-report measures across 4 time-points related to Hurricane exposure, trauma history, and posttraumatic stress symptoms. Additionally, the youth offspring completed a self-report measure of posttraumatic stress symptoms. Results Latent Class Growth Analysis demonstrated three primary trajectories emerged among females impacted by Katrina, namely, 1) Chronic (4%), 2) Recovering (30%), and 3) Resilient (66%), respectively. These trajectories were significantly impacted by prior trauma history, but not hurricane exposure. Additionally, data indicated that children whose parents fell into the Chronic PTS trajectory also reported high levels of PTS symptoms. Conclusions This study identified 3 main trajectories typical of female PTS symptoms following disaster and was the first known study to document associations between PTS outcomes among adults and their offspring impacted by a large natural disaster. Future research is warranted and should explore additional risk and protective factors that impact both the parental and child outcomes. PMID:25255912

  15. Modulation of lipid metabolism in glycyrrhizic acid-treated rats fed on a high-calorie diet and exposed to short or long-term stress.

    PubMed

    Yaw, Hui Ping; Ton, So Ha; Chin, Hsien-Fei; Karim, Muhammad Kaiser Abdul; Fernando, Hamish Alexander; Kadir, Khalid Abdul

    2015-01-01

    Stress and high-calorie diets increase the risk of developing metabolic syndrome. Glycyrrhizic acid (GA) has been shown to improve dyslipidaemia in rats fed on a high-calorie diet. This study aimed to examine the effects of GA on lipid metabolism in rats exposed to short- or long-term stress and on a high-calorie diet. The parameters examined included serum lipid profiles, serum free fatty acids and fatty acid profiles in tissues, and expression of peroxisome proliferator-activated receptors (PPAR), lipoprotein lipase (LPL), elongases and desaturases. Within the 14- or 28-day exposure groups, neither stress nor GA affected the lipid profile and serum free fatty acids. Stress did not affect PPAR-α expression in both the 14- and 28-day exposure groups. However, GA-treated rats from the former group had increased PPAR-α expression only in the kidney while all other tissues from the latter group were unaffected. Stress increased PPAR-γ expression in the heart of the 28-day exposure group but its expression was unaffected in all tissues of the 14-day exposure group. GA elevated PPAR-γ expression in the kidney and the skeletal muscles. Neither stress nor GA affected LPL expressions in all tissues from the 14-day exposure group but its expressions were elevated in the QF of the stressed rats and heart of the GA-treated rats of the 28-day exposure group. As for the elongases and desaturases in the liver, stress down-regulated ELOVL5 in the long-term exposure group while up-regulated ELOVL6 in the short-term exposure group while hepatic desaturases were unaffected by stress. Neither elongase nor desaturase expressions in the liver were affected by GA. This research is the first report of GA on lipid metabolism under stress and high-calorie diet conditions and the results gives evidence for the role of GA in ameliorating MetS via site-specific regulation of lipid metabolism gene expressions and modification of fatty acids.

  16. Modulation of lipid metabolism in glycyrrhizic acid-treated rats fed on a high-calorie diet and exposed to short or long-term stress

    PubMed Central

    Yaw, Hui Ping; Ton, So Ha; Chin, Hsien-Fei; Karim, Muhammad Kaiser Abdul; Fernando, Hamish Alexander; Kadir, Khalid Abdul

    2015-01-01

    Stress and high-calorie diets increase the risk of developing metabolic syndrome. Glycyrrhizic acid (GA) has been shown to improve dyslipidaemia in rats fed on a high-calorie diet. This study aimed to examine the effects of GA on lipid metabolism in rats exposed to short- or long-term stress and on a high-calorie diet. The parameters examined included serum lipid profiles, serum free fatty acids and fatty acid profiles in tissues, and expression of peroxisome proliferator-activated receptors (PPAR), lipoprotein lipase (LPL), elongases and desaturases. Within the 14- or 28-day exposure groups, neither stress nor GA affected the lipid profile and serum free fatty acids. Stress did not affect PPAR-α expression in both the 14- and 28-day exposure groups. However, GA-treated rats from the former group had increased PPAR-α expression only in the kidney while all other tissues from the latter group were unaffected. Stress increased PPAR-γ expression in the heart of the 28-day exposure group but its expression was unaffected in all tissues of the 14-day exposure group. GA elevated PPAR-γ expression in the kidney and the skeletal muscles. Neither stress nor GA affected LPL expressions in all tissues from the 14-day exposure group but its expressions were elevated in the QF of the stressed rats and heart of the GA-treated rats of the 28-day exposure group. As for the elongases and desaturases in the liver, stress down-regulated ELOVL5 in the long-term exposure group while up-regulated ELOVL6 in the short-term exposure group while hepatic desaturases were unaffected by stress. Neither elongase nor desaturase expressions in the liver were affected by GA. This research is the first report of GA on lipid metabolism under stress and high-calorie diet conditions and the results gives evidence for the role of GA in ameliorating MetS via site-specific regulation of lipid metabolism gene expressions and modification of fatty acids. PMID:26069530

  17. Long-term results of a clinical trial comparing isolated vaginal stimulation with combined treatment for women with stress incontinence

    PubMed Central

    Fürst, Maria Cláudia Bicudo; de Mendonça, Rafaela Rosalba; Rodrigues, Alexandre Oliveira; de Matos, Leandro Luongo; Pompeo, Antônio Carlos Lima; Bezerra, Carlos Alberto

    2014-01-01

    ABSTRACT Objective To determine the efficacy of stress urinary incontinence treatments adding pelvic floor muscle training to vaginal electrical stimulation. Methods Forty-eight women with stress urinary incontinence were randomized into 2 groups: 24 underwent isolated vaginal electrical stimulation, and 24 vaginal electrical stimulation plus pelvic floor muscle training. History, physical examination, voiding diary, perineum strength test, and urodynamic study were assessed. Comparisons were made for adherence to treatment, muscle strength improvement, urinary symptoms, and degree of satisfaction immediately, 12 and 96 months after treatment. Results Patients' degree of satisfaction on vaginal electrical stimulation, and on vaginal electrical stimulation plus pelvic floor muscle training immediately, 12 and 96 months post treatment, were, respectively: 88.2% versus 88.9% 64.7% versus 61.1% and 42.9% versus 28.6% (p>0.05). Conclusion Vaginal electrical stimulation associated to pelvic floor muscle training did not show better results than vaginal electrical stimulation alone. PMID:25003921

  18. Free and Cell Wall-Bound Polyamines under Long-Term Water Stress Applied at Different Growth Stages of ×Triticosecale Wittm

    PubMed Central

    Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2015-01-01

    Background Long-stemmed and semi-dwarf cultivars of triticale were exposed to water stress at tillering, heading and anthesis stage. Quantitative determination of free and cell wall-bound polyamines, i.e. agmatine, cadaverine, putrescine, spermidine and spermine, was supplemented with an analysis of quantitative relationships between free and cell wall-bound polyamines. Results The content of free and cell wall-bound polyamines varied depending on the development stage, both under optimal and water stress conditions. Drought-induced increase in free agmatine content was observed at all developmental stages in long-stemmed cultivar. A depletion of spermidine and putrescine was also reported in this cultivar, and spermidine was less abundant in semi-dwarf cultivar exposed to drought stress at the three analyzed developmental stages. Changes in the content of the other free polyamines did not follow a steady pattern reflecting the developmental stages. On the contrary, the content of cell wall-bound polyamines gradually increased from tillering, through heading and until anthesis period. Conclusion Water stress seemed to induce a progressive decrease in the content of free polyamines and an accumulation of cell wall-bound polyamines. PMID:26247474

  19. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1.

    PubMed

    Jiang, Da-Peng; Li, Jin-Hui; Zhang, Jie; Xu, Sheng-Long; Kuang, Fang; Lang, Hai-Yang; Wang, Ya-Feng; An, Guang-Zhou; Li, Jing; Guo, Guo-Zhen

    2016-07-01

    A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of β-amyloid (Aβ) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aβ protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation. PMID:26972535

  20. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1.

    PubMed

    Jiang, Da-Peng; Li, Jin-Hui; Zhang, Jie; Xu, Sheng-Long; Kuang, Fang; Lang, Hai-Yang; Wang, Ya-Feng; An, Guang-Zhou; Li, Jing; Guo, Guo-Zhen

    2016-07-01

    A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of β-amyloid (Aβ) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aβ protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation.

  1. Compartment specific response of antioxidants to drought stress in Arabidopsis

    PubMed Central

    Koffler, Barbara Eva; Luschin-Ebengreuth, Nora; Stabentheiner, Edith; Müller, Maria; Zechmann, Bernd

    2014-01-01

    Compartment specific changes in ascorbate and glutathione contents were studied during drought stress in Arabidopsis thaliana Col-0 and in ascorbate and glutathione deficient mutants vtc2-1 and pad2-1, respectively, over a time period of 10 days. The results of this study revealed a strong decrease of glutathione contents in both mutants (up to 52% in mitochondria of pad2-1 and 40% in nuclei of vtc2-1) at early time points when drought stress was not yet measurable in leaves even though the soil showed a drop in relative water contents. These results indicate that glutathione is used at early time points to signal drought stress from roots to leaves. Such roles could not be confirmed for ascorbate which remained unchanged in most cell compartments until very late stages of drought. During advanced drought stress the strong depletion of ascorbate and glutathione in chloroplasts (up to 50% in Col-0 and vtc2-1) and peroxisomes (up to 56% in Col-0) could be correlated with a strong accumulation of H2O2. The strong increase of H2O2 and ascorbate in vacuoles (up to 111%) in wildtype plants indicates that ascorbate plays an important role for the detoxification of ROS in vacuoles during drought stress. PMID:25219315

  2. Competing pressures on populations: long-term dynamics of food availability, food quality, disease, stress and animal abundance.

    PubMed

    Chapman, Colin A; Schoof, Valérie A M; Bonnell, Tyler R; Gogarten, Jan F; Calmé, Sophie

    2015-05-26

    Despite strong links between sociality and fitness that ultimately affect the size of animal populations, the particular social and ecological factors that lead to endangerment are not well understood. Here, we synthesize approximately 25 years of data and present new analyses that highlight dynamics in forest composition, food availability, the nutritional quality of food, disease, physiological stress and population size of endangered folivorous red colobus monkeys (Procolobus rufomitratus). There is a decline in the quality of leaves 15 and 30 years following two previous studies in an undisturbed area of forest. The consumption of a low-quality diet in one month was associated with higher glucocorticoid levels in the subsequent month and stress levels in groups living in degraded forest fragments where diet was poor was more than twice those in forest groups. In contrast, forest composition has changed and when red colobus food availability was weighted by the protein-to-fibre ratio, which we have shown positively predicts folivore biomass, there was an increase in the availability of high-quality trees. Despite these changing social and ecological factors, the abundance of red colobus has remained stable, possibly through a combination of increasing group size and behavioural flexibility.

  3. Competing pressures on populations: long-term dynamics of food availability, food quality, disease, stress and animal abundance.

    PubMed

    Chapman, Colin A; Schoof, Valérie A M; Bonnell, Tyler R; Gogarten, Jan F; Calmé, Sophie

    2015-05-26

    Despite strong links between sociality and fitness that ultimately affect the size of animal populations, the particular social and ecological factors that lead to endangerment are not well understood. Here, we synthesize approximately 25 years of data and present new analyses that highlight dynamics in forest composition, food availability, the nutritional quality of food, disease, physiological stress and population size of endangered folivorous red colobus monkeys (Procolobus rufomitratus). There is a decline in the quality of leaves 15 and 30 years following two previous studies in an undisturbed area of forest. The consumption of a low-quality diet in one month was associated with higher glucocorticoid levels in the subsequent month and stress levels in groups living in degraded forest fragments where diet was poor was more than twice those in forest groups. In contrast, forest composition has changed and when red colobus food availability was weighted by the protein-to-fibre ratio, which we have shown positively predicts folivore biomass, there was an increase in the availability of high-quality trees. Despite these changing social and ecological factors, the abundance of red colobus has remained stable, possibly through a combination of increasing group size and behavioural flexibility. PMID:25870398

  4. Competing pressures on populations: long-term dynamics of food availability, food quality, disease, stress and animal abundance

    PubMed Central

    Chapman, Colin A.; Schoof, Valérie A. M.; Bonnell, Tyler R.; Gogarten, Jan F.; Calmé, Sophie

    2015-01-01

    Despite strong links between sociality and fitness that ultimately affect the size of animal populations, the particular social and ecological factors that lead to endangerment are not well understood. Here, we synthesize approximately 25 years of data and present new analyses that highlight dynamics in forest composition, food availability, the nutritional quality of food, disease, physiological stress and population size of endangered folivorous red colobus monkeys (Procolobus rufomitratus). There is a decline in the quality of leaves 15 and 30 years following two previous studies in an undisturbed area of forest. The consumption of a low-quality diet in one month was associated with higher glucocorticoid levels in the subsequent month and stress levels in groups living in degraded forest fragments where diet was poor was more than twice those in forest groups. In contrast, forest composition has changed and when red colobus food availability was weighted by the protein-to-fibre ratio, which we have shown positively predicts folivore biomass, there was an increase in the availability of high-quality trees. Despite these changing social and ecological factors, the abundance of red colobus has remained stable, possibly through a combination of increasing group size and behavioural flexibility. PMID:25870398

  5. Chronic stress-induced changes in the rat brain: role of sex differences and effects of long-term tianeptine treatment.

    PubMed

    Kuipers, Sjoukje D; Trentani, Andrea; van der Zee, Eddy A; den Boer, Johan A

    2013-12-01

    Growing evidence suggests neuroplasticity changes are pivotal in both the occurrence and treatment of affective disorders. Abnormal expression and/or phosphorylation of numerous plasticity-related proteins have been observed in depression, while prolonged antidepressant treatment has been associated with the attenuation of stress-mediated effects on dendritic remodeling and adult hippocampal neurogenesis in experimental animals. This study explores the neurobiological adaptations induced by chronic stress and/or long-term tianeptine treatment. Male and female rats were studied to determine the potential contributory role of sex differences on stress-induced pathology and antidepressant-mediated actions. Our results confirm chronic stress-induced HPA axis disturbance and neuroplasticity impairment in both sexes (i.e. reduced CREB phosphorylation and hippocampal BrdU labeling). Commonly ensuing neurobiological alterations were accompanied by unique sex-specific adaptations. When the antidepressant tianeptine was administered, HPA axis hyperactivity was attenuated and specific neuronal defects were ameliorated in both sexes. These findings provide novel insight into sex-related influences on the neurobiological substrates mediating chronic stress-induced actions on neuroplasticity and the mechanisms underlying tianeptine-mediated therapeutic effects.

  6. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    PubMed Central

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  7. Chronic stress-induced changes in the rat brain: role of sex differences and effects of long-term tianeptine treatment.

    PubMed

    Kuipers, Sjoukje D; Trentani, Andrea; van der Zee, Eddy A; den Boer, Johan A

    2013-12-01

    Growing evidence suggests neuroplasticity changes are pivotal in both the occurrence and treatment of affective disorders. Abnormal expression and/or phosphorylation of numerous plasticity-related proteins have been observed in depression, while prolonged antidepressant treatment has been associated with the attenuation of stress-mediated effects on dendritic remodeling and adult hippocampal neurogenesis in experimental animals. This study explores the neurobiological adaptations induced by chronic stress and/or long-term tianeptine treatment. Male and female rats were studied to determine the potential contributory role of sex differences on stress-induced pathology and antidepressant-mediated actions. Our results confirm chronic stress-induced HPA axis disturbance and neuroplasticity impairment in both sexes (i.e. reduced CREB phosphorylation and hippocampal BrdU labeling). Commonly ensuing neurobiological alterations were accompanied by unique sex-specific adaptations. When the antidepressant tianeptine was administered, HPA axis hyperactivity was attenuated and specific neuronal defects were ameliorated in both sexes. These findings provide novel insight into sex-related influences on the neurobiological substrates mediating chronic stress-induced actions on neuroplasticity and the mechanisms underlying tianeptine-mediated therapeutic effects. PMID:23994757

  8. Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol

    PubMed Central

    Hamza, Shereen M.; Dyck, Jason R. B.

    2014-01-01

    Hypertension affects over 25% of the global population and is associated with grave and often fatal complications that affect many organ systems. Although great advancements have been made in the clinical assessment and treatment of hypertension, the cause of hypertension in over 90% of these patients is unknown, which hampers the development of targeted and more effective treatment. The etiology of hypertension involves multiple pathological processes and organ systems, however one unifying feature of all of these contributing factors is oxidative stress. Once the body's natural anti-oxidant defense mechanisms are overwhelmed, reactive oxygen species (ROS) begin to accumulate in the tissues. ROS play important roles in normal regulation of many physiological processes, however in excess they are detrimental and cause widespread cell and tissue damage as well as derangements in many physiological processes. Thus, control of oxidative stress has become an attractive target for pharmacotherapy to prevent and manage hypertension. Resveratrol (trans-3,5,4′-Trihydroxystilbene) is a naturally occurring polyphenol which has anti-oxidant effects in vivo. Many studies have shown anti-hypertensive effects of resveratrol in different pre-clinical models of hypertension, via a multitude of mechanisms that include its function as an anti-oxidant. However, results have been mixed and in some cases resveratrol has no effect on blood pressure. This may be due to the heavy emphasis on peripheral vasodilator effects of resveratrol and virtually no investigation of its potential renal effects. This is particularly troubling in the arena of hypertension, where it is well known and accepted that the kidney plays an essential role in the long term regulation of arterial pressure and a vital role in the initiation, development and maintenance of chronic hypertension. It is thus the focus of this review to discuss the potential of resveratrol as an anti-hypertensive treatment via

  9. Persistent Psychopathology in the Wake of Civil War: Long-Term Posttraumatic Stress Disorder in Nimba County, Liberia

    PubMed Central

    Rockers, Peter C.; Saydee, Geetor; Macauley, Rose; Varpilah, S. Tornorlah; Kruk, Margaret E.

    2010-01-01

    Objectives. We assessed the geographical distribution of posttraumatic stress disorder (PTSD) in postconflict Nimba County, Liberia, nearly 2 decades after the end of primary conflict in the area, and we related this pattern to the history of conflict. Methods. We administered individual surveys to a population-based sample of 1376 adults aged 19 years or older. In addition, we conducted a historical analysis of conflict in Nimba County, Liberia, where the civil war started in 1989. Results. The prevalence of PTSD in Nimba County was high at 48.3% (95% confidence interval = 45.7, 50.9; n = 664). The geographical patterns of traumatic event experiences and of PTSD were consistent with the best available information about the path of the intranational conflict that Nimba County experienced in 1989–1990. Conclusions. The demonstration of a “path of PTSD” coincident with the decades-old path of violence dramatically underscores the direct link between population burden of psychopathology and the experience of violent conflict. Persistent postconflict disruptions of social and physical context may explain some of the observed patterns. PMID:20634461

  10. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats

    SciTech Connect

    Ihsan, Awais; Wang Xu; Liu Zhaoying; Wang Yulian; Huang Xianju; Liu Yu; Yu Huan; Zhang Hongfei; Li Tingting; Yang Chunhui; Yuan Zonghui

    2011-05-01

    Mequindox (MEQ) is a synthetic antimicrobial chemical of quinoxaline 1, 4-dioxide group. This study was designed to investigate the hypothesis that MEQ exerts testicular toxicity by causing oxidative stress and steroidal gene expression profiles and determine mechanism of MEQ testicular toxicity. In this study, adult male Wistar rats were fed with MEQ for 180 days at five different doses as 0, 25, 55, 110 and 275 mg/kg, respectively. In comparison to control, superoxide dismutase (SOD), reduced glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG) levels were elevated at 110 and 275 mg/kg MEQ, whereas the malondialdehyde (MDA) level was slightly increase at only 275 mg/kg. Furthermore, in LC/MS-IT-TOF analysis, one metabolite 2-isoethanol 4-desoxymequindox (M11) was found in the testis. There was significant decrease in body weight, testicular weight and testosterone at 275 mg/kg, serum follicular stimulating hormone (FSH) at 110 and 275 mg/kg, while lutinizing hormone (LH) levels were elevated at 110 mg/kg. Moreover, histopathology of testis exhibited germ cell depletion, contraction of seminiferous tubules and disorganization of the tubular contents of testis. Compared with control, mRNA expression of StAR, P450scc and 17{beta}-HSD in testis was significantly decreased after exposure of 275 mg/kg MEQ while AR and 3{beta}-HSD mRNA expression were significantly elevated at the 110 mg/kg MEQ group. Taken together, our findings provide the first and direct evidence in vivo for the formation of free radicals during the MEQ metabolism through N {yields} O group reduction, which may have implications to understand the possible mechanism of male infertility related to quinoxaline derivatives.

  11. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  12. Proteome analysis of sugar beet leaves under drought stress.

    PubMed

    Hajheidari, Mohsen; Abdollahian-Noghabi, Mohammad; Askari, Hossein; Heidari, Manzar; Sadeghian, Seyed Y; Ober, Eric S; Salekdeh, Ghasem Hosseini

    2005-03-01

    Drought is one of the major factors limiting the yield of sugar beet (Beta vulgaris L.). The identification of candidate genes for marker-assisted selection (MAS) could greatly improve the efficiency of breeding for increased drought tolerance. Drought-induced changes in the proteome could highlight important genes. Two genotypes of sugar beet (7112 and 7219-P.69) differing in genetic background were cultivated in the field. A line-source sprinkler irrigation system was used to apply irrigated and water deficit treatments beginning at the four-leaf stage. At 157 days after sowing, leaf samples were collected from well-watered and drought-stressed plants for protein extraction and to measure shoot biomass and leaf relative water content. Changes induced in leaf proteins were studied by two-dimensional gel electrophoresis and quantitatively analyzed using image analysis software. Out of more than 500 protein spots reproducibly detected and analyzed, 79 spots showed significant changes under drought. Some proteins showed genotype-specific patterns of up- or downregulation in response to drought. Twenty protein spots were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), leading to identification of Rubisco and 11 other proteins involved in redox regulation, oxidative stress, signal transduction, and chaperone activities. Some of these proteins could contribute a physiological advantage under drought, making them potential targets for MAS. PMID:15712235

  13. Acaricide treatment prevents adrenocortical hyperplasia as a long-term stress reaction to psoroptic mange in cattle.

    PubMed

    Blutke, A; Börjes, P; Herbach, N; Pfister, K; Hamel, D; Rehbein, S; Wanke, R

    2015-01-15

    -treated bulls was due to a selective increase of the volume of the zona fasciculata in the adrenal cortex. Compared to uninfested controls and P. ovis-infested, IVM LAI-treated bulls, the number of epithelial cells in the zona fasciculata was significantly increased in P. ovis-infested, saline-treated bulls, while the zona fasciculata cell volumes did not differ between the three groups of cattle. While the single point determination of serum cortisol concentrations did not reveal significant differences between the three groups of cattle at tissue sampling, the hyperplastic growth of the adrenal cortex in the P. ovis-infested, saline-treated bulls provides morphologic evidence that a chronic stress reaction is one consequence of mange mite infestations that can be prevented by efficacious acaricidal treatment. PMID:25468014

  14. Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches

    PubMed Central

    Marshall, Alex; Aalen, Reidunn B.; Audenaert, Dominique; Beeckman, Tom; Broadley, Martin R.; Butenko, Melinka A.; Caño-Delgado, Ana I.; de Vries, Sacco; Dresselhaus, Thomas; Felix, Georg; Graham, Neil S.; Foulkes, John; Granier, Christine; Greb, Thomas; Grossniklaus, Ueli; Hammond, John P.; Heidstra, Renze; Hodgman, Charlie; Hothorn, Michael; Inzé, Dirk; Østergaard, Lars; Russinova, Eugenia; Simon, Rüdiger; Skirycz, Aleksandra; Stahl, Yvonne; Zipfel, Cyril; De Smet, Ive

    2012-01-01

    Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops. PMID:22693282

  15. Genome-Wide Characterization of Maize Small RNA Loci and Their Regulation in the required to maintain repression6-1 (rmr6-1) Mutant and Long-Term Abiotic Stresses1[OPEN

    PubMed Central

    Lunardon, Alice; Forestan, Cristian; Farinati, Silvia; Axtell, Michael J.; Varotto, Serena

    2016-01-01

    Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf. PMID:26747286

  16. Quantifying long-term stress in brown bears with the hair cortisol concentration: a biomarker that may be confounded by rapid changes in response to capture and handling.

    PubMed

    Cattet, Marc; Macbeth, Bryan J; Janz, David M; Zedrosser, Andreas; Swenson, Jon E; Dumond, Mathieu; Stenhouse, Gordon B

    2014-01-01

    The measurement of cortisol in hair is becoming important in studying the role of stress in the life history, health and ecology of wild mammals. The hair cortisol concentration (HCC) is generally believed to be a reliable indicator of long-term stress that can reflect frequent or prolonged activation of the hypothalamic-pituitary-adrenal axis over weeks to months through passive diffusion from the blood supply to the follicular cells that produce the hair. Diffusion of cortisol from tissues surrounding the follicle and glandular secretions (sebum and sweat) that coat the growing hair may also affect the HCC, but the extent of these effects is thought to be minimal. In this study, we report on a range of factors that are associated with, and possibly influence, cortisol concentrations in the hair of free-ranging brown bears (Ursus arctos). Through two levels of analyses that differed in sample sizes and availability of predictor variables, we identified the presence or absence of capture, restraint and handling, as well as different methods of capture, as significant factors that appeared to influence HCC in a time frame that was too short (minutes to hours) to be explained by passive diffusion from the blood supply alone. Furthermore, our results suggest that HCC was altered after hair growth had ceased and blood supply to the hair follicle was terminated. However, we also confirmed that HCC was inversely associated with brown bear body condition and was, therefore, responsive to diminished food availability/quality and possibly other long-term stressors that affect body condition. Collectively, our findings emphasize the importance of further elucidating the mechanisms of cortisol accumulation in hair and the influence of long- and short-term stressors on these mechanisms. PMID:27293647

  17. Oxidative and nitrative stress and pro-inflammatory cytokines in Mucopolysaccharidosis type II patients: effect of long-term enzyme replacement therapy and relation with glycosaminoglycan accumulation.

    PubMed

    Jacques, Carlos Eduardo Diaz; Donida, Bruna; Mescka, Caroline P; Rodrigues, Daiane G B; Marchetti, Desirèe P; Bitencourt, Fernanda H; Burin, Maira G; de Souza, Carolina F M; Giugliani, Roberto; Vargas, Carmen Regla

    2016-09-01

    Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1β and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1β was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related.

  18. Quantifying long-term stress in brown bears with the hair cortisol concentration: a biomarker that may be confounded by rapid changes in response to capture and handling

    PubMed Central

    Cattet, Marc; Macbeth, Bryan J.; Janz, David M.; Zedrosser, Andreas; Swenson, Jon E.; Dumond, Mathieu; Stenhouse, Gordon B.

    2014-01-01

    The measurement of cortisol in hair is becoming important in studying the role of stress in the life history, health and ecology of wild mammals. The hair cortisol concentration (HCC) is generally believed to be a reliable indicator of long-term stress that can reflect frequent or prolonged activation of the hypothalamic–pituitary–adrenal axis over weeks to months through passive diffusion from the blood supply to the follicular cells that produce the hair. Diffusion of cortisol from tissues surrounding the follicle and glandular secretions (sebum and sweat) that coat the growing hair may also affect the HCC, but the extent of these effects is thought to be minimal. In this study, we report on a range of factors that are associated with, and possibly influence, cortisol concentrations in the hair of free-ranging brown bears (Ursus arctos). Through two levels of analyses that differed in sample sizes and availability of predictor variables, we identified the presence or absence of capture, restraint and handling, as well as different methods of capture, as significant factors that appeared to influence HCC in a time frame that was too short (minutes to hours) to be explained by passive diffusion from the blood supply alone. Furthermore, our results suggest that HCC was altered after hair growth had ceased and blood supply to the hair follicle was terminated. However, we also confirmed that HCC was inversely associated with brown bear body condition and was, therefore, responsive to diminished food availability/quality and possibly other long-term stressors that affect body condition. Collectively, our findings emphasize the importance of further elucidating the mechanisms of cortisol accumulation in hair and the influence of long- and short-term stressors on these mechanisms. PMID:27293647

  19. Oxidative and nitrative stress and pro-inflammatory cytokines in Mucopolysaccharidosis type II patients: effect of long-term enzyme replacement therapy and relation with glycosaminoglycan accumulation.

    PubMed

    Jacques, Carlos Eduardo Diaz; Donida, Bruna; Mescka, Caroline P; Rodrigues, Daiane G B; Marchetti, Desirèe P; Bitencourt, Fernanda H; Burin, Maira G; de Souza, Carolina F M; Giugliani, Roberto; Vargas, Carmen Regla

    2016-09-01

    Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1β and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1β was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related. PMID:27251652

  20. The long term effects of cathodic protection on corroding, pre-stressed concrete structures: Hydrogen embrittlement of the reinforcing steel

    NASA Astrophysics Data System (ADS)

    Enos, David George

    Assessment of the effect of cathodic protection on a chloride contaminated bridge pile involves the definition of the hydrogen embrittlement behavior of the pearlitic reinforcement combined with quantification of the local (i.e., at the steel/concrete interface) chemical and electrochemical conditions, both prior to and throughout the application of cathodic protection. The hydrogen embrittlement behavior of the reinforcement was assessed through a combination of Devanathan/Stachurski permeation experiments to quantify subsurface hydrogen concentrations, CsbH, as a function of the applied hydrogen overpotential, eta, and crack initiation tests for bluntly notched and fatigue pre-cracked tensile specimens employing elastic-plastic finite element analysis and linear elastic fracture mechanics, respectively. A threshold mobile lattice hydrogen concentration for embrittlement of 2×10sp{-7} mol/cmsp3 was established for bluntly notched and fatigue pre-cracked specimens. Crack initiation occurred by the formation of shear cracks oriented at an angle approaching 45sp° from the tensile axis, as proposed by Miller and Smith (Miller, 1970), in regions where both the longitudinal and shear stresses were maximized (i.e., near the notch root). These Miller cracks then triggered longitudinal splitting which continued until fast fracture of the remaining ligament occurred. Instrumented laboratory scale piles were constructed and partially immersed in ASTM artificial ocean water. With time, localized corrosion (crevicing) was initiated along the reinforcement, and was accompanied by an acidic shift in the pH of the occluded environment due to ferrous ion hydrolysis. Cathodic protection current densities from -0.1 muA/cmsp2 to -3.0 muA/cmsp2 were applied via a skirt anode located at the waterline. Current densities as low as 0.66 muA/cmsp2 were sufficient to deplete the dissolved oxygen concentration at the steel/concrete interface and result in the observance of hydrogen

  1. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars.

    PubMed

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-09-01

    Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat. PMID:27179928

  2. Arabidopsis PED2 positively modulates plant drought stress resistance.

    PubMed

    Shi, Haitao; Ye, Tiantian; Yang, Fan; Chan, Zhulong

    2015-09-01

    Abscisic acid (ABA) is an important phytohormone that functions in seed germination, plant development, and multiple stress responses. Arabidopsis Peroxisome defective 2 (AtPED2) (also known as AtPEXOXIN14, AtPEX14), is involved in the intracellular transport of thiolase from the cytosol to glyoxysomes, and perosisomal matrix protein import in plants. In this study, we assigned a new role for AtPED2 in drought stress resistance. The transcript level of AtPED2 was downregulated by ABA and abiotic stress treatments. AtPED2 knockout mutants were insensitive to ABA-mediated seed germination, primary root elongation, and stomatal response, while AtPED2 over-expressing plants were sensitive to ABA in comparison to wide type (WT). AtPED2 also positively regulated drought stress resistance, as evidenced by the changes of water loss rate, electrolyte leakage, and survival rate. Notably, AtPED2 positively modulated expression of several stress-responsive genes (RAB18, RD22, RD29A, and RD29B), positively affected underlying antioxidant enzyme activities and negatively regulated reactive oxygen species (ROS) level under drought stress conditions. Moreover, multiple carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines were also positively regulated by AtPED2. Taken together, these results indicated a positive role for AtPED2 in drought resistance, through modulation of stress-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially. PMID:25588806

  3. Drought-Tolerant Corn Hybrids Yield More in Drought-Stressed Environments with No Penalty in Non-stressed Environments

    PubMed Central

    Adee, Eric; Roozeboom, Kraig; Balboa, Guillermo R.; Schlegel, Alan; Ciampitti, Ignacio A.

    2016-01-01

    The potential benefit of drought-tolerant (DT) corn (Zea mays L.) hybrids may depend on drought intensity, duration, crop growth stage (timing), and the array of drought tolerance mechanisms present in selected hybrids. We hypothesized that corn hybrids containing DT traits would produce more consistent yields compared to non-DT hybrids in the presence of drought stress. The objective of this study was to define types of production environments where DT hybrids have a yield advantage compared to non-DT hybrids. Drought tolerant and non-DT hybrid pairs of similar maturity were planted in six site-years with different soil types, seasonal evapotranspiration (ET), and vapor pressure deficit (VPD), representing a range of macro-environments. Irrigation regimes and seeding rates were used to create several micro-environments within each macro-environment. Hybrid response to the range of macro and micro-environmental stresses were characterized in terms of water use efficiency, grain yield, and environmental index. Yield advantage of DT hybrids was positively correlated with environment ET and VPD. Drought tolerant hybrids yielded 5 to 7% more than non-DT hybrids in high and medium ET environments (>430 mm ET), corresponding to seasonal VPD greater than 1200 Pa. Environmental index analysis confirmed that DT hybrids were superior in stressful environments. Yield advantage for DT hybrids appeared as yield dropped below 10.8 Mg ha-1 and averaged as much as 0.6–1 Mg ha-1 at the low yield range. Hybrids with DT technology can offer a degree of buffering against drought stress by minimizing yield reduction, but also maintaining a comparable yield potential in high yielding environments. Further studies should focus on the physiological mechanisms presented in the commercially available corn drought tolerant hybrids. PMID:27790237

  4. Photosynthetic Physiological Characteristics of Gazania rigens L. Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Gao, T. T.; Zheng, S. W.; Zhou, X. H.; Wang, D. X.; Lu, X. P.

    2016-08-01

    To investigate the responses of photosynthetic physiological characteristics of Gazania rigens L. to drought stress, the changes of three cultivars (‘Xingbai’, ‘XH’ and ‘Hongwen’) photosynthetic values under drought stress were determined via LI-6400 portable photosynthesis analyzer (LI-COR, USA), and the relationships between photosynthesis and drought resistance of each cultivar were analyzed. The results showed that, three cultivars net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and light use efficiency (LUE) value indicated the trend of decreasing gradually and there existed significant reduction in Pn and Gs values. There were extremely negative significant correlations between drought stress treatment days and Pn, Gs, Tr, water use efficiency (WUE) and LUE values. A small amount of leaves began to turn soft and yellow after drought stress treatment for 10 days, but they could recover to grow quickly after rehydration. The Pn values of ‘Hongwen’ decreased quickly and changed in a large range, so it had a poor resistance; the Pn values of ‘Xingbai’ decreased slowly and changed in a small range, so it had a strong resistance; while the changes of their hybrids -‘XH’ were between its parents. This research would provide a theoretical basis for gazania resistance cultivar breeding and application in landscape.

  5. Differentially expressed genes in drought stressed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is one of the most challenging agricultural issues limiting sustainable crop production. Many efforts have been incorporated using genetic and genomic approaches to identify valuable molecular resources. Cotton, the world’s primary fiber crop, provides major economic value to farmers and ind...

  6. Understanding long-term sick leave in female white-collar workers with burnout and stress-related diagnoses: a qualitative study

    PubMed Central

    2010-01-01

    Background Sick leave rates in Sweden have been significant since the end of the 1990s. In this paper we focus on individual female white-collar workers and explore various factors and setting-based sources of ill health in working life and in private life, in order to understand impaired work ability, leading ultimately to long-term sick leave. Methods A qualitative methodology was chosen, and thematic, open-ended interviews were carried out with 16 women. The interviewees were strategically selected from a cohort of 300 women in full-time white-collar jobs in high-level positions, living in three urban areas in Sweden, and on long-term sick leave ≥90 days. A qualitative content analysis was carried out. Results The informants in the study were generally well educated, but a few had surprisingly little formal education considering their salary level and position on the labour market. The women were in professional positions more commonly held by men, either as specialists with some degree of managerial role or as executives with managerial responsibilities. Both external and internal stressors were identified. The analysis indicated that being in these gender-typed jobs could have induced sex discrimination and role conflicts. The women expressed strong agreement regarding success in working life, but emphasised the lack of competence matching in their present jobs. They also lacked the sense of having a rewarding job, saw leadership as weak, and disliked their present workplace and colleagues. Impaired health may have hindered them from changing jobs; conversely, their locked-in positions could have resulted in deterioration in their health status. The women displayed personal overcommitment, both at work and in private life, and had difficulties in setting limits. Conclusions Factors in working life, as well as in private life, played an important role in the informants' deteriorated health and long-term sick leave. Job and workplace mismatching, problems in

  7. Long term environmental tobacco smoke activates nuclear transcription factor-kappa B, activator protein-1, and stress responsive kinases in mouse brain.

    PubMed

    Manna, Sunil K; Rangasamy, Thirumalai; Wise, Kimberly; Sarkar, Shubhashish; Shishodia, Shishir; Biswal, Shyam; Ramesh, Govindarajan T

    2006-05-28

    Environmental tobacco smoke (ETS) is a key mediator of several diseases. Tobacco smoke contains a mixture of over 4700 chemical components many of which are toxic and have been implicated in the etiology of oxidative stress related diseases such as chronic obstructive pulmonary disease, Parkinson's disease, asthma, cancer and cardiovascular disease. However, the mechanism of action of cigarette smoke in the onset of these diseases is still largely unknown. Previous studies have revealed that the free radicals generated by cigarette smoke may contribute to many of these chronic health problems and this study sought to address the role of environmental tobacco smoke in oxidative stress related damage in different regions of the mouse brain. In this study, male mice were exposed for 7h/day, 7 days/week, for 6 months. Our results show that tobacco smoke led to increased generation of reactive oxygen species with an increase in NF-kappaB activation. Gel shift analysis also revealed the elevated level of the oxidative stress sensitive proinflammatory nuclear transcription factor-kappa B and activator protein-1 in different regions of the brain of cigarette smoke exposed mice. Tobacco smoke led to activation of COX-2 in all the regions of the brain. Activation of mitogen activated protein kinase and c-Jun N-terminal kinase were also observed in various regions of brain of ETS exposed mice. Overall our results indicate that exposure to long-term cigarette smoke induces oxidative stress leading to activation of stress induced kinases and activation of proinflammatory transcription factors.

  8. Long-term effects of smoking and smoking cessation on exercise stress testing: Three-year outcomes from a randomized clinical trial

    PubMed Central

    Asthana, Asha; Piper, Megan E.; McBride, Patrick E.; Ward, Ann; Fiore, Michael C.; Baker, Timothy B.; Stein, James H.

    2012-01-01

    Background The long-term effects of smoking and smoking cessation on markers of cardiovascular disease (CVD) prognosis obtained during treadmill stress testing (TST) are unknown. The purpose of this study was to evaluate the long-term effects of smoking cessation and continued smoking on TST parameters that predict CVD risk. Methods In a prospective, double-blind, randomized, placebo-controlled trial of 5 smoking cessation pharmacotherapies, symptom-limited TST was performed to determine peak METs, rate-pressure product (RPP), heart rate (HR) increase, HR reserve, and 60-second HR recovery, before and 3 years after the target smoking cessation date. Relationships between TST parameters and treatments among successful abstainers and continuing smokers were evaluated using multivariable analyses. Results At baseline, the 600 current smokers (61% women) had a mean age of 43.4 (SD 11.5) years and smoked 20.7 (8.4) cigarettes per day. Their exercise capacity was 8.7 (2.3) METs, HR reserve was 86.6 (9.6)%, HR increase was 81.1 (20.9) beats/min, and HR recovery was 22.3 (11.3) beats. Cigarettes per day and pack-years were independently and inversely associated with baseline peak METs (P < .001), RPP (P < .01, pack-years only), HR increase (P < .05), and HR reserve (P < .01). After 3 years, 168 (28%) had quit smoking. Abstainers had greater improvements than continuing smokers (all P < .001) in RPP (2,055 mm Hg beats/min), HR increase (5.9 beats/min), and HR reserve (3.7%), even after statistical adjustment (all P < .001). Conclusions Smokers with a higher smoking burden have lower exercise capacity, lower HR reserve, and a blunted exercise HR response. After 3 years, TST improvements suggestive of improved CVD prognosis were observed among successful abstainers. PMID:22172440

  9. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia.

    PubMed

    Seim, Andrea; Omurova, Gulzar; Azisov, Erlan; Musuraliev, Kanaat; Aliev, Kumar; Tulyaganov, Timur; Nikolyai, Lyutsian; Botman, Evgeniy; Helle, Gerd; Dorado Liñan, Isabel; Jivcov, Sandra; Linderholm, Hans W

    2016-01-01

    Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935-2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia.

  10. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia.

    PubMed

    Seim, Andrea; Omurova, Gulzar; Azisov, Erlan; Musuraliev, Kanaat; Aliev, Kumar; Tulyaganov, Timur; Nikolyai, Lyutsian; Botman, Evgeniy; Helle, Gerd; Dorado Liñan, Isabel; Jivcov, Sandra; Linderholm, Hans W

    2016-01-01

    Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935-2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia. PMID:27100092

  11. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia

    PubMed Central

    Seim, Andrea; Omurova, Gulzar; Azisov, Erlan; Musuraliev, Kanaat; Aliev, Kumar; Tulyaganov, Timur; Nikolyai, Lyutsian; Botman, Evgeniy; Helle, Gerd; Dorado Liñan, Isabel; Jivcov, Sandra; Linderholm, Hans W.

    2016-01-01

    Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935–2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia. PMID:27100092

  12. Effect of long-term ingestion of weakly oxidised flaxseed oil on biomarkers of oxidative stress in LDL-receptor knockout mice.

    PubMed

    Nogueira, M S; Kessuane, M C; Lobo Ladd, A A B; Lobo Ladd, F V; Cogliati, B; Castro, I A

    2016-07-01

    The effect of oxidised fatty acids on atherosclerosis progression is controversial. Thus, our objective was to evaluate the effect of long-term consumption of weakly oxidised PUFA from flaxseed oil on oxidative stress biomarkers of LDL-receptor(-/-) mice. To test our hypothesis, mice were separated into three groups. The first group received a high-fat diet containing fresh flaxseed oil (CONT-), the second was fed the same diet prepared using heated flaxseed oil (OXID), and the third group received the same diet containing fresh flaxseed oil and had diabetes induced by streptozotocin (CONT+). Oxidative stress, aortic parameters and non-alcoholic fatty liver disease were assessed. After 3 months, plasma lipid profile, glucose levels, body weight, energy intake and dietary intake did not differ among groups. Likewise, oxidative stress, plasma malondialdehyde (MDA), hepatic MDA expressed as nmol/mg portion (ptn) and antioxidant enzymes did not differ among the groups. Hepatic linoleic acid, α-linolenic acid, arachidonic acid and EPA acid declined in the OXID and CONT+ groups. Aortic wall thickness, lumen and diameter increased only in the OXID group. OXID and CONT+ groups exhibited higher concentrations of MDA, expressed as μmol/mg ptn per %PUFA, when compared with the CONT- group. Our results suggest that ingestion of oxidised flaxseed oil increases hepatic MDA concentration and is potentially pro-atherogenic. In addition, the mean MDA value observed in all groups was similar to those reported in other studies that used xenobiotics as oxidative stress inducers. Thus, the diet applied in this study represents an interesting model for further research involving antioxidants.

  13. Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats.

    PubMed

    Al-Qahtani, Jobran M; Abdel-Wahab, Basel A; Abd El-Aziz, Samy M

    2014-01-01

    Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.

  14. Neurobehavioral and metabolic long-term consequences of neonatal maternal deprivation stress and adolescent olanzapine treatment in male and female rats.

    PubMed

    Llorente-Berzal, Alvaro; Mela, Virginia; Borcel, Erika; Valero, Manuel; López-Gallardo, Meritxell; Viveros, Maria-Paz; Marco, Eva M

    2012-03-01

    Early maternal deprivation (MD), 24h of dam-litter separation on postnatal day (PND) 9, has been proposed as a suitable animal model to investigate some neuropsychiatric disorders with a base in neurodevelopment that also compromises metabolic and endocrine homeostasis. Atypical antipsychotics are frequently prescribed to children and adolescents as first-line treatment for several mental disorders despite the adverse metabolic effects frequently reported. However, persistent long-term effects after adolescent drug therapy have been scarcely investigated. In the present study we aimed to investigate the long-lasting metabolic and behavioral effects of MD in combination with the administration of an atypical antipsychotic, i.e. olanzapine, during adolescence. For that purpose, male and female Wistar rats not exposed (control group, Co) and exposed to the MD protocol were administered with oral olanzapine (Olan, 7.5mg/kg/day) or vehicle (Vh, 1mM acetic acid) in drinking water from PND 28 to PND 49. Body weight gain, glycaemia and plasma triglyceride (TG) levels were evaluated as relevant metabolic parameters. MD significantly diminished body weight gain, while Olan administration only induced a subtle decrease in body weight gain among female animals in the long-term. Olan discontinuation decreased plasma TG levels in adult rats, an effect that was counteracted by neonatal exposure to the MD protocol. Both MD and Olan treatment impaired cognitive function in the novel object recognition test, although no interaction between treatments was observed. Neither MD nor Olan administration affected psychotic-related symptoms evaluated in the prepulse inhibition task, although animals treated with Olan showed an increased reactivity to the first acoustic stimulus. MD diminished the corticosterone stress-induced response among females, and reduced the expression of CB1 receptors in the hippocampus of both male and female rats. Notably, Olan administration tended to

  15. Field evaluation of an acid rain-drought stress interaction.

    PubMed

    Banwart, W L

    1988-01-01

    Various methods have been proposed to simulate natural field conditions for growing agricultural crops while controlling conditions to study specific environmental effects. This report briefly describes the use of moveable rain exclusion shelters (10.4 x 40.9 m) to study the results of the interaction of acid rain and drought stress on corn and soybean yields. The rain exclusion shelters are constructed of galvanized pipe framing and covered with polyethylene film. Movement is automated by a rain switch to protect crops from ambient rainfall and to treat them with simulated acid rain The facility simulates a real environment with respect to variables such as solar exposure, wind movement, dew formation, and insect exposure, while allowing careful control of moisture regimes. Soybeans and corn were treated with average rainfall amounts, and with one-half and one-quarter of these rainfall amounts (drought stress) at two levels of rainfall acidity, pH 5.6 and 3.0. While drought stress resulted in considerable yield reduction for Amsoy and Williams soybeans, no additional reduction in yield was observed with rainfall of pH 3.0, as compared to rainfall of approximately pH 5.6. Similar results were observed for one corn cultivar, Pioneer 3377. For one year of the study however, yield of B73 x Mo17 (corn) was reduced 3139 kg ha(-1) by the most severe drought, and an additional 1883 kg ha(-1) by acid rain of pH 3.0, as compared to the control (pH 5.6). Yield reduction from acidic rain was considerably less at full water rates, resulting in a significant pH by drought stress interaction. However, during the second year of the experiment, no pH effect or drought by pH interaction was observed for this cultivar. The reason for the difference in the two years was not identified.

  16. The role of FKBP5 genotype in moderating long-term effectiveness of exposure-based psychotherapy for posttraumatic stress disorder

    PubMed Central

    Wilker, S; Pfeiffer, A; Kolassa, S; Elbert, T; Lingenfelder, B; Ovuga, E; Papassotiropoulos, A; de Quervain, D; Kolassa, I-T

    2014-01-01

    Exposure-based therapies are considered the state-of-the-art treatment for Posttraumatic Stress Disorder (PTSD). Yet, a substantial number of PTSD patients do not recover after therapy. In the light of the well-known gene × environment interactions on the risk for PTSD, research on individual genetic factors that influence treatment success is warranted. The gene encoding FK506-binding protein 51 (FKBP5), a co-chaperone of the glucocorticoid receptor (GR), has been associated with stress reactivity and PTSD risk. As FKBP5 single-nucleotide polymorphism rs1360780 has a putative functional role in the regulation of FKBP5 expression and GR sensitivity, we hypothesized that this polymorphism influences PTSD treatment success. We investigated the effects of FKBP5 rs1360780 genotype on Narrative Exposure Therapy (NET) outcome, an exposure-based short-term therapy, in a sample of 43 survivors of the rebel war in Northern Uganda. PTSD symptom severity was assessed before and 4 and 10 months after treatment completion. At the 4-month follow-up, there were no genotype-dependent differences in therapy outcome. However, the FKBP5 genotype significantly moderated the long-term effectiveness of exposure-based psychotherapy. At the 10-month follow-up, carriers of the rs1360780 risk (T) allele were at increased risk of symptom relapse, whereas non-carriers showed continuous symptom reduction. This effect was reflected in a weaker treatment effect size (Cohen's D=1.23) in risk allele carriers compared with non-carriers (Cohen's D=3.72). Genetic factors involved in stress response regulation seem to not only influence PTSD risk but also responsiveness to psychotherapy and could hence represent valuable targets for accompanying medication. PMID:24959896

  17. Roles of dehydrin genes in wheat tolerance to drought stress

    PubMed Central

    Hassan, Nemat M.; El-Bastawisy, Zeinab M.; El-Sayed, Ahamed K.; Ebeed, Heba T.; Nemat Alla, Mamdouh M.

    2013-01-01

    Physiological parameters and expression levels of drought related genes were analyzed in early vegetative stage of two bread wheat cultivars (Sids and Gmiza) differ in drought tolerance capacity. Both cultivars were imposed to gradual water depletion started on day 17 till day 32 after sowing. Sids, the more tolerant cultivar to drought showed higher fresh and dry weights than the drought sensitive genotype, Gmiza. Under water stress, Sids had higher membrane stability index (MSI), lower accumulated H2O2 and higher activity of the antioxidant enzymes; catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) than Gmiza. On the other hand, the differential expression patterns of the genes dhn, wcor and dreb were observed due to water deficit intensity according to cultivar’s tolerance to drought. The DNA sequence alignment of dun showed high similarity of about 80–92% identities with other related plants. The most striking overall observed trend was the highly induction in the expression of dun, wcor and dreb in leaves of the tolerant genotype, Sids under severe water stress. PMID:25750752

  18. Factor Structure and Psychometric Properties of the Posttraumatic Stress Disorder (PTSD) Checklist and DSM-5 PTSD Symptom Set in a Long-Term Postearthquake Cohort in Armenia.

    PubMed

    Demirchyan, Anahit; Goenjian, Armen K; Khachadourian, Vahe

    2015-10-01

    Psychometric properties of the Armenian-language posttraumatic stress disorder (PTSD) Checklist-Civilian version (PCL-C) and the DSM-5 PTSD symptom set were examined in a long-term cohort of earthquake survivors. In 2012, 725 survivors completed the instruments. Item-/scale-level analysis and confirmatory factor analysis (CFA) were performed for both scales. In addition, exploratory factor analysis (EFA) was conducted for DSM-5 symptoms. Also, the differential internal versus external specificity of PTSD symptom clusters taken from the most supported PTSD structural models was examined. Both scales had Cronbach's alpha greater than .9. CFA of PCL-C structure demonstrated an excellent fit by a four-factor (reexperiencing, avoidance, numbing, and hyperarousal) model known as numbing model; however, a superior fit was achieved by a five-factor model (Elhai et al.). EFA yielded a five-factor structure for DSM-5 symptoms with the aforementioned four domains plus a negative state domain. This model achieved an acceptable fit during CFA, whereas the DSM-5 criteria-based model did not. The Armenian-language PCL-C was recommended as a valid PTSD screening tool. The study findings provided support to the proposed new classification of common mental disorders, where PTSD, depression, and generalized anxiety are grouped together as a subclass of distress disorders. Recommendations were made to further improve the PTSD diagnostic criteria.

  19. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    PubMed

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  20. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    PubMed

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions. PMID:22543724

  1. Women's experiences in relation to stillbirth and risk factors for long-term post-traumatic stress symptoms: a retrospective study

    PubMed Central

    Gravensteen, Ida Kathrine; Helgadóttir, Linda Björk; Jacobsen, Eva-Marie; Rådestad, Ingela; Sandset, Per Morten; Ekeberg, Øivind

    2013-01-01

    Objectives (1) To investigate the experiences of women with a previous stillbirth and their appraisal of the care they received at the hospital. (2) To assess the long-term level of post-traumatic stress symptoms (PTSS) in this group and identify risk factors for this outcome. Design A retrospective study. Setting Two university hospitals. Participants The study population comprised 379 women with a verified diagnosis of stillbirth (≥23 gestational weeks or birth weight ≥500 g) in a singleton or twin pregnancy 5–18 years previously. 101 women completed a comprehensive questionnaire in two parts. Primary and secondary outcome measures The women's experiences and appraisal of the care provided by healthcare professionals before, during and after stillbirth. PTSS at follow-up was assessed using the Impact of Event Scale (IES). Results The great majority saw (98%) and held (82%) their baby. Most women felt that healthcare professionals were supportive during the delivery (85.6%) and showed respect towards their baby (94.9%). The majority (91.1%) had received some form of short-term follow-up. One-third showed clinically significant long-term PTSS (IES ≥ 20). Independent risk factors were younger age (OR 6.60, 95% CI 1.99 to 21.83), induced abortion prior to stillbirth (OR 5.78, 95% CI 1.56 to 21.38) and higher parity (OR 3.46, 95% CI 1.19 to 10.07) at the time of stillbirth. Having held the baby (OR 0.17, 95% CI 0.05 to 0.56) was associated with less PTSS. Conclusions The great majority saw and held their baby and were satisfied with the support from healthcare professionals. One in three women presented with a clinically significant level of PTSS 5–18 years after stillbirth. Having held the baby was protective, whereas prior induced abortion was a risk factor for a high level of PTSS. Trial registration The study was registered at http://www.clinicaltrials.gov, with registration number NCT 00856076. PMID:24154514

  2. Long-term Outcomes of Tension-free Vaginal Tape Procedure for Treatment of Female Stress Urinary Incontinence with Intrinsic Sphincter Deficiency

    PubMed Central

    Choo, Gwoan-Youb; Kim, Dae Hyun; Park, Hyoung Keun; Paick, Sung-Hyun; Lho, Yong-Soo

    2012-01-01

    Purpose To assess the long-term outcomes of tension-free vaginal tape (TVT) for stress urinary incontinence (SUI) with intrinsic sphincter deficiency (ISD) and to identify influencing factors for failure in these cases. Methods A total of 136 women who underwent TVT procedures with minimum follow-up duration of 3 years were included in the study. Patients were divided into two groups (non-ISD and ISD groups) based on preoperative urodynamic studies. Patient outcomes were assessed from retrospective chart review and telephone research. Cure was defined as the subjective resolution of SUI in any circumstances. Improvement was defined as the subjective improvement of SUI without complete resolution. Failure was defined as the subjective lack of improvement of SUI. Patients in ISD group were subdivided into two subgroups (cure and non-cure groups) and were compared to identify influencing factors for TVT procedure failure. Results Eighty-nine patients were in non-ISD group, and 47 in ISD group. The mean follow-up durations were 50.3±9.2 and 49.7±9.7 months, respectively. Subjective cure rate was 75.3% for non-ISD group, and 76.7% for ISD group (P>0.05). Improvement rate was 6.7% for non-ISD group, and 2.1% for ISD group (P>0.05). Satisfaction scores was 3.8±1.2 points in the non-ISD group, and 3.5±1.2 points in ISD group (P>0.05). In ISD subgroups, VLPP was 41.9±12.0 cmH2O for non-cure group, and 50.5±8.6 cmH2O for cure group, and was the only factor that showed significant statistical difference between the two subgroups (P=0.011). Conclusions With our long-term results, TVT is an effective treatment even in women with ISD. However, ISD patients with low VLPP should be counseled carefully about TVT outcome. PMID:22500254

  3. Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea.

    PubMed

    Sinha, Ranjita; Gupta, Aarti; Senthil-Kumar, Muthappa

    2016-01-01

    In field conditions, plants are concurrently exposed to multiple stresses, where one stressor impacts the plant's response to another stressor, and the resultant net effect of these stresses differs from individual stress response. The present study investigated the effect of drought stress on interaction of chickpea with Pseudomonas syringae pv. phaseolicola (Psp; foliar pathogen) and Ralstonia solanacearum (Rs; xylem inhabiting wilt causing pathogen), respectively, and the net-effect of combined stress on chlorophyll content and cell death. Two type of stress treatments were used to study the influence of each stress factor during combined stress, viz., imposition of drought stress followed by pathogen challenge (DP), and pathogen inoculated plants imposed with drought in course of pathogen infection (PD). Drought stress was imposed at different levels with pathogen inoculum to understand the influence of different stress intensities on stress interaction and their net impact. Drought stressed chickpea plants challenged with Psp infection (DPsp) showed reduced in planta bacterial number compared to Psp infection alone. Similarly, Rs infection of chickpea plants showed reduced in planta bacterial number under severe drought stress. Combined drought and Psp (DPsp) infected plants showed decreased cell death compared to plants infected only with Psp but the extent of cell death was similar to drought stressed plants. Similarly, chlorophyll content in plants under combined stress was similar to the individual drought stressed plants; however, the chlorophyll content was more compared to pathogen only infected plants. Under combined drought and Rs infection (DRs), cell death was similar to individual drought stress but significantly less compared to only Rs infected plants. Altogether, the study proposes that both stress interaction and net effect of combined stress could be majorly influenced by first occurring stress, for example, drought stress in DP treatment. In

  4. Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea

    PubMed Central

    Sinha, Ranjita; Gupta, Aarti; Senthil-Kumar, Muthappa

    2016-01-01

    In field conditions, plants are concurrently exposed to multiple stresses, where one stressor impacts the plant's response to another stressor, and the resultant net effect of these stresses differs from individual stress response. The present study investigated the effect of drought stress on interaction of chickpea with Pseudomonas syringae pv. phaseolicola (Psp; foliar pathogen) and Ralstonia solanacearum (Rs; xylem inhabiting wilt causing pathogen), respectively, and the net-effect of combined stress on chlorophyll content and cell death. Two type of stress treatments were used to study the influence of each stress factor during combined stress, viz., imposition of drought stress followed by pathogen challenge (DP), and pathogen inoculated plants imposed with drought in course of pathogen infection (PD). Drought stress was imposed at different levels with pathogen inoculum to understand the influence of different stress intensities on stress interaction and their net impact. Drought stressed chickpea plants challenged with Psp infection (DPsp) showed reduced in planta bacterial number compared to Psp infection alone. Similarly, Rs infection of chickpea plants showed reduced in planta bacterial number under severe drought stress. Combined drought and Psp (DPsp) infected plants showed decreased cell death compared to plants infected only with Psp but the extent of cell death was similar to drought stressed plants. Similarly, chlorophyll content in plants under combined stress was similar to the individual drought stressed plants; however, the chlorophyll content was more compared to pathogen only infected plants. Under combined drought and Rs infection (DRs), cell death was similar to individual drought stress but significantly less compared to only Rs infected plants. Altogether, the study proposes that both stress interaction and net effect of combined stress could be majorly influenced by first occurring stress, for example, drought stress in DP treatment. In

  5. Sex differences in the long-term repeatability of the acute stress response in long-lived, free-living Florida scrub-jays (Aphelocoma coerulescens).

    PubMed

    Small, Thomas W; Schoech, Stephan J

    2015-01-01

    There is increasing evidence that individual differences in the physiological stress response are persistent traits in many animals. To test the hypothesis that the stress-induced CORT (SI-CORT) response is repeatable over the adult life span of Florida scrub-jays (Aphelocoma coerulescens), we sampled 32 male and 25 female free-living scrub-jays (aged 2-13 years) during a 9-year period (2004-2012). Each individual was sampled two to five times and samples were collected one or more years apart during the pre-breeding season (Jan-March). In addition, individuals sampled over the greatest time period (6-8 years) were analyzed separately to more closely assess long-term repeatability. SI-CORT was repeatable in females, but not males, when values were not corrected for confounding variables (agreement repeatability). However, when the year and time of day of sample collection were controlled (adjusted repeatability), SI-CORT was repeatable in both sexes. SI-CORT was also repeatable in the males and females sampled 6-8 years apart. Finally, baseline CORT levels of males, but not females, exhibited low but significant repeatability when adjusted for year. The results of this study demonstrate that differences in SI-CORT levels were repeatable within adult scrub-jays sampled up to 8 years apart. Further, the female SI-CORT response was more consistent between pre-breeding seasons than males, which may have resulted from males having higher SI-CORT plasticity in response to environmental conditions. These data support the hypothesis that the SI-CORT response of Florida scrub-jays develops before adulthood and persists throughout much, if not all, of their natural adult life span.

  6. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress.

    PubMed

    Buonanno, Manuela; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2011-04-01

    Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ∼ 151 keV/µm), 600 MeV/u silicon ions (LET ∼ 51 keV/µm), or 1 GeV protons (LET ∼ 0.2 keV/µm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-µm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy. PMID:21319986

  7. Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress.

    PubMed

    Wong, Dona Lee; Tai, T C; Wong-Faull, David C; Claycomb, Robert; Meloni, Edward G; Myers, Karyn M; Carlezon, William A; Kvetnansky, Richard

    2012-07-01

    Epinephrine (Epi), which initiates short-term responses to cope with stress, is, in part, stress-regulated via genetic control of its biosynthetic enzyme, phenylethanolamine N-methyltransferase (PNMT). In rats, immobilization (IMMO) stress activates the PNMT gene in the adrenal medulla via Egr-1 and Sp1 induction. Yet, elevated Epi induced by acute and chronic stress is associated with stress induced, chronic illnesses of cardiovascular, immune, cancerous, and behavioral etiologies. Major sources of Epi include the adrenal medulla and brainstem. Although catecholamines do not cross the blood-brain barrier, circulating Epi from the adrenal medulla may communicate with the central nervous system and stress circuitry by activating vagal nerve β-adrenergic receptors to release norepinephrine, which could then stimulate release of the same from the nucleus tractus solitarius and locus coeruleus. In turn, the basal lateral amygdala (BLA) may activate to stimulate afferents to the hypothalamus, neocortex, hippocampus, caudate nucleus, and other brain regions sequentially. Recently, we have shown that repeated IMMO or force swim stress may evoke stress resiliency, as suggested by changes in expression and extinction of fear memory in the fear-potentiated startle paradigm. However, concomitant adrenergic changes seem stressor dependent. Present studies aim to identify stressful conditions that elicit stress resiliency versus stress sensitivity, with the goal of developing a model to investigate the potential role of Epi in stress-associated illness. If chronic Epi over expression does elicit illness, possibilities for alternative therapeutics exist through regulating stress-induced Epi expression, adrenergic receptor function and/or corticosteroid effects on Epi, adrenergic receptors and the stress axis.

  8. Transcription factors expressed in soybean roots under drought stress.

    PubMed

    Pereira, S S; Guimarães, F C M; Carvalho, J F C; Stolf-Moreira, R; Oliveira, M C N; Rolla, A A P; Farias, J R B; Neumaier, N; Nepomuceno, A L

    2011-10-21

    To gain insight into stress-responsive gene regulation in soybean plants, we identified consensus sequences that could categorize the transcription factors MYBJ7, BZIP50, C2H2, and NAC2 as members of the gene families myb, bzip, c2h2, and nac, respectively. We also investigated the evolutionary relationship of these transcription factors and analyzed their expression levels under drought stress. The NCBI software was used to find the predicted amino acid sequences of the transcription factors, and the Clustal X software was used to align soybean and other plant species sequences. Phylogenetic trees were built using the Mega 4.1 software by neighbor joining and the degree of confidence test by Bootstrap. Expression level studies were carried out using hydroponic culture; the experiments were designed in completely randomized blocks with three repetitions. The blocks consisted of two genotypes, MG/BR46 Conquista (drought-tolerant) and BR16 (drought-sensitive) and the treatments consisted of increasingly long dehydration periods (0, 25, 50, 75, and 100 min). The transcription factors presented domains and/or conserved regions that characterized them as belonging to the bzip, c2h2, myb, and nac families. Based on the phylogenetic trees, it was found that the myb, bzip and nac genes are closely related to myb78, bzip48 and nac2 of soybean and that c2h2 is closely related to c2h2 of Brassica napus. Expression of all genes was in general increased under drought stress in both genotypes. Major differences between genotypes were due to the lowering of the expression of the mybj7 and c2h2 genes in the drought-tolerant variety at some times. Over-expression or silencing of some of these genes has the potential to increase stress tolerance.

  9. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation

    USGS Publications Warehouse

    Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C.

    2008-01-01

    The development of new tools that provide timely, detailed-spatial-resolution drought information is essential for improving drought preparedness and response. This paper presents a new method for monitoring drought-induced vegetation stress called the Vegetation Drought Response Index (VegDRI). VegDRI integrates traditional climate-based drought indicators and satellite-derived vegetation index metrics with other biophysical information to produce a I km map of drought conditions that can be produced in near-real time. The initial VegDRI map results for a 2002 case study conducted across seven states in the north-central United States illustrates the utility of VegDRI for improved large-area drought monitoring. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  10. [Effects of calcium fertilizer application on peanut growth, physiological characteristics, yield and quality under drought stress].

    PubMed

    Gu, Xue-hua; Sun, Lian-qiang; Gao, Bo; Sun, Qi-ze; Liu, Chen; Zhang, Jia-lei; Li, Xiang-dong

    2015-05-01

    An experiment was carried out to study the effects of different rates of calcium application on peanut growth, physiological characteristics, yield and quality under drought stress at pegging stage and pod setting stage in pool cultivation with rainproof, using variety 606 as experimental material. The results showed that applying Ca fertilizer under drought stress could promote peanut growth, increase the chlorophyll content, leaf photosynthetic rate and the root vitality, increase the recovery ability of peanut during rewatering after drought stress, alleviate the impact of drought stress on peanut. Applying Ca fertilizer under drought stress increased pod and kernel yields because of the increase of kernel rate and pod number per plant. It also increased the fat and protein contents of peanut kernel, and improved peanut kernel quality under drought stress. It was suggested that 300 kg · hm(-2) Ca application is the best choice to alleviate the impact of drought stress on peanut.

  11. Chronic stress in pregnant guinea pigs (Cavia aperea f. porcellus) attenuates long-term stress hormone levels and body weight gain, but not reproductive output.

    PubMed

    Schöpper, Hanna; Palme, Rupert; Ruf, Thomas; Huber, Susanne

    2011-12-01

    Stress, when extreme or chronic, can have a negative impact on health and survival of mammals. This is especially true for females during reproduction when self-maintenance and investment in offspring simultaneously challenge energy turnover. Therefore, we investigated the effects of repeated stress during early- and mid-gestation on the maternal stress axis, body weight gain and reproductive output. Female guinea pigs (Cavia aperea f. porcellus, n = 14) were either stressed (treatment: exposure to strobe light in an unfamiliar environment on gestational day -7, 0, 7, 14, 21, 28, 35, 42) or left completely undisturbed (control) throughout pregnancy. Females of both groups received the same respective diets, and reproductive parameters were evaluated upon parturition. Additionally, hormonal data were obtained from blood and feces. The stress exposure induced a significant increase in plasma cortisol concentrations during the afternoon. In contrast to this short-term response in plasma cortisol concentrations, we found no significant differences in the levels of cortisol metabolites in feces collected after stress exposure between groups and even significantly decreased levels of fecal cortisol metabolites on non-stress days over time in treatment females. Among treatment females, gain in body weight was attenuated over gestation and body weight was lower compared to control females during lactation, especially in cases of large litter sizes. No differences could be seen in the reproductive parameters. We conclude that repeated stress exposure with strobe light during early- and mid-gestation results in a down-regulation of the hypothalamic-pituitary-adrenal axis and lower weight gain in treatment females, but has no effect on reproductive output. PMID:21647601

  12. Morphological and Biological alteration of maize root architectures on drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  13. Morphological and biological alteration of maize root architectures on drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  14. Stress and the menstrual cycle: short- and long-term response to a five-day endotoxin challenge during the luteal phase in the rhesus monkey.

    PubMed

    Xiao, E; Xia-Zhang, L; Ferin, M

    1999-02-01

    Previously, we reported that in the rhesus monkey a 5-day inflammatory-like stress during the early-mid follicular phase acutely stimulates the hypothalamic-pituitary-adrenal axis and exerts effects on the hypothalamic-pituitary-gonadal axis, delays folliculogenesis and in some animals decreases luteal function in the post-treatment cycle. Because the endocrine environment at the time of the stress may influence the response to the stress, we now investigate the acute and long-term responses to a similar stress challenge during the luteal phase of the menstrual cycle, at a time of progesterone dominance. Nine monkeys with normal cycles were injected with endotoxin (lipopolysaccharide; LPS, 150 microg i.v.) twice a day for 5 days starting on days 4-8 after the LH peak. Blood samples were taken at hour 3 and hour 8 after each morning LPS injection to monitor the acute gonadotropin and cortisol responses. To verify cyclicity, menses were checked every day, and daily blood samples were taken for estradiol and progesterone measurement. Two control cycles, the LPS treatment cycle, and two post-treatment cycles were documented. Endotoxin activated the adrenal axis: mean (+/-SE) cortisol secretion was significantly increased at hour 3 after the first morning LPS injection (74.1 +/- 4.9 vs. 24.1 +/- 1.8 microg/dL in the control; P < 0.05) and remained elevated at hour 8. This response decreased progressively with time: on day 5 of LPS treatment, the cortisol level was still significantly higher than control at hour 3 (38.5 +/- 5.0 microg/dL; P < 0.05) but had returned to the control concentration by hour 8 (days 3-5 of LPS). Mean integrated progesterone through the luteal phase of the LPS treatment cycle was significantly decreased (33.5 +/- 3.3 ng/ml vs. 48.9 +/- 3.7 and 54.0 +/- 4.9 in the two control cycles; P < 0.05), but luteal phase length remained unchanged. When compared with control levels on the same day of the luteal phase, about one third of LH and FSH values

  15. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat

    PubMed Central

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field. PMID:24904597

  16. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver

    PubMed Central

    Fu, Jihua; Ma, Shaoxin; Li, Xin; An, Shanshan; Li, Tao; Guo, Keke; Lin, Min; Qu, Wei; Wang, Shanshan; Dong, Xinyue; Han, Xiaoyu; Fu, Ting; Huang, Xinping; Wang, Tianying; He, Siyu

    2016-01-01

    Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver. PMID:26884719

  17. Whole gene family expression and drought stress regulation of aquaporins.

    PubMed

    Alexandersson, Erik; Fraysse, Laure; Sjövall-Larsen, Sara; Gustavsson, Sofia; Fellert, Maria; Karlsson, Maria; Johanson, Urban; Kjellbom, Per

    2005-10-01

    Since many aquaporins (AQPs) act as water channels, they are thought to play an important role in plant water relations. It is therefore of interest to study the expression patterns of AQP isoforms in order to further elucidate their involvement in plant water transport. We have monitored the expression patterns of all 35 Arabidopsis AQPs in leaves, roots and flowers by cDNA microarrays, specially designed for AQPs, and by quantitative real-time reverse transcriptase PCR (Q-RT-PCR). This showed that many AQPs are pre-dominantly expressed in either root or flower organs, whereas no AQP isoform seem to be leaf specific. Looking at the AQP subfamilies, most plasma membrane intrinsic proteins (PIPs) and some tonoplast intrinsic proteins (TIPs) have a high level of expression, while NOD26-like proteins (NIPs) are present at a much lower level. In addition, we show that PIP transcripts are generally down-regulated upon gradual drought stress in leaves, with the exception of AtPIP1;4 and AtPIP2;5, which are up-regulated. AtPIP2;6 and AtSIP1;1 are constitutively expressed and not significantly affected by the drought stress. The transcriptional down-regulation of PIP genes upon drought stress could also be observed on the protein level. PMID:16235111

  18. Vegetation stress as a feedback mechanism in midlatitude drought

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the Simplified Simple Biosphere Model is used to investigate the effect of soil moisture and vegetation stress on drought in the mid-latitudes. An idealized land-sea distribution with simple topography is used to remove as many external sources of climate variation as possible. The land consists of a single, flat, rectangular continent covered with prairie vegetation and centered on 44 deg N of an aqua planet. A control integration of 4 years is performed, and several sets of seasonal anomaly integrations are made to test the sensitivity of seasonal climate to low initial (1 April) soil moisture and dormant vegetation like what would occur during a severe drought. It is found that the inclusion of dormant vegetation during the spring and early summer greatly reduces evapotranspiration by eliminating transpiration. This affects local climate more strongly as summer progresses. Low initial soil moisture, combined with dormant vegetation, leads to a severe drought. The reduction in precipitation is much greater in magnitude than that due to low soil moisture alone, and greater than the sum of the effects computed separately. Although the short-term drought is more severe, the dormancy of the vegetation prevents further depletion of moisture in the root zone of the soil, so soil moisture begins to rebound toward the middle of summer.

  19. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria.

    PubMed

    Vurukonda, Sai Shiva Krishna Prasad; Vardharajula, Sandhya; Shrivastava, Manjari; SkZ, Ali

    2016-03-01

    Drought is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with drought stress. Plant growth promoting rhizobacteria (PGPR) could play a significant role in alleviation of drought stress in plants. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane- 1-carboxylate (ACC) deaminase, volatile compounds, inducing accumulation of osmolytes, antioxidants, upregulation or down regulation of stress responsive genes and alteration in root morphology in acquisition of drought tolerance. The term Induced Systemic Tolerance (IST) was coined for physical and chemical changes induced by microorganisms in plants which results in enhanced tolerance to drought stresses. In the present review we elaborate on the role of PGPR in helping plants to cope with drought stress.

  20. The long term characteristics of greenschist

    NASA Astrophysics Data System (ADS)

    Jang, Bo-An

    2016-04-01

    The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

  1. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site

    NASA Astrophysics Data System (ADS)

    Harris, Courtney K.; Wiberg, Patricia L.

    1997-09-01

    Modeling shelf sediment transport rates and bed reworking depths is problematic when the wave and current forcing conditions are not precisely known, as is usually the case when long-term sedimentation patterns are of interest. Two approaches to modeling sediment transport under such circumstances are considered. The first relies on measured or simulated time series of flow conditions to drive model calculations. The second approach uses as model input probability distribution functions of bottom boundary layer flow conditions developed from wave and current measurements. Sediment transport rates, frequency of bed resuspension by waves and currents, and bed reworking calculated using the two methods are compared at the mid-shelf STRESS (Sediment TRansport on Shelves and Slopes) site on the northern California continental shelf. Current, wave and resuspension measurements at the site are used to generate model inputs and test model results. An 11-year record of bottom wave orbital velocity, calculated from surface wave spectra measured by the National Data Buoy Center (NDBC) Buoy 46013 and verified against bottom tripod measurements, is used to characterize the frequency and duration of wave-driven transport events and to estimate the joint probability distribution of wave orbital velocity and period. A 109-day record of hourly current measurements 10 m above bottom is used to estimate the probability distribution of bottom boundary layer current velocity at this site and to develop an auto-regressive model to simulate current velocities for times when direct measurements of currents are not available. Frequency of transport, the maximum volume of suspended sediment, and average flux calculated using measured wave and simulated current time series agree well with values calculated using measured time series. A probabilistic approach is more amenable to calculations over time scales longer than existing wave records, but it tends to underestimate net transport

  2. Transgenerational Variations in DNA Methylation Induced by Drought Stress in Two Rice Varieties with Distinguished Difference to Drought Resistance

    PubMed Central

    Li, Mingshou; Lou, Qiaojun; Xia, Hui; Wang, Pei; Li, Tiemei; Liu, Hongyan; Luo, Lijun

    2013-01-01

    Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0) and the sixth generation (G6) of these two varieties in normal condition (CK) and under drought stress (DT) at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP) method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive) and Huhan-3 (resistant) were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML) were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene’s promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties. PMID:24244664

  3. Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities.

    PubMed

    Das, Akan; Mukhopadhyay, Mainaak; Sarkar, Bipasa; Saha, Dipanwita; Mondal, Tapan K

    2015-07-01

    Drought is the major yield-limiting abiotic factor of tea cultivation. In the present study, influence of drought stress on cellular ultrastructure and antioxidants was studied drought-tolerant (TV-23) and -sensitive (S.3/A3) tea cultivars by imposing drought stress for 21 days. Drought stress led to considerable structural alterations in mitochondria, chloroplast and vacuole. Lesser membrane integrity and higher structural damage was observed in S.3/A3. Chlorophyll a, chl-b and carotenoids content in leaves decreased in each cultivar; however, the decrement was more brisk in S.3/A3. Proline, total soluble sugar, ascorbic acid and abscisic acid were elevated in TV-23 whereas hydrogen peroxide, superoxide anion, lipid peroxidation and electrolyte leakage increased rapidly in S.3/A3. Starch content decreased both in leaves and roots of each cultivar and was more pronounced in roots of TV-23. Under drought, enhanced activities of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase were recorded in both roots and leaves of each cultivar, but the rate of enhancement was more in TV-23. This indicated that tolerant cultivar exhibited higher antioxidant capacity and a stronger protective mechanism such that their ultrastructural integrity was better maintained during exposure to drought stress. PMID:26364464

  4. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress

    PubMed Central

    Nataraja, Karaba N.; Udayakumar, M.

    2015-01-01

    Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses. PMID:26366726

  5. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress.

    PubMed

    Babitha, K C; Vemanna, Ramu S; Nataraja, Karaba N; Udayakumar, M

    2015-01-01

    Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.

  6. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.

    PubMed

    Cvikrová, Milena; Gemperlová, Lenka; Martincová, Olga; Vanková, Radomira

    2013-12-01

    The roles of proline and polyamines (PAs) in the drought stress responses of tobacco plants were investigated by comparing the responses to drought alone and drought in combination with heat in the upper and lower leaves and roots of wild-type tobacco plants and transformants that constitutively over-express a modified gene for the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase (P5CSF129A; EC 2.7.2.11/1.2.1.41). In both genotypes, drought stress coincided with a decrease in relative water content (RWC) that was much less severe in the upper leaves than elsewhere in the plant. The drought also increased proline levels in both genotypes. A brief period of heat stress (2 h at 40 °C) at the end of the drought period did not significantly influence the proline levels in the upper leaves and roots but caused a further increase in the lower leaves of both genotypes. The rate at which these elevated proline levels returned to normal during the post-stress recovery period was slower in the transformants and plants that had been subjected to the combined stress. In both genotypes, drought stress significantly reduced the levels of spermidine (Spd) and putrescine (Put) in the leaves and roots relative to those for controls, and increased the levels of spermine (Spm) and diaminopropane (Dap, formed by the oxidative deamination of Spd and Spm). Spd levels may have declined due to its consumption in Spm biosynthesis and/or oxidation by polyamine oxidase (PAO; EC 1.5.3.11) to form Dap, which became more abundant during drought stress. During the rewatering period, the plants' Put and Spd levels recovered quickly and the activity of the PA biosynthesis enzymes in their leaves and roots increased substantially; this increase was more pronounced in transformants than WT plants. The high levels of Spm observed in drought stressed plants persisted even after the 24 h recovery and rewatering phase. The malondialdehyde (MDA) contents of the lower leaves of WTs

  7. Effects of Drought Stress and Ozone Exposure on Isoprene Emissions from Oak Seedlings in Texas

    NASA Astrophysics Data System (ADS)

    Madronich, M. B.; Harte, A.; Schade, G. W.

    2014-12-01

    Isoprene is the dominant hydrocarbon emitted by plants to the atmosphere with an approximate global emission of 550 Tg C yr-1. Isoprene emission studies have elucidated plants' isoprene production capacity, and the controlling factors of instantaneous emissions. However, it is not yet well understood how long-term climatic factors such as drought and increasing ozone concentrations affect isoprene emission rates. Drought reduces photosynthetic activity and is thus expected to reduce isoprene emission rate, since isoprene production relies on photosynthates. On the other hand, ozone is also known to negatively affect photosynthesis rates, but can instead increase isoprene emissions. These apparent inconsistencies and a lack of experimental data make it difficult to accurately parameterize isoprene emission responses to changing environmental conditions. The objective of this work is to reduce some of these uncertainties, using oak seedlings as a study system. Our project focuses on isoprene emission responses of oak trees to typical summer drought and high ozone conditions in Texas. We report on experiments conducted using a laboratory whole-plant chamber and leaf-level data obtained from greenhouse-grown seedlings. The chamber experiment studied the effects of ozone and drought on isoprene emissions from >3 year old oak seedlings under controlled conditions of photosynthetically active radiation (PAR), temperature, soil-moisture and the chamber's air composition. Stress in plants was induced by manipulating potted soil-moisture and ozone concentration in the chamber. The greenhouse study focused on understanding the effects of drought under Texas climatic conditions. For this study we used two year old seedlings of water oak (Quercus nigra) and post oak (Quercus stellata). Temperature, humidity and light in the greenhouse followed local conditions. Leaf-level conductance, photosynthesis measurements and isoprene sampling were carried out under controlled leaf

  8. Assessing risks from drought and heat stress in productive grasslands under present and future climatic conditions

    NASA Astrophysics Data System (ADS)

    Calanca, Pierluigi; Mosimann, Eric; Meisser, Marco; Deléglise, Claire

    2014-05-01

    Grasslands cover the majority of the world's agricultural area, provide the feedstock for animal production, contribute to the economy of farms, and deliver a variety of ecological and societal services. Assessing responses of grassland ecosystems to climate change, in particular climate-related risks, is therefore an important step toward identifying adaptation options necessary to secure grassland functioning and productivity. Of particular concern are risks in relation to drought and extreme temperatures, on the one hand because grasslands are very sensitive to water stress, on the other hand also because global warming is expected to increase the occurrence and intensity of these events in many agricultural areas of the world. In this contribution we review findings of ongoing experimental and modelling activities that aim at examining the implications of climate extremes and climate change for grassland vegetation dynamics and herbage productivity. Data collected at the Jura foot in western Switzerland indicate that water scarcity and associated anomalous temperatures slowed plant development in relation to both the summer drought of 2003 as well as the spring drought of 2011, with decline in annual yields of up to 40%. Further effects of drought found from the analysis of recent field trials explicitly designed to study the effects of different water management regimes are changes in the functional composition and nutritive value of grasslands. Similar responses are disclosed by simulations with a process based grassland ecosystem model that was originally developed for the simulation of mixed grass/clover swards. Simulations driven with historical weather records from the Swiss Plateau suggest that drought and extreme temperature could represent one of the main reasons for the observed yield variability in productive systems. Simulations with climate change scenarios further reveal important changes in ecosystem dynamics for the current century. The results

  9. Long-term environmental stewardship.

    SciTech Connect

    Nagy, Michael David

    2010-08-01

    The purpose of this Supplemental Information Source Document is to effectively describe Long-Term Environmental Stewardship (LTES) at Sandia National Laboratories/New Mexico (SNL/NM). More specifically, this document describes the LTES and Long-Term Stewardship (LTS) Programs, distinguishes between the LTES and LTS Programs, and summarizes the current status of the Environmental Restoration (ER) Project.

  10. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering

    PubMed Central

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-01-01

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir. PMID:26154763

  11. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering.

    PubMed

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-07-06

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir.

  12. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination.

    PubMed

    Ashoub, Ahmed; Baeumlisberger, Marion; Neupaertl, Moritz; Karas, Michael; Brüggemann, Wolfgang

    2015-03-01

    In nature, plants are often exposed to combinations of different stresses at the same time, while in many laboratory studies of molecular stress induction phenomena, single stress responses are analyzed. This study aims to identify the common (i.e. more general stress-responsive) and the stress-specific adjustments of the leaf proteome of wild barley to two often co-occurring stress phenomena, i.e. in response to (long-term) drought acclimation (DA) or to (transient) heat stress (HS). In addition, we analyzed those alterations which are specific for the combination of both stresses. Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry with a 1.5 threshold value of changes in relative protein contents. DA resulted in specific upregulation of proteins with cell detoxification functions, water homeostasis maintenance, amino acids synthesis and lipid metabolism and distinct forms of heat shock proteins (HSPs) and proteins with chaperon functions while proteins related to nitrogen metabolism were downregulated. This response was distinguished from the response to transient HS, which included upregulation of a broad range of HSP products. The common response to both stressors revealed upregulation of additional forms of HSPs and the downregulation of enzymes of the photosynthetic apparatus and chlorophyll binding proteins. The simultaneous exposure to both stress conditions resulted mostly in a combination of both stress responses and to unique abundance changes of proteins with yet unclear functions.

  13. Presynaptic long-term plasticity

    PubMed Central

    Yang, Ying; Calakos, Nicole

    2013-01-01

    Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity. PMID:24146648

  14. Long-term aridity changes in the western United States.

    PubMed

    Cook, Edward R; Woodhouse, Connie A; Eakin, C Mark; Meko, David M; Stahle, David W

    2004-11-01

    The western United States is experiencing a severe multiyear drought that is unprecedented in some hydroclimatic records. Using gridded drought reconstructions that cover most of the western United States over the past 1200 years, we show that this drought pales in comparison to an earlier period of elevated aridity and epic drought in AD 900 to 1300, an interval broadly consistent with the Medieval Warm Period. If elevated aridity in the western United States is a natural response to climate warming, then any trend toward warmer temperatures in the future could lead to a serious long-term increase in aridity over western North America.

  15. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  16. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings

    PubMed Central

    Liu, Junhua; Xia, Jiangbao; Fang, Yanming; Li, Tian; Liu, Jingtao

    2014-01-01

    The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients. PMID:25140348

  17. Response of different genotypes of faba bean plant to drought stress.

    PubMed

    Siddiqui, Manzer H; Al-Khaishany, Mutahhar Y; Al-Qutami, Mohammed A; Al-Whaibi, Mohamed H; Grover, Anil; Ali, Hayssam M; Al-Wahibi, Mona S; Bukhari, Najat A

    2015-05-05

    Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant-1, fresh weight (FW) and dry weight (DW) plant-1, area leaf-1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes "C5" and "Zafar 1" were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype "C5" and "Zafar 1" were found to be relatively tolerant to drought stress and genotypes "G853" and "C4" were sensitive to drought stress.

  18. [Advances in studies on growth metabolism and response mechanisms of medicinal plants under drought stress].

    PubMed

    Si, Can; Zhang, Jun-Yi; Xu, Hu-Chao

    2014-07-01

    Drought stress exerts a considerable effect on growth, physiology and secondary metabolisms of the medicinal plants. It could inhabit the growth of the medicinal plants but promote secretion of secondary metabolites. Other researches indicated that the medicinal plants could depend on the ABA signaling pathway and secreting osmotic substances to resist the drought stress and reduce the damage by it. The article concludes the changes in growth, physiology, secondary metabolisms and response mechanisms of medicinal plants to drought stress that provides a theoretical basis for exploring the relationship between medicinal plants and drought stress.

  19. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  20. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.

  1. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils. PMID:26335528

  2. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings.

    PubMed

    Chen, Daoqian; Wang, Shiwen; Cao, Beibei; Cao, Dan; Leng, Guohui; Li, Hongbing; Yin, Lina; Shan, Lun; Deng, Xiping

    2015-01-01

    Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays) seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of 10 maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714(**)), but not to drought resistance (r = 0.332). Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874(***)) and Fv/Fm (r = 0.626(*)) under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes. PMID:26793218

  3. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings

    PubMed Central

    Chen, Daoqian; Wang, Shiwen; Cao, Beibei; Cao, Dan; Leng, Guohui; Li, Hongbing; Yin, Lina; Shan, Lun; Deng, Xiping

    2016-01-01

    Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays) seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of 10 maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**), but not to drought resistance (r = 0.332). Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874***) and Fv/Fm (r = 0.626*) under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes. PMID:26793218

  4. [Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress].

    PubMed

    Wu, Li-jun; Li, Zhi-hui; Yang, Mo-hua; Wang, Pei-lan

    2015-12-01

    In this study, the leaf anatomical characteristics and transpiration rate of one-year-old seedlings from three study areas including Qingyuan of Zhejiang Province, Dongkou and Jingzhou of Hunan Province were investigated using a pot planting experiment in which relative soil water content was kept as 75%-80% (control), 55%-60% (mild drought stress), 45%-50% (moderate drought stress), 30%-35% (severe drought stress), respectively. The results showed that drought stress significantly reduced the total thickness of the seedling leaves, the thickness of their upper and lower epidermis and the thickness of palisade tissue. The ratio of the palisade tissue to spongy tissue, stomatal length and width also decreased significantly, while the stomatal density increased significantly as the drought stress became more intense. The treatments of drought stress had no significant effect on the thickness of the main veins of the leaves although their xylem thickness varied depending on the seedlings from the different study sites. The change of leaf structure caused the change of physiological function. As drought stress was intensified, the transpiration rate of C. gilva seedlings decreased significantly. The ratio of the palisade tissue to spongy tissue, the thickness of the lower epidermis and stomatal density of the seedlings from Dongkou of Hunan Province were significantly greater, while the transpiration rate was significantly lower than those from other two study sites for all the drought stress treatments, implying that the C. gilva seedlings from Dongkou of Hunan Province had a stronger drought-resistance ability. PMID:27111997

  5. [Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress].

    PubMed

    Wu, Li-jun; Li, Zhi-hui; Yang, Mo-hua; Wang, Pei-lan

    2015-12-01

    In this study, the leaf anatomical characteristics and transpiration rate of one-year-old seedlings from three study areas including Qingyuan of Zhejiang Province, Dongkou and Jingzhou of Hunan Province were investigated using a pot planting experiment in which relative soil water content was kept as 75%-80% (control), 55%-60% (mild drought stress), 45%-50% (moderate drought stress), 30%-35% (severe drought stress), respectively. The results showed that drought stress significantly reduced the total thickness of the seedling leaves, the thickness of their upper and lower epidermis and the thickness of palisade tissue. The ratio of the palisade tissue to spongy tissue, stomatal length and width also decreased significantly, while the stomatal density increased significantly as the drought stress became more intense. The treatments of drought stress had no significant effect on the thickness of the main veins of the leaves although their xylem thickness varied depending on the seedlings from the different study sites. The change of leaf structure caused the change of physiological function. As drought stress was intensified, the transpiration rate of C. gilva seedlings decreased significantly. The ratio of the palisade tissue to spongy tissue, the thickness of the lower epidermis and stomatal density of the seedlings from Dongkou of Hunan Province were significantly greater, while the transpiration rate was significantly lower than those from other two study sites for all the drought stress treatments, implying that the C. gilva seedlings from Dongkou of Hunan Province had a stronger drought-resistance ability.

  6. Long term complications of diabetes

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000327.htm Long term complications of diabetes To use the sharing ... sores and infections. If it goes on too long, your toes, foot, or leg may need to ...

  7. Abdominal Pain, Long-Term

    MedlinePlus

    MENU Return to Web version Abdominal Pain, Long-term See complete list of charts. Ongoing or recurrent abdominal pain, also called chronic pain, may be difficult to diagnose, causing frustration for ...

  8. Long-term biomass research

    SciTech Connect

    Not Available

    1981-03-01

    Some of DOE's long term R and D programs for biomass are summarized in this article. These include research efforts in the fields of anaerobic digestion, energy farming, short rotation cultivation and aquatic farming. (DMC)

  9. Long-term outcomes after severe shock.

    PubMed

    Pratt, Cristina M; Hirshberg, Eliotte L; Jones, Jason P; Kuttler, Kathryn G; Lanspa, Michael J; Wilson, Emily L; Hopkins, Ramona O; Brown, Samuel M

    2015-02-01

    Severe shock is a life-threatening condition with very high short-term mortality. Whether the long-term outcomes among survivors of severe shock are similar to long-term outcomes of other critical illness survivors is unknown. We therefore sought to assess long-term survival and functional outcomes among 90-day survivors of severe shock and determine whether clinical predictors were associated with outcomes. Seventy-six patients who were alive 90 days after severe shock (received ≥1 μg/kg per minute of norepinephrine equivalent) were eligible for the study. We measured 3-year survival and long-term functional outcomes using the Medical Outcomes Study 36-Item Short-Form Health Survey, the EuroQOL 5-D-3L, the Hospital Anxiety and Depression Scale, the Impact of Event Scale-Revised, and an employment instrument. We also assessed the relationship between in-hospital predictors and long-term outcomes. The mean long-term survival was 5.1 years; 82% (62 of 76) of patients survived, of whom 49 were eligible for follow-up. Patients who died were older than patients who survived. Thirty-six patients completed a telephone interview a mean of 5 years after hospital admission. The patients' Physical Functioning scores were below U.S. population norms (P < 0.001), whereas mental health scores were similar to population norms. Nineteen percent of the patients had symptoms of depression, 39% had symptoms of anxiety, and 8% had symptoms of posttraumatic stress disorder. Thirty-six percent were disabled, and 17% were working full-time. Early survivors of severe shock had a high 3-year survival rate. Patients' long-term physical and psychological outcomes were similar to those reported for cohorts of less severely ill intensive care unit survivors. Anxiety and depression were relatively common, but only a few patients had symptoms of posttraumatic stress disorder. This study supports the observation that acute illness severity does not determine long-term outcomes. Even extremely

  10. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress1[OPEN

    PubMed Central

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-01-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress. PMID:25783413

  11. [Effects of drought stress on the root growth and development and physiological characteristics of peanut].

    PubMed

    Ding, Hong; Zhang, Zhi-Meng; Dai, Liang-Xiang; Kang, Tao; Ci, Dun-Wei; Song, Wen-Wu

    2013-06-01

    Taking two peanut varieties Huayu 17 and Tangke 8 as test objects, a soil column culture experiment was conducted in a rainproof tank to study the peanut root morphological development and physiological characteristics at late growth stages under moderate drought and well-watered conditions. Tanke 8 had more developed root system and higher yield and drought coefficient, while Huayu 17 had poorer root adaptability to drought stress. For the two varieties, their root length density and root biomass were mainly distributed in 0-40 cm soil layer, whereas their root traits differed in the same soil layer. The total root length, total root surface area, and total root volume of Huayu 17 at each growth stage were smaller under drought stress than under well-balanced water treatment, while these root characteristics of Tangke 8 under drought stress only decreased at flowering-pegging stage. Drought stress increased the root biomass, surface area, and volume of the two varieties in 20-40 cm soil layer, but decreased these root traits in the soil layers below 40 cm. Under drought stress, the root activity of the two varieties in the soil layers below 40 cm at pod filling stage decreased, and the decrement was larger for Huayu 17. The differences in the root system development and physiological characteristics of the two varieties at late growth stages under drought stress suggested that the root system of the two varieties had different water absorption and utilization under drought stress.

  12. Evidence of Drought Stress Memory in the Facultative CAM, Aptenia cordifolia: Possible Role of Phytohormones

    PubMed Central

    Fleta-Soriano, Eva; Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2015-01-01

    Although plant responses to drought stress have been studied in detail in several plant species, including CAM plants, the occurrence of stress memory and possible mechanisms for its regulation are still very poorly understood. In an attempt to better understand the occurrence and possible mechanisms of regulation of stress memory in plants, we measured the concentrations of phytohormones in Aptenia cordifolia exposed to reiterated drought, together with various stress indicators, including leaf water contents, photosynthesis and mechanisms of photo- and antioxidant protection. Results showed that plants exposed to drought stress responded differently if previously challenged with a first drought. Gibberellin levels decreased upon exposure to the first drought and remained lower in double-stressed plants compared with those exposed to stress for the first time. In contrast, abscisic acid levels were higher in double- than single-stressed plants. This occurred in parallel with alterations in hydroperoxide levels, but not with malondialdehyde levels, thus suggesting an increased oxidation state that did not result in oxidative damage in double-stressed plants. It is concluded that (i) drought stress memory occurs in double-stressed A. cordifolia plants, (ii) both gibberellins and abscisic acid may play a role in plant response to repeated periods of drought, and (iii) changes in abscisic acid levels in double-stressed plants may have a positive effect by modulating changes in the cellular redox state with a role in signalling, rather than cause oxidative damage to the cell. PMID:26274325

  13. Microstructural Changes in Inconel® 740 After Long-Term Aging in the Presence and Absence of Stress

    SciTech Connect

    Unocic, Kinga A.; Shingledecker, John Paul; Tortorelli, Peter F.

    2014-11-18

    The Ni-based alloy, Inconel® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this study, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented. The primary focus was on the development of the eta η (Ni3Ti) phase and coarsening of coherent γ'-Ni3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. Finally, however, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.

  14. Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David

    2004-01-01

    The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.

  15. Characterizing drought stress and trait influence on maize yield under current and future conditions.

    PubMed

    Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L

    2014-03-01

    Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for

  16. [Effects of drought stress on photosynthesis capability of Spiraea fritschiana and Spiraea bunmalba 'Goldmound'].

    PubMed

    Liu, Hui-Min; Che, Yan-Shuang; Che, Dai-Di; Yan, Yong-Qing; Wu, Feng-Zhi

    2010-08-01

    In this paper, Spiraea fritschiana and Spiraea bunmalba 'Goldmound' were treated with mild, moderate, and severe drought to study the dynamic changes of their photosynthesis capability, and two-dimensional electrophoresis and mass spectrometry were adopted to analyze and identify the differences in the protein expression of the two species before and after the treatments, and the physiological mechanisms inducing the changes of the photosynthesis capability. Drought treatments had significant effects on the photosynthesis capability of the two species. Under drought stress, the maximum photosynthetic rate, light compensation point, and light saturation point decreased gradually, suggesting that the responses of the two species to drought stress were progressive. The two species presented stronger recovery capability after the mild and moderate stresses, but weaker recovery capability after severe stress. After the inducement of drought stress, the weaker drought-resistant S. bunmalba 'Goldmound' had six protein spots lost, eleven new protein spots appeared, thirteen protein spots up-regulation expression, and four protein spots down-regulation expression. All of the proteins were low molecular weight acidic proteins, of which, there were three kinds of different proteins that had been induced expression by drought and were the oxygen-enhanced protein factor 1 and 2 and the degradation fragments of large subunit 1,5-ribulose bisphosphate carboxylase/oxygenase. The drought- resistant difference of the two Spiraea species was related to the changes of their photosynthesis capability during drought stress.

  17. Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper.

    PubMed

    Lim, Jong-Hui; Kim, Sang-Dal

    2013-06-01

    Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR. PMID:25288947

  18. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    PubMed

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress.

  19. Long-Term Potentiation at CA3–CA1 Hippocampal Synapses with Special Emphasis on Aging, Disease, and Stress

    PubMed Central

    Kumar, Ashok

    2011-01-01

    Synaptic plasticity in the mammalian central nervous system has been the subject of intense investigation for the past four decades. Long-term potentiation (LTP), a major reflection of synaptic plasticity, is an activity-driven long-lasting increase in the efficacy of excitatory synaptic transmission following the delivery of a brief, high-frequency train of electrical stimulation. LTP is regarded as a principal candidate for the cellular mechanisms involved in learning and offers an attractive hypothesis of how memories are constructed. There are a number of exceptional full-length reviews published on LTP; the current review intends to present an overview of the research findings regarding hippocampal LTP with special emphasis on aging, diseases, and psychological insults. PMID:21647396

  20. Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea.

    PubMed

    Vanaja, M; Maheswari, M; Sathish, P; Vagheera, P; Jyothi Lakshmi, N; Vijay Kumar, G; Yadav, S K; Razzaq, Abdul; Singh, Jainender; Sarkar, B

    2015-10-01

    Three pigeonpea (Cajanus cajan L. Millsp.) genotypes- GT-1, AKP-1 and PRG-158 with varying crop duration, growth habit and flowering pattern were evaluated for variability in their response for drought stress. Drought stress was imposed at initiation of flowering and the observations on biomass and seed yield parameters were recorded at harvest. The magnitude of response of individual component to drought stress was found to be genotype specific. Drought stress significantly decreased photosynthetic rate (PN), transpiration rate (Tr) and relative water content (RWC) in all the genotypes, however the magnitude of reduction differed with genotype. With drought stress, the reduction of PN was highest in GT-1 while reduction in Tr was highest in PRG-158. The genotype AKP-1, accumulated significantly higher concentrations of osmotic solutes especially proline under water deficit stress, this facilitated it to maintain higher relative water content (RWC) and lower malondialdehyde (MDA) content as compared to other genotypes. Drought stress also impacted biomass production and their partitioning to vegetative and reproductive components at harvest. There was significant variability between the genotypes for seed yield under drought stress while it was non-significant under well-watered condition. Drought stress enhanced flower drop and decreased flower to pod conversion resulting in reduced pod number and seed number in PRG-158 and GT-1. The genotype AKP-1 recorded superior performance for seed yield under stress environment due to its ability in maintaining pod and seed number as well as improved test weight (100 seed weight). Under drought stress, significant positive association of seed yield with proline, seed number, pod number and test weight clearly indicating their role in drought tolerance. PMID:26600680

  1. Long-term environmental exposure to metals (Cu, Cd, Pb, Zn) activates the immune cell stress response in the common European sea star (Asterias rubens).

    PubMed

    Matranga, V; Pinsino, A; Randazzo, D; Giallongo, A; Dubois, P

    2012-05-01

    The common sea star Asterias rubens represents a key-species of the North-Eastern Atlantic macro benthic community. The cells of their immune system, known as coelomocytes, are the first line of defence against environmental hazards. Here, we report the results of investigations on the immune cells response of sea stars exposed to marine environmental pollution for long periods. We show that levels of the heat shock cognate protein 70 (HSC70) in coelomocytes from A. rubens, which were collected during a field study in the Sǿrfjord (North Sea, SW coast of Norway) along a contamination gradient, are directly associated with the long-term accumulation of Cd, Cu heavy metals exclusively in the tegument. Conversely, Pb and Zn accumulation in the tegument did not relate to HSC70 levels and none of the metals were found accumulated in the pyloric coeca. In addition the coelomocytes from A. rubens, collected in high and low metal impacted stations were examined by a proteomic approach using two-dimensional electrophoresis (2DE). By comparison of the proteomic maps, we observed that 31 protein spots differed in their relative abundance, indicating a gene expression response to the metal mixture exposure. All together, our results confirm that the echinoderm immune cells are a suitable model for the assessment of long-term exposure to environmental pollution, moreover that the increased level of HSC70 can be considered a signal of an acquired tolerance within a large spectrum of protein profile changes occurring in response to metal contamination.

  2. Comparative analysis of barley leaf proteome as affected by drought stress.

    PubMed

    Ashoub, Ahmed; Beckhaus, Tobias; Berberich, Thomas; Karas, Michael; Brüggemann, Wolfgang

    2013-03-01

    The adaptive response of Egyptian barley land races to drought stress was analyzed using difference gel electrophoresis (DIGE). Physiological measurements and proteome alterations of accession number 15141, drought tolerant, and accession number 15163, drought sensitive, were compared. Differentially expressed proteins were subjected to MALDI-TOF-MS analysis. Alterations in proteins related to the energy balance and chaperons were the most characteristic features to explain the differences between the drought-tolerant and the drought-sensitive accessions. Further alterations in the levels of proteins involved in metabolism, transcription and protein synthesis are also indicated.

  3. Application of effective drought index for quantification of meteorological drought events: a case study in Australia

    NASA Astrophysics Data System (ADS)

    Deo, Ravinesh C.; Byun, Hi-Ryong; Adamowski, Jan F.; Begum, Khaleda

    2016-01-01

    assessment of accumulated stress caused by short- and long-term (protracted) dry events.

  4. Hsp transcript induction is correlated with physiological changes under drought stress in Indian mustard.

    PubMed

    Aneja, Bharti; Yadav, Neelam R; Kumar, Neeraj; Yadav, Ram C

    2015-07-01

    Brassica juncea is an important oilseed crop and drought stress is major abiotic stress that limits its growth and productivity. RH0116 (drought tolerant) and RH8812 (drought sensitive) genotypes were undertaken to study some of the physiological parameters and hsp gene expression related to stress tolerance under drought stress conditions. Differential response in terms of seed germination, electrolyte leakage, RWC, osmotic potential was observed in the selected genotypes. In vitro seed germination studies using PEG stress treatments indicated reduced seed germination with increasing levels of stress treatment. Electrolyte leakage increased, whereas, relative water content and osmotic potential decreased in stressed seedlings. Expression of hsp gene was found to be upregulated during drought stress as the transcripts were present only in the stressed plants and disappeared upon rehydration. The drought tolerant variety showed higher transcript accumulation as compared to the sensitive variety. The study showed that drought induced changes in gene expression in two contrasting genotypes were consistent with the physiological response. PMID:26261395

  5. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress

    PubMed Central

    Kumar, Deepak; Datta, Riddhi; Sinha, Ragini; Ghosh, Aparupa; Chattopadhyay, Sharmila

    2014-01-01

    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I. PMID:25763614

  6. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.

    PubMed

    Lin, Meng-yi; Chai, Kuo-hsing; Ko, Swee-suak; Kuang, Lin-yun; Lur, Huu-sheng; Charng, Yee-yung

    2014-04-01

    Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. 'N22' seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios.

  7. Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf.

    PubMed

    Ilhan, S; Ozdemir, F; Bor, M

    2015-03-01

    Trehalose and the trehalose biosynthetic pathway are important contributors and regulators of stress responses in plants. Among recent findings for trehalose and its metabolism, the role of signalling in the regulation of growth and development and its potential for use as a storage energy source can be listed. The xerophytic plant Capparis ovata (caper) is well adapted to drought and high temperature stress in arid and semi-arid regions of the Mediterranean. The contribution of trehalose and the trehalose biosynthetic pathway to drought stress responses and tolerance in C. ovata are not known. We investigated the effects of PEG-mediated drought stress in caper plants and analysed physiological parameters and trehalose biosynthetic pathway components, trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), trehalase activity, trehalose and proline content in drought stress-treated and untreated plants. Our results indicated that trehalose and the trehalose biosynthetic pathway contributed to drought stress tolerance of C. ovata. Overall growth and leaf water status were not dramatically affected by drought, as both high relative growth rate and relative water content were recorded even after 14 days of drought stress. Trehalose accumulation increased in parallel to induced TPS and TPP activities and decreased trehalase activity in caper plants on day 14. Constitutive trehalose levels were 28.75 to 74.75 μg·g·FW(-1) , and drought stress significantly induced trehalose accumulation (385.25 μg·g·FW(-1) on day 14) in leaves of caper. On day 14 of drought, proline levels were lower than on day 7. Under drought stress the discrepancy between trehalose and proline accumulation trends might result from the mode of action of these osmoprotectant molecules in C. ovata.

  8. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    PubMed

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  9. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    PubMed

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach. PMID:27498495

  10. Effect of polyamines on the grain filling of wheat under drought stress.

    PubMed

    Liu, Yang; Liang, Haiyan; Lv, Xiaokang; Liu, Didi; Wen, Xiaoxia; Liao, Yuncheng

    2016-03-01

    Drought inhibits wheat grain filling. Polyamines (PAs) are closely associated with plant resistance due to drought and grain filling of cereals. However, little is known about the effect of PAs on the grain filling of wheat under drought stress. This study investigated whether and how PAs are involved in regulating wheat grain filling under drought stress. Two wheat genotypes differing in drought resistance were used, and endogenous PA levels were measured during grain filling under different water treatments. Additionally, external PAs were used, and the variation of hormone levels in grains was measured during grain filling under drought stress. The results indicated that spermidine (Spd) and spermine (Spm) relieve the inhibition caused by drought stress, and putrescine (Put) has the opposite effect. The higher activities of S-adenosylmethionine decarboxylase and Spd synthase in grains promotes the synthetic route from Put to Spd and Spm and notably increases the free Spd and Spm concentrations in grains, which promotes grain filling and drought resistance in wheat. The effect of PA on the grain filling of wheat under drought stress was closely related to the endogenous ethylene (ETH), zeatin (Z) + zeatin riboside (ZR) and abscisic acid (ABA). Spd and Spm significantly increased the Z + ZR and ABA concentrations and decreased the ETH evolution rate in grains, which promoted wheat grain filling under drought. Put significantly increased the ETH evolution rate, which led to excessive ABA accumulation in grains, subsequently aggravating the inhibition of drought on wheat grain filling. This means that the interaction of hormones, rather than the action of a single hormone, was involved in the regulation of wheat grain filling under drought. PMID:26812255

  11. Long-term parenteral nutrition

    PubMed Central

    Ladefoged, Karin; Jarnum, Stig

    1978-01-01

    Nineteen patients (11 women and eight men) aged 20-68 received long-term parenteral nutrition, mostly at home, for six to 63 months (mean 19 months). Indications for LTPN were extensive, active Crohn's disease in three patients, intestinocutaneous fistulas in three, and short-bowel syndrome in the remaining 13 patients. Subclavian or intra-atrial (Broviac) catheters were most commonly used, for which the average life was four and seven months respectively. Complications of long-term parenteral nutrition included pneumothorax in four out of 48 subclavian vein punctures. Catheter-induced thrombosis of central veins was shown by phlebography 17 times in nine patients, and eight episodes of total occlusion occurred. Two of these patients had pulmonary infarction. Nineteen episodes of catheter sepsis occurred in 11 patients, but only one was fatal. Complications related to intestinal disease included intra-abdominal abscesses and intestinal fistulas, and disturbances of liver function. Five patients died, though in only two was death related to long-term parenteral nutrition. One of these patients died from catheter sepsis, the other had subdural haematoma possibly caused by anticoagulant treatment. Eight of the 14 surviving patients still needed parenteral nutrition. All received a disability pension, but six had an acceptable quality of life with almost normal social activities. Despite problems such as difficulties in maintaining standardised infusion programmes, it was concluded that long-term parenteral nutrition at home is practicable and consistent with an acceptable quality of life. ImagesFIG 2 PMID:98199

  12. Sensitivity of stream flow droughts, water shortage and water stress events to ENSO driven inter-annual climate variability at the global scale

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted I. E.; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2014-05-01

    Governments and institutions managing water resources have to adapt constantly to regional drought, water shortage and water stress conditions, being caused by climate change, socio-economic developments and/or climate variability. Taking into account the impact of climate variability is important as in some regions it may outweigh long-term climate change or socio-economic developments, especially on a time scale of a few years up to a few decades. As governments and water management institutions apply planning horizons up to a decade with respect to management of adaptation strategies, inter-annual climate variability is especially relevant. A number of studies have estimated the impacts of climate variability on stream flow droughts on a local, continental or global scale. Others have focused on the role of long term climate change and socio-economic trends on blue water availability, shortage and stress. However, a global assessment of the influence of inter-annual climate variability on stream flow droughts, blue water availability, shortage and stress together has not yet been carried out, despite its importance for adaptation planning. To address this issue, we assessed the influence of ENSO-driven climate variability on stream flow droughts, blue water availability, and shortage and stress events at the global scale. Within this contribution we focused on El Nino Southern Oscillation's (ENSO) impact as ENSO is the most dominant source of inter-annual climate variability, impacting climate and society. We carried out this assessment through the following steps: (1) used daily discharge and run-off time-series (0.5º x 0.5º) of three WATCH forced global hydrological models (WaterGAP, PCR-GLOBWB, and STREAM); (2) in combination with time-series of population counts and monthly water demands we calculated monthly and yearly stream flow drought, water availability, water shortage and water stress per Food Producing Unit (FPU) for the period 1960-2000; and (3

  13. Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress.

    PubMed

    Paul, Soumitra; Gayen, Dipak; Datta, Swapan K; Datta, Karabi

    2015-05-01

    Generation of drought tolerant rice plants by overexpressing Arabidopsis DREB1A is a significant development for abiotic stress research. However, the metabolic network regulated in the drought tolerant transgenic rice plants is poorly understood. In this research study, we have demonstrated the comparative proteome analysis between the roots of wild type and transgenic DREB1A overexpressing homozygous plants under drought stress condition. After 7d of dehydration stress at reproductive stage, the plants were re-watered for 24h. The roots were collected separately from wild type and transgenic plants grown under water, drought stress and re-watering conditions and total proteins were analyzed by two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry (MS). Among the large number of differentially accumulated spots, 30, 27 and 20 spots were successfully identified as differentially expressed proteins in three different conditions respectively. The major class of identified proteins belongs to carbohydrate and energy metabolism category while stress and defense related proteins are especially up-accumulated under drought stress in both the plants. A novel protein, R40C1 was reported to be up-accumulated in roots of transgenic plants which may play an important role in generation of drought tolerant plants. Protein-protein interaction helps to identify the network of drought stress signaling pathways. PMID:25804816

  14. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions

    PubMed Central

    Joshi, Rohit; Wani, Shabir H.; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A.; Lone, Ajaz A.; Pareek, Ashwani; Singla-Pareek, Sneh L.

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern “OMICS” analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought. PMID:27471513

  15. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions.

    PubMed

    Joshi, Rohit; Wani, Shabir H; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A; Lone, Ajaz A; Pareek, Ashwani; Singla-Pareek, Sneh L

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought. PMID:27471513

  16. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions.

    PubMed

    Joshi, Rohit; Wani, Shabir H; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A; Lone, Ajaz A; Pareek, Ashwani; Singla-Pareek, Sneh L

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought.

  17. Long-term observation of permeability in sedimentary rocks under high-temperature and stress conditions and its interpretation mediated by microstructural investigations

    NASA Astrophysics Data System (ADS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Ohfuji, Hiroaki; Takahashi, Manabu; Ito, Kazumasa; Kishida, Kiyoshi

    2015-07-01

    In this study, a series of long-term, intermittent permeability experiments utilizing Berea sandstone and Horonobe mudstone samples, with and without a single artificial fracture, is conducted for more than 1000 days to examine the evolution of rock permeability under relatively high-temperature and confining pressure conditions. Effluent element concentrations are also measured throughout the experiments. Before and after flow-through experiments, rock samples are prepared for X-ray diffraction, X-ray fluorescence, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy to examine the mineralogical changes between pre and postexperimental samples, and also for microfocus X-ray CT to evaluate the alteration of the microstructure. Although there are exceptions, the observed, qualitative evolution of permeability is found to be generally consistent in both the intact and the fractured rock samples—the permeability in the intact rock samples increases with time after experiencing no significant changes in permeability for the first several hundred days, while that in the fractured rock samples decreases with time. An evaluation of the Damkohler number and of the net dissolution, using the measured element concentrations, reveals that the increase in permeability can most likely be attributed to the relative dominance of the mineral dissolution in the pore spaces, while the decrease can most likely be attributed to the mineral dissolution/crushing at the propping asperities within the fracture. Taking supplemental observations by microfocus X-ray CT and using the intact sandstone samples, a slight increase in relatively large pore spaces is seen. This supports the increase in permeability observed in the flow-through experiments.

  18. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    SciTech Connect

    Blechinger, Scott R.; Kusch, Robin C.; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P.; Krone, Patrick H.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  19. Analyses of fecal and hair glucocorticoids to evaluate short- and long-term stress and recovery of Asiatic black bears (Ursus thibetanus) removed from bile farms in China.

    PubMed

    Malcolm, K D; McShea, W J; Van Deelen, T R; Bacon, H J; Liu, F; Putman, S; Zhu, X; Brown, J L

    2013-05-01

    Demand for traditional Chinese medicines has given rise to the practice of maintaining Asiatic black bears (Ursus thibetanus) in captivity to harvest bile. We evaluated hypothalamic-pituitary-adrenal (HPA) activity in Asiatic black bears on a bile farm in China by measuring cortisol in hair. We also monitored hair and fecal glucocorticoid metabolites as bears acclimated to improved husbandry at the Animals Asia Foundation China Bear Rescue Center (CBRC) after removal from other bile farms. Fecal samples were collected twice weekly for ~1 year, and hair was obtained from bears upon arrival at the CBRC and again ≥163 days later. Paired hair samples showed declines in cortisol concentrations of 12-88% in 38 of 45 (84%, p<0.001) bears after arrival and acclimation at the rehabilitation facility. Concentrations of cortisol in hair from bears on the bile farm were similar to initial concentrations upon arrival at the CBRC but were higher than those collected after bears had been at the CBRC for ≥163 days. Fecal glucocorticoid concentrations varied across months and were highest in April and declined through December, possibly reflecting seasonal patterns, responses to the arrival and socialization of new bears at the CBRC, and/or annual metabolic change. Data from segmental analysis of hair supports the first of these explanations. Our findings indicate that bears produced elevated concentrations of glucocorticoids on bile farms, and that activity of the HPA axis declined following relocation. Thus, hair cortisol analyses are particularly well suited to long-term, retrospective assessments of glucocorticoids in ursids. By contrast, fecal measures were not clearly associated with rehabilitation, but rather reflected more subtle endocrine changes, possibly related to seasonality. PMID:23416358

  20. Response of Different Genotypes of Faba Bean Plant to Drought Stress

    PubMed Central

    Siddiqui, Manzer H.; Al-Khaishany, Mutahhar Y.; Al-Qutami, Mohammed A.; Al-Whaibi, Mohamed H.; Grover, Anil; Ali, Hayssam M.; Al-Wahibi, Mona S.; Bukhari, Najat A.

    2015-01-01

    Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress. PMID:25950766

  1. Long-Term Behavioral Programming Induced by Peripuberty Stress in Rats Is Accompanied by GABAergic-Related Alterations in the Amygdala

    PubMed Central

    Tzanoulinou, Stamatina; García-Mompó, Clara; Castillo-Gómez, Esther; Veenit, Vandana; Nacher, Juan; Sandi, Carmen

    2014-01-01

    Stress during childhood and adolescence is a risk factor for psychopathology. Alterations in γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, have been found following stress exposure and fear experiences and are often implicated in anxiety and mood disorders. Abnormal amygdala functioning has also been detected following stress exposure and is also implicated in anxiety and social disorders. However, the amygdala is not a unitary structure; it includes several nuclei with different functions and little is known on the potential differences the impact of early life stress may have on this system within different amygdaloid nuclei. We aimed here to evaluate potential regional differences in the expression of GABAergic-related markers across several amygdaloid nuclei in adult rats subjected to a peripuberty stress protocol that leads to enhanced basal amygdala activity and psychopathological behaviors. More specifically, we investigated the protein expression levels of glutamic acid decarboxylase (GAD; the principal synthesizing enzyme of GABA) and of GABA-A receptor subunits α2 and α3. We found reduced GAD and GABA-A α3, but not α2, subunit protein levels throughout all the amygdala nuclei examined (lateral, basolateral, basomedial, medial and central) and increased anxiety-like behaviors and reduced sociability in peripubertally stressed animals. Our results identify an enduring inhibition of the GABAergic system across the amygdala following exposure to early adversity. They also highlight the suitability of the peripuberty stress model to investigate the link between treatments targeting the dysfunctional GABAergic system in specific amygdala nuclei and recovery of specific stress-induced behavioral dysfunctions. PMID:24736324

  2. Risk factors for long-term posttraumatic stress reactions in unarmed UN military observers: a four-year follow-up study.

    PubMed

    Mehlum, Lars; Koldsland, Bjorn O; Loeb, Mitchell E

    2006-10-01

    Follow-up data from 187 male Norwegian veteran officers from unarmed UN military observer missions were compared with follow-up data from 211 male veteran officers from Norwegian contingents of the UNIFIL peacekeeping mission in South Lebanon on stress exposure, posttraumatic stress symptoms, level of alcohol consumption, and problems with social adaptation after redeployment from the mission. Observer mission veterans reported exposure to significantly higher levels of war zone stressors than veterans from peacekeeping units did. Observer veterans also reported significantly more posttraumatic stress symptoms at follow-up, higher alcohol consumption levels during service and at follow-up, and more problems with social adaptation to their lives at home in the years after their UN military service. All of these difficulties were most prominent in observers having served in missions with high-intensity stress exposure. Multivariate analyses demonstrated stress exposure during the mission and problems with social adaptation after homecoming to predict posttraumatic stress symptoms at follow-up. PMID:17041295

  3. Long-term data archiving

    SciTech Connect

    Moore, David Steven

    2009-01-01

    Long term data archiving has much value for chemists, not only to retain access to research and product development records, but also to enable new developments and new discoveries. There are some recent regulatory requirements (e.g., FDA 21 CFR Part 11), but good science and good business both benefit regardless. A particular example of the benefits of and need for long term data archiving is the management of data from spectroscopic laboratory instruments. The sheer amount of spectroscopic data is increasing at a scary rate, and the pressures to archive come from the expense to create the data (or recreate it if it is lost) as well as its high information content. The goal of long-term data archiving is to save and organize instrument data files as well as any needed meta data (such as sample ID, LIMS information, operator, date, time, instrument conditions, sample type, excitation details, environmental parameters, etc.). This editorial explores the issues involved in long-term data archiving using the example of Raman spectral databases. There are at present several such databases, including common data format libraries and proprietary libraries. However, such databases and libraries should ultimately satisfy stringent criteria for long term data archiving, including readability for long times into the future, robustness to changes in computer hardware and operating systems, and use of public domain data formats. The latter criterion implies the data format should be platform independent and the tools to create the data format should be easily and publicly obtainable or developable. Several examples of attempts at spectral libraries exist, such as the ASTM ANDI format, and the JCAMP-DX format. On the other hand, proprietary library spectra can be exchanged and manipulated using proprietary tools. As the above examples have deficiencies according to the three long term data archiving criteria, Extensible Markup Language (XML; a product of the World Wide Web

  4. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress.

    PubMed

    Porcel, Rosa; Ruiz-Lozano, Juan Manuel

    2004-08-01

    This study investigated several aspects related to drought tolerance in arbuscular mycorrhizal (AM) soybean plants. The investigation included both shoot and root tissues in order to reveal the preferred target tissue for AM effects against drought stress. Non-AM and AM soybean plants were grown under well-watered or drought-stressed conditions, and leaf water status, solute accumulation, oxidative damage to lipids, and other parameters were determined. Results showed that AM plants were protected against drought, as shown by their significantly higher shoot-biomass production. The leaf water potential was also higher in stressed AM plants (-1.9 MPa) than in non-AM plants (-2.5 MPa). The AM roots had accumulated more proline than non-AM roots, while the opposite was observed in shoots. Lipid peroxides were 55% lower in shoots of droughted AM plants than in droughted non-AM plants. Since there was no correlation between the lower oxidative damage to lipids in AM plants and the activity of antioxidant enzymes, it seems that first the AM symbiosis enhanced osmotic adjustment in roots, which could contribute to maintaining a water potential gradient favourable to the water entrance from soil into the roots. This enabled higher leaf water potential in AM plants during drought and kept the plants protected against oxidative stress, and these cumulative effects increased the plant tolerance to drought.

  5. Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats.

    PubMed

    Li, Chuting; Liu, Yuan; Yin, Shiping; Lu, Cuiyan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2015-07-15

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experiences. Studies have found that exposure to early stressful events is a risk factor for developing PTSD. However, a limited number of studies have explored the effects of traumatic stress in early adolescence on behavior, hypothalamic-pituitary-adrenal (HPA) axis function, central corticotropin releasing factor receptor 1 (CRFR1) expression and the relative vulnerability of PTSD in adulthood. The current study aims to explore these issues using inescapable electric foot shock to induce a PTSD model in early adolescent rats. Meanwhile, running on a treadmill for six weeks and administration of the antagonist with 3.2mg/kg/day of CP-154, 526 for 14 consecutive days were used as therapeutic measures. Presently, the stress (S) group showed more anxiety and depression in the open field (OF) test and elevated plus maze (EPM) test, memory damage in the Y maze test, decreased basal CORT level, increased DEX negative feedback inhibition and exacerbated and longer-lasting reaction to CRH challenge in the DEX/CRH test compared with the control group. Central CRFR1 expression was also changed in the S group, as evidenced by the increased CRFR1 expression in the hypothalamus, amygdala and the prefrontal cortex (PFC). However, treadmill exercise alleviated early adolescent stress-induced behavior abnormalities and improved the functional state of the HPA axis, performing a more powerful effect than the CRFR1 antagonist CP-154, 526. Additionally, this study revealed that the alteration of central CRFR1 expression might play an important role in etiology of PTSD in adulthood.

  6. An aquaporin protein is associated with drought stress tolerance.

    PubMed

    Li, Jun; Ban, Liping; Wen, Hongyu; Wang, Zan; Dzyubenko, Nikolay; Chapurin, Vladimir; Gao, Hongwen; Wang, Xuemin

    2015-04-01

    Water channel proteins known as aquaporins (AQPs) regulate the movement of water and other small molecules across plant vacuolar and plasma membranes; they are associated with plant tolerance of biotic and abiotic stresses. In this study, a PIP type AQPs gene, designated as GoPIP1, was cloned from Galega orientalis, a high value leguminous forage crop. The GoPIP1 gene consists of an 870 bp open reading frame encoding a protein of 289 amino acids, and belongs to the PIP1 subgroup of the PIP subfamily. The transcript level of GoPIP1 was higher in the root of G. orientalis than in the leaf and stem. The level of GoPIP1 transcript increased significantly when treated with 200 mM NaCl or 20% polyethylene glycol (PEG) 6000. Transient expression of GoPIP1 in onion epidermal cells revealed that the GoPIP1 protein was localized to the plasma membrane. Over-expression of GoPIP1 increased the rosette/root ratio and increased sensitivity to drought in transgenic Arabidopsis plants. However, GoPIP1 over-expression in Arabidopsis had no significant effect under saline condition. The present data provides a gene resource that contributes to furthering our understanding of water channel protein and their application in plant stress tolerance.

  7. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    PubMed

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  8. A randomized controlled trial of combined exercise and psycho-education for low-SES women: short- and long-term outcomes in the reduction of stress and depressive symptoms.

    PubMed

    van der Waerden, Judith E B; Hoefnagels, Cees; Hosman, Clemens M H; Souren, Pierre M; Jansen, Maria W J

    2013-08-01

    Exercise may have both a preventive and a therapeutic impact on mental health problems. The Exercise without Worries intervention aims to reduce stress and depressive symptoms in low-SES women by means of a group-based program combining physical exercise and psycho-education. Between September 2005 and May 2008, 161 Dutch low-SES women with elevated stress or depressive symptom levels were randomly assigned to the combined exercise/psycho-education intervention (EP), exercise only (E) or a waiting list control condition (WLC). The E condition provided low to moderate intensity stretching, strength, flexibility, and body focused training as well as relaxation, while the EP program integrated the exercise with cognitive-behavioral techniques. Depressive symptoms (CES-D) and perceived stress (PSS) were measured before and immediately after the intervention and at 2, 6 and 12 month follow-up. Multilevel linear mixed-effects models revealed no differential patterns in reduction of CES-D or PSS scores between the EP, E and WLC groups on the short (post-test and 2 month follow-up) or long term (6 and 12 months follow-up). Depressive symptom outcomes were moderated by initial depressive symptom scores: women from the EP and E groups with fewer initial symptoms benefited from participation on the short term. Further, women in the EP and E groups with the lowest educational level reported more stress reduction at post-test than women with higher educational levels. In the overall target population of low-SES women, no indications were found that the Exercise without Worries course reduced depressive symptom and stress levels on the short or long term. The findings do suggest, however, that exercise alone or in combination with psycho-education may be a viable prevention option for certain groups of disadvantaged women. Especially those low-SES women with less severe initial problems or those with low educational attainment should be targeted for future depression prevention

  9. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    PubMed

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water. PMID:24178982

  10. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    PubMed

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water.

  11. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  12. Specificity of root-bacterial interactions for drought stress tolerance in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants cope with drought stress by a variety of mechanisms that occur above- and below-ground. Below the soil surface, root architecture and interactions with beneficial bacteria, including aminocyclopropane carboxylic acid deaminase-positive (ACC+) bacteria, may contribute to differences in drought...

  13. Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three maize genotypes, differing in drought tolerance, were grown in controlled environment chambers using either ambient (38 Pa) or elevated (70 Pa) carbon dioxide. Water stress treatments were imposed on one half the plants beginning 17 days after sowing. Shoot DW of the drought tolerant hybrid ...

  14. The shifting influence of drought and heat stress for crops in northeast Australia.

    PubMed

    Lobell, David B; Hammer, Graeme L; Chenu, Karine; Zheng, Bangyou; McLean, Greg; Chapman, Scott C

    2015-11-01

    Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co

  15. The shifting influence of drought and heat stress for crops in northeast Australia.

    PubMed

    Lobell, David B; Hammer, Graeme L; Chenu, Karine; Zheng, Bangyou; McLean, Greg; Chapman, Scott C

    2015-11-01

    Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co

  16. New Rapid Evaluation for Long-Term Behavior in Deep Geological Repository by Geotechnical Centrifuge. Part 1: Test of Physical Modeling in Near Field Under Isotropic Stress-Constraint Conditions

    NASA Astrophysics Data System (ADS)

    Nishimoto, Soshi; Sawada, Masataka; Okada, Tetsuji

    2016-08-01

    The objective of this study is to evaluate the long-term geomechanical behavior of a geological repository for high-level radioactive waste disposal, using the centrifugal near-field model test. The model consisted of a sedimentary rock mass, bentonite buffer, and model overpack, and was enclosed within a pressure vessel. Tests were conducted with a centrifugal force field of 30 G under isotropic stress-constraint conditions with confining pressures of 5-10 MPa and injection of pore water up through a time period equivalent to about 165 years in the field. Our results showed that the measured values and the temporal changes in the displacement of the overpack, the soil pressure of the bentonite, and the strain of the rock mass were clearly dependent on the confining pressure. These data were not convergent during the test. Our data experimentally revealed that long-term behavior in the near field was changed by the geomechanical interaction between the deformation stress of the bedrock/disposal hole and the swelling behavior of the bentonite buffer.

  17. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress.

    PubMed

    Koh, Jin; Chen, Gang; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Daniel; Erickson, John E; Shao, Hongbo; Chen, Sixue

    2015-08-01

    Drought is one of the most widespread stresses leading to retardation of plant growth and development. We examined proteome changes of an important oil seed crop, canola (Brassica napus L.), under drought stress over a 14-day period. Using iTRAQ LC-MS/MS, we identified 1976 proteins expressed during drought stress. Among them, 417 proteins showed significant changes in abundance, and 136, 244, 286, and 213 proteins were differentially expressed in the third, seventh, 10th, and 14th day of stress, respectively. Functional analysis indicated that the number of proteins associated with metabolism, protein folding and degradation, and signaling decreased, while those related to energy (photosynthesis), protein synthesis, and stress and defense increased in response to drought stress. The seventh and 10th-day profiles were similar to each other but with more post-translational modifications (PTMs) at day 10. Interestingly, 181 proteins underwent PTMs; 49 of them were differentially changed in drought-stressed plants, and 33 were observed at the 10th day. Comparison of protein expression changes with those of gene transcription showed a positive correlation in B. napus, although different patterns between transcripts and proteins were observed at each time point. Under drought stress, most protein abundance changes may be attributed to gene transcription, and PTMs clearly contribute to protein diversity and functions. PMID:26086353

  18. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress.

    PubMed

    Koh, Jin; Chen, Gang; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Daniel; Erickson, John E; Shao, Hongbo; Chen, Sixue

    2015-08-01

    Drought is one of the most widespread stresses leading to retardation of plant growth and development. We examined proteome changes of an important oil seed crop, canola (Brassica napus L.), under drought stress over a 14-day period. Using iTRAQ LC-MS/MS, we identified 1976 proteins expressed during drought stress. Among them, 417 proteins showed significant changes in abundance, and 136, 244, 286, and 213 proteins were differentially expressed in the third, seventh, 10th, and 14th day of stress, respectively. Functional analysis indicated that the number of proteins associated with metabolism, protein folding and degradation, and signaling decreased, while those related to energy (photosynthesis), protein synthesis, and stress and defense increased in response to drought stress. The seventh and 10th-day profiles were similar to each other but with more post-translational modifications (PTMs) at day 10. Interestingly, 181 proteins underwent PTMs; 49 of them were differentially changed in drought-stressed plants, and 33 were observed at the 10th day. Comparison of protein expression changes with those of gene transcription showed a positive correlation in B. napus, although different patterns between transcripts and proteins were observed at each time point. Under drought stress, most protein abundance changes may be attributed to gene transcription, and PTMs clearly contribute to protein diversity and functions.

  19. A Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants

    PubMed Central

    Begcy, Kevin; Mariano, Eduardo D.; Gentile, Agustina; Lembke, Carolina G.; Zingaretti, Sonia Marli; Souza, Glaucia M.; Menossi, Marcelo

    2012-01-01

    Background Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications. PMID:22984543

  20. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress

    PubMed Central

    Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the

  1. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

    PubMed

    Wang, Jǖgang; Zheng, Rong; Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the

  2. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

    PubMed

    Wang, Jǖgang; Zheng, Rong; Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the

  3. Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress

    PubMed Central

    Lima-Morales, Daiana; Jáuregui, Ruy; Camarinha-Silva, Amelia; Geffers, Robert; Vilchez-Vargas, Ramiro

    2016-01-01

    Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched. PMID:26850298

  4. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance.

    PubMed

    Costa E Silva, F; Shvaleva, A; Maroco, J P; Almeida, M H; Chaves, M M; Pereira, J S

    2004-10-01

    We evaluated drought resistance mechanisms in a drought-tolerant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. based on the responses to drought of some physiological, biophysical and morphological characteristics of container-grown plants, with particular emphasis on root growth and hydraulic properties. Water loss in excess of that supplied to the containers led to a general decrease in growth and significant reductions in leaf area ratio, specific leaf area and leaf-to-root area ratio. Root hydraulic conductance and leaf-specific hydraulic conductance decreased as water stress became more severe. During the experiment, the drought-resistant CN5 clone maintained higher leaf water status (higher predawn and midday leaf water potentials), sustained a higher growth rate (new leaf area expansion and root growth) and displayed greater carbon allocation to the root system and lower leaf-to-root area ratio than the drought-sensitive ST51 clone. Clone CN5 possessed higher stomatal conductances at moderate stress as well as higher hydraulic conductances than Clone ST51. Differences in the response to drought in root biomass, coupled with changes in hydraulic properties, accounted for the clonal differences in drought tolerance, allowing Clone CN5 to balance transpiration and water absorption during drought treatment and thereby prolong the period of active carbon assimilation.

  5. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    PubMed

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response. PMID:26226878

  6. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    PubMed

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.

  7. Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain.

    PubMed

    Mao, Qing-Qiu; Xian, Yan-Fang; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2010-07-11

    The root part of Paeonia lactiflora Pall., commonly known as peony, is a commonly used Chinese herb for the treatment of depression-like disorders. Previous studies in our laboratory have showed that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. The present study aimed to investigate the mechanism(s) underlying the antidepressant-like action of TGP by measuring neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in non-stressed and chronic unpredictable mild stress (CUMS)-treated rats. TGP (80 or 160 mg/kg/day) was administered by oral gavage to the animals for 5 weeks. The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decreases in sucrose consumption and locomotor activity (assessed by open-field test). In addition, it was found that BDNF contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. CUMS treatment also significantly decreased the level of NGF in the frontal cortex of the animals. Daily intragastric administration of TGP (80 or 160 mg/kg/day) during the five weeks of CUMS significantly suppressed behavioral and biochemical changes induced by CUMS. Treating non-stressed animals with TGP (160 mg/kg) for 5 weeks also significantly increased BDNF contents in the hippocampus and frontal cortex, and NGF contents in the frontal cortex. The results suggest that the antidepressant-like action of TGP is mediated, at least in part, by increasing the expression of BDNF and NGF in selective brain tissues.

  8. Ambient temperature and pregnancy influence cortisol levels in female guinea pigs and entail long-term effects on the stress response of their offspring.

    PubMed

    Michel, C L; Chastel, O; Bonnet, X

    2011-05-01

    Mammals generally respond to the important metabolic requirements imposed by thermoregulation and pregnancy by increasing plasma concentrations of glucocorticoid that promote the mobilization of body reserves and enhance energy use by tissues. This study examined the impact of distinct ambient temperatures and reproductive status on cortisol plasma levels in female guinea pigs (Cavia aperea f. porcellus). We also examined cortisol profiles of their offspring. Forty adult females were placed in individual boxes, 20 were exposed to a neutral thermal regime (mean ambient temperature 22.1 ± 1.5 °C) and 20 were maintained under a cool thermal regime (15.1 ± 1.5 °C). Within each treatment, 12 females were pregnant and 8 were non-pregnant. Pregnancy generated a marked elevation of baseline cortisol. Ambient temperature also affected cortisol concentrations. Compared to the pregnant females from the neutral thermal regime, pregnant females maintained under cool conditions exhibited lower baseline levels of cortisol, were less active, but they displayed a greater stress response (i.e. rapid increase of plasma cortisol) following handling. Thermal treatment did not influence reproductive output, reproductive effort, or offspring characteristics. This suggests that pregnant female guinea pigs cope with cool (but not extreme) thermal conditions by reducing activity and baseline cortisol levels, possibly to save energy via an adaptive response. Interestingly, the greater amplitude of the stress response of the cool regime females was also observed in their offspring 2 months after parturition, suggesting that hormonal ambience experienced by the individuals in utero shaped their stress response long after birth.

  9. Social Stress and CRF–Dopamine Interactions in the VTA: Role in Long-Term Escalation of Cocaine Self-Administration

    PubMed Central

    Boyson, Christopher O.; Holly, Elizabeth N.; Shimamoto, Akiko; Albrechet-Souza, Lucas; Weiner, Lindsay A.; DeBold, Joseph F.

    2014-01-01

    The nature of neuroadaptations in the genesis of escalated cocaine taking remains a topic of considerable interest. Intermittent social defeat stress induces both locomotor and dopaminergic cross-sensitization to cocaine, as well as escalated cocaine self-administration. The current study examines the role of corticotropin releasing factor receptor subtypes 1 and 2 (CRFR1, CRFR2) within the ventral tegmental area (VTA) during social defeat stress. This study investigated whether injecting either a CRFR1 or CRFR2 antagonist directly into the VTA before each social defeat would prevent the development of later (1) locomotor sensitization, (2) dopaminergic sensitization, and (3) escalated cocaine self-administration in rats. CRFR1 antagonist CP376395 (50 or 500 ng/side), CRFR2 antagonist Astressin2-B (100 or 1000 ng/side), or vehicle (aCSF) was microinjected into the VTA 20 min before social defeat stress (or handling) on days 1, 4, 7, and 10. Ten days later, rats were injected with cocaine (10 mg/kg, i.p.) and assessed for either locomotor sensitization, measured by walking activity, or dopaminergic sensitization, measured by extracellular dopamine (DA) in the nucleus accumbens shell (NAcSh) through in vivo microdialysis. Locomotor sensitization testing was followed by intravenous cocaine self-administration. Intra-VTA antagonism of CRFR1, but not CRFR2, inhibited the induction of locomotor cross-sensitization to cocaine, whereas both prevented dopaminergic cross-sensitization and escalated cocaine self-administration during a 24 h “binge.” This may suggest dissociation between locomotor sensitization and cocaine taking. These data also suggest that interactions between CRF and VTA DA neurons projecting to the NAcSh are essential for the development of dopaminergic cross-sensitization to cocaine. PMID:24806691

  10. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts

  11. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato.

    PubMed

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts

  12. Comparative Analysis of Sorghum bicolor Proteome in Response to Drought Stress and following Recovery.

    PubMed

    Jedmowski, Christoph; Ashoub, Ahmed; Beckhaus, Tobias; Berberich, Thomas; Karas, Michael; Brüggemann, Wolfgang

    2014-01-01

    The adaptive response of Sorghum bicolor landraces from Egypt to drought stress and following recovery was analyzed using two-dimensional difference gel electrophoresis, 2D-DIGE. Physiological measurements and proteome alterations of accession number 11434, drought tolerant, and accession number 11431, drought sensitive, were compared to their relative control values after drought stress and following recovery. Differentially expressed proteins were analysed by Matrix assisted laser desorption ionisation time-of-flight mass spectrometry, MALDI-TOF-MS. Alterations in protein contents related to the energy balance, metabolism (sensu Mewes et al. 1997), and chaperons were the most apparent features to elucidate the differences between the drought tolerant and sensitive accessions. Further alterations in the levels of proteins related to transcription and protein synthesis are discussed.

  13. Evolution of gene expression and expression plasticity in long-term experimental populations of Drosophila melanogaster maintained under constant and variable ethanol stress.

    PubMed

    Yampolsky, Lev Y; Glazko, Galina V; Fry, James D

    2012-09-01

    Gene expression responds to the environment and can also evolve rapidly in response to altered selection regimes. Little is known, however, about the extent to which evolutionary adaptation to a particular type of stress involves changes in the within-generation ('plastic') responses of gene expression to the stress. We used microarrays to quantify gene expression plasticity in response to ethanol in laboratory populations of Drosophila melanogaster differing in their history of ethanol exposure. Two populations ('R' populations) were maintained on regular medium, two ('E') were maintained on medium supplemented with ethanol, and two ('M') were maintained in a mixed regime in which half of the population was reared on one medium type, and half on the other, each generation. After more than 300 generations, embryos from each population were collected and exposed to either ethanol or water as a control, and RNA was extracted from the larvae shortly after hatching. Nearly 2000 transcripts showed significant within-generation responses to ethanol exposure. Evolutionary history also affected gene expression: the E and M populations were largely indistinguishable in expression, but differed significantly in expression from the R populations for over 100 transcripts, the majority of which did not show plastic responses. Notably, in no case was the interaction between selection regime and ethanol exposure significant after controlling for multiple comparisons, indicating that adaptation to ethanol in the E and M populations did not involve substantial changes in gene expression plasticity. The results give evidence that expression plasticity evolves considerably more slowly than mean expression.

  14. The respiratory burst activity and expression of catalase in white shrimp, Litopenaeus vannamei, during long-term exposure to pH stress.

    PubMed

    Wang, Wei-Na; Li, Bao-Sheng; Liu, Jin-Jian; Shi, Lei; Alam, M J; Su, Shi-Juan; Wu, Juan; Wang, Lei; Wang, An-Li

    2012-08-01

    In this study, changes of reactive oxygen species (ROS) and the mRNA expression of catalase of the Pacific white shrimp, Litopenaeus vannamei, exposed to pH (5.4, 6.7, 8.0, and 9.3) stress was investigated at different stress time (24, 48, 72, 96, and 120 h). Level of malondialdehyde (MDA) in shrimp also were assessed. The results revealed that acidic (pH 5.4 and 6.7) or alkaline exposure (pH 9.3) induced production of ROS hemocytes and increase of MDA level in shrimp. Moreover, the catalase mRNA expression in hepatopancreas of L. vannamei was up-regulated in 24 h at pH 5.4, in 72 h at pH 6.7 and in 48 h at pH 9.3, whereas was down-regulated significantly after 72 h acidic (pH 5.4 and 6.7) or alkaline (pH 9.4) exposure. In the present study, there was the relationship between ROS and catalase mRNA expression under normal acidic and alkaline conditions. At pH 8, the increase of catalase transcripts due to up-regulation by ROS, whereas MDA level did not significantly change, suggesting activation of corresponding protective mechanisms of detoxifying ROS is essential for the proper functioning of cells and the survival of shrimps.

  15. Drought-Stressed Tomato Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi.

    PubMed

    Ximénez-Embún, Miguel G; Ortego, Félix; Castañera, Pedro

    2016-01-01

    Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation) have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios). Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold) at 4 days post infestation (dpi), and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively) at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine) and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales.

  16. Drought-Stressed Tomato Plants Trigger Bottom–Up Effects on the Invasive Tetranychus evansi

    PubMed Central

    Ximénez-Embún, Miguel G.; Ortego, Félix; Castañera, Pedro

    2016-01-01

    Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation) have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios). Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold) at 4 days post infestation (dpi), and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively) at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine) and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales. PMID:26735490

  17. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    PubMed Central

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  18. Drought-Stressed Tomato Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi.

    PubMed

    Ximénez-Embún, Miguel G; Ortego, Félix; Castañera, Pedro

    2016-01-01

    Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation) have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios). Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold) at 4 days post infestation (dpi), and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively) at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine) and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales. PMID:26735490

  19. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins.

    PubMed

    Bayliak, Maria M; Burdyliuk, Nadia I; Izers'ka, Lilia I; Lushchak, Volodymyr I

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed.

  20. Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress.

    PubMed

    Wang, Xu; Shi, Yi; Chen, Xin; Huang, Bin

    2015-11-01

    A 65-day field experiment was conducted to select cadmium (Cd)-safe genotypes (CSGs) among 21 Chinese cabbage genotypes in a low Cd-contaminated soil (0.66 mg kg(-1)). Seven CSGs were identified based on their Cd tolerance, shoot Cd concentrations, Cd enrichment factors (EFs), and translocation factors (TFs). Then, Beijingxin3, a typical CSG, together with Qiuxiang, a typical non-CSG for comparison, was selected for a subsequent 80-day field micro-plot experiment under four levels of Cd stress to evaluate the reliability of CSG screening and the role of organic acids in Cd accumulation and tolerance. Beijingxin3 was confirmed to be safe to grow in soil with Cd level up to 3.39 mg kg(-1), with Cd accumulation in its shoots well below the permitted level, and Qiuxiang was still poor in tolerating low Cd stress (1.31 mg kg(-1)). With increasing the Cd stress, Cd accumulation and citrate concentrations increased in shoots and roots of both genotypes, and oxalate concentrations increased significantly in Beijingxin3 roots. Both oxalate and citrate concentrations were significantly positively related to Cd accumulation for Beijingxin3 roots. High accumulation in oxalate and citrate induced by Cd stress in Beijingxin3 roots could benefit its internal tolerance to long-term Cd stress with more Cd accumulation in its roots and less Cd accumulation in its shoots.

  1. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wang, Yanli; Wang, Hui; Xin, Changsheng; Wang, Xitao

    2016-02-01

    The stress corrosion cracking (SCC) behavior of cast austenitic stainless steels of unaged and thermally aged at 400 °C for as long as 20,000 h were studied by using a slow strain rate testing (SSRT) system. Spinodal decomposition in ferrite during thermal aging leads to hardening in ferrite and embrittlement of the SSRT specimen. Plastic deformation and thermal aging degree have a great influence on the oxidation rate of the studied material in simulated PWR primary water environments. In the SCC regions of the aged SSRT specimen, the surface cracks, formed by the brittle fracture of ferrite phases, are the possible locations for SCC. In the non-SCC regions, brittle fracture of ferrite phases also occurs because of the effect of thermal aging embrittlement.

  2. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress.

    PubMed

    Yang, Hongying; Fan, Shourui; Song, Dianping; Wang, Zhuo; Ma, Shungao; Li, Shuqing; Li, Xiaohong; Xu, Mian; Xu, Min; Wang, Xianmo

    2013-02-01

    The aim of this study was to investigate pathophysiological alterations and oxidative stress in various stages of streptozotocin (STZ)‑induced diabetes mellitus (DM) in rats. Male Sprague-Dawley rats (120) were randomized into DM and control groups. Body mass, plasma glucose, glycated hemoglobin (HbA1c), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels, as well as aldose reductase (AR) activities, in brain tissue and serum were determined. Electron microscopy was used to observe neuron and vessel changes in the brain. In STZ‑treated rats, blood glucose, low density lipoproteins, triglycerides and total cholesterol levels increased 1.43‑3.0‑fold and high density lipoprotein, HbA1c and insulin sensitivity index increased 1.1‑1.23‑fold compared with control. At week 16 following treatment, DM rat serum H2O2 concentration was increased, indicating oxidative stress and mRNA levels of GPx and SOD were 2‑fold higher than the control. Protein GPx and SOD levels were reduced (P<0.01). DM rats were identified to exhibit early irregular glomerular capillary basement membrane thickening and vacuolization in the mitochondria and epithelial cells. Neuron cells and blood vessels in the DM rat brains became increasingly abnormal over time with altered Golgi bodies, mitochondria and endoplasmic reticulum cisterns, concurrent with SOD inactivation and AR protein accumulation. Disease progression in rats with STZ‑induced DM included brain pathologies with vascular and neuron cell abnormalities, associated with the reduction of SOD, CAT and GPx activities and also AR accumulation.

  3. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.

    PubMed

    Weldegergis, Berhane T; Zhu, Feng; Poelman, Erik H; Dicke, Marcel

    2015-03-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and productivity. As a consequence of these changes, the interaction between plants and insects can be altered. Using cultivated Brassica oleracea plants, the parasitoid Microplitis mediator and its herbivorous host Mamestra brassicae, we studied the effect of drought stress on (1) the emission of plant volatile organic compounds (VOCs), (2) plant hormone titres, (3) preference and performance of the herbivore, and (4) preference of the parasitoid. Higher levels of jasmonic acid (JA) and abscisic acid (ABA) were recorded in response to herbivory, but no significant differences were observed for salicylic acid (SA) and indole-3-acetic acid (IAA). Drought significantly impacted SA level and showed a significant interactive effect with herbivory for IAA levels. A total of 55 VOCs were recorded and the difference among the treatments was influenced largely by herbivory, where the emission rate of fatty acid-derived volatiles, nitriles and (E)-4,8-dimethylnona-1,3,7-triene [(E)-DMNT] was enhanced. Mamestra brassicae moths preferred to lay eggs on drought-stressed over control plants; their offspring performed similarly on plants of both treatments. VOCs due to drought did not affect the choice of M. mediator parasitoids. Overall, our study reveals an influence of drought on plant chemistry and insect-plant interactions. PMID:25370387

  4. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants.

    PubMed

    Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.

  5. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants

    PubMed Central

    Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations. PMID:25741357

  6. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology.

    PubMed

    Vergauwen, Lucia; Hagenaars, An; Blust, Ronny; Knapen, Dries

    2013-01-15

    Standard ecotoxicity tests are performed at species' specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34°C for one month, were exposed to 5 μM cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34°C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12°C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26°C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we recognize and this study even confirms the importance of

  7. Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective

    PubMed Central

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2016-01-01

    Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other “omics” approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the “omics” level, to understand stress memory in plants better. PMID:26913046

  8. Melamine-cyanurate complexes and oxidative stress markers in trout kidney following melamine and cyanuric acid long-term co-exposure and withdrawal.

    PubMed

    Pacini, Nicole; Dörr, Ambrosius Josef Martin; Elia, Antonia Concetta; Scoparo, Melissa; Abete, Maria Cesarina; Prearo, Marino

    2014-10-01

    In 2007, renal failure and death in pets were linked to pet food containing both melamine (MEL) and cyanuric acid (CYA). In mammals and fish, the co-administration of MEL and CYA causes renal crystal formation. Moreover, little is known about the process of crystal removal in fish. The aim of this study was to evaluate the formation of MEL-cyanurate crystals in kidney of rainbow trout (Oncorhynchus mykiss) fed combined MEL and CYA diets for 10 weeks at 250, 500 and 1,000 mg/kg in feed (equivalent to 2.5, 5, 10 mg/kg body weight of trout fed 1 % body weight per day). During the exposure trial and throughout a withdrawal period, prooxidant effects of MEL and CYA were evaluated on oxidative stress markers such as catalase, glutathione S-transferase and malondialdehyde. Crystal formation was dose and time dependent, and after six withdrawal weeks, crystals persisted in kidney of trout treated the highest triazine dose. Catalase and glutathione S-transferase activity in kidney of trout exposed to both triazines for 10 weeks indicated that MEL (with or without CYA) can exert a higher prooxidant effect than CYA dispensed singly. Although the enzymes activity increase appears to be reverted after two MEL withdrawal weeks, persistence of crystals may lead to severe damage in renal cells of fish. PMID:24952615

  9. Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory.

    PubMed

    Davila Olivas, Nelson H; Coolen, Silvia; Huang, Pingping; Severing, Edouard; van Verk, Marcel C; Hickman, Richard; Wittenberg, Alexander H J; de Vos, Martin; Prins, Marcel; van Loon, Joop J A; Aarts, Mark G M; van Wees, Saskia C M; Pieterse, Corné M J; Dicke, Marcel

    2016-06-01

    In nature, plants are exposed to biotic and abiotic stresses that often occur simultaneously. Therefore, plant responses to combinations of stresses are most representative of how plants respond to stresses. We used RNAseq to assess temporal changes in the transcriptome of Arabidopsis thaliana to herbivory by Pieris rapae caterpillars, either alone or in combination with prior exposure to drought or infection with the necrotrophic fungus Botrytis cinerea. Pre-exposure to drought stress or Botrytis infection resulted in a significantly different timing of the caterpillar-induced transcriptional changes. Additionally, the combination of drought and P. rapae induced an extensive downregulation of A. thaliana genes involved in defence against pathogens. Despite a more substantial growth reduction observed for plants exposed to drought plus P. rapae feeding compared with P. rapae feeding alone, this did not affect weight increase of this specialist caterpillar. Plants respond to combined stresses with phenotypic and transcriptional changes that differ from the single stress situation. The effect of a previous exposure to drought or B. cinerea infection on transcriptional changes to caterpillars is largely overridden by the stress imposed by caterpillars, indicating that plants shift their response to the most recent stress applied. PMID:26847575

  10. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress

    PubMed Central

    Hu, Xiuli; Wu, Liuji; Zhao, Feiyun; Zhang, Dayong; Li, Nana; Zhu, Guohui; Li, Chaohao; Wang, Wei

    2015-01-01

    Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat combination stress, phosphoproteomic analysis was performed on maize leaves by using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. Five-leaf-stage maize was subjected to drought, heat or their combination, and the leaves were collected. Globally, heat, drought and the combined stress significantly changed the phosphorylation levels of 172, 149, and 144 phosphopeptides, respectively. These phosphopeptides corresponded to 282 proteins. Among them, 23 only responded to the combined stress and could not be predicted from their responses to single stressors; 30 and 75 only responded to drought and heat, respectively. Notably, 19 proteins were phosphorylated on different sites in response to the single and combination stresses. Of the seven significantly enriched phosphorylation motifs identified, two were common for all stresses, two were common for heat and the combined stress, and one was specific to the combined stress. The signaling pathways in which the phosphoproteins were involved clearly differed among the three stresses. Functional characterization of the phosphoproteins and the pathways identified here could lead to new targets for the enhancement of crop stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of abiotic stressors. PMID:25999967

  11. Assessment of negative phototaxis in long-term fasted Glyptocidaris crenularis: a new insight into measuring stress responses of sea urchins in aquaculture

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofei; Wei, Jing; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2014-09-01

    A cost-effective method was designed to measure the behavioral response of negative phototaxis to high-intensity illumination in the sea urchin Glyptocidaris crenularis. Ninety sea urchins were randomly and equally divided into two aquaculture environment groups: a fasted group, which was starved during the experiment, and a fed group. After 10 months, the total mortality of each group was recorded. Then, 15 sea urchins were randomly selected from each group and behavioral responses to high-intensity illumination were investigated for each sea urchin. After the behavioral experiment, body measurements of the trial sea urchins were taken. The results reveal that food deprivation significantly affected test diameter (P<0.01), body weight (P<0.01), gonad weight (P<0.01), and gut weight (P<0.01). Furthermore, food deprivation also affected negative phototaxis behaviors of time to rapid spine movement (P<0.01), time to the 1 cm position (P<0.05), and walking distance in 300 s (P<0.01), but not time to body reaction (P>0.05). The mortality rates of fasted and fed urchins were 6.7% and 0%, respectively. The present study provides evidence that food deprivation has a significant effect on phenotypic traits and behavioral responses to high-intensity illumination in the sea urchin G. crenularis. With this method, environmental stressors can be easily detected by measuring proper optional indicators. This study provides a new insight into measuring stress responses of sea urchins in aquaculture. However, further studies should be carried out to understand more environmental factors and to compare this potential behavioral method with immune, physiological, and epidemiological approaches.

  12. Assessment of negative phototaxis in long-term fasted Glyptocidaris crenularis: a new insight into measuring stress responses of sea urchins in aquaculture

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofei; Wei, Jing; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2015-01-01

    A cost-effective method was designed to measure the behavioral response of negative phototaxis to high-intensity illumination in the sea urchin Glyptocidaris crenularis. Ninety sea urchins were randomly and equally divided into two aquaculture environment groups: a fasted group, which was starved during the experiment, and a fed group. After 10 months, the total mortality of each group was recorded. Then, 15 sea urchins were randomly selected from each group and behavioral responses to high-intensity illumination were investigated for each sea urchin. After the behavioral experiment, body measurements of the trial sea urchins were taken. The results reveal that food deprivation significantly affected test diameter ( P<0.01), body weight ( P<0.01), gonad weight ( P<0.01), and gut weight ( P<0.01). Furthermore, food deprivation also affected negative phototaxis behaviors of time to rapid spine movement ( P<0.01), time to the 1 cm position ( P<0.05), and walking distance in 300 s ( P<0.01), but not time to body reaction ( P>0.05). The mortality rates of fasted and fed urchins were 6.7% and 0%, respectively. The present study provides evidence that food deprivation has a significant effect on phenotypic traits and behavioral responses to high-intensity illumination in the sea urchin G. crenularis. With this method, environmental stressors can be easily detected by measuring proper optional indicators. This study provides a new insight into measuring stress responses of sea urchins in aquaculture. However, further studies should be carried out to understand more environmental factors and to compare this potential behavioral method with immune, physiological, and epidemiological approaches.

  13. Antioxidative effects of magnetized extender containing bovine serum albumin on sperm oxidative stress during long-term liquid preservation of boar semen

    SciTech Connect

    Lee, Sang-Hee; Park, Choon-Keun

    2015-08-21

    Magnetized water is defined as water that has passed through a magnet and shows increased permeability into cells and electron-donating characteristics. These attributes can protect against membrane damage and remove reactive oxygen species (ROS) in mammalian cells. We explored the effects of improved magnetized semen extenders containing bovine serum albumin (BSA) as antioxidants on apoptosis in boar sperm. Ejaculated semen was diluted in magnetized extender (0G and 6000G) with or without BSA (0G + BSA and 6000G + BSA), and sperm were analyzed based on viability, acrosome reaction, and H{sub 2}O{sub 2} level of live sperm using flow cytometry. Sperm were then preserved for 11 days at 18 °C. We found that viability was significantly higher in 6000G + BSA than under the other treatments (P < 0.05). The acrosome reaction was significantly lower in the 6000G + BSA group compared with the other treatments (P < 0.05). Live sperm with high intracellular H{sub 2}O{sub 2} level were significantly lower in the 6000G + BSA group than under other treatments (P < 0.05). Based on our results, magnetized extenders have antioxidative effects on the liquid preservation of boar sperm. - Highlights: • Magnetized water is water that has been passed through a magnetic field. • Magnetized extender improve viability and decrease oxidative stress of boar sperm for preservation. • Ejaculated semen diluted with magnetized extender can improve liquid preservation period.

  14. Association between childhood adversities and long-term suicidality among South Africans from the results of the South African Stress and Health study: a cross-sectional study

    PubMed Central

    Bruwer, Belinda; Govender, Ravi; Bishop, Melanie; Williams, David R; Stein, Dan J; Seedat, Soraya

    2014-01-01

    Objective Suicide and suicidal behaviours are significant public health problems and a leading cause of death worldwide and in South Africa. We examined the association between childhood adversities and suicidal behaviour over the life course. Methods A national probability sample of 4351 South African adult participants (aged 18 years and older) in the South African Stress and Health (SASH) study was interviewed as part of the World Mental Health Surveys initiative. Respondents provided sociodemographic and diagnostic information, as well as an account of suicide-related thoughts and behaviours. Suicidality or suicidal behaviour were defined as were defined as suicide attempts and suicidal ideation in the total sample, and suicide plans and attempts among ideators. Childhood adversities included physical abuse, sexual abuse, parental death, parental divorce, other parental loss, family violence, physical illness and financial adversity. The association between suicidality and childhood adversities was examined using discrete-time survival models. Results More than a third of the respondents with suicidal behaviour experienced at least one childhood adversity, with physical abuse, parental death and parental divorce being the most prevalent adversities. Physical abuse, sexual abuse and parental divorce were identified as significant risk markers for lifetime suicide attempts, while physical abuse and parental divorce were significantly correlated with suicidal ideation. Two or more childhood adversities were associated with a twofold higher risk of lifetime suicide attempts. Sexual abuse (OR 9.3), parental divorce (OR 3.1) and childhood physical abuse (OR 2.2) had the strongest associations with lifetime suicide attempts. The effect of childhood adversities on suicidal tendencies varied over the life course. For example, sexual abuse was significantly associated with suicide attempts during childhood and teen years, but not during young and later adulthood

  15. Drought Stress Responses in Soybean Roots and Nodules.

    PubMed

    Kunert, Karl J; Vorster, Barend J; Fenta, Berhanu A; Kibido, Tsholofelo; Dionisio, Giuseppe; Foyer, Christine H

    2016-01-01

    Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  16. Drought Stress Responses in Soybean Roots and Nodules.

    PubMed

    Kunert, Karl J; Vorster, Barend J; Fenta, Berhanu A; Kibido, Tsholofelo; Dionisio, Giuseppe; Foyer, Christine H

    2016-01-01

    Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean. PMID:27462339

  17. Drought Stress Responses in Soybean Roots and Nodules

    PubMed Central

    Kunert, Karl J.; Vorster, Barend J.; Fenta, Berhanu A.; Kibido, Tsholofelo; Dionisio, Giuseppe; Foyer, Christine H.

    2016-01-01

    Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean. PMID:27462339

  18. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.).

    PubMed

    Baghalian, K; Abdoshah, Sh; Khalighi-Sigaroodi, F; Paknejad, F

    2011-02-01

    In arid and semi-arid regions where water availability is a major limitation, using plants with low water consumption is one way to manage available water efficiently. Chamomile (Matricaria recutita L.) may be considered as an economical crop for fields with water scarcity due to its considerable adaptability to a wide range of climates and soils. A field experiment was conducted during 2007-2008 using complete randomized block design with four replications in order to evaluate the effect of drought stress on agro-morphological characters (fresh flower weight, dried flower yield, shoot weight and root weight), oil content, oil composition and apigenin content of chamomile. Drought stress had four different levels of soil moisture depletion (30%, 50%, 70% and 90%). Analysis of variance showed that drought stress decreased plant height, flower yield, shoot weight and apigenin content but it had no significant effect on oil content or oil composition. Impacts of drought stress on growth indices were evaluated as well and the results indicated that plant managed to maintain potential for biomass production under the drought stress. Growth analysis results as well as phytochemical properties of this plant showed that despite decrease in agronomical traits, chamomile could be proposed as a moderate drought resistant medicinal plant with a reasonable performance. PMID:21186125

  19. Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy

    PubMed Central

    Xu, Jinze; Hwang, Judy C.Y.; Lees, Hazel A.; Wohlgemuth, Stephanie E.; Knutson, Mitchell D.; Judge, Andrew R.; Dupont-Versteegden, Esther E.; Marzetti, Emanuele; Leeuwenburgh, Christiaan

    2015-01-01

    In the present study, we investigated the effects of 7 and 14 days of re-loading following 14-day muscle unweighting (hindlimb suspension, HS) on iron transport, non-heme iron levels and oxidative damage in the gastrocnemius muscle of young (6 months) and old (32 months) male Fischer 344×Brown Norway rats. Our results demonstrated that old rats had lower muscle mass, higher levels of total non-heme iron and oxidative damage in skeletal muscle in comparison with young rats. Non-heme iron concentrations and total non-heme iron amounts were 3.4- and 2.3-fold higher in aged rats as compared with their young counterparts, respectively. Seven and 14 days of re-loading was associated with higher muscle weights in young animals as compared with age-matched HS rats, but there was no difference in muscle weights among aged HS, 7 and 14 days of re-loading rats, indicating that aged rats may have a lower adaptability to muscle disuse and a lower capacity to recover from muscle atrophy. Protein levels of cellular iron transporters, such as divalent metal transport-1 (DMT1), transferrin receptor-1 (TfR1), Zip14, and ferroportin (FPN), and their mRNA abundance were determined. TfR1 protein and mRNA levels were significantly lower in aged muscle. Seven and 14 days of re-loading were associated with higher TfR1 mRNA and protein levels in young animals in comparison with their age-matched HS counterparts, but there was no difference between cohorts in aged animals, suggesting adaptive responses in the old to cope with iron deregulation. The extremely low expression of FPN in skeletal muscle might lead to inefficient iron export in the presence of iron overload and play a critical role in age-related iron accumulation in skeletal muscle. Moreover, oxidative stress was much greater in the muscles of the older animals measured as 4-hydroxy-2-nonhenal (HNE)-modified proteins and 8-oxo-7,8-dihydroguanosine levels. These markers remained fairly constant with either HS or re-loading in

  20. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum

    PubMed Central

    Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa

    2011-01-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1–3, adc2–3), spermidine synthase (spds1–2, spds2–3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants. PMID:21330782

  1. Cold plasma treatment enhances oilseed rape seed germination under drought stress.

    PubMed

    Ling, Li; Jiangang, Li; Minchong, Shen; Chunlei, Zhang; Yuanhua, Dong

    2015-01-01

    Effects of cold plasma treatment on seed germination, seedling growth, antioxidant enzymes, lipid peroxidation levels and osmotic-adjustment products of oilseed rape under drought stress were investigated in a drought-sensitive (Zhongshuang 7) and drought-tolerant cultivar (Zhongshuang 11). Results showed that, under drought stress, cold plasma treatment significantly improved the germination rate by 6.25% in Zhongshuang 7, and 4.44% in Zhongshuang 11. Seedling growth characteristics, including shoot and root dry weights, shoot and root lengths, and lateral root number, significantly increased after cold plasma treatment. The apparent contact angle was reduced by 30.38% in Zhongshuang 7 and 16.91% in Zhongshuang 11. Cold plasma treatment markedly raised superoxide dismutase and catalase activities by 17.71% and 16.52% in Zhongshuang 7, and by 13.00% and 13.21% in Zhongshuang 11. Moreover, cold plasma treatment significantly increased the soluble sugar and protein contents, but reduced the malondialdehyde content in seedlings. Our results suggested that cold plasma treatment improved oilseed rape drought tolerance by improving antioxidant enzyme activities, increasing osmotic-adjustment products, and reducing lipid peroxidation, especially in the drought-sensitive cultivar (Zhongshuang 7). Thus, cold plasma treatment can be used in an ameliorative way to improve germination and protect oilseed rape seedlings against damage caused by drought stress.

  2. Cold plasma treatment enhances oilseed rape seed germination under drought stress.

    PubMed

    Ling, Li; Jiangang, Li; Minchong, Shen; Chunlei, Zhang; Yuanhua, Dong

    2015-01-01

    Effects of cold plasma treatment on seed germination, seedling growth, antioxidant enzymes, lipid peroxidation levels and osmotic-adjustment products of oilseed rape under drought stress were investigated in a drought-sensitive (Zhongshuang 7) and drought-tolerant cultivar (Zhongshuang 11). Results showed that, under drought stress, cold plasma treatment significantly improved the germination rate by 6.25% in Zhongshuang 7, and 4.44% in Zhongshuang 11. Seedling growth characteristics, including shoot and root dry weights, shoot and root lengths, and lateral root number, significantly increased after cold plasma treatment. The apparent contact angle was reduced by 30.38% in Zhongshuang 7 and 16.91% in Zhongshuang 11. Cold plasma treatment markedly raised superoxide dismutase and catalase activities by 17.71% and 16.52% in Zhongshuang 7, and by 13.00% and 13.21% in Zhongshuang 11. Moreover, cold plasma treatment significantly increased the soluble sugar and protein contents, but reduced the malondialdehyde content in seedlings. Our results suggested that cold plasma treatment improved oilseed rape drought tolerance by improving antioxidant enzyme activities, increasing osmotic-adjustment products, and reducing lipid peroxidation, especially in the drought-sensitive cultivar (Zhongshuang 7). Thus, cold plasma treatment can be used in an ameliorative way to improve germination and protect oilseed rape seedlings against damage caused by drought stress. PMID:26264651

  3. Cold plasma treatment enhances oilseed rape seed germination under drought stress

    PubMed Central

    Ling, Li; Jiangang, Li; Minchong, Shen; Chunlei, Zhang; Yuanhua, Dong

    2015-01-01

    Effects of cold plasma treatment on seed germination, seedling growth, antioxidant enzymes, lipid peroxidation levels and osmotic-adjustment products of oilseed rape under drought stress were investigated in a drought-sensitive (Zhongshuang 7) and drought-tolerant cultivar (Zhongshuang 11). Results showed that, under drought stress, cold plasma treatment significantly improved the germination rate by 6.25% in Zhongshuang 7, and 4.44% in Zhongshuang 11. Seedling growth characteristics, including shoot and root dry weights, shoot and root lengths, and lateral root number, significantly increased after cold plasma treatment. The apparent contact angle was reduced by 30.38% in Zhongshuang 7 and 16.91% in Zhongshuang 11. Cold plasma treatment markedly raised superoxide dismutase and catalase activities by 17.71% and 16.52% in Zhongshuang 7, and by 13.00% and 13.21% in Zhongshuang 11. Moreover, cold plasma treatment significantly increased the soluble sugar and protein contents, but reduced the malondialdehyde content in seedlings. Our results suggested that cold plasma treatment improved oilseed rape drought tolerance by improving antioxidant enzyme activities, increasing osmotic-adjustment products, and reducing lipid peroxidation, especially in the drought-sensitive cultivar (Zhongshuang 7). Thus, cold plasma treatment can be used in an ameliorative way to improve germination and protect oilseed rape seedlings against damage caused by drought stress. PMID:26264651

  4. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  5. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  6. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought) Tolerance in Date Palm (Phoenix dactylifera L.)

    PubMed Central

    El Rabey, Haddad A.; Al-Malki, Abdulrahman L.; Abulnaja, Khalid O.; Rohde, Wolfgang

    2015-01-01

    This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar “Sagie” were subjected to drought (27.5 g/L polyethylene glycol 6000) and salinity stress conditions (16 g/L NaCl) for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress. PMID:26167472

  7. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata.

    PubMed

    Guan, Gui-Fang; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Fei, Jiao

    2015-10-01

    Drought stress is one of the major abiotic stresses that affects plant growth and metabolism adversely around the world. According to this research, the effect of drought stress on the activity of antioxidative enzymes, soluble sugar, protein and lipid peroxidation were studied in leaves of two mangrove plants, Kandelia obovata and Aegiceras corniculatum. The result showed that superoxide dismutase (SOD) and peroxidase (POD) varied significantly between the leaves and roots studied. The activities increased in different stress levels. The production rate of O 2 (-·) changed with the activity of SOD and POD. Lipid peroxidation was enhanced and Glycine betaine (GB) could decrease the level of malonaldehyde in order to reduce the damage of membrane system. The content of soluble sugar and protein also increased under drought stress and GB helped to eliminate the accumulation of them which somehow enhance the ability of defensing the plants under drought stress. These results indicated that antioxidative activity may play an important role in A. corniculatum and K. obovata and that cell membrane in leaves of K. obovata had greater stability than those of A. corniculatum. Exogenous application of GB had positive effects on A. corniculatum and K. obovata under drought stress which could be products exogenously applied to mangrove plants in order to alleviates the adverse effects. PMID:25956979

  8. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata.

    PubMed

    Guan, Gui-Fang; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Fei, Jiao

    2015-10-01

    Drought stress is one of the major abiotic stresses that affects plant growth and metabolism adversely around the world. According to this research, the effect of drought stress on the activity of antioxidative enzymes, soluble sugar, protein and lipid peroxidation were studied in leaves of two mangrove plants, Kandelia obovata and Aegiceras corniculatum. The result showed that superoxide dismutase (SOD) and peroxidase (POD) varied significantly between the leaves and roots studied. The activities increased in different stress levels. The production rate of O 2 (-·) changed with the activity of SOD and POD. Lipid peroxidation was enhanced and Glycine betaine (GB) could decrease the level of malonaldehyde in order to reduce the damage of membrane system. The content of soluble sugar and protein also increased under drought stress and GB helped to eliminate the accumulation of them which somehow enhance the ability of defensing the plants under drought stress. These results indicated that antioxidative activity may play an important role in A. corniculatum and K. obovata and that cell membrane in leaves of K. obovata had greater stability than those of A. corniculatum. Exogenous application of GB had positive effects on A. corniculatum and K. obovata under drought stress which could be products exogenously applied to mangrove plants in order to alleviates the adverse effects.

  9. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.).

    PubMed

    Kumar, Manoj; Mishra, Sankalp; Dixit, Vijaykant; Kumar, Manoj; Agarwal, Lalit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    Two plant growth promoting rhizobacteria (PGPR) Pseudomonas putida NBRIRA and Bacillus amyloliquefaciens NBRISN13 with ability to tolerate abiotic stress along with multiple PGP traits like ACC deaminase activity, minerals solubilisation, hormones production, biofilm formation, siderophore activity were evaluated for their synergistic effect to ameliorate drought stress in chickpea. Earlier we have reported both the strains individually for their PGP attributes and stress amelioration in host plants. The present study explains in detail the possibilities and benefits of utilizing these 2 PGPR in consortium for improving the chickpea growth under control and drought stressed condition. In vitro results clearly demonstrate that both the PGPR strains are compatible to each other and their synergistic growth enhances the PGP attributes. Greenhouse experiments were conducted to evaluate the effect of inoculation of both strains individually and consortia in drought tolerant and sensitive cultivars (BG362 and P1003). The growth parameters were observed significantly higher in consortium as compared to individual PGPR. Colonization of both PGPR in chickpea rhizosphere has been visualized by using gfp labeling. Apart from growth parameters, defense enzymes, soil enzymes and microbial diversity were significantly modulated in individually PGPR and in consortia inoculated plants. Negative effects of drought stress has been ameliorated and apparently seen by higher biomass and reversal of stress indicators in chickpea cultivars treated with PGPR individually or in consortia. Findings from the present study demonstrate that synergistic application has better potential to improve plant growth promotion under drought stress conditions.

  10. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress

    PubMed Central

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress ‘Red Robin’) or fast (Eugenia uniflora L. ‘Etna Fire’) adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters. PMID:27242846

  11. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress.

    PubMed

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress 'Red Robin') or fast (Eugenia uniflora L. 'Etna Fire') adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters.

  12. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett.

    PubMed

    Wang, Xiao; Vignjevic, Marija; Jiang, Dong; Jacobsen, Susanne; Wollenweber, Bernd

    2014-12-01

    Drought stress occurring during the reproductive growth stage leads to considerable reductions in crop production and has become an important limiting factor for food security globally. In order to explore the possible role of drought priming (pre-exposure of the plants to mild drought stress) on the alleviation of a severe drought stress event later in development, wheat plants were subjected to single or double mild drought episodes (soil relative water content around 35-40%) before anthesis and/or to a severe drought stress event (soil relative water content around 20-25%) 15 d after anthesis. Here, single or double drought priming before anthesis resulted in higher grain yield than in non-primed plants under drought stress during grain filling. The photosynthesis rate and ascorbate peroxidase activity were higher while malondialdehyde content was lower in primed plants than in the non-primed plants under drought stress during grain filling. Proteins in flag leaves differently expressed by the priming and drought stress were mainly related to photosynthesis, stress defence, metabolism, molecular chaperone, and cell structure. Furthermore, the protein abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit, Rubisco activase and ascorbate peroxidase were upregulated in primed plants compared with non-primed plants under drought stress during grain filling. In conclusion, the altered protein expression and upregulated activities of photosynthesis and ascorbate peroxidase in primed plants may indicate their potential roles in alleviating a later-occurring drought stress episode, thereby contributing to higher wheat grain yield under drought stress during grain filling.

  13. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds.

    PubMed

    Begcy, Kevin; Walia, Harkamal

    2015-11-01

    Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat. PMID:26475192

  14. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds.

    PubMed

    Begcy, Kevin; Walia, Harkamal

    2015-11-01

    Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat.

  15. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    PubMed

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth.

  16. Drought Responses of Foliar Metabolites in Three Maize Hybrids Differing in Water Stress Tolerance

    PubMed Central

    Barnaby, Jinyoung Y.; Kim, Moon; Bauchan, Gary; Bunce, James; Reddy, Vangimalla; Sicher, Richard Charles

    2013-01-01

    Maize (Zea mays L.) hybrids varying in drought tolerance were treated with water stress in controlled environments. Experiments were performed during vegetative growth and water was withheld for 19 days beginning 17 days after sowing. Genotypic comparisons used measured changes of leaf water potential or results were expressed by time of treatment. Total dry matter of the drought tolerant hybrid on the final harvest was 53% less than that of the intermediate and susceptible maize hybrids when plants were water sufficient. This showed that maize hybrids selected for extreme drought tolerance possessed a dwarf phenotype that affected soil water contents and leaf water potentials. Changes of shoot and root growth, leaf water potential, net photosynthesis and stomatal conductance in response to the time of water stress treatment were diminished when comparing the drought tolerant to the intermediate or susceptible maize hybrids. Genotypic differences were observed in 26 of 40 total foliar metabolites during water stress treatments. Hierarchical clustering revealed that the tolerant maize hybrid initiated the accumulation of stress related metabolites at higher leaf water potentials than either the susceptible or intermediate hybrids. Opposite results occurred when changes of metabolites in maize leaves were expressed temporally. The above results demonstrated that genotypic differences were readily observed by comparing maize hybrids differing in drought tolerance based on either time of treatment or measured leaf water potential. Current findings provided new and potentially important insights into the mechanisms of drought tolerance in maize. PMID:24143208

  17. Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine.

    PubMed

    Sherwood, Patrick; Villari, Caterina; Capretti, Paolo; Bonello, Pierluigi

    2015-05-01

    Plants experiencing drought stress are frequently more susceptible to pathogens, likely via alterations in physiology that create favorable conditions for pathogens. Common plant responses to drought include the production of reactive oxygen species (ROS) and the accumulation of free amino acids (AAs), particularly proline. These same phenomena also frequently occur during pathogenic attack. Therefore, drought-induced perturbations in AA and ROS metabolism could potentially contribute to the observed enhanced susceptibility. Furthermore, nitrogen (N) availability can influence AA accumulation and affect plant resistance, but its contributions to drought-induced susceptibility are largely unexplored. Here we show that drought induces accumulation of hydrogen peroxide (H2O2) in Austrian pine (Pinus nigra Arnold) shoots, but that shoot infection by the blight and canker pathogen Diplodia sapinea (Fr.) Fuckel leads to large reductions in H2O2 levels in droughted plants. In in vitro assays, H2O2 was toxic to D. sapinea, and the fungus responded to this oxidative stress by increasing catalase and peroxidase activities, resulting in substantial H2O2 degradation. Proline increased in response to drought and infection when examined independently, but unlike all other AAs, proline further increased in infected shoots of droughted trees. In the same tissues, the proline precursor, glutamate, decreased significantly. Proline was found to protect D. sapinea from H2O2 damage, while also serving as a preferred N source in vitro. Fertilization increased constitutive and drought-induced levels of some AAs, but did not affect plant resistance. A new model integrating interactions of proline and H2O2 metabolism with drought and fungal infection of plants is proposed. PMID:25900028

  18. A novel bionic design of dental implant for promoting its long-term success using nerve growth factor (NGF): Utilizing nano-springs to construct a stress-cushioning structure inside the implant

    PubMed Central

    He, Hao; Yao, Yang; Wang, Yanying; Wu, Yingying; Yang, Yang; Gong, Ping

    2012-01-01

    Summary The absence of periodontium causes masticatory load in excess of the self-repairing potential of peri-implant bone; peri-implant bone loss caused by occlusal overload is not uncommon in patients and greatly diminishes chances of long-term success. Regenerative treatments may be useful in inducing peri-implant bone regeneration, but are only stopgap solutions to the aftermaths caused by the imperfect biomechanical compatibility of the dental implant. Despite promising success, the tissue-engineered periodontal ligament still needs a period of time to be perfected before being clinically applied. Hence, we propose a novel design of dental implant that utilizes nano-springs to construct a stress-cushioning structure inside the implant. Many studies have shown that NGF, a neurotrophin, is effective for nerve regeneration in both animal and clinical studies. Moreover, NGF has the potential to accelerate bone healing in patients with fracture and fracture nonunion and improve osseointegration of the implant. The key point of the design is to reduce stress concentrated around peri-implant bone by cushioning masticatory forces and distributing them to all the peri-implant bone through nano-springs, and promote osseoperception and osseointegration by NGF-induced nerve regeneration and new bone formation. This design, which transfers the main biomechanical interface of the implant from outside to inside, if proven to be valid, may to some extent compensate for the functions of lost periodontium in stress cushioning and proprioception. PMID:22847209

  19. A novel bionic design of dental implant for promoting its long-term success using nerve growth factor (NGF): utilizing nano-springs to construct a stress-cushioning structure inside the implant.

    PubMed

    He, Hao; Yao, Yang; Wang, Yanying; Wu, Yingying; Yang, Yang; Gong, Ping

    2012-08-01

    The absence of periodontium causes masticatory load in excess of the self-repairing potential of peri-implant bone; peri-implant bone loss caused by occlusal overload is not uncommon in patients and greatly diminishes chances of long-term success. Regenerative treatments may be useful in inducing peri-implant bone regeneration, but are only stopgap solutions to the aftermaths caused by the imperfect biomechanical compatibility of the dental implant. Despite promising success, the tissue-engineered periodontal ligament still needs a period of time to be perfected before being clinically applied. Hence, we propose a novel design of dental implant that utilizes nano-springs to construct a stress-cushioning structure inside the implant. Many studies have shown that NGF, a neurotrophin, is effective for nerve regeneration in both animal and clinical studies. Moreover, NGF has the potential to accelerate bone healing in patients with fracture and fracture nonunion and improve osseointegration of the implant. The key point of the design is to reduce stress concentrated around peri-implant bone by cushioning masticatory forces and distributing them to all the peri-implant bone through nano-springs, and promote osseoperception and osseointegration by NGF-induced nerve regeneration and new bone formation. This design, which transfers the main biomechanical interface of the implant from outside to inside, if proven to be valid, may to some extent compensate for the functions of lost periodontium in stress cushioning and proprioception.

  20. Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum.

    PubMed

    Zahir, Adnan; Abbasi, Bilal Haider; Adil, Muhammad; Anjum, Sumaira; Zia, Muhammad; Ihsan-Ul-Haq

    2014-09-01

    Silybum marianum is an important medicinal plant of the family Asteraceae, well known for its set of bioactive isomeric mixture of secondary metabolites "silymarin", primarily acting as a hepato-protective agent. Abiotic stress augments plant secondary metabolism in different plant tissues to withstand harsh environmental fluctuations. In the current study, our aim was to induce drought stress in vitro on S. marianum under the influence of different photoperiod treatments to study the effects, with respect to variations in secondary metabolic profile and plant growth and development. S. marianum was extremely vulnerable to different levels of mannitol-induced drought stress. Water deficiency inhibited root induction completely and retarded plant growth was observed; however, phytochemical analysis revealed enhanced accumulation of total phenolic content (TPC), total flavonoid content (TFC), and total protein content along with several antioxidative enzymes. Secondary metabolic content was positively regulated with increasing degree of drought stress. A dependent correlation of seed germination frequency at mild drought stress and antioxidative activities was established with 2 weeks dark + 2 weeks 16/8 h photoperiod treatment, respectively, whereas a positive correlation existed for TPC and TFC when 4 weeks 16/8 h photoperiod treatment was applied. The effects of drought stress are discussed in relation to phenology, seed germination frequency, biomass build up, antioxidative potential, and secondary metabolites accumulation.

  1. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  2. tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress.

    PubMed

    Matsui, Akihiro; Mizunashi, Kayoko; Tanaka, Maho; Kaminuma, Eli; Nguyen, Anh Hai; Nakajima, Maiko; Kim, Jong-Myong; Nguyen, Dong Van; Toyoda, Tetsuro; Seki, Motoaki

    2014-01-01

    In plants, miRNAs and siRNAs, such as transacting siRNAs (ta-siRNAs), affect their targets through distinct regulatory mechanisms. In this study, the expression profiles of small RNAs (smRNAs) in Arabidopsis plants subjected to drought, cold, and high-salinity stress were analyzed using 454 DNA sequencing technology. Expression of three groups of ta-siRNAs (TAS1, TAS2, and TAS3) and their precursors was downregulated in Arabidopsis plants subjected to drought and high-salinity stress. Analysis of ta-siRNA synthesis mutants and mutated ARF3-overexpressing plants that escape the tasiRNA-ARF target indicated that self-pollination was hampered by short stamens in plants under drought and high-salinity stress. Microarray analysis of flower buds of rdr6 and wild-type plants under drought stress and nonstressed conditions revealed that expression of floral development- and auxin response-related genes was affected by drought stress and by the RDR6 mutation. The overall results of the present study indicated that tasiRNA-ARF is involved in maintaining the normal morphogenesis of flowers in plants under stress conditions through fine-tuning expression changes of floral development-related and auxin response-related genes.

  3. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  4. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    PubMed Central

    Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropic